xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision a97d3c18)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "disas/disas.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Include the generated decoders.
51  */
52 
53 #include "decode-sme-fa64.c.inc"
54 #include "decode-a64.c.inc"
55 
56 /* Table based decoder typedefs - used when the relevant bits for decode
57  * are too awkwardly scattered across the instruction (eg SIMD).
58  */
59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
60 
61 typedef struct AArch64DecodeTable {
62     uint32_t pattern;
63     uint32_t mask;
64     AArch64DecodeFn *disas_fn;
65 } AArch64DecodeTable;
66 
67 /* initialize TCG globals.  */
68 void a64_translate_init(void)
69 {
70     int i;
71 
72     cpu_pc = tcg_global_mem_new_i64(cpu_env,
73                                     offsetof(CPUARMState, pc),
74                                     "pc");
75     for (i = 0; i < 32; i++) {
76         cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
77                                           offsetof(CPUARMState, xregs[i]),
78                                           regnames[i]);
79     }
80 
81     cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
82         offsetof(CPUARMState, exclusive_high), "exclusive_high");
83 }
84 
85 /*
86  * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
87  */
88 static int get_a64_user_mem_index(DisasContext *s)
89 {
90     /*
91      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
92      * which is the usual mmu_idx for this cpu state.
93      */
94     ARMMMUIdx useridx = s->mmu_idx;
95 
96     if (s->unpriv) {
97         /*
98          * We have pre-computed the condition for AccType_UNPRIV.
99          * Therefore we should never get here with a mmu_idx for
100          * which we do not know the corresponding user mmu_idx.
101          */
102         switch (useridx) {
103         case ARMMMUIdx_E10_1:
104         case ARMMMUIdx_E10_1_PAN:
105             useridx = ARMMMUIdx_E10_0;
106             break;
107         case ARMMMUIdx_E20_2:
108         case ARMMMUIdx_E20_2_PAN:
109             useridx = ARMMMUIdx_E20_0;
110             break;
111         default:
112             g_assert_not_reached();
113         }
114     }
115     return arm_to_core_mmu_idx(useridx);
116 }
117 
118 static void set_btype_raw(int val)
119 {
120     tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
121                    offsetof(CPUARMState, btype));
122 }
123 
124 static void set_btype(DisasContext *s, int val)
125 {
126     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
127     tcg_debug_assert(val >= 1 && val <= 3);
128     set_btype_raw(val);
129     s->btype = -1;
130 }
131 
132 static void reset_btype(DisasContext *s)
133 {
134     if (s->btype != 0) {
135         set_btype_raw(0);
136         s->btype = 0;
137     }
138 }
139 
140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
141 {
142     assert(s->pc_save != -1);
143     if (tb_cflags(s->base.tb) & CF_PCREL) {
144         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
145     } else {
146         tcg_gen_movi_i64(dest, s->pc_curr + diff);
147     }
148 }
149 
150 void gen_a64_update_pc(DisasContext *s, target_long diff)
151 {
152     gen_pc_plus_diff(s, cpu_pc, diff);
153     s->pc_save = s->pc_curr + diff;
154 }
155 
156 /*
157  * Handle Top Byte Ignore (TBI) bits.
158  *
159  * If address tagging is enabled via the TCR TBI bits:
160  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
161  *    then the address is zero-extended, clearing bits [63:56]
162  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163  *    and TBI1 controls addressses with bit 55 == 1.
164  *    If the appropriate TBI bit is set for the address then
165  *    the address is sign-extended from bit 55 into bits [63:56]
166  *
167  * Here We have concatenated TBI{1,0} into tbi.
168  */
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170                                 TCGv_i64 src, int tbi)
171 {
172     if (tbi == 0) {
173         /* Load unmodified address */
174         tcg_gen_mov_i64(dst, src);
175     } else if (!regime_has_2_ranges(s->mmu_idx)) {
176         /* Force tag byte to all zero */
177         tcg_gen_extract_i64(dst, src, 0, 56);
178     } else {
179         /* Sign-extend from bit 55.  */
180         tcg_gen_sextract_i64(dst, src, 0, 56);
181 
182         switch (tbi) {
183         case 1:
184             /* tbi0 but !tbi1: only use the extension if positive */
185             tcg_gen_and_i64(dst, dst, src);
186             break;
187         case 2:
188             /* !tbi0 but tbi1: only use the extension if negative */
189             tcg_gen_or_i64(dst, dst, src);
190             break;
191         case 3:
192             /* tbi0 and tbi1: always use the extension */
193             break;
194         default:
195             g_assert_not_reached();
196         }
197     }
198 }
199 
200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
201 {
202     /*
203      * If address tagging is enabled for instructions via the TCR TBI bits,
204      * then loading an address into the PC will clear out any tag.
205      */
206     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
207     s->pc_save = -1;
208 }
209 
210 /*
211  * Handle MTE and/or TBI.
212  *
213  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
214  * for the tag to be present in the FAR_ELx register.  But for user-only
215  * mode we do not have a TLB with which to implement this, so we must
216  * remove the top byte now.
217  *
218  * Always return a fresh temporary that we can increment independently
219  * of the write-back address.
220  */
221 
222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
223 {
224     TCGv_i64 clean = tcg_temp_new_i64();
225 #ifdef CONFIG_USER_ONLY
226     gen_top_byte_ignore(s, clean, addr, s->tbid);
227 #else
228     tcg_gen_mov_i64(clean, addr);
229 #endif
230     return clean;
231 }
232 
233 /* Insert a zero tag into src, with the result at dst. */
234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
235 {
236     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
237 }
238 
239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
240                              MMUAccessType acc, int log2_size)
241 {
242     gen_helper_probe_access(cpu_env, ptr,
243                             tcg_constant_i32(acc),
244                             tcg_constant_i32(get_mem_index(s)),
245                             tcg_constant_i32(1 << log2_size));
246 }
247 
248 /*
249  * For MTE, check a single logical or atomic access.  This probes a single
250  * address, the exact one specified.  The size and alignment of the access
251  * is not relevant to MTE, per se, but watchpoints do require the size,
252  * and we want to recognize those before making any other changes to state.
253  */
254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
255                                       bool is_write, bool tag_checked,
256                                       MemOp memop, bool is_unpriv,
257                                       int core_idx)
258 {
259     if (tag_checked && s->mte_active[is_unpriv]) {
260         TCGv_i64 ret;
261         int desc = 0;
262 
263         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
264         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
265         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
266         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
267         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
268         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
269 
270         ret = tcg_temp_new_i64();
271         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
272 
273         return ret;
274     }
275     return clean_data_tbi(s, addr);
276 }
277 
278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
279                         bool tag_checked, MemOp memop)
280 {
281     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
282                                  false, get_mem_index(s));
283 }
284 
285 /*
286  * For MTE, check multiple logical sequential accesses.
287  */
288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
289                         bool tag_checked, int total_size, MemOp single_mop)
290 {
291     if (tag_checked && s->mte_active[0]) {
292         TCGv_i64 ret;
293         int desc = 0;
294 
295         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
296         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
297         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
298         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
299         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
300         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
301 
302         ret = tcg_temp_new_i64();
303         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
304 
305         return ret;
306     }
307     return clean_data_tbi(s, addr);
308 }
309 
310 /*
311  * Generate the special alignment check that applies to AccType_ATOMIC
312  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
313  * naturally aligned, but it must not cross a 16-byte boundary.
314  * See AArch64.CheckAlignment().
315  */
316 static void check_lse2_align(DisasContext *s, int rn, int imm,
317                              bool is_write, MemOp mop)
318 {
319     TCGv_i32 tmp;
320     TCGv_i64 addr;
321     TCGLabel *over_label;
322     MMUAccessType type;
323     int mmu_idx;
324 
325     tmp = tcg_temp_new_i32();
326     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
327     tcg_gen_addi_i32(tmp, tmp, imm & 15);
328     tcg_gen_andi_i32(tmp, tmp, 15);
329     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
330 
331     over_label = gen_new_label();
332     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
333 
334     addr = tcg_temp_new_i64();
335     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
336 
337     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
338     mmu_idx = get_mem_index(s);
339     gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type),
340                                 tcg_constant_i32(mmu_idx));
341 
342     gen_set_label(over_label);
343 
344 }
345 
346 /* Handle the alignment check for AccType_ATOMIC instructions. */
347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
348 {
349     MemOp size = mop & MO_SIZE;
350 
351     if (size == MO_8) {
352         return mop;
353     }
354 
355     /*
356      * If size == MO_128, this is a LDXP, and the operation is single-copy
357      * atomic for each doubleword, not the entire quadword; it still must
358      * be quadword aligned.
359      */
360     if (size == MO_128) {
361         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
362                                    MO_ATOM_IFALIGN_PAIR);
363     }
364     if (dc_isar_feature(aa64_lse2, s)) {
365         check_lse2_align(s, rn, 0, true, mop);
366     } else {
367         mop |= MO_ALIGN;
368     }
369     return finalize_memop(s, mop);
370 }
371 
372 /* Handle the alignment check for AccType_ORDERED instructions. */
373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
374                                  bool is_write, MemOp mop)
375 {
376     MemOp size = mop & MO_SIZE;
377 
378     if (size == MO_8) {
379         return mop;
380     }
381     if (size == MO_128) {
382         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
383                                    MO_ATOM_IFALIGN_PAIR);
384     }
385     if (!dc_isar_feature(aa64_lse2, s)) {
386         mop |= MO_ALIGN;
387     } else if (!s->naa) {
388         check_lse2_align(s, rn, imm, is_write, mop);
389     }
390     return finalize_memop(s, mop);
391 }
392 
393 typedef struct DisasCompare64 {
394     TCGCond cond;
395     TCGv_i64 value;
396 } DisasCompare64;
397 
398 static void a64_test_cc(DisasCompare64 *c64, int cc)
399 {
400     DisasCompare c32;
401 
402     arm_test_cc(&c32, cc);
403 
404     /*
405      * Sign-extend the 32-bit value so that the GE/LT comparisons work
406      * properly.  The NE/EQ comparisons are also fine with this choice.
407       */
408     c64->cond = c32.cond;
409     c64->value = tcg_temp_new_i64();
410     tcg_gen_ext_i32_i64(c64->value, c32.value);
411 }
412 
413 static void gen_rebuild_hflags(DisasContext *s)
414 {
415     gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
416 }
417 
418 static void gen_exception_internal(int excp)
419 {
420     assert(excp_is_internal(excp));
421     gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
422 }
423 
424 static void gen_exception_internal_insn(DisasContext *s, int excp)
425 {
426     gen_a64_update_pc(s, 0);
427     gen_exception_internal(excp);
428     s->base.is_jmp = DISAS_NORETURN;
429 }
430 
431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
432 {
433     gen_a64_update_pc(s, 0);
434     gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
435     s->base.is_jmp = DISAS_NORETURN;
436 }
437 
438 static void gen_step_complete_exception(DisasContext *s)
439 {
440     /* We just completed step of an insn. Move from Active-not-pending
441      * to Active-pending, and then also take the swstep exception.
442      * This corresponds to making the (IMPDEF) choice to prioritize
443      * swstep exceptions over asynchronous exceptions taken to an exception
444      * level where debug is disabled. This choice has the advantage that
445      * we do not need to maintain internal state corresponding to the
446      * ISV/EX syndrome bits between completion of the step and generation
447      * of the exception, and our syndrome information is always correct.
448      */
449     gen_ss_advance(s);
450     gen_swstep_exception(s, 1, s->is_ldex);
451     s->base.is_jmp = DISAS_NORETURN;
452 }
453 
454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
455 {
456     if (s->ss_active) {
457         return false;
458     }
459     return translator_use_goto_tb(&s->base, dest);
460 }
461 
462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
463 {
464     if (use_goto_tb(s, s->pc_curr + diff)) {
465         /*
466          * For pcrel, the pc must always be up-to-date on entry to
467          * the linked TB, so that it can use simple additions for all
468          * further adjustments.  For !pcrel, the linked TB is compiled
469          * to know its full virtual address, so we can delay the
470          * update to pc to the unlinked path.  A long chain of links
471          * can thus avoid many updates to the PC.
