1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1653 { 1654 return true; 1655 } 1656 1657 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1658 { 1659 /* 1660 * When running in MTTCG we don't generate jumps to the yield and 1661 * WFE helpers as it won't affect the scheduling of other vCPUs. 1662 * If we wanted to more completely model WFE/SEV so we don't busy 1663 * spin unnecessarily we would need to do something more involved. 1664 */ 1665 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1666 s->base.is_jmp = DISAS_YIELD; 1667 } 1668 return true; 1669 } 1670 1671 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1672 { 1673 s->base.is_jmp = DISAS_WFI; 1674 return true; 1675 } 1676 1677 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1678 { 1679 /* 1680 * When running in MTTCG we don't generate jumps to the yield and 1681 * WFE helpers as it won't affect the scheduling of other vCPUs. 1682 * If we wanted to more completely model WFE/SEV so we don't busy 1683 * spin unnecessarily we would need to do something more involved. 1684 */ 1685 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1686 s->base.is_jmp = DISAS_WFE; 1687 } 1688 return true; 1689 } 1690 1691 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1692 { 1693 if (s->pauth_active) { 1694 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1695 } 1696 return true; 1697 } 1698 1699 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1700 { 1701 if (s->pauth_active) { 1702 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1703 } 1704 return true; 1705 } 1706 1707 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1708 { 1709 if (s->pauth_active) { 1710 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1711 } 1712 return true; 1713 } 1714 1715 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1716 { 1717 if (s->pauth_active) { 1718 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1719 } 1720 return true; 1721 } 1722 1723 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1724 { 1725 if (s->pauth_active) { 1726 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1727 } 1728 return true; 1729 } 1730 1731 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1732 { 1733 /* Without RAS, we must implement this as NOP. */ 1734 if (dc_isar_feature(aa64_ras, s)) { 1735 /* 1736 * QEMU does not have a source of physical SErrors, 1737 * so we are only concerned with virtual SErrors. 1738 * The pseudocode in the ARM for this case is 1739 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1740 * AArch64.vESBOperation(); 1741 * Most of the condition can be evaluated at translation time. 1742 * Test for EL2 present, and defer test for SEL2 to runtime. 1743 */ 1744 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1745 gen_helper_vesb(cpu_env); 1746 } 1747 } 1748 return true; 1749 } 1750 1751 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1752 { 1753 if (s->pauth_active) { 1754 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1755 } 1756 return true; 1757 } 1758 1759 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1760 { 1761 if (s->pauth_active) { 1762 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1763 } 1764 return true; 1765 } 1766 1767 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1768 { 1769 if (s->pauth_active) { 1770 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1771 } 1772 return true; 1773 } 1774 1775 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1776 { 1777 if (s->pauth_active) { 1778 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1779 } 1780 return true; 1781 } 1782 1783 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1784 { 1785 if (s->pauth_active) { 1786 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1787 } 1788 return true; 1789 } 1790 1791 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1792 { 1793 if (s->pauth_active) { 1794 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1795 } 1796 return true; 1797 } 1798 1799 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1800 { 1801 if (s->pauth_active) { 1802 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1803 } 1804 return true; 1805 } 1806 1807 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1808 { 1809 if (s->pauth_active) { 1810 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1811 } 1812 return true; 1813 } 1814 1815 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1816 { 1817 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1818 return true; 1819 } 1820 1821 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1822 { 1823 /* We handle DSB and DMB the same way */ 1824 TCGBar bar; 1825 1826 switch (a->types) { 1827 case 1: /* MBReqTypes_Reads */ 1828 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1829 break; 1830 case 2: /* MBReqTypes_Writes */ 1831 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1832 break; 1833 default: /* MBReqTypes_All */ 1834 bar = TCG_BAR_SC | TCG_MO_ALL; 1835 break; 1836 } 1837 tcg_gen_mb(bar); 1838 return true; 1839 } 1840 1841 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1842 { 1843 /* 1844 * We need to break the TB after this insn to execute 1845 * self-modifying code correctly and also to take 1846 * any pending interrupts immediately. 1847 */ 1848 reset_btype(s); 1849 gen_goto_tb(s, 0, 4); 1850 return true; 1851 } 1852 1853 static bool trans_SB(DisasContext *s, arg_SB *a) 1854 { 1855 if (!dc_isar_feature(aa64_sb, s)) { 1856 return false; 1857 } 1858 /* 1859 * TODO: There is no speculation barrier opcode for TCG; 1860 * MB and end the TB instead. 1861 */ 1862 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1863 gen_goto_tb(s, 0, 4); 1864 return true; 1865 } 1866 1867 static void gen_xaflag(void) 1868 { 1869 TCGv_i32 z = tcg_temp_new_i32(); 1870 1871 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1872 1873 /* 1874 * (!C & !Z) << 31 1875 * (!(C | Z)) << 31 1876 * ~((C | Z) << 31) 1877 * ~-(C | Z) 1878 * (C | Z) - 1 1879 */ 1880 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1881 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1882 1883 /* !(Z & C) */ 1884 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1885 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1886 1887 /* (!C & Z) << 31 -> -(Z & ~C) */ 1888 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1889 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1890 1891 /* C | Z */ 1892 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1893 } 1894 1895 static void gen_axflag(void) 1896 { 1897 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1898 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1899 1900 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1901 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1902 1903 tcg_gen_movi_i32(cpu_NF, 0); 1904 tcg_gen_movi_i32(cpu_VF, 0); 1905 } 1906 1907 /* MSR (immediate) - move immediate to processor state field */ 1908 static void handle_msr_i(DisasContext *s, uint32_t insn, 1909 unsigned int op1, unsigned int op2, unsigned int crm) 1910 { 1911 int op = op1 << 3 | op2; 1912 1913 /* End the TB by default, chaining is ok. */ 1914 s->base.is_jmp = DISAS_TOO_MANY; 1915 1916 switch (op) { 1917 case 0x00: /* CFINV */ 1918 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1919 goto do_unallocated; 1920 } 1921 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1922 s->base.is_jmp = DISAS_NEXT; 1923 break; 1924 1925 case 0x01: /* XAFlag */ 1926 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1927 goto do_unallocated; 1928 } 1929 gen_xaflag(); 1930 s->base.is_jmp = DISAS_NEXT; 1931 break; 1932 1933 case 0x02: /* AXFlag */ 1934 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1935 goto do_unallocated; 1936 } 1937 gen_axflag(); 1938 s->base.is_jmp = DISAS_NEXT; 1939 break; 1940 1941 case 0x03: /* UAO */ 1942 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1943 goto do_unallocated; 1944 } 1945 if (crm & 1) { 1946 set_pstate_bits(PSTATE_UAO); 1947 } else { 1948 clear_pstate_bits(PSTATE_UAO); 1949 } 1950 gen_rebuild_hflags(s); 1951 break; 1952 1953 case 0x04: /* PAN */ 1954 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1955 goto do_unallocated; 1956 } 1957 if (crm & 1) { 1958 set_pstate_bits(PSTATE_PAN); 1959 } else { 1960 clear_pstate_bits(PSTATE_PAN); 1961 } 1962 gen_rebuild_hflags(s); 1963 break; 1964 1965 case 0x05: /* SPSel */ 1966 if (s->current_el == 0) { 1967 goto do_unallocated; 1968 } 1969 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1970 break; 1971 1972 case 0x19: /* SSBS */ 1973 if (!dc_isar_feature(aa64_ssbs, s)) { 1974 goto do_unallocated; 1975 } 1976 if (crm & 1) { 1977 set_pstate_bits(PSTATE_SSBS); 1978 } else { 1979 clear_pstate_bits(PSTATE_SSBS); 1980 } 1981 /* Don't need to rebuild hflags since SSBS is a nop */ 1982 break; 1983 1984 case 0x1a: /* DIT */ 1985 if (!dc_isar_feature(aa64_dit, s)) { 1986 goto do_unallocated; 1987 } 1988 if (crm & 1) { 1989 set_pstate_bits(PSTATE_DIT); 1990 } else { 1991 clear_pstate_bits(PSTATE_DIT); 1992 } 1993 /* There's no need to rebuild hflags because DIT is a nop */ 1994 break; 1995 1996 case 0x1e: /* DAIFSet */ 1997 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1998 break; 1999 2000 case 0x1f: /* DAIFClear */ 2001 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 2002 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 2003 s->base.is_jmp = DISAS_UPDATE_EXIT; 2004 break; 2005 2006 case 0x1c: /* TCO */ 2007 if (dc_isar_feature(aa64_mte, s)) { 2008 /* Full MTE is enabled -- set the TCO bit as directed. */ 2009 if (crm & 1) { 2010 set_pstate_bits(PSTATE_TCO); 2011 } else { 2012 clear_pstate_bits(PSTATE_TCO); 2013 } 2014 gen_rebuild_hflags(s); 2015 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2016 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2017 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2018 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2019 s->base.is_jmp = DISAS_NEXT; 2020 } else { 2021 goto do_unallocated; 2022 } 2023 break; 2024 2025 case 0x1b: /* SVCR* */ 2026 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 2027 goto do_unallocated; 2028 } 2029 if (sme_access_check(s)) { 2030 int old = s->pstate_sm | (s->pstate_za << 1); 2031 int new = (crm & 1) * 3; 2032 int msk = (crm >> 1) & 3; 2033 2034 if ((old ^ new) & msk) { 2035 /* At least one bit changes. */ 2036 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2037 tcg_constant_i32(msk)); 2038 } else { 2039 s->base.is_jmp = DISAS_NEXT; 2040 } 2041 } 2042 break; 2043 2044 default: 2045 do_unallocated: 2046 unallocated_encoding(s); 2047 return; 2048 } 2049 } 2050 2051 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2052 { 2053 TCGv_i32 tmp = tcg_temp_new_i32(); 2054 TCGv_i32 nzcv = tcg_temp_new_i32(); 2055 2056 /* build bit 31, N */ 2057 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2058 /* build bit 30, Z */ 2059 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2060 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2061 /* build bit 29, C */ 2062 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2063 /* build bit 28, V */ 2064 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2065 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2066 /* generate result */ 2067 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2068 } 2069 2070 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2071 { 2072 TCGv_i32 nzcv = tcg_temp_new_i32(); 2073 2074 /* take NZCV from R[t] */ 2075 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2076 2077 /* bit 31, N */ 2078 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2079 /* bit 30, Z */ 2080 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2081 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2082 /* bit 29, C */ 2083 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2084 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2085 /* bit 28, V */ 2086 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2087 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2088 } 2089 2090 static void gen_sysreg_undef(DisasContext *s, bool isread, 2091 uint8_t op0, uint8_t op1, uint8_t op2, 2092 uint8_t crn, uint8_t crm, uint8_t rt) 2093 { 2094 /* 2095 * Generate code to emit an UNDEF with correct syndrome 2096 * information for a failed system register access. 2097 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2098 * but if FEAT_IDST is implemented then read accesses to registers 2099 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2100 * syndrome. 2101 */ 2102 uint32_t syndrome; 2103 2104 if (isread && dc_isar_feature(aa64_ids, s) && 2105 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2106 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2107 } else { 2108 syndrome = syn_uncategorized(); 2109 } 2110 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2111 } 2112 2113 /* MRS - move from system register 2114 * MSR (register) - move to system register 2115 * SYS 2116 * SYSL 2117 * These are all essentially the same insn in 'read' and 'write' 2118 * versions, with varying op0 fields. 2119 */ 2120 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2121 unsigned int op0, unsigned int op1, unsigned int op2, 2122 unsigned int crn, unsigned int crm, unsigned int rt) 2123 { 2124 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2125 crn, crm, op0, op1, op2); 2126 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2127 bool need_exit_tb = false; 2128 TCGv_ptr tcg_ri = NULL; 2129 TCGv_i64 tcg_rt; 2130 2131 if (!ri) { 2132 /* Unknown register; this might be a guest error or a QEMU 2133 * unimplemented feature. 2134 */ 2135 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2136 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2137 isread ? "read" : "write", op0, op1, crn, crm, op2); 2138 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2139 return; 2140 } 2141 2142 /* Check access permissions */ 2143 if (!cp_access_ok(s->current_el, ri, isread)) { 2144 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2145 return; 2146 } 2147 2148 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2149 /* Emit code to perform further access permissions checks at 2150 * runtime; this may result in an exception. 2151 */ 2152 uint32_t syndrome; 2153 2154 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2155 gen_a64_update_pc(s, 0); 2156 tcg_ri = tcg_temp_new_ptr(); 2157 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2158 tcg_constant_i32(key), 2159 tcg_constant_i32(syndrome), 2160 tcg_constant_i32(isread)); 2161 } else if (ri->type & ARM_CP_RAISES_EXC) { 2162 /* 2163 * The readfn or writefn might raise an exception; 2164 * synchronize the CPU state in case it does. 2165 */ 2166 gen_a64_update_pc(s, 0); 2167 } 2168 2169 /* Handle special cases first */ 2170 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2171 case 0: 2172 break; 2173 case ARM_CP_NOP: 2174 return; 2175 case ARM_CP_NZCV: 2176 tcg_rt = cpu_reg(s, rt); 2177 if (isread) { 2178 gen_get_nzcv(tcg_rt); 2179 } else { 2180 gen_set_nzcv(tcg_rt); 2181 } 2182 return; 2183 case ARM_CP_CURRENTEL: 2184 /* Reads as current EL value from pstate, which is 2185 * guaranteed to be constant by the tb flags. 2186 */ 2187 tcg_rt = cpu_reg(s, rt); 2188 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2189 return; 2190 case ARM_CP_DC_ZVA: 2191 /* Writes clear the aligned block of memory which rt points into. */ 2192 if (s->mte_active[0]) { 2193 int desc = 0; 2194 2195 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2196 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2197 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2198 2199 tcg_rt = tcg_temp_new_i64(); 2200 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2201 tcg_constant_i32(desc), cpu_reg(s, rt)); 2202 } else { 2203 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2204 } 2205 gen_helper_dc_zva(cpu_env, tcg_rt); 2206 return; 2207 case ARM_CP_DC_GVA: 2208 { 2209 TCGv_i64 clean_addr, tag; 2210 2211 /* 2212 * DC_GVA, like DC_ZVA, requires that we supply the original 2213 * pointer for an invalid page. Probe that address first. 2214 */ 2215 tcg_rt = cpu_reg(s, rt); 2216 clean_addr = clean_data_tbi(s, tcg_rt); 2217 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2218 2219 if (s->ata) { 2220 /* Extract the tag from the register to match STZGM. */ 2221 tag = tcg_temp_new_i64(); 2222 tcg_gen_shri_i64(tag, tcg_rt, 56); 2223 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2224 } 2225 } 2226 return; 2227 case ARM_CP_DC_GZVA: 2228 { 2229 TCGv_i64 clean_addr, tag; 2230 2231 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2232 tcg_rt = cpu_reg(s, rt); 2233 clean_addr = clean_data_tbi(s, tcg_rt); 2234 gen_helper_dc_zva(cpu_env, clean_addr); 2235 2236 if (s->ata) { 2237 /* Extract the tag from the register to match STZGM. */ 2238 tag = tcg_temp_new_i64(); 2239 tcg_gen_shri_i64(tag, tcg_rt, 56); 2240 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2241 } 2242 } 2243 return; 2244 default: 2245 g_assert_not_reached(); 2246 } 2247 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2248 return; 2249 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2250 return; 2251 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2252 return; 2253 } 2254 2255 if (ri->type & ARM_CP_IO) { 2256 /* I/O operations must end the TB here (whether read or write) */ 2257 need_exit_tb = translator_io_start(&s->base); 2258 } 2259 2260 tcg_rt = cpu_reg(s, rt); 2261 2262 if (isread) { 2263 if (ri->type & ARM_CP_CONST) { 2264 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2265 } else if (ri->readfn) { 2266 if (!tcg_ri) { 2267 tcg_ri = gen_lookup_cp_reg(key); 2268 } 2269 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2270 } else { 2271 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2272 } 2273 } else { 2274 if (ri->type & ARM_CP_CONST) { 2275 /* If not forbidden by access permissions, treat as WI */ 2276 return; 2277 } else if (ri->writefn) { 2278 if (!tcg_ri) { 2279 tcg_ri = gen_lookup_cp_reg(key); 2280 } 2281 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2282 } else { 2283 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2284 } 2285 } 2286 2287 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2288 /* 2289 * A write to any coprocessor regiser that ends a TB 2290 * must rebuild the hflags for the next TB. 2291 */ 2292 gen_rebuild_hflags(s); 2293 /* 2294 * We default to ending the TB on a coprocessor register write, 2295 * but allow this to be suppressed by the register definition 2296 * (usually only necessary to work around guest bugs). 2297 */ 2298 need_exit_tb = true; 2299 } 2300 if (need_exit_tb) { 2301 s->base.is_jmp = DISAS_UPDATE_EXIT; 2302 } 2303 } 2304 2305 /* System 2306 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2307 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2308 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2309 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2310 */ 2311 static void disas_system(DisasContext *s, uint32_t insn) 2312 { 2313 unsigned int l, op0, op1, crn, crm, op2, rt; 2314 l = extract32(insn, 21, 1); 2315 op0 = extract32(insn, 19, 2); 2316 op1 = extract32(insn, 16, 3); 2317 crn = extract32(insn, 12, 4); 2318 crm = extract32(insn, 8, 4); 2319 op2 = extract32(insn, 5, 3); 2320 rt = extract32(insn, 0, 5); 2321 2322 if (op0 == 0) { 2323 if (l || rt != 31) { 2324 unallocated_encoding(s); 2325 return; 2326 } 2327 switch (crn) { 2328 case 4: /* MSR (immediate) */ 2329 handle_msr_i(s, insn, op1, op2, crm); 2330 break; 2331 default: 2332 unallocated_encoding(s); 2333 break; 2334 } 2335 return; 2336 } 2337 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2338 } 2339 2340 /* Exception generation 2341 * 2342 * 31 24 23 21 20 5 4 2 1 0 2343 * +-----------------+-----+------------------------+-----+----+ 2344 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2345 * +-----------------------+------------------------+----------+ 2346 */ 2347 static void disas_exc(DisasContext *s, uint32_t insn) 2348 { 2349 int opc = extract32(insn, 21, 3); 2350 int op2_ll = extract32(insn, 0, 5); 2351 int imm16 = extract32(insn, 5, 16); 2352 uint32_t syndrome; 2353 2354 switch (opc) { 2355 case 0: 2356 /* For SVC, HVC and SMC we advance the single-step state 2357 * machine before taking the exception. This is architecturally 2358 * mandated, to ensure that single-stepping a system call 2359 * instruction works properly. 2360 */ 2361 switch (op2_ll) { 2362 case 1: /* SVC */ 2363 syndrome = syn_aa64_svc(imm16); 2364 if (s->fgt_svc) { 2365 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2366 break; 2367 } 2368 gen_ss_advance(s); 2369 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2370 break; 2371 case 2: /* HVC */ 2372 if (s->current_el == 0) { 2373 unallocated_encoding(s); 2374 break; 2375 } 2376 /* The pre HVC helper handles cases when HVC gets trapped 2377 * as an undefined insn by runtime configuration. 2378 */ 2379 gen_a64_update_pc(s, 0); 2380 gen_helper_pre_hvc(cpu_env); 2381 gen_ss_advance(s); 2382 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2383 break; 2384 case 3: /* SMC */ 2385 if (s->current_el == 0) { 2386 unallocated_encoding(s); 2387 break; 2388 } 2389 gen_a64_update_pc(s, 0); 2390 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2391 gen_ss_advance(s); 2392 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2393 break; 2394 default: 2395 unallocated_encoding(s); 2396 break; 2397 } 2398 break; 2399 case 1: 2400 if (op2_ll != 0) { 2401 unallocated_encoding(s); 2402 break; 2403 } 2404 /* BRK */ 2405 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2406 break; 2407 case 2: 2408 if (op2_ll != 0) { 2409 unallocated_encoding(s); 2410 break; 2411 } 2412 /* HLT. This has two purposes. 2413 * Architecturally, it is an external halting debug instruction. 2414 * Since QEMU doesn't implement external debug, we treat this as 2415 * it is required for halting debug disabled: it will UNDEF. 2416 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2417 */ 2418 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2419 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2420 } else { 2421 unallocated_encoding(s); 2422 } 2423 break; 2424 case 5: 2425 if (op2_ll < 1 || op2_ll > 3) { 2426 unallocated_encoding(s); 2427 break; 2428 } 2429 /* DCPS1, DCPS2, DCPS3 */ 2430 unallocated_encoding(s); 2431 break; 2432 default: 2433 unallocated_encoding(s); 2434 break; 2435 } 2436 } 2437 2438 /* Branches, exception generating and system instructions */ 2439 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2440 { 2441 switch (extract32(insn, 25, 7)) { 2442 case 0x6a: /* Exception generation / System */ 2443 if (insn & (1 << 24)) { 2444 if (extract32(insn, 22, 2) == 0) { 2445 disas_system(s, insn); 2446 } else { 2447 unallocated_encoding(s); 2448 } 2449 } else { 2450 disas_exc(s, insn); 2451 } 2452 break; 2453 default: 2454 unallocated_encoding(s); 2455 break; 2456 } 2457 } 2458 2459 /* 2460 * Load/Store exclusive instructions are implemented by remembering 2461 * the value/address loaded, and seeing if these are the same 2462 * when the store is performed. This is not actually the architecturally 2463 * mandated semantics, but it works for typical guest code sequences 2464 * and avoids having to monitor regular stores. 2465 * 2466 * The store exclusive uses the atomic cmpxchg primitives to avoid 2467 * races in multi-threaded linux-user and when MTTCG softmmu is 2468 * enabled. 2469 */ 2470 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2471 int size, bool is_pair) 2472 { 2473 int idx = get_mem_index(s); 2474 TCGv_i64 dirty_addr, clean_addr; 2475 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2476 2477 s->is_ldex = true; 2478 dirty_addr = cpu_reg_sp(s, rn); 2479 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2480 2481 g_assert(size <= 3); 2482 if (is_pair) { 2483 g_assert(size >= 2); 2484 if (size == 2) { 2485 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2486 if (s->be_data == MO_LE) { 2487 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2488 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2489 } else { 2490 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2491 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2492 } 2493 } else { 2494 TCGv_i128 t16 = tcg_temp_new_i128(); 2495 2496 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2497 2498 if (s->be_data == MO_LE) { 2499 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2500 cpu_exclusive_high, t16); 2501 } else { 2502 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2503 cpu_exclusive_val, t16); 2504 } 2505 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2506 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2507 } 2508 } else { 2509 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2510 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2511 } 2512 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2513 } 2514 2515 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2516 int rn, int size, int is_pair) 2517 { 2518 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2519 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2520 * [addr] = {Rt}; 2521 * if (is_pair) { 2522 * [addr + datasize] = {Rt2}; 2523 * } 2524 * {Rd} = 0; 2525 * } else { 2526 * {Rd} = 1; 2527 * } 2528 * env->exclusive_addr = -1; 2529 */ 2530 TCGLabel *fail_label = gen_new_label(); 2531 TCGLabel *done_label = gen_new_label(); 2532 TCGv_i64 tmp, clean_addr; 2533 MemOp memop; 2534 2535 /* 2536 * FIXME: We are out of spec here. We have recorded only the address 2537 * from load_exclusive, not the entire range, and we assume that the 2538 * size of the access on both sides match. The architecture allows the 2539 * store to be smaller than the load, so long as the stored bytes are 2540 * within the range recorded by the load. 2541 */ 2542 2543 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2544 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2545 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2546 2547 /* 2548 * The write, and any associated faults, only happen if the virtual 2549 * and physical addresses pass the exclusive monitor check. These 2550 * faults are exceedingly unlikely, because normally the guest uses 2551 * the exact same address register for the load_exclusive, and we 2552 * would have recognized these faults there. 2553 * 2554 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2555 * unaligned 4-byte write within the range of an aligned 8-byte load. 2556 * With LSE2, the store would need to cross a 16-byte boundary when the 2557 * load did not, which would mean the store is outside the range 2558 * recorded for the monitor, which would have failed a corrected monitor 2559 * check above. For now, we assume no size change and retain the 2560 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2561 * 2562 * It is possible to trigger an MTE fault, by performing the load with 2563 * a virtual address with a valid tag and performing the store with the 2564 * same virtual address and a different invalid tag. 2565 */ 2566 memop = size + is_pair; 2567 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2568 memop |= MO_ALIGN; 2569 } 2570 memop = finalize_memop(s, memop); 2571 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2572 2573 tmp = tcg_temp_new_i64(); 2574 if (is_pair) { 2575 if (size == 2) { 2576 if (s->be_data == MO_LE) { 2577 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2578 } else { 2579 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2580 } 2581 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2582 cpu_exclusive_val, tmp, 2583 get_mem_index(s), memop); 2584 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2585 } else { 2586 TCGv_i128 t16 = tcg_temp_new_i128(); 2587 TCGv_i128 c16 = tcg_temp_new_i128(); 2588 TCGv_i64 a, b; 2589 2590 if (s->be_data == MO_LE) { 2591 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2592 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2593 cpu_exclusive_high); 2594 } else { 2595 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2596 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2597 cpu_exclusive_val); 2598 } 2599 2600 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2601 get_mem_index(s), memop); 2602 2603 a = tcg_temp_new_i64(); 2604 b = tcg_temp_new_i64(); 2605 if (s->be_data == MO_LE) { 2606 tcg_gen_extr_i128_i64(a, b, t16); 2607 } else { 2608 tcg_gen_extr_i128_i64(b, a, t16); 2609 } 2610 2611 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2612 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2613 tcg_gen_or_i64(tmp, a, b); 2614 2615 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2616 } 2617 } else { 2618 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2619 cpu_reg(s, rt), get_mem_index(s), memop); 2620 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2621 } 2622 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2623 tcg_gen_br(done_label); 2624 2625 gen_set_label(fail_label); 2626 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2627 gen_set_label(done_label); 2628 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2629 } 2630 2631 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2632 int rn, int size) 2633 { 2634 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2635 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2636 int memidx = get_mem_index(s); 2637 TCGv_i64 clean_addr; 2638 MemOp memop; 2639 2640 if (rn == 31) { 2641 gen_check_sp_alignment(s); 2642 } 2643 memop = check_atomic_align(s, rn, size); 2644 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2645 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2646 memidx, memop); 2647 } 2648 2649 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2650 int rn, int size) 2651 { 2652 TCGv_i64 s1 = cpu_reg(s, rs); 2653 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2654 TCGv_i64 t1 = cpu_reg(s, rt); 2655 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2656 TCGv_i64 clean_addr; 2657 int memidx = get_mem_index(s); 2658 MemOp memop; 2659 2660 if (rn == 31) { 2661 gen_check_sp_alignment(s); 2662 } 2663 2664 /* This is a single atomic access, despite the "pair". */ 2665 memop = check_atomic_align(s, rn, size + 1); 2666 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2667 2668 if (size == 2) { 2669 TCGv_i64 cmp = tcg_temp_new_i64(); 2670 TCGv_i64 val = tcg_temp_new_i64(); 2671 2672 if (s->be_data == MO_LE) { 2673 tcg_gen_concat32_i64(val, t1, t2); 2674 tcg_gen_concat32_i64(cmp, s1, s2); 2675 } else { 2676 tcg_gen_concat32_i64(val, t2, t1); 2677 tcg_gen_concat32_i64(cmp, s2, s1); 2678 } 2679 2680 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2681 2682 if (s->be_data == MO_LE) { 2683 tcg_gen_extr32_i64(s1, s2, cmp); 2684 } else { 2685 tcg_gen_extr32_i64(s2, s1, cmp); 2686 } 2687 } else { 2688 TCGv_i128 cmp = tcg_temp_new_i128(); 2689 TCGv_i128 val = tcg_temp_new_i128(); 2690 2691 if (s->be_data == MO_LE) { 2692 tcg_gen_concat_i64_i128(val, t1, t2); 2693 tcg_gen_concat_i64_i128(cmp, s1, s2); 2694 } else { 2695 tcg_gen_concat_i64_i128(val, t2, t1); 2696 tcg_gen_concat_i64_i128(cmp, s2, s1); 2697 } 2698 2699 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2700 2701 if (s->be_data == MO_LE) { 2702 tcg_gen_extr_i128_i64(s1, s2, cmp); 2703 } else { 2704 tcg_gen_extr_i128_i64(s2, s1, cmp); 2705 } 2706 } 2707 } 2708 2709 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2710 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2711 */ 2712 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2713 { 2714 int opc0 = extract32(opc, 0, 1); 2715 int regsize; 2716 2717 if (is_signed) { 2718 regsize = opc0 ? 32 : 64; 2719 } else { 2720 regsize = size == 3 ? 64 : 32; 2721 } 2722 return regsize == 64; 2723 } 2724 2725 /* Load/store exclusive 2726 * 2727 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2728 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2729 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2730 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2731 * 2732 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2733 * L: 0 -> store, 1 -> load 2734 * o2: 0 -> exclusive, 1 -> not 2735 * o1: 0 -> single register, 1 -> register pair 2736 * o0: 1 -> load-acquire/store-release, 0 -> not 2737 */ 2738 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2739 { 2740 int rt = extract32(insn, 0, 5); 2741 int rn = extract32(insn, 5, 5); 2742 int rt2 = extract32(insn, 10, 5); 2743 int rs = extract32(insn, 16, 5); 2744 int is_lasr = extract32(insn, 15, 1); 2745 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2746 int size = extract32(insn, 30, 2); 2747 TCGv_i64 clean_addr; 2748 MemOp memop; 2749 2750 switch (o2_L_o1_o0) { 2751 case 0x0: /* STXR */ 2752 case 0x1: /* STLXR */ 2753 if (rn == 31) { 2754 gen_check_sp_alignment(s); 2755 } 2756 if (is_lasr) { 2757 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2758 } 2759 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2760 return; 2761 2762 case 0x4: /* LDXR */ 2763 case 0x5: /* LDAXR */ 2764 if (rn == 31) { 2765 gen_check_sp_alignment(s); 2766 } 2767 gen_load_exclusive(s, rt, rt2, rn, size, false); 2768 if (is_lasr) { 2769 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2770 } 2771 return; 2772 2773 case 0x8: /* STLLR */ 2774 if (!dc_isar_feature(aa64_lor, s)) { 2775 break; 2776 } 2777 /* StoreLORelease is the same as Store-Release for QEMU. */ 2778 /* fall through */ 2779 case 0x9: /* STLR */ 2780 /* Generate ISS for non-exclusive accesses including LASR. */ 2781 if (rn == 31) { 2782 gen_check_sp_alignment(s); 2783 } 2784 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2785 memop = check_ordered_align(s, rn, 0, true, size); 2786 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2787 true, rn != 31, memop); 2788 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2789 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2790 return; 2791 2792 case 0xc: /* LDLAR */ 2793 if (!dc_isar_feature(aa64_lor, s)) { 2794 break; 2795 } 2796 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2797 /* fall through */ 2798 case 0xd: /* LDAR */ 2799 /* Generate ISS for non-exclusive accesses including LASR. */ 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 memop = check_ordered_align(s, rn, 0, false, size); 2804 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2805 false, rn != 31, memop); 2806 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2807 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2808 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2809 return; 2810 2811 case 0x2: case 0x3: /* CASP / STXP */ 2812 if (size & 2) { /* STXP / STLXP */ 2813 if (rn == 31) { 2814 gen_check_sp_alignment(s); 2815 } 2816 if (is_lasr) { 2817 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2818 } 2819 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2820 return; 2821 } 2822 if (rt2 == 31 2823 && ((rt | rs) & 1) == 0 2824 && dc_isar_feature(aa64_atomics, s)) { 2825 /* CASP / CASPL */ 2826 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2827 return; 2828 } 2829 break; 2830 2831 case 0x6: case 0x7: /* CASPA / LDXP */ 2832 if (size & 2) { /* LDXP / LDAXP */ 2833 if (rn == 31) { 2834 gen_check_sp_alignment(s); 2835 } 2836 gen_load_exclusive(s, rt, rt2, rn, size, true); 2837 if (is_lasr) { 2838 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2839 } 2840 return; 2841 } 2842 if (rt2 == 31 2843 && ((rt | rs) & 1) == 0 2844 && dc_isar_feature(aa64_atomics, s)) { 2845 /* CASPA / CASPAL */ 2846 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2847 return; 2848 } 2849 break; 2850 2851 case 0xa: /* CAS */ 2852 case 0xb: /* CASL */ 2853 case 0xe: /* CASA */ 2854 case 0xf: /* CASAL */ 2855 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2856 gen_compare_and_swap(s, rs, rt, rn, size); 2857 return; 2858 } 2859 break; 2860 } 2861 unallocated_encoding(s); 2862 } 2863 2864 /* 2865 * Load register (literal) 2866 * 2867 * 31 30 29 27 26 25 24 23 5 4 0 2868 * +-----+-------+---+-----+-------------------+-------+ 2869 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2870 * +-----+-------+---+-----+-------------------+-------+ 2871 * 2872 * V: 1 -> vector (simd/fp) 2873 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2874 * 10-> 32 bit signed, 11 -> prefetch 2875 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2876 */ 2877 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2878 { 2879 int rt = extract32(insn, 0, 5); 2880 int64_t imm = sextract32(insn, 5, 19) << 2; 2881 bool is_vector = extract32(insn, 26, 1); 2882 int opc = extract32(insn, 30, 2); 2883 bool is_signed = false; 2884 int size = 2; 2885 TCGv_i64 tcg_rt, clean_addr; 2886 MemOp memop; 2887 2888 if (is_vector) { 2889 if (opc == 3) { 2890 unallocated_encoding(s); 2891 return; 2892 } 2893 size = 2 + opc; 2894 if (!fp_access_check(s)) { 2895 return; 2896 } 2897 memop = finalize_memop_asimd(s, size); 2898 } else { 2899 if (opc == 3) { 2900 /* PRFM (literal) : prefetch */ 2901 return; 2902 } 2903 size = 2 + extract32(opc, 0, 1); 2904 is_signed = extract32(opc, 1, 1); 2905 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2906 } 2907 2908 tcg_rt = cpu_reg(s, rt); 2909 2910 clean_addr = tcg_temp_new_i64(); 2911 gen_pc_plus_diff(s, clean_addr, imm); 2912 2913 if (is_vector) { 2914 do_fp_ld(s, rt, clean_addr, memop); 2915 } else { 2916 /* Only unsigned 32bit loads target 32bit registers. */ 2917 bool iss_sf = opc != 0; 2918 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2919 } 2920 } 2921 2922 /* 2923 * LDNP (Load Pair - non-temporal hint) 2924 * LDP (Load Pair - non vector) 2925 * LDPSW (Load Pair Signed Word - non vector) 2926 * STNP (Store Pair - non-temporal hint) 2927 * STP (Store Pair - non vector) 2928 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2929 * LDP (Load Pair of SIMD&FP) 2930 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2931 * STP (Store Pair of SIMD&FP) 2932 * 2933 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2934 * +-----+-------+---+---+-------+---+-----------------------------+ 2935 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2936 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2937 * 2938 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2939 * LDPSW/STGP 01 2940 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2941 * V: 0 -> GPR, 1 -> Vector 2942 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2943 * 10 -> signed offset, 11 -> pre-index 2944 * L: 0 -> Store 1 -> Load 2945 * 2946 * Rt, Rt2 = GPR or SIMD registers to be stored 2947 * Rn = general purpose register containing address 2948 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2949 */ 2950 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2951 { 2952 int rt = extract32(insn, 0, 5); 2953 int rn = extract32(insn, 5, 5); 2954 int rt2 = extract32(insn, 10, 5); 2955 uint64_t offset = sextract64(insn, 15, 7); 2956 int index = extract32(insn, 23, 2); 2957 bool is_vector = extract32(insn, 26, 1); 2958 bool is_load = extract32(insn, 22, 1); 2959 int opc = extract32(insn, 30, 2); 2960 bool is_signed = false; 2961 bool postindex = false; 2962 bool wback = false; 2963 bool set_tag = false; 2964 TCGv_i64 clean_addr, dirty_addr; 2965 MemOp mop; 2966 int size; 2967 2968 if (opc == 3) { 2969 unallocated_encoding(s); 2970 return; 2971 } 2972 2973 if (is_vector) { 2974 size = 2 + opc; 2975 } else if (opc == 1 && !is_load) { 2976 /* STGP */ 2977 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2978 unallocated_encoding(s); 2979 return; 2980 } 2981 size = 3; 2982 set_tag = true; 2983 } else { 2984 size = 2 + extract32(opc, 1, 1); 2985 is_signed = extract32(opc, 0, 1); 2986 if (!is_load && is_signed) { 2987 unallocated_encoding(s); 2988 return; 2989 } 2990 } 2991 2992 switch (index) { 2993 case 1: /* post-index */ 2994 postindex = true; 2995 wback = true; 2996 break; 2997 case 0: 2998 /* signed offset with "non-temporal" hint. Since we don't emulate 2999 * caches we don't care about hints to the cache system about 3000 * data access patterns, and handle this identically to plain 3001 * signed offset. 3002 */ 3003 if (is_signed) { 3004 /* There is no non-temporal-hint version of LDPSW */ 3005 unallocated_encoding(s); 3006 return; 3007 } 3008 postindex = false; 3009 break; 3010 case 2: /* signed offset, rn not updated */ 3011 postindex = false; 3012 break; 3013 case 3: /* pre-index */ 3014 postindex = false; 3015 wback = true; 3016 break; 3017 } 3018 3019 if (is_vector && !fp_access_check(s)) { 3020 return; 3021 } 3022 3023 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 3024 3025 if (rn == 31) { 3026 gen_check_sp_alignment(s); 3027 } 3028 3029 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3030 if (!postindex) { 3031 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3032 } 3033 3034 if (set_tag) { 3035 if (!s->ata) { 3036 /* 3037 * TODO: We could rely on the stores below, at least for 3038 * system mode, if we arrange to add MO_ALIGN_16. 3039 */ 3040 gen_helper_stg_stub(cpu_env, dirty_addr); 3041 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3042 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3043 } else { 3044 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3045 } 3046 } 3047 3048 if (is_vector) { 3049 mop = finalize_memop_asimd(s, size); 3050 } else { 3051 mop = finalize_memop(s, size); 3052 } 3053 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3054 (wback || rn != 31) && !set_tag, 3055 2 << size, mop); 3056 3057 if (is_vector) { 3058 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3059 if (is_load) { 3060 do_fp_ld(s, rt, clean_addr, mop); 3061 } else { 3062 do_fp_st(s, rt, clean_addr, mop); 3063 } 3064 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3065 if (is_load) { 3066 do_fp_ld(s, rt2, clean_addr, mop); 3067 } else { 3068 do_fp_st(s, rt2, clean_addr, mop); 3069 } 3070 } else { 3071 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3072 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3073 3074 /* 3075 * We built mop above for the single logical access -- rebuild it 3076 * now for the paired operation. 3077 * 3078 * With LSE2, non-sign-extending pairs are treated atomically if 3079 * aligned, and if unaligned one of the pair will be completely 3080 * within a 16-byte block and that element will be atomic. 3081 * Otherwise each element is separately atomic. 3082 * In all cases, issue one operation with the correct atomicity. 3083 * 3084 * This treats sign-extending loads like zero-extending loads, 3085 * since that reuses the most code below. 3086 */ 3087 mop = size + 1; 3088 if (s->align_mem) { 3089 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3090 } 3091 mop = finalize_memop_pair(s, mop); 3092 3093 if (is_load) { 3094 if (size == 2) { 3095 int o2 = s->be_data == MO_LE ? 