472          */
473         if (tb_cflags(s->base.tb) & CF_PCREL) {
474             gen_a64_update_pc(s, diff);
475             tcg_gen_goto_tb(n);
476         } else {
477             tcg_gen_goto_tb(n);
478             gen_a64_update_pc(s, diff);
479         }
480         tcg_gen_exit_tb(s->base.tb, n);
481         s->base.is_jmp = DISAS_NORETURN;
482     } else {
483         gen_a64_update_pc(s, diff);
484         if (s->ss_active) {
485             gen_step_complete_exception(s);
486         } else {
487             tcg_gen_lookup_and_goto_ptr();
488             s->base.is_jmp = DISAS_NORETURN;
489         }
490     }
491 }
492 
493 /*
494  * Register access functions
495  *
496  * These functions are used for directly accessing a register in where
497  * changes to the final register value are likely to be made. If you
498  * need to use a register for temporary calculation (e.g. index type
499  * operations) use the read_* form.
500  *
501  * B1.2.1 Register mappings
502  *
503  * In instruction register encoding 31 can refer to ZR (zero register) or
504  * the SP (stack pointer) depending on context. In QEMU's case we map SP
505  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
506  * This is the point of the _sp forms.
507  */
508 TCGv_i64 cpu_reg(DisasContext *s, int reg)
509 {
510     if (reg == 31) {
511         TCGv_i64 t = tcg_temp_new_i64();
512         tcg_gen_movi_i64(t, 0);
513         return t;
514     } else {
515         return cpu_X[reg];
516     }
517 }
518 
519 /* register access for when 31 == SP */
520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
521 {
522     return cpu_X[reg];
523 }
524 
525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
526  * representing the register contents. This TCGv is an auto-freed
527  * temporary so it need not be explicitly freed, and may be modified.
528  */
529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
530 {
531     TCGv_i64 v = tcg_temp_new_i64();
532     if (reg != 31) {
533         if (sf) {
534             tcg_gen_mov_i64(v, cpu_X[reg]);
535         } else {
536             tcg_gen_ext32u_i64(v, cpu_X[reg]);
537         }
538     } else {
539         tcg_gen_movi_i64(v, 0);
540     }
541     return v;
542 }
543 
544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
545 {
546     TCGv_i64 v = tcg_temp_new_i64();
547     if (sf) {
548         tcg_gen_mov_i64(v, cpu_X[reg]);
549     } else {
550         tcg_gen_ext32u_i64(v, cpu_X[reg]);
551     }
552     return v;
553 }
554 
555 /* Return the offset into CPUARMState of a slice (from
556  * the least significant end) of FP register Qn (ie
557  * Dn, Sn, Hn or Bn).
558  * (Note that this is not the same mapping as for A32; see cpu.h)
559  */
560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
561 {
562     return vec_reg_offset(s, regno, 0, size);
563 }
564 
565 /* Offset of the high half of the 128 bit vector Qn */
566 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
567 {
568     return vec_reg_offset(s, regno, 1, MO_64);
569 }
570 
571 /* Convenience accessors for reading and writing single and double
572  * FP registers. Writing clears the upper parts of the associated
573  * 128 bit vector register, as required by the architecture.
574  * Note that unlike the GP register accessors, the values returned
575  * by the read functions must be manually freed.
576  */
577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
578 {
579     TCGv_i64 v = tcg_temp_new_i64();
580 
581     tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
582     return v;
583 }
584 
585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
586 {
587     TCGv_i32 v = tcg_temp_new_i32();
588 
589     tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
590     return v;
591 }
592 
593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
594 {
595     TCGv_i32 v = tcg_temp_new_i32();
596 
597     tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
598     return v;
599 }
600 
601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
602  * If SVE is not enabled, then there are only 128 bits in the vector.
603  */
604 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
605 {
606     unsigned ofs = fp_reg_offset(s, rd, MO_64);
607     unsigned vsz = vec_full_reg_size(s);
608 
609     /* Nop move, with side effect of clearing the tail. */
610     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
611 }
612 
613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
614 {
615     unsigned ofs = fp_reg_offset(s, reg, MO_64);
616 
617     tcg_gen_st_i64(v, cpu_env, ofs);
618     clear_vec_high(s, false, reg);
619 }
620 
621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
622 {
623     TCGv_i64 tmp = tcg_temp_new_i64();
624 
625     tcg_gen_extu_i32_i64(tmp, v);
626     write_fp_dreg(s, reg, tmp);
627 }
628 
629 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
631                          GVecGen2Fn *gvec_fn, int vece)
632 {
633     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
634             is_q ? 16 : 8, vec_full_reg_size(s));
635 }
636 
637 /* Expand a 2-operand + immediate AdvSIMD vector operation using
638  * an expander function.
639  */
640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
641                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
642 {
643     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
644             imm, is_q ? 16 : 8, vec_full_reg_size(s));
645 }
646 
647 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
649                          GVecGen3Fn *gvec_fn, int vece)
650 {
651     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
652             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
653 }
654 
655 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
657                          int rx, GVecGen4Fn *gvec_fn, int vece)
658 {
659     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
660             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
661             is_q ? 16 : 8, vec_full_reg_size(s));
662 }
663 
664 /* Expand a 2-operand operation using an out-of-line helper.  */
665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
666                              int rn, int data, gen_helper_gvec_2 *fn)
667 {
668     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
669                        vec_full_reg_offset(s, rn),
670                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
671 }
672 
673 /* Expand a 3-operand operation using an out-of-line helper.  */
674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
675                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
676 {
677     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
678                        vec_full_reg_offset(s, rn),
679                        vec_full_reg_offset(s, rm),
680                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
681 }
682 
683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
684  * an out-of-line helper.
685  */
686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
687                               int rm, bool is_fp16, int data,
688                               gen_helper_gvec_3_ptr *fn)
689 {
690     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
691     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
692                        vec_full_reg_offset(s, rn),
693                        vec_full_reg_offset(s, rm), fpst,
694                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
695 }
696 
697 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
699                             int rm, gen_helper_gvec_3_ptr *fn)
700 {
701     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
702 
703     tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
704     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
705                        vec_full_reg_offset(s, rn),
706                        vec_full_reg_offset(s, rm), qc_ptr,
707                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
708 }
709 
710 /* Expand a 4-operand operation using an out-of-line helper.  */
711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
712                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
713 {
714     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
715                        vec_full_reg_offset(s, rn),
716                        vec_full_reg_offset(s, rm),
717                        vec_full_reg_offset(s, ra),
718                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
719 }
720 
721 /*
722  * Expand a 4-operand + fpstatus pointer + simd data value operation using
723  * an out-of-line helper.
724  */
725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
726                               int rm, int ra, bool is_fp16, int data,
727                               gen_helper_gvec_4_ptr *fn)
728 {
729     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
730     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
731                        vec_full_reg_offset(s, rn),
732                        vec_full_reg_offset(s, rm),
733                        vec_full_reg_offset(s, ra), fpst,
734                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
735 }
736 
737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
738  * than the 32 bit equivalent.
739  */
740 static inline void gen_set_NZ64(TCGv_i64 result)
741 {
742     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
743     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
744 }
745 
746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
747 static inline void gen_logic_CC(int sf, TCGv_i64 result)
748 {
749     if (sf) {
750         gen_set_NZ64(result);
751     } else {
752         tcg_gen_extrl_i64_i32(cpu_ZF, result);
753         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
754     }
755     tcg_gen_movi_i32(cpu_CF, 0);
756     tcg_gen_movi_i32(cpu_VF, 0);
757 }
758 
759 /* dest = T0 + T1; compute C, N, V and Z flags */
760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
761 {
762     TCGv_i64 result, flag, tmp;
763     result = tcg_temp_new_i64();
764     flag = tcg_temp_new_i64();
765     tmp = tcg_temp_new_i64();
766 
767     tcg_gen_movi_i64(tmp, 0);
768     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
769 
770     tcg_gen_extrl_i64_i32(cpu_CF, flag);
771 
772     gen_set_NZ64(result);
773 
774     tcg_gen_xor_i64(flag, result, t0);
775     tcg_gen_xor_i64(tmp, t0, t1);
776     tcg_gen_andc_i64(flag, flag, tmp);
777     tcg_gen_extrh_i64_i32(cpu_VF, flag);
778 
779     tcg_gen_mov_i64(dest, result);
780 }
781 
782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
783 {
784     TCGv_i32 t0_32 = tcg_temp_new_i32();
785     TCGv_i32 t1_32 = tcg_temp_new_i32();
786     TCGv_i32 tmp = tcg_temp_new_i32();
787 
788     tcg_gen_movi_i32(tmp, 0);
789     tcg_gen_extrl_i64_i32(t0_32, t0);
790     tcg_gen_extrl_i64_i32(t1_32, t1);
791     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
792     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
793     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
794     tcg_gen_xor_i32(tmp, t0_32, t1_32);
795     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
796     tcg_gen_extu_i32_i64(dest, cpu_NF);
797 }
798 
799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     if (sf) {
802         gen_add64_CC(dest, t0, t1);
803     } else {
804         gen_add32_CC(dest, t0, t1);
805     }
806 }
807 
808 /* dest = T0 - T1; compute C, N, V and Z flags */
809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
810 {
811     /* 64 bit arithmetic */
812     TCGv_i64 result, flag, tmp;
813 
814     result = tcg_temp_new_i64();
815     flag = tcg_temp_new_i64();
816     tcg_gen_sub_i64(result, t0, t1);
817 
818     gen_set_NZ64(result);
819 
820     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
821     tcg_gen_extrl_i64_i32(cpu_CF, flag);
822 
823     tcg_gen_xor_i64(flag, result, t0);
824     tmp = tcg_temp_new_i64();
825     tcg_gen_xor_i64(tmp, t0, t1);
826     tcg_gen_and_i64(flag, flag, tmp);
827     tcg_gen_extrh_i64_i32(cpu_VF, flag);
828     tcg_gen_mov_i64(dest, result);
829 }
830 
831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
832 {
833     /* 32 bit arithmetic */
834     TCGv_i32 t0_32 = tcg_temp_new_i32();
835     TCGv_i32 t1_32 = tcg_temp_new_i32();
836     TCGv_i32 tmp;
837 
838     tcg_gen_extrl_i64_i32(t0_32, t0);
839     tcg_gen_extrl_i64_i32(t1_32, t1);
840     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
841     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
842     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
843     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
844     tmp = tcg_temp_new_i32();
845     tcg_gen_xor_i32(tmp, t0_32, t1_32);
846     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
847     tcg_gen_extu_i32_i64(dest, cpu_NF);
848 }
849 
850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
851 {
852     if (sf) {
853         gen_sub64_CC(dest, t0, t1);
854     } else {
855         gen_sub32_CC(dest, t0, t1);
856     }
857 }
858 
859 /* dest = T0 + T1 + CF; do not compute flags. */
860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
861 {
862     TCGv_i64 flag = tcg_temp_new_i64();
863     tcg_gen_extu_i32_i64(flag, cpu_CF);
864     tcg_gen_add_i64(dest, t0, t1);
865     tcg_gen_add_i64(dest, dest, flag);
866 
867     if (!sf) {
868         tcg_gen_ext32u_i64(dest, dest);
869     }
870 }
871 
872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
874 {
875     if (sf) {
876         TCGv_i64 result = tcg_temp_new_i64();
877         TCGv_i64 cf_64 = tcg_temp_new_i64();
878         TCGv_i64 vf_64 = tcg_temp_new_i64();
879         TCGv_i64 tmp = tcg_temp_new_i64();
880         TCGv_i64 zero = tcg_constant_i64(0);
881 
882         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
883         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
884         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
885         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
886         gen_set_NZ64(result);
887 
888         tcg_gen_xor_i64(vf_64, result, t0);
889         tcg_gen_xor_i64(tmp, t0, t1);
890         tcg_gen_andc_i64(vf_64, vf_64, tmp);
891         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
892 
893         tcg_gen_mov_i64(dest, result);
894     } else {
895         TCGv_i32 t0_32 = tcg_temp_new_i32();
896         TCGv_i32 t1_32 = tcg_temp_new_i32();
897         TCGv_i32 tmp = tcg_temp_new_i32();
898         TCGv_i32 zero = tcg_constant_i32(0);
899 
900         tcg_gen_extrl_i64_i32(t0_32, t0);
901         tcg_gen_extrl_i64_i32(t1_32, t1);
902         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
903         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
904 
905         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
906         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
907         tcg_gen_xor_i32(tmp, t0_32, t1_32);
908         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
909         tcg_gen_extu_i32_i64(dest, cpu_NF);
910     }
911 }
912 
913 /*
914  * Load/Store generators
915  */
916 
917 /*
918  * Store from GPR register to memory.
919  */
920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
921                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
922                              bool iss_valid,
923                              unsigned int iss_srt,
924                              bool iss_sf, bool iss_ar)
925 {
926     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
927 
928     if (iss_valid) {
929         uint32_t syn;
930 
931         syn = syn_data_abort_with_iss(0,
932                                       (memop & MO_SIZE),
933                                       false,
934                                       iss_srt,
935                                       iss_sf,
936                                       iss_ar,
937                                       0, 0, 0, 0, 0, false);
938         disas_set_insn_syndrome(s, syn);
939     }
940 }
941 
942 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
943                       TCGv_i64 tcg_addr, MemOp memop,
944                       bool iss_valid,
945                       unsigned int iss_srt,
946                       bool iss_sf, bool iss_ar)
947 {
948     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
949                      iss_valid, iss_srt, iss_sf, iss_ar);
950 }
951 
952 /*
953  * Load from memory to GPR register
954  */
955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
956                              MemOp memop, bool extend, int memidx,
957                              bool iss_valid, unsigned int iss_srt,
958                              bool iss_sf, bool iss_ar)
959 {
960     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
961 
962     if (extend && (memop & MO_SIGN)) {
963         g_assert((memop & MO_SIZE) <= MO_32);
964         tcg_gen_ext32u_i64(dest, dest);
965     }
966 
967     if (iss_valid) {
968         uint32_t syn;
969 
970         syn = syn_data_abort_with_iss(0,
971                                       (memop & MO_SIZE),
972                                       (memop & MO_SIGN) != 0,
973                                       iss_srt,
974                                       iss_sf,
975                                       iss_ar,
976                                       0, 0, 0, 0, 0, false);
977         disas_set_insn_syndrome(s, syn);
978     }
979 }
980 
981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
982                       MemOp memop, bool extend,
983                       bool iss_valid, unsigned int iss_srt,
984                       bool iss_sf, bool iss_ar)
985 {
986     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
987                      iss_valid, iss_srt, iss_sf, iss_ar);
988 }
989 
990 /*
991  * Store from FP register to memory
992  */
993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
994 {
995     /* This writes the bottom N bits of a 128 bit wide vector to memory */
996     TCGv_i64 tmplo = tcg_temp_new_i64();
997 
998     tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
999 
1000     if ((mop & MO_SIZE) < MO_128) {
1001         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1002     } else {
1003         TCGv_i64 tmphi = tcg_temp_new_i64();
1004         TCGv_i128 t16 = tcg_temp_new_i128();
1005 
1006         tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
1007         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1008 
1009         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1010     }
1011 }
1012 
1013 /*
1014  * Load from memory to FP register
1015  */
1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1017 {
1018     /* This always zero-extends and writes to a full 128 bit wide vector */
1019     TCGv_i64 tmplo = tcg_temp_new_i64();
1020     TCGv_i64 tmphi = NULL;
1021 
1022     if ((mop & MO_SIZE) < MO_128) {
1023         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1024     } else {
1025         TCGv_i128 t16 = tcg_temp_new_i128();
1026 
1027         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1028 
1029         tmphi = tcg_temp_new_i64();
1030         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1031     }
1032 
1033     tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1034 
1035     if (tmphi) {
1036         tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1037     }
1038     clear_vec_high(s, tmphi != NULL, destidx);
1039 }
1040 
1041 /*
1042  * Vector load/store helpers.
1043  *
1044  * The principal difference between this and a FP load is that we don't
1045  * zero extend as we are filling a partial chunk of the vector register.
1046  * These functions don't support 128 bit loads/stores, which would be
1047  * normal load/store operations.
1048  *
1049  * The _i32 versions are useful when operating on 32 bit quantities
1050  * (eg for floating point single or using Neon helper functions).
1051  */
1052 
1053 /* Get value of an element within a vector register */
1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1055                              int element, MemOp memop)
1056 {
1057     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1058     switch ((unsigned)memop) {
1059     case MO_8:
1060         tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1061         break;
1062     case MO_16:
1063         tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1064         break;
1065     case MO_32:
1066         tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1067         break;
1068     case MO_8|MO_SIGN:
1069         tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1070         break;
1071     case MO_16|MO_SIGN:
1072         tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1073         break;
1074     case MO_32|MO_SIGN:
1075         tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1076         break;
1077     case MO_64:
1078     case MO_64|MO_SIGN:
1079         tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1080         break;
1081     default:
1082         g_assert_not_reached();
1083     }
1084 }
1085 
1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1087                                  int element, MemOp memop)
1088 {
1089     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1090     switch (memop) {
1091     case MO_8:
1092         tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1093         break;
1094     case MO_16:
1095         tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1096         break;
1097     case MO_8|MO_SIGN:
1098         tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1099         break;
1100     case MO_16|MO_SIGN:
1101         tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1102         break;
1103     case MO_32:
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1106         break;
1107     default:
1108         g_assert_not_reached();
1109     }
1110 }
1111 
1112 /* Set value of an element within a vector register */
1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1114                               int element, MemOp memop)
1115 {
1116     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1117     switch (memop) {
1118     case MO_8:
1119         tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1120         break;
1121     case MO_16:
1122         tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1123         break;
1124     case MO_32:
1125         tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1126         break;
1127     case MO_64:
1128         tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1129         break;
1130     default:
1131         g_assert_not_reached();
1132     }
1133 }
1134 
1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1136                                   int destidx, int element, MemOp memop)
1137 {
1138     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1139     switch (memop) {
1140     case MO_8:
1141         tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1142         break;
1143     case MO_16:
1144         tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1145         break;
1146     case MO_32:
1147         tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1148         break;
1149     default:
1150         g_assert_not_reached();
1151     }
1152 }
1153 
1154 /* Store from vector register to memory */
1155 static void do_vec_st(DisasContext *s, int srcidx, int element,
1156                       TCGv_i64 tcg_addr, MemOp mop)
1157 {
1158     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1159 
1160     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1161     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1162 }
1163 
1164 /* Load from memory to vector register */
1165 static void do_vec_ld(DisasContext *s, int destidx, int element,
1166                       TCGv_i64 tcg_addr, MemOp mop)
1167 {
1168     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1169 
1170     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1171     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1172 }
1173 
1174 /* Check that FP/Neon access is enabled. If it is, return
1175  * true. If not, emit code to generate an appropriate exception,
1176  * and return false; the caller should not emit any code for
1177  * the instruction. Note that this check must happen after all
1178  * unallocated-encoding checks (otherwise the syndrome information
1179  * for the resulting exception will be incorrect).
1180  */
1181 static bool fp_access_check_only(DisasContext *s)
1182 {
1183     if (s->fp_excp_el) {
1184         assert(!s->fp_access_checked);
1185         s->fp_access_checked = true;
1186 
1187         gen_exception_insn_el(s, 0, EXCP_UDEF,
1188                               syn_fp_access_trap(1, 0xe, false, 0),
1189                               s->fp_excp_el);
1190         return false;
1191     }
1192     s->fp_access_checked = true;
1193     return true;
1194 }
1195 
1196 static bool fp_access_check(DisasContext *s)
1197 {
1198     if (!fp_access_check_only(s)) {
1199         return false;
1200     }
1201     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1202         gen_exception_insn(s, 0, EXCP_UDEF,
1203                            syn_smetrap(SME_ET_Streaming, false));
1204         return false;
1205     }
1206     return true;
1207 }
1208 
1209 /*
1210  * Check that SVE access is enabled.  If it is, return true.
1211  * If not, emit code to generate an appropriate exception and return false.
1212  * This function corresponds to CheckSVEEnabled().
1213  */
1214 bool sve_access_check(DisasContext *s)
1215 {
1216     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1217         assert(dc_isar_feature(aa64_sme, s));
1218         if (!sme_sm_enabled_check(s)) {
1219             goto fail_exit;
1220         }
1221     } else if (s->sve_excp_el) {
1222         gen_exception_insn_el(s, 0, EXCP_UDEF,
1223                               syn_sve_access_trap(), s->sve_excp_el);
1224         goto fail_exit;
1225     }
1226     s->sve_access_checked = true;
1227     return fp_access_check(s);
1228 
1229  fail_exit:
1230     /* Assert that we only raise one exception per instruction. */
1231     assert(!s->sve_access_checked);
1232     s->sve_access_checked = true;
1233     return false;
1234 }
1235 
1236 /*
1237  * Check that SME access is enabled, raise an exception if not.
1238  * Note that this function corresponds to CheckSMEAccess and is
1239  * only used directly for cpregs.
1240  */
1241 static bool sme_access_check(DisasContext *s)
1242 {
1243     if (s->sme_excp_el) {
1244         gen_exception_insn_el(s, 0, EXCP_UDEF,
1245                               syn_smetrap(SME_ET_AccessTrap, false),
1246                               s->sme_excp_el);
1247         return false;
1248     }
1249     return true;
1250 }
1251 
1252 /* This function corresponds to CheckSMEEnabled. */
1253 bool sme_enabled_check(DisasContext *s)
1254 {
1255     /*
1256      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1257      * to be zero when fp_excp_el has priority.  This is because we need
1258      * sme_excp_el by itself for cpregs access checks.
1259      */
1260     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1261         s->fp_access_checked = true;
1262         return sme_access_check(s);
1263     }
1264     return fp_access_check_only(s);
1265 }
1266 
1267 /* Common subroutine for CheckSMEAnd*Enabled. */
1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1269 {
1270     if (!sme_enabled_check(s)) {
1271         return false;
1272     }
1273     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1274         gen_exception_insn(s, 0, EXCP_UDEF,
1275                            syn_smetrap(SME_ET_NotStreaming, false));
1276         return false;
1277     }
1278     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1279         gen_exception_insn(s, 0, EXCP_UDEF,
1280                            syn_smetrap(SME_ET_InactiveZA, false));
1281         return false;
1282     }
1283     return true;
1284 }
1285 
1286 /*
1287  * This utility function is for doing register extension with an
1288  * optional shift. You will likely want to pass a temporary for the
1289  * destination register. See DecodeRegExtend() in the ARM ARM.
1290  */
1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1292                               int option, unsigned int shift)
1293 {
1294     int extsize = extract32(option, 0, 2);
1295     bool is_signed = extract32(option, 2, 1);
1296 
1297     if (is_signed) {
1298         switch (extsize) {
1299         case 0:
1300             tcg_gen_ext8s_i64(tcg_out, tcg_in);
1301             break;
1302         case 1:
1303             tcg_gen_ext16s_i64(tcg_out, tcg_in);
1304             break;
1305         case 2:
1306             tcg_gen_ext32s_i64(tcg_out, tcg_in);
1307             break;
1308         case 3:
1309             tcg_gen_mov_i64(tcg_out, tcg_in);
1310             break;
1311         }
1312     } else {
1313         switch (extsize) {
1314         case 0:
1315             tcg_gen_ext8u_i64(tcg_out, tcg_in);
1316             break;
1317         case 1:
1318             tcg_gen_ext16u_i64(tcg_out, tcg_in);
1319             break;
1320         case 2:
1321             tcg_gen_ext32u_i64(tcg_out, tcg_in);
1322             break;
1323         case 3:
1324             tcg_gen_mov_i64(tcg_out, tcg_in);
1325             break;
1326         }
1327     }
1328 
1329     if (shift) {
1330         tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1331     }
1332 }
1333 
1334 static inline void gen_check_sp_alignment(DisasContext *s)
1335 {
1336     /* The AArch64 architecture mandates that (if enabled via PSTATE
1337      * or SCTLR bits) there is a check that SP is 16-aligned on every
1338      * SP-relative load or store (with an exception generated if it is not).