32 : 0; 3096 int o1 = o2 ^ 32; 3097 3098 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3099 if (is_signed) { 3100 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3101 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3102 } else { 3103 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3104 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3105 } 3106 } else { 3107 TCGv_i128 tmp = tcg_temp_new_i128(); 3108 3109 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3110 if (s->be_data == MO_LE) { 3111 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3112 } else { 3113 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3114 } 3115 } 3116 } else { 3117 if (size == 2) { 3118 TCGv_i64 tmp = tcg_temp_new_i64(); 3119 3120 if (s->be_data == MO_LE) { 3121 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3122 } else { 3123 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3124 } 3125 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3126 } else { 3127 TCGv_i128 tmp = tcg_temp_new_i128(); 3128 3129 if (s->be_data == MO_LE) { 3130 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3131 } else { 3132 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3133 } 3134 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3135 } 3136 } 3137 } 3138 3139 if (wback) { 3140 if (postindex) { 3141 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3142 } 3143 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3144 } 3145 } 3146 3147 /* 3148 * Load/store (immediate post-indexed) 3149 * Load/store (immediate pre-indexed) 3150 * Load/store (unscaled immediate) 3151 * 3152 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3153 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3154 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3155 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3156 * 3157 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3158 10 -> unprivileged 3159 * V = 0 -> non-vector 3160 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3161 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3162 */ 3163 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3164 int opc, 3165 int size, 3166 int rt, 3167 bool is_vector) 3168 { 3169 int rn = extract32(insn, 5, 5); 3170 int imm9 = sextract32(insn, 12, 9); 3171 int idx = extract32(insn, 10, 2); 3172 bool is_signed = false; 3173 bool is_store = false; 3174 bool is_extended = false; 3175 bool is_unpriv = (idx == 2); 3176 bool iss_valid; 3177 bool post_index; 3178 bool writeback; 3179 int memidx; 3180 MemOp memop; 3181 TCGv_i64 clean_addr, dirty_addr; 3182 3183 if (is_vector) { 3184 size |= (opc & 2) << 1; 3185 if (size > 4 || is_unpriv) { 3186 unallocated_encoding(s); 3187 return; 3188 } 3189 is_store = ((opc & 1) == 0); 3190 if (!fp_access_check(s)) { 3191 return; 3192 } 3193 memop = finalize_memop_asimd(s, size); 3194 } else { 3195 if (size == 3 && opc == 2) { 3196 /* PRFM - prefetch */ 3197 if (idx != 0) { 3198 unallocated_encoding(s); 3199 return; 3200 } 3201 return; 3202 } 3203 if (opc == 3 && size > 1) { 3204 unallocated_encoding(s); 3205 return; 3206 } 3207 is_store = (opc == 0); 3208 is_signed = !is_store && extract32(opc, 1, 1); 3209 is_extended = (size < 3) && extract32(opc, 0, 1); 3210 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3211 } 3212 3213 switch (idx) { 3214 case 0: 3215 case 2: 3216 post_index = false; 3217 writeback = false; 3218 break; 3219 case 1: 3220 post_index = true; 3221 writeback = true; 3222 break; 3223 case 3: 3224 post_index = false; 3225 writeback = true; 3226 break; 3227 default: 3228 g_assert_not_reached(); 3229 } 3230 3231 iss_valid = !is_vector && !writeback; 3232 3233 if (rn == 31) { 3234 gen_check_sp_alignment(s); 3235 } 3236 3237 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3238 if (!post_index) { 3239 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3240 } 3241 3242 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3243 3244 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3245 writeback || rn != 31, 3246 memop, is_unpriv, memidx); 3247 3248 if (is_vector) { 3249 if (is_store) { 3250 do_fp_st(s, rt, clean_addr, memop); 3251 } else { 3252 do_fp_ld(s, rt, clean_addr, memop); 3253 } 3254 } else { 3255 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3256 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3257 3258 if (is_store) { 3259 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3260 iss_valid, rt, iss_sf, false); 3261 } else { 3262 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3263 is_extended, memidx, 3264 iss_valid, rt, iss_sf, false); 3265 } 3266 } 3267 3268 if (writeback) { 3269 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3270 if (post_index) { 3271 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3272 } 3273 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3274 } 3275 } 3276 3277 /* 3278 * Load/store (register offset) 3279 * 3280 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3281 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3282 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3283 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3284 * 3285 * For non-vector: 3286 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3287 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3288 * For vector: 3289 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3290 * opc<0>: 0 -> store, 1 -> load 3291 * V: 1 -> vector/simd 3292 * opt: extend encoding (see DecodeRegExtend) 3293 * S: if S=1 then scale (essentially index by sizeof(size)) 3294 * Rt: register to transfer into/out of 3295 * Rn: address register or SP for base 3296 * Rm: offset register or ZR for offset 3297 */ 3298 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3299 int opc, 3300 int size, 3301 int rt, 3302 bool is_vector) 3303 { 3304 int rn = extract32(insn, 5, 5); 3305 int shift = extract32(insn, 12, 1); 3306 int rm = extract32(insn, 16, 5); 3307 int opt = extract32(insn, 13, 3); 3308 bool is_signed = false; 3309 bool is_store = false; 3310 bool is_extended = false; 3311 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3312 MemOp memop; 3313 3314 if (extract32(opt, 1, 1) == 0) { 3315 unallocated_encoding(s); 3316 return; 3317 } 3318 3319 if (is_vector) { 3320 size |= (opc & 2) << 1; 3321 if (size > 4) { 3322 unallocated_encoding(s); 3323 return; 3324 } 3325 is_store = !extract32(opc, 0, 1); 3326 if (!fp_access_check(s)) { 3327 return; 3328 } 3329 memop = finalize_memop_asimd(s, size); 3330 } else { 3331 if (size == 3 && opc == 2) { 3332 /* PRFM - prefetch */ 3333 return; 3334 } 3335 if (opc == 3 && size > 1) { 3336 unallocated_encoding(s); 3337 return; 3338 } 3339 is_store = (opc == 0); 3340 is_signed = !is_store && extract32(opc, 1, 1); 3341 is_extended = (size < 3) && extract32(opc, 0, 1); 3342 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3343 } 3344 3345 if (rn == 31) { 3346 gen_check_sp_alignment(s); 3347 } 3348 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3349 3350 tcg_rm = read_cpu_reg(s, rm, 1); 3351 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3352 3353 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3354 3355 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3356 3357 if (is_vector) { 3358 if (is_store) { 3359 do_fp_st(s, rt, clean_addr, memop); 3360 } else { 3361 do_fp_ld(s, rt, clean_addr, memop); 3362 } 3363 } else { 3364 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3365 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3366 3367 if (is_store) { 3368 do_gpr_st(s, tcg_rt, clean_addr, memop, 3369 true, rt, iss_sf, false); 3370 } else { 3371 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3372 is_extended, true, rt, iss_sf, false); 3373 } 3374 } 3375 } 3376 3377 /* 3378 * Load/store (unsigned immediate) 3379 * 3380 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3381 * +----+-------+---+-----+-----+------------+-------+------+ 3382 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3383 * +----+-------+---+-----+-----+------------+-------+------+ 3384 * 3385 * For non-vector: 3386 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3387 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3388 * For vector: 3389 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3390 * opc<0>: 0 -> store, 1 -> load 3391 * Rn: base address register (inc SP) 3392 * Rt: target register 3393 */ 3394 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3395 int opc, 3396 int size, 3397 int rt, 3398 bool is_vector) 3399 { 3400 int rn = extract32(insn, 5, 5); 3401 unsigned int imm12 = extract32(insn, 10, 12); 3402 unsigned int offset; 3403 TCGv_i64 clean_addr, dirty_addr; 3404 bool is_store; 3405 bool is_signed = false; 3406 bool is_extended = false; 3407 MemOp memop; 3408 3409 if (is_vector) { 3410 size |= (opc & 2) << 1; 3411 if (size > 4) { 3412 unallocated_encoding(s); 3413 return; 3414 } 3415 is_store = !extract32(opc, 0, 1); 3416 if (!fp_access_check(s)) { 3417 return; 3418 } 3419 memop = finalize_memop_asimd(s, size); 3420 } else { 3421 if (size == 3 && opc == 2) { 3422 /* PRFM - prefetch */ 3423 return; 3424 } 3425 if (opc == 3 && size > 1) { 3426 unallocated_encoding(s); 3427 return; 3428 } 3429 is_store = (opc == 0); 3430 is_signed = !is_store && extract32(opc, 1, 1); 3431 is_extended = (size < 3) && extract32(opc, 0, 1); 3432 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3433 } 3434 3435 if (rn == 31) { 3436 gen_check_sp_alignment(s); 3437 } 3438 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3439 offset = imm12 << size; 3440 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3441 3442 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3443 3444 if (is_vector) { 3445 if (is_store) { 3446 do_fp_st(s, rt, clean_addr, memop); 3447 } else { 3448 do_fp_ld(s, rt, clean_addr, memop); 3449 } 3450 } else { 3451 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3452 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3453 if (is_store) { 3454 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3455 } else { 3456 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3457 is_extended, true, rt, iss_sf, false); 3458 } 3459 } 3460 } 3461 3462 /* Atomic memory operations 3463 * 3464 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3465 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3466 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3467 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3468 * 3469 * Rt: the result register 3470 * Rn: base address or SP 3471 * Rs: the source register for the operation 3472 * V: vector flag (always 0 as of v8.3) 3473 * A: acquire flag 3474 * R: release flag 3475 */ 3476 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3477 int size, int rt, bool is_vector) 3478 { 3479 int rs = extract32(insn, 16, 5); 3480 int rn = extract32(insn, 5, 5); 3481 int o3_opc = extract32(insn, 12, 4); 3482 bool r = extract32(insn, 22, 1); 3483 bool a = extract32(insn, 23, 1); 3484 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3485 AtomicThreeOpFn *fn = NULL; 3486 MemOp mop = size; 3487 3488 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3489 unallocated_encoding(s); 3490 return; 3491 } 3492 switch (o3_opc) { 3493 case 000: /* LDADD */ 3494 fn = tcg_gen_atomic_fetch_add_i64; 3495 break; 3496 case 001: /* LDCLR */ 3497 fn = tcg_gen_atomic_fetch_and_i64; 3498 break; 3499 case 002: /* LDEOR */ 3500 fn = tcg_gen_atomic_fetch_xor_i64; 3501 break; 3502 case 003: /* LDSET */ 3503 fn = tcg_gen_atomic_fetch_or_i64; 3504 break; 3505 case 004: /* LDSMAX */ 3506 fn = tcg_gen_atomic_fetch_smax_i64; 3507 mop |= MO_SIGN; 3508 break; 3509 case 005: /* LDSMIN */ 3510 fn = tcg_gen_atomic_fetch_smin_i64; 3511 mop |= MO_SIGN; 3512 break; 3513 case 006: /* LDUMAX */ 3514 fn = tcg_gen_atomic_fetch_umax_i64; 3515 break; 3516 case 007: /* LDUMIN */ 3517 fn = tcg_gen_atomic_fetch_umin_i64; 3518 break; 3519 case 010: /* SWP */ 3520 fn = tcg_gen_atomic_xchg_i64; 3521 break; 3522 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3523 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3524 rs != 31 || a != 1 || r != 0) { 3525 unallocated_encoding(s); 3526 return; 3527 } 3528 break; 3529 default: 3530 unallocated_encoding(s); 3531 return; 3532 } 3533 3534 if (rn == 31) { 3535 gen_check_sp_alignment(s); 3536 } 3537 3538 mop = check_atomic_align(s, rn, mop); 3539 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3540 3541 if (o3_opc == 014) { 3542 /* 3543 * LDAPR* are a special case because they are a simple load, not a 3544 * fetch-and-do-something op. 3545 * The architectural consistency requirements here are weaker than 3546 * full load-acquire (we only need "load-acquire processor consistent"), 3547 * but we choose to implement them as full LDAQ. 3548 */ 3549 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3550 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3551 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3552 return; 3553 } 3554 3555 tcg_rs = read_cpu_reg(s, rs, true); 3556 tcg_rt = cpu_reg(s, rt); 3557 3558 if (o3_opc == 1) { /* LDCLR */ 3559 tcg_gen_not_i64(tcg_rs, tcg_rs); 3560 } 3561 3562 /* The tcg atomic primitives are all full barriers. Therefore we 3563 * can ignore the Acquire and Release bits of this instruction. 3564 */ 3565 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3566 3567 if (mop & MO_SIGN) { 3568 switch (size) { 3569 case MO_8: 3570 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3571 break; 3572 case MO_16: 3573 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3574 break; 3575 case MO_32: 3576 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3577 break; 3578 case MO_64: 3579 break; 3580 default: 3581 g_assert_not_reached(); 3582 } 3583 } 3584 } 3585 3586 /* 3587 * PAC memory operations 3588 * 3589 * 31 30 27 26 24 22 21 12 11 10 5 0 3590 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3591 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3592 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3593 * 3594 * Rt: the result register 3595 * Rn: base address or SP 3596 * V: vector flag (always 0 as of v8.3) 3597 * M: clear for key DA, set for key DB 3598 * W: pre-indexing flag 3599 * S: sign for imm9. 3600 */ 3601 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3602 int size, int rt, bool is_vector) 3603 { 3604 int rn = extract32(insn, 5, 5); 3605 bool is_wback = extract32(insn, 11, 1); 3606 bool use_key_a = !extract32(insn, 23, 1); 3607 int offset; 3608 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3609 MemOp memop; 3610 3611 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3612 unallocated_encoding(s); 3613 return; 3614 } 3615 3616 if (rn == 31) { 3617 gen_check_sp_alignment(s); 3618 } 3619 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3620 3621 if (s->pauth_active) { 3622 if (use_key_a) { 3623 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3624 tcg_constant_i64(0)); 3625 } else { 3626 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3627 tcg_constant_i64(0)); 3628 } 3629 } 3630 3631 /* Form the 10-bit signed, scaled offset. */ 3632 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3633 offset = sextract32(offset << size, 0, 10 + size); 3634 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3635 3636 memop = finalize_memop(s, size); 3637 3638 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3639 clean_addr = gen_mte_check1(s, dirty_addr, false, 3640 is_wback || rn != 31, memop); 3641 3642 tcg_rt = cpu_reg(s, rt); 3643 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3644 /* extend */ false, /* iss_valid */ !is_wback, 3645 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3646 3647 if (is_wback) { 3648 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3649 } 3650 } 3651 3652 /* 3653 * LDAPR/STLR (unscaled immediate) 3654 * 3655 * 31 30 24 22 21 12 10 5 0 3656 * +------+-------------+-----+---+--------+-----+----+-----+ 3657 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3658 * +------+-------------+-----+---+--------+-----+----+-----+ 3659 * 3660 * Rt: source or destination register 3661 * Rn: base register 3662 * imm9: unscaled immediate offset 3663 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3664 * size: size of load/store 3665 */ 3666 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3667 { 3668 int rt = extract32(insn, 0, 5); 3669 int rn = extract32(insn, 5, 5); 3670 int offset = sextract32(insn, 12, 9); 3671 int opc = extract32(insn, 22, 2); 3672 int size = extract32(insn, 30, 2); 3673 TCGv_i64 clean_addr, dirty_addr; 3674 bool is_store = false; 3675 bool extend = false; 3676 bool iss_sf; 3677 MemOp mop = size; 3678 3679 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3680 unallocated_encoding(s); 3681 return; 3682 } 3683 3684 switch (opc) { 3685 case 0: /* STLURB */ 3686 is_store = true; 3687 break; 3688 case 1: /* LDAPUR* */ 3689 break; 3690 case 2: /* LDAPURS* 64-bit variant */ 3691 if (size == 3) { 3692 unallocated_encoding(s); 3693 return; 3694 } 3695 mop |= MO_SIGN; 3696 break; 3697 case 3: /* LDAPURS* 32-bit variant */ 3698 if (size > 1) { 3699 unallocated_encoding(s); 3700 return; 3701 } 3702 mop |= MO_SIGN; 3703 extend = true; /* zero-extend 32->64 after signed load */ 3704 break; 3705 default: 3706 g_assert_not_reached(); 3707 } 3708 3709 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3710 3711 if (rn == 31) { 3712 gen_check_sp_alignment(s); 3713 } 3714 3715 mop = check_ordered_align(s, rn, offset, is_store, mop); 3716 3717 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3718 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3719 clean_addr = clean_data_tbi(s, dirty_addr); 3720 3721 if (is_store) { 3722 /* Store-Release semantics */ 3723 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3724 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3725 } else { 3726 /* 3727 * Load-AcquirePC semantics; we implement as the slightly more 3728 * restrictive Load-Acquire. 3729 */ 3730 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3731 extend, true, rt, iss_sf, true); 3732 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3733 } 3734 } 3735 3736 /* Load/store register (all forms) */ 3737 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3738 { 3739 int rt = extract32(insn, 0, 5); 3740 int opc = extract32(insn, 22, 2); 3741 bool is_vector = extract32(insn, 26, 1); 3742 int size = extract32(insn, 30, 2); 3743 3744 switch (extract32(insn, 24, 2)) { 3745 case 0: 3746 if (extract32(insn, 21, 1) == 0) { 3747 /* Load/store register (unscaled immediate) 3748 * Load/store immediate pre/post-indexed 3749 * Load/store register unprivileged 3750 */ 3751 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3752 return; 3753 } 3754 switch (extract32(insn, 10, 2)) { 3755 case 0: 3756 disas_ldst_atomic(s, insn, size, rt, is_vector); 3757 return; 3758 case 2: 3759 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3760 return; 3761 default: 3762 disas_ldst_pac(s, insn, size, rt, is_vector); 3763 return; 3764 } 3765 break; 3766 case 1: 3767 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3768 return; 3769 } 3770 unallocated_encoding(s); 3771 } 3772 3773 /* AdvSIMD load/store multiple structures 3774 * 3775 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3776 * +---+---+---------------+---+-------------+--------+------+------+------+ 3777 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3778 * +---+---+---------------+---+-------------+--------+------+------+------+ 3779 * 3780 * AdvSIMD load/store multiple structures (post-indexed) 3781 * 3782 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3783 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3784 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3785 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3786 * 3787 * Rt: first (or only) SIMD&FP register to be transferred 3788 * Rn: base address or SP 3789 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3790 */ 3791 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3792 { 3793 int rt = extract32(insn, 0, 5); 3794 int rn = extract32(insn, 5, 5); 3795 int rm = extract32(insn, 16, 5); 3796 int size = extract32(insn, 10, 2); 3797 int opcode = extract32(insn, 12, 4); 3798 bool is_store = !extract32(insn, 22, 1); 3799 bool is_postidx = extract32(insn, 23, 1); 3800 bool is_q = extract32(insn, 30, 1); 3801 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3802 MemOp endian, align, mop; 3803 3804 int total; /* total bytes */ 3805 int elements; /* elements per vector */ 3806 int rpt; /* num iterations */ 3807 int selem; /* structure elements */ 3808 int r; 3809 3810 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3811 unallocated_encoding(s); 3812 return; 3813 } 3814 3815 if (!is_postidx && rm != 0) { 3816 unallocated_encoding(s); 3817 return; 3818 } 3819 3820 /* From the shared decode logic */ 3821 switch (opcode) { 3822 case 0x0: 3823 rpt = 1; 3824 selem = 4; 3825 break; 3826 case 0x2: 3827 rpt = 4; 3828 selem = 1; 3829 break; 3830 case 0x4: 3831 rpt = 1; 3832 selem = 3; 3833 break; 3834 case 0x6: 3835 rpt = 3; 3836 selem = 1; 3837 break; 3838 case 0x7: 3839 rpt = 1; 3840 selem = 1; 3841 break; 3842 case 0x8: 3843 rpt = 1; 3844 selem = 2; 3845 break; 3846 case 0xa: 3847 rpt = 2; 3848 selem = 1; 3849 break; 3850 default: 3851 unallocated_encoding(s); 3852 return; 3853 } 3854 3855 if (size == 3 && !is_q && selem != 1) { 3856 /* reserved */ 3857 unallocated_encoding(s); 3858 return; 3859 } 3860 3861 if (!fp_access_check(s)) { 3862 return; 3863 } 3864 3865 if (rn == 31) { 3866 gen_check_sp_alignment(s); 3867 } 3868 3869 /* For our purposes, bytes are always little-endian. */ 3870 endian = s->be_data; 3871 if (size == 0) { 3872 endian = MO_LE; 3873 } 3874 3875 total = rpt * selem * (is_q ? 16 : 8); 3876 tcg_rn = cpu_reg_sp(s, rn); 3877 3878 /* 3879 * Issue the MTE check vs the logical repeat count, before we 3880 * promote consecutive little-endian elements below. 3881 */ 3882 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3883 total, finalize_memop_asimd(s, size)); 3884 3885 /* 3886 * Consecutive little-endian elements from a single register 3887 * can be promoted to a larger little-endian operation. 3888 */ 3889 align = MO_ALIGN; 3890 if (selem == 1 && endian == MO_LE) { 3891 align = pow2_align(size); 3892 size = 3; 3893 } 3894 if (!s->align_mem) { 3895 align = 0; 3896 } 3897 mop = endian | size | align; 3898 3899 elements = (is_q ? 16 : 8) >> size; 3900 tcg_ebytes = tcg_constant_i64(1 << size); 3901 for (r = 0; r < rpt; r++) { 3902 int e; 3903 for (e = 0; e < elements; e++) { 3904 int xs; 3905 for (xs = 0; xs < selem; xs++) { 3906 int tt = (rt + r + xs) % 32; 3907 if (is_store) { 3908 do_vec_st(s, tt, e, clean_addr, mop); 3909 } else { 3910 do_vec_ld(s, tt, e, clean_addr, mop); 3911 } 3912 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3913 } 3914 } 3915 } 3916 3917 if (!is_store) { 3918 /* For non-quad operations, setting a slice of the low 3919 * 64 bits of the register clears the high 64 bits (in 3920 * the ARM ARM pseudocode this is implicit in the fact 3921 * that 'rval' is a 64 bit wide variable). 3922 * For quad operations, we might still need to zero the 3923 * high bits of SVE. 3924 */ 3925 for (r = 0; r < rpt * selem; r++) { 3926 int tt = (rt + r) % 32; 3927 clear_vec_high(s, is_q, tt); 3928 } 3929 } 3930 3931 if (is_postidx) { 3932 if (rm == 31) { 3933 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3934 } else { 3935 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3936 } 3937 } 3938 } 3939 3940 /* AdvSIMD load/store single structure 3941 * 3942 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3943 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3944 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3945 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3946 * 3947 * AdvSIMD load/store single structure (post-indexed) 3948 * 3949 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3950 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3951 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3952 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3953 * 3954 * Rt: first (or only) SIMD&FP register to be transferred 3955 * Rn: base address or SP 3956 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3957 * index = encoded in Q:S:size dependent on size 3958 * 3959 * lane_size = encoded in R, opc 3960 * transfer width = encoded in opc, S, size 3961 */ 3962 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3963 { 3964 int rt = extract32(insn, 0, 5); 3965 int rn = extract32(insn, 5, 5); 3966 int rm = extract32(insn, 16, 5); 3967 int size = extract32(insn, 10, 2); 3968 int S = extract32(insn, 12, 1); 3969 int opc = extract32(insn, 13, 3); 3970 int R = extract32(insn, 21, 1); 3971 int is_load = extract32(insn, 22, 1); 3972 int is_postidx = extract32(insn, 23, 1); 3973 int is_q = extract32(insn, 30, 1); 3974 3975 int scale = extract32(opc, 1, 2); 3976 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3977 bool replicate = false; 3978 int index = is_q << 3 | S << 2 | size; 3979 int xs, total; 3980 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3981 MemOp mop; 3982 3983 if (extract32(insn, 31, 1)) { 3984 unallocated_encoding(s); 3985 return; 3986 } 3987 if (!is_postidx && rm != 0) { 3988 unallocated_encoding(s); 3989 return; 3990 } 3991 3992 switch (scale) { 3993 case 3: 3994 if (!is_load || S) { 3995 unallocated_encoding(s); 3996 return; 3997 } 3998 scale = size; 3999 replicate = true; 4000 break; 4001 case 0: 4002 break; 4003 case 1: 4004 if (extract32(size, 0, 1)) { 4005 unallocated_encoding(s); 4006 return; 4007 } 4008 index >>= 1; 4009 break; 4010 case 2: 4011 if (extract32(size, 1, 1)) { 4012 unallocated_encoding(s); 4013 return; 4014 } 4015 if (!extract32(size, 0, 1)) { 4016 index >>= 2; 4017 } else { 4018 if (S) { 4019 unallocated_encoding(s); 4020 return; 4021 } 4022 index >>= 3; 4023 scale = 3; 4024 } 4025 break; 4026 default: 4027 g_assert_not_reached(); 4028 } 4029 4030 if (!fp_access_check(s)) { 4031 return; 4032 } 4033 4034 if (rn == 31) { 4035 gen_check_sp_alignment(s); 4036 } 4037 4038 total = selem << scale; 4039 tcg_rn = cpu_reg_sp(s, rn); 4040 4041 mop = finalize_memop_asimd(s, scale); 4042 4043 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 4044 total, mop); 4045 4046 tcg_ebytes = tcg_constant_i64(1 << scale); 4047 for (xs = 0; xs < selem; xs++) { 4048 if (replicate) { 4049 /* Load and replicate to all elements */ 4050 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4051 4052 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4053 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4054 (is_q + 1) * 8, vec_full_reg_size(s), 4055 tcg_tmp); 4056 } else { 4057 /* Load/store one element per register */ 4058 if (is_load) { 4059 do_vec_ld(s, rt, index, clean_addr, mop); 4060 } else { 4061 do_vec_st(s, rt, index, clean_addr, mop); 4062 } 4063 } 4064 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4065 rt = (rt + 1) % 32; 4066 } 4067 4068 if (is_postidx) { 4069 if (rm == 31) { 4070 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4071 } else { 4072 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4073 } 4074 } 4075 } 4076 4077 /* 4078 * Load/Store memory tags 4079 * 4080 * 31 30 29 24 22 21 12 10 5 0 4081 * +-----+-------------+-----+---+------+-----+------+------+ 4082 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4083 * +-----+-------------+-----+---+------+-----+------+------+ 4084 */ 4085 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4086 { 4087 int rt = extract32(insn, 0, 5); 4088 int rn = extract32(insn, 5, 5); 4089 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4090 int op2 = extract32(insn, 10, 2); 4091 int op1 = extract32(insn, 22, 2); 4092 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4093 int index = 0; 4094 TCGv_i64 addr, clean_addr, tcg_rt; 4095 4096 /* We checked insn bits [29:24,21] in the caller. */ 4097 if (extract32(insn, 30, 2) != 3) { 4098 goto do_unallocated; 4099 } 4100 4101 /* 4102 * @index is a tri-state variable which has 3 states: 4103 * < 0 : post-index, writeback 4104 * = 0 : signed offset 4105 * > 0 : pre-index, writeback 4106 */ 4107 switch (op1) { 4108 case 0: 4109 if (op2 != 0) { 4110 /* STG */ 4111 index = op2 - 2; 4112 } else { 4113 /* STZGM */ 4114 if (s->current_el == 0 || offset != 0) { 4115 goto do_unallocated; 4116 } 4117 is_mult = is_zero = true; 4118 } 4119 break; 4120 case 1: 4121 if (op2 != 0) { 4122 /* STZG */ 4123 is_zero = true; 4124 index = op2 - 2; 4125 } else { 4126 /* LDG */ 4127 is_load = true; 4128 } 4129 break; 4130 case 2: 4131 if (op2 != 0) { 4132 /* ST2G */ 4133 is_pair = true; 4134 index = op2 - 2; 4135 } else { 4136 /* STGM */ 4137 if (s->current_el == 0 || offset != 0) { 4138 goto do_unallocated; 4139 } 4140 is_mult = true; 4141 } 4142 break; 4143 case 3: 4144 if (op2 != 0) { 4145 /* STZ2G */ 4146 is_pair = is_zero = true; 4147 index = op2 - 2; 4148 } else { 4149 /* LDGM */ 4150 if (s->current_el == 0 || offset != 0) { 4151 goto do_unallocated; 4152 } 4153 is_mult = is_load = true; 4154 } 4155 break; 4156 4157 default: 4158 do_unallocated: 4159 unallocated_encoding(s); 4160 return; 4161 } 4162 4163 if (is_mult 4164 ? !dc_isar_feature(aa64_mte, s) 4165 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4166 goto do_unallocated; 4167 } 4168 4169 if (rn == 31) { 4170 gen_check_sp_alignment(s); 4171 } 4172 4173 addr = read_cpu_reg_sp(s, rn, true); 4174 if (index >= 0) { 4175 /* pre-index or signed offset */ 4176 tcg_gen_addi_i64(addr, addr, offset); 4177 } 4178 4179 if (is_mult) { 4180 tcg_rt = cpu_reg(s, rt); 4181 4182 if (is_zero) { 4183 int size = 4 << s->dcz_blocksize; 4184 4185 if (s->ata) { 4186 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4187 } 4188 /* 4189 * The non-tags portion of STZGM is mostly like DC_ZVA, 4190 * except the alignment happens before the access. 4191 */ 4192 clean_addr = clean_data_tbi(s, addr); 4193 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4194 gen_helper_dc_zva(cpu_env, clean_addr); 4195 } else if (s->ata) { 4196 if (is_load) { 4197 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4198 } else { 4199 gen_helper_stgm(cpu_env, addr, tcg_rt); 4200 } 4201 } else { 4202 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4203 int size = 4 << GMID_EL1_BS; 4204 4205 clean_addr = clean_data_tbi(s, addr); 4206 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4207 gen_probe_access(s, clean_addr, acc, size); 4208 4209 if (is_load) { 4210 /* The result tags are zeros. */ 4211 tcg_gen_movi_i64(tcg_rt, 0); 4212 } 4213 } 4214 return; 4215 } 4216 4217 if (is_load) { 4218 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4219 tcg_rt = cpu_reg(s, rt); 4220 if (s->ata) { 4221 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4222 } else { 4223 /* 4224 * Tag access disabled: we must check for aborts on the load 4225 * load from [rn+offset], and then insert a 0 tag into rt. 4226 */ 4227 clean_addr = clean_data_tbi(s, addr); 4228 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4229 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4230 } 4231 } else { 4232 tcg_rt = cpu_reg_sp(s, rt); 4233 if (!s->ata) { 4234 /* 4235 * For STG and ST2G, we need to check alignment and probe memory. 4236 * TODO: For STZG and STZ2G, we could rely on the stores below, 4237 * at least for system mode; user-only won't enforce alignment. 4238 */ 4239 if (is_pair) { 4240 gen_helper_st2g_stub(cpu_env, addr); 4241 } else { 4242 gen_helper_stg_stub(cpu_env, addr); 4243 } 4244 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4245 if (is_pair) { 4246 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4247 } else { 4248 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4249 } 4250 } else { 4251 if (is_pair) { 4252 gen_helper_st2g(cpu_env, addr, tcg_rt); 4253 } else { 4254 gen_helper_stg(cpu_env, addr, tcg_rt); 4255 } 4256 } 4257 } 4258 4259 if (is_zero) { 4260 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4261 TCGv_i64 zero64 = tcg_constant_i64(0); 4262 TCGv_i128 zero128 = tcg_temp_new_i128(); 4263 int mem_index = get_mem_index(s); 4264 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4265 4266 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4267 4268 /* This is 1 or 2 atomic 16-byte operations. */ 4269 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4270 if (is_pair) { 4271 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4272 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4273 } 4274 } 4275 4276 if (index != 0) { 4277 /* pre-index or post-index */ 4278 if (index < 0) { 4279 /* post-index */ 4280 tcg_gen_addi_i64(addr, addr, offset); 4281 } 4282 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4283 } 4284 } 4285 4286 /* Loads and stores */ 4287 static void disas_ldst(DisasContext *s, uint32_t insn) 4288 { 4289 switch (extract32(insn, 24, 6)) { 4290 case 0x08: /* Load/store exclusive */ 4291 disas_ldst_excl(s, insn); 4292 break; 4293 case 0x18: case 0x1c: /* Load register (literal) */ 4294 disas_ld_lit(s, insn); 4295 break; 4296 case 0x28: case 0x29: 4297 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4298 disas_ldst_pair(s, insn); 4299 break; 4300 case 0x38: case 0x39: 4301 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4302 disas_ldst_reg(s, insn); 4303 break; 4304 case 0x0c: /* AdvSIMD load/store multiple structures */ 4305 disas_ldst_multiple_struct(s, insn); 4306 break; 4307 case 0x0d: /* AdvSIMD load/store single structure */ 4308 disas_ldst_single_struct(s, insn); 4309 break; 4310 case 0x19: 4311 if (extract32(insn, 21, 1) != 0) { 4312 disas_ldst_tag(s, insn); 4313 } else if (extract32(insn, 10, 2) == 0) { 4314 disas_ldst_ldapr_stlr(s, insn); 4315 } else { 4316 unallocated_encoding(s); 4317 } 4318 break; 4319 default: 4320 unallocated_encoding(s); 4321 break; 4322 } 4323 } 4324 4325 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4326 4327 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4328 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4329 { 4330 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4331 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4332 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4333 4334 fn(tcg_rd, tcg_rn, tcg_imm); 4335 if (!a->sf) { 4336 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4337 } 4338 return true; 4339 } 4340 4341 /* 4342 * PC-rel. addressing 4343 */ 4344 4345 static bool trans_ADR(DisasContext *s, arg_ri *a) 4346 { 4347 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4348 return true; 4349 } 4350 4351 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4352 { 4353 int64_t offset = (int64_t)a->imm << 12; 4354 4355 /* The page offset is ok for CF_PCREL. */ 4356 offset -= s->pc_curr & 0xfff; 4357 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4358 return true; 4359 } 4360 4361 /* 4362 * Add/subtract (immediate) 4363 */ 4364 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4365 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4366 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4367 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4368 4369 /* 4370 * Add/subtract (immediate, with tags) 4371 */ 4372 4373 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4374 bool sub_op) 4375 { 4376 TCGv_i64 tcg_rn, tcg_rd; 4377 int imm; 4378 4379 imm = a->uimm6 << LOG2_TAG_GRANULE; 4380 if (sub_op) { 4381 imm = -imm; 4382 } 4383 4384 tcg_rn = cpu_reg_sp(s, a->rn); 4385 tcg_rd = cpu_reg_sp(s, a->rd); 4386 4387 if (s->ata) { 4388 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4389 tcg_constant_i32(imm), 4390 tcg_constant_i32(a->uimm4)); 4391 } else { 4392 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4393 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4394 } 4395 return true; 4396 } 4397 4398 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4399 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4400 4401 /* The input should be a value in the bottom e bits (with higher 4402 * bits zero); returns that value replicated into every element 4403 * of size e in a 64 bit integer. 4404 */ 4405 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4406 { 4407 assert(e != 0); 4408 while (e < 64) { 4409 mask |= mask << e; 4410 e *= 2; 4411 } 4412 return mask; 4413 } 4414 4415 /* 4416 * Logical (immediate) 4417 */ 4418 4419 /* 4420 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4421 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4422 * value (ie should cause a guest UNDEF exception), and true if they are 4423 * valid, in which case the decoded bit pattern is written to result. 4424 */ 4425 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4426 unsigned int imms, unsigned int immr) 4427 { 4428 uint64_t mask; 4429 unsigned e, levels, s, r; 4430 int len; 4431 4432 assert(immn < 2 && imms < 64 && immr < 64); 4433 4434 /* The bit patterns we create here are 64 bit patterns which 4435 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4436 * 64 bits each. Each element contains the same value: a run 4437 * of between 1 and e-1 non-zero bits, rotated within the 4438 * element by between 0 and e-1 bits. 4439 * 4440 * The element size and run length are encoded into immn (1 bit) 4441 * and imms (6 bits) as follows: 4442 * 64 bit elements: immn = 1, imms = <length of run - 1> 4443 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4444 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4445 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4446 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4447 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4448 * Notice that immn = 0, imms = 11111x is the only combination 4449 * not covered by one of the above options; this is reserved. 4450 * Further, <length of run - 1> all-ones is a reserved pattern. 4451 * 4452 * In all cases the rotation is by immr % e (and immr is 6 bits). 4453 */ 4454 4455 /* First determine the element size */ 4456 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4457 if (len < 1) { 4458 /* This is the immn == 0, imms == 0x11111x case */ 4459 return false; 4460 } 4461 e = 1 << len; 4462 4463 levels = e - 1; 4464 s = imms & levels; 4465 r = immr & levels; 4466 4467 if (s == levels) { 4468 /* <length of run - 1> mustn't be all-ones. */ 4469 return false; 4470 } 4471 4472 /* Create the value of one element: s+1 set bits rotated 4473 * by r within the element (which is e bits wide)... 4474 */ 4475 mask = MAKE_64BIT_MASK(0, s + 1); 4476 if (r) { 4477 mask = (mask >> r) | (mask << (e - r)); 4478 mask &= MAKE_64BIT_MASK(0, e); 4479 } 4480 /* ...then replicate the element over the whole 64 bit value */ 4481 mask = bitfield_replicate(mask, e); 4482 *result = mask; 4483 return true; 4484 } 4485 4486 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4487 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4488 { 4489 TCGv_i64 tcg_rd, tcg_rn; 4490 uint64_t imm; 4491 4492 /* Some immediate field values are reserved. */ 4493 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4494 extract32(a->dbm, 0, 6), 4495 extract32(a->dbm, 6, 6))) { 4496 return false; 4497 } 4498 if (!a->sf) { 4499 imm &= 0xffffffffull; 4500 } 4501 4502 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4503 tcg_rn = cpu_reg(s, a->rn); 4504 4505 fn(tcg_rd, tcg_rn, imm); 4506 if (set_cc) { 4507 gen_logic_CC(a->sf, tcg_rd); 4508 } 4509 if (!a->sf) { 4510 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4511 } 4512 return true; 4513 } 4514 4515 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4516 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4517 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4518 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4519 4520 /* 4521 * Move wide (immediate) 4522 */ 4523 4524 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4525 { 4526 int pos = a->hw << 4; 4527 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4528 return true; 4529 } 4530 4531 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4532 { 4533 int pos = a->hw << 4; 4534 uint64_t imm = a->imm; 4535 4536 imm = ~(imm << pos); 4537 if (!a->sf) { 4538 imm = (uint32_t)imm; 4539 } 4540 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4541 return true; 4542 } 4543 4544 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4545 { 4546 int pos = a->hw << 4; 4547 TCGv_i64 tcg_rd, tcg_im; 4548 4549 tcg_rd = cpu_reg(s, a->rd); 4550 tcg_im = tcg_constant_i64(a->imm); 4551 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4552 if (!a->sf) { 4553 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4554 } 4555 return true; 4556 } 4557 4558 /* 4559 * Bitfield 4560 */ 4561 4562 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4563 { 4564 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4565 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4566 unsigned int bitsize = a->sf ? 64 : 32; 4567 unsigned int ri = a->immr; 4568 unsigned int si = a->imms; 4569 unsigned int pos, len; 4570 4571 if (si >= ri) { 4572 /* Wd<s-r:0> = Wn<s:r> */ 4573 len = (si - ri) + 1; 4574 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4575 if (!a->sf) { 4576 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4577 } 4578 } else { 4579 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4580 len = si + 1; 4581 pos = (bitsize - ri) & (bitsize - 1); 4582 4583 if (len < ri) { 4584 /* 4585 * Sign extend the destination field from len to fill the 4586 * balance of the word. Let the deposit below insert all 4587 * of those sign bits. 4588 */ 4589 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4590 len = ri; 4591 } 4592 4593 /* 4594 * We start with zero, and we haven't modified any bits outside 4595 * bitsize, therefore no final zero-extension is unneeded for !sf. 4596 */ 4597 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4598 } 4599 return true; 4600 } 4601 4602 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4603 { 4604 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4605 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4606 unsigned int bitsize = a->sf ? 64 : 32; 4607 unsigned int ri = a->immr; 4608 unsigned int si = a->imms; 4609 unsigned int pos, len; 4610 4611 tcg_rd = cpu_reg(s, a->rd); 4612 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4613 4614 if (si >= ri) { 4615 /* Wd<s-r:0> = Wn<s:r> */ 4616 len = (si - ri) + 1; 4617 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4618 } else { 4619 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4620 len = si + 1; 4621 pos = (bitsize - ri) & (bitsize - 1); 4622 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4623 } 4624 return true; 4625 } 4626 4627 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4628 { 4629 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4630 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4631 unsigned int bitsize = a->sf ? 64 : 32; 4632 unsigned int ri = a->immr; 4633 unsigned int si = a->imms; 4634 unsigned int pos, len; 4635 4636 tcg_rd = cpu_reg(s, a->rd); 4637 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4638 4639 if (si >= ri) { 4640 /* Wd<s-r:0> = Wn<s:r> */ 4641 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4642 len = (si - ri) + 1; 4643 pos = 0; 4644 } else { 4645 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4646 len = si + 1; 4647 pos = (bitsize - ri) & (bitsize - 1); 4648 } 4649 4650 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4651 if (!a->sf) { 4652 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4653 } 4654 return true; 4655 } 4656 4657 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4658 { 4659 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4660 4661 tcg_rd = cpu_reg(s, a->rd); 4662 4663 if (unlikely(a->imm == 0)) { 4664 /* 4665 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4666 * so an extract from bit 0 is a special case. 4667 */ 4668 if (a->sf) { 4669 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4670 } else { 4671 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4672 } 4673 } else { 4674 tcg_rm = cpu_reg(s, a->rm); 4675 tcg_rn = cpu_reg(s, a->rn); 4676 4677 if (a->sf) { 4678 /* Specialization to ROR happens in EXTRACT2. */ 4679 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4680 } else { 4681 TCGv_i32 t0 = tcg_temp_new_i32(); 4682 4683 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4684 if (a->rm == a->rn) { 4685 tcg_gen_rotri_i32(t0, t0, a->imm); 4686 } else { 4687 TCGv_i32 t1 = tcg_temp_new_i32(); 4688 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4689 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4690 } 4691 tcg_gen_extu_i32_i64(tcg_rd, t0); 4692 } 4693 } 4694 return true; 4695 } 4696 4697 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4698 * Note that it is the caller's responsibility to ensure that the 4699 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4700 * mandated semantics for out of range shifts. 4701 */ 4702 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4703 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4704 { 4705 switch (shift_type) { 4706 case A64_SHIFT_TYPE_LSL: 4707 tcg_gen_shl_i64(dst, src, shift_amount); 4708 break; 4709 case A64_SHIFT_TYPE_LSR: 4710 tcg_gen_shr_i64(dst, src, shift_amount); 4711 break; 4712 case A64_SHIFT_TYPE_ASR: 4713 if (!sf) { 4714 tcg_gen_ext32s_i64(dst, src); 4715 } 4716 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4717 break; 4718 case A64_SHIFT_TYPE_ROR: 4719 if (sf) { 4720 tcg_gen_rotr_i64(dst, src, shift_amount); 4721 } else { 4722 TCGv_i32 t0, t1; 4723 t0 = tcg_temp_new_i32(); 4724 t1 = tcg_temp_new_i32(); 4725 tcg_gen_extrl_i64_i32(t0, src); 4726 tcg_gen_extrl_i64_i32(t1, shift_amount); 4727 tcg_gen_rotr_i32(t0, t0, t1); 4728 tcg_gen_extu_i32_i64(dst, t0); 4729 } 4730 break; 4731 default: 4732 assert(FALSE); /* all shift types should be handled */ 4733 break; 4734 } 4735 4736 if (!sf) { /* zero extend final result */ 4737 tcg_gen_ext32u_i64(dst, dst); 4738 } 4739 } 4740 4741 /* Shift a TCGv src by immediate, put result in dst. 4742 * The shift amount must be in range (this should always be true as the 4743 * relevant instructions will UNDEF on bad shift immediates). 4744 */ 4745 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4746 enum a64_shift_type shift_type, unsigned int shift_i) 4747 { 4748 assert(shift_i < (sf ? 64 : 32)); 4749 4750 if (shift_i == 0) { 4751 tcg_gen_mov_i64(dst, src); 4752 } else { 4753 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4754 } 4755 } 4756 4757 /* Logical (shifted register) 4758 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4759 * +----+-----+-----------+-------+---+------+--------+------+------+ 4760 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4761 * +----+-----+-----------+-------+---+------+--------+------+------+ 4762 */ 4763 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4764 { 4765 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4766 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4767 4768 sf = extract32(insn, 31, 1); 4769 opc = extract32(insn, 29, 2); 4770 shift_type = extract32(insn, 22, 2); 4771 invert = extract32(insn, 21, 1); 4772 rm = extract32(insn, 16, 5); 4773 shift_amount = extract32(insn, 10, 6); 4774 rn = extract32(insn, 5, 5); 4775 rd = extract32(insn, 0, 5); 4776 4777 if (!sf && (shift_amount & (1 << 5))) { 4778 unallocated_encoding(s); 4779 return; 4780 } 4781 4782 tcg_rd = cpu_reg(s, rd); 4783 4784 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4785 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4786 * register-register MOV and MVN, so it is worth special casing. 4787 */ 4788 tcg_rm = cpu_reg(s, rm); 4789 if (invert) { 4790 tcg_gen_not_i64(tcg_rd, tcg_rm); 4791 if (!sf) { 4792 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4793 } 4794 } else { 4795 if (sf) { 4796 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4797 } else { 4798 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4799 } 4800 } 4801 return; 4802 } 4803 4804 tcg_rm = read_cpu_reg(s, rm, sf); 4805 4806 if (shift_amount) { 4807 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4808 } 4809 4810 tcg_rn = cpu_reg(s, rn); 4811 4812 switch (opc | (invert << 2)) { 4813 case 0: /* AND */ 4814 case 3: /* ANDS */ 4815 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4816 break; 4817 case 1: /* ORR */ 4818 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4819 break; 4820 case 2: /* EOR */ 4821 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4822 break; 4823 case 4: /* BIC */ 4824 case 7: /* BICS */ 4825 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4826 break; 4827 case 5: /* ORN */ 4828 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4829 break; 4830 case 6: /* EON */ 4831 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4832 break; 4833 default: 4834 assert(FALSE); 4835 break; 4836 } 4837 4838 if (!sf) { 4839 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4840 } 4841 4842 if (opc == 3) { 4843 gen_logic_CC(sf, tcg_rd); 4844 } 4845 } 4846 4847 /* 4848 * Add/subtract (extended register) 4849 * 4850 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4851 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4852 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4853 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4854 * 4855 * sf: 0 -> 32bit, 1 -> 64bit 4856 * op: 0 -> add , 1 -> sub 4857 * S: 1 -> set flags 4858 * opt: 00 4859 * option: extension type (see DecodeRegExtend) 4860 * imm3: optional shift to Rm 4861 * 4862 * Rd = Rn + LSL(extend(Rm), amount) 4863 */ 4864 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4865 { 4866 int rd = extract32(insn, 0, 5); 4867 int rn = extract32(insn, 5, 5); 4868 int imm3 = extract32(insn, 10, 3); 4869 int option = extract32(insn, 13, 3); 4870 int rm = extract32(insn, 16, 5); 4871 int opt = extract32(insn, 22, 2); 4872 bool setflags = extract32(insn, 29, 1); 4873 bool sub_op = extract32(insn, 30, 1); 4874 bool sf = extract32(insn, 31, 1); 4875 4876 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4877 TCGv_i64 tcg_rd; 4878 TCGv_i64 tcg_result; 4879 4880 if (imm3 > 4 || opt != 0) { 4881 unallocated_encoding(s); 4882 return; 4883 } 4884 4885 /* non-flag setting ops may use SP */ 4886 if (!setflags) { 4887 tcg_rd = cpu_reg_sp(s, rd); 4888 } else { 4889 tcg_rd = cpu_reg(s, rd); 4890 } 4891 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4892 4893 tcg_rm = read_cpu_reg(s, rm, sf); 4894 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4895 4896 tcg_result = tcg_temp_new_i64(); 4897 4898 if (!setflags) { 4899 if (sub_op) { 4900 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4901 } else { 4902 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4903 } 4904 } else { 4905 if (sub_op) { 4906 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4907 } else { 4908 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4909 } 4910 } 4911 4912 if (sf) { 4913 tcg_gen_mov_i64(tcg_rd, tcg_result); 4914 } else { 4915 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4916 } 4917 } 4918 4919 /* 4920 * Add/subtract (shifted register) 4921 * 4922 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4923 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4924 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4925 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4926 * 4927 * sf: 0 -> 32bit, 1 -> 64bit 4928 * op: 0 -> add , 1 -> sub 4929 * S: 1 -> set flags 4930 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4931 * imm6: Shift amount to apply to Rm before the add/sub 4932 */ 4933 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4934 { 4935 int rd = extract32(insn, 0, 5); 4936 int rn = extract32(insn, 5, 5); 4937 int imm6 = extract32(insn, 10, 6); 4938 int rm = extract32(insn, 16, 5); 4939 int shift_type = extract32(insn, 22, 2); 4940 bool setflags = extract32(insn, 29, 1); 4941 bool sub_op = extract32(insn, 30, 1); 4942 bool sf = extract32(insn, 31, 1); 4943 4944 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4945 TCGv_i64 tcg_rn, tcg_rm; 4946 TCGv_i64 tcg_result; 4947 4948 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4949 unallocated_encoding(s); 4950 return; 4951 } 4952 4953 tcg_rn = read_cpu_reg(s, rn, sf); 4954 tcg_rm = read_cpu_reg(s, rm, sf); 4955 4956 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4957 4958 tcg_result = tcg_temp_new_i64(); 4959 4960 if (!setflags) { 4961 if (sub_op) { 4962 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4963 } else { 4964 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4965 } 4966 } else { 4967 if (sub_op) { 4968 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4969 } else { 4970 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4971 } 4972 } 4973 4974 if (sf) { 4975 tcg_gen_mov_i64(tcg_rd, tcg_result); 4976 } else { 4977 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4978 } 4979 } 4980 4981 /* Data-processing (3 source) 4982 * 4983 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4984 * +--+------+-----------+------+------+----+------+------+------+ 4985 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4986 * +--+------+-----------+------+------+----+------+------+------+ 4987 */ 4988 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4989 { 4990 int rd = extract32(insn, 0, 5); 4991 int rn = extract32(insn, 5, 5); 4992 int ra = extract32(insn, 10, 5); 4993 int rm = extract32(insn, 16, 5); 4994 int op_id = (extract32(insn, 29, 3) << 4) | 4995 (extract32(insn, 21, 3) << 1) | 4996 extract32(insn, 15, 1); 4997 bool sf = extract32(insn, 31, 1); 4998 bool is_sub = extract32(op_id, 0, 1); 4999 bool is_high = extract32(op_id, 2, 1); 5000 bool is_signed = false; 5001 TCGv_i64 tcg_op1; 5002 TCGv_i64 tcg_op2; 5003 TCGv_i64 tcg_tmp; 5004 5005 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5006 switch (op_id) { 5007 case 0x42: /* SMADDL */ 5008 case 0x43: /* SMSUBL */ 5009 case 0x44: /* SMULH */ 5010 is_signed = true; 5011 break; 5012 case 0x0: /* MADD (32bit) */ 5013 case 0x1: /* MSUB (32bit) */ 5014 case 0x40: /* MADD (64bit) */ 5015 case 0x41: /* MSUB (64bit) */ 5016 case 0x4a: /* UMADDL */ 5017 case 0x4b: /* UMSUBL */ 5018 case 0x4c: /* UMULH */ 5019 break; 5020 default: 5021 unallocated_encoding(s); 5022 return; 5023 } 5024 5025 if (is_high) { 5026 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5027 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5028 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5029 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5030 5031 if (is_signed) { 5032 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5033 } else { 5034 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5035 } 5036 return; 5037 } 5038 5039 tcg_op1 = tcg_temp_new_i64(); 5040 tcg_op2 = tcg_temp_new_i64(); 5041 tcg_tmp = tcg_temp_new_i64(); 5042 5043 if (op_id < 0x42) { 5044 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5045 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5046 } else { 5047 if (is_signed) { 5048 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5049 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5050 } else { 5051 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5052 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5053 } 5054 } 5055 5056 if (ra == 31 && !is_sub) { 5057 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5058 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5059 } else { 5060 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5061 if (is_sub) { 5062 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5063 } else { 5064 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5065 } 5066 } 5067 5068 if (!sf) { 5069 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5070 } 5071 } 5072 5073 /* Add/subtract (with carry) 5074 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5075 * +--+--+--+------------------------+------+-------------+------+-----+ 5076 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5077 * +--+--+--+------------------------+------+-------------+------+-----+ 5078 */ 5079 5080 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5081 { 5082 unsigned int sf, op, setflags, rm, rn, rd; 5083 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5084 5085 sf = extract32(insn, 31, 1); 5086 op = extract32(insn, 30, 1); 5087 setflags = extract32(insn, 29, 1); 5088 rm = extract32(insn, 16, 5); 5089 rn = extract32(insn, 5, 5); 5090 rd = extract32(insn, 0, 5); 5091 5092 tcg_rd = cpu_reg(s, rd); 5093 tcg_rn = cpu_reg(s, rn); 5094 5095 if (op) { 5096 tcg_y = tcg_temp_new_i64(); 5097 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5098 } else { 5099 tcg_y = cpu_reg(s, rm); 5100 } 5101 5102 if (setflags) { 5103 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5104 } else { 5105 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5106 } 5107 } 5108 5109 /* 5110 * Rotate right into flags 5111 * 31 30 29 21 15 10 5 4 0 5112 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5113 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5114 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5115 */ 5116 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5117 { 5118 int mask = extract32(insn, 0, 4); 5119 int o2 = extract32(insn, 4, 1); 5120 int rn = extract32(insn, 5, 5); 5121 int imm6 = extract32(insn, 15, 6); 5122 int sf_op_s = extract32(insn, 29, 3); 5123 TCGv_i64 tcg_rn; 5124 TCGv_i32 nzcv; 5125 5126 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5127 unallocated_encoding(s); 5128 return; 5129 } 5130 5131 tcg_rn = read_cpu_reg(s, rn, 1); 5132 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5133 5134 nzcv = tcg_temp_new_i32(); 5135 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5136 5137 if (mask & 8) { /* N */ 5138 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5139 } 5140 if (mask & 4) { /* Z */ 5141 tcg_gen_not_i32(cpu_ZF, nzcv); 5142 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5143 } 5144 if (mask & 2) { /* C */ 5145 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5146 } 5147 if (mask & 1) { /* V */ 5148 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5149 } 5150 } 5151 5152 /* 5153 * Evaluate into flags 5154 * 31 30 29 21 15 14 10 5 4 0 5155 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5156 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5157 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5158 */ 5159 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5160 { 5161 int o3_mask = extract32(insn, 0, 5); 5162 int rn = extract32(insn, 5, 5); 5163 int o2 = extract32(insn, 15, 6); 5164 int sz = extract32(insn, 14, 1); 5165 int sf_op_s = extract32(insn, 29, 3); 5166 TCGv_i32 tmp; 5167 int shift; 5168 5169 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5170 !dc_isar_feature(aa64_condm_4, s)) { 5171 unallocated_encoding(s); 5172 return; 5173 } 5174 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5175 5176 tmp = tcg_temp_new_i32(); 5177 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5178 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5179 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5180 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5181 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5182 } 5183 5184 /* Conditional compare (immediate / register) 5185 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5186 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5187 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5188 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5189 * [1] y [0] [0] 5190 */ 5191 static void disas_cc(DisasContext *s, uint32_t insn) 5192 { 5193 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5194 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5195 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5196 DisasCompare c; 5197 5198 if (!extract32(insn, 29, 1)) { 5199 unallocated_encoding(s); 5200 return; 5201 } 5202 if (insn & (1 << 10 | 1 << 4)) { 5203 unallocated_encoding(s); 5204 return; 5205 } 5206 sf = extract32(insn, 31, 1); 5207 op = extract32(insn, 30, 1); 5208 is_imm = extract32(insn, 11, 1); 5209 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5210 cond = extract32(insn, 12, 4); 5211 rn = extract32(insn, 5, 5); 5212 nzcv = extract32(insn, 0, 4); 5213 5214 /* Set T0 = !COND. */ 5215 tcg_t0 = tcg_temp_new_i32(); 5216 arm_test_cc(&c, cond); 5217 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5218 5219 /* Load the arguments for the new comparison. */ 5220 if (is_imm) { 5221 tcg_y = tcg_temp_new_i64(); 5222 tcg_gen_movi_i64(tcg_y, y); 5223 } else { 5224 tcg_y = cpu_reg(s, y); 5225 } 5226 tcg_rn = cpu_reg(s, rn); 5227 5228 /* Set the flags for the new comparison. */ 5229 tcg_tmp = tcg_temp_new_i64(); 5230 if (op) { 5231 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5232 } else { 5233 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5234 } 5235 5236 /* If COND was false, force the flags to #nzcv. Compute two masks 5237 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5238 * For tcg hosts that support ANDC, we can make do with just T1. 5239 * In either case, allow the tcg optimizer to delete any unused mask. 5240 */ 5241 tcg_t1 = tcg_temp_new_i32(); 5242 tcg_t2 = tcg_temp_new_i32(); 5243 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5244 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5245 5246 if (nzcv & 8) { /* N */ 5247 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5248 } else { 5249 if (TCG_TARGET_HAS_andc_i32) { 5250 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5251 } else { 5252 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5253 } 5254 } 5255 if (nzcv & 4) { /* Z */ 5256 if (TCG_TARGET_HAS_andc_i32) { 5257 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5258 } else { 5259 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5260 } 5261 } else { 5262 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5263 } 5264 if (nzcv & 2) { /* C */ 5265 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5266 } else { 5267 if (TCG_TARGET_HAS_andc_i32) { 5268 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5269 } else { 5270 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5271 } 5272 } 5273 if (nzcv & 1) { /* V */ 5274 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5275 } else { 5276 if (TCG_TARGET_HAS_andc_i32) { 5277 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5278 } else { 5279 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5280 } 5281 } 5282 } 5283 5284 /* Conditional select 5285 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5286 * +----+----+---+-----------------+------+------+-----+------+------+ 5287 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5288 * +----+----+---+-----------------+------+------+-----+------+------+ 5289 */ 5290 static void disas_cond_select(DisasContext *s, uint32_t insn) 5291 { 5292 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5293 TCGv_i64 tcg_rd, zero; 5294 DisasCompare64 c; 5295 5296 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5297 /* S == 1 or op2<1> == 1 */ 5298 unallocated_encoding(s); 5299 return; 5300 } 5301 sf = extract32(insn, 31, 1); 5302 else_inv = extract32(insn, 30, 1); 5303 rm = extract32(insn, 16, 5); 5304 cond = extract32(insn, 12, 4); 5305 else_inc = extract32(insn, 10, 1); 5306 rn = extract32(insn, 5, 5); 5307 rd = extract32(insn, 0, 5); 5308 5309 tcg_rd = cpu_reg(s, rd); 5310 5311 a64_test_cc(&c, cond); 5312 zero = tcg_constant_i64(0); 5313 5314 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5315 /* CSET & CSETM. */ 5316 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5317 if (else_inv) { 5318 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5319 } 5320 } else { 5321 TCGv_i64 t_true = cpu_reg(s, rn); 5322 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5323 if (else_inv && else_inc) { 5324 tcg_gen_neg_i64(t_false, t_false); 5325 } else if (else_inv) { 5326 tcg_gen_not_i64(t_false, t_false); 5327 } else if (else_inc) { 5328 tcg_gen_addi_i64(t_false, t_false, 1); 5329 } 5330 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5331 } 5332 5333 if (!sf) { 5334 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5335 } 5336 } 5337 5338 static void handle_clz(DisasContext *s, unsigned int sf, 5339 unsigned int rn, unsigned int rd) 5340 { 5341 TCGv_i64 tcg_rd, tcg_rn; 5342 tcg_rd = cpu_reg(s, rd); 5343 tcg_rn = cpu_reg(s, rn); 5344 5345 if (sf) { 5346 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5347 } else { 5348 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5349 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5350 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5351 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5352 } 5353 } 5354 5355 static void handle_cls(DisasContext *s, unsigned int sf, 5356 unsigned int rn, unsigned int rd) 5357 { 5358 TCGv_i64 tcg_rd, tcg_rn; 5359 tcg_rd = cpu_reg(s, rd); 5360 tcg_rn = cpu_reg(s, rn); 5361 5362 if (sf) { 5363 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5364 } else { 5365 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5366 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5367 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5368 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5369 } 5370 } 5371 5372 static void handle_rbit(DisasContext *s, unsigned int sf, 5373 unsigned int rn, unsigned int rd) 5374 { 5375 TCGv_i64 tcg_rd, tcg_rn; 5376 tcg_rd = cpu_reg(s, rd); 5377 tcg_rn = cpu_reg(s, rn); 5378 5379 if (sf) { 5380 gen_helper_rbit64(tcg_rd, tcg_rn); 5381 } else { 5382 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5383 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5384 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5385 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5386 } 5387 } 5388 5389 /* REV with sf==1, opcode==3 ("REV64") */ 5390 static void handle_rev64(DisasContext *s, unsigned int sf, 5391 unsigned int rn, unsigned int rd) 5392 { 5393 if (!sf) { 5394 unallocated_encoding(s); 5395 return; 5396 } 5397 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5398 } 5399 5400 /* REV with sf==0, opcode==2 5401 * REV32 (sf==1, opcode==2) 5402 */ 5403 static void handle_rev32(DisasContext *s, unsigned int sf, 5404 unsigned int rn, unsigned int rd) 5405 { 5406 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5407 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5408 5409 if (sf) { 5410 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5411 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5412 } else { 5413 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5414 } 5415 } 5416 5417 /* REV16 (opcode==1) */ 5418 static void handle_rev16(DisasContext *s, unsigned int sf, 5419 unsigned int rn, unsigned int rd) 5420 { 5421 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5422 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5423 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5424 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5425 5426 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5427 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5428 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5429 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5430 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5431 } 5432 5433 /* Data-processing (1 source) 5434 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5435 * +----+---+---+-----------------+---------+--------+------+------+ 5436 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5437 * +----+---+---+-----------------+---------+--------+------+------+ 5438 */ 5439 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5440 { 5441 unsigned int sf, opcode, opcode2, rn, rd; 5442 TCGv_i64 tcg_rd; 5443 5444 if (extract32(insn, 29, 1)) { 5445 unallocated_encoding(s); 5446 return; 5447 } 5448 5449 sf = extract32(insn, 31, 1); 5450 opcode = extract32(insn, 10, 6); 5451 opcode2 = extract32(insn, 16, 5); 5452 rn = extract32(insn, 5, 5); 5453 rd = extract32(insn, 0, 5); 5454 5455 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5456 5457 switch (MAP(sf, opcode2, opcode)) { 5458 case MAP(0, 0x00, 0x00): /* RBIT */ 5459 case MAP(1, 0x00, 0x00): 5460 handle_rbit(s, sf, rn, rd); 5461 break; 5462 case MAP(0, 0x00, 0x01): /* REV16 */ 5463 case MAP(1, 0x00, 0x01): 5464 handle_rev16(s, sf, rn, rd); 5465 break; 5466 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5467 case MAP(1, 0x00, 0x02): 5468 handle_rev32(s, sf, rn, rd); 5469 break; 5470 case MAP(1, 0x00, 0x03): /* REV64 */ 5471 handle_rev64(s, sf, rn, rd); 5472 break; 5473 case MAP(0, 0x00, 0x04): /* CLZ */ 5474 case MAP(1, 0x00, 0x04): 5475 handle_clz(s, sf, rn, rd); 5476 break; 5477 case MAP(0, 0x00, 0x05): /* CLS */ 5478 case MAP(1, 0x00, 0x05): 5479 handle_cls(s, sf, rn, rd); 5480 break; 5481 case MAP(1, 0x01, 0x00): /* PACIA */ 5482 if (s->pauth_active) { 5483 tcg_rd = cpu_reg(s, rd); 5484 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5485 } else if (!dc_isar_feature(aa64_pauth, s)) { 5486 goto do_unallocated; 5487 } 5488 break; 5489 case MAP(1, 0x01, 0x01): /* PACIB */ 5490 if (s->pauth_active) { 5491 tcg_rd = cpu_reg(s, rd); 5492 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5493 } else if (!dc_isar_feature(aa64_pauth, s)) { 5494 goto do_unallocated; 5495 } 5496 break; 5497 case MAP(1, 0x01, 0x02): /* PACDA */ 5498 if (s->pauth_active) { 5499 tcg_rd = cpu_reg(s, rd); 5500 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5501 } else if (!dc_isar_feature(aa64_pauth, s)) { 5502 goto do_unallocated; 5503 } 5504 break; 5505 case MAP(1, 0x01, 0x03): /* PACDB */ 5506 if (s->pauth_active) { 5507 tcg_rd = cpu_reg(s, rd); 5508 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5509 } else if (!dc_isar_feature(aa64_pauth, s)) { 5510 goto do_unallocated; 5511 } 5512 break; 5513 case MAP(1, 0x01, 0x04): /* AUTIA */ 5514 if (s->pauth_active) { 5515 tcg_rd = cpu_reg(s, rd); 5516 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5517 } else if (!dc_isar_feature(aa64_pauth, s)) { 5518 goto do_unallocated; 5519 } 5520 break; 5521 case MAP(1, 0x01, 0x05): /* AUTIB */ 5522 if (s->pauth_active) { 5523 tcg_rd = cpu_reg(s, rd); 5524 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5525 } else if (!dc_isar_feature(aa64_pauth, s)) { 5526 goto do_unallocated; 5527 } 5528 break; 5529 case MAP(1, 0x01, 0x06): /* AUTDA */ 5530 if (s->pauth_active) { 5531 tcg_rd = cpu_reg(s, rd); 5532 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5533 } else if (!dc_isar_feature(aa64_pauth, s)) { 5534 goto do_unallocated; 5535 } 5536 break; 5537 case MAP(1, 0x01, 0x07): /* AUTDB */ 5538 if (s->pauth_active) { 5539 tcg_rd = cpu_reg(s, rd); 5540 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5541 } else if (!dc_isar_feature(aa64_pauth, s)) { 5542 goto do_unallocated; 5543 } 5544 break; 5545 case MAP(1, 0x01, 0x08): /* PACIZA */ 5546 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5547 goto do_unallocated; 5548 } else if (s->pauth_active) { 5549 tcg_rd = cpu_reg(s, rd); 5550 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5551 } 5552 break; 5553 case MAP(1, 0x01, 0x09): /* PACIZB */ 5554 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5555 goto do_unallocated; 5556 } else if (s->pauth_active) { 5557 tcg_rd = cpu_reg(s, rd); 5558 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5559 } 5560 break; 5561 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5562 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5563 goto do_unallocated; 5564 } else if (s->pauth_active) { 5565 tcg_rd = cpu_reg(s, rd); 5566 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5567 } 5568 break; 5569 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5570 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5571 goto do_unallocated; 5572 } else if (s->pauth_active) { 5573 tcg_rd = cpu_reg(s, rd); 5574 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5575 } 5576 break; 5577 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5578 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5579 goto do_unallocated; 5580 } else if (s->pauth_active) { 5581 tcg_rd = cpu_reg(s, rd); 5582 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5583 } 5584 break; 5585 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5586 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5587 goto do_unallocated; 5588 } else if (s->pauth_active) { 5589 tcg_rd = cpu_reg(s, rd); 5590 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5591 } 5592 break; 5593 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5594 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5595 goto do_unallocated; 5596 } else if (s->pauth_active) { 5597 tcg_rd = cpu_reg(s, rd); 5598 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5599 } 5600 break; 5601 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5602 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5603 goto do_unallocated; 5604 } else if (s->pauth_active) { 5605 tcg_rd = cpu_reg(s, rd); 5606 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5607 } 5608 break; 5609 case MAP(1, 0x01, 0x10): /* XPACI */ 5610 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5611 goto do_unallocated; 5612 } else if (s->pauth_active) { 5613 tcg_rd = cpu_reg(s, rd); 5614 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5615 } 5616 break; 5617 case MAP(1, 0x01, 0x11): /* XPACD */ 5618 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5619 goto do_unallocated; 5620 } else if (s->pauth_active) { 5621 tcg_rd = cpu_reg(s, rd); 5622 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5623 } 5624 break; 5625 default: 5626 do_unallocated: 5627 unallocated_encoding(s); 5628 break; 5629 } 5630 5631 #undef MAP 5632 } 5633 5634 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5635 unsigned int rm, unsigned int rn, unsigned int rd) 5636 { 5637 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5638 tcg_rd = cpu_reg(s, rd); 5639 5640 if (!sf && is_signed) { 5641 tcg_n = tcg_temp_new_i64(); 5642 tcg_m = tcg_temp_new_i64(); 5643 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5644 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5645 } else { 5646 tcg_n = read_cpu_reg(s, rn, sf); 5647 tcg_m = read_cpu_reg(s, rm, sf); 5648 } 5649 5650 if (is_signed) { 5651 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5652 } else { 5653 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5654 } 5655 5656 if (!sf) { /* zero extend final result */ 5657 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5658 } 5659 } 5660 5661 /* LSLV, LSRV, ASRV, RORV */ 5662 static void handle_shift_reg(DisasContext *s, 5663 enum a64_shift_type shift_type, unsigned int sf, 5664 unsigned int rm, unsigned int rn, unsigned int rd) 5665 { 5666 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5667 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5668 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5669 5670 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5671 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5672 } 5673 5674 /* CRC32[BHWX], CRC32C[BHWX] */ 5675 static void handle_crc32(DisasContext *s, 5676 unsigned int sf, unsigned int sz, bool crc32c, 5677 unsigned int rm, unsigned int rn, unsigned int rd) 5678 { 5679 TCGv_i64 tcg_acc, tcg_val; 5680 TCGv_i32 tcg_bytes; 5681 5682 if (!dc_isar_feature(aa64_crc32, s) 5683 || (sf == 1 && sz != 3) 5684 || (sf == 0 && sz == 3)) { 5685 unallocated_encoding(s); 5686 return; 5687 } 5688 5689 if (sz == 3) { 5690 tcg_val = cpu_reg(s, rm); 5691 } else { 5692 uint64_t mask; 5693 switch (sz) { 5694 case 0: 5695 mask = 0xFF; 5696 break; 5697 case 1: 5698 mask = 0xFFFF; 5699 break; 5700 case 2: 5701 mask = 0xFFFFFFFF; 5702 break; 5703 default: 5704 g_assert_not_reached(); 5705 } 5706 tcg_val = tcg_temp_new_i64(); 5707 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5708 } 5709 5710 tcg_acc = cpu_reg(s, rn); 5711 tcg_bytes = tcg_constant_i32(1 << sz); 5712 5713 if (crc32c) { 5714 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5715 } else { 5716 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5717 } 5718 } 5719 5720 /* Data-processing (2 source) 5721 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5722 * +----+---+---+-----------------+------+--------+------+------+ 5723 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5724 * +----+---+---+-----------------+------+--------+------+------+ 5725 */ 5726 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5727 { 5728 unsigned int sf, rm, opcode, rn, rd, setflag; 5729 sf = extract32(insn, 31, 1); 5730 setflag = extract32(insn, 29, 1); 5731 rm = extract32(insn, 16, 5); 5732 opcode = extract32(insn, 10, 6); 5733 rn = extract32(insn, 5, 5); 5734 rd = extract32(insn, 0, 5); 5735 5736 if (setflag && opcode != 0) { 5737 unallocated_encoding(s); 5738 return; 5739 } 5740 5741 switch (opcode) { 5742 case 0: /* SUBP(S) */ 5743 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5744 goto do_unallocated; 5745 } else { 5746 TCGv_i64 tcg_n, tcg_m, tcg_d; 5747 5748 tcg_n = read_cpu_reg_sp(s, rn, true); 5749 tcg_m = read_cpu_reg_sp(s, rm, true); 5750 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5751 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5752 tcg_d = cpu_reg(s, rd); 5753 5754 if (setflag) { 5755 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5756 } else { 5757 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5758 } 5759 } 5760 break; 5761 case 2: /* UDIV */ 5762 handle_div(s, false, sf, rm, rn, rd); 5763 break; 5764 case 3: /* SDIV */ 5765 handle_div(s, true, sf, rm, rn, rd); 5766 break; 5767 case 4: /* IRG */ 5768 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5769 goto do_unallocated; 5770 } 5771 if (s->ata) { 5772 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5773 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5774 } else { 5775 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5776 cpu_reg_sp(s, rn)); 5777 } 5778 break; 5779 case 5: /* GMI */ 5780 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5781 goto do_unallocated; 5782 } else { 5783 TCGv_i64 t = tcg_temp_new_i64(); 5784 5785 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5786 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5787 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5788 } 5789 break; 5790 case 8: /* LSLV */ 5791 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5792 break; 5793 case 9: /* LSRV */ 5794 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5795 break; 5796 case 10: /* ASRV */ 5797 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5798 break; 5799 case 11: /* RORV */ 5800 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5801 break; 5802 case 12: /* PACGA */ 5803 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5804 goto do_unallocated; 5805 } 5806 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5807 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5808 break; 5809 case 16: 5810 case 17: 5811 case 18: 5812 case 19: 5813 case 20: 5814 case 21: 5815 case 22: 5816 case 23: /* CRC32 */ 5817 { 5818 int sz = extract32(opcode, 0, 2); 5819 bool crc32c = extract32(opcode, 2, 1); 5820 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5821 break; 5822 } 5823 default: 5824 do_unallocated: 5825 unallocated_encoding(s); 5826 break; 5827 } 5828 } 5829 5830 /* 5831 * Data processing - register 5832 * 31 30 29 28 25 21 20 16 10 0 5833 * +--+---+--+---+-------+-----+-------+-------+---------+ 5834 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5835 * +--+---+--+---+-------+-----+-------+-------+---------+ 5836 */ 5837 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5838 { 5839 int op0 = extract32(insn, 30, 1); 5840 int op1 = extract32(insn, 28, 1); 5841 int op2 = extract32(insn, 21, 4); 5842 int op3 = extract32(insn, 10, 6); 5843 5844 if (!op1) { 5845 if (op2 & 8) { 5846 if (op2 & 1) { 5847 /* Add/sub (extended register) */ 5848 disas_add_sub_ext_reg(s, insn); 5849 } else { 5850 /* Add/sub (shifted register) */ 5851 disas_add_sub_reg(s, insn); 5852 } 5853 } else { 5854 /* Logical (shifted register) */ 5855 disas_logic_reg(s, insn); 5856 } 5857 return; 5858 } 5859 5860 switch (op2) { 5861 case 0x0: 5862 switch (op3) { 5863 case 0x00: /* Add/subtract (with carry) */ 5864 disas_adc_sbc(s, insn); 5865 break; 5866 5867 case 0x01: /* Rotate right into flags */ 5868 case 0x21: 5869 disas_rotate_right_into_flags(s, insn); 5870 break; 5871 5872 case 0x02: /* Evaluate into flags */ 5873 case 0x12: 5874 case 0x22: 5875 case 0x32: 5876 disas_evaluate_into_flags(s, insn); 5877 break; 5878 5879 default: 5880 goto do_unallocated; 5881 } 5882 break; 5883 5884 case 0x2: /* Conditional compare */ 5885 disas_cc(s, insn); /* both imm and reg forms */ 5886 break; 5887 5888 case 0x4: /* Conditional select */ 5889 disas_cond_select(s, insn); 5890 break; 5891 5892 case 0x6: /* Data-processing */ 5893 if (op0) { /* (1 source) */ 5894 disas_data_proc_1src(s, insn); 5895 } else { /* (2 source) */ 5896 disas_data_proc_2src(s, insn); 5897 } 5898 break; 5899 case 0x8 ... 0xf: /* (3 source) */ 5900 disas_data_proc_3src(s, insn); 5901 break; 5902 5903 default: 5904 do_unallocated: 5905 unallocated_encoding(s); 5906 break; 5907 } 5908 } 5909 5910 static void handle_fp_compare(DisasContext *s, int size, 5911 unsigned int rn, unsigned int rm, 5912 bool cmp_with_zero, bool signal_all_nans) 5913 { 5914 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5915 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5916 5917 if (size == MO_64) { 5918 TCGv_i64 tcg_vn, tcg_vm; 5919 5920 tcg_vn = read_fp_dreg(s, rn); 5921 if (cmp_with_zero) { 5922 tcg_vm = tcg_constant_i64(0); 5923 } else { 5924 tcg_vm = read_fp_dreg(s, rm); 5925 } 5926 if (signal_all_nans) { 5927 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5928 } else { 5929 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5930 } 5931 } else { 5932 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5933 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5934 5935 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5936 if (cmp_with_zero) { 5937 tcg_gen_movi_i32(tcg_vm, 0); 5938 } else { 5939 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5940 } 5941 5942 switch (size) { 5943 case MO_32: 5944 if (signal_all_nans) { 5945 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5946 } else { 5947 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5948 } 5949 break; 5950 case MO_16: 5951 if (signal_all_nans) { 5952 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5953 } else { 5954 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5955 } 5956 break; 5957 default: 5958 g_assert_not_reached(); 5959 } 5960 } 5961 5962 gen_set_nzcv(tcg_flags); 5963 } 5964 5965 /* Floating point compare 5966 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5967 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5968 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5969 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5970 */ 5971 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5972 { 5973 unsigned int mos, type, rm, op, rn, opc, op2r; 5974 int size; 5975 5976 mos = extract32(insn, 29, 3); 5977 type = extract32(insn, 22, 2); 5978 rm = extract32(insn, 16, 5); 5979 op = extract32(insn, 14, 2); 5980 rn = extract32(insn, 5, 5); 5981 opc = extract32(insn, 3, 2); 5982 op2r = extract32(insn, 0, 3); 5983 5984 if (mos || op || op2r) { 5985 unallocated_encoding(s); 5986 return; 5987 } 5988 5989 switch (type) { 5990 case 0: 5991 size = MO_32; 5992 break; 5993 case 1: 5994 size = MO_64; 5995 break; 5996 case 3: 5997 size = MO_16; 5998 if (dc_isar_feature(aa64_fp16, s)) { 5999 break; 6000 } 6001 /* fallthru */ 6002 default: 6003 unallocated_encoding(s); 6004 return; 6005 } 6006 6007 if (!fp_access_check(s)) { 6008 return; 6009 } 6010 6011 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6012 } 6013 6014 /* Floating point conditional compare 6015 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6016 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6017 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6018 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6019 */ 6020 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6021 { 6022 unsigned int mos, type, rm, cond, rn, op, nzcv; 6023 TCGLabel *label_continue = NULL; 6024 int size; 6025 6026 mos = extract32(insn, 29, 3); 6027 type = extract32(insn, 22, 2); 6028 rm = extract32(insn, 16, 5); 6029 cond = extract32(insn, 12, 4); 6030 rn = extract32(insn, 5, 5); 6031 op = extract32(insn, 4, 1); 6032 nzcv = extract32(insn, 0, 4); 6033 6034 if (mos) { 6035 unallocated_encoding(s); 6036 return; 6037 } 6038 6039 switch (type) { 6040 case 0: 6041 size = MO_32; 6042 break; 6043 case 1: 6044 size = MO_64; 6045 break; 6046 case 3: 6047 size = MO_16; 6048 if (dc_isar_feature(aa64_fp16, s)) { 6049 break; 6050 } 6051 /* fallthru */ 6052 default: 6053 unallocated_encoding(s); 6054 return; 6055 } 6056 6057 if (!fp_access_check(s)) { 6058 return; 6059 } 6060 6061 if (cond < 0x0e) { /* not always */ 6062 TCGLabel *label_match = gen_new_label(); 6063 label_continue = gen_new_label(); 6064 arm_gen_test_cc(cond, label_match); 6065 /* nomatch: */ 6066 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6067 tcg_gen_br(label_continue); 6068 gen_set_label(label_match); 6069 } 6070 6071 handle_fp_compare(s, size, rn, rm, false, op); 6072 6073 if (cond < 0x0e) { 6074 gen_set_label(label_continue); 6075 } 6076 } 6077 6078 /* Floating point conditional select 6079 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6080 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6081 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6082 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6083 */ 6084 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6085 { 6086 unsigned int mos, type, rm, cond, rn, rd; 6087 TCGv_i64 t_true, t_false; 6088 DisasCompare64 c; 6089 MemOp sz; 6090 6091 mos = extract32(insn, 29, 3); 6092 type = extract32(insn, 22, 2); 6093 rm = extract32(insn, 16, 5); 6094 cond = extract32(insn, 12, 4); 6095 rn = extract32(insn, 5, 5); 6096 rd = extract32(insn, 0, 5); 6097 6098 if (mos) { 6099 unallocated_encoding(s); 6100 return; 6101 } 6102 6103 switch (type) { 6104 case 0: 6105 sz = MO_32; 6106 break; 6107 case 1: 6108 sz = MO_64; 6109 break; 6110 case 3: 6111 sz = MO_16; 6112 if (dc_isar_feature(aa64_fp16, s)) { 6113 break; 6114 } 6115 /* fallthru */ 6116 default: 6117 unallocated_encoding(s); 6118 return; 6119 } 6120 6121 if (!fp_access_check(s)) { 6122 return; 6123 } 6124 6125 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6126 t_true = tcg_temp_new_i64(); 6127 t_false = tcg_temp_new_i64(); 6128 read_vec_element(s, t_true, rn, 0, sz); 6129 read_vec_element(s, t_false, rm, 0, sz); 6130 6131 a64_test_cc(&c, cond); 6132 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6133 t_true, t_false); 6134 6135 /* Note that sregs & hregs write back zeros to the high bits, 6136 and we've already done the zero-extension. */ 6137 write_fp_dreg(s, rd, t_true); 6138 } 6139 6140 /* Floating-point data-processing (1 source) - half precision */ 6141 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6142 { 6143 TCGv_ptr fpst = NULL; 6144 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6145 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6146 6147 switch (opcode) { 6148 case 0x0: /* FMOV */ 6149 tcg_gen_mov_i32(tcg_res, tcg_op); 6150 break; 6151 case 0x1: /* FABS */ 6152 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6153 break; 6154 case 0x2: /* FNEG */ 6155 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6156 break; 6157 case 0x3: /* FSQRT */ 6158 fpst = fpstatus_ptr(FPST_FPCR_F16); 6159 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6160 break; 6161 case 0x8: /* FRINTN */ 6162 case 0x9: /* FRINTP */ 6163 case 0xa: /* FRINTM */ 6164 case 0xb: /* FRINTZ */ 6165 case 0xc: /* FRINTA */ 6166 { 6167 TCGv_i32 tcg_rmode; 6168 6169 fpst = fpstatus_ptr(FPST_FPCR_F16); 6170 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6171 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6172 gen_restore_rmode(tcg_rmode, fpst); 6173 break; 6174 } 6175 case 0xe: /* FRINTX */ 6176 fpst = fpstatus_ptr(FPST_FPCR_F16); 6177 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6178 break; 6179 case 0xf: /* FRINTI */ 6180 fpst = fpstatus_ptr(FPST_FPCR_F16); 6181 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6182 break; 6183 default: 6184 g_assert_not_reached(); 6185 } 6186 6187 write_fp_sreg(s, rd, tcg_res); 6188 } 6189 6190 /* Floating-point data-processing (1 source) - single precision */ 6191 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6192 { 6193 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6194 TCGv_i32 tcg_op, tcg_res; 6195 TCGv_ptr fpst; 6196 int rmode = -1; 6197 6198 tcg_op = read_fp_sreg(s, rn); 6199 tcg_res = tcg_temp_new_i32(); 6200 6201 switch (opcode) { 6202 case 0x0: /* FMOV */ 6203 tcg_gen_mov_i32(tcg_res, tcg_op); 6204 goto done; 6205 case 0x1: /* FABS */ 6206 gen_helper_vfp_abss(tcg_res, tcg_op); 6207 goto done; 6208 case 0x2: /* FNEG */ 6209 gen_helper_vfp_negs(tcg_res, tcg_op); 6210 goto done; 6211 case 0x3: /* FSQRT */ 6212 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6213 goto done; 6214 case 0x6: /* BFCVT */ 6215 gen_fpst = gen_helper_bfcvt; 6216 break; 6217 case 0x8: /* FRINTN */ 6218 case 0x9: /* FRINTP */ 6219 case 0xa: /* FRINTM */ 6220 case 0xb: /* FRINTZ */ 6221 case 0xc: /* FRINTA */ 6222 rmode = opcode & 7; 6223 gen_fpst = gen_helper_rints; 6224 break; 6225 case 0xe: /* FRINTX */ 6226 gen_fpst = gen_helper_rints_exact; 6227 break; 6228 case 0xf: /* FRINTI */ 6229 gen_fpst = gen_helper_rints; 6230 break; 6231 case 0x10: /* FRINT32Z */ 6232 rmode = FPROUNDING_ZERO; 6233 gen_fpst = gen_helper_frint32_s; 6234 break; 6235 case 0x11: /* FRINT32X */ 6236 gen_fpst = gen_helper_frint32_s; 6237 break; 6238 case 0x12: /* FRINT64Z */ 6239 rmode = FPROUNDING_ZERO; 6240 gen_fpst = gen_helper_frint64_s; 6241 break; 6242 case 0x13: /* FRINT64X */ 6243 gen_fpst = gen_helper_frint64_s; 6244 break; 6245 default: 6246 g_assert_not_reached(); 6247 } 6248 6249 fpst = fpstatus_ptr(FPST_FPCR); 6250 if (rmode >= 0) { 6251 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6252 gen_fpst(tcg_res, tcg_op, fpst); 6253 gen_restore_rmode(tcg_rmode, fpst); 6254 } else { 6255 gen_fpst(tcg_res, tcg_op, fpst); 6256 } 6257 6258 done: 6259 write_fp_sreg(s, rd, tcg_res); 6260 } 6261 6262 /* Floating-point data-processing (1 source) - double precision */ 6263 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6264 { 6265 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6266 TCGv_i64 tcg_op, tcg_res; 6267 TCGv_ptr fpst; 6268 int rmode = -1; 6269 6270 switch (opcode) { 6271 case 0x0: /* FMOV */ 6272 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6273 return; 6274 } 6275 6276 tcg_op = read_fp_dreg(s, rn); 6277 tcg_res = tcg_temp_new_i64(); 6278 6279 switch (opcode) { 6280 case 0x1: /* FABS */ 6281 gen_helper_vfp_absd(tcg_res, tcg_op); 6282 goto done; 6283 case 0x2: /* FNEG */ 6284 gen_helper_vfp_negd(tcg_res, tcg_op); 6285 goto done; 6286 case 0x3: /* FSQRT */ 6287 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6288 goto done; 6289 case 0x8: /* FRINTN */ 6290 case 0x9: /* FRINTP */ 6291 case 0xa: /* FRINTM */ 6292 case 0xb: /* FRINTZ */ 6293 case 0xc: /* FRINTA */ 6294 rmode = opcode & 7; 6295 gen_fpst = gen_helper_rintd; 6296 break; 6297 case 0xe: /* FRINTX */ 6298 gen_fpst = gen_helper_rintd_exact; 6299 break; 6300 case 0xf: /* FRINTI */ 6301 gen_fpst = gen_helper_rintd; 6302 break; 6303 case 0x10: /* FRINT32Z */ 6304 rmode = FPROUNDING_ZERO; 6305 gen_fpst = gen_helper_frint32_d; 6306 break; 6307 case 0x11: /* FRINT32X */ 6308 gen_fpst = gen_helper_frint32_d; 6309 break; 6310 case 0x12: /* FRINT64Z */ 6311 rmode = FPROUNDING_ZERO; 6312 gen_fpst = gen_helper_frint64_d; 6313 break; 6314 case 0x13: /* FRINT64X */ 6315 gen_fpst = gen_helper_frint64_d; 6316 break; 6317 default: 6318 g_assert_not_reached(); 6319 } 6320 6321 fpst = fpstatus_ptr(FPST_FPCR); 6322 if (rmode >= 0) { 6323 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6324 gen_fpst(tcg_res, tcg_op, fpst); 6325 gen_restore_rmode(tcg_rmode, fpst); 6326 } else { 6327 gen_fpst(tcg_res, tcg_op, fpst); 6328 } 6329 6330 done: 6331 write_fp_dreg(s, rd, tcg_res); 6332 } 6333 6334 static void handle_fp_fcvt(DisasContext *s, int opcode, 6335 int rd, int rn, int dtype, int ntype) 6336 { 6337 switch (ntype) { 6338 case 0x0: 6339 { 6340 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6341 if (dtype == 1) { 6342 /* Single to double */ 6343 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6344 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6345 write_fp_dreg(s, rd, tcg_rd); 6346 } else { 6347 /* Single to half */ 6348 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6349 TCGv_i32 ahp = get_ahp_flag(); 6350 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6351 6352 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6353 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6354 write_fp_sreg(s, rd, tcg_rd); 6355 } 6356 break; 6357 } 6358 case 0x1: 6359 { 6360 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6361 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6362 if (dtype == 0) { 6363 /* Double to single */ 6364 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6365 } else { 6366 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6367 TCGv_i32 ahp = get_ahp_flag(); 6368 /* Double to half */ 6369 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6370 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6371 } 6372 write_fp_sreg(s, rd, tcg_rd); 6373 break; 6374 } 6375 case 0x3: 6376 { 6377 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6378 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6379 TCGv_i32 tcg_ahp = get_ahp_flag(); 6380 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6381 if (dtype == 0) { 6382 /* Half to single */ 6383 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6384 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6385 write_fp_sreg(s, rd, tcg_rd); 6386 } else { 6387 /* Half to double */ 6388 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6389 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6390 write_fp_dreg(s, rd, tcg_rd); 6391 } 6392 break; 6393 } 6394 default: 6395 g_assert_not_reached(); 6396 } 6397 } 6398 6399 /* Floating point data-processing (1 source) 6400 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6401 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6402 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6403 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6404 */ 6405 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6406 { 6407 int mos = extract32(insn, 29, 3); 6408 int type = extract32(insn, 22, 2); 6409 int opcode = extract32(insn, 15, 6); 6410 int rn = extract32(insn, 5, 5); 6411 int rd = extract32(insn, 0, 5); 6412 6413 if (mos) { 6414 goto do_unallocated; 6415 } 6416 6417 switch (opcode) { 6418 case 0x4: case 0x5: case 0x7: 6419 { 6420 /* FCVT between half, single and double precision */ 6421 int dtype = extract32(opcode, 0, 2); 6422 if (type == 2 || dtype == type) { 6423 goto do_unallocated; 6424 } 6425 if (!fp_access_check(s)) { 6426 return; 6427 } 6428 6429 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6430 break; 6431 } 6432 6433 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6434 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6435 goto do_unallocated; 6436 } 6437 /* fall through */ 6438 case 0x0 ... 0x3: 6439 case 0x8 ... 0xc: 6440 case 0xe ... 