1339      * In line with general QEMU practice regarding misaligned accesses,
1340      * we omit these checks for the sake of guest program performance.
1341      * This function is provided as a hook so we can more easily add these
1342      * checks in future (possibly as a "favour catching guest program bugs
1343      * over speed" user selectable option).
1344      */
1345 }
1346 
1347 /*
1348  * This provides a simple table based table lookup decoder. It is
1349  * intended to be used when the relevant bits for decode are too
1350  * awkwardly placed and switch/if based logic would be confusing and
1351  * deeply nested. Since it's a linear search through the table, tables
1352  * should be kept small.
1353  *
1354  * It returns the first handler where insn & mask == pattern, or
1355  * NULL if there is no match.
1356  * The table is terminated by an empty mask (i.e. 0)
1357  */
1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1359                                                uint32_t insn)
1360 {
1361     const AArch64DecodeTable *tptr = table;
1362 
1363     while (tptr->mask) {
1364         if ((insn & tptr->mask) == tptr->pattern) {
1365             return tptr->disas_fn;
1366         }
1367         tptr++;
1368     }
1369     return NULL;
1370 }
1371 
1372 /*
1373  * The instruction disassembly implemented here matches
1374  * the instruction encoding classifications in chapter C4
1375  * of the ARM Architecture Reference Manual (DDI0487B_a);
1376  * classification names and decode diagrams here should generally
1377  * match up with those in the manual.
1378  */
1379 
1380 static bool trans_B(DisasContext *s, arg_i *a)
1381 {
1382     reset_btype(s);
1383     gen_goto_tb(s, 0, a->imm);
1384     return true;
1385 }
1386 
1387 static bool trans_BL(DisasContext *s, arg_i *a)
1388 {
1389     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1390     reset_btype(s);
1391     gen_goto_tb(s, 0, a->imm);
1392     return true;
1393 }
1394 
1395 
1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1397 {
1398     DisasLabel match;
1399     TCGv_i64 tcg_cmp;
1400 
1401     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1402     reset_btype(s);
1403 
1404     match = gen_disas_label(s);
1405     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1406                         tcg_cmp, 0, match.label);
1407     gen_goto_tb(s, 0, 4);
1408     set_disas_label(s, match);
1409     gen_goto_tb(s, 1, a->imm);
1410     return true;
1411 }
1412 
1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1414 {
1415     DisasLabel match;
1416     TCGv_i64 tcg_cmp;
1417 
1418     tcg_cmp = tcg_temp_new_i64();
1419     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1420 
1421     reset_btype(s);
1422 
1423     match = gen_disas_label(s);
1424     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1425                         tcg_cmp, 0, match.label);
1426     gen_goto_tb(s, 0, 4);
1427     set_disas_label(s, match);
1428     gen_goto_tb(s, 1, a->imm);
1429     return true;
1430 }
1431 
1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1433 {
1434     reset_btype(s);
1435     if (a->cond < 0x0e) {
1436         /* genuinely conditional branches */
1437         DisasLabel match = gen_disas_label(s);
1438         arm_gen_test_cc(a->cond, match.label);
1439         gen_goto_tb(s, 0, 4);
1440         set_disas_label(s, match);
1441         gen_goto_tb(s, 1, a->imm);
1442     } else {
1443         /* 0xe and 0xf are both "always" conditions */
1444         gen_goto_tb(s, 0, a->imm);
1445     }
1446     return true;
1447 }
1448 
1449 static void set_btype_for_br(DisasContext *s, int rn)
1450 {
1451     if (dc_isar_feature(aa64_bti, s)) {
1452         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1453         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1454     }
1455 }
1456 
1457 static void set_btype_for_blr(DisasContext *s)
1458 {
1459     if (dc_isar_feature(aa64_bti, s)) {
1460         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1461         set_btype(s, 2);
1462     }
1463 }
1464 
1465 static bool trans_BR(DisasContext *s, arg_r *a)
1466 {
1467     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1468     set_btype_for_br(s, a->rn);
1469     s->base.is_jmp = DISAS_JUMP;
1470     return true;
1471 }
1472 
1473 static bool trans_BLR(DisasContext *s, arg_r *a)
1474 {
1475     TCGv_i64 dst = cpu_reg(s, a->rn);
1476     TCGv_i64 lr = cpu_reg(s, 30);
1477     if (dst == lr) {
1478         TCGv_i64 tmp = tcg_temp_new_i64();
1479         tcg_gen_mov_i64(tmp, dst);
1480         dst = tmp;
1481     }
1482     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1483     gen_a64_set_pc(s, dst);
1484     set_btype_for_blr(s);
1485     s->base.is_jmp = DISAS_JUMP;
1486     return true;
1487 }
1488 
1489 static bool trans_RET(DisasContext *s, arg_r *a)
1490 {
1491     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1492     s->base.is_jmp = DISAS_JUMP;
1493     return true;
1494 }
1495 
1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1497                                    TCGv_i64 modifier, bool use_key_a)
1498 {
1499     TCGv_i64 truedst;
1500     /*
1501      * Return the branch target for a BRAA/RETA/etc, which is either
1502      * just the destination dst, or that value with the pauth check
1503      * done and the code removed from the high bits.
1504      */
1505     if (!s->pauth_active) {
1506         return dst;
1507     }
1508 
1509     truedst = tcg_temp_new_i64();
1510     if (use_key_a) {
1511         gen_helper_autia(truedst, cpu_env, dst, modifier);
1512     } else {
1513         gen_helper_autib(truedst, cpu_env, dst, modifier);
1514     }
1515     return truedst;
1516 }
1517 
1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1519 {
1520     TCGv_i64 dst;
1521 
1522     if (!dc_isar_feature(aa64_pauth, s)) {
1523         return false;
1524     }
1525 
1526     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1527     gen_a64_set_pc(s, dst);
1528     set_btype_for_br(s, a->rn);
1529     s->base.is_jmp = DISAS_JUMP;
1530     return true;
1531 }
1532 
1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1534 {
1535     TCGv_i64 dst, lr;
1536 
1537     if (!dc_isar_feature(aa64_pauth, s)) {
1538         return false;
1539     }
1540 
1541     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1542     lr = cpu_reg(s, 30);
1543     if (dst == lr) {
1544         TCGv_i64 tmp = tcg_temp_new_i64();
1545         tcg_gen_mov_i64(tmp, dst);
1546         dst = tmp;
1547     }
1548     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1549     gen_a64_set_pc(s, dst);
1550     set_btype_for_blr(s);
1551     s->base.is_jmp = DISAS_JUMP;
1552     return true;
1553 }
1554 
1555 static bool trans_RETA(DisasContext *s, arg_reta *a)
1556 {
1557     TCGv_i64 dst;
1558 
1559     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1560     gen_a64_set_pc(s, dst);
1561     s->base.is_jmp = DISAS_JUMP;
1562     return true;
1563 }
1564 
1565 static bool trans_BRA(DisasContext *s, arg_bra *a)
1566 {
1567     TCGv_i64 dst;
1568 
1569     if (!dc_isar_feature(aa64_pauth, s)) {
1570         return false;
1571     }
1572     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1573     gen_a64_set_pc(s, dst);
1574     set_btype_for_br(s, a->rn);
1575     s->base.is_jmp = DISAS_JUMP;
1576     return true;
1577 }
1578 
1579 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1580 {
1581     TCGv_i64 dst, lr;
1582 
1583     if (!dc_isar_feature(aa64_pauth, s)) {
1584         return false;
1585     }
1586     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1587     lr = cpu_reg(s, 30);
1588     if (dst == lr) {
1589         TCGv_i64 tmp = tcg_temp_new_i64();
1590         tcg_gen_mov_i64(tmp, dst);
1591         dst = tmp;
1592     }
1593     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1594     gen_a64_set_pc(s, dst);
1595     set_btype_for_blr(s);
1596     s->base.is_jmp = DISAS_JUMP;
1597     return true;
1598 }
1599 
1600 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1601 {
1602     TCGv_i64 dst;
1603 
1604     if (s->current_el == 0) {
1605         return false;
1606     }
1607     if (s->fgt_eret) {
1608         gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2);
1609         return true;
1610     }
1611     dst = tcg_temp_new_i64();
1612     tcg_gen_ld_i64(dst, cpu_env,
1613                    offsetof(CPUARMState, elr_el[s->current_el]));
1614 
1615     translator_io_start(&s->base);
1616 
1617     gen_helper_exception_return(cpu_env, dst);
1618     /* Must exit loop to check un-masked IRQs */
1619     s->base.is_jmp = DISAS_EXIT;
1620     return true;
1621 }
1622 
1623 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1624 {
1625     TCGv_i64 dst;
1626 
1627     if (!dc_isar_feature(aa64_pauth, s)) {
1628         return false;
1629     }
1630     if (s->current_el == 0) {
1631         return false;
1632     }
1633     /* The FGT trap takes precedence over an auth trap. */
1634     if (s->fgt_eret) {
1635         gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2);
1636         return true;
1637     }
1638     dst = tcg_temp_new_i64();
1639     tcg_gen_ld_i64(dst, cpu_env,
1640                    offsetof(CPUARMState, elr_el[s->current_el]));
1641 
1642     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1643 
1644     translator_io_start(&s->base);
1645 
1646     gen_helper_exception_return(cpu_env, dst);
1647     /* Must exit loop to check un-masked IRQs */
1648     s->base.is_jmp = DISAS_EXIT;
1649     return true;
1650 }
1651 
1652 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1653 {
1654     return true;
1655 }
1656 
1657 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1658 {
1659     /*
1660      * When running in MTTCG we don't generate jumps to the yield and
1661      * WFE helpers as it won't affect the scheduling of other vCPUs.
1662      * If we wanted to more completely model WFE/SEV so we don't busy
1663      * spin unnecessarily we would need to do something more involved.
1664      */
1665     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1666         s->base.is_jmp = DISAS_YIELD;
1667     }
1668     return true;
1669 }
1670 
1671 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1672 {
1673     s->base.is_jmp = DISAS_WFI;
1674     return true;
1675 }
1676 
1677 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1678 {
1679     /*
1680      * When running in MTTCG we don't generate jumps to the yield and
1681      * WFE helpers as it won't affect the scheduling of other vCPUs.
1682      * If we wanted to more completely model WFE/SEV so we don't busy
1683      * spin unnecessarily we would need to do something more involved.
1684      */
1685     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1686         s->base.is_jmp = DISAS_WFE;
1687     }
1688     return true;
1689 }
1690 
1691 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1692 {
1693     if (s->pauth_active) {
1694         gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1695     }
1696     return true;
1697 }
1698 
1699 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1700 {
1701     if (s->pauth_active) {
1702         gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1703     }
1704     return true;
1705 }
1706 
1707 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1708 {
1709     if (s->pauth_active) {
1710         gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1711     }
1712     return true;
1713 }
1714 
1715 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1716 {
1717     if (s->pauth_active) {
1718         gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1719     }
1720     return true;
1721 }
1722 
1723 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1724 {
1725     if (s->pauth_active) {
1726         gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1727     }
1728     return true;
1729 }
1730 
1731 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1732 {
1733     /* Without RAS, we must implement this as NOP. */
1734     if (dc_isar_feature(aa64_ras, s)) {
1735         /*
1736          * QEMU does not have a source of physical SErrors,
1737          * so we are only concerned with virtual SErrors.
1738          * The pseudocode in the ARM for this case is
1739          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1740          *      AArch64.vESBOperation();
1741          * Most of the condition can be evaluated at translation time.
1742          * Test for EL2 present, and defer test for SEL2 to runtime.