0xf: 6441 /* 32-to-32 and 64-to-64 ops */ 6442 switch (type) { 6443 case 0: 6444 if (!fp_access_check(s)) { 6445 return; 6446 } 6447 handle_fp_1src_single(s, opcode, rd, rn); 6448 break; 6449 case 1: 6450 if (!fp_access_check(s)) { 6451 return; 6452 } 6453 handle_fp_1src_double(s, opcode, rd, rn); 6454 break; 6455 case 3: 6456 if (!dc_isar_feature(aa64_fp16, s)) { 6457 goto do_unallocated; 6458 } 6459 6460 if (!fp_access_check(s)) { 6461 return; 6462 } 6463 handle_fp_1src_half(s, opcode, rd, rn); 6464 break; 6465 default: 6466 goto do_unallocated; 6467 } 6468 break; 6469 6470 case 0x6: 6471 switch (type) { 6472 case 1: /* BFCVT */ 6473 if (!dc_isar_feature(aa64_bf16, s)) { 6474 goto do_unallocated; 6475 } 6476 if (!fp_access_check(s)) { 6477 return; 6478 } 6479 handle_fp_1src_single(s, opcode, rd, rn); 6480 break; 6481 default: 6482 goto do_unallocated; 6483 } 6484 break; 6485 6486 default: 6487 do_unallocated: 6488 unallocated_encoding(s); 6489 break; 6490 } 6491 } 6492 6493 /* Floating-point data-processing (2 source) - single precision */ 6494 static void handle_fp_2src_single(DisasContext *s, int opcode, 6495 int rd, int rn, int rm) 6496 { 6497 TCGv_i32 tcg_op1; 6498 TCGv_i32 tcg_op2; 6499 TCGv_i32 tcg_res; 6500 TCGv_ptr fpst; 6501 6502 tcg_res = tcg_temp_new_i32(); 6503 fpst = fpstatus_ptr(FPST_FPCR); 6504 tcg_op1 = read_fp_sreg(s, rn); 6505 tcg_op2 = read_fp_sreg(s, rm); 6506 6507 switch (opcode) { 6508 case 0x0: /* FMUL */ 6509 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6510 break; 6511 case 0x1: /* FDIV */ 6512 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6513 break; 6514 case 0x2: /* FADD */ 6515 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6516 break; 6517 case 0x3: /* FSUB */ 6518 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6519 break; 6520 case 0x4: /* FMAX */ 6521 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6522 break; 6523 case 0x5: /* FMIN */ 6524 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6525 break; 6526 case 0x6: /* FMAXNM */ 6527 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6528 break; 6529 case 0x7: /* FMINNM */ 6530 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6531 break; 6532 case 0x8: /* FNMUL */ 6533 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6534 gen_helper_vfp_negs(tcg_res, tcg_res); 6535 break; 6536 } 6537 6538 write_fp_sreg(s, rd, tcg_res); 6539 } 6540 6541 /* Floating-point data-processing (2 source) - double precision */ 6542 static void handle_fp_2src_double(DisasContext *s, int opcode, 6543 int rd, int rn, int rm) 6544 { 6545 TCGv_i64 tcg_op1; 6546 TCGv_i64 tcg_op2; 6547 TCGv_i64 tcg_res; 6548 TCGv_ptr fpst; 6549 6550 tcg_res = tcg_temp_new_i64(); 6551 fpst = fpstatus_ptr(FPST_FPCR); 6552 tcg_op1 = read_fp_dreg(s, rn); 6553 tcg_op2 = read_fp_dreg(s, rm); 6554 6555 switch (opcode) { 6556 case 0x0: /* FMUL */ 6557 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6558 break; 6559 case 0x1: /* FDIV */ 6560 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6561 break; 6562 case 0x2: /* FADD */ 6563 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6564 break; 6565 case 0x3: /* FSUB */ 6566 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6567 break; 6568 case 0x4: /* FMAX */ 6569 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6570 break; 6571 case 0x5: /* FMIN */ 6572 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6573 break; 6574 case 0x6: /* FMAXNM */ 6575 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6576 break; 6577 case 0x7: /* FMINNM */ 6578 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6579 break; 6580 case 0x8: /* FNMUL */ 6581 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6582 gen_helper_vfp_negd(tcg_res, tcg_res); 6583 break; 6584 } 6585 6586 write_fp_dreg(s, rd, tcg_res); 6587 } 6588 6589 /* Floating-point data-processing (2 source) - half precision */ 6590 static void handle_fp_2src_half(DisasContext *s, int opcode, 6591 int rd, int rn, int rm) 6592 { 6593 TCGv_i32 tcg_op1; 6594 TCGv_i32 tcg_op2; 6595 TCGv_i32 tcg_res; 6596 TCGv_ptr fpst; 6597 6598 tcg_res = tcg_temp_new_i32(); 6599 fpst = fpstatus_ptr(FPST_FPCR_F16); 6600 tcg_op1 = read_fp_hreg(s, rn); 6601 tcg_op2 = read_fp_hreg(s, rm); 6602 6603 switch (opcode) { 6604 case 0x0: /* FMUL */ 6605 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6606 break; 6607 case 0x1: /* FDIV */ 6608 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6609 break; 6610 case 0x2: /* FADD */ 6611 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6612 break; 6613 case 0x3: /* FSUB */ 6614 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6615 break; 6616 case 0x4: /* FMAX */ 6617 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6618 break; 6619 case 0x5: /* FMIN */ 6620 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6621 break; 6622 case 0x6: /* FMAXNM */ 6623 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6624 break; 6625 case 0x7: /* FMINNM */ 6626 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6627 break; 6628 case 0x8: /* FNMUL */ 6629 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6630 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6631 break; 6632 default: 6633 g_assert_not_reached(); 6634 } 6635 6636 write_fp_sreg(s, rd, tcg_res); 6637 } 6638 6639 /* Floating point data-processing (2 source) 6640 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6641 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6642 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6643 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6644 */ 6645 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6646 { 6647 int mos = extract32(insn, 29, 3); 6648 int type = extract32(insn, 22, 2); 6649 int rd = extract32(insn, 0, 5); 6650 int rn = extract32(insn, 5, 5); 6651 int rm = extract32(insn, 16, 5); 6652 int opcode = extract32(insn, 12, 4); 6653 6654 if (opcode > 8 || mos) { 6655 unallocated_encoding(s); 6656 return; 6657 } 6658 6659 switch (type) { 6660 case 0: 6661 if (!fp_access_check(s)) { 6662 return; 6663 } 6664 handle_fp_2src_single(s, opcode, rd, rn, rm); 6665 break; 6666 case 1: 6667 if (!fp_access_check(s)) { 6668 return; 6669 } 6670 handle_fp_2src_double(s, opcode, rd, rn, rm); 6671 break; 6672 case 3: 6673 if (!dc_isar_feature(aa64_fp16, s)) { 6674 unallocated_encoding(s); 6675 return; 6676 } 6677 if (!fp_access_check(s)) { 6678 return; 6679 } 6680 handle_fp_2src_half(s, opcode, rd, rn, rm); 6681 break; 6682 default: 6683 unallocated_encoding(s); 6684 } 6685 } 6686 6687 /* Floating-point data-processing (3 source) - single precision */ 6688 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6689 int rd, int rn, int rm, int ra) 6690 { 6691 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6692 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6693 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6694 6695 tcg_op1 = read_fp_sreg(s, rn); 6696 tcg_op2 = read_fp_sreg(s, rm); 6697 tcg_op3 = read_fp_sreg(s, ra); 6698 6699 /* These are fused multiply-add, and must be done as one 6700 * floating point operation with no rounding between the 6701 * multiplication and addition steps. 6702 * NB that doing the negations here as separate steps is 6703 * correct : an input NaN should come out with its sign bit 6704 * flipped if it is a negated-input. 6705 */ 6706 if (o1 == true) { 6707 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6708 } 6709 6710 if (o0 != o1) { 6711 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6712 } 6713 6714 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6715 6716 write_fp_sreg(s, rd, tcg_res); 6717 } 6718 6719 /* Floating-point data-processing (3 source) - double precision */ 6720 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6721 int rd, int rn, int rm, int ra) 6722 { 6723 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6724 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6725 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6726 6727 tcg_op1 = read_fp_dreg(s, rn); 6728 tcg_op2 = read_fp_dreg(s, rm); 6729 tcg_op3 = read_fp_dreg(s, ra); 6730 6731 /* These are fused multiply-add, and must be done as one 6732 * floating point operation with no rounding between the 6733 * multiplication and addition steps. 6734 * NB that doing the negations here as separate steps is 6735 * correct : an input NaN should come out with its sign bit 6736 * flipped if it is a negated-input. 6737 */ 6738 if (o1 == true) { 6739 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6740 } 6741 6742 if (o0 != o1) { 6743 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6744 } 6745 6746 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6747 6748 write_fp_dreg(s, rd, tcg_res); 6749 } 6750 6751 /* Floating-point data-processing (3 source) - half precision */ 6752 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6753 int rd, int rn, int rm, int ra) 6754 { 6755 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6756 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6757 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6758 6759 tcg_op1 = read_fp_hreg(s, rn); 6760 tcg_op2 = read_fp_hreg(s, rm); 6761 tcg_op3 = read_fp_hreg(s, ra); 6762 6763 /* These are fused multiply-add, and must be done as one 6764 * floating point operation with no rounding between the 6765 * multiplication and addition steps. 6766 * NB that doing the negations here as separate steps is 6767 * correct : an input NaN should come out with its sign bit 6768 * flipped if it is a negated-input. 6769 */ 6770 if (o1 == true) { 6771 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6772 } 6773 6774 if (o0 != o1) { 6775 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6776 } 6777 6778 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6779 6780 write_fp_sreg(s, rd, tcg_res); 6781 } 6782 6783 /* Floating point data-processing (3 source) 6784 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6785 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6786 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6787 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6788 */ 6789 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6790 { 6791 int mos = extract32(insn, 29, 3); 6792 int type = extract32(insn, 22, 2); 6793 int rd = extract32(insn, 0, 5); 6794 int rn = extract32(insn, 5, 5); 6795 int ra = extract32(insn, 10, 5); 6796 int rm = extract32(insn, 16, 5); 6797 bool o0 = extract32(insn, 15, 1); 6798 bool o1 = extract32(insn, 21, 1); 6799 6800 if (mos) { 6801 unallocated_encoding(s); 6802 return; 6803 } 6804 6805 switch (type) { 6806 case 0: 6807 if (!fp_access_check(s)) { 6808 return; 6809 } 6810 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6811 break; 6812 case 1: 6813 if (!fp_access_check(s)) { 6814 return; 6815 } 6816 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6817 break; 6818 case 3: 6819 if (!dc_isar_feature(aa64_fp16, s)) { 6820 unallocated_encoding(s); 6821 return; 6822 } 6823 if (!fp_access_check(s)) { 6824 return; 6825 } 6826 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6827 break; 6828 default: 6829 unallocated_encoding(s); 6830 } 6831 } 6832 6833 /* Floating point immediate 6834 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6835 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6836 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6837 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6838 */ 6839 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6840 { 6841 int rd = extract32(insn, 0, 5); 6842 int imm5 = extract32(insn, 5, 5); 6843 int imm8 = extract32(insn, 13, 8); 6844 int type = extract32(insn, 22, 2); 6845 int mos = extract32(insn, 29, 3); 6846 uint64_t imm; 6847 MemOp sz; 6848 6849 if (mos || imm5) { 6850 unallocated_encoding(s); 6851 return; 6852 } 6853 6854 switch (type) { 6855 case 0: 6856 sz = MO_32; 6857 break; 6858 case 1: 6859 sz = MO_64; 6860 break; 6861 case 3: 6862 sz = MO_16; 6863 if (dc_isar_feature(aa64_fp16, s)) { 6864 break; 6865 } 6866 /* fallthru */ 6867 default: 6868 unallocated_encoding(s); 6869 return; 6870 } 6871 6872 if (!fp_access_check(s)) { 6873 return; 6874 } 6875 6876 imm = vfp_expand_imm(sz, imm8); 6877 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6878 } 6879 6880 /* Handle floating point <=> fixed point conversions. Note that we can 6881 * also deal with fp <=> integer conversions as a special case (scale == 64) 6882 * OPTME: consider handling that special case specially or at least skipping 6883 * the call to scalbn in the helpers for zero shifts. 6884 */ 6885 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6886 bool itof, int rmode, int scale, int sf, int type) 6887 { 6888 bool is_signed = !(opcode & 1); 6889 TCGv_ptr tcg_fpstatus; 6890 TCGv_i32 tcg_shift, tcg_single; 6891 TCGv_i64 tcg_double; 6892 6893 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6894 6895 tcg_shift = tcg_constant_i32(64 - scale); 6896 6897 if (itof) { 6898 TCGv_i64 tcg_int = cpu_reg(s, rn); 6899 if (!sf) { 6900 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6901 6902 if (is_signed) { 6903 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6904 } else { 6905 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6906 } 6907 6908 tcg_int = tcg_extend; 6909 } 6910 6911 switch (type) { 6912 case 1: /* float64 */ 6913 tcg_double = tcg_temp_new_i64(); 6914 if (is_signed) { 6915 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6916 tcg_shift, tcg_fpstatus); 6917 } else { 6918 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6919 tcg_shift, tcg_fpstatus); 6920 } 6921 write_fp_dreg(s, rd, tcg_double); 6922 break; 6923 6924 case 0: /* float32 */ 6925 tcg_single = tcg_temp_new_i32(); 6926 if (is_signed) { 6927 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6928 tcg_shift, tcg_fpstatus); 6929 } else { 6930 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6931 tcg_shift, tcg_fpstatus); 6932 } 6933 write_fp_sreg(s, rd, tcg_single); 6934 break; 6935 6936 case 3: /* float16 */ 6937 tcg_single = tcg_temp_new_i32(); 6938 if (is_signed) { 6939 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6940 tcg_shift, tcg_fpstatus); 6941 } else { 6942 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6943 tcg_shift, tcg_fpstatus); 6944 } 6945 write_fp_sreg(s, rd, tcg_single); 6946 break; 6947 6948 default: 6949 g_assert_not_reached(); 6950 } 6951 } else { 6952 TCGv_i64 tcg_int = cpu_reg(s, rd); 6953 TCGv_i32 tcg_rmode; 6954 6955 if (extract32(opcode, 2, 1)) { 6956 /* There are too many rounding modes to all fit into rmode, 6957 * so FCVTA[US] is a special case. 6958 */ 6959 rmode = FPROUNDING_TIEAWAY; 6960 } 6961 6962 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6963 6964 switch (type) { 6965 case 1: /* float64 */ 6966 tcg_double = read_fp_dreg(s, rn); 6967 if (is_signed) { 6968 if (!sf) { 6969 gen_helper_vfp_tosld(tcg_int, tcg_double, 6970 tcg_shift, tcg_fpstatus); 6971 } else { 6972 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6973 tcg_shift, tcg_fpstatus); 6974 } 6975 } else { 6976 if (!sf) { 6977 gen_helper_vfp_tould(tcg_int, tcg_double, 6978 tcg_shift, tcg_fpstatus); 6979 } else { 6980 gen_helper_vfp_touqd(tcg_int, tcg_double, 6981 tcg_shift, tcg_fpstatus); 6982 } 6983 } 6984 if (!sf) { 6985 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6986 } 6987 break; 6988 6989 case 0: /* float32 */ 6990 tcg_single = read_fp_sreg(s, rn); 6991 if (sf) { 6992 if (is_signed) { 6993 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6994 tcg_shift, tcg_fpstatus); 6995 } else { 6996 gen_helper_vfp_touqs(tcg_int, tcg_single, 6997 tcg_shift, tcg_fpstatus); 6998 } 6999 } else { 7000 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7001 if (is_signed) { 7002 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7003 tcg_shift, tcg_fpstatus); 7004 } else { 7005 gen_helper_vfp_touls(tcg_dest, tcg_single, 7006 tcg_shift, tcg_fpstatus); 7007 } 7008 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7009 } 7010 break; 7011 7012 case 3: /* float16 */ 7013 tcg_single = read_fp_sreg(s, rn); 7014 if (sf) { 7015 if (is_signed) { 7016 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7017 tcg_shift, tcg_fpstatus); 7018 } else { 7019 gen_helper_vfp_touqh(tcg_int, tcg_single, 7020 tcg_shift, tcg_fpstatus); 7021 } 7022 } else { 7023 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7024 if (is_signed) { 7025 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7026 tcg_shift, tcg_fpstatus); 7027 } else { 7028 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7029 tcg_shift, tcg_fpstatus); 7030 } 7031 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7032 } 7033 break; 7034 7035 default: 7036 g_assert_not_reached(); 7037 } 7038 7039 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7040 } 7041 } 7042 7043 /* Floating point <-> fixed point conversions 7044 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7045 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7046 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7047 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7048 */ 7049 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7050 { 7051 int rd = extract32(insn, 0, 5); 7052 int rn = extract32(insn, 5, 5); 7053 int scale = extract32(insn, 10, 6); 7054 int opcode = extract32(insn, 16, 3); 7055 int rmode = extract32(insn, 19, 2); 7056 int type = extract32(insn, 22, 2); 7057 bool sbit = extract32(insn, 29, 1); 7058 bool sf = extract32(insn, 31, 1); 7059 bool itof; 7060 7061 if (sbit || (!sf && scale < 32)) { 7062 unallocated_encoding(s); 7063 return; 7064 } 7065 7066 switch (type) { 7067 case 0: /* float32 */ 7068 case 1: /* float64 */ 7069 break; 7070 case 3: /* float16 */ 7071 if (dc_isar_feature(aa64_fp16, s)) { 7072 break; 7073 } 7074 /* fallthru */ 7075 default: 7076 unallocated_encoding(s); 7077 return; 7078 } 7079 7080 switch ((rmode << 3) | opcode) { 7081 case 0x2: /* SCVTF */ 7082 case 0x3: /* UCVTF */ 7083 itof = true; 7084 break; 7085 case 0x18: /* FCVTZS */ 7086 case 0x19: /* FCVTZU */ 7087 itof = false; 7088 break; 7089 default: 7090 unallocated_encoding(s); 7091 return; 7092 } 7093 7094 if (!fp_access_check(s)) { 7095 return; 7096 } 7097 7098 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7099 } 7100 7101 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7102 { 7103 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7104 * without conversion. 7105 */ 7106 7107 if (itof) { 7108 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7109 TCGv_i64 tmp; 7110 7111 switch (type) { 7112 case 0: 7113 /* 32 bit */ 7114 tmp = tcg_temp_new_i64(); 7115 tcg_gen_ext32u_i64(tmp, tcg_rn); 7116 write_fp_dreg(s, rd, tmp); 7117 break; 7118 case 1: 7119 /* 64 bit */ 7120 write_fp_dreg(s, rd, tcg_rn); 7121 break; 7122 case 2: 7123 /* 64 bit to top half. */ 7124 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7125 clear_vec_high(s, true, rd); 7126 break; 7127 case 3: 7128 /* 16 bit */ 7129 tmp = tcg_temp_new_i64(); 7130 tcg_gen_ext16u_i64(tmp, tcg_rn); 7131 write_fp_dreg(s, rd, tmp); 7132 break; 7133 default: 7134 g_assert_not_reached(); 7135 } 7136 } else { 7137 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7138 7139 switch (type) { 7140 case 0: 7141 /* 32 bit */ 7142 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7143 break; 7144 case 1: 7145 /* 64 bit */ 7146 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7147 break; 7148 case 2: 7149 /* 64 bits from top half */ 7150 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7151 break; 7152 case 3: 7153 /* 16 bit */ 7154 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7155 break; 7156 default: 7157 g_assert_not_reached(); 7158 } 7159 } 7160 } 7161 7162 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7163 { 7164 TCGv_i64 t = read_fp_dreg(s, rn); 7165 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7166 7167 gen_helper_fjcvtzs(t, t, fpstatus); 7168 7169 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7170 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7171 tcg_gen_movi_i32(cpu_CF, 0); 7172 tcg_gen_movi_i32(cpu_NF, 0); 7173 tcg_gen_movi_i32(cpu_VF, 0); 7174 } 7175 7176 /* Floating point <-> integer conversions 7177 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7178 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7179 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7180 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7181 */ 7182 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7183 { 7184 int rd = extract32(insn, 0, 5); 7185 int rn = extract32(insn, 5, 5); 7186 int opcode = extract32(insn, 16, 3); 7187 int rmode = extract32(insn, 19, 2); 7188 int type = extract32(insn, 22, 2); 7189 bool sbit = extract32(insn, 29, 1); 7190 bool sf = extract32(insn, 31, 1); 7191 bool itof = false; 7192 7193 if (sbit) { 7194 goto do_unallocated; 7195 } 7196 7197 switch (opcode) { 7198 case 2: /* SCVTF */ 7199 case 3: /* UCVTF */ 7200 itof = true; 7201 /* fallthru */ 7202 case 4: /* FCVTAS */ 7203 case 5: /* FCVTAU */ 7204 if (rmode != 0) { 7205 goto do_unallocated; 7206 } 7207 /* fallthru */ 7208 case 0: /* FCVT[NPMZ]S */ 7209 case 1: /* FCVT[NPMZ]U */ 7210 switch (type) { 7211 case 0: /* float32 */ 7212 case 1: /* float64 */ 7213 break; 7214 case 3: /* float16 */ 7215 if (!dc_isar_feature(aa64_fp16, s)) { 7216 goto do_unallocated; 7217 } 7218 break; 7219 default: 7220 goto do_unallocated; 7221 } 7222 if (!fp_access_check(s)) { 7223 return; 7224 } 7225 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7226 break; 7227 7228 default: 7229 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7230 case 0b01100110: /* FMOV half <-> 32-bit int */ 7231 case 0b01100111: 7232 case 0b11100110: /* FMOV half <-> 64-bit int */ 7233 case 0b11100111: 7234 if (!dc_isar_feature(aa64_fp16, s)) { 7235 goto do_unallocated; 7236 } 7237 /* fallthru */ 7238 case 0b00000110: /* FMOV 32-bit */ 7239 case 0b00000111: 7240 case 0b10100110: /* FMOV 64-bit */ 7241 case 0b10100111: 7242 case 0b11001110: /* FMOV top half of 128-bit */ 7243 case 0b11001111: 7244 if (!fp_access_check(s)) { 7245 return; 7246 } 7247 itof = opcode & 1; 7248 handle_fmov(s, rd, rn, type, itof); 7249 break; 7250 7251 case 0b00111110: /* FJCVTZS */ 7252 if (!dc_isar_feature(aa64_jscvt, s)) { 7253 goto do_unallocated; 7254 } else if (fp_access_check(s)) { 7255 handle_fjcvtzs(s, rd, rn); 7256 } 7257 break; 7258 7259 default: 7260 do_unallocated: 7261 unallocated_encoding(s); 7262 return; 7263 } 7264 break; 7265 } 7266 } 7267 7268 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7269 * 31 30 29 28 25 24 0 7270 * +---+---+---+---------+-----------------------------+ 7271 * | | 0 | | 1 1 1 1 | | 7272 * +---+---+---+---------+-----------------------------+ 7273 */ 7274 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7275 { 7276 if (extract32(insn, 24, 1)) { 7277 /* Floating point data-processing (3 source) */ 7278 disas_fp_3src(s, insn); 7279 } else if (extract32(insn, 21, 1) == 0) { 7280 /* Floating point to fixed point conversions */ 7281 disas_fp_fixed_conv(s, insn); 7282 } else { 7283 switch (extract32(insn, 10, 2)) { 7284 case 1: 7285 /* Floating point conditional compare */ 7286 disas_fp_ccomp(s, insn); 7287 break; 7288 case 2: 7289 /* Floating point data-processing (2 source) */ 7290 disas_fp_2src(s, insn); 7291 break; 7292 case 3: 7293 /* Floating point conditional select */ 7294 disas_fp_csel(s, insn); 7295 break; 7296 case 0: 7297 switch (ctz32(extract32(insn, 12, 4))) { 7298 case 0: /* [15:12] == xxx1 */ 7299 /* Floating point immediate */ 7300 disas_fp_imm(s, insn); 7301 break; 7302 case 1: /* [15:12] == xx10 */ 7303 /* Floating point compare */ 7304 disas_fp_compare(s, insn); 7305 break; 7306 case 2: /* [15:12] == x100 */ 7307 /* Floating point data-processing (1 source) */ 7308 disas_fp_1src(s, insn); 7309 break; 7310 case 3: /* [15:12] == 1000 */ 7311 unallocated_encoding(s); 7312 break; 7313 default: /* [15:12] == 0000 */ 7314 /* Floating point <-> integer conversions */ 7315 disas_fp_int_conv(s, insn); 7316 break; 7317 } 7318 break; 7319 } 7320 } 7321 } 7322 7323 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7324 int pos) 7325 { 7326 /* Extract 64 bits from the middle of two concatenated 64 bit 7327 * vector register slices left:right. The extracted bits start 7328 * at 'pos' bits into the right (least significant) side. 7329 * We return the result in tcg_right, and guarantee not to 7330 * trash tcg_left. 7331 */ 7332 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7333 assert(pos > 0 && pos < 64); 7334 7335 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7336 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7337 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7338 } 7339 7340 /* EXT 7341 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7342 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7343 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7344 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7345 */ 7346 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7347 { 7348 int is_q = extract32(insn, 30, 1); 7349 int op2 = extract32(insn, 22, 2); 7350 int imm4 = extract32(insn, 11, 4); 7351 int rm = extract32(insn, 16, 5); 7352 int rn = extract32(insn, 5, 5); 7353 int rd = extract32(insn, 0, 5); 7354 int pos = imm4 << 3; 7355 TCGv_i64 tcg_resl, tcg_resh; 7356 7357 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7358 unallocated_encoding(s); 7359 return; 7360 } 7361 7362 if (!fp_access_check(s)) { 7363 return; 7364 } 7365 7366 tcg_resh = tcg_temp_new_i64(); 7367 tcg_resl = tcg_temp_new_i64(); 7368 7369 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7370 * either extracting 128 bits from a 128:128 concatenation, or 7371 * extracting 64 bits from a 64:64 concatenation. 7372 */ 7373 if (!is_q) { 7374 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7375 if (pos != 0) { 7376 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7377 do_ext64(s, tcg_resh, tcg_resl, pos); 7378 } 7379 } else { 7380 TCGv_i64 tcg_hh; 7381 typedef struct { 7382 int reg; 7383 int elt; 7384 } EltPosns; 7385 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7386 EltPosns *elt = eltposns; 7387 7388 if (pos >= 64) { 7389 elt++; 7390 pos -= 64; 7391 } 7392 7393 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7394 elt++; 7395 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7396 elt++; 7397 if (pos != 0) { 7398 do_ext64(s, tcg_resh, tcg_resl, pos); 7399 tcg_hh = tcg_temp_new_i64(); 7400 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7401 do_ext64(s, tcg_hh, tcg_resh, pos); 7402 } 7403 } 7404 7405 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7406 if (is_q) { 7407 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7408 } 7409 clear_vec_high(s, is_q, rd); 7410 } 7411 7412 /* TBL/TBX 7413 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7414 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7415 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7416 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7417 */ 7418 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7419 { 7420 int op2 = extract32(insn, 22, 2); 7421 int is_q = extract32(insn, 30, 1); 7422 int rm = extract32(insn, 16, 5); 7423 int rn = extract32(insn, 5, 5); 7424 int rd = extract32(insn, 0, 5); 7425 int is_tbx = extract32(insn, 12, 1); 7426 int len = (extract32(insn, 13, 2) + 1) * 16; 7427 7428 if (op2 != 0) { 7429 unallocated_encoding(s); 7430 return; 7431 } 7432 7433 if (!fp_access_check(s)) { 7434 return; 7435 } 7436 7437 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7438 vec_full_reg_offset(s, rm), cpu_env, 7439 is_q ? 16 : 8, vec_full_reg_size(s), 7440 (len << 6) | (is_tbx << 5) | rn, 7441 gen_helper_simd_tblx); 7442 } 7443 7444 /* ZIP/UZP/TRN 7445 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7446 * +---+---+-------------+------+---+------+---+------------------+------+ 7447 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7448 * +---+---+-------------+------+---+------+---+------------------+------+ 7449 */ 7450 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7451 { 7452 int rd = extract32(insn, 0, 5); 7453 int rn = extract32(insn, 5, 5); 7454 int rm = extract32(insn, 16, 5); 7455 int size = extract32(insn, 22, 2); 7456 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7457 * bit 2 indicates 1 vs 2 variant of the insn. 7458 */ 7459 int opcode = extract32(insn, 12, 2); 7460 bool part = extract32(insn, 14, 1); 7461 bool is_q = extract32(insn, 30, 1); 7462 int esize = 8 << size; 7463 int i; 7464 int datasize = is_q ? 128 : 64; 7465 int elements = datasize / esize; 7466 TCGv_i64 tcg_res[2], tcg_ele; 7467 7468 if (opcode == 0 || (size == 3 && !is_q)) { 7469 unallocated_encoding(s); 7470 return; 7471 } 7472 7473 if (!fp_access_check(s)) { 7474 return; 7475 } 7476 7477 tcg_res[0] = tcg_temp_new_i64(); 7478 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7479 tcg_ele = tcg_temp_new_i64(); 7480 7481 for (i = 0; i < elements; i++) { 7482 int o, w; 7483 7484 switch (opcode) { 7485 case 1: /* UZP1/2 */ 7486 { 7487 int midpoint = elements / 2; 7488 if (i < midpoint) { 7489 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7490 } else { 7491 read_vec_element(s, tcg_ele, rm, 7492 2 * (i - midpoint) + part, size); 7493 } 7494 break; 7495 } 7496 case 2: /* TRN1/2 */ 7497 if (i & 1) { 7498 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7499 } else { 7500 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7501 } 7502 break; 7503 case 3: /* ZIP1/2 */ 7504 { 7505 int base = part * elements / 2; 7506 if (i & 1) { 7507 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7508 } else { 7509 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7510 } 7511 break; 7512 } 7513 default: 7514 g_assert_not_reached(); 7515 } 7516 7517 w = (i * esize) / 64; 7518 o = (i * esize) % 64; 7519 if (o == 0) { 7520 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7521 } else { 7522 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7523 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7524 } 7525 } 7526 7527 for (i = 0; i <= is_q; ++i) { 7528 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7529 } 7530 clear_vec_high(s, is_q, rd); 7531 } 7532 7533 /* 7534 * do_reduction_op helper 7535 * 7536 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7537 * important for correct NaN propagation that we do these 7538 * operations in exactly the order specified by the pseudocode. 7539 * 7540 * This is a recursive function, TCG temps should be freed by the 7541 * calling function once it is done with the values. 7542 */ 7543 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7544 int esize, int size, int vmap, TCGv_ptr fpst) 7545 { 7546 if (esize == size) { 7547 int element; 7548 MemOp msize = esize == 16 ? MO_16 : MO_32; 7549 TCGv_i32 tcg_elem; 7550 7551 /* We should have one register left here */ 7552 assert(ctpop8(vmap) == 1); 7553 element = ctz32(vmap); 7554 assert(element < 8); 7555 7556 tcg_elem = tcg_temp_new_i32(); 7557 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7558 return tcg_elem; 7559 } else { 7560 int bits = size / 2; 7561 int shift = ctpop8(vmap) / 2; 7562 int vmap_lo = (vmap >> shift) & vmap; 7563 int vmap_hi = (vmap & ~vmap_lo); 7564 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7565 7566 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7567 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7568 tcg_res = tcg_temp_new_i32(); 7569 7570 switch (fpopcode) { 7571 case 0x0c: /* fmaxnmv half-precision */ 7572 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7573 break; 7574 case 0x0f: /* fmaxv half-precision */ 7575 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7576 break; 7577 case 0x1c: /* fminnmv half-precision */ 7578 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7579 break; 7580 case 0x1f: /* fminv half-precision */ 7581 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7582 break; 7583 case 0x2c: /* fmaxnmv */ 7584 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7585 break; 7586 case 0x2f: /* fmaxv */ 7587 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7588 break; 7589 case 0x3c: /* fminnmv */ 7590 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7591 break; 7592 case 0x3f: /* fminv */ 7593 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7594 break; 7595 default: 7596 g_assert_not_reached(); 7597 } 7598 return tcg_res; 7599 } 7600 } 7601 7602 /* AdvSIMD across lanes 7603 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7604 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7605 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7606 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7607 */ 7608 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7609 { 7610 int rd = extract32(insn, 0, 5); 7611 int rn = extract32(insn, 5, 5); 7612 int size = extract32(insn, 22, 2); 7613 int opcode = extract32(insn, 12, 5); 7614 bool is_q = extract32(insn, 30, 1); 7615 bool is_u = extract32(insn, 29, 1); 7616 bool is_fp = false; 7617 bool is_min = false; 7618 int esize; 7619 int elements; 7620 int i; 7621 TCGv_i64 tcg_res, tcg_elt; 7622 7623 switch (opcode) { 7624 case 0x1b: /* ADDV */ 7625 if (is_u) { 7626 unallocated_encoding(s); 7627 return; 7628 } 7629 /* fall through */ 7630 case 0x3: /* SADDLV, UADDLV */ 7631 case 0xa: /* SMAXV, UMAXV */ 7632 case 0x1a: /* SMINV, UMINV */ 7633 if (size == 3 || (size == 2 && !is_q)) { 7634 unallocated_encoding(s); 7635 return; 7636 } 7637 break; 7638 case 0xc: /* FMAXNMV, FMINNMV */ 7639 case 0xf: /* FMAXV, FMINV */ 7640 /* Bit 1 of size field encodes min vs max and the actual size 7641 * depends on the encoding of the U bit. If not set (and FP16 7642 * enabled) then we do half-precision float instead of single 7643 * precision. 7644 */ 7645 is_min = extract32(size, 1, 1); 7646 is_fp = true; 7647 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7648 size = 1; 7649 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7650 unallocated_encoding(s); 7651 return; 7652 } else { 7653 size = 2; 7654 } 7655 break; 7656 default: 7657 unallocated_encoding(s); 7658 return; 7659 } 7660 7661 if (!fp_access_check(s)) { 7662 return; 7663 } 7664 7665 esize = 8 << size; 7666 elements = (is_q ? 128 : 64) / esize; 7667 7668 tcg_res = tcg_temp_new_i64(); 7669 tcg_elt = tcg_temp_new_i64(); 7670 7671 /* These instructions operate across all lanes of a vector 7672 * to produce a single result. We can guarantee that a 64 7673 * bit intermediate is sufficient: 7674 * + for [US]ADDLV the maximum element size is 32 bits, and 7675 * the result type is 64 bits 7676 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7677 * same as the element size, which is 32 bits at most 7678 * For the integer operations we can choose to work at 64 7679 * or 32 bits and truncate at the end; for simplicity 7680 * we use 64 bits always. The floating point 7681 * ops do require 32 bit intermediates, though. 7682 */ 7683 if (!is_fp) { 7684 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7685 7686 for (i = 1; i < elements; i++) { 7687 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7688 7689 switch (opcode) { 7690 case 0x03: /* SADDLV / UADDLV */ 7691 case 0x1b: /* ADDV */ 7692 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7693 break; 7694 case 0x0a: /* SMAXV / UMAXV */ 7695 if (is_u) { 7696 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7697 } else { 7698 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7699 } 7700 break; 7701 case 0x1a: /* SMINV / UMINV */ 7702 if (is_u) { 7703 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7704 } else { 7705 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7706 } 7707 break; 7708 default: 7709 g_assert_not_reached(); 7710 } 7711 7712 } 7713 } else { 7714 /* Floating point vector reduction ops which work across 32 7715 * bit (single) or 16 bit (half-precision) intermediates. 7716 * Note that correct NaN propagation requires that we do these 7717 * operations in exactly the order specified by the pseudocode. 7718 */ 7719 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7720 int fpopcode = opcode | is_min << 4 | is_u << 5; 7721 int vmap = (1 << elements) - 1; 7722 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7723 (is_q ? 128 : 64), vmap, fpst); 7724 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7725 } 7726 7727 /* Now truncate the result to the width required for the final output */ 7728 if (opcode == 0x03) { 7729 /* SADDLV, UADDLV: result is 2*esize */ 7730 size++; 7731 } 7732 7733 switch (size) { 7734 case 0: 7735 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7736 break; 7737 case 1: 7738 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7739 break; 7740 case 2: 7741 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7742 break; 7743 case 3: 7744 break; 7745 default: 7746 g_assert_not_reached(); 7747 } 7748 7749 write_fp_dreg(s, rd, tcg_res); 7750 } 7751 7752 /* DUP (Element, Vector) 7753 * 7754 * 31 30 29 21 20 16 15 10 9 5 4 0 7755 * +---+---+-------------------+--------+-------------+------+------+ 7756 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7757 * +---+---+-------------------+--------+-------------+------+------+ 7758 * 7759 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7760 */ 7761 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7762 int imm5) 7763 { 7764 int size = ctz32(imm5); 7765 int index; 7766 7767 if (size > 3 || (size == 3 && !is_q)) { 7768 unallocated_encoding(s); 7769 return; 7770 } 7771 7772 if (!fp_access_check(s)) { 7773 return; 7774 } 7775 7776 index = imm5 >> (size + 1); 7777 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7778 vec_reg_offset(s, rn, index, size), 7779 is_q ? 16 : 8, vec_full_reg_size(s)); 7780 } 7781 7782 /* DUP (element, scalar) 7783 * 31 21 20 16 15 10 9 5 4 0 7784 * +-----------------------+--------+-------------+------+------+ 7785 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7786 * +-----------------------+--------+-------------+------+------+ 7787 */ 7788 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7789 int imm5) 7790 { 7791 int size = ctz32(imm5); 7792 int index; 7793 TCGv_i64 tmp; 7794 7795 if (size > 3) { 7796 unallocated_encoding(s); 7797 return; 7798 } 7799 7800 if (!fp_access_check(s)) { 7801 return; 7802 } 7803 7804 index = imm5 >> (size + 1); 7805 7806 /* This instruction just extracts the specified element and 7807 * zero-extends it into the bottom of the destination register. 7808 */ 7809 tmp = tcg_temp_new_i64(); 7810 read_vec_element(s, tmp, rn, index, size); 7811 write_fp_dreg(s, rd, tmp); 7812 } 7813 7814 /* DUP (General) 7815 * 7816 * 31 30 29 21 20 16 15 10 9 5 4 0 7817 * +---+---+-------------------+--------+-------------+------+------+ 7818 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7819 * +---+---+-------------------+--------+-------------+------+------+ 7820 * 7821 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7822 */ 7823 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7824 int imm5) 7825 { 7826 int size = ctz32(imm5); 7827 uint32_t dofs, oprsz, maxsz; 7828 7829 if (size > 3 || ((size == 3) && !is_q)) { 7830 unallocated_encoding(s); 7831 return; 7832 } 7833 7834 if (!fp_access_check(s)) { 7835 return; 7836 } 7837 7838 dofs = vec_full_reg_offset(s, rd); 7839 oprsz = is_q ? 16 : 8; 7840 maxsz = vec_full_reg_size(s); 7841 7842 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7843 } 7844 7845 /* INS (Element) 7846 * 7847 * 31 21 20 16 15 14 11 10 9 5 4 0 7848 * +-----------------------+--------+------------+---+------+------+ 7849 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7850 * +-----------------------+--------+------------+---+------+------+ 7851 * 7852 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7853 * index: encoded in imm5<4:size+1> 7854 */ 7855 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7856 int imm4, int imm5) 7857 { 7858 int size = ctz32(imm5); 7859 int src_index, dst_index; 7860 TCGv_i64 tmp; 7861 7862 if (size > 3) { 7863 unallocated_encoding(s); 7864 return; 7865 } 7866 7867 if (!fp_access_check(s)) { 7868 return; 7869 } 7870 7871 dst_index = extract32(imm5, 1+size, 5); 7872 src_index = extract32(imm4, size, 4); 7873 7874 tmp = tcg_temp_new_i64(); 7875 7876 read_vec_element(s, tmp, rn, src_index, size); 7877 write_vec_element(s, tmp, rd, dst_index, size); 7878 7879 /* INS is considered a 128-bit write for SVE. */ 7880 clear_vec_high(s, true, rd); 7881 } 7882 7883 7884 /* INS (General) 7885 * 7886 * 31 21 20 16 15 10 9 5 4 0 7887 * +-----------------------+--------+-------------+------+------+ 7888 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7889 * +-----------------------+--------+-------------+------+------+ 7890 * 7891 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7892 * index: encoded in imm5<4:size+1> 7893 */ 7894 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7895 { 7896 int size = ctz32(imm5); 7897 int idx; 7898 7899 if (size > 3) { 7900 unallocated_encoding(s); 7901 return; 7902 } 7903 7904 if (!fp_access_check(s)) { 7905 return; 7906 } 7907 7908 idx = extract32(imm5, 1 + size, 4 - size); 7909 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7910 7911 /* INS is considered a 128-bit write for SVE. */ 7912 clear_vec_high(s, true, rd); 7913 } 7914 7915 /* 7916 * UMOV (General) 7917 * SMOV (General) 7918 * 7919 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7920 * +---+---+-------------------+--------+-------------+------+------+ 7921 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7922 * +---+---+-------------------+--------+-------------+------+------+ 7923 * 7924 * U: unsigned when set 7925 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7926 */ 7927 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7928 int rn, int rd, int imm5) 7929 { 7930 int size = ctz32(imm5); 7931 int element; 7932 TCGv_i64 tcg_rd; 7933 7934 /* Check for UnallocatedEncodings */ 7935 if (is_signed) { 7936 if (size > 2 || (size == 2 && !is_q)) { 7937 unallocated_encoding(s); 7938 return; 7939 } 7940 } else { 7941 if (size > 3 7942 || (size < 3 && is_q) 7943 || (size == 3 && !is_q)) { 7944 unallocated_encoding(s); 7945 return; 7946 } 7947 } 7948 7949 if (!fp_access_check(s)) { 7950 return; 7951 } 7952 7953 element = extract32(imm5, 1+size, 4); 7954 7955 tcg_rd = cpu_reg(s, rd); 7956 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7957 if (is_signed && !is_q) { 7958 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7959 } 7960 } 7961 7962 /* AdvSIMD copy 7963 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7964 * +---+---+----+-----------------+------+---+------+---+------+------+ 7965 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7966 * +---+---+----+-----------------+------+---+------+---+------+------+ 7967 */ 7968 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7969 { 7970 int rd = extract32(insn, 0, 5); 7971 int rn = extract32(insn, 5, 5); 7972 int imm4 = extract32(insn, 11, 4); 7973 int op = extract32(insn, 29, 1); 7974 int is_q = extract32(insn, 30, 1); 7975 int imm5 = extract32(insn, 16, 5); 7976 7977 if (op) { 7978 if (is_q) { 7979 /* INS (element) */ 7980 handle_simd_inse(s, rd, rn, imm4, imm5); 7981 } else { 7982 unallocated_encoding(s); 7983 } 7984 } else { 7985 switch (imm4) { 7986 case 0: 7987 /* DUP (element - vector) */ 7988 handle_simd_dupe(s, is_q, rd, rn, imm5); 7989 break; 7990 case 1: 7991 /* DUP (general) */ 7992 handle_simd_dupg(s, is_q, rd, rn, imm5); 7993 break; 7994 case 3: 7995 if (is_q) { 7996 /* INS (general) */ 7997 handle_simd_insg(s, rd, rn, imm5); 7998 } else { 7999 unallocated_encoding(s); 8000 } 8001 break; 8002 case 5: 8003 case 7: 8004 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 8005 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 8006 break; 8007 default: 8008 unallocated_encoding(s); 8009 break; 8010 } 8011 } 8012 } 8013 8014 /* AdvSIMD modified immediate 8015 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8016 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8017 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8018 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8019 * 8020 * There are a number of operations that can be carried out here: 8021 * MOVI - move (shifted) imm into register 8022 * MVNI - move inverted (shifted) imm into register 8023 * ORR - bitwise OR of (shifted) imm with register 8024 * BIC - bitwise clear of (shifted) imm with register 8025 * With ARMv8.2 we also have: 8026 * FMOV half-precision 8027 */ 8028 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8029 { 8030 int rd = extract32(insn, 0, 5); 8031 int cmode = extract32(insn, 12, 4); 8032 int o2 = extract32(insn, 11, 1); 8033 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8034 bool is_neg = extract32(insn, 29, 1); 8035 bool is_q = extract32(insn, 30, 1); 8036 uint64_t imm = 0; 8037 8038 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8039 /* Check for FMOV (vector, immediate) - half-precision */ 8040 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8041 unallocated_encoding(s); 8042 return; 8043 } 8044 } 8045 8046 if (!fp_access_check(s)) { 8047 return; 8048 } 8049 8050 if (cmode == 15 && o2 && !is_neg) { 8051 /* FMOV (vector, immediate) - half-precision */ 8052 imm = vfp_expand_imm(MO_16, abcdefgh); 8053 /* now duplicate across the lanes */ 8054 imm = dup_const(MO_16, imm); 8055 } else { 8056 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8057 } 8058 8059 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8060 /* MOVI or MVNI, with MVNI negation handled above. */ 8061 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8062 vec_full_reg_size(s), imm); 8063 } else { 8064 /* ORR or BIC, with BIC negation to AND handled above. */ 8065 if (is_neg) { 8066 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8067 } else { 8068 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8069 } 8070 } 8071 } 8072 8073 /* AdvSIMD scalar copy 8074 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8075 * +-----+----+-----------------+------+---+------+---+------+------+ 8076 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8077 * +-----+----+-----------------+------+---+------+---+------+------+ 8078 */ 8079 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8080 { 8081 int rd = extract32(insn, 0, 5); 8082 int rn = extract32(insn, 5, 5); 8083 int imm4 = extract32(insn, 11, 4); 8084 int imm5 = extract32(insn, 16, 5); 8085 int op = extract32(insn, 29, 1); 8086 8087 if (op != 0 || imm4 != 0) { 8088 unallocated_encoding(s); 8089 return; 8090 } 8091 8092 /* DUP (element, scalar) */ 8093 handle_simd_dupes(s, rd, rn, imm5); 8094 } 8095 8096 /* AdvSIMD scalar pairwise 8097 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8098 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8099 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8100 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8101 */ 8102 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8103 { 8104 int u = extract32(insn, 29, 1); 8105 int size = extract32(insn, 22, 2); 8106 int opcode = extract32(insn, 12, 5); 8107 int rn = extract32(insn, 5, 5); 8108 int rd = extract32(insn, 0, 5); 8109 TCGv_ptr fpst; 8110 8111 /* For some ops (the FP ones), size[1] is part of the encoding. 8112 * For ADDP strictly it is not but size[1] is always 1 for valid 8113 * encodings. 