1743          */
1744         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1745             gen_helper_vesb(cpu_env);
1746         }
1747     }
1748     return true;
1749 }
1750 
1751 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1752 {
1753     if (s->pauth_active) {
1754         gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1755     }
1756     return true;
1757 }
1758 
1759 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1760 {
1761     if (s->pauth_active) {
1762         gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1763     }
1764     return true;
1765 }
1766 
1767 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1768 {
1769     if (s->pauth_active) {
1770         gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1771     }
1772     return true;
1773 }
1774 
1775 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1776 {
1777     if (s->pauth_active) {
1778         gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1779     }
1780     return true;
1781 }
1782 
1783 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1784 {
1785     if (s->pauth_active) {
1786         gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1787     }
1788     return true;
1789 }
1790 
1791 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1792 {
1793     if (s->pauth_active) {
1794         gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1795     }
1796     return true;
1797 }
1798 
1799 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1800 {
1801     if (s->pauth_active) {
1802         gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0));
1803     }
1804     return true;
1805 }
1806 
1807 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1808 {
1809     if (s->pauth_active) {
1810         gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1811     }
1812     return true;
1813 }
1814 
1815 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1816 {
1817     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1818     return true;
1819 }
1820 
1821 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1822 {
1823     /* We handle DSB and DMB the same way */
1824     TCGBar bar;
1825 
1826     switch (a->types) {
1827     case 1: /* MBReqTypes_Reads */
1828         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1829         break;
1830     case 2: /* MBReqTypes_Writes */
1831         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1832         break;
1833     default: /* MBReqTypes_All */
1834         bar = TCG_BAR_SC | TCG_MO_ALL;
1835         break;
1836     }
1837     tcg_gen_mb(bar);
1838     return true;
1839 }
1840 
1841 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1842 {
1843     /*
1844      * We need to break the TB after this insn to execute
1845      * self-modifying code correctly and also to take
1846      * any pending interrupts immediately.
1847      */
1848     reset_btype(s);
1849     gen_goto_tb(s, 0, 4);
1850     return true;
1851 }
1852 
1853 static bool trans_SB(DisasContext *s, arg_SB *a)
1854 {
1855     if (!dc_isar_feature(aa64_sb, s)) {
1856         return false;
1857     }
1858     /*
1859      * TODO: There is no speculation barrier opcode for TCG;
1860      * MB and end the TB instead.
1861      */
1862     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1863     gen_goto_tb(s, 0, 4);
1864     return true;
1865 }
1866 
1867 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1868 {
1869     if (!dc_isar_feature(aa64_condm_4, s)) {
1870         return false;
1871     }
1872     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1873     return true;
1874 }
1875 
1876 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1877 {
1878     TCGv_i32 z;
1879 
1880     if (!dc_isar_feature(aa64_condm_5, s)) {
1881         return false;
1882     }
1883 
1884     z = tcg_temp_new_i32();
1885 
1886     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1887 
1888     /*
1889      * (!C & !Z) << 31
1890      * (!(C | Z)) << 31
1891      * ~((C | Z) << 31)
1892      * ~-(C | Z)
1893      * (C | Z) - 1
1894      */
1895     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1896     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1897 
1898     /* !(Z & C) */
1899     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1900     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1901 
1902     /* (!C & Z) << 31 -> -(Z & ~C) */
1903     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1904     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1905 
1906     /* C | Z */
1907     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1908 
1909     return true;
1910 }
1911 
1912 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1913 {
1914     if (!dc_isar_feature(aa64_condm_5, s)) {
1915         return false;
1916     }
1917 
1918     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1919     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1920 
1921     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1922     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1923 
1924     tcg_gen_movi_i32(cpu_NF, 0);
1925     tcg_gen_movi_i32(cpu_VF, 0);
1926 
1927     return true;
1928 }
1929 
1930 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1931 {
1932     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1933         return false;
1934     }
1935     if (a->imm & 1) {
1936         set_pstate_bits(PSTATE_UAO);
1937     } else {
1938         clear_pstate_bits(PSTATE_UAO);
1939     }
1940     gen_rebuild_hflags(s);
1941     s->base.is_jmp = DISAS_TOO_MANY;
1942     return true;
1943 }
1944 
1945 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1946 {
1947     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1948         return false;
1949     }
1950     if (a->imm & 1) {
1951         set_pstate_bits(PSTATE_PAN);
1952     } else {
1953         clear_pstate_bits(PSTATE_PAN);
1954     }
1955     gen_rebuild_hflags(s);
1956     s->base.is_jmp = DISAS_TOO_MANY;
1957     return true;
1958 }
1959 
1960 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
1961 {
1962     if (s->current_el == 0) {
1963         return false;
1964     }
1965     gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP));
1966     s->base.is_jmp = DISAS_TOO_MANY;
1967     return true;
1968 }
1969 
1970 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
1971 {
1972     if (!dc_isar_feature(aa64_ssbs, s)) {
1973         return false;
1974     }
1975     if (a->imm & 1) {
1976         set_pstate_bits(PSTATE_SSBS);
1977     } else {
1978         clear_pstate_bits(PSTATE_SSBS);
1979     }
1980     /* Don't need to rebuild hflags since SSBS is a nop */
1981     s->base.is_jmp = DISAS_TOO_MANY;
1982     return true;
1983 }
1984 
1985 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
1986 {
1987     if (!dc_isar_feature(aa64_dit, s)) {
1988         return false;
1989     }
1990     if (a->imm & 1) {
1991         set_pstate_bits(PSTATE_DIT);
1992     } else {
1993         clear_pstate_bits(PSTATE_DIT);
1994     }
1995     /* There's no need to rebuild hflags because DIT is a nop */
1996     s->base.is_jmp = DISAS_TOO_MANY;
1997     return true;
1998 }
1999 
2000 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2001 {
2002     if (dc_isar_feature(aa64_mte, s)) {
2003         /* Full MTE is enabled -- set the TCO bit as directed. */
2004         if (a->imm & 1) {
2005             set_pstate_bits(PSTATE_TCO);
2006         } else {
2007             clear_pstate_bits(PSTATE_TCO);
2008         }
2009         gen_rebuild_hflags(s);
2010         /* Many factors, including TCO, go into MTE_ACTIVE. */
2011         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2012         return true;
2013     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2014         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2015         return true;
2016     } else {
2017         /* Insn not present */
2018         return false;
2019     }
2020 }
2021 
2022 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2023 {
2024     gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm));
2025     s->base.is_jmp = DISAS_TOO_MANY;
2026     return true;
2027 }
2028 
2029 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2030 {
2031     gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm));
2032     /* Exit the cpu loop to re-evaluate pending IRQs. */
2033     s->base.is_jmp = DISAS_UPDATE_EXIT;
2034     return true;
2035 }
2036 
2037 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2038 {
2039     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2040         return false;
2041     }
2042     if (sme_access_check(s)) {
2043         int old = s->pstate_sm | (s->pstate_za << 1);
2044         int new = a->imm * 3;
2045 
2046         if ((old ^ new) & a->mask) {
2047             /* At least one bit changes. */
2048             gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
2049                                 tcg_constant_i32(a->mask));
2050             s->base.is_jmp = DISAS_TOO_MANY;
2051         }
2052     }
2053     return true;
2054 }
2055 
2056 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2057 {
2058     TCGv_i32 tmp = tcg_temp_new_i32();
2059     TCGv_i32 nzcv = tcg_temp_new_i32();
2060 
2061     /* build bit 31, N */
2062     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2063     /* build bit 30, Z */
2064     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2065     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2066     /* build bit 29, C */
2067     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2068     /* build bit 28, V */
2069     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2070     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2071     /* generate result */
2072     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2073 }
2074 
2075 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2076 {
2077     TCGv_i32 nzcv = tcg_temp_new_i32();
2078 
2079     /* take NZCV from R[t] */
2080     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2081 
2082     /* bit 31, N */
2083     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2084     /* bit 30, Z */
2085     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2086     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2087     /* bit 29, C */
2088     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2089     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2090     /* bit 28, V */
2091     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2092     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2093 }
2094 
2095 static void gen_sysreg_undef(DisasContext *s, bool isread,
2096                              uint8_t op0, uint8_t op1, uint8_t op2,
2097                              uint8_t crn, uint8_t crm, uint8_t rt)
2098 {
2099     /*
2100      * Generate code to emit an UNDEF with correct syndrome
2101      * information for a failed system register access.
2102      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2103      * but if FEAT_IDST is implemented then read accesses to registers
2104      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2105      * syndrome.
2106      */
2107     uint32_t syndrome;
2108 
2109     if (isread && dc_isar_feature(aa64_ids, s) &&
2110         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2111         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2112     } else {
2113         syndrome = syn_uncategorized();
2114     }
2115     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2116 }
2117 
2118 /* MRS - move from system register
2119  * MSR (register) - move to system register
2120  * SYS
2121  * SYSL
2122  * These are all essentially the same insn in 'read' and 'write'
2123  * versions, with varying op0 fields.
2124  */
2125 static void handle_sys(DisasContext *s, bool isread,
2126                        unsigned int op0, unsigned int op1, unsigned int op2,
2127                        unsigned int crn, unsigned int crm, unsigned int rt)
2128 {
2129     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2130                                       crn, crm, op0, op1, op2);
2131     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2132     bool need_exit_tb = false;
2133     TCGv_ptr tcg_ri = NULL;
2134     TCGv_i64 tcg_rt;
2135 
2136     if (!ri) {
2137         /* Unknown register; this might be a guest error or a QEMU
2138          * unimplemented feature.
2139          */
2140         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2141                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2142                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2143         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2144         return;
2145     }
2146 
2147     /* Check access permissions */
2148     if (!cp_access_ok(s->current_el, ri, isread)) {
2149         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2150         return;
2151     }
2152 
2153     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2154         /* Emit code to perform further access permissions checks at
2155          * runtime; this may result in an exception.
2156          */
2157         uint32_t syndrome;
2158 
2159         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2160         gen_a64_update_pc(s, 0);
2161         tcg_ri = tcg_temp_new_ptr();
2162         gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
2163                                        tcg_constant_i32(key),
2164                                        tcg_constant_i32(syndrome),
2165                                        tcg_constant_i32(isread));
2166     } else if (ri->type & ARM_CP_RAISES_EXC) {
2167         /*
2168          * The readfn or writefn might raise an exception;
2169          * synchronize the CPU state in case it does.
2170          */
2171         gen_a64_update_pc(s, 0);
2172     }
2173 
2174     /* Handle special cases first */
2175     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2176     case 0:
2177         break;
2178     case ARM_CP_NOP:
2179         return;
2180     case ARM_CP_NZCV:
2181         tcg_rt = cpu_reg(s, rt);
2182         if (isread) {
2183             gen_get_nzcv(tcg_rt);
2184         } else {
2185             gen_set_nzcv(tcg_rt);
2186         }
2187         return;
2188     case ARM_CP_CURRENTEL:
2189         /* Reads as current EL value from pstate, which is
2190          * guaranteed to be constant by the tb flags.
2191          */
2192         tcg_rt = cpu_reg(s, rt);
2193         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2194         return;
2195     case ARM_CP_DC_ZVA:
2196         /* Writes clear the aligned block of memory which rt points into. */
2197         if (s->mte_active[0]) {
2198             int desc = 0;
2199 
2200             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2201             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2202             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2203 
2204             tcg_rt = tcg_temp_new_i64();
2205             gen_helper_mte_check_zva(tcg_rt, cpu_env,
2206                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2207         } else {
2208             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2209         }
2210         gen_helper_dc_zva(cpu_env, tcg_rt);
2211         return;
2212     case ARM_CP_DC_GVA:
2213         {
2214             TCGv_i64 clean_addr, tag;
2215 
2216             /*
2217              * DC_GVA, like DC_ZVA, requires that we supply the original
2218              * pointer for an invalid page.  Probe that address first.
2219              */
2220             tcg_rt = cpu_reg(s, rt);
2221             clean_addr = clean_data_tbi(s, tcg_rt);
2222             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2223 
2224             if (s->ata) {
2225                 /* Extract the tag from the register to match STZGM.  */
2226                 tag = tcg_temp_new_i64();
2227                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2228                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2229             }
2230         }
2231         return;
2232     case ARM_CP_DC_GZVA:
2233         {
2234             TCGv_i64 clean_addr, tag;
2235 
2236             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2237             tcg_rt = cpu_reg(s, rt);
2238             clean_addr = clean_data_tbi(s, tcg_rt);
2239             gen_helper_dc_zva(cpu_env, clean_addr);
2240 
2241             if (s->ata) {
2242                 /* Extract the tag from the register to match STZGM.  */
2243                 tag = tcg_temp_new_i64();
2244                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2245                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2246             }
2247         }
2248         return;
2249     default:
2250         g_assert_not_reached();
2251     }
2252     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2253         return;
2254     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2255         return;
2256     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2257         return;
2258     }
2259 
2260     if (ri->type & ARM_CP_IO) {
2261         /* I/O operations must end the TB here (whether read or write) */
2262         need_exit_tb = translator_io_start(&s->base);
2263     }
2264 
2265     tcg_rt = cpu_reg(s, rt);
2266 
2267     if (isread) {
2268         if (ri->type & ARM_CP_CONST) {
2269             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2270         } else if (ri->readfn) {
2271             if (!tcg_ri) {
2272                 tcg_ri = gen_lookup_cp_reg(key);
2273             }
2274             gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2275         } else {
2276             tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2277         }
2278     } else {
2279         if (ri->type & ARM_CP_CONST) {
2280             /* If not forbidden by access permissions, treat as WI */
2281             return;
2282         } else if (ri->writefn) {
2283             if (!tcg_ri) {
2284                 tcg_ri = gen_lookup_cp_reg(key);
2285             }
2286             gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2287         } else {
2288             tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2289         }
2290     }
2291 
2292     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2293         /*
2294          * A write to any coprocessor regiser that ends a TB
2295          * must rebuild the hflags for the next TB.
2296          */
2297         gen_rebuild_hflags(s);
2298         /*
2299          * We default to ending the TB on a coprocessor register write,
2300          * but allow this to be suppressed by the register definition
2301          * (usually only necessary to work around guest bugs).
2302          */
2303         need_exit_tb = true;
2304     }
2305     if (need_exit_tb) {
2306         s->base.is_jmp = DISAS_UPDATE_EXIT;
2307     }
2308 }
2309 
2310 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2311 {
2312     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2313     return true;
2314 }
2315 
2316 static bool trans_SVC(DisasContext *s, arg_i *a)
2317 {
2318     /*
2319      * For SVC, HVC and SMC we advance the single-step state
2320      * machine before taking the exception. This is architecturally
2321      * mandated, to ensure that single-stepping a system call
2322      * instruction works properly.
2323      */
2324     uint32_t syndrome = syn_aa64_svc(a->imm);
2325     if (s->fgt_svc) {
2326         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2327         return true;
2328     }
2329     gen_ss_advance(s);
2330     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2331     return true;
2332 }
2333 
2334 static bool trans_HVC(DisasContext *s, arg_i *a)
2335 {
2336     if (s->current_el == 0) {
2337         unallocated_encoding(s);
2338         return true;
2339     }
2340     /*
2341      * The pre HVC helper handles cases when HVC gets trapped
2342      * as an undefined insn by runtime configuration.
2343      */
2344     gen_a64_update_pc(s, 0);
2345     gen_helper_pre_hvc(cpu_env);
2346     /* Architecture requires ss advance before we do the actual work */
2347     gen_ss_advance(s);
2348     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2);
2349     return true;
2350 }
2351 
2352 static bool trans_SMC(DisasContext *s, arg_i *a)
2353 {
2354     if (s->current_el == 0) {
2355         unallocated_encoding(s);
2356         return true;
2357     }
2358     gen_a64_update_pc(s, 0);
2359     gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2360     /* Architecture requires ss advance before we do the actual work */
2361     gen_ss_advance(s);
2362     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2363     return true;
2364 }
2365 
2366 static bool trans_BRK(DisasContext *s, arg_i *a)
2367 {
2368     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2369     return true;
2370 }
2371 
2372 static bool trans_HLT(DisasContext *s, arg_i *a)
2373 {
2374     /*
2375      * HLT. This has two purposes.
2376      * Architecturally, it is an external halting debug instruction.
2377      * Since QEMU doesn't implement external debug, we treat this as
2378      * it is required for halting debug disabled: it will UNDEF.
2379      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2380      */
2381     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2382         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2383     } else {
2384         unallocated_encoding(s);
2385     }
2386     return true;
2387 }
2388 
2389 /*
2390  * Load/Store exclusive instructions are implemented by remembering
2391  * the value/address loaded, and seeing if these are the same
2392  * when the store is performed. This is not actually the architecturally
2393  * mandated semantics, but it works for typical guest code sequences
2394  * and avoids having to monitor regular stores.
2395  *
2396  * The store exclusive uses the atomic cmpxchg primitives to avoid
2397  * races in multi-threaded linux-user and when MTTCG softmmu is
2398  * enabled.
2399  */
2400 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2401                                int size, bool is_pair)
2402 {
2403     int idx = get_mem_index(s);
2404     TCGv_i64 dirty_addr, clean_addr;
2405     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2406 
2407     s->is_ldex = true;
2408     dirty_addr = cpu_reg_sp(s, rn);
2409     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2410 
2411     g_assert(size <= 3);
2412     if (is_pair) {
2413         g_assert(size >= 2);
2414         if (size == 2) {
2415             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2416             if (s->be_data == MO_LE) {
2417                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2418                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2419             } else {
2420                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2421                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2422             }
2423         } else {
2424             TCGv_i128 t16 = tcg_temp_new_i128();
2425 
2426             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2427 
2428             if (s->be_data == MO_LE) {
2429                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2430                                       cpu_exclusive_high, t16);
2431             } else {
2432                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2433                                       cpu_exclusive_val, t16);
2434             }
2435             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2436             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2437         }
2438     } else {
2439         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2440         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2441     }
2442     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2443 }
2444 
2445 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2446                                 int rn, int size, int is_pair)
2447 {
2448     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2449      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2450      *     [addr] = {Rt};
2451      *     if (is_pair) {
2452      *         [addr + datasize] = {Rt2};
2453      *     }
2454      *     {Rd} = 0;
2455      * } else {
2456      *     {Rd} = 1;
2457      * }
2458      * env->exclusive_addr = -1;
2459      */
2460     TCGLabel *fail_label = gen_new_label();
2461     TCGLabel *done_label = gen_new_label();
2462     TCGv_i64 tmp, clean_addr;
2463     MemOp memop;
2464 
2465     /*
2466      * FIXME: We are out of spec here.  We have recorded only the address
2467      * from load_exclusive, not the entire range, and we assume that the
2468      * size of the access on both sides match.  The architecture allows the
2469      * store to be smaller than the load, so long as the stored bytes are
2470      * within the range recorded by the load.
2471      */
2472 
2473     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2474     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2475     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2476 
2477     /*
2478      * The write, and any associated faults, only happen if the virtual
2479      * and physical addresses pass the exclusive monitor check.  These
2480      * faults are exceedingly unlikely, because normally the guest uses
2481      * the exact same address register for the load_exclusive, and we
2482      * would have recognized these faults there.
2483      *
2484      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2485      * unaligned 4-byte write within the range of an aligned 8-byte load.
2486      * With LSE2, the store would need to cross a 16-byte boundary when the
2487      * load did not, which would mean the store is outside the range
2488      * recorded for the monitor, which would have failed a corrected monitor
2489      * check above.  For now, we assume no size change and retain the
2490      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2491      *
2492      * It is possible to trigger an MTE fault, by performing the load with
2493      * a virtual address with a valid tag and performing the store with the
2494      * same virtual address and a different invalid tag.
2495      */
2496     memop = size + is_pair;
2497     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2498         memop |= MO_ALIGN;
2499     }
2500     memop = finalize_memop(s, memop);
2501     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2502 
2503     tmp = tcg_temp_new_i64();
2504     if (is_pair) {
2505         if (size == 2) {
2506             if (s->be_data == MO_LE) {
2507                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2508             } else {
2509                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2510             }
2511             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2512                                        cpu_exclusive_val, tmp,
2513                                        get_mem_index(s), memop);
2514             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2515         } else {
2516             TCGv_i128 t16 = tcg_temp_new_i128();
2517             TCGv_i128 c16 = tcg_temp_new_i128();
2518             TCGv_i64 a, b;
2519 
2520             if (s->be_data == MO_LE) {
2521                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2522                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2523                                         cpu_exclusive_high);
2524             } else {
2525                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2526                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2527                                         cpu_exclusive_val);
2528             }
2529 
2530             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2531                                         get_mem_index(s), memop);
2532 
2533             a = tcg_temp_new_i64();
2534             b = tcg_temp_new_i64();
2535             if (s->be_data == MO_LE) {
2536                 tcg_gen_extr_i128_i64(a, b, t16);
2537             } else {
2538                 tcg_gen_extr_i128_i64(b, a, t16);
2539             }
2540 
2541             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2542             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2543             tcg_gen_or_i64(tmp, a, b);
2544 
2545             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2546         }
2547     } else {
2548         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2549                                    cpu_reg(s, rt), get_mem_index(s), memop);
2550         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2551     }
2552     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2553     tcg_gen_br(done_label);
2554 
2555     gen_set_label(fail_label);
2556     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2557     gen_set_label(done_label);
2558     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2559 }
2560 
2561 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2562                                  int rn, int size)
2563 {
2564     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2565     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2566     int memidx = get_mem_index(s);
2567     TCGv_i64 clean_addr;
2568     MemOp memop;
2569 
2570     if (rn == 31) {
2571         gen_check_sp_alignment(s);
2572     }
2573     memop = check_atomic_align(s, rn, size);
2574     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2575     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2576                                memidx, memop);
2577 }
2578 
2579 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2580                                       int rn, int size)
2581 {
2582     TCGv_i64 s1 = cpu_reg(s, rs);
2583     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2584     TCGv_i64 t1 = cpu_reg(s, rt);
2585     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2586     TCGv_i64 clean_addr;
2587     int memidx = get_mem_index(s);
2588     MemOp memop;
2589 
2590     if (rn == 31) {
2591         gen_check_sp_alignment(s);
2592     }
2593 
2594     /* This is a single atomic access, despite the "pair". */
2595     memop = check_atomic_align(s, rn, size + 1);
2596     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2597 
2598     if (size == 2) {
2599         TCGv_i64 cmp = tcg_temp_new_i64();