8114 */ 8115 opcode |= (extract32(size, 1, 1) << 5); 8116 8117 switch (opcode) { 8118 case 0x3b: /* ADDP */ 8119 if (u || size != 3) { 8120 unallocated_encoding(s); 8121 return; 8122 } 8123 if (!fp_access_check(s)) { 8124 return; 8125 } 8126 8127 fpst = NULL; 8128 break; 8129 case 0xc: /* FMAXNMP */ 8130 case 0xd: /* FADDP */ 8131 case 0xf: /* FMAXP */ 8132 case 0x2c: /* FMINNMP */ 8133 case 0x2f: /* FMINP */ 8134 /* FP op, size[0] is 32 or 64 bit*/ 8135 if (!u) { 8136 if (!dc_isar_feature(aa64_fp16, s)) { 8137 unallocated_encoding(s); 8138 return; 8139 } else { 8140 size = MO_16; 8141 } 8142 } else { 8143 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8144 } 8145 8146 if (!fp_access_check(s)) { 8147 return; 8148 } 8149 8150 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8151 break; 8152 default: 8153 unallocated_encoding(s); 8154 return; 8155 } 8156 8157 if (size == MO_64) { 8158 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8159 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8160 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8161 8162 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8163 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8164 8165 switch (opcode) { 8166 case 0x3b: /* ADDP */ 8167 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8168 break; 8169 case 0xc: /* FMAXNMP */ 8170 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8171 break; 8172 case 0xd: /* FADDP */ 8173 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8174 break; 8175 case 0xf: /* FMAXP */ 8176 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8177 break; 8178 case 0x2c: /* FMINNMP */ 8179 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8180 break; 8181 case 0x2f: /* FMINP */ 8182 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8183 break; 8184 default: 8185 g_assert_not_reached(); 8186 } 8187 8188 write_fp_dreg(s, rd, tcg_res); 8189 } else { 8190 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8191 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8192 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8193 8194 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8195 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8196 8197 if (size == MO_16) { 8198 switch (opcode) { 8199 case 0xc: /* FMAXNMP */ 8200 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8201 break; 8202 case 0xd: /* FADDP */ 8203 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8204 break; 8205 case 0xf: /* FMAXP */ 8206 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8207 break; 8208 case 0x2c: /* FMINNMP */ 8209 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8210 break; 8211 case 0x2f: /* FMINP */ 8212 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8213 break; 8214 default: 8215 g_assert_not_reached(); 8216 } 8217 } else { 8218 switch (opcode) { 8219 case 0xc: /* FMAXNMP */ 8220 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8221 break; 8222 case 0xd: /* FADDP */ 8223 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8224 break; 8225 case 0xf: /* FMAXP */ 8226 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8227 break; 8228 case 0x2c: /* FMINNMP */ 8229 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8230 break; 8231 case 0x2f: /* FMINP */ 8232 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8233 break; 8234 default: 8235 g_assert_not_reached(); 8236 } 8237 } 8238 8239 write_fp_sreg(s, rd, tcg_res); 8240 } 8241 } 8242 8243 /* 8244 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8245 * 8246 * This code is handles the common shifting code and is used by both 8247 * the vector and scalar code. 8248 */ 8249 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8250 TCGv_i64 tcg_rnd, bool accumulate, 8251 bool is_u, int size, int shift) 8252 { 8253 bool extended_result = false; 8254 bool round = tcg_rnd != NULL; 8255 int ext_lshift = 0; 8256 TCGv_i64 tcg_src_hi; 8257 8258 if (round && size == 3) { 8259 extended_result = true; 8260 ext_lshift = 64 - shift; 8261 tcg_src_hi = tcg_temp_new_i64(); 8262 } else if (shift == 64) { 8263 if (!accumulate && is_u) { 8264 /* result is zero */ 8265 tcg_gen_movi_i64(tcg_res, 0); 8266 return; 8267 } 8268 } 8269 8270 /* Deal with the rounding step */ 8271 if (round) { 8272 if (extended_result) { 8273 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8274 if (!is_u) { 8275 /* take care of sign extending tcg_res */ 8276 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8277 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8278 tcg_src, tcg_src_hi, 8279 tcg_rnd, tcg_zero); 8280 } else { 8281 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8282 tcg_src, tcg_zero, 8283 tcg_rnd, tcg_zero); 8284 } 8285 } else { 8286 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8287 } 8288 } 8289 8290 /* Now do the shift right */ 8291 if (round && extended_result) { 8292 /* extended case, >64 bit precision required */ 8293 if (ext_lshift == 0) { 8294 /* special case, only high bits matter */ 8295 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8296 } else { 8297 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8298 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8299 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8300 } 8301 } else { 8302 if (is_u) { 8303 if (shift == 64) { 8304 /* essentially shifting in 64 zeros */ 8305 tcg_gen_movi_i64(tcg_src, 0); 8306 } else { 8307 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8308 } 8309 } else { 8310 if (shift == 64) { 8311 /* effectively extending the sign-bit */ 8312 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8313 } else { 8314 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8315 } 8316 } 8317 } 8318 8319 if (accumulate) { 8320 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8321 } else { 8322 tcg_gen_mov_i64(tcg_res, tcg_src); 8323 } 8324 } 8325 8326 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8327 static void handle_scalar_simd_shri(DisasContext *s, 8328 bool is_u, int immh, int immb, 8329 int opcode, int rn, int rd) 8330 { 8331 const int size = 3; 8332 int immhb = immh << 3 | immb; 8333 int shift = 2 * (8 << size) - immhb; 8334 bool accumulate = false; 8335 bool round = false; 8336 bool insert = false; 8337 TCGv_i64 tcg_rn; 8338 TCGv_i64 tcg_rd; 8339 TCGv_i64 tcg_round; 8340 8341 if (!extract32(immh, 3, 1)) { 8342 unallocated_encoding(s); 8343 return; 8344 } 8345 8346 if (!fp_access_check(s)) { 8347 return; 8348 } 8349 8350 switch (opcode) { 8351 case 0x02: /* SSRA / USRA (accumulate) */ 8352 accumulate = true; 8353 break; 8354 case 0x04: /* SRSHR / URSHR (rounding) */ 8355 round = true; 8356 break; 8357 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8358 accumulate = round = true; 8359 break; 8360 case 0x08: /* SRI */ 8361 insert = true; 8362 break; 8363 } 8364 8365 if (round) { 8366 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8367 } else { 8368 tcg_round = NULL; 8369 } 8370 8371 tcg_rn = read_fp_dreg(s, rn); 8372 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8373 8374 if (insert) { 8375 /* shift count same as element size is valid but does nothing; 8376 * special case to avoid potential shift by 64. 8377 */ 8378 int esize = 8 << size; 8379 if (shift != esize) { 8380 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8381 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8382 } 8383 } else { 8384 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8385 accumulate, is_u, size, shift); 8386 } 8387 8388 write_fp_dreg(s, rd, tcg_rd); 8389 } 8390 8391 /* SHL/SLI - Scalar shift left */ 8392 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8393 int immh, int immb, int opcode, 8394 int rn, int rd) 8395 { 8396 int size = 32 - clz32(immh) - 1; 8397 int immhb = immh << 3 | immb; 8398 int shift = immhb - (8 << size); 8399 TCGv_i64 tcg_rn; 8400 TCGv_i64 tcg_rd; 8401 8402 if (!extract32(immh, 3, 1)) { 8403 unallocated_encoding(s); 8404 return; 8405 } 8406 8407 if (!fp_access_check(s)) { 8408 return; 8409 } 8410 8411 tcg_rn = read_fp_dreg(s, rn); 8412 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8413 8414 if (insert) { 8415 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8416 } else { 8417 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8418 } 8419 8420 write_fp_dreg(s, rd, tcg_rd); 8421 } 8422 8423 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8424 * (signed/unsigned) narrowing */ 8425 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8426 bool is_u_shift, bool is_u_narrow, 8427 int immh, int immb, int opcode, 8428 int rn, int rd) 8429 { 8430 int immhb = immh << 3 | immb; 8431 int size = 32 - clz32(immh) - 1; 8432 int esize = 8 << size; 8433 int shift = (2 * esize) - immhb; 8434 int elements = is_scalar ? 1 : (64 / esize); 8435 bool round = extract32(opcode, 0, 1); 8436 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8437 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8438 TCGv_i32 tcg_rd_narrowed; 8439 TCGv_i64 tcg_final; 8440 8441 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8442 { gen_helper_neon_narrow_sat_s8, 8443 gen_helper_neon_unarrow_sat8 }, 8444 { gen_helper_neon_narrow_sat_s16, 8445 gen_helper_neon_unarrow_sat16 }, 8446 { gen_helper_neon_narrow_sat_s32, 8447 gen_helper_neon_unarrow_sat32 }, 8448 { NULL, NULL }, 8449 }; 8450 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8451 gen_helper_neon_narrow_sat_u8, 8452 gen_helper_neon_narrow_sat_u16, 8453 gen_helper_neon_narrow_sat_u32, 8454 NULL 8455 }; 8456 NeonGenNarrowEnvFn *narrowfn; 8457 8458 int i; 8459 8460 assert(size < 4); 8461 8462 if (extract32(immh, 3, 1)) { 8463 unallocated_encoding(s); 8464 return; 8465 } 8466 8467 if (!fp_access_check(s)) { 8468 return; 8469 } 8470 8471 if (is_u_shift) { 8472 narrowfn = unsigned_narrow_fns[size]; 8473 } else { 8474 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8475 } 8476 8477 tcg_rn = tcg_temp_new_i64(); 8478 tcg_rd = tcg_temp_new_i64(); 8479 tcg_rd_narrowed = tcg_temp_new_i32(); 8480 tcg_final = tcg_temp_new_i64(); 8481 8482 if (round) { 8483 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8484 } else { 8485 tcg_round = NULL; 8486 } 8487 8488 for (i = 0; i < elements; i++) { 8489 read_vec_element(s, tcg_rn, rn, i, ldop); 8490 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8491 false, is_u_shift, size+1, shift); 8492 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8493 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8494 if (i == 0) { 8495 tcg_gen_mov_i64(tcg_final, tcg_rd); 8496 } else { 8497 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8498 } 8499 } 8500 8501 if (!is_q) { 8502 write_vec_element(s, tcg_final, rd, 0, MO_64); 8503 } else { 8504 write_vec_element(s, tcg_final, rd, 1, MO_64); 8505 } 8506 clear_vec_high(s, is_q, rd); 8507 } 8508 8509 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8510 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8511 bool src_unsigned, bool dst_unsigned, 8512 int immh, int immb, int rn, int rd) 8513 { 8514 int immhb = immh << 3 | immb; 8515 int size = 32 - clz32(immh) - 1; 8516 int shift = immhb - (8 << size); 8517 int pass; 8518 8519 assert(immh != 0); 8520 assert(!(scalar && is_q)); 8521 8522 if (!scalar) { 8523 if (!is_q && extract32(immh, 3, 1)) { 8524 unallocated_encoding(s); 8525 return; 8526 } 8527 8528 /* Since we use the variable-shift helpers we must 8529 * replicate the shift count into each element of 8530 * the tcg_shift value. 8531 */ 8532 switch (size) { 8533 case 0: 8534 shift |= shift << 8; 8535 /* fall through */ 8536 case 1: 8537 shift |= shift << 16; 8538 break; 8539 case 2: 8540 case 3: 8541 break; 8542 default: 8543 g_assert_not_reached(); 8544 } 8545 } 8546 8547 if (!fp_access_check(s)) { 8548 return; 8549 } 8550 8551 if (size == 3) { 8552 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8553 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8554 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8555 { NULL, gen_helper_neon_qshl_u64 }, 8556 }; 8557 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8558 int maxpass = is_q ? 2 : 1; 8559 8560 for (pass = 0; pass < maxpass; pass++) { 8561 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8562 8563 read_vec_element(s, tcg_op, rn, pass, MO_64); 8564 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8565 write_vec_element(s, tcg_op, rd, pass, MO_64); 8566 } 8567 clear_vec_high(s, is_q, rd); 8568 } else { 8569 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8570 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8571 { 8572 { gen_helper_neon_qshl_s8, 8573 gen_helper_neon_qshl_s16, 8574 gen_helper_neon_qshl_s32 }, 8575 { gen_helper_neon_qshlu_s8, 8576 gen_helper_neon_qshlu_s16, 8577 gen_helper_neon_qshlu_s32 } 8578 }, { 8579 { NULL, NULL, NULL }, 8580 { gen_helper_neon_qshl_u8, 8581 gen_helper_neon_qshl_u16, 8582 gen_helper_neon_qshl_u32 } 8583 } 8584 }; 8585 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8586 MemOp memop = scalar ? size : MO_32; 8587 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8588 8589 for (pass = 0; pass < maxpass; pass++) { 8590 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8591 8592 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8593 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8594 if (scalar) { 8595 switch (size) { 8596 case 0: 8597 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8598 break; 8599 case 1: 8600 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8601 break; 8602 case 2: 8603 break; 8604 default: 8605 g_assert_not_reached(); 8606 } 8607 write_fp_sreg(s, rd, tcg_op); 8608 } else { 8609 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8610 } 8611 } 8612 8613 if (!scalar) { 8614 clear_vec_high(s, is_q, rd); 8615 } 8616 } 8617 } 8618 8619 /* Common vector code for handling integer to FP conversion */ 8620 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8621 int elements, int is_signed, 8622 int fracbits, int size) 8623 { 8624 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8625 TCGv_i32 tcg_shift = NULL; 8626 8627 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8628 int pass; 8629 8630 if (fracbits || size == MO_64) { 8631 tcg_shift = tcg_constant_i32(fracbits); 8632 } 8633 8634 if (size == MO_64) { 8635 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8636 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8637 8638 for (pass = 0; pass < elements; pass++) { 8639 read_vec_element(s, tcg_int64, rn, pass, mop); 8640 8641 if (is_signed) { 8642 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8643 tcg_shift, tcg_fpst); 8644 } else { 8645 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8646 tcg_shift, tcg_fpst); 8647 } 8648 if (elements == 1) { 8649 write_fp_dreg(s, rd, tcg_double); 8650 } else { 8651 write_vec_element(s, tcg_double, rd, pass, MO_64); 8652 } 8653 } 8654 } else { 8655 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8656 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8657 8658 for (pass = 0; pass < elements; pass++) { 8659 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8660 8661 switch (size) { 8662 case MO_32: 8663 if (fracbits) { 8664 if (is_signed) { 8665 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8666 tcg_shift, tcg_fpst); 8667 } else { 8668 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8669 tcg_shift, tcg_fpst); 8670 } 8671 } else { 8672 if (is_signed) { 8673 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8674 } else { 8675 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8676 } 8677 } 8678 break; 8679 case MO_16: 8680 if (fracbits) { 8681 if (is_signed) { 8682 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8683 tcg_shift, tcg_fpst); 8684 } else { 8685 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8686 tcg_shift, tcg_fpst); 8687 } 8688 } else { 8689 if (is_signed) { 8690 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8691 } else { 8692 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8693 } 8694 } 8695 break; 8696 default: 8697 g_assert_not_reached(); 8698 } 8699 8700 if (elements == 1) { 8701 write_fp_sreg(s, rd, tcg_float); 8702 } else { 8703 write_vec_element_i32(s, tcg_float, rd, pass, size); 8704 } 8705 } 8706 } 8707 8708 clear_vec_high(s, elements << size == 16, rd); 8709 } 8710 8711 /* UCVTF/SCVTF - Integer to FP conversion */ 8712 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8713 bool is_q, bool is_u, 8714 int immh, int immb, int opcode, 8715 int rn, int rd) 8716 { 8717 int size, elements, fracbits; 8718 int immhb = immh << 3 | immb; 8719 8720 if (immh & 8) { 8721 size = MO_64; 8722 if (!is_scalar && !is_q) { 8723 unallocated_encoding(s); 8724 return; 8725 } 8726 } else if (immh & 4) { 8727 size = MO_32; 8728 } else if (immh & 2) { 8729 size = MO_16; 8730 if (!dc_isar_feature(aa64_fp16, s)) { 8731 unallocated_encoding(s); 8732 return; 8733 } 8734 } else { 8735 /* immh == 0 would be a failure of the decode logic */ 8736 g_assert(immh == 1); 8737 unallocated_encoding(s); 8738 return; 8739 } 8740 8741 if (is_scalar) { 8742 elements = 1; 8743 } else { 8744 elements = (8 << is_q) >> size; 8745 } 8746 fracbits = (16 << size) - immhb; 8747 8748 if (!fp_access_check(s)) { 8749 return; 8750 } 8751 8752 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8753 } 8754 8755 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8756 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8757 bool is_q, bool is_u, 8758 int immh, int immb, int rn, int rd) 8759 { 8760 int immhb = immh << 3 | immb; 8761 int pass, size, fracbits; 8762 TCGv_ptr tcg_fpstatus; 8763 TCGv_i32 tcg_rmode, tcg_shift; 8764 8765 if (immh & 0x8) { 8766 size = MO_64; 8767 if (!is_scalar && !is_q) { 8768 unallocated_encoding(s); 8769 return; 8770 } 8771 } else if (immh & 0x4) { 8772 size = MO_32; 8773 } else if (immh & 0x2) { 8774 size = MO_16; 8775 if (!dc_isar_feature(aa64_fp16, s)) { 8776 unallocated_encoding(s); 8777 return; 8778 } 8779 } else { 8780 /* Should have split out AdvSIMD modified immediate earlier. */ 8781 assert(immh == 1); 8782 unallocated_encoding(s); 8783 return; 8784 } 8785 8786 if (!fp_access_check(s)) { 8787 return; 8788 } 8789 8790 assert(!(is_scalar && is_q)); 8791 8792 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8793 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8794 fracbits = (16 << size) - immhb; 8795 tcg_shift = tcg_constant_i32(fracbits); 8796 8797 if (size == MO_64) { 8798 int maxpass = is_scalar ? 1 : 2; 8799 8800 for (pass = 0; pass < maxpass; pass++) { 8801 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8802 8803 read_vec_element(s, tcg_op, rn, pass, MO_64); 8804 if (is_u) { 8805 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8806 } else { 8807 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8808 } 8809 write_vec_element(s, tcg_op, rd, pass, MO_64); 8810 } 8811 clear_vec_high(s, is_q, rd); 8812 } else { 8813 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8814 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8815 8816 switch (size) { 8817 case MO_16: 8818 if (is_u) { 8819 fn = gen_helper_vfp_touhh; 8820 } else { 8821 fn = gen_helper_vfp_toshh; 8822 } 8823 break; 8824 case MO_32: 8825 if (is_u) { 8826 fn = gen_helper_vfp_touls; 8827 } else { 8828 fn = gen_helper_vfp_tosls; 8829 } 8830 break; 8831 default: 8832 g_assert_not_reached(); 8833 } 8834 8835 for (pass = 0; pass < maxpass; pass++) { 8836 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8837 8838 read_vec_element_i32(s, tcg_op, rn, pass, size); 8839 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8840 if (is_scalar) { 8841 write_fp_sreg(s, rd, tcg_op); 8842 } else { 8843 write_vec_element_i32(s, tcg_op, rd, pass, size); 8844 } 8845 } 8846 if (!is_scalar) { 8847 clear_vec_high(s, is_q, rd); 8848 } 8849 } 8850 8851 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8852 } 8853 8854 /* AdvSIMD scalar shift by immediate 8855 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8856 * +-----+---+-------------+------+------+--------+---+------+------+ 8857 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8858 * +-----+---+-------------+------+------+--------+---+------+------+ 8859 * 8860 * This is the scalar version so it works on a fixed sized registers 8861 */ 8862 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8863 { 8864 int rd = extract32(insn, 0, 5); 8865 int rn = extract32(insn, 5, 5); 8866 int opcode = extract32(insn, 11, 5); 8867 int immb = extract32(insn, 16, 3); 8868 int immh = extract32(insn, 19, 4); 8869 bool is_u = extract32(insn, 29, 1); 8870 8871 if (immh == 0) { 8872 unallocated_encoding(s); 8873 return; 8874 } 8875 8876 switch (opcode) { 8877 case 0x08: /* SRI */ 8878 if (!is_u) { 8879 unallocated_encoding(s); 8880 return; 8881 } 8882 /* fall through */ 8883 case 0x00: /* SSHR / USHR */ 8884 case 0x02: /* SSRA / USRA */ 8885 case 0x04: /* SRSHR / URSHR */ 8886 case 0x06: /* SRSRA / URSRA */ 8887 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8888 break; 8889 case 0x0a: /* SHL / SLI */ 8890 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8891 break; 8892 case 0x1c: /* SCVTF, UCVTF */ 8893 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8894 opcode, rn, rd); 8895 break; 8896 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8897 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8898 if (!is_u) { 8899 unallocated_encoding(s); 8900 return; 8901 } 8902 handle_vec_simd_sqshrn(s, true, false, false, true, 8903 immh, immb, opcode, rn, rd); 8904 break; 8905 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8906 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8907 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8908 immh, immb, opcode, rn, rd); 8909 break; 8910 case 0xc: /* SQSHLU */ 8911 if (!is_u) { 8912 unallocated_encoding(s); 8913 return; 8914 } 8915 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8916 break; 8917 case 0xe: /* SQSHL, UQSHL */ 8918 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8919 break; 8920 case 0x1f: /* FCVTZS, FCVTZU */ 8921 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8922 break; 8923 default: 8924 unallocated_encoding(s); 8925 break; 8926 } 8927 } 8928 8929 /* AdvSIMD scalar three different 8930 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8931 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8932 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8933 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8934 */ 8935 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8936 { 8937 bool is_u = extract32(insn, 29, 1); 8938 int size = extract32(insn, 22, 2); 8939 int opcode = extract32(insn, 12, 4); 8940 int rm = extract32(insn, 16, 5); 8941 int rn = extract32(insn, 5, 5); 8942 int rd = extract32(insn, 0, 5); 8943 8944 if (is_u) { 8945 unallocated_encoding(s); 8946 return; 8947 } 8948 8949 switch (opcode) { 8950 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8951 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8952 case 0xd: /* SQDMULL, SQDMULL2 */ 8953 if (size == 0 || size == 3) { 8954 unallocated_encoding(s); 8955 return; 8956 } 8957 break; 8958 default: 8959 unallocated_encoding(s); 8960 return; 8961 } 8962 8963 if (!fp_access_check(s)) { 8964 return; 8965 } 8966 8967 if (size == 2) { 8968 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8969 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8970 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8971 8972 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8973 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8974 8975 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8976 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8977 8978 switch (opcode) { 8979 case 0xd: /* SQDMULL, SQDMULL2 */ 8980 break; 8981 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8982 tcg_gen_neg_i64(tcg_res, tcg_res); 8983 /* fall through */ 8984 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8985 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8986 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8987 tcg_res, tcg_op1); 8988 break; 8989 default: 8990 g_assert_not_reached(); 8991 } 8992 8993 write_fp_dreg(s, rd, tcg_res); 8994 } else { 8995 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8996 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8997 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8998 8999 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9000 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 9001 9002 switch (opcode) { 9003 case 0xd: /* SQDMULL, SQDMULL2 */ 9004 break; 9005 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9006 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9007 /* fall through */ 9008 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9009 { 9010 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9011 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9012 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 9013 tcg_res, tcg_op3); 9014 break; 9015 } 9016 default: 9017 g_assert_not_reached(); 9018 } 9019 9020 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9021 write_fp_dreg(s, rd, tcg_res); 9022 } 9023 } 9024 9025 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9026 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9027 { 9028 /* Handle 64x64->64 opcodes which are shared between the scalar 9029 * and vector 3-same groups. We cover every opcode where size == 3 9030 * is valid in either the three-reg-same (integer, not pairwise) 9031 * or scalar-three-reg-same groups. 9032 */ 9033 TCGCond cond; 9034 9035 switch (opcode) { 9036 case 0x1: /* SQADD */ 9037 if (u) { 9038 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9039 } else { 9040 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9041 } 9042 break; 9043 case 0x5: /* SQSUB */ 9044 if (u) { 9045 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9046 } else { 9047 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9048 } 9049 break; 9050 case 0x6: /* CMGT, CMHI */ 9051 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9052 * We implement this using setcond (test) and then negating. 9053 */ 9054 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9055 do_cmop: 9056 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9057 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9058 break; 9059 case 0x7: /* CMGE, CMHS */ 9060 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9061 goto do_cmop; 9062 case 0x11: /* CMTST, CMEQ */ 9063 if (u) { 9064 cond = TCG_COND_EQ; 9065 goto do_cmop; 9066 } 9067 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9068 break; 9069 case 0x8: /* SSHL, USHL */ 9070 if (u) { 9071 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9072 } else { 9073 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9074 } 9075 break; 9076 case 0x9: /* SQSHL, UQSHL */ 9077 if (u) { 9078 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9079 } else { 9080 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9081 } 9082 break; 9083 case 0xa: /* SRSHL, URSHL */ 9084 if (u) { 9085 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9086 } else { 9087 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9088 } 9089 break; 9090 case 0xb: /* SQRSHL, UQRSHL */ 9091 if (u) { 9092 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9093 } else { 9094 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9095 } 9096 break; 9097 case 0x10: /* ADD, SUB */ 9098 if (u) { 9099 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9100 } else { 9101 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9102 } 9103 break; 9104 default: 9105 g_assert_not_reached(); 9106 } 9107 } 9108 9109 /* Handle the 3-same-operands float operations; shared by the scalar 9110 * and vector encodings. The caller must filter out any encodings 9111 * not allocated for the encoding it is dealing with. 9112 */ 9113 static void handle_3same_float(DisasContext *s, int size, int elements, 9114 int fpopcode, int rd, int rn, int rm) 9115 { 9116 int pass; 9117 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9118 9119 for (pass = 0; pass < elements; pass++) { 9120 if (size) { 9121 /* Double */ 9122 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9123 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9124 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9125 9126 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9127 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9128 9129 switch (fpopcode) { 9130 case 0x39: /* FMLS */ 9131 /* As usual for ARM, separate negation for fused multiply-add */ 9132 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9133 /* fall through */ 9134 case 0x19: /* FMLA */ 9135 read_vec_element(s, tcg_res, rd, pass, MO_64); 9136 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9137 tcg_res, fpst); 9138 break; 9139 case 0x18: /* FMAXNM */ 9140 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9141 break; 9142 case 0x1a: /* FADD */ 9143 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9144 break; 9145 case 0x1b: /* FMULX */ 9146 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9147 break; 9148 case 0x1c: /* FCMEQ */ 9149 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9150 break; 9151 case 0x1e: /* FMAX */ 9152 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9153 break; 9154 case 0x1f: /* FRECPS */ 9155 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9156 break; 9157 case 0x38: /* FMINNM */ 9158 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9159 break; 9160 case 0x3a: /* FSUB */ 9161 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9162 break; 9163 case 0x3e: /* FMIN */ 9164 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9165 break; 9166 case 0x3f: /* FRSQRTS */ 9167 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9168 break; 9169 case 0x5b: /* FMUL */ 9170 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9171 break; 9172 case 0x5c: /* FCMGE */ 9173 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9174 break; 9175 case 0x5d: /* FACGE */ 9176 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9177 break; 9178 case 0x5f: /* FDIV */ 9179 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9180 break; 9181 case 0x7a: /* FABD */ 9182 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9183 gen_helper_vfp_absd(tcg_res, tcg_res); 9184 break; 9185 case 0x7c: /* FCMGT */ 9186 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9187 break; 9188 case 0x7d: /* FACGT */ 9189 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9190 break; 9191 default: 9192 g_assert_not_reached(); 9193 } 9194 9195 write_vec_element(s, tcg_res, rd, pass, MO_64); 9196 } else { 9197 /* Single */ 9198 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9199 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9200 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9201 9202 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9203 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9204 9205 switch (fpopcode) { 9206 case 0x39: /* FMLS */ 9207 /* As usual for ARM, separate negation for fused multiply-add */ 9208 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9209 /* fall through */ 9210 case 0x19: /* FMLA */ 9211 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9212 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9213 tcg_res, fpst); 9214 break; 9215 case 0x1a: /* FADD */ 9216 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9217 break; 9218 case 0x1b: /* FMULX */ 9219 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9220 break; 9221 case 0x1c: /* FCMEQ */ 9222 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9223 break; 9224 case 0x1e: /* FMAX */ 9225 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9226 break; 9227 case 0x1f: /* FRECPS */ 9228 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9229 break; 9230 case 0x18: /* FMAXNM */ 9231 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9232 break; 9233 case 0x38: /* FMINNM */ 9234 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9235 break; 9236 case 0x3a: /* FSUB */ 9237 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9238 break; 9239 case 0x3e: /* FMIN */ 9240 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9241 break; 9242 case 0x3f: /* FRSQRTS */ 9243 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9244 break; 9245 case 0x5b: /* FMUL */ 9246 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9247 break; 9248 case 0x5c: /* FCMGE */ 9249 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9250 break; 9251 case 0x5d: /* FACGE */ 9252 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9253 break; 9254 case 0x5f: /* FDIV */ 9255 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9256 break; 9257 case 0x7a: /* FABD */ 9258 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9259 gen_helper_vfp_abss(tcg_res, tcg_res); 9260 break; 9261 case 0x7c: /* FCMGT */ 9262 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9263 break; 9264 case 0x7d: /* FACGT */ 9265 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9266 break; 9267 default: 9268 g_assert_not_reached(); 9269 } 9270 9271 if (elements == 1) { 9272 /* scalar single so clear high part */ 9273 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9274 9275 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9276 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9277 } else { 9278 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9279 } 9280 } 9281 } 9282 9283 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9284 } 9285 9286 /* AdvSIMD scalar three same 9287 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9288 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9289 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9290 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9291 */ 9292 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9293 { 9294 int rd = extract32(insn, 0, 5); 9295 int rn = extract32(insn, 5, 5); 9296 int opcode = extract32(insn, 11, 5); 9297 int rm = extract32(insn, 16, 5); 9298 int size = extract32(insn, 22, 2); 9299 bool u = extract32(insn, 29, 1); 9300 TCGv_i64 tcg_rd; 9301 9302 if (opcode >= 0x18) { 9303 /* Floating point: U, size[1] and opcode indicate operation */ 9304 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9305 switch (fpopcode) { 9306 case 0x1b: /* FMULX */ 9307 case 0x1f: /* FRECPS */ 9308 case 0x3f: /* FRSQRTS */ 9309 case 0x5d: /* FACGE */ 9310 case 0x7d: /* FACGT */ 9311 case 0x1c: /* FCMEQ */ 9312 case 0x5c: /* FCMGE */ 9313 case 0x7c: /* FCMGT */ 9314 case 0x7a: /* FABD */ 9315 break; 9316 default: 9317 unallocated_encoding(s); 9318 return; 9319 } 9320 9321 if (!fp_access_check(s)) { 9322 return; 9323 } 9324 9325 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9326 return; 9327 } 9328 9329 switch (opcode) { 9330 case 0x1: /* SQADD, UQADD */ 9331 case 0x5: /* SQSUB, UQSUB */ 9332 case 0x9: /* SQSHL, UQSHL */ 9333 case 0xb: /* SQRSHL, UQRSHL */ 9334 break; 9335 case 0x8: /* SSHL, USHL */ 9336 case 0xa: /* SRSHL, URSHL */ 9337 case 0x6: /* CMGT, CMHI */ 9338 case 0x7: /* CMGE, CMHS */ 9339 case 0x11: /* CMTST, CMEQ */ 9340 case 0x10: /* ADD, SUB (vector) */ 9341 if (size != 3) { 9342 unallocated_encoding(s); 9343 return; 9344 } 9345 break; 9346 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9347 if (size != 1 && size != 2) { 9348 unallocated_encoding(s); 9349 return; 9350 } 9351 break; 9352 default: 9353 unallocated_encoding(s); 9354 return; 9355 } 9356 9357 if (!fp_access_check(s)) { 9358 return; 9359 } 9360 9361 tcg_rd = tcg_temp_new_i64(); 9362 9363 if (size == 3) { 9364 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9365 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9366 9367 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9368 } else { 9369 /* Do a single operation on the lowest element in the vector. 9370 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9371 * no side effects for all these operations. 9372 * OPTME: special-purpose helpers would avoid doing some 9373 * unnecessary work in the helper for the 8 and 16 bit cases. 9374 */ 9375 NeonGenTwoOpEnvFn *genenvfn; 9376 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9377 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9378 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9379 9380 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9381 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9382 9383 switch (opcode) { 9384 case 0x1: /* SQADD, UQADD */ 9385 { 9386 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9387 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9388 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9389 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9390 }; 9391 genenvfn = fns[size][u]; 9392 break; 9393 } 9394 case 0x5: /* SQSUB, UQSUB */ 9395 { 9396 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9397 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9398 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9399 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9400 }; 9401 genenvfn = fns[size][u]; 9402 break; 9403 } 9404 case 0x9: /* SQSHL, UQSHL */ 9405 { 9406 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9407 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9408 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9409 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9410 }; 9411 genenvfn = fns[size][u]; 9412 break; 9413 } 9414 case 0xb: /* SQRSHL, UQRSHL */ 9415 { 9416 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9417 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9418 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9419 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9420 }; 9421 genenvfn = fns[size][u]; 9422 break; 9423 } 9424 case 0x16: /* SQDMULH, SQRDMULH */ 9425 { 9426 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9427 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9428 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9429 }; 9430 assert(size == 1 || size == 2); 9431 genenvfn = fns[size - 1][u]; 9432 break; 9433 } 9434 default: 9435 g_assert_not_reached(); 9436 } 9437 9438 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9439 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9440 } 9441 9442 write_fp_dreg(s, rd, tcg_rd); 9443 } 9444 9445 /* AdvSIMD scalar three same FP16 9446 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9447 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9448 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9449 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9450 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9451 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9452 */ 9453 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9454 uint32_t insn) 9455 { 9456 int rd = extract32(insn, 0, 5); 9457 int rn = extract32(insn, 5, 5); 9458 int opcode = extract32(insn, 11, 3); 9459 int rm = extract32(insn, 16, 5); 9460 bool u = extract32(insn, 29, 1); 9461 bool a = extract32(insn, 23, 1); 9462 int fpopcode = opcode | (a << 3) | (u << 4); 9463 TCGv_ptr fpst; 9464 TCGv_i32 tcg_op1; 9465 TCGv_i32 tcg_op2; 9466 TCGv_i32 tcg_res; 9467 9468 switch (fpopcode) { 9469 case 0x03: /* FMULX */ 9470 case 0x04: /* FCMEQ (reg) */ 9471 case 0x07: /* FRECPS */ 9472 case 0x0f: /* FRSQRTS */ 9473 case 0x14: /* FCMGE (reg) */ 9474 case 0x15: /* FACGE */ 9475 case 0x1a: /* FABD */ 9476 case 0x1c: /* FCMGT (reg) */ 9477 case 0x1d: /* FACGT */ 9478 break; 9479 default: 9480 unallocated_encoding(s); 9481 return; 9482 } 9483 9484 if (!dc_isar_feature(aa64_fp16, s)) { 9485 unallocated_encoding(s); 9486 } 9487 9488 if (!fp_access_check(s)) { 9489 return; 9490 } 9491 9492 fpst = fpstatus_ptr(FPST_FPCR_F16); 9493 9494 tcg_op1 = read_fp_hreg(s, rn); 9495 tcg_op2 = read_fp_hreg(s, rm); 9496 tcg_res = tcg_temp_new_i32(); 9497 9498 switch (fpopcode) { 9499 case 0x03: /* FMULX */ 9500 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9501 break; 9502 case 0x04: /* FCMEQ (reg) */ 9503 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9504 break; 9505 case 0x07: /* FRECPS */ 9506 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9507 break; 9508 case 0x0f: /* FRSQRTS */ 9509 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9510 break; 9511 case 0x14: /* FCMGE (reg) */ 9512 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9513 break; 9514 case 0x15: /* FACGE */ 9515 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9516 break; 9517 case 0x1a: /* FABD */ 9518 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9519 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9520 break; 9521 case 0x1c: /* FCMGT (reg) */ 9522 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9523 break; 9524 case 0x1d: /* FACGT */ 9525 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9526 break; 9527 default: 9528 g_assert_not_reached(); 9529 } 9530 9531 write_fp_sreg(s, rd, tcg_res); 9532 } 9533 9534 /* AdvSIMD scalar three same extra 9535 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9536 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9537 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9538 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9539 */ 9540 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9541 uint32_t insn) 9542 { 9543 int rd = extract32(insn, 0, 5); 9544 int rn = extract32(insn, 5, 5); 9545 int opcode = extract32(insn, 11, 4); 9546 int rm = extract32(insn, 16, 5); 9547 int size = extract32(insn, 22, 2); 9548 bool u = extract32(insn, 29, 1); 9549 TCGv_i32 ele1, ele2, ele3; 9550 TCGv_i64 res; 9551 bool feature; 9552 9553 switch (u * 16 + opcode) { 9554 case 0x10: /* SQRDMLAH (vector) */ 9555 case 0x11: /* SQRDMLSH (vector) */ 9556 if (size != 1 && size != 2) { 9557 unallocated_encoding(s); 9558 return; 9559 } 9560 feature = dc_isar_feature(aa64_rdm, s); 9561 break; 9562 default: 9563 unallocated_encoding(s); 9564 return; 9565 } 9566 if (!feature) { 9567 unallocated_encoding(s); 9568 return; 9569 } 9570 if (!fp_access_check(s)) { 9571 return; 9572 } 9573 9574 /* Do a single operation on the lowest element in the vector. 9575 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9576 * with no side effects for all these operations. 9577 * OPTME: special-purpose helpers would avoid doing some 9578 * unnecessary work in the helper for the 16 bit cases. 9579 */ 9580 ele1 = tcg_temp_new_i32(); 9581 ele2 = tcg_temp_new_i32(); 9582 ele3 = tcg_temp_new_i32(); 9583 9584 read_vec_element_i32(s, ele1, rn, 0, size); 9585 read_vec_element_i32(s, ele2, rm, 0, size); 9586 read_vec_element_i32(s, ele3, rd, 0, size); 9587 9588 switch (opcode) { 9589 case 0x0: /* SQRDMLAH */ 9590 if (size == 1) { 9591 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9592 } else { 9593 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9594 } 9595 break; 9596 case 0x1: /* SQRDMLSH */ 9597 if (size == 1) { 9598 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9599 } else { 9600 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9601 } 9602 break; 9603 default: 9604 g_assert_not_reached(); 9605 } 9606 9607 res = tcg_temp_new_i64(); 9608 tcg_gen_extu_i32_i64(res, ele3); 9609 write_fp_dreg(s, rd, res); 9610 } 9611 9612 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9613 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9614 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9615 { 9616 /* Handle 64->64 opcodes which are shared between the scalar and 9617 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9618 * is valid in either group and also the double-precision fp ops. 9619 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9620 * requires them. 9621 */ 9622 TCGCond cond; 9623 9624 switch (opcode) { 9625 case 0x4: /* CLS, CLZ */ 9626 if (u) { 9627 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9628 } else { 9629 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9630 } 9631 break; 9632 case 0x5: /* NOT */ 9633 /* This opcode is shared with CNT and RBIT but we have earlier 9634 * enforced that size == 3 if and only if this is the NOT insn. 9635 */ 9636 tcg_gen_not_i64(tcg_rd, tcg_rn); 9637 break; 9638 case 0x7: /* SQABS, SQNEG */ 9639 if (u) { 9640 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9641 } else { 9642 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9643 } 9644 break; 9645 case 0xa: /* CMLT */ 9646 /* 64 bit integer comparison against zero, result is 9647 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9648 * subtracting 1. 9649 */ 9650 cond = TCG_COND_LT; 9651 do_cmop: 9652 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9653 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9654 break; 9655 case 0x8: /* CMGT, CMGE */ 9656 cond = u ? TCG_COND_GE : TCG_COND_GT; 9657 goto do_cmop; 9658 case 0x9: /* CMEQ, CMLE */ 9659 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9660 goto do_cmop; 9661 case 0xb: /* ABS, NEG */ 9662 if (u) { 9663 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9664 } else { 9665 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9666 } 9667 break; 9668 case 0x2f: /* FABS */ 9669 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9670 break; 9671 case 0x6f: /* FNEG */ 9672 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9673 break; 9674 case 0x7f: /* FSQRT */ 9675 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9676 break; 9677 case 0x1a: /* FCVTNS */ 9678 case 0x1b: /* FCVTMS */ 9679 case 0x1c: /* FCVTAS */ 9680 case 0x3a: /* FCVTPS */ 9681 case 0x3b: /* FCVTZS */ 9682 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9683 break; 9684 case 0x5a: /* FCVTNU */ 9685 case 0x5b: /* FCVTMU */ 9686 case 0x5c: /* FCVTAU */ 9687 case 0x7a: /* FCVTPU */ 9688 case 0x7b: /* FCVTZU */ 9689 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9690 break; 9691 case 0x18: /* FRINTN */ 9692 case 0x19: /* FRINTM */ 9693 case 0x38: /* FRINTP */ 9694 case 0x39: /* FRINTZ */ 9695 case 0x58: /* FRINTA */ 9696 case 0x79: /* FRINTI */ 9697 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9698 break; 9699 case 0x59: /* FRINTX */ 9700 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9701 break; 9702 case 0x1e: /* FRINT32Z */ 9703 case 0x5e: /* FRINT32X */ 9704 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9705 break; 9706 case 0x1f: /* FRINT64Z */ 9707 case 0x5f: /* FRINT64X */ 9708 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9709 break; 9710 default: 9711 g_assert_not_reached(); 9712 } 9713 } 9714 9715 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9716 bool is_scalar, bool is_u, bool is_q, 9717 int size, int rn, int rd) 9718 { 9719 bool is_double = (size == MO_64); 9720 TCGv_ptr fpst; 9721 9722 if (!fp_access_check(s)) { 9723 return; 9724 } 9725 9726 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9727 9728 if (is_double) { 9729 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9730 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9731 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9732 NeonGenTwoDoubleOpFn *genfn; 9733 bool swap = false; 9734 int pass; 9735 9736 switch (opcode) { 9737 case 0x2e: /* FCMLT (zero) */ 9738 swap = true; 9739 /* fallthrough */ 9740 case 0x2c: /* FCMGT (zero) */ 9741 genfn = gen_helper_neon_cgt_f64; 9742 break; 9743 case 0x2d: /* FCMEQ (zero) */ 9744 genfn = gen_helper_neon_ceq_f64; 9745 break; 9746 case 0x6d: /* FCMLE (zero) */ 9747 swap = true; 9748 /* fall through */ 9749 case 0x6c: /* FCMGE (zero) */ 9750 genfn = gen_helper_neon_cge_f64; 9751 break; 9752 default: 9753 g_assert_not_reached(); 9754 } 9755 9756 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9757 read_vec_element(s, tcg_op, rn, pass, MO_64); 9758 if (swap) { 9759 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9760 } else { 9761 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9762 } 9763 write_vec_element(s, tcg_res, rd, pass, MO_64); 9764 } 9765 9766 clear_vec_high(s, !is_scalar, rd); 9767 } else { 9768 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9769 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9770 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9771 NeonGenTwoSingleOpFn *genfn; 9772 bool swap = false; 9773 int pass, maxpasses; 9774 9775 if (size == MO_16) { 9776 switch (opcode) { 9777 case 0x2e: /* FCMLT (zero) */ 9778 swap = true; 9779 /* fall through */ 9780 case 0x2c: /* FCMGT (zero) */ 9781 genfn = gen_helper_advsimd_cgt_f16; 9782 break; 9783 case 0x2d: /* FCMEQ (zero) */ 9784 genfn = gen_helper_advsimd_ceq_f16; 9785 break; 9786 case 0x6d: /* FCMLE (zero) */ 9787 swap = true; 9788 /* fall through */ 9789 case 0x6c: /* FCMGE (zero) */ 9790 genfn = gen_helper_advsimd_cge_f16; 9791 break; 9792 default: 9793 g_assert_not_reached(); 9794 } 9795 } else { 9796 switch (opcode) { 9797 case 0x2e: /* FCMLT (zero) */ 9798 swap = true; 9799 /* fall through */ 9800 case 0x2c: /* FCMGT (zero) */ 9801 genfn = gen_helper_neon_cgt_f32; 9802 break; 9803 case 0x2d: /* FCMEQ (zero) */ 9804 genfn = gen_helper_neon_ceq_f32; 9805 break; 9806 case 0x6d: /* FCMLE (zero) */ 9807 swap = true; 9808 /* fall through */ 9809 case 0x6c: /* FCMGE (zero) */ 9810 genfn = gen_helper_neon_cge_f32; 9811 break; 9812 default: 9813 g_assert_not_reached(); 9814 } 9815 } 9816 9817 if (is_scalar) { 9818 maxpasses = 1; 9819 } else { 9820 int vector_size = 8 << is_q; 9821 maxpasses = vector_size >> size; 9822 } 9823 9824 for (pass = 0; pass < maxpasses; pass++) { 9825 read_vec_element_i32(s, tcg_op, rn, pass, size); 9826 if (swap) { 9827 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9828 } else { 9829 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9830 } 9831 if (is_scalar) { 9832 write_fp_sreg(s, rd, tcg_res); 9833 } else { 9834 write_vec_element_i32(s, tcg_res, rd, pass, size); 9835 } 9836 } 9837 9838 if (!is_scalar) { 9839 clear_vec_high(s, is_q, rd); 9840 } 9841 } 9842 } 9843 9844 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9845 bool is_scalar, bool is_u, bool is_q, 9846 int size, int rn, int rd) 9847 { 9848 bool is_double = (size == 3); 9849 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9850 9851 if (is_double) { 9852 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9853 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9854 int pass; 9855 9856 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9857 read_vec_element(s, tcg_op, rn, pass, MO_64); 9858 switch (opcode) { 9859 case 0x3d: /* FRECPE */ 9860 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9861 break; 9862 case 0x3f: /* FRECPX */ 9863 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9864 break; 9865 case 0x7d: /* FRSQRTE */ 9866 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9867 break; 9868 default: 9869 g_assert_not_reached(); 9870 } 9871 write_vec_element(s, tcg_res, rd, pass, MO_64); 9872 } 9873 clear_vec_high(s, !is_scalar, rd); 9874 } else { 9875 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9876 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9877 int pass, maxpasses; 9878 9879 if (is_scalar) { 9880 maxpasses = 1; 9881 } else { 9882 maxpasses = is_q ? 