2600         TCGv_i64 val = tcg_temp_new_i64();
2601 
2602         if (s->be_data == MO_LE) {
2603             tcg_gen_concat32_i64(val, t1, t2);
2604             tcg_gen_concat32_i64(cmp, s1, s2);
2605         } else {
2606             tcg_gen_concat32_i64(val, t2, t1);
2607             tcg_gen_concat32_i64(cmp, s2, s1);
2608         }
2609 
2610         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2611 
2612         if (s->be_data == MO_LE) {
2613             tcg_gen_extr32_i64(s1, s2, cmp);
2614         } else {
2615             tcg_gen_extr32_i64(s2, s1, cmp);
2616         }
2617     } else {
2618         TCGv_i128 cmp = tcg_temp_new_i128();
2619         TCGv_i128 val = tcg_temp_new_i128();
2620 
2621         if (s->be_data == MO_LE) {
2622             tcg_gen_concat_i64_i128(val, t1, t2);
2623             tcg_gen_concat_i64_i128(cmp, s1, s2);
2624         } else {
2625             tcg_gen_concat_i64_i128(val, t2, t1);
2626             tcg_gen_concat_i64_i128(cmp, s2, s1);
2627         }
2628 
2629         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2630 
2631         if (s->be_data == MO_LE) {
2632             tcg_gen_extr_i128_i64(s1, s2, cmp);
2633         } else {
2634             tcg_gen_extr_i128_i64(s2, s1, cmp);
2635         }
2636     }
2637 }
2638 
2639 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2640  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2641  */
2642 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2643 {
2644     int opc0 = extract32(opc, 0, 1);
2645     int regsize;
2646 
2647     if (is_signed) {
2648         regsize = opc0 ? 32 : 64;
2649     } else {
2650         regsize = size == 3 ? 64 : 32;
2651     }
2652     return regsize == 64;
2653 }
2654 
2655 /* Load/store exclusive
2656  *
2657  *  31 30 29         24  23  22   21  20  16  15  14   10 9    5 4    0
2658  * +-----+-------------+----+---+----+------+----+-------+------+------+
2659  * | sz  | 0 0 1 0 0 0 | o2 | L | o1 |  Rs  | o0 |  Rt2  |  Rn  | Rt   |
2660  * +-----+-------------+----+---+----+------+----+-------+------+------+
2661  *
2662  *  sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2663  *   L: 0 -> store, 1 -> load
2664  *  o2: 0 -> exclusive, 1 -> not
2665  *  o1: 0 -> single register, 1 -> register pair
2666  *  o0: 1 -> load-acquire/store-release, 0 -> not
2667  */
2668 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2669 {
2670     int rt = extract32(insn, 0, 5);
2671     int rn = extract32(insn, 5, 5);
2672     int rt2 = extract32(insn, 10, 5);
2673     int rs = extract32(insn, 16, 5);
2674     int is_lasr = extract32(insn, 15, 1);
2675     int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2676     int size = extract32(insn, 30, 2);
2677     TCGv_i64 clean_addr;
2678     MemOp memop;
2679 
2680     switch (o2_L_o1_o0) {
2681     case 0x0: /* STXR */
2682     case 0x1: /* STLXR */
2683         if (rn == 31) {
2684             gen_check_sp_alignment(s);
2685         }
2686         if (is_lasr) {
2687             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2688         }
2689         gen_store_exclusive(s, rs, rt, rt2, rn, size, false);
2690         return;
2691 
2692     case 0x4: /* LDXR */
2693     case 0x5: /* LDAXR */
2694         if (rn == 31) {
2695             gen_check_sp_alignment(s);
2696         }
2697         gen_load_exclusive(s, rt, rt2, rn, size, false);
2698         if (is_lasr) {
2699             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2700         }
2701         return;
2702 
2703     case 0x8: /* STLLR */
2704         if (!dc_isar_feature(aa64_lor, s)) {
2705             break;
2706         }
2707         /* StoreLORelease is the same as Store-Release for QEMU.  */
2708         /* fall through */
2709     case 0x9: /* STLR */
2710         /* Generate ISS for non-exclusive accesses including LASR.  */
2711         if (rn == 31) {
2712             gen_check_sp_alignment(s);
2713         }
2714         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2715         memop = check_ordered_align(s, rn, 0, true, size);
2716         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2717                                     true, rn != 31, memop);
2718         do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt,
2719                   disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2720         return;
2721 
2722     case 0xc: /* LDLAR */
2723         if (!dc_isar_feature(aa64_lor, s)) {
2724             break;
2725         }
2726         /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2727         /* fall through */
2728     case 0xd: /* LDAR */
2729         /* Generate ISS for non-exclusive accesses including LASR.  */
2730         if (rn == 31) {
2731             gen_check_sp_alignment(s);
2732         }
2733         memop = check_ordered_align(s, rn, 0, false, size);
2734         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2735                                     false, rn != 31, memop);
2736         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true,
2737                   rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2738         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2739         return;
2740 
2741     case 0x2: case 0x3: /* CASP / STXP */
2742         if (size & 2) { /* STXP / STLXP */
2743             if (rn == 31) {
2744                 gen_check_sp_alignment(s);
2745             }
2746             if (is_lasr) {
2747                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2748             }
2749             gen_store_exclusive(s, rs, rt, rt2, rn, size, true);
2750             return;
2751         }
2752         if (rt2 == 31
2753             && ((rt | rs) & 1) == 0
2754             && dc_isar_feature(aa64_atomics, s)) {
2755             /* CASP / CASPL */
2756             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2757             return;
2758         }
2759         break;
2760 
2761     case 0x6: case 0x7: /* CASPA / LDXP */
2762         if (size & 2) { /* LDXP / LDAXP */
2763             if (rn == 31) {
2764                 gen_check_sp_alignment(s);
2765             }
2766             gen_load_exclusive(s, rt, rt2, rn, size, true);
2767             if (is_lasr) {
2768                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2769             }
2770             return;
2771         }
2772         if (rt2 == 31
2773             && ((rt | rs) & 1) == 0
2774             && dc_isar_feature(aa64_atomics, s)) {
2775             /* CASPA / CASPAL */
2776             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2777             return;
2778         }
2779         break;
2780 
2781     case 0xa: /* CAS */
2782     case 0xb: /* CASL */
2783     case 0xe: /* CASA */
2784     case 0xf: /* CASAL */
2785         if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2786             gen_compare_and_swap(s, rs, rt, rn, size);
2787             return;
2788         }
2789         break;
2790     }
2791     unallocated_encoding(s);
2792 }
2793 
2794 /*
2795  * Load register (literal)
2796  *
2797  *  31 30 29   27  26 25 24 23                5 4     0
2798  * +-----+-------+---+-----+-------------------+-------+
2799  * | opc | 0 1 1 | V | 0 0 |     imm19         |  Rt   |
2800  * +-----+-------+---+-----+-------------------+-------+
2801  *
2802  * V: 1 -> vector (simd/fp)
2803  * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2804  *                   10-> 32 bit signed, 11 -> prefetch
2805  * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2806  */
2807 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2808 {
2809     int rt = extract32(insn, 0, 5);
2810     int64_t imm = sextract32(insn, 5, 19) << 2;
2811     bool is_vector = extract32(insn, 26, 1);
2812     int opc = extract32(insn, 30, 2);
2813     bool is_signed = false;
2814     int size = 2;
2815     TCGv_i64 tcg_rt, clean_addr;
2816     MemOp memop;
2817 
2818     if (is_vector) {
2819         if (opc == 3) {
2820             unallocated_encoding(s);
2821             return;
2822         }
2823         size = 2 + opc;
2824         if (!fp_access_check(s)) {
2825             return;
2826         }
2827         memop = finalize_memop_asimd(s, size);
2828     } else {
2829         if (opc == 3) {
2830             /* PRFM (literal) : prefetch */
2831             return;
2832         }
2833         size = 2 + extract32(opc, 0, 1);
2834         is_signed = extract32(opc, 1, 1);
2835         memop = finalize_memop(s, size + is_signed * MO_SIGN);
2836     }
2837 
2838     tcg_rt = cpu_reg(s, rt);
2839 
2840     clean_addr = tcg_temp_new_i64();
2841     gen_pc_plus_diff(s, clean_addr, imm);
2842 
2843     if (is_vector) {
2844         do_fp_ld(s, rt, clean_addr, memop);
2845     } else {
2846         /* Only unsigned 32bit loads target 32bit registers.  */
2847         bool iss_sf = opc != 0;
2848         do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false);
2849     }
2850 }
2851 
2852 /*
2853  * LDNP (Load Pair - non-temporal hint)
2854  * LDP (Load Pair - non vector)
2855  * LDPSW (Load Pair Signed Word - non vector)
2856  * STNP (Store Pair - non-temporal hint)
2857  * STP (Store Pair - non vector)
2858  * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2859  * LDP (Load Pair of SIMD&FP)
2860  * STNP (Store Pair of SIMD&FP - non-temporal hint)
2861  * STP (Store Pair of SIMD&FP)
2862  *
2863  *  31 30 29   27  26  25 24   23  22 21   15 14   10 9    5 4    0
2864  * +-----+-------+---+---+-------+---+-----------------------------+
2865  * | opc | 1 0 1 | V | 0 | index | L |  imm7 |  Rt2  |  Rn  | Rt   |
2866  * +-----+-------+---+---+-------+---+-------+-------+------+------+
2867  *
2868  * opc: LDP/STP/LDNP/STNP        00 -> 32 bit, 10 -> 64 bit
2869  *      LDPSW/STGP               01
2870  *      LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2871  *   V: 0 -> GPR, 1 -> Vector
2872  * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2873  *      10 -> signed offset, 11 -> pre-index
2874  *   L: 0 -> Store 1 -> Load
2875  *
2876  * Rt, Rt2 = GPR or SIMD registers to be stored
2877  * Rn = general purpose register containing address
2878  * imm7 = signed offset (multiple of 4 or 8 depending on size)
2879  */
2880 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2881 {
2882     int rt = extract32(insn, 0, 5);
2883     int rn = extract32(insn, 5, 5);
2884     int rt2 = extract32(insn, 10, 5);
2885     uint64_t offset = sextract64(insn, 15, 7);
2886     int index = extract32(insn, 23, 2);
2887     bool is_vector = extract32(insn, 26, 1);
2888     bool is_load = extract32(insn, 22, 1);
2889     int opc = extract32(insn, 30, 2);
2890     bool is_signed = false;
2891     bool postindex = false;
2892     bool wback = false;
2893     bool set_tag = false;
2894     TCGv_i64 clean_addr, dirty_addr;
2895     MemOp mop;
2896     int size;
2897 
2898     if (opc == 3) {
2899         unallocated_encoding(s);
2900         return;
2901     }
2902 
2903     if (is_vector) {
2904         size = 2 + opc;
2905     } else if (opc == 1 && !is_load) {
2906         /* STGP */
2907         if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2908             unallocated_encoding(s);
2909             return;
2910         }
2911         size = 3;
2912         set_tag = true;
2913     } else {
2914         size = 2 + extract32(opc, 1, 1);
2915         is_signed = extract32(opc, 0, 1);
2916         if (!is_load && is_signed) {
2917             unallocated_encoding(s);
2918             return;
2919         }
2920     }
2921 
2922     switch (index) {
2923     case 1: /* post-index */
2924         postindex = true;
2925         wback = true;
2926         break;
2927     case 0:
2928         /* signed offset with "non-temporal" hint. Since we don't emulate
2929          * caches we don't care about hints to the cache system about
2930          * data access patterns, and handle this identically to plain
2931          * signed offset.
2932          */
2933         if (is_signed) {
2934             /* There is no non-temporal-hint version of LDPSW */
2935             unallocated_encoding(s);
2936             return;
2937         }
2938         postindex = false;
2939         break;
2940     case 2: /* signed offset, rn not updated */
2941         postindex = false;
2942         break;
2943     case 3: /* pre-index */
2944         postindex = false;
2945         wback = true;
2946         break;
2947     }
2948 
2949     if (is_vector && !fp_access_check(s)) {
2950         return;
2951     }
2952 
2953     offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2954 
2955     if (rn == 31) {
2956         gen_check_sp_alignment(s);
2957     }
2958 
2959     dirty_addr = read_cpu_reg_sp(s, rn, 1);
2960     if (!postindex) {
2961         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2962     }
2963 
2964     if (set_tag) {
2965         if (!s->ata) {
2966             /*
2967              * TODO: We could rely on the stores below, at least for
2968              * system mode, if we arrange to add MO_ALIGN_16.
2969              */
2970             gen_helper_stg_stub(cpu_env, dirty_addr);
2971         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2972             gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2973         } else {
2974             gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2975         }
2976     }
2977 
2978     if (is_vector) {
2979         mop = finalize_memop_asimd(s, size);
2980     } else {
2981         mop = finalize_memop(s, size);
2982     }
2983     clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2984                                 (wback || rn != 31) && !set_tag,
2985                                 2 << size, mop);
2986 
2987     if (is_vector) {
2988         /* LSE2 does not merge FP pairs; leave these as separate operations. */
2989         if (is_load) {
2990             do_fp_ld(s, rt, clean_addr, mop);
2991         } else {
2992             do_fp_st(s, rt, clean_addr, mop);
2993         }
2994         tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2995         if (is_load) {
2996             do_fp_ld(s, rt2, clean_addr, mop);
2997         } else {
2998             do_fp_st(s, rt2, clean_addr, mop);
2999         }
3000     } else {
3001         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3002         TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
3003 
3004         /*
3005          * We built mop above for the single logical access -- rebuild it
3006          * now for the paired operation.
3007          *
3008          * With LSE2, non-sign-extending pairs are treated atomically if
3009          * aligned, and if unaligned one of the pair will be completely
3010          * within a 16-byte block and that element will be atomic.
3011          * Otherwise each element is separately atomic.
3012          * In all cases, issue one operation with the correct atomicity.
3013          *
3014          * This treats sign-extending loads like zero-extending loads,
3015          * since that reuses the most code below.