4 : 2; 9883 } 9884 9885 for (pass = 0; pass < maxpasses; pass++) { 9886 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9887 9888 switch (opcode) { 9889 case 0x3c: /* URECPE */ 9890 gen_helper_recpe_u32(tcg_res, tcg_op); 9891 break; 9892 case 0x3d: /* FRECPE */ 9893 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9894 break; 9895 case 0x3f: /* FRECPX */ 9896 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9897 break; 9898 case 0x7d: /* FRSQRTE */ 9899 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9900 break; 9901 default: 9902 g_assert_not_reached(); 9903 } 9904 9905 if (is_scalar) { 9906 write_fp_sreg(s, rd, tcg_res); 9907 } else { 9908 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9909 } 9910 } 9911 if (!is_scalar) { 9912 clear_vec_high(s, is_q, rd); 9913 } 9914 } 9915 } 9916 9917 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9918 int opcode, bool u, bool is_q, 9919 int size, int rn, int rd) 9920 { 9921 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9922 * in the source becomes a size element in the destination). 9923 */ 9924 int pass; 9925 TCGv_i32 tcg_res[2]; 9926 int destelt = is_q ? 2 : 0; 9927 int passes = scalar ? 1 : 2; 9928 9929 if (scalar) { 9930 tcg_res[1] = tcg_constant_i32(0); 9931 } 9932 9933 for (pass = 0; pass < passes; pass++) { 9934 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9935 NeonGenNarrowFn *genfn = NULL; 9936 NeonGenNarrowEnvFn *genenvfn = NULL; 9937 9938 if (scalar) { 9939 read_vec_element(s, tcg_op, rn, pass, size + 1); 9940 } else { 9941 read_vec_element(s, tcg_op, rn, pass, MO_64); 9942 } 9943 tcg_res[pass] = tcg_temp_new_i32(); 9944 9945 switch (opcode) { 9946 case 0x12: /* XTN, SQXTUN */ 9947 { 9948 static NeonGenNarrowFn * const xtnfns[3] = { 9949 gen_helper_neon_narrow_u8, 9950 gen_helper_neon_narrow_u16, 9951 tcg_gen_extrl_i64_i32, 9952 }; 9953 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9954 gen_helper_neon_unarrow_sat8, 9955 gen_helper_neon_unarrow_sat16, 9956 gen_helper_neon_unarrow_sat32, 9957 }; 9958 if (u) { 9959 genenvfn = sqxtunfns[size]; 9960 } else { 9961 genfn = xtnfns[size]; 9962 } 9963 break; 9964 } 9965 case 0x14: /* SQXTN, UQXTN */ 9966 { 9967 static NeonGenNarrowEnvFn * const fns[3][2] = { 9968 { gen_helper_neon_narrow_sat_s8, 9969 gen_helper_neon_narrow_sat_u8 }, 9970 { gen_helper_neon_narrow_sat_s16, 9971 gen_helper_neon_narrow_sat_u16 }, 9972 { gen_helper_neon_narrow_sat_s32, 9973 gen_helper_neon_narrow_sat_u32 }, 9974 }; 9975 genenvfn = fns[size][u]; 9976 break; 9977 } 9978 case 0x16: /* FCVTN, FCVTN2 */ 9979 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9980 if (size == 2) { 9981 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9982 } else { 9983 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9984 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9985 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9986 TCGv_i32 ahp = get_ahp_flag(); 9987 9988 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9989 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9990 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9991 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9992 } 9993 break; 9994 case 0x36: /* BFCVTN, BFCVTN2 */ 9995 { 9996 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9997 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9998 } 9999 break; 10000 case 0x56: /* FCVTXN, FCVTXN2 */ 10001 /* 64 bit to 32 bit float conversion 10002 * with von Neumann rounding (round to odd) 10003 */ 10004 assert(size == 2); 10005 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 10006 break; 10007 default: 10008 g_assert_not_reached(); 10009 } 10010 10011 if (genfn) { 10012 genfn(tcg_res[pass], tcg_op); 10013 } else if (genenvfn) { 10014 genenvfn(tcg_res[pass], cpu_env, tcg_op); 10015 } 10016 } 10017 10018 for (pass = 0; pass < 2; pass++) { 10019 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10020 } 10021 clear_vec_high(s, is_q, rd); 10022 } 10023 10024 /* Remaining saturating accumulating ops */ 10025 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10026 bool is_q, int size, int rn, int rd) 10027 { 10028 bool is_double = (size == 3); 10029 10030 if (is_double) { 10031 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10032 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10033 int pass; 10034 10035 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10036 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10037 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10038 10039 if (is_u) { /* USQADD */ 10040 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10041 } else { /* SUQADD */ 10042 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10043 } 10044 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10045 } 10046 clear_vec_high(s, !is_scalar, rd); 10047 } else { 10048 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10049 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10050 int pass, maxpasses; 10051 10052 if (is_scalar) { 10053 maxpasses = 1; 10054 } else { 10055 maxpasses = is_q ? 4 : 2; 10056 } 10057 10058 for (pass = 0; pass < maxpasses; pass++) { 10059 if (is_scalar) { 10060 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10061 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10062 } else { 10063 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10064 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10065 } 10066 10067 if (is_u) { /* USQADD */ 10068 switch (size) { 10069 case 0: 10070 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10071 break; 10072 case 1: 10073 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10074 break; 10075 case 2: 10076 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10077 break; 10078 default: 10079 g_assert_not_reached(); 10080 } 10081 } else { /* SUQADD */ 10082 switch (size) { 10083 case 0: 10084 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10085 break; 10086 case 1: 10087 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10088 break; 10089 case 2: 10090 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10091 break; 10092 default: 10093 g_assert_not_reached(); 10094 } 10095 } 10096 10097 if (is_scalar) { 10098 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10099 } 10100 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10101 } 10102 clear_vec_high(s, is_q, rd); 10103 } 10104 } 10105 10106 /* AdvSIMD scalar two reg misc 10107 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10108 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10109 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10110 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10111 */ 10112 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10113 { 10114 int rd = extract32(insn, 0, 5); 10115 int rn = extract32(insn, 5, 5); 10116 int opcode = extract32(insn, 12, 5); 10117 int size = extract32(insn, 22, 2); 10118 bool u = extract32(insn, 29, 1); 10119 bool is_fcvt = false; 10120 int rmode; 10121 TCGv_i32 tcg_rmode; 10122 TCGv_ptr tcg_fpstatus; 10123 10124 switch (opcode) { 10125 case 0x3: /* USQADD / SUQADD*/ 10126 if (!fp_access_check(s)) { 10127 return; 10128 } 10129 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10130 return; 10131 case 0x7: /* SQABS / SQNEG */ 10132 break; 10133 case 0xa: /* CMLT */ 10134 if (u) { 10135 unallocated_encoding(s); 10136 return; 10137 } 10138 /* fall through */ 10139 case 0x8: /* CMGT, CMGE */ 10140 case 0x9: /* CMEQ, CMLE */ 10141 case 0xb: /* ABS, NEG */ 10142 if (size != 3) { 10143 unallocated_encoding(s); 10144 return; 10145 } 10146 break; 10147 case 0x12: /* SQXTUN */ 10148 if (!u) { 10149 unallocated_encoding(s); 10150 return; 10151 } 10152 /* fall through */ 10153 case 0x14: /* SQXTN, UQXTN */ 10154 if (size == 3) { 10155 unallocated_encoding(s); 10156 return; 10157 } 10158 if (!fp_access_check(s)) { 10159 return; 10160 } 10161 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10162 return; 10163 case 0xc ... 0xf: 10164 case 0x16 ... 0x1d: 10165 case 0x1f: 10166 /* Floating point: U, size[1] and opcode indicate operation; 10167 * size[0] indicates single or double precision. 10168 */ 10169 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10170 size = extract32(size, 0, 1) ? 3 : 2; 10171 switch (opcode) { 10172 case 0x2c: /* FCMGT (zero) */ 10173 case 0x2d: /* FCMEQ (zero) */ 10174 case 0x2e: /* FCMLT (zero) */ 10175 case 0x6c: /* FCMGE (zero) */ 10176 case 0x6d: /* FCMLE (zero) */ 10177 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10178 return; 10179 case 0x1d: /* SCVTF */ 10180 case 0x5d: /* UCVTF */ 10181 { 10182 bool is_signed = (opcode == 0x1d); 10183 if (!fp_access_check(s)) { 10184 return; 10185 } 10186 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10187 return; 10188 } 10189 case 0x3d: /* FRECPE */ 10190 case 0x3f: /* FRECPX */ 10191 case 0x7d: /* FRSQRTE */ 10192 if (!fp_access_check(s)) { 10193 return; 10194 } 10195 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10196 return; 10197 case 0x1a: /* FCVTNS */ 10198 case 0x1b: /* FCVTMS */ 10199 case 0x3a: /* FCVTPS */ 10200 case 0x3b: /* FCVTZS */ 10201 case 0x5a: /* FCVTNU */ 10202 case 0x5b: /* FCVTMU */ 10203 case 0x7a: /* FCVTPU */ 10204 case 0x7b: /* FCVTZU */ 10205 is_fcvt = true; 10206 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10207 break; 10208 case 0x1c: /* FCVTAS */ 10209 case 0x5c: /* FCVTAU */ 10210 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10211 is_fcvt = true; 10212 rmode = FPROUNDING_TIEAWAY; 10213 break; 10214 case 0x56: /* FCVTXN, FCVTXN2 */ 10215 if (size == 2) { 10216 unallocated_encoding(s); 10217 return; 10218 } 10219 if (!fp_access_check(s)) { 10220 return; 10221 } 10222 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10223 return; 10224 default: 10225 unallocated_encoding(s); 10226 return; 10227 } 10228 break; 10229 default: 10230 unallocated_encoding(s); 10231 return; 10232 } 10233 10234 if (!fp_access_check(s)) { 10235 return; 10236 } 10237 10238 if (is_fcvt) { 10239 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10240 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10241 } else { 10242 tcg_fpstatus = NULL; 10243 tcg_rmode = NULL; 10244 } 10245 10246 if (size == 3) { 10247 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10248 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10249 10250 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10251 write_fp_dreg(s, rd, tcg_rd); 10252 } else { 10253 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10254 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10255 10256 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10257 10258 switch (opcode) { 10259 case 0x7: /* SQABS, SQNEG */ 10260 { 10261 NeonGenOneOpEnvFn *genfn; 10262 static NeonGenOneOpEnvFn * const fns[3][2] = { 10263 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10264 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10265 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10266 }; 10267 genfn = fns[size][u]; 10268 genfn(tcg_rd, cpu_env, tcg_rn); 10269 break; 10270 } 10271 case 0x1a: /* FCVTNS */ 10272 case 0x1b: /* FCVTMS */ 10273 case 0x1c: /* FCVTAS */ 10274 case 0x3a: /* FCVTPS */ 10275 case 0x3b: /* FCVTZS */ 10276 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10277 tcg_fpstatus); 10278 break; 10279 case 0x5a: /* FCVTNU */ 10280 case 0x5b: /* FCVTMU */ 10281 case 0x5c: /* FCVTAU */ 10282 case 0x7a: /* FCVTPU */ 10283 case 0x7b: /* FCVTZU */ 10284 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10285 tcg_fpstatus); 10286 break; 10287 default: 10288 g_assert_not_reached(); 10289 } 10290 10291 write_fp_sreg(s, rd, tcg_rd); 10292 } 10293 10294 if (is_fcvt) { 10295 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10296 } 10297 } 10298 10299 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10300 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10301 int immh, int immb, int opcode, int rn, int rd) 10302 { 10303 int size = 32 - clz32(immh) - 1; 10304 int immhb = immh << 3 | immb; 10305 int shift = 2 * (8 << size) - immhb; 10306 GVecGen2iFn *gvec_fn; 10307 10308 if (extract32(immh, 3, 1) && !is_q) { 10309 unallocated_encoding(s); 10310 return; 10311 } 10312 tcg_debug_assert(size <= 3); 10313 10314 if (!fp_access_check(s)) { 10315 return; 10316 } 10317 10318 switch (opcode) { 10319 case 0x02: /* SSRA / USRA (accumulate) */ 10320 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10321 break; 10322 10323 case 0x08: /* SRI */ 10324 gvec_fn = gen_gvec_sri; 10325 break; 10326 10327 case 0x00: /* SSHR / USHR */ 10328 if (is_u) { 10329 if (shift == 8 << size) { 10330 /* Shift count the same size as element size produces zero. */ 10331 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10332 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10333 return; 10334 } 10335 gvec_fn = tcg_gen_gvec_shri; 10336 } else { 10337 /* Shift count the same size as element size produces all sign. */ 10338 if (shift == 8 << size) { 10339 shift -= 1; 10340 } 10341 gvec_fn = tcg_gen_gvec_sari; 10342 } 10343 break; 10344 10345 case 0x04: /* SRSHR / URSHR (rounding) */ 10346 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10347 break; 10348 10349 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10350 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10351 break; 10352 10353 default: 10354 g_assert_not_reached(); 10355 } 10356 10357 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10358 } 10359 10360 /* SHL/SLI - Vector shift left */ 10361 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10362 int immh, int immb, int opcode, int rn, int rd) 10363 { 10364 int size = 32 - clz32(immh) - 1; 10365 int immhb = immh << 3 | immb; 10366 int shift = immhb - (8 << size); 10367 10368 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10369 assert(size >= 0 && size <= 3); 10370 10371 if (extract32(immh, 3, 1) && !is_q) { 10372 unallocated_encoding(s); 10373 return; 10374 } 10375 10376 if (!fp_access_check(s)) { 10377 return; 10378 } 10379 10380 if (insert) { 10381 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10382 } else { 10383 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10384 } 10385 } 10386 10387 /* USHLL/SHLL - Vector shift left with widening */ 10388 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10389 int immh, int immb, int opcode, int rn, int rd) 10390 { 10391 int size = 32 - clz32(immh) - 1; 10392 int immhb = immh << 3 | immb; 10393 int shift = immhb - (8 << size); 10394 int dsize = 64; 10395 int esize = 8 << size; 10396 int elements = dsize/esize; 10397 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10398 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10399 int i; 10400 10401 if (size >= 3) { 10402 unallocated_encoding(s); 10403 return; 10404 } 10405 10406 if (!fp_access_check(s)) { 10407 return; 10408 } 10409 10410 /* For the LL variants the store is larger than the load, 10411 * so if rd == rn we would overwrite parts of our input. 10412 * So load everything right now and use shifts in the main loop. 10413 */ 10414 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10415 10416 for (i = 0; i < elements; i++) { 10417 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10418 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10419 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10420 write_vec_element(s, tcg_rd, rd, i, size + 1); 10421 } 10422 } 10423 10424 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10425 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10426 int immh, int immb, int opcode, int rn, int rd) 10427 { 10428 int immhb = immh << 3 | immb; 10429 int size = 32 - clz32(immh) - 1; 10430 int dsize = 64; 10431 int esize = 8 << size; 10432 int elements = dsize/esize; 10433 int shift = (2 * esize) - immhb; 10434 bool round = extract32(opcode, 0, 1); 10435 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10436 TCGv_i64 tcg_round; 10437 int i; 10438 10439 if (extract32(immh, 3, 1)) { 10440 unallocated_encoding(s); 10441 return; 10442 } 10443 10444 if (!fp_access_check(s)) { 10445 return; 10446 } 10447 10448 tcg_rn = tcg_temp_new_i64(); 10449 tcg_rd = tcg_temp_new_i64(); 10450 tcg_final = tcg_temp_new_i64(); 10451 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10452 10453 if (round) { 10454 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10455 } else { 10456 tcg_round = NULL; 10457 } 10458 10459 for (i = 0; i < elements; i++) { 10460 read_vec_element(s, tcg_rn, rn, i, size+1); 10461 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10462 false, true, size+1, shift); 10463 10464 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10465 } 10466 10467 if (!is_q) { 10468 write_vec_element(s, tcg_final, rd, 0, MO_64); 10469 } else { 10470 write_vec_element(s, tcg_final, rd, 1, MO_64); 10471 } 10472 10473 clear_vec_high(s, is_q, rd); 10474 } 10475 10476 10477 /* AdvSIMD shift by immediate 10478 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10479 * +---+---+---+-------------+------+------+--------+---+------+------+ 10480 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10481 * +---+---+---+-------------+------+------+--------+---+------+------+ 10482 */ 10483 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10484 { 10485 int rd = extract32(insn, 0, 5); 10486 int rn = extract32(insn, 5, 5); 10487 int opcode = extract32(insn, 11, 5); 10488 int immb = extract32(insn, 16, 3); 10489 int immh = extract32(insn, 19, 4); 10490 bool is_u = extract32(insn, 29, 1); 10491 bool is_q = extract32(insn, 30, 1); 10492 10493 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10494 assert(immh != 0); 10495 10496 switch (opcode) { 10497 case 0x08: /* SRI */ 10498 if (!is_u) { 10499 unallocated_encoding(s); 10500 return; 10501 } 10502 /* fall through */ 10503 case 0x00: /* SSHR / USHR */ 10504 case 0x02: /* SSRA / USRA (accumulate) */ 10505 case 0x04: /* SRSHR / URSHR (rounding) */ 10506 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10507 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10508 break; 10509 case 0x0a: /* SHL / SLI */ 10510 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10511 break; 10512 case 0x10: /* SHRN */ 10513 case 0x11: /* RSHRN / SQRSHRUN */ 10514 if (is_u) { 10515 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10516 opcode, rn, rd); 10517 } else { 10518 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10519 } 10520 break; 10521 case 0x12: /* SQSHRN / UQSHRN */ 10522 case 0x13: /* SQRSHRN / UQRSHRN */ 10523 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10524 opcode, rn, rd); 10525 break; 10526 case 0x14: /* SSHLL / USHLL */ 10527 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10528 break; 10529 case 0x1c: /* SCVTF / UCVTF */ 10530 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10531 opcode, rn, rd); 10532 break; 10533 case 0xc: /* SQSHLU */ 10534 if (!is_u) { 10535 unallocated_encoding(s); 10536 return; 10537 } 10538 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10539 break; 10540 case 0xe: /* SQSHL, UQSHL */ 10541 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10542 break; 10543 case 0x1f: /* FCVTZS/ FCVTZU */ 10544 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10545 return; 10546 default: 10547 unallocated_encoding(s); 10548 return; 10549 } 10550 } 10551 10552 /* Generate code to do a "long" addition or subtraction, ie one done in 10553 * TCGv_i64 on vector lanes twice the width specified by size. 10554 */ 10555 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10556 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10557 { 10558 static NeonGenTwo64OpFn * const fns[3][2] = { 10559 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10560 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10561 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10562 }; 10563 NeonGenTwo64OpFn *genfn; 10564 assert(size < 3); 10565 10566 genfn = fns[size][is_sub]; 10567 genfn(tcg_res, tcg_op1, tcg_op2); 10568 } 10569 10570 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10571 int opcode, int rd, int rn, int rm) 10572 { 10573 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10574 TCGv_i64 tcg_res[2]; 10575 int pass, accop; 10576 10577 tcg_res[0] = tcg_temp_new_i64(); 10578 tcg_res[1] = tcg_temp_new_i64(); 10579 10580 /* Does this op do an adding accumulate, a subtracting accumulate, 10581 * or no accumulate at all? 10582 */ 10583 switch (opcode) { 10584 case 5: 10585 case 8: 10586 case 9: 10587 accop = 1; 10588 break; 10589 case 10: 10590 case 11: 10591 accop = -1; 10592 break; 10593 default: 10594 accop = 0; 10595 break; 10596 } 10597 10598 if (accop != 0) { 10599 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10600 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10601 } 10602 10603 /* size == 2 means two 32x32->64 operations; this is worth special 10604 * casing because we can generally handle it inline. 10605 */ 10606 if (size == 2) { 10607 for (pass = 0; pass < 2; pass++) { 10608 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10609 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10610 TCGv_i64 tcg_passres; 10611 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10612 10613 int elt = pass + is_q * 2; 10614 10615 read_vec_element(s, tcg_op1, rn, elt, memop); 10616 read_vec_element(s, tcg_op2, rm, elt, memop); 10617 10618 if (accop == 0) { 10619 tcg_passres = tcg_res[pass]; 10620 } else { 10621 tcg_passres = tcg_temp_new_i64(); 10622 } 10623 10624 switch (opcode) { 10625 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10626 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10627 break; 10628 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10629 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10630 break; 10631 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10632 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10633 { 10634 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10635 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10636 10637 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10638 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10639 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10640 tcg_passres, 10641 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10642 break; 10643 } 10644 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10645 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10646 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10647 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10648 break; 10649 case 9: /* SQDMLAL, SQDMLAL2 */ 10650 case 11: /* SQDMLSL, SQDMLSL2 */ 10651 case 13: /* SQDMULL, SQDMULL2 */ 10652 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10653 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10654 tcg_passres, tcg_passres); 10655 break; 10656 default: 10657 g_assert_not_reached(); 10658 } 10659 10660 if (opcode == 9 || opcode == 11) { 10661 /* saturating accumulate ops */ 10662 if (accop < 0) { 10663 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10664 } 10665 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10666 tcg_res[pass], tcg_passres); 10667 } else if (accop > 0) { 10668 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10669 } else if (accop < 0) { 10670 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10671 } 10672 } 10673 } else { 10674 /* size 0 or 1, generally helper functions */ 10675 for (pass = 0; pass < 2; pass++) { 10676 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10677 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10678 TCGv_i64 tcg_passres; 10679 int elt = pass + is_q * 2; 10680 10681 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10682 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10683 10684 if (accop == 0) { 10685 tcg_passres = tcg_res[pass]; 10686 } else { 10687 tcg_passres = tcg_temp_new_i64(); 10688 } 10689 10690 switch (opcode) { 10691 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10692 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10693 { 10694 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10695 static NeonGenWidenFn * const widenfns[2][2] = { 10696 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10697 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10698 }; 10699 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10700 10701 widenfn(tcg_op2_64, tcg_op2); 10702 widenfn(tcg_passres, tcg_op1); 10703 gen_neon_addl(size, (opcode == 2), tcg_passres, 10704 tcg_passres, tcg_op2_64); 10705 break; 10706 } 10707 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10708 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10709 if (size == 0) { 10710 if (is_u) { 10711 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10712 } else { 10713 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10714 } 10715 } else { 10716 if (is_u) { 10717 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10718 } else { 10719 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10720 } 10721 } 10722 break; 10723 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10724 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10725 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10726 if (size == 0) { 10727 if (is_u) { 10728 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10729 } else { 10730 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10731 } 10732 } else { 10733 if (is_u) { 10734 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10735 } else { 10736 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10737 } 10738 } 10739 break; 10740 case 9: /* SQDMLAL, SQDMLAL2 */ 10741 case 11: /* SQDMLSL, SQDMLSL2 */ 10742 case 13: /* SQDMULL, SQDMULL2 */ 10743 assert(size == 1); 10744 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10745 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10746 tcg_passres, tcg_passres); 10747 break; 10748 default: 10749 g_assert_not_reached(); 10750 } 10751 10752 if (accop != 0) { 10753 if (opcode == 9 || opcode == 11) { 10754 /* saturating accumulate ops */ 10755 if (accop < 0) { 10756 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10757 } 10758 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10759 tcg_res[pass], 10760 tcg_passres); 10761 } else { 10762 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10763 tcg_res[pass], tcg_passres); 10764 } 10765 } 10766 } 10767 } 10768 10769 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10770 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10771 } 10772 10773 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10774 int opcode, int rd, int rn, int rm) 10775 { 10776 TCGv_i64 tcg_res[2]; 10777 int part = is_q ? 2 : 0; 10778 int pass; 10779 10780 for (pass = 0; pass < 2; pass++) { 10781 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10782 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10783 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10784 static NeonGenWidenFn * const widenfns[3][2] = { 10785 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10786 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10787 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10788 }; 10789 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10790 10791 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10792 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10793 widenfn(tcg_op2_wide, tcg_op2); 10794 tcg_res[pass] = tcg_temp_new_i64(); 10795 gen_neon_addl(size, (opcode == 3), 10796 tcg_res[pass], tcg_op1, tcg_op2_wide); 10797 } 10798 10799 for (pass = 0; pass < 2; pass++) { 10800 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10801 } 10802 } 10803 10804 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10805 { 10806 tcg_gen_addi_i64(in, in, 1U << 31); 10807 tcg_gen_extrh_i64_i32(res, in); 10808 } 10809 10810 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10811 int opcode, int rd, int rn, int rm) 10812 { 10813 TCGv_i32 tcg_res[2]; 10814 int part = is_q ? 2 : 0; 10815 int pass; 10816 10817 for (pass = 0; pass < 2; pass++) { 10818 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10819 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10820 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10821 static NeonGenNarrowFn * const narrowfns[3][2] = { 10822 { gen_helper_neon_narrow_high_u8, 10823 gen_helper_neon_narrow_round_high_u8 }, 10824 { gen_helper_neon_narrow_high_u16, 10825 gen_helper_neon_narrow_round_high_u16 }, 10826 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10827 }; 10828 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10829 10830 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10831 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10832 10833 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10834 10835 tcg_res[pass] = tcg_temp_new_i32(); 10836 gennarrow(tcg_res[pass], tcg_wideres); 10837 } 10838 10839 for (pass = 0; pass < 2; pass++) { 10840 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10841 } 10842 clear_vec_high(s, is_q, rd); 10843 } 10844 10845 /* AdvSIMD three different 10846 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10847 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10848 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10849 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10850 */ 10851 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10852 { 10853 /* Instructions in this group fall into three basic classes 10854 * (in each case with the operation working on each element in 10855 * the input vectors): 10856 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10857 * 128 bit input) 10858 * (2) wide 64 x 128 -> 128 10859 * (3) narrowing 128 x 128 -> 64 10860 * Here we do initial decode, catch unallocated cases and 10861 * dispatch to separate functions for each class. 10862 */ 10863 int is_q = extract32(insn, 30, 1); 10864 int is_u = extract32(insn, 29, 1); 10865 int size = extract32(insn, 22, 2); 10866 int opcode = extract32(insn, 12, 4); 10867 int rm = extract32(insn, 16, 5); 10868 int rn = extract32(insn, 5, 5); 10869 int rd = extract32(insn, 0, 5); 10870 10871 switch (opcode) { 10872 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10873 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10874 /* 64 x 128 -> 128 */ 10875 if (size == 3) { 10876 unallocated_encoding(s); 10877 return; 10878 } 10879 if (!fp_access_check(s)) { 10880 return; 10881 } 10882 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10883 break; 10884 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10885 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10886 /* 128 x 128 -> 64 */ 10887 if (size == 3) { 10888 unallocated_encoding(s); 10889 return; 10890 } 10891 if (!fp_access_check(s)) { 10892 return; 10893 } 10894 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10895 break; 10896 case 14: /* PMULL, PMULL2 */ 10897 if (is_u) { 10898 unallocated_encoding(s); 10899 return; 10900 } 10901 switch (size) { 10902 case 0: /* PMULL.P8 */ 10903 if (!fp_access_check(s)) { 10904 return; 10905 } 10906 /* The Q field specifies lo/hi half input for this insn. */ 10907 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10908 gen_helper_neon_pmull_h); 10909 break; 10910 10911 case 3: /* PMULL.P64 */ 10912 if (!dc_isar_feature(aa64_pmull, s)) { 10913 unallocated_encoding(s); 10914 return; 10915 } 10916 if (!fp_access_check(s)) { 10917 return; 10918 } 10919 /* The Q field specifies lo/hi half input for this insn. */ 10920 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10921 gen_helper_gvec_pmull_q); 10922 break; 10923 10924 default: 10925 unallocated_encoding(s); 10926 break; 10927 } 10928 return; 10929 case 9: /* SQDMLAL, SQDMLAL2 */ 10930 case 11: /* SQDMLSL, SQDMLSL2 */ 10931 case 13: /* SQDMULL, SQDMULL2 */ 10932 if (is_u || size == 0) { 10933 unallocated_encoding(s); 10934 return; 10935 } 10936 /* fall through */ 10937 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10938 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10939 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10940 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10941 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10942 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10943 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10944 /* 64 x 64 -> 128 */ 10945 if (size == 3) { 10946 unallocated_encoding(s); 10947 return; 10948 } 10949 if (!fp_access_check(s)) { 10950 return; 10951 } 10952 10953 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10954 break; 10955 default: 10956 /* opcode 15 not allocated */ 10957 unallocated_encoding(s); 10958 break; 10959 } 10960 } 10961 10962 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10963 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10964 { 10965 int rd = extract32(insn, 0, 5); 10966 int rn = extract32(insn, 5, 5); 10967 int rm = extract32(insn, 16, 5); 10968 int size = extract32(insn, 22, 2); 10969 bool is_u = extract32(insn, 29, 1); 10970 bool is_q = extract32(insn, 30, 1); 10971 10972 if (!fp_access_check(s)) { 10973 return; 10974 } 10975 10976 switch (size + 4 * is_u) { 10977 case 0: /* AND */ 10978 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10979 return; 10980 case 1: /* BIC */ 10981 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10982 return; 10983 case 2: /* ORR */ 10984 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10985 return; 10986 case 3: /* ORN */ 10987 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10988 return; 10989 case 4: /* EOR */ 10990 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10991 return; 10992 10993 case 5: /* BSL bitwise select */ 10994 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10995 return; 10996 case 6: /* BIT, bitwise insert if true */ 10997 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10998 return; 10999 case 7: /* BIF, bitwise insert if false */ 11000 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11001 return; 11002 11003 default: 11004 g_assert_not_reached(); 11005 } 11006 } 11007 11008 /* Pairwise op subgroup of C3.6.16. 11009 * 11010 * This is called directly or via the handle_3same_float for float pairwise 11011 * operations where the opcode and size are calculated differently. 11012 */ 11013 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11014 int size, int rn, int rm, int rd) 11015 { 11016 TCGv_ptr fpst; 11017 int pass; 11018 11019 /* Floating point operations need fpst */ 11020 if (opcode >= 0x58) { 11021 fpst = fpstatus_ptr(FPST_FPCR); 11022 } else { 11023 fpst = NULL; 11024 } 11025 11026 if (!fp_access_check(s)) { 11027 return; 11028 } 11029 11030 /* These operations work on the concatenated rm:rn, with each pair of 11031 * adjacent elements being operated on to produce an element in the result. 11032 */ 11033 if (size == 3) { 11034 TCGv_i64 tcg_res[2]; 11035 11036 for (pass = 0; pass < 2; pass++) { 11037 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11038 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11039 int passreg = (pass == 0) ? rn : rm; 11040 11041 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11042 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11043 tcg_res[pass] = tcg_temp_new_i64(); 11044 11045 switch (opcode) { 11046 case 0x17: /* ADDP */ 11047 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11048 break; 11049 case 0x58: /* FMAXNMP */ 11050 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11051 break; 11052 case 0x5a: /* FADDP */ 11053 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11054 break; 11055 case 0x5e: /* FMAXP */ 11056 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11057 break; 11058 case 0x78: /* FMINNMP */ 11059 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11060 break; 11061 case 0x7e: /* FMINP */ 11062 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11063 break; 11064 default: 11065 g_assert_not_reached(); 11066 } 11067 } 11068 11069 for (pass = 0; pass < 2; pass++) { 11070 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11071 } 11072 } else { 11073 int maxpass = is_q ? 4 : 2; 11074 TCGv_i32 tcg_res[4]; 11075 11076 for (pass = 0; pass < maxpass; pass++) { 11077 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11078 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11079 NeonGenTwoOpFn *genfn = NULL; 11080 int passreg = pass < (maxpass / 2) ? rn : rm; 11081 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11082 11083 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11084 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11085 tcg_res[pass] = tcg_temp_new_i32(); 11086 11087 switch (opcode) { 11088 case 0x17: /* ADDP */ 11089 { 11090 static NeonGenTwoOpFn * const fns[3] = { 11091 gen_helper_neon_padd_u8, 11092 gen_helper_neon_padd_u16, 11093 tcg_gen_add_i32, 11094 }; 11095 genfn = fns[size]; 11096 break; 11097 } 11098 case 0x14: /* SMAXP, UMAXP */ 11099 { 11100 static NeonGenTwoOpFn * const fns[3][2] = { 11101 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11102 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11103 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11104 }; 11105 genfn = fns[size][u]; 11106 break; 11107 } 11108 case 0x15: /* SMINP, UMINP */ 11109 { 11110 static NeonGenTwoOpFn * const fns[3][2] = { 11111 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11112 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11113 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11114 }; 11115 genfn = fns[size][u]; 11116 break; 11117 } 11118 /* The FP operations are all on single floats (32 bit) */ 11119 case 0x58: /* FMAXNMP */ 11120 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11121 break; 11122 case 0x5a: /* FADDP */ 11123 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11124 break; 11125 case 0x5e: /* FMAXP */ 11126 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11127 break; 11128 case 0x78: /* FMINNMP */ 11129 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11130 break; 11131 case 0x7e: /* FMINP */ 11132 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11133 break; 11134 default: 11135 g_assert_not_reached(); 11136 } 11137 11138 /* FP ops called directly, otherwise call now */ 11139 if (genfn) { 11140 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11141 } 11142 } 11143 11144 for (pass = 0; pass < maxpass; pass++) { 11145 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11146 } 11147 clear_vec_high(s, is_q, rd); 11148 } 11149 } 11150 11151 /* Floating point op subgroup of C3.6.16. */ 11152 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11153 { 11154 /* For floating point ops, the U, size[1] and opcode bits 11155 * together indicate the operation. size[0] indicates single 11156 * or double. 11157 */ 11158 int fpopcode = extract32(insn, 11, 5) 11159 | (extract32(insn, 23, 1) << 5) 11160 | (extract32(insn, 29, 1) << 6); 11161 int is_q = extract32(insn, 30, 1); 11162 int size = extract32(insn, 22, 1); 11163 int rm = extract32(insn, 16, 5); 11164 int rn = extract32(insn, 5, 5); 11165 int rd = extract32(insn, 0, 5); 11166 11167 int datasize = is_q ? 128 : 64; 11168 int esize = 32 << size; 11169 int elements = datasize / esize; 11170 11171 if (size == 1 && !is_q) { 11172 unallocated_encoding(s); 11173 return; 11174 } 11175 11176 switch (fpopcode) { 11177 case 0x58: /* FMAXNMP */ 11178 case 0x5a: /* FADDP */ 11179 case 0x5e: /* FMAXP */ 11180 case 0x78: /* FMINNMP */ 11181 case 0x7e: /* FMINP */ 11182 if (size && !is_q) { 11183 unallocated_encoding(s); 11184 return; 11185 } 11186 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11187 rn, rm, rd); 11188 return; 11189 case 0x1b: /* FMULX */ 11190 case 0x1f: /* FRECPS */ 11191 case 0x3f: /* FRSQRTS */ 11192 case 0x5d: /* FACGE */ 11193 case 0x7d: /* FACGT */ 11194 case 0x19: /* FMLA */ 11195 case 0x39: /* FMLS */ 11196 case 0x18: /* FMAXNM */ 11197 case 0x1a: /* FADD */ 11198 case 0x1c: /* FCMEQ */ 11199 case 0x1e: /* FMAX */ 11200 case 0x38: /* FMINNM */ 11201 case 0x3a: /* FSUB */ 11202 case 0x3e: /* FMIN */ 11203 case 0x5b: /* FMUL */ 11204 case 0x5c: /* FCMGE */ 11205 case 0x5f: /* FDIV */ 11206 case 0x7a: /* FABD */ 11207 case 0x7c: /* FCMGT */ 11208 if (!fp_access_check(s)) { 11209 return; 11210 } 11211 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11212 return; 11213 11214 case 0x1d: /* FMLAL */ 11215 case 0x3d: /* FMLSL */ 11216 case 0x59: /* FMLAL2 */ 11217 case 0x79: /* FMLSL2 */ 11218 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11219 unallocated_encoding(s); 11220 return; 11221 } 11222 if (fp_access_check(s)) { 11223 int is_s = extract32(insn, 23, 1); 11224 int is_2 = extract32(insn, 29, 1); 11225 int data = (is_2 << 1) | is_s; 11226 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11227 vec_full_reg_offset(s, rn), 11228 vec_full_reg_offset(s, rm), cpu_env, 11229 is_q ? 16 : 8, vec_full_reg_size(s), 11230 data, gen_helper_gvec_fmlal_a64); 11231 } 11232 return; 11233 11234 default: 11235 unallocated_encoding(s); 11236 return; 11237 } 11238 } 11239 11240 /* Integer op subgroup of C3.6.16. */ 11241 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11242 { 11243 int is_q = extract32(insn, 30, 1); 11244 int u = extract32(insn, 29, 1); 11245 int size = extract32(insn, 22, 2); 11246 int opcode = extract32(insn, 11, 5); 11247 int rm = extract32(insn, 16, 5); 11248 int rn = extract32(insn, 5, 5); 11249 int rd = extract32(insn, 0, 5); 11250 int pass; 11251 TCGCond cond; 11252 11253 switch (opcode) { 11254 case 0x13: /* MUL, PMUL */ 11255 if (u && size != 0) { 11256 unallocated_encoding(s); 11257 return; 11258 } 11259 /* fall through */ 11260 case 0x0: /* SHADD, UHADD */ 11261 case 0x2: /* SRHADD, URHADD */ 11262 case 0x4: /* SHSUB, UHSUB */ 11263 case 0xc: /* SMAX, UMAX */ 11264 case 0xd: /* SMIN, UMIN */ 11265 case 0xe: /* SABD, UABD */ 11266 case 0xf: /* SABA, UABA */ 11267 case 0x12: /* MLA, MLS */ 11268 if (size == 3) { 11269 unallocated_encoding(s); 11270 return; 11271 } 11272 break; 11273 case 0x16: /* SQDMULH, SQRDMULH */ 11274 if (size == 0 || size == 3) { 11275 unallocated_encoding(s); 11276 return; 11277 } 11278 break; 11279 default: 11280 if (size == 3 && !is_q) { 11281 unallocated_encoding(s); 11282 return; 11283 } 11284 break; 11285 } 11286 11287 if (!fp_access_check(s)) { 11288 return; 11289 } 11290 11291 switch (opcode) { 11292 case 0x01: /* SQADD, UQADD */ 11293 if (u) { 11294 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11295 } else { 11296 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11297 } 11298 return; 11299 case 0x05: /* SQSUB, UQSUB */ 11300 if (u) { 11301 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11302 } else { 11303 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11304 } 11305 return; 11306 case 0x08: /* SSHL, USHL */ 11307 if (u) { 11308 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11309 } else { 11310 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11311 } 11312 return; 11313 case 0x0c: /* SMAX, UMAX */ 11314 if (u) { 11315 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11316 } else { 11317 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11318 } 11319 return; 11320 case 0x0d: /* SMIN, UMIN */ 11321 if (u) { 11322 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11323 } else { 11324 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11325 } 11326 return; 11327 case 0xe: /* SABD, UABD */ 11328 if (u) { 11329 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11330 } else { 11331 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11332 } 11333 return; 11334 case 0xf: /* SABA, UABA */ 11335 if (u) { 11336 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11337 } else { 11338 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11339 } 11340 return; 11341 case 0x10: /* ADD, SUB */ 11342 if (u) { 11343 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11344 } else { 11345 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11346 } 11347 return; 11348 case 0x13: /* MUL, PMUL */ 11349 if (!u) { /* MUL */ 11350 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11351 } else { /* PMUL */ 11352 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11353 } 11354 return; 11355 case 0x12: /* MLA, MLS */ 11356 if (u) { 11357 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11358 } else { 11359 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11360 } 11361 return; 11362 case 0x16: /* SQDMULH, SQRDMULH */ 11363 { 11364 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11365 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11366 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11367 }; 11368 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11369 } 11370 return; 11371 case 0x11: 11372 if (!u) { /* CMTST */ 11373 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11374 return; 11375 } 11376 /* else CMEQ */ 11377 cond = TCG_COND_EQ; 11378 goto do_gvec_cmp; 11379 case 0x06: /* CMGT, CMHI */ 11380 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11381 goto do_gvec_cmp; 11382 case 0x07: /* CMGE, CMHS */ 11383 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11384 do_gvec_cmp: 11385 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11386 vec_full_reg_offset(s, rn), 11387 vec_full_reg_offset(s, rm), 11388 is_q ? 