3016          */
3017         mop = size + 1;
3018         if (s->align_mem) {
3019             mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3020         }
3021         mop = finalize_memop_pair(s, mop);
3022 
3023         if (is_load) {
3024             if (size == 2) {
3025                 int o2 = s->be_data == MO_LE ? 32 : 0;
3026                 int o1 = o2 ^ 32;
3027 
3028                 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3029                 if (is_signed) {
3030                     tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3031                     tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3032                 } else {
3033                     tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3034                     tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3035                 }
3036             } else {
3037                 TCGv_i128 tmp = tcg_temp_new_i128();
3038 
3039                 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3040                 if (s->be_data == MO_LE) {
3041                     tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3042                 } else {
3043                     tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3044                 }
3045             }
3046         } else {
3047             if (size == 2) {
3048                 TCGv_i64 tmp = tcg_temp_new_i64();
3049 
3050                 if (s->be_data == MO_LE) {
3051                     tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3052                 } else {
3053                     tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3054                 }
3055                 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3056             } else {
3057                 TCGv_i128 tmp = tcg_temp_new_i128();
3058 
3059                 if (s->be_data == MO_LE) {
3060                     tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3061                 } else {
3062                     tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3063                 }
3064                 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3065             }
3066         }
3067     }
3068 
3069     if (wback) {
3070         if (postindex) {
3071             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3072         }
3073         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3074     }
3075 }
3076 
3077 /*
3078  * Load/store (immediate post-indexed)
3079  * Load/store (immediate pre-indexed)
3080  * Load/store (unscaled immediate)
3081  *
3082  * 31 30 29   27  26 25 24 23 22 21  20    12 11 10 9    5 4    0
3083  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3084  * |size| 1 1 1 | V | 0 0 | opc | 0 |  imm9  | idx |  Rn  |  Rt  |
3085  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3086  *
3087  * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3088          10 -> unprivileged
3089  * V = 0 -> non-vector
3090  * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3091  * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3092  */
3093 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3094                                 int opc,
3095                                 int size,
3096                                 int rt,
3097                                 bool is_vector)
3098 {
3099     int rn = extract32(insn, 5, 5);
3100     int imm9 = sextract32(insn, 12, 9);
3101     int idx = extract32(insn, 10, 2);
3102     bool is_signed = false;
3103     bool is_store = false;
3104     bool is_extended = false;
3105     bool is_unpriv = (idx == 2);
3106     bool iss_valid;
3107     bool post_index;
3108     bool writeback;
3109     int memidx;
3110     MemOp memop;
3111     TCGv_i64 clean_addr, dirty_addr;
3112 
3113     if (is_vector) {
3114         size |= (opc & 2) << 1;
3115         if (size > 4 || is_unpriv) {
3116             unallocated_encoding(s);
3117             return;
3118         }
3119         is_store = ((opc & 1) == 0);
3120         if (!fp_access_check(s)) {
3121             return;
3122         }
3123         memop = finalize_memop_asimd(s, size);
3124     } else {
3125         if (size == 3 && opc == 2) {
3126             /* PRFM - prefetch */
3127             if (idx != 0) {
3128                 unallocated_encoding(s);
3129                 return;
3130             }
3131             return;
3132         }
3133         if (opc == 3 && size > 1) {
3134             unallocated_encoding(s);
3135             return;
3136         }
3137         is_store = (opc == 0);
3138         is_signed = !is_store && extract32(opc, 1, 1);
3139         is_extended = (size < 3) && extract32(opc, 0, 1);
3140         memop = finalize_memop(s, size + is_signed * MO_SIGN);
3141     }
3142 
3143     switch (idx) {
3144     case 0:
3145     case 2:
3146         post_index = false;
3147         writeback = false;
3148         break;
3149     case 1:
3150         post_index = true;
3151         writeback = true;
3152         break;
3153     case 3:
3154         post_index = false;
3155         writeback = true;
3156         break;
3157     default:
3158         g_assert_not_reached();
3159     }
3160 
3161     iss_valid = !is_vector && !writeback;
3162 
3163     if (rn == 31) {
3164         gen_check_sp_alignment(s);
3165     }
3166 
3167     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3168     if (!post_index) {
3169         tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3170     }
3171 
3172     memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3173 
3174     clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3175                                        writeback || rn != 31,
3176                                        memop, is_unpriv, memidx);
3177 
3178     if (is_vector) {
3179         if (is_store) {
3180             do_fp_st(s, rt, clean_addr, memop);
3181         } else {
3182             do_fp_ld(s, rt, clean_addr, memop);
3183         }
3184     } else {
3185         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3186         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3187 
3188         if (is_store) {
3189             do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx,
3190                              iss_valid, rt, iss_sf, false);
3191         } else {
3192             do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop,
3193                              is_extended, memidx,
3194                              iss_valid, rt, iss_sf, false);
3195         }
3196     }
3197 
3198     if (writeback) {
3199         TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3200         if (post_index) {
3201             tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3202         }
3203         tcg_gen_mov_i64(tcg_rn, dirty_addr);
3204     }
3205 }
3206 
3207 /*
3208  * Load/store (register offset)
3209  *
3210  * 31 30 29   27  26 25 24 23 22 21  20  16 15 13 12 11 10 9  5 4  0
3211  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3212  * |size| 1 1 1 | V | 0 0 | opc | 1 |  Rm  | opt | S| 1 0 | Rn | Rt |
3213  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3214  *
3215  * For non-vector:
3216  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3217  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3218  * For vector:
3219  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3220  *   opc<0>: 0 -> store, 1 -> load
3221  * V: 1 -> vector/simd
3222  * opt: extend encoding (see DecodeRegExtend)
3223  * S: if S=1 then scale (essentially index by sizeof(size))
3224  * Rt: register to transfer into/out of
3225  * Rn: address register or SP for base
3226  * Rm: offset register or ZR for offset
3227  */
3228 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3229                                    int opc,
3230                                    int size,
3231                                    int rt,
3232                                    bool is_vector)
3233 {
3234     int rn = extract32(insn, 5, 5);
3235     int shift = extract32(insn, 12, 1);
3236     int rm = extract32(insn, 16, 5);
3237     int opt = extract32(insn, 13, 3);
3238     bool is_signed = false;
3239     bool is_store = false;
3240     bool is_extended = false;
3241     TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3242     MemOp memop;
3243 
3244     if (extract32(opt, 1, 1) == 0) {
3245         unallocated_encoding(s);
3246         return;
3247     }
3248 
3249     if (is_vector) {
3250         size |= (opc & 2) << 1;
3251         if (size > 4) {
3252             unallocated_encoding(s);
3253             return;
3254         }
3255         is_store = !extract32(opc, 0, 1);
3256         if (!fp_access_check(s)) {
3257             return;
3258         }
3259         memop = finalize_memop_asimd(s, size);
3260     } else {
3261         if (size == 3 && opc == 2) {
3262             /* PRFM - prefetch */
3263             return;
3264         }
3265         if (opc == 3 && size > 1) {
3266             unallocated_encoding(s);
3267             return;
3268         }
3269         is_store = (opc == 0);
3270         is_signed = !is_store && extract32(opc, 1, 1);
3271         is_extended = (size < 3) && extract32(opc, 0, 1);
3272         memop = finalize_memop(s, size + is_signed * MO_SIGN);
3273     }
3274 
3275     if (rn == 31) {
3276         gen_check_sp_alignment(s);
3277     }
3278     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3279 
3280     tcg_rm = read_cpu_reg(s, rm, 1);
3281     ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3282 
3283     tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3284 
3285     clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop);
3286 
3287     if (is_vector) {
3288         if (is_store) {
3289             do_fp_st(s, rt, clean_addr, memop);
3290         } else {
3291             do_fp_ld(s, rt, clean_addr, memop);
3292         }
3293     } else {
3294         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3295         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3296 
3297         if (is_store) {
3298             do_gpr_st(s, tcg_rt, clean_addr, memop,
3299                       true, rt, iss_sf, false);
3300         } else {
3301             do_gpr_ld(s, tcg_rt, clean_addr, memop,
3302                       is_extended, true, rt, iss_sf, false);
3303         }
3304     }
3305 }
3306 
3307 /*
3308  * Load/store (unsigned immediate)
3309  *
3310  * 31 30 29   27  26 25 24 23 22 21        10 9     5
3311  * +----+-------+---+-----+-----+------------+-------+------+
3312  * |size| 1 1 1 | V | 0 1 | opc |   imm12    |  Rn   |  Rt  |
3313  * +----+-------+---+-----+-----+------------+-------+------+
3314  *
3315  * For non-vector:
3316  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3317  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3318  * For vector:
3319  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3320  *   opc<0>: 0 -> store, 1 -> load
3321  * Rn: base address register (inc SP)
3322  * Rt: target register
3323  */
3324 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3325                                         int opc,
3326                                         int size,
3327                                         int rt,
3328                                         bool is_vector)
3329 {
3330     int rn = extract32(insn, 5, 5);
3331     unsigned int imm12 = extract32(insn, 10, 12);
3332     unsigned int offset;
3333     TCGv_i64 clean_addr, dirty_addr;
3334     bool is_store;
3335     bool is_signed = false;
3336     bool is_extended = false;
3337     MemOp memop;
3338 
3339     if (is_vector) {
3340         size |= (opc & 2) << 1;
3341         if (size > 4) {
3342             unallocated_encoding(s);
3343             return;
3344         }
3345         is_store = !extract32(opc, 0, 1);
3346         if (!fp_access_check(s)) {
3347             return;
3348         }
3349         memop = finalize_memop_asimd(s, size);
3350     } else {
3351         if (size == 3 && opc == 2) {
3352             /* PRFM - prefetch */
3353             return;
3354         }
3355         if (opc == 3 && size > 1) {
3356             unallocated_encoding(s);
3357             return;
3358         }
3359         is_store = (opc == 0);
3360         is_signed = !is_store && extract32(opc, 1, 1);
3361         is_extended = (size < 3) && extract32(opc, 0, 1);
3362         memop = finalize_memop(s, size + is_signed * MO_SIGN);
3363     }
3364 
3365     if (rn == 31) {
3366         gen_check_sp_alignment(s);
3367     }
3368     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3369     offset = imm12 << size;
3370     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3371 
3372     clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop);
3373 
3374     if (is_vector) {
3375         if (is_store) {
3376             do_fp_st(s, rt, clean_addr, memop);
3377         } else {
3378             do_fp_ld(s, rt, clean_addr, memop);
3379         }
3380     } else {
3381         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3382         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3383         if (is_store) {
3384             do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false);
3385         } else {
3386             do_gpr_ld(s, tcg_rt, clean_addr, memop,
3387                       is_extended, true, rt, iss_sf, false);
3388         }
3389     }
3390 }
3391 
3392 /* Atomic memory operations
3393  *
3394  *  31  30      27  26    24    22  21   16   15    12    10    5     0
3395  * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3396  * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn |  Rt |
3397  * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3398  *
3399  * Rt: the result register
3400  * Rn: base address or SP
3401  * Rs: the source register for the operation
3402  * V: vector flag (always 0 as of v8.3)
3403  * A: acquire flag
3404  * R: release flag
3405  */
3406 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3407                               int size, int rt, bool is_vector)
3408 {
3409     int rs = extract32(insn, 16, 5);
3410     int rn = extract32(insn, 5, 5);
3411     int o3_opc = extract32(insn, 12, 4);
3412     bool r = extract32(insn, 22, 1);
3413     bool a = extract32(insn, 23, 1);
3414     TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3415     AtomicThreeOpFn *fn = NULL;
3416     MemOp mop = size;
3417 
3418     if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3419         unallocated_encoding(s);
3420         return;
3421     }
3422     switch (o3_opc) {
3423     case 000: /* LDADD */
3424         fn = tcg_gen_atomic_fetch_add_i64;
3425         break;
3426     case 001: /* LDCLR */
3427         fn = tcg_gen_atomic_fetch_and_i64;
3428         break;
3429     case 002: /* LDEOR */
3430         fn = tcg_gen_atomic_fetch_xor_i64;
3431         break;
3432     case 003: /* LDSET */
3433         fn = tcg_gen_atomic_fetch_or_i64;
3434         break;
3435     case 004: /* LDSMAX */
3436         fn = tcg_gen_atomic_fetch_smax_i64;
3437         mop |= MO_SIGN;
3438         break;
3439     case 005: /* LDSMIN */
3440         fn = tcg_gen_atomic_fetch_smin_i64;