16 : 8, vec_full_reg_size(s)); 11389 return; 11390 } 11391 11392 if (size == 3) { 11393 assert(is_q); 11394 for (pass = 0; pass < 2; pass++) { 11395 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11396 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11397 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11398 11399 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11400 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11401 11402 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11403 11404 write_vec_element(s, tcg_res, rd, pass, MO_64); 11405 } 11406 } else { 11407 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11408 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11409 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11410 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11411 NeonGenTwoOpFn *genfn = NULL; 11412 NeonGenTwoOpEnvFn *genenvfn = NULL; 11413 11414 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11415 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11416 11417 switch (opcode) { 11418 case 0x0: /* SHADD, UHADD */ 11419 { 11420 static NeonGenTwoOpFn * const fns[3][2] = { 11421 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11422 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11423 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11424 }; 11425 genfn = fns[size][u]; 11426 break; 11427 } 11428 case 0x2: /* SRHADD, URHADD */ 11429 { 11430 static NeonGenTwoOpFn * const fns[3][2] = { 11431 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11432 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11433 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11434 }; 11435 genfn = fns[size][u]; 11436 break; 11437 } 11438 case 0x4: /* SHSUB, UHSUB */ 11439 { 11440 static NeonGenTwoOpFn * const fns[3][2] = { 11441 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11442 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11443 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11444 }; 11445 genfn = fns[size][u]; 11446 break; 11447 } 11448 case 0x9: /* SQSHL, UQSHL */ 11449 { 11450 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11451 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11452 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11453 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11454 }; 11455 genenvfn = fns[size][u]; 11456 break; 11457 } 11458 case 0xa: /* SRSHL, URSHL */ 11459 { 11460 static NeonGenTwoOpFn * const fns[3][2] = { 11461 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11462 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11463 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11464 }; 11465 genfn = fns[size][u]; 11466 break; 11467 } 11468 case 0xb: /* SQRSHL, UQRSHL */ 11469 { 11470 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11471 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11472 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11473 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11474 }; 11475 genenvfn = fns[size][u]; 11476 break; 11477 } 11478 default: 11479 g_assert_not_reached(); 11480 } 11481 11482 if (genenvfn) { 11483 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11484 } else { 11485 genfn(tcg_res, tcg_op1, tcg_op2); 11486 } 11487 11488 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11489 } 11490 } 11491 clear_vec_high(s, is_q, rd); 11492 } 11493 11494 /* AdvSIMD three same 11495 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11496 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11497 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11498 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11499 */ 11500 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11501 { 11502 int opcode = extract32(insn, 11, 5); 11503 11504 switch (opcode) { 11505 case 0x3: /* logic ops */ 11506 disas_simd_3same_logic(s, insn); 11507 break; 11508 case 0x17: /* ADDP */ 11509 case 0x14: /* SMAXP, UMAXP */ 11510 case 0x15: /* SMINP, UMINP */ 11511 { 11512 /* Pairwise operations */ 11513 int is_q = extract32(insn, 30, 1); 11514 int u = extract32(insn, 29, 1); 11515 int size = extract32(insn, 22, 2); 11516 int rm = extract32(insn, 16, 5); 11517 int rn = extract32(insn, 5, 5); 11518 int rd = extract32(insn, 0, 5); 11519 if (opcode == 0x17) { 11520 if (u || (size == 3 && !is_q)) { 11521 unallocated_encoding(s); 11522 return; 11523 } 11524 } else { 11525 if (size == 3) { 11526 unallocated_encoding(s); 11527 return; 11528 } 11529 } 11530 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11531 break; 11532 } 11533 case 0x18 ... 0x31: 11534 /* floating point ops, sz[1] and U are part of opcode */ 11535 disas_simd_3same_float(s, insn); 11536 break; 11537 default: 11538 disas_simd_3same_int(s, insn); 11539 break; 11540 } 11541 } 11542 11543 /* 11544 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11545 * 11546 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11547 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11548 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11549 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11550 * 11551 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11552 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11553 * 11554 */ 11555 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11556 { 11557 int opcode = extract32(insn, 11, 3); 11558 int u = extract32(insn, 29, 1); 11559 int a = extract32(insn, 23, 1); 11560 int is_q = extract32(insn, 30, 1); 11561 int rm = extract32(insn, 16, 5); 11562 int rn = extract32(insn, 5, 5); 11563 int rd = extract32(insn, 0, 5); 11564 /* 11565 * For these floating point ops, the U, a and opcode bits 11566 * together indicate the operation. 11567 */ 11568 int fpopcode = opcode | (a << 3) | (u << 4); 11569 int datasize = is_q ? 128 : 64; 11570 int elements = datasize / 16; 11571 bool pairwise; 11572 TCGv_ptr fpst; 11573 int pass; 11574 11575 switch (fpopcode) { 11576 case 0x0: /* FMAXNM */ 11577 case 0x1: /* FMLA */ 11578 case 0x2: /* FADD */ 11579 case 0x3: /* FMULX */ 11580 case 0x4: /* FCMEQ */ 11581 case 0x6: /* FMAX */ 11582 case 0x7: /* FRECPS */ 11583 case 0x8: /* FMINNM */ 11584 case 0x9: /* FMLS */ 11585 case 0xa: /* FSUB */ 11586 case 0xe: /* FMIN */ 11587 case 0xf: /* FRSQRTS */ 11588 case 0x13: /* FMUL */ 11589 case 0x14: /* FCMGE */ 11590 case 0x15: /* FACGE */ 11591 case 0x17: /* FDIV */ 11592 case 0x1a: /* FABD */ 11593 case 0x1c: /* FCMGT */ 11594 case 0x1d: /* FACGT */ 11595 pairwise = false; 11596 break; 11597 case 0x10: /* FMAXNMP */ 11598 case 0x12: /* FADDP */ 11599 case 0x16: /* FMAXP */ 11600 case 0x18: /* FMINNMP */ 11601 case 0x1e: /* FMINP */ 11602 pairwise = true; 11603 break; 11604 default: 11605 unallocated_encoding(s); 11606 return; 11607 } 11608 11609 if (!dc_isar_feature(aa64_fp16, s)) { 11610 unallocated_encoding(s); 11611 return; 11612 } 11613 11614 if (!fp_access_check(s)) { 11615 return; 11616 } 11617 11618 fpst = fpstatus_ptr(FPST_FPCR_F16); 11619 11620 if (pairwise) { 11621 int maxpass = is_q ? 8 : 4; 11622 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11623 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11624 TCGv_i32 tcg_res[8]; 11625 11626 for (pass = 0; pass < maxpass; pass++) { 11627 int passreg = pass < (maxpass / 2) ? rn : rm; 11628 int passelt = (pass << 1) & (maxpass - 1); 11629 11630 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11631 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11632 tcg_res[pass] = tcg_temp_new_i32(); 11633 11634 switch (fpopcode) { 11635 case 0x10: /* FMAXNMP */ 11636 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11637 fpst); 11638 break; 11639 case 0x12: /* FADDP */ 11640 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11641 break; 11642 case 0x16: /* FMAXP */ 11643 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11644 break; 11645 case 0x18: /* FMINNMP */ 11646 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11647 fpst); 11648 break; 11649 case 0x1e: /* FMINP */ 11650 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11651 break; 11652 default: 11653 g_assert_not_reached(); 11654 } 11655 } 11656 11657 for (pass = 0; pass < maxpass; pass++) { 11658 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11659 } 11660 } else { 11661 for (pass = 0; pass < elements; pass++) { 11662 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11663 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11664 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11665 11666 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11667 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11668 11669 switch (fpopcode) { 11670 case 0x0: /* FMAXNM */ 11671 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11672 break; 11673 case 0x1: /* FMLA */ 11674 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11675 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11676 fpst); 11677 break; 11678 case 0x2: /* FADD */ 11679 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11680 break; 11681 case 0x3: /* FMULX */ 11682 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11683 break; 11684 case 0x4: /* FCMEQ */ 11685 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11686 break; 11687 case 0x6: /* FMAX */ 11688 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11689 break; 11690 case 0x7: /* FRECPS */ 11691 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11692 break; 11693 case 0x8: /* FMINNM */ 11694 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11695 break; 11696 case 0x9: /* FMLS */ 11697 /* As usual for ARM, separate negation for fused multiply-add */ 11698 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11699 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11700 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11701 fpst); 11702 break; 11703 case 0xa: /* FSUB */ 11704 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11705 break; 11706 case 0xe: /* FMIN */ 11707 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11708 break; 11709 case 0xf: /* FRSQRTS */ 11710 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11711 break; 11712 case 0x13: /* FMUL */ 11713 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11714 break; 11715 case 0x14: /* FCMGE */ 11716 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11717 break; 11718 case 0x15: /* FACGE */ 11719 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11720 break; 11721 case 0x17: /* FDIV */ 11722 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11723 break; 11724 case 0x1a: /* FABD */ 11725 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11726 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11727 break; 11728 case 0x1c: /* FCMGT */ 11729 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11730 break; 11731 case 0x1d: /* FACGT */ 11732 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11733 break; 11734 default: 11735 g_assert_not_reached(); 11736 } 11737 11738 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11739 } 11740 } 11741 11742 clear_vec_high(s, is_q, rd); 11743 } 11744 11745 /* AdvSIMD three same extra 11746 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11747 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11748 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11749 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11750 */ 11751 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11752 { 11753 int rd = extract32(insn, 0, 5); 11754 int rn = extract32(insn, 5, 5); 11755 int opcode = extract32(insn, 11, 4); 11756 int rm = extract32(insn, 16, 5); 11757 int size = extract32(insn, 22, 2); 11758 bool u = extract32(insn, 29, 1); 11759 bool is_q = extract32(insn, 30, 1); 11760 bool feature; 11761 int rot; 11762 11763 switch (u * 16 + opcode) { 11764 case 0x10: /* SQRDMLAH (vector) */ 11765 case 0x11: /* SQRDMLSH (vector) */ 11766 if (size != 1 && size != 2) { 11767 unallocated_encoding(s); 11768 return; 11769 } 11770 feature = dc_isar_feature(aa64_rdm, s); 11771 break; 11772 case 0x02: /* SDOT (vector) */ 11773 case 0x12: /* UDOT (vector) */ 11774 if (size != MO_32) { 11775 unallocated_encoding(s); 11776 return; 11777 } 11778 feature = dc_isar_feature(aa64_dp, s); 11779 break; 11780 case 0x03: /* USDOT */ 11781 if (size != MO_32) { 11782 unallocated_encoding(s); 11783 return; 11784 } 11785 feature = dc_isar_feature(aa64_i8mm, s); 11786 break; 11787 case 0x04: /* SMMLA */ 11788 case 0x14: /* UMMLA */ 11789 case 0x05: /* USMMLA */ 11790 if (!is_q || size != MO_32) { 11791 unallocated_encoding(s); 11792 return; 11793 } 11794 feature = dc_isar_feature(aa64_i8mm, s); 11795 break; 11796 case 0x18: /* FCMLA, #0 */ 11797 case 0x19: /* FCMLA, #90 */ 11798 case 0x1a: /* FCMLA, #180 */ 11799 case 0x1b: /* FCMLA, #270 */ 11800 case 0x1c: /* FCADD, #90 */ 11801 case 0x1e: /* FCADD, #270 */ 11802 if (size == 0 11803 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11804 || (size == 3 && !is_q)) { 11805 unallocated_encoding(s); 11806 return; 11807 } 11808 feature = dc_isar_feature(aa64_fcma, s); 11809 break; 11810 case 0x1d: /* BFMMLA */ 11811 if (size != MO_16 || !is_q) { 11812 unallocated_encoding(s); 11813 return; 11814 } 11815 feature = dc_isar_feature(aa64_bf16, s); 11816 break; 11817 case 0x1f: 11818 switch (size) { 11819 case 1: /* BFDOT */ 11820 case 3: /* BFMLAL{B,T} */ 11821 feature = dc_isar_feature(aa64_bf16, s); 11822 break; 11823 default: 11824 unallocated_encoding(s); 11825 return; 11826 } 11827 break; 11828 default: 11829 unallocated_encoding(s); 11830 return; 11831 } 11832 if (!feature) { 11833 unallocated_encoding(s); 11834 return; 11835 } 11836 if (!fp_access_check(s)) { 11837 return; 11838 } 11839 11840 switch (opcode) { 11841 case 0x0: /* SQRDMLAH (vector) */ 11842 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11843 return; 11844 11845 case 0x1: /* SQRDMLSH (vector) */ 11846 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11847 return; 11848 11849 case 0x2: /* SDOT / UDOT */ 11850 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11851 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11852 return; 11853 11854 case 0x3: /* USDOT */ 11855 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11856 return; 11857 11858 case 0x04: /* SMMLA, UMMLA */ 11859 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11860 u ? gen_helper_gvec_ummla_b 11861 : gen_helper_gvec_smmla_b); 11862 return; 11863 case 0x05: /* USMMLA */ 11864 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11865 return; 11866 11867 case 0x8: /* FCMLA, #0 */ 11868 case 0x9: /* FCMLA, #90 */ 11869 case 0xa: /* FCMLA, #180 */ 11870 case 0xb: /* FCMLA, #270 */ 11871 rot = extract32(opcode, 0, 2); 11872 switch (size) { 11873 case 1: 11874 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11875 gen_helper_gvec_fcmlah); 11876 break; 11877 case 2: 11878 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11879 gen_helper_gvec_fcmlas); 11880 break; 11881 case 3: 11882 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11883 gen_helper_gvec_fcmlad); 11884 break; 11885 default: 11886 g_assert_not_reached(); 11887 } 11888 return; 11889 11890 case 0xc: /* FCADD, #90 */ 11891 case 0xe: /* FCADD, #270 */ 11892 rot = extract32(opcode, 1, 1); 11893 switch (size) { 11894 case 1: 11895 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11896 gen_helper_gvec_fcaddh); 11897 break; 11898 case 2: 11899 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11900 gen_helper_gvec_fcadds); 11901 break; 11902 case 3: 11903 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11904 gen_helper_gvec_fcaddd); 11905 break; 11906 default: 11907 g_assert_not_reached(); 11908 } 11909 return; 11910 11911 case 0xd: /* BFMMLA */ 11912 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11913 return; 11914 case 0xf: 11915 switch (size) { 11916 case 1: /* BFDOT */ 11917 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11918 break; 11919 case 3: /* BFMLAL{B,T} */ 11920 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11921 gen_helper_gvec_bfmlal); 11922 break; 11923 default: 11924 g_assert_not_reached(); 11925 } 11926 return; 11927 11928 default: 11929 g_assert_not_reached(); 11930 } 11931 } 11932 11933 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11934 int size, int rn, int rd) 11935 { 11936 /* Handle 2-reg-misc ops which are widening (so each size element 11937 * in the source becomes a 2*size element in the destination. 11938 * The only instruction like this is FCVTL. 11939 */ 11940 int pass; 11941 11942 if (size == 3) { 11943 /* 32 -> 64 bit fp conversion */ 11944 TCGv_i64 tcg_res[2]; 11945 int srcelt = is_q ? 2 : 0; 11946 11947 for (pass = 0; pass < 2; pass++) { 11948 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11949 tcg_res[pass] = tcg_temp_new_i64(); 11950 11951 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11952 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11953 } 11954 for (pass = 0; pass < 2; pass++) { 11955 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11956 } 11957 } else { 11958 /* 16 -> 32 bit fp conversion */ 11959 int srcelt = is_q ? 4 : 0; 11960 TCGv_i32 tcg_res[4]; 11961 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11962 TCGv_i32 ahp = get_ahp_flag(); 11963 11964 for (pass = 0; pass < 4; pass++) { 11965 tcg_res[pass] = tcg_temp_new_i32(); 11966 11967 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11968 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11969 fpst, ahp); 11970 } 11971 for (pass = 0; pass < 4; pass++) { 11972 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11973 } 11974 } 11975 } 11976 11977 static void handle_rev(DisasContext *s, int opcode, bool u, 11978 bool is_q, int size, int rn, int rd) 11979 { 11980 int op = (opcode << 1) | u; 11981 int opsz = op + size; 11982 int grp_size = 3 - opsz; 11983 int dsize = is_q ? 128 : 64; 11984 int i; 11985 11986 if (opsz >= 3) { 11987 unallocated_encoding(s); 11988 return; 11989 } 11990 11991 if (!fp_access_check(s)) { 11992 return; 11993 } 11994 11995 if (size == 0) { 11996 /* Special case bytes, use bswap op on each group of elements */ 11997 int groups = dsize / (8 << grp_size); 11998 11999 for (i = 0; i < groups; i++) { 12000 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12001 12002 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12003 switch (grp_size) { 12004 case MO_16: 12005 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12006 break; 12007 case MO_32: 12008 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12009 break; 12010 case MO_64: 12011 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12012 break; 12013 default: 12014 g_assert_not_reached(); 12015 } 12016 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12017 } 12018 clear_vec_high(s, is_q, rd); 12019 } else { 12020 int revmask = (1 << grp_size) - 1; 12021 int esize = 8 << size; 12022 int elements = dsize / esize; 12023 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12024 TCGv_i64 tcg_rd[2]; 12025 12026 for (i = 0; i < 2; i++) { 12027 tcg_rd[i] = tcg_temp_new_i64(); 12028 tcg_gen_movi_i64(tcg_rd[i], 0); 12029 } 12030 12031 for (i = 0; i < elements; i++) { 12032 int e_rev = (i & 0xf) ^ revmask; 12033 int w = (e_rev * esize) / 64; 12034 int o = (e_rev * esize) % 64; 12035 12036 read_vec_element(s, tcg_rn, rn, i, size); 12037 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12038 } 12039 12040 for (i = 0; i < 2; i++) { 12041 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12042 } 12043 clear_vec_high(s, true, rd); 12044 } 12045 } 12046 12047 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12048 bool is_q, int size, int rn, int rd) 12049 { 12050 /* Implement the pairwise operations from 2-misc: 12051 * SADDLP, UADDLP, SADALP, UADALP. 12052 * These all add pairs of elements in the input to produce a 12053 * double-width result element in the output (possibly accumulating). 12054 */ 12055 bool accum = (opcode == 0x6); 12056 int maxpass = is_q ? 2 : 1; 12057 int pass; 12058 TCGv_i64 tcg_res[2]; 12059 12060 if (size == 2) { 12061 /* 32 + 32 -> 64 op */ 12062 MemOp memop = size + (u ? 0 : MO_SIGN); 12063 12064 for (pass = 0; pass < maxpass; pass++) { 12065 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12066 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12067 12068 tcg_res[pass] = tcg_temp_new_i64(); 12069 12070 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12071 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12072 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12073 if (accum) { 12074 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12075 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12076 } 12077 } 12078 } else { 12079 for (pass = 0; pass < maxpass; pass++) { 12080 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12081 NeonGenOne64OpFn *genfn; 12082 static NeonGenOne64OpFn * const fns[2][2] = { 12083 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12084 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12085 }; 12086 12087 genfn = fns[size][u]; 12088 12089 tcg_res[pass] = tcg_temp_new_i64(); 12090 12091 read_vec_element(s, tcg_op, rn, pass, MO_64); 12092 genfn(tcg_res[pass], tcg_op); 12093 12094 if (accum) { 12095 read_vec_element(s, tcg_op, rd, pass, MO_64); 12096 if (size == 0) { 12097 gen_helper_neon_addl_u16(tcg_res[pass], 12098 tcg_res[pass], tcg_op); 12099 } else { 12100 gen_helper_neon_addl_u32(tcg_res[pass], 12101 tcg_res[pass], tcg_op); 12102 } 12103 } 12104 } 12105 } 12106 if (!is_q) { 12107 tcg_res[1] = tcg_constant_i64(0); 12108 } 12109 for (pass = 0; pass < 2; pass++) { 12110 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12111 } 12112 } 12113 12114 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12115 { 12116 /* Implement SHLL and SHLL2 */ 12117 int pass; 12118 int part = is_q ? 2 : 0; 12119 TCGv_i64 tcg_res[2]; 12120 12121 for (pass = 0; pass < 2; pass++) { 12122 static NeonGenWidenFn * const widenfns[3] = { 12123 gen_helper_neon_widen_u8, 12124 gen_helper_neon_widen_u16, 12125 tcg_gen_extu_i32_i64, 12126 }; 12127 NeonGenWidenFn *widenfn = widenfns[size]; 12128 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12129 12130 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12131 tcg_res[pass] = tcg_temp_new_i64(); 12132 widenfn(tcg_res[pass], tcg_op); 12133 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12134 } 12135 12136 for (pass = 0; pass < 2; pass++) { 12137 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12138 } 12139 } 12140 12141 /* AdvSIMD two reg misc 12142 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12143 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12144 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12145 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12146 */ 12147 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12148 { 12149 int size = extract32(insn, 22, 2); 12150 int opcode = extract32(insn, 12, 5); 12151 bool u = extract32(insn, 29, 1); 12152 bool is_q = extract32(insn, 30, 1); 12153 int rn = extract32(insn, 5, 5); 12154 int rd = extract32(insn, 0, 5); 12155 bool need_fpstatus = false; 12156 int rmode = -1; 12157 TCGv_i32 tcg_rmode; 12158 TCGv_ptr tcg_fpstatus; 12159 12160 switch (opcode) { 12161 case 0x0: /* REV64, REV32 */ 12162 case 0x1: /* REV16 */ 12163 handle_rev(s, opcode, u, is_q, size, rn, rd); 12164 return; 12165 case 0x5: /* CNT, NOT, RBIT */ 12166 if (u && size == 0) { 12167 /* NOT */ 12168 break; 12169 } else if (u && size == 1) { 12170 /* RBIT */ 12171 break; 12172 } else if (!u && size == 0) { 12173 /* CNT */ 12174 break; 12175 } 12176 unallocated_encoding(s); 12177 return; 12178 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12179 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12180 if (size == 3) { 12181 unallocated_encoding(s); 12182 return; 12183 } 12184 if (!fp_access_check(s)) { 12185 return; 12186 } 12187 12188 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12189 return; 12190 case 0x4: /* CLS, CLZ */ 12191 if (size == 3) { 12192 unallocated_encoding(s); 12193 return; 12194 } 12195 break; 12196 case 0x2: /* SADDLP, UADDLP */ 12197 case 0x6: /* SADALP, UADALP */ 12198 if (size == 3) { 12199 unallocated_encoding(s); 12200 return; 12201 } 12202 if (!fp_access_check(s)) { 12203 return; 12204 } 12205 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12206 return; 12207 case 0x13: /* SHLL, SHLL2 */ 12208 if (u == 0 || size == 3) { 12209 unallocated_encoding(s); 12210 return; 12211 } 12212 if (!fp_access_check(s)) { 12213 return; 12214 } 12215 handle_shll(s, is_q, size, rn, rd); 12216 return; 12217 case 0xa: /* CMLT */ 12218 if (u == 1) { 12219 unallocated_encoding(s); 12220 return; 12221 } 12222 /* fall through */ 12223 case 0x8: /* CMGT, CMGE */ 12224 case 0x9: /* CMEQ, CMLE */ 12225 case 0xb: /* ABS, NEG */ 12226 if (size == 3 && !is_q) { 12227 unallocated_encoding(s); 12228 return; 12229 } 12230 break; 12231 case 0x3: /* SUQADD, USQADD */ 12232 if (size == 3 && !is_q) { 12233 unallocated_encoding(s); 12234 return; 12235 } 12236 if (!fp_access_check(s)) { 12237 return; 12238 } 12239 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12240 return; 12241 case 0x7: /* SQABS, SQNEG */ 12242 if (size == 3 && !is_q) { 12243 unallocated_encoding(s); 12244 return; 12245 } 12246 break; 12247 case 0xc ... 0xf: 12248 case 0x16 ... 0x1f: 12249 { 12250 /* Floating point: U, size[1] and opcode indicate operation; 12251 * size[0] indicates single or double precision. 12252 */ 12253 int is_double = extract32(size, 0, 1); 12254 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12255 size = is_double ? 3 : 2; 12256 switch (opcode) { 12257 case 0x2f: /* FABS */ 12258 case 0x6f: /* FNEG */ 12259 if (size == 3 && !is_q) { 12260 unallocated_encoding(s); 12261 return; 12262 } 12263 break; 12264 case 0x1d: /* SCVTF */ 12265 case 0x5d: /* UCVTF */ 12266 { 12267 bool is_signed = (opcode == 0x1d) ? true : false; 12268 int elements = is_double ? 2 : is_q ? 4 : 2; 12269 if (is_double && !is_q) { 12270 unallocated_encoding(s); 12271 return; 12272 } 12273 if (!fp_access_check(s)) { 12274 return; 12275 } 12276 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12277 return; 12278 } 12279 case 0x2c: /* FCMGT (zero) */ 12280 case 0x2d: /* FCMEQ (zero) */ 12281 case 0x2e: /* FCMLT (zero) */ 12282 case 0x6c: /* FCMGE (zero) */ 12283 case 0x6d: /* FCMLE (zero) */ 12284 if (size == 3 && !is_q) { 12285 unallocated_encoding(s); 12286 return; 12287 } 12288 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12289 return; 12290 case 0x7f: /* FSQRT */ 12291 if (size == 3 && !is_q) { 12292 unallocated_encoding(s); 12293 return; 12294 } 12295 break; 12296 case 0x1a: /* FCVTNS */ 12297 case 0x1b: /* FCVTMS */ 12298 case 0x3a: /* FCVTPS */ 12299 case 0x3b: /* FCVTZS */ 12300 case 0x5a: /* FCVTNU */ 12301 case 0x5b: /* FCVTMU */ 12302 case 0x7a: /* FCVTPU */ 12303 case 0x7b: /* FCVTZU */ 12304 need_fpstatus = true; 12305 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12306 if (size == 3 && !is_q) { 12307 unallocated_encoding(s); 12308 return; 12309 } 12310 break; 12311 case 0x5c: /* FCVTAU */ 12312 case 0x1c: /* FCVTAS */ 12313 need_fpstatus = true; 12314 rmode = FPROUNDING_TIEAWAY; 12315 if (size == 3 && !is_q) { 12316 unallocated_encoding(s); 12317 return; 12318 } 12319 break; 12320 case 0x3c: /* URECPE */ 12321 if (size == 3) { 12322 unallocated_encoding(s); 12323 return; 12324 } 12325 /* fall through */ 12326 case 0x3d: /* FRECPE */ 12327 case 0x7d: /* FRSQRTE */ 12328 if (size == 3 && !is_q) { 12329 unallocated_encoding(s); 12330 return; 12331 } 12332 if (!fp_access_check(s)) { 12333 return; 12334 } 12335 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12336 return; 12337 case 0x56: /* FCVTXN, FCVTXN2 */ 12338 if (size == 2) { 12339 unallocated_encoding(s); 12340 return; 12341 } 12342 /* fall through */ 12343 case 0x16: /* FCVTN, FCVTN2 */ 12344 /* handle_2misc_narrow does a 2*size -> size operation, but these 12345 * instructions encode the source size rather than dest size. 12346 */ 12347 if (!fp_access_check(s)) { 12348 return; 12349 } 12350 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12351 return; 12352 case 0x36: /* BFCVTN, BFCVTN2 */ 12353 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12354 unallocated_encoding(s); 12355 return; 12356 } 12357 if (!fp_access_check(s)) { 12358 return; 12359 } 12360 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12361 return; 12362 case 0x17: /* FCVTL, FCVTL2 */ 12363 if (!fp_access_check(s)) { 12364 return; 12365 } 12366 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12367 return; 12368 case 0x18: /* FRINTN */ 12369 case 0x19: /* FRINTM */ 12370 case 0x38: /* FRINTP */ 12371 case 0x39: /* FRINTZ */ 12372 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12373 /* fall through */ 12374 case 0x59: /* FRINTX */ 12375 case 0x79: /* FRINTI */ 12376 need_fpstatus = true; 12377 if (size == 3 && !is_q) { 12378 unallocated_encoding(s); 12379 return; 12380 } 12381 break; 12382 case 0x58: /* FRINTA */ 12383 rmode = FPROUNDING_TIEAWAY; 12384 need_fpstatus = true; 12385 if (size == 3 && !is_q) { 12386 unallocated_encoding(s); 12387 return; 12388 } 12389 break; 12390 case 0x7c: /* URSQRTE */ 12391 if (size == 3) { 12392 unallocated_encoding(s); 12393 return; 12394 } 12395 break; 12396 case 0x1e: /* FRINT32Z */ 12397 case 0x1f: /* FRINT64Z */ 12398 rmode = FPROUNDING_ZERO; 12399 /* fall through */ 12400 case 0x5e: /* FRINT32X */ 12401 case 0x5f: /* FRINT64X */ 12402 need_fpstatus = true; 12403 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12404 unallocated_encoding(s); 12405 return; 12406 } 12407 break; 12408 default: 12409 unallocated_encoding(s); 12410 return; 12411 } 12412 break; 12413 } 12414 default: 12415 unallocated_encoding(s); 12416 return; 12417 } 12418 12419 if (!fp_access_check(s)) { 12420 return; 12421 } 12422 12423 if (need_fpstatus || rmode >= 0) { 12424 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12425 } else { 12426 tcg_fpstatus = NULL; 12427 } 12428 if (rmode >= 0) { 12429 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12430 } else { 12431 tcg_rmode = NULL; 12432 } 12433 12434 switch (opcode) { 12435 case 0x5: 12436 if (u && size == 0) { /* NOT */ 12437 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12438 return; 12439 } 12440 break; 12441 case 0x8: /* CMGT, CMGE */ 12442 if (u) { 12443 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12444 } else { 12445 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12446 } 12447 return; 12448 case 0x9: /* CMEQ, CMLE */ 12449 if (u) { 12450 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12451 } else { 12452 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12453 } 12454 return; 12455 case 0xa: /* CMLT */ 12456 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12457 return; 12458 case 0xb: 12459 if (u) { /* ABS, NEG */ 12460 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12461 } else { 12462 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12463 } 12464 return; 12465 } 12466 12467 if (size == 3) { 12468 /* All 64-bit element operations can be shared with scalar 2misc */ 12469 int pass; 12470 12471 /* Coverity claims (size == 3 && !is_q) has been eliminated 12472 * from all paths leading to here. 12473 */ 12474 tcg_debug_assert(is_q); 12475 for (pass = 0; pass < 2; pass++) { 12476 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12477 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12478 12479 read_vec_element(s, tcg_op, rn, pass, MO_64); 12480 12481 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12482 tcg_rmode, tcg_fpstatus); 12483 12484 write_vec_element(s, tcg_res, rd, pass, MO_64); 12485 } 12486 } else { 12487 int pass; 12488 12489 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12490 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12491 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12492 12493 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12494 12495 if (size == 2) { 12496 /* Special cases for 32 bit elements */ 12497 switch (opcode) { 12498 case 0x4: /* CLS */ 12499 if (u) { 12500 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12501 } else { 12502 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12503 } 12504 break; 12505 case 0x7: /* SQABS, SQNEG */ 12506 if (u) { 12507 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12508 } else { 12509 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12510 } 12511 break; 12512 case 0x2f: /* FABS */ 12513 gen_helper_vfp_abss(tcg_res, tcg_op); 12514 break; 12515 case 0x6f: /* FNEG */ 12516 gen_helper_vfp_negs(tcg_res, tcg_op); 12517 break; 12518 case 0x7f: /* FSQRT */ 12519 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12520 break; 12521 case 0x1a: /* FCVTNS */ 12522 case 0x1b: /* FCVTMS */ 12523 case 0x1c: /* FCVTAS */ 12524 case 0x3a: /* FCVTPS */ 12525 case 0x3b: /* FCVTZS */ 12526 gen_helper_vfp_tosls(tcg_res, tcg_op, 12527 tcg_constant_i32(0), tcg_fpstatus); 12528 break; 12529 case 0x5a: /* FCVTNU */ 12530 case 0x5b: /* FCVTMU */ 12531 case 0x5c: /* FCVTAU */ 12532 case 0x7a: /* FCVTPU */ 12533 case 0x7b: /* FCVTZU */ 12534 gen_helper_vfp_touls(tcg_res, tcg_op, 12535 tcg_constant_i32(0), tcg_fpstatus); 12536 break; 12537 case 0x18: /* FRINTN */ 12538 case 0x19: /* FRINTM */ 12539 case 0x38: /* FRINTP */ 12540 case 0x39: /* FRINTZ */ 12541 case 0x58: /* FRINTA */ 12542 case 0x79: /* FRINTI */ 12543 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12544 break; 12545 case 0x59: /* FRINTX */ 12546 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12547 break; 12548 case 0x7c: /* URSQRTE */ 12549 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12550 break; 12551 case 0x1e: /* FRINT32Z */ 12552 case 0x5e: /* FRINT32X */ 12553 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12554 break; 12555 case 0x1f: /* FRINT64Z */ 12556 case 0x5f: /* FRINT64X */ 12557 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12558 break; 12559 default: 12560 g_assert_not_reached(); 12561 } 12562 } else { 12563 /* Use helpers for 8 and 16 bit elements */ 12564 switch (opcode) { 12565 case 0x5: /* CNT, RBIT */ 12566 /* For these two insns size is part of the opcode specifier 12567 * (handled earlier); they always operate on byte elements. 12568 */ 12569 if (u) { 12570 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12571 } else { 12572 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12573 } 12574 break; 12575 case 0x7: /* SQABS, SQNEG */ 12576 { 12577 NeonGenOneOpEnvFn *genfn; 12578 static NeonGenOneOpEnvFn * const fns[2][2] = { 12579 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12580 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12581 }; 12582 genfn = fns[size][u]; 12583 genfn(tcg_res, cpu_env, tcg_op); 12584 break; 12585 } 12586 case 0x4: /* CLS, CLZ */ 12587 if (u) { 12588 if (size == 0) { 12589 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12590 } else { 12591 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12592 } 12593 } else { 12594 if (size == 0) { 12595 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12596 } else { 12597 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12598 } 12599 } 12600 break; 12601 default: 12602 g_assert_not_reached(); 12603 } 12604 } 12605 12606 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12607 } 12608 } 12609 clear_vec_high(s, is_q, rd); 12610 12611 if (tcg_rmode) { 12612 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12613 } 12614 } 12615 12616 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12617 * 12618 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12619 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12620 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12621 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12622 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12623 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12624 * 12625 * This actually covers two groups where scalar access is governed by 12626 * bit 28. A bunch of the instructions (float to integral) only exist 12627 * in the vector form and are un-allocated for the scalar decode. Also 12628 * in the scalar decode Q is always 1. 12629 */ 12630 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12631 { 12632 int fpop, opcode, a, u; 12633 int rn, rd; 12634 bool is_q; 12635 bool is_scalar; 12636 bool only_in_vector = false; 12637 12638 int pass; 12639 TCGv_i32 tcg_rmode = NULL; 12640 TCGv_ptr tcg_fpstatus = NULL; 12641 bool need_fpst = true; 12642 int rmode = -1; 12643 12644 if (!dc_isar_feature(aa64_fp16, s)) { 12645 unallocated_encoding(s); 12646 return; 12647 } 12648 12649 rd = extract32(insn, 0, 5); 12650 rn = extract32(insn, 5, 5); 12651 12652 a = extract32(insn, 23, 1); 12653 u = extract32(insn, 29, 1); 12654 is_scalar = extract32(insn, 28, 1); 12655 is_q = extract32(insn, 30, 1); 12656 12657 opcode = extract32(insn, 12, 5); 12658 fpop = deposit32(opcode, 5, 1, a); 12659 fpop = deposit32(fpop, 6, 1, u); 12660 12661 switch (fpop) { 12662 case 0x1d: /* SCVTF */ 12663 case 0x5d: /* UCVTF */ 12664 { 12665 int elements; 12666 12667 if (is_scalar) { 12668 elements = 1; 12669 } else { 12670 elements = (is_q ? 8 : 4); 12671 } 12672 12673 if (!fp_access_check(s)) { 12674 return; 12675 } 12676 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12677 return; 12678 } 12679 break; 12680 case 0x2c: /* FCMGT (zero) */ 12681 case 0x2d: /* FCMEQ (zero) */ 12682 case 0x2e: /* FCMLT (zero) */ 12683 case 0x6c: /* FCMGE (zero) */ 12684 case 0x6d: /* FCMLE (zero) */ 12685 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12686 return; 12687 case 0x3d: /* FRECPE */ 12688 case 0x3f: /* FRECPX */ 12689 break; 12690 case 0x18: /* FRINTN */ 12691 only_in_vector = true; 12692 rmode = FPROUNDING_TIEEVEN; 12693 break; 12694 case 0x19: /* FRINTM */ 12695 only_in_vector = true; 12696 rmode = FPROUNDING_NEGINF; 12697 break; 12698 case 0x38: /* FRINTP */ 12699 only_in_vector = true; 12700 rmode = FPROUNDING_POSINF; 12701 break; 12702 case 0x39: /* FRINTZ */ 12703 only_in_vector = true; 12704 rmode = FPROUNDING_ZERO; 12705 break; 12706 case 0x58: /* FRINTA */ 12707 only_in_vector = true; 12708 rmode = FPROUNDING_TIEAWAY; 12709 break; 12710 case 0x59: /* FRINTX */ 12711 case 0x79: /* FRINTI */ 12712 only_in_vector = true; 12713 /* current rounding mode */ 12714 break; 12715 case 0x1a: /* FCVTNS */ 12716 rmode = FPROUNDING_TIEEVEN; 12717 break; 12718 case 0x1b: /* FCVTMS */ 12719 rmode = FPROUNDING_NEGINF; 12720 break; 12721 case 0x1c: /* FCVTAS */ 12722 rmode = FPROUNDING_TIEAWAY; 12723 break; 12724 case 0x3a: /* FCVTPS */ 12725 rmode = FPROUNDING_POSINF; 12726 break; 12727 case 0x3b: /* FCVTZS */ 12728 rmode = FPROUNDING_ZERO; 12729 break; 12730 case 0x5a: /* FCVTNU */ 12731 rmode = FPROUNDING_TIEEVEN; 12732 break; 12733 case 0x5b: /* FCVTMU */ 12734 rmode = FPROUNDING_NEGINF; 12735 break; 12736 case 0x5c: /* FCVTAU */ 12737 rmode = FPROUNDING_TIEAWAY; 12738 break; 12739 case 0x7a: /* FCVTPU */ 12740 rmode = FPROUNDING_POSINF; 12741 break; 12742 case 0x7b: /* FCVTZU */ 12743 rmode = FPROUNDING_ZERO; 12744 break; 12745 case 0x2f: /* FABS */ 12746 case 0x6f: /* FNEG */ 12747 need_fpst = false; 12748 break; 12749 case 0x7d: /* FRSQRTE */ 12750 case 0x7f: /* FSQRT (vector) */ 12751 break; 12752 default: 12753 unallocated_encoding(s); 12754 return; 12755 } 12756 12757 12758 /* Check additional constraints for the scalar encoding */ 12759 if (is_scalar) { 12760 if (!is_q) { 12761 unallocated_encoding(s); 12762 return; 12763 } 12764 /* FRINTxx is only in the vector form */ 12765 if (only_in_vector) { 12766 unallocated_encoding(s); 12767 return; 12768 } 12769 } 12770 12771 if (!fp_access_check(s)) { 12772 return; 12773 } 12774 12775 if (rmode >= 0 || need_fpst) { 12776 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12777 } 12778 12779 if (rmode >= 0) { 12780 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12781 } 12782 12783 if (is_scalar) { 12784 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12785 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12786 12787 switch (fpop) { 12788 case 0x1a: /* FCVTNS */ 12789 case 0x1b: /* FCVTMS */ 12790 case 0x1c: /* FCVTAS */ 12791 case 0x3a: /* FCVTPS */ 12792 case 0x3b: /* FCVTZS */ 12793 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12794 break; 12795 case 0x3d: /* FRECPE */ 12796 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12797 break; 12798 case 0x3f: /* FRECPX */ 12799 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12800 break; 12801 case 0x5a: /* FCVTNU */ 12802 case 0x5b: /* FCVTMU */ 12803 case 0x5c: /* FCVTAU */ 12804 case 0x7a: /* FCVTPU */ 12805 case 0x7b: /* FCVTZU */ 12806 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12807 break; 12808 case 0x6f: /* FNEG */ 12809 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12810 break; 12811 case 0x7d: /* FRSQRTE */ 12812 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12813 break; 12814 default: 12815 g_assert_not_reached(); 12816 } 12817 12818 /* limit any sign extension going on */ 12819 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12820 write_fp_sreg(s, rd, tcg_res); 12821 } else { 12822 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12823 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12824 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12825 12826 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12827 12828 switch (fpop) { 12829 case 0x1a: /* FCVTNS */ 12830 case 0x1b: /* FCVTMS */ 12831 case 0x1c: /* FCVTAS */ 12832 case 0x3a: /* FCVTPS */ 12833 case 0x3b: /* FCVTZS */ 12834 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12835 break; 12836 case 0x3d: /* FRECPE */ 12837 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12838 break; 12839 case 0x5a: /* FCVTNU */ 12840 case 0x5b: /* FCVTMU */ 12841 case 0x5c: /* FCVTAU */ 12842 case 0x7a: /* FCVTPU */ 12843 case 0x7b: /* FCVTZU */ 12844 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12845 break; 12846 case 0x18: /* FRINTN */ 12847 case 0x19: /* FRINTM */ 12848 case 0x38: /* FRINTP */ 12849 case 0x39: /* FRINTZ */ 12850 case 0x58: /* FRINTA */ 12851 case 0x79: /* FRINTI */ 12852 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12853 break; 12854 case 0x59: /* FRINTX */ 12855 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12856 break; 12857 case 0x2f: /* FABS */ 12858 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12859 break; 12860 case 0x6f: /* FNEG */ 12861 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12862 break; 12863 case 0x7d: /* FRSQRTE */ 12864 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12865 break; 12866 case 0x7f: /* FSQRT */ 12867 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12868 break; 12869 default: 12870 g_assert_not_reached(); 12871 } 12872 12873 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12874 } 12875 12876 clear_vec_high(s, is_q, rd); 12877 } 12878 12879 if (tcg_rmode) { 12880 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12881 } 12882 } 12883 12884 /* AdvSIMD scalar x indexed element 12885 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12886 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12887 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12888 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12889 * AdvSIMD vector x indexed element 12890 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12891 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12892 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12893 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12894 */ 12895 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12896 { 12897 /* This encoding has two kinds of instruction: 12898 * normal, where we perform elt x idxelt => elt for each 12899 * element in the vector 12900 * long, where we perform elt x idxelt and generate a result of 12901 * double the width of the input element 12902 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12903 */ 12904 bool is_scalar = extract32(insn, 28, 1); 12905 bool is_q = extract32(insn, 30, 1); 12906 bool u = extract32(insn, 29, 1); 12907 int size = extract32(insn, 22, 2); 12908 int l = extract32(insn, 21, 1); 12909 int m = extract32(insn, 20, 1); 12910 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12911 int rm = extract32(insn, 16, 4); 12912 int opcode = extract32(insn, 12, 4); 12913 int h = extract32(insn, 11, 1); 12914 int rn = extract32(insn, 5, 5); 12915 int rd = extract32(insn, 0, 5); 12916 bool is_long = false; 12917 int is_fp = 0; 12918 bool is_fp16 = false; 12919 int index; 12920 TCGv_ptr fpst; 12921 12922 switch (16 * u + opcode) { 12923 case 0x08: /* MUL */ 12924 case 0x10: /* MLA */ 12925 case 0x14: /* MLS */ 12926 if (is_scalar) { 12927 unallocated_encoding(s); 12928 return; 12929 } 12930 break; 12931 case 0x02: /* SMLAL, SMLAL2 */ 12932 case 0x12: /* UMLAL, UMLAL2 */ 12933 case 0x06: /* SMLSL, SMLSL2 */ 12934 case 0x16: /* UMLSL, UMLSL2 */ 12935 case 0x0a: /* SMULL, SMULL2 */ 12936 case 0x1a: /* UMULL, UMULL2 */ 12937 if (is_scalar) { 12938 unallocated_encoding(s); 12939 return; 12940 } 12941 is_long = true; 12942 break; 12943 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12944 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12945 case 0x0b: /* SQDMULL, SQDMULL2 */ 12946 is_long = true; 12947 break; 12948 case 0x0c: /* SQDMULH */ 12949 case 0x0d: /* SQRDMULH */ 12950 break; 12951 case 0x01: /* FMLA */ 12952 case 0x05: /* FMLS */ 12953 case 0x09: /* FMUL */ 12954 case 0x19: /* FMULX */ 12955 is_fp = 1; 12956 break; 12957 case 0x1d: /* SQRDMLAH */ 12958 case 0x1f: /* SQRDMLSH */ 12959 if (!dc_isar_feature(aa64_rdm, s)) { 12960 unallocated_encoding(s); 12961 return; 12962 } 12963 break; 12964 case 0x0e: /* SDOT */ 12965 case 0x1e: /* UDOT */ 12966 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12967 unallocated_encoding(s); 12968 return; 12969 } 12970 break; 12971 case 0x0f: 12972 switch (size) { 12973 case 0: /* SUDOT */ 12974 case 2: /* USDOT */ 12975 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12976 unallocated_encoding(s); 12977 return; 12978 } 12979 size = MO_32; 12980 break; 12981 case 1: /* BFDOT */ 12982 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12983 unallocated_encoding(s); 12984 return; 12985 } 12986 size = MO_32; 12987 break; 12988 case 3: /* BFMLAL{B,T} */ 12989 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12990 unallocated_encoding(s); 12991 return; 12992 } 12993 /* can't set is_fp without other incorrect size checks */ 12994 size = MO_16; 12995 break; 12996 default: 12997 unallocated_encoding(s); 12998 return; 12999 } 13000 break; 13001 case 0x11: /* FCMLA #0 */ 13002 case 0x13: /* FCMLA #90 */ 13003 case 0x15: /* FCMLA #180 */ 13004 case 0x17: /* FCMLA #270 */ 13005 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13006 unallocated_encoding(s); 13007 return; 13008 } 13009 is_fp = 2; 13010 break; 13011 case 0x00: /* FMLAL */ 13012 case 0x04: /* FMLSL */ 13013 case 0x18: /* FMLAL2 */ 13014 case 0x1c: /* FMLSL2 */ 13015 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13016 unallocated_encoding(s); 13017 return; 13018 } 13019 size = MO_16; 13020 /* is_fp, but we pass cpu_env not fp_status. */ 13021 break; 13022 default: 13023 unallocated_encoding(s); 13024 return; 13025 } 13026 13027 switch (is_fp) { 13028 case 1: /* normal fp */ 13029 /* convert insn encoded size to MemOp size */ 13030 switch (size) { 13031 case 0: /* half-precision */ 13032 size = MO_16; 13033 is_fp16 = true; 13034 break; 13035 case MO_32: /* single precision */ 13036 case MO_64: /* double precision */ 13037 break; 13038 default: 13039 unallocated_encoding(s); 13040 return; 13041 } 13042 break; 13043 13044 case 2: /* complex fp */ 13045 /* Each indexable element is a complex pair. */ 13046 size += 1; 13047 switch (size) { 13048 case MO_32: 13049 if (h && !is_q) { 13050 unallocated_encoding(s); 13051 return; 13052 } 13053 is_fp16 = true; 13054 break; 13055 case MO_64: 13056 break; 13057 default: 13058 unallocated_encoding(s); 13059 return; 13060 } 13061 break; 13062 13063 default: /* integer */ 13064 switch (size) { 13065 case MO_8: 13066 case MO_64: 13067 unallocated_encoding(s); 13068 return; 13069 } 13070 break; 13071 } 13072 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13073 unallocated_encoding(s); 13074 return; 13075 } 13076 13077 /* Given MemOp size, adjust register and indexing. */ 13078 switch (size) { 13079 case MO_16: 13080 index = h << 2 | l << 1 | m; 13081 break; 13082 case MO_32: 13083 index = h << 1 | l; 13084 rm |= m << 4; 13085 break; 13086 case MO_64: 13087 if (l || !is_q) { 13088 unallocated_encoding(s); 13089 return; 13090 } 13091 index = h; 13092 rm |= m << 4; 13093 break; 13094 default: 13095 g_assert_not_reached(); 13096 } 13097 13098 if (!fp_access_check(s)) { 13099 return; 13100 } 13101 13102 if (is_fp) { 13103 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13104 } else { 13105 fpst = NULL; 13106 } 13107 13108 switch (16 * u + opcode) { 13109 case 0x0e: /* SDOT */ 13110 case 0x1e: /* UDOT */ 13111 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13112 u ? gen_helper_gvec_udot_idx_b 13113 : gen_helper_gvec_sdot_idx_b); 13114 return; 13115 case 0x0f: 13116 switch (extract32(insn, 22, 2)) { 13117 case 0: /* SUDOT */ 13118 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13119 gen_helper_gvec_sudot_idx_b); 13120 return; 13121 case 1: /* BFDOT */ 13122 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13123 gen_helper_gvec_bfdot_idx); 13124 return; 13125 case 2: /* USDOT */ 13126 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13127 gen_helper_gvec_usdot_idx_b); 13128 return; 13129 case 3: /* BFMLAL{B,T} */ 13130 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13131 gen_helper_gvec_bfmlal_idx); 13132 return; 13133 } 13134 g_assert_not_reached(); 13135 case 0x11: /* FCMLA #0 */ 13136 case 0x13: /* FCMLA #90 */ 13137 case 0x15: /* FCMLA #180 */ 13138 case 0x17: /* FCMLA #270 */ 13139 { 13140 int rot = extract32(insn, 13, 2); 13141 int data = (index << 2) | rot; 13142 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13143 vec_full_reg_offset(s, rn), 13144 vec_full_reg_offset(s, rm), 13145 vec_full_reg_offset(s, rd), fpst, 13146 is_q ? 16 : 8, vec_full_reg_size(s), data, 13147 size == MO_64 13148 ? gen_helper_gvec_fcmlas_idx 13149 : gen_helper_gvec_fcmlah_idx); 13150 } 13151 return; 13152 13153 case 0x00: /* FMLAL */ 13154 case 0x04: /* FMLSL */ 13155 case 0x18: /* FMLAL2 */ 13156 case 0x1c: /* FMLSL2 */ 13157 { 13158 int is_s = extract32(opcode, 2, 1); 13159 int is_2 = u; 13160 int data = (index << 2) | (is_2 << 1) | is_s; 13161 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13162 vec_full_reg_offset(s, rn), 13163 vec_full_reg_offset(s, rm), cpu_env, 13164 is_q ? 16 : 8, vec_full_reg_size(s), 13165 data, gen_helper_gvec_fmlal_idx_a64); 13166 } 13167 return; 13168 13169 case 0x08: /* MUL */ 13170 if (!is_long && !is_scalar) { 13171 static gen_helper_gvec_3 * const fns[3] = { 13172 gen_helper_gvec_mul_idx_h, 13173 gen_helper_gvec_mul_idx_s, 13174 gen_helper_gvec_mul_idx_d, 13175 }; 13176 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13177 vec_full_reg_offset(s, rn), 13178 vec_full_reg_offset(s, rm), 13179 is_q ? 16 : 8, vec_full_reg_size(s), 13180 index, fns[size - 1]); 13181 return; 13182 } 13183 break; 13184 13185 case 0x10: /* MLA */ 13186 if (!is_long && !is_scalar) { 13187 static gen_helper_gvec_4 * const fns[3] = { 13188 gen_helper_gvec_mla_idx_h, 13189 gen_helper_gvec_mla_idx_s, 13190 gen_helper_gvec_mla_idx_d, 13191 }; 13192 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13193 vec_full_reg_offset(s, rn), 13194 vec_full_reg_offset(s, rm), 13195 vec_full_reg_offset(s, rd), 13196 is_q ? 16 : 8, vec_full_reg_size(s), 13197 index, fns[size - 1]); 13198 return; 13199 } 13200 break; 13201 13202 case 0x14: /* MLS */ 13203 if (!is_long && !is_scalar) { 13204 static gen_helper_gvec_4 * const fns[3] = { 13205 gen_helper_gvec_mls_idx_h, 13206 gen_helper_gvec_mls_idx_s, 13207 gen_helper_gvec_mls_idx_d, 13208 }; 13209 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13210 vec_full_reg_offset(s, rn), 13211 vec_full_reg_offset(s, rm), 13212 vec_full_reg_offset(s, rd), 13213 is_q ? 16 : 8, vec_full_reg_size(s), 13214 index, fns[size - 1]); 13215 return; 13216 } 13217 break; 13218 } 13219 13220 if (size == 3) { 13221 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13222 int pass; 13223 13224 assert(is_fp && is_q && !is_long); 13225 13226 read_vec_element(s, tcg_idx, rm, index, MO_64); 13227 13228 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13229 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13230 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13231 13232 read_vec_element(s, tcg_op, rn, pass, MO_64); 13233 13234 switch (16 * u + opcode) { 13235 case 0x05: /* FMLS */ 13236 /* As usual for ARM, separate negation for fused multiply-add */ 13237 gen_helper_vfp_negd(tcg_op, tcg_op); 13238 /* fall through */ 13239 case 0x01: /* FMLA */ 13240 read_vec_element(s, tcg_res, rd, pass, MO_64); 13241 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13242 break; 13243 case 0x09: /* FMUL */ 13244 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13245 break; 13246 case 0x19: /* FMULX */ 13247 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13248 break; 13249 default: 13250 g_assert_not_reached(); 13251 } 13252 13253 write_vec_element(s, tcg_res, rd, pass, MO_64); 13254 } 13255 13256 clear_vec_high(s, !is_scalar, rd); 13257 } else if (!is_long) { 13258 /* 32 bit floating point, or 16 or 32 bit integer. 13259 * For the 16 bit scalar case we use the usual Neon helpers and 13260 * rely on the fact that 0 op 0 == 0 with no side effects. 13261 */ 13262 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13263 int pass, maxpasses; 13264 13265 if (is_scalar) { 13266 maxpasses = 1; 13267 } else { 13268 maxpasses = is_q ? 4 : 2; 13269 } 13270 13271 read_vec_element_i32(s, tcg_idx, rm, index, size); 13272 13273 if (size == 1 && !is_scalar) { 13274 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13275 * the index into both halves of the 32 bit tcg_idx and then use 13276 * the usual Neon helpers. 13277 */ 13278 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13279 } 13280 13281 for (pass = 0; pass < maxpasses; pass++) { 13282 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13283 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13284 13285 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13286 13287 switch (16 * u + opcode) { 13288 case 0x08: /* MUL */ 13289 case 0x10: /* MLA */ 13290 case 0x14: /* MLS */ 13291 { 13292 static NeonGenTwoOpFn * const fns[2][2] = { 13293 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13294 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13295 }; 13296 NeonGenTwoOpFn *genfn; 13297 bool is_sub = opcode == 0x4; 13298 13299 if (size == 1) { 13300 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13301 } else { 13302 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13303 } 13304 if (opcode == 0x8) { 13305 break; 13306 } 13307 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13308 genfn = fns[size - 1][is_sub]; 13309 genfn(tcg_res, tcg_op, tcg_res); 13310 break; 13311 } 13312 case 0x05: /* FMLS */ 13313 case 0x01: /* FMLA */ 13314 read_vec_element_i32(s, tcg_res, rd, pass, 13315 is_scalar ? size : MO_32); 13316 switch (size) { 13317 case 1: 13318 if (opcode == 0x5) { 13319 /* As usual for ARM, separate negation for fused 13320 * multiply-add */ 13321 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13322 } 13323 if (is_scalar) { 13324 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13325 tcg_res, fpst); 13326 } else { 13327 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13328 tcg_res, fpst); 13329 } 13330 break; 13331 case 2: 13332 if (opcode == 0x5) { 13333 /* As usual for ARM, separate negation for 13334 * fused multiply-add */ 13335 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13336 } 13337 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13338 tcg_res, fpst); 13339 break; 13340 default: 13341 g_assert_not_reached(); 13342 } 13343 break; 13344 case 0x09: /* FMUL */ 13345 switch (size) { 13346 case 1: 13347 if (is_scalar) { 13348 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13349 tcg_idx, fpst); 13350 } else { 13351 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13352 tcg_idx, fpst); 13353 } 13354 break; 13355 case 2: 13356 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13357 break; 13358 default: 13359 g_assert_not_reached(); 13360 } 13361 break; 13362 case 0x19: /* FMULX */ 13363 switch (size) { 13364 case 1: 13365 if (is_scalar) { 13366 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13367 tcg_idx, fpst); 13368 } else { 13369 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13370 tcg_idx, fpst); 13371 } 13372 break; 13373 case 2: 13374 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13375 break; 13376 default: 13377 g_assert_not_reached(); 13378 } 13379 break; 13380 case 0x0c: /* SQDMULH */ 13381 if (size == 1) { 13382 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13383 tcg_op, tcg_idx); 13384 } else { 13385 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13386 tcg_op, tcg_idx); 13387 } 13388 break; 13389 case 0x0d: /* SQRDMULH */ 13390 if (size == 1) { 13391 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13392 tcg_op, tcg_idx); 13393 } else { 13394 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13395 tcg_op, tcg_idx); 13396 } 13397 break; 13398 case 0x1d: /* SQRDMLAH */ 13399 read_vec_element_i32(s, tcg_res, rd, pass, 13400 is_scalar ? size : MO_32); 13401 if (size == 1) { 13402 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13403 tcg_op, tcg_idx, tcg_res); 13404 } else { 13405 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13406 tcg_op, tcg_idx, tcg_res); 13407 } 13408 break; 13409 case 0x1f: /* SQRDMLSH */ 13410 read_vec_element_i32(s, tcg_res, rd, pass, 13411 is_scalar ? size : MO_32); 13412 if (size == 1) { 13413 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13414 tcg_op, tcg_idx, tcg_res); 13415 } else { 13416 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13417 tcg_op, tcg_idx, tcg_res); 13418 } 13419 break; 13420 default: 13421 g_assert_not_reached(); 13422 } 13423 13424 if (is_scalar) { 13425 write_fp_sreg(s, rd, tcg_res); 13426 } else { 13427 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13428 } 13429 } 13430 13431 clear_vec_high(s, is_q, rd); 13432 } else { 13433 /* long ops: 16x16->32 or 32x32->64 */ 13434 TCGv_i64 tcg_res[2]; 13435 int pass; 13436 bool satop = extract32(opcode, 0, 1); 13437 MemOp memop = MO_32; 13438 13439 if (satop || !u) { 13440 memop |= MO_SIGN; 13441 } 13442 13443 if (size == 2) { 13444 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13445 13446 read_vec_element(s, tcg_idx, rm, index, memop); 13447 13448 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13449 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13450 TCGv_i64 tcg_passres; 13451 int passelt; 13452 13453 if (is_scalar) { 13454 passelt = 0; 13455 } else { 13456 passelt = pass + (is_q * 2); 13457 } 13458 13459 read_vec_element(s, tcg_op, rn, passelt, memop); 13460 13461 tcg_res[pass] = tcg_temp_new_i64(); 13462 13463 if (opcode == 0xa || opcode == 0xb) { 13464 /* Non-accumulating ops */ 13465 tcg_passres = tcg_res[pass]; 13466 } else { 13467 tcg_passres = tcg_temp_new_i64(); 13468 } 13469 13470 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13471 13472 if (satop) { 13473 /* saturating, doubling */ 13474 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13475 tcg_passres, tcg_passres); 13476 } 13477 13478 if (opcode == 0xa || opcode == 0xb) { 13479 continue; 13480 } 13481 13482 /* Accumulating op: handle accumulate step */ 13483 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13484 13485 switch (opcode) { 13486 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13487 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13488 break; 13489 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13490 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13491 break; 13492 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13493 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13494 /* fall through */ 13495 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13496 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13497 tcg_res[pass], 13498 tcg_passres); 13499 break; 13500 default: 13501 g_assert_not_reached(); 13502 } 13503 } 13504 13505 clear_vec_high(s, !is_scalar, rd); 13506 } else { 13507 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13508 13509 assert(size == 1); 13510 read_vec_element_i32(s, tcg_idx, rm, index, size); 13511 13512 if (!is_scalar) { 13513 /* The simplest way to handle the 16x16 indexed ops is to 13514 * duplicate the index into both halves of the 32 bit tcg_idx 13515 * and then use the usual Neon helpers. 13516 */ 13517 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13518 } 13519 13520 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13521 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13522 TCGv_i64 tcg_passres; 13523 13524 if (is_scalar) { 13525 read_vec_element_i32(s, tcg_op, rn, pass, size); 13526 } else { 13527 read_vec_element_i32(s, tcg_op, rn, 13528 pass + (is_q * 2), MO_32); 13529 } 13530 13531 tcg_res[pass] = tcg_temp_new_i64(); 13532 13533 if (opcode == 0xa || opcode == 0xb) { 13534 /* Non-accumulating ops */ 13535 tcg_passres = tcg_res[pass]; 13536 } else { 13537 tcg_passres = tcg_temp_new_i64(); 13538 } 13539 13540 if (memop & MO_SIGN) { 13541 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13542 } else { 13543 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13544 } 13545 if (satop) { 13546 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13547 tcg_passres, tcg_passres); 13548 } 13549 13550 if (opcode == 0xa || opcode == 0xb) { 13551 continue; 13552 } 13553 13554 /* Accumulating op: handle accumulate step */ 13555 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13556 13557 switch (opcode) { 13558 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13559 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13560 tcg_passres); 13561 break; 13562 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13563 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13564 tcg_passres); 13565 break; 13566 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13567 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13568 /* fall through */ 13569 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13570 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13571 tcg_res[pass], 13572 tcg_passres); 13573 break; 13574 default: 13575 g_assert_not_reached(); 13576 } 13577 } 13578 13579 if (is_scalar) { 13580 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13581 } 13582 } 13583 13584 if (is_scalar) { 13585 tcg_res[1] = tcg_constant_i64(0); 13586 } 13587 13588 for (pass = 0; pass < 2; pass++) { 13589 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13590 } 13591 } 13592 } 13593 13594 /* Crypto AES 13595 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13596 * +-----------------+------+-----------+--------+-----+------+------+ 13597 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13598 * +-----------------+------+-----------+--------+-----+------+------+ 13599 */ 13600 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13601 { 13602 int size = extract32(insn, 22, 2); 13603 int opcode = extract32(insn, 12, 5); 13604 int rn = extract32(insn, 5, 5); 13605 int rd = extract32(insn, 0, 5); 13606 int decrypt; 13607 gen_helper_gvec_2 *genfn2 = NULL; 13608 gen_helper_gvec_3 *genfn3 = NULL; 13609 13610 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13611 unallocated_encoding(s); 13612 return; 13613 } 13614 13615 switch (opcode) { 13616 case 0x4: /* AESE */ 13617 decrypt = 0; 13618 genfn3 = gen_helper_crypto_aese; 13619 break; 13620 case 0x6: /* AESMC */ 13621 decrypt = 0; 13622 genfn2 = gen_helper_crypto_aesmc; 13623 break; 13624 case 0x5: /* AESD */ 13625 decrypt = 1; 13626 genfn3 = gen_helper_crypto_aese; 13627 break; 13628 case 0x7: /* AESIMC */ 13629 decrypt = 1; 13630 genfn2 = gen_helper_crypto_aesmc; 13631 break; 13632 default: 13633 unallocated_encoding(s); 13634 return; 13635 } 13636 13637 if (!fp_access_check(s)) { 13638 return; 13639 } 13640 if (genfn2) { 13641 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13642 } else { 13643 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13644 } 13645 } 13646 13647 /* Crypto three-reg SHA 13648 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13649 * +-----------------+------+---+------+---+--------+-----+------+------+ 13650 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13651 * +-----------------+------+---+------+---+--------+-----+------+------+ 13652 */ 13653 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13654 { 13655 int size = extract32(insn, 22, 2); 13656 int opcode = extract32(insn, 12, 3); 13657 int rm = extract32(insn, 16, 5); 13658 int rn = extract32(insn, 5, 5); 13659 int rd = extract32(insn, 0, 5); 13660 gen_helper_gvec_3 *genfn; 13661 bool feature; 13662 13663 if (size != 0) { 13664 unallocated_encoding(s); 13665 return; 13666 } 13667 13668 switch (opcode) { 13669 case 0: /* SHA1C */ 13670 genfn = gen_helper_crypto_sha1c; 13671 feature = dc_isar_feature(aa64_sha1, s); 13672 break; 13673 case 1: /* SHA1P */ 13674 genfn = gen_helper_crypto_sha1p; 13675 feature = dc_isar_feature(aa64_sha1, s); 13676 break; 13677 case 2: /* SHA1M */ 13678 genfn = gen_helper_crypto_sha1m; 13679 feature = dc_isar_feature(aa64_sha1, s); 13680 break; 13681 case 3: /* SHA1SU0 */ 13682 genfn = gen_helper_crypto_sha1su0; 13683 feature = dc_isar_feature(aa64_sha1, s); 13684 break; 13685 case 4: /* SHA256H */ 13686 genfn = gen_helper_crypto_sha256h; 13687 feature = dc_isar_feature(aa64_sha256, s); 13688 break; 13689 case 5: /* SHA256H2 */ 13690 genfn = gen_helper_crypto_sha256h2; 13691 feature = dc_isar_feature(aa64_sha256, s); 13692 break; 13693 case 6: /* SHA256SU1 */ 13694 genfn = gen_helper_crypto_sha256su1; 13695 feature = dc_isar_feature(aa64_sha256, s); 13696 break; 13697 default: 13698 unallocated_encoding(s); 13699 return; 13700 } 13701 13702 if (!feature) { 13703 unallocated_encoding(s); 13704 return; 13705 } 13706 13707 if (!fp_access_check(s)) { 13708 return; 13709 } 13710 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13711 } 13712 13713 /* Crypto two-reg SHA 13714 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13715 * +-----------------+------+-----------+--------+-----+------+------+ 13716 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13717 * +-----------------+------+-----------+--------+-----+------+------+ 13718 */ 13719 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13720 { 13721 int size = extract32(insn, 22, 2); 13722 int opcode = extract32(insn, 12, 5); 13723 int rn = extract32(insn, 5, 5); 13724 int rd = extract32(insn, 0, 5); 13725 gen_helper_gvec_2 *genfn; 13726 bool feature; 13727 13728 if (size != 0) { 13729 unallocated_encoding(s); 13730 return; 13731 } 13732 13733 switch (opcode) { 13734 case 0: /* SHA1H */ 13735 feature = dc_isar_feature(aa64_sha1, s); 13736 genfn = gen_helper_crypto_sha1h; 13737 break; 13738 case 1: /* SHA1SU1 */ 13739 feature = dc_isar_feature(aa64_sha1, s); 13740 genfn = gen_helper_crypto_sha1su1; 13741 break; 13742 case 2: /* SHA256SU0 */ 13743 feature = dc_isar_feature(aa64_sha256, s); 13744 genfn = gen_helper_crypto_sha256su0; 13745 break; 13746 default: 13747 unallocated_encoding(s); 13748 return; 13749 } 13750 13751 if (!feature) { 13752 unallocated_encoding(s); 13753 return; 13754 } 13755 13756 if (!fp_access_check(s)) { 13757 return; 13758 } 13759 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13760 } 13761 13762 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13763 { 13764 tcg_gen_rotli_i64(d, m, 1); 13765 tcg_gen_xor_i64(d, d, n); 13766 } 13767 13768 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13769 { 13770 tcg_gen_rotli_vec(vece, d, m, 1); 13771 tcg_gen_xor_vec(vece, d, d, n); 13772 } 13773 13774 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13775 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13776 { 13777 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13778 static const GVecGen3 op = { 13779 .fni8 = gen_rax1_i64, 13780 .fniv = gen_rax1_vec, 13781 .opt_opc = vecop_list, 13782 .fno = gen_helper_crypto_rax1, 13783 .vece = MO_64, 13784 }; 13785 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13786 } 13787 13788 /* Crypto three-reg SHA512 13789 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13790 * +-----------------------+------+---+---+-----+--------+------+------+ 13791 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13792 * +-----------------------+------+---+---+-----+--------+------+------+ 13793 */ 13794 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13795 { 13796 int opcode = extract32(insn, 10, 2); 13797 int o = extract32(insn, 14, 1); 13798 int rm = extract32(insn, 16, 5); 13799 int rn = extract32(insn, 5, 5); 13800 int rd = extract32(insn, 0, 5); 13801 bool feature; 13802 gen_helper_gvec_3 *oolfn = NULL; 13803 GVecGen3Fn *gvecfn = NULL; 13804 13805 if (o == 0) { 13806 switch (opcode) { 13807 case 0: /* SHA512H */ 13808 feature = dc_isar_feature(aa64_sha512, s); 13809 oolfn = gen_helper_crypto_sha512h; 13810 break; 13811 case 1: /* SHA512H2 */ 13812 feature = dc_isar_feature(aa64_sha512, s); 13813 oolfn = gen_helper_crypto_sha512h2; 13814 break; 13815 case 2: /* SHA512SU1 */ 13816 feature = dc_isar_feature(aa64_sha512, s); 13817 oolfn = gen_helper_crypto_sha512su1; 13818 break; 13819 case 3: /* RAX1 */ 13820 feature = dc_isar_feature(aa64_sha3, s); 13821 gvecfn = gen_gvec_rax1; 13822 break; 13823 default: 13824 g_assert_not_reached(); 13825 } 13826 } else { 13827 switch (opcode) { 13828 case 0: /* SM3PARTW1 */ 13829 feature = dc_isar_feature(aa64_sm3, s); 13830 oolfn = gen_helper_crypto_sm3partw1; 13831 break; 13832 case 1: /* SM3PARTW2 */ 13833 feature = dc_isar_feature(aa64_sm3, s); 13834 oolfn = gen_helper_crypto_sm3partw2; 13835 break; 13836 case 2: /* SM4EKEY */ 13837 feature = dc_isar_feature(aa64_sm4, s); 13838 oolfn = gen_helper_crypto_sm4ekey; 13839 break; 13840 default: 13841 unallocated_encoding(s); 13842 return; 13843 } 13844 } 13845 13846 if (!feature) { 13847 unallocated_encoding(s); 13848 return; 13849 } 13850 13851 if (!fp_access_check(s)) { 13852 return; 13853 } 13854 13855 if (oolfn) { 13856 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13857 } else { 13858 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13859 } 13860 } 13861 13862 /* Crypto two-reg SHA512 13863 * 31 12 11 10 9 5 4 0 13864 * +-----------------------------------------+--------+------+------+ 13865 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13866 * +-----------------------------------------+--------+------+------+ 13867 */ 13868 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13869 { 13870 int opcode = extract32(insn, 10, 2); 13871 int rn = extract32(insn, 5, 5); 13872 int rd = extract32(insn, 0, 5); 13873 bool feature; 13874 13875 switch (opcode) { 13876 case 0: /* SHA512SU0 */ 13877 feature = dc_isar_feature(aa64_sha512, s); 13878 break; 13879 case 1: /* SM4E */ 13880 feature = dc_isar_feature(aa64_sm4, s); 13881 break; 13882 default: 13883 unallocated_encoding(s); 13884 return; 13885 } 13886 13887 if (!feature) { 13888 unallocated_encoding(s); 13889 return; 13890 } 13891 13892 if (!fp_access_check(s)) { 13893 return; 13894 } 13895 13896 switch (opcode) { 13897 case 0: /* SHA512SU0 */ 13898 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13899 break; 13900 case 1: /* SM4E */ 13901 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13902 break; 13903 default: 13904 g_assert_not_reached(); 13905 } 13906 } 13907 13908 /* Crypto four-register 13909 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13910 * +-------------------+-----+------+---+------+------+------+ 13911 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13912 * +-------------------+-----+------+---+------+------+------+ 13913 */ 13914 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13915 { 13916 int op0 = extract32(insn, 21, 2); 13917 int rm = extract32(insn, 16, 5); 13918 int ra = extract32(insn, 10, 5); 13919 int rn = extract32(insn, 5, 5); 13920 int rd = extract32(insn, 0, 5); 13921 bool feature; 13922 13923 switch (op0) { 13924 case 0: /* EOR3 */ 13925 case 1: /* BCAX */ 13926 feature = dc_isar_feature(aa64_sha3, s); 13927 break; 13928 case 2: /* SM3SS1 */ 13929 feature = dc_isar_feature(aa64_sm3, s); 13930 break; 13931 default: 13932 unallocated_encoding(s); 13933 return; 13934 } 13935 13936 if (!feature) { 13937 unallocated_encoding(s); 13938 return; 13939 } 13940 13941 if (!fp_access_check(s)) { 13942 return; 13943 } 13944 13945 if (op0 < 2) { 13946 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13947 int pass; 13948 13949 tcg_op1 = tcg_temp_new_i64(); 13950 tcg_op2 = tcg_temp_new_i64(); 13951 tcg_op3 = tcg_temp_new_i64(); 13952 tcg_res[0] = tcg_temp_new_i64(); 13953 tcg_res[1] = tcg_temp_new_i64(); 13954 13955 for (pass = 0; pass < 2; pass++) { 13956 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13957 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13958 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13959 13960 if (op0 == 0) { 13961 /* EOR3 */ 13962 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13963 } else { 13964 /* BCAX */ 13965 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13966 } 13967 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13968 } 13969 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13970 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13971 } else { 13972 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13973 13974 tcg_op1 = tcg_temp_new_i32(); 13975 tcg_op2 = tcg_temp_new_i32(); 13976 tcg_op3 = tcg_temp_new_i32(); 13977 tcg_res = tcg_temp_new_i32(); 13978 tcg_zero = tcg_constant_i32(0); 13979 13980 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13981 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13982 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13983 13984 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13985 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13986 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13987 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13988 13989 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13990 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13991 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13992 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13993 } 13994 } 13995 13996 /* Crypto XAR 13997 * 31 21 20 16 15 10 9 5 4 0 13998 * +-----------------------+------+--------+------+------+ 13999 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 14000 * +-----------------------+------+--------+------+------+ 14001 */ 14002 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 14003 { 14004 int rm = extract32(insn, 16, 5); 14005 int imm6 = extract32(insn, 10, 6); 14006 int rn = extract32(insn, 5, 5); 14007 int rd = extract32(insn, 0, 5); 14008 14009 if (!dc_isar_feature(aa64_sha3, s)) { 14010 unallocated_encoding(s); 14011 return; 14012 } 14013 14014 if (!fp_access_check(s)) { 14015 return; 14016 } 14017 14018 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 14019 vec_full_reg_offset(s, rn), 14020 vec_full_reg_offset(s, rm), imm6, 16, 14021 vec_full_reg_size(s)); 14022 } 14023 14024 /* Crypto three-reg imm2 14025 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14026 * +-----------------------+------+-----+------+--------+------+------+ 14027 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14028 * +-----------------------+------+-----+------+--------+------+------+ 14029 */ 14030 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14031 { 14032 static gen_helper_gvec_3 * const fns[4] = { 14033 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14034 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14035 }; 14036 int opcode = extract32(insn, 10, 2); 14037 int imm2 = extract32(insn, 12, 2); 14038 int rm = extract32(insn, 16, 5); 14039 int rn = extract32(insn, 5, 5); 14040 int rd = extract32(insn, 0, 5); 14041 14042 if (!dc_isar_feature(aa64_sm3, s)) { 14043 unallocated_encoding(s); 14044 return; 14045 } 14046 14047 if (!fp_access_check(s)) { 14048 return; 14049 } 14050 14051 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14052 } 14053 14054 /* C3.6 Data processing - SIMD, inc Crypto 14055 * 14056 * As the decode gets a little complex we are using a table based 14057 * approach for this part of the decode. 14058 */ 14059 static const AArch64DecodeTable data_proc_simd[] = { 14060 /* pattern , mask , fn */ 14061 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14062 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14063 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14064 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14065 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14066 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14067 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14068 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14069 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14070 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14071 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14072 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14073 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14074 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14075 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14076 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14077 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14078 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14079 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14080 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14081 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14082 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14083 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14084 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14085 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14086 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14087 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14088 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14089 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14090 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14091 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14092 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14093 { 0x00000000, 0x00000000, NULL } 14094 }; 14095 14096 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14097 { 14098 /* Note that this is called with all non-FP cases from 14099 * table C3-6 so it must UNDEF for entries not specifically 14100 * allocated to instructions in that table. 14101 */ 14102 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14103 if (fn) { 14104 fn(s, insn); 14105 } else { 14106 unallocated_encoding(s); 14107 } 14108 } 14109 14110 /* C3.6 Data processing - SIMD and floating point */ 14111 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14112 { 14113 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14114 disas_data_proc_fp(s, insn); 14115 } else { 14116 /* SIMD, including crypto */ 14117 disas_data_proc_simd(s, insn); 14118 } 14119 } 14120 14121 static bool trans_OK(DisasContext *s, arg_OK *a) 14122 { 14123 return true; 14124 } 14125 14126 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14127 { 14128 s->is_nonstreaming = true; 14129 return true; 14130 } 14131 14132 /** 14133 * is_guarded_page: 14134 * @env: The cpu environment 14135 * @s: The DisasContext 14136 * 14137 * Return true if the page is guarded. 14138 */ 14139 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14140 { 14141 uint64_t addr = s->base.pc_first; 14142 #ifdef CONFIG_USER_ONLY 14143 return page_get_flags(addr) & PAGE_BTI; 14144 #else 14145 CPUTLBEntryFull *full; 14146 void *host; 14147 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14148 int flags; 14149 14150 /* 14151 * We test this immediately after reading an insn, which means 14152 * that the TLB entry must be present and valid, and thus this 14153 * access will never raise an exception. 14154 */ 14155 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14156 false, &host, &full, 0); 14157 assert(!(flags & TLB_INVALID_MASK)); 14158 14159 return full->guarded; 14160 #endif 14161 } 14162 14163 /** 14164 * btype_destination_ok: 14165 * @insn: The instruction at the branch destination 14166 * @bt: SCTLR_ELx.BT 14167 * @btype: PSTATE.BTYPE, and is non-zero 14168 * 14169 * On a guarded page, there are a limited number of insns 14170 * that may be present at the branch target: 14171 * - branch target identifiers, 14172 * - paciasp, pacibsp, 14173 * - BRK insn 14174 * - HLT insn 14175 * Anything else causes a Branch Target Exception. 14176 * 14177 * Return true if the branch is compatible, false to raise BTITRAP. 14178 */ 14179 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14180 { 14181 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14182 /* HINT space */ 14183 switch (extract32(insn, 5, 7)) { 14184 case 0b011001: /* PACIASP */ 14185 case 0b011011: /* PACIBSP */ 14186 /* 14187 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14188 * with btype == 3. Otherwise all btype are ok. 14189 */ 14190 return !bt || btype != 3; 14191 case 0b100000: /* BTI */ 14192 /* Not compatible with any btype. */ 14193 return false; 14194 case 0b100010: /* BTI c */ 14195 /* Not compatible with btype == 3 */ 14196 return btype != 3; 14197 case 0b100100: /* BTI j */ 14198 /* Not compatible with btype == 2 */ 14199 return btype != 2; 14200 case 0b100110: /* BTI jc */ 14201 /* Compatible with any btype. */ 14202 return true; 14203 } 14204 } else { 14205 switch (insn & 0xffe0001fu) { 14206 case 0xd4200000u: /* BRK */ 14207 case 0xd4400000u: /* HLT */ 14208 /* Give priority to the breakpoint exception. */ 14209 return true; 14210 } 14211 } 14212 return false; 14213 } 14214 14215 /* C3.1 A64 instruction index by encoding */ 14216 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14217 { 14218 switch (extract32(insn, 25, 4)) { 14219 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14220 disas_b_exc_sys(s, insn); 14221 break; 14222 case 0x4: 14223 case 0x6: 14224 case 0xc: 14225 case 0xe: /* Loads and stores */ 14226 disas_ldst(s, insn); 14227 break; 14228 case 0x5: 14229 case 0xd: /* Data processing - register */ 14230 disas_data_proc_reg(s, insn); 14231 break; 14232 case 0x7: 14233 case 0xf: /* Data processing - SIMD and floating point */ 14234 disas_data_proc_simd_fp(s, insn); 14235 break; 14236 default: 14237 unallocated_encoding(s); 14238 break; 14239 } 14240 } 14241 14242 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14243 CPUState *cpu) 14244 { 14245 DisasContext *dc = container_of(dcbase, DisasContext, base); 14246 CPUARMState *env = cpu->env_ptr; 14247 ARMCPU *arm_cpu = env_archcpu(env); 14248 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14249 int bound, core_mmu_idx; 14250 14251 dc->isar = &arm_cpu->isar; 14252 dc->condjmp = 0; 14253 dc->pc_save = dc->base.pc_first; 14254 dc->aarch64 = true; 14255 dc->thumb = false; 14256 dc->sctlr_b = 0; 14257 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14258 dc->condexec_mask = 0; 14259 dc->condexec_cond = 0; 14260 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14261 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14262 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14263 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14264 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14265 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14266 #if !defined(CONFIG_USER_ONLY) 14267 dc->user = (dc->current_el == 0); 14268 #endif 14269 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14270 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14271 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14272 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14273 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14274 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14275 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14276 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14277 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14278 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14279 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14280 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14281 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14282 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14283 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14284 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14285 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14286 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14287 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14288 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14289 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14290 dc->vec_len = 0; 14291 dc->vec_stride = 0; 14292 dc->cp_regs = arm_cpu->cp_regs; 14293 dc->features = env->features; 14294 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14295 14296 #ifdef CONFIG_USER_ONLY 14297 /* In sve_probe_page, we assume TBI is enabled. */ 14298 tcg_debug_assert(dc->tbid & 1); 14299 #endif 14300 14301 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14302 14303 /* Single step state. The code-generation logic here is: 14304 * SS_ACTIVE == 0: 14305 * generate code with no special handling for single-stepping (except 14306 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14307 * this happens anyway because those changes are all system register or 14308 * PSTATE writes). 14309 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14310 * emit code for one insn 14311 * emit code to clear PSTATE.SS 14312 * emit code to generate software step exception for completed step 14313 * end TB (as usual for having generated an exception) 14314 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14315 * emit code to generate a software step exception 14316 * end the TB 14317 */ 14318 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14319 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14320 dc->is_ldex = false; 14321 14322 /* Bound the number of insns to execute to those left on the page. */ 14323 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14324 14325 /* If architectural single step active, limit to 1. */ 14326 if (dc->ss_active) { 14327 bound = 1; 14328 } 14329 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14330 } 14331 14332 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14333 { 14334 } 14335 14336 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14337 { 14338 DisasContext *dc = container_of(dcbase, DisasContext, base); 14339 target_ulong pc_arg = dc->base.pc_next; 14340 14341 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14342 pc_arg &= ~TARGET_PAGE_MASK; 14343 } 14344 tcg_gen_insn_start(pc_arg, 0, 0); 14345 dc->insn_start = tcg_last_op(); 14346 } 14347 14348 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14349 { 14350 DisasContext *s = container_of(dcbase, DisasContext, base); 14351 CPUARMState *env = cpu->env_ptr; 14352 uint64_t pc = s->base.pc_next; 14353 uint32_t insn; 14354 14355 /* Singlestep exceptions have the highest priority. */ 14356 if (s->ss_active && !s->pstate_ss) { 14357 /* Singlestep state is Active-pending. 14358 * If we're in this state at the start of a TB then either 14359 * a) we just took an exception to an EL which is being debugged 14360 * and this is the first insn in the exception handler 14361 * b) debug exceptions were masked and we just unmasked them 14362 * without changing EL (eg by clearing PSTATE.D) 14363 * In either case we're going to take a swstep exception in the 14364 * "did not step an insn" case, and so the syndrome ISV and EX 14365 * bits should be zero. 14366 */ 14367 assert(s->base.num_insns == 1); 14368 gen_swstep_exception(s, 0, 0); 14369 s->base.is_jmp = DISAS_NORETURN; 14370 s->base.pc_next = pc + 4; 14371 return; 14372 } 14373 14374 if (pc & 3) { 14375 /* 14376 * PC alignment fault. This has priority over the instruction abort 14377 * that we would receive from a translation fault via arm_ldl_code. 14378 * This should only be possible after an indirect branch, at the 14379 * start of the TB. 14380 */ 14381 assert(s->base.num_insns == 1); 14382 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14383 s->base.is_jmp = DISAS_NORETURN; 14384 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14385 return; 14386 } 14387 14388 s->pc_curr = pc; 14389 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14390 s->insn = insn; 14391 s->base.pc_next = pc + 4; 14392 14393 s->fp_access_checked = false; 14394 s->sve_access_checked = false; 14395 14396 if (s->pstate_il) { 14397 /* 14398 * Illegal execution state. This has priority over BTI 14399 * exceptions, but comes after instruction abort exceptions. 14400 */ 14401 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14402 return; 14403 } 14404 14405 if (dc_isar_feature(aa64_bti, s)) { 14406 if (s->base.num_insns == 1) { 14407 /* 14408 * At the first insn of the TB, compute s->guarded_page. 14409 * We delayed computing this until successfully reading 14410 * the first insn of the TB, above. This (mostly) ensures 14411 * that the softmmu tlb entry has been populated, and the 14412 * page table GP bit is available. 14413 * 14414 * Note that we need to compute this even if btype == 0, 14415 * because this value is used for BR instructions later 14416 * where ENV is not available. 14417 */ 14418 s->guarded_page = is_guarded_page(env, s); 14419 14420 /* First insn can have btype set to non-zero. */ 14421 tcg_debug_assert(s->btype >= 0); 14422 14423 /* 14424 * Note that the Branch Target Exception has fairly high 14425 * priority -- below debugging exceptions but above most 14426 * everything else. This allows us to handle this now 14427 * instead of waiting until the insn is otherwise decoded. 14428 */ 14429 if (s->btype != 0 14430 && s->guarded_page 14431 && !btype_destination_ok(insn, s->bt, s->btype)) { 14432 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14433 return; 14434 } 14435 } else { 14436 /* Not the first insn: btype must be 0. */ 14437 tcg_debug_assert(s->btype == 0); 14438 } 14439 } 14440 14441 s->is_nonstreaming = false; 14442 if (s->sme_trap_nonstreaming) { 14443 disas_sme_fa64(s, insn); 14444 } 14445 14446 if (!disas_a64(s, insn) && 14447 !disas_sme(s, insn) && 14448 !disas_sve(s, insn)) { 14449 disas_a64_legacy(s, insn); 14450 } 14451 14452 /* 14453 * After execution of most insns, btype is reset to 0. 14454 * Note that we set btype == -1 when the insn sets btype. 14455 */ 14456 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14457 reset_btype(s); 14458 } 14459 } 14460 14461 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14462 { 14463 DisasContext *dc = container_of(dcbase, DisasContext, base); 14464 14465 if (unlikely(dc->ss_active)) { 14466 /* Note that this means single stepping WFI doesn't halt the CPU. 14467 * For conditional branch insns this is harmless unreachable code as 14468 * gen_goto_tb() has already handled emitting the debug exception 14469 * (and thus a tb-jump is not possible when singlestepping). 14470 */ 14471 switch (dc->base.is_jmp) { 14472 default: 14473 gen_a64_update_pc(dc, 4); 14474 /* fall through */ 14475 case DISAS_EXIT: 14476 case DISAS_JUMP: 14477 gen_step_complete_exception(dc); 14478 break; 14479 case DISAS_NORETURN: 14480 break; 14481 } 14482 } else { 14483 switch (dc->base.is_jmp) { 14484 case DISAS_NEXT: 14485 case DISAS_TOO_MANY: 14486 gen_goto_tb(dc, 1, 4); 14487 break; 14488 default: 14489 case DISAS_UPDATE_EXIT: 14490 gen_a64_update_pc(dc, 4); 14491 /* fall through */ 14492 case DISAS_EXIT: 14493 tcg_gen_exit_tb(NULL, 0); 14494 break; 14495 case DISAS_UPDATE_NOCHAIN: 14496 gen_a64_update_pc(dc, 4); 14497 /* fall through */ 14498 case DISAS_JUMP: 14499 tcg_gen_lookup_and_goto_ptr(); 14500 break; 14501 case DISAS_NORETURN: 14502 case DISAS_SWI: 14503 break; 14504 case DISAS_WFE: 14505 gen_a64_update_pc(dc, 4); 14506 gen_helper_wfe(cpu_env); 14507 break; 14508 case DISAS_YIELD: 14509 gen_a64_update_pc(dc, 4); 14510 gen_helper_yield(cpu_env); 14511 break; 14512 case DISAS_WFI: 14513 /* 14514 * This is a special case because we don't want to just halt 14515 * the CPU if trying to debug across a WFI. 14516 */ 14517 gen_a64_update_pc(dc, 4); 14518 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14519 /* 14520 * The helper doesn't necessarily throw an exception, but we 14521 * must go back to the main loop to check for interrupts anyway. 14522 */ 14523 tcg_gen_exit_tb(NULL, 0); 14524 break; 14525 } 14526 } 14527 } 14528 14529 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14530 CPUState *cpu, FILE *logfile) 14531 { 14532 DisasContext *dc = container_of(dcbase, DisasContext, base); 14533 14534 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14535 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14536 } 14537 14538 const TranslatorOps aarch64_translator_ops = { 14539 .init_disas_context = aarch64_tr_init_disas_context, 14540 .tb_start = aarch64_tr_tb_start, 14541 .insn_start = aarch64_tr_insn_start, 14542 .translate_insn = aarch64_tr_translate_insn, 14543 .tb_stop = aarch64_tr_tb_stop, 14544 .disas_log = aarch64_tr_disas_log, 14545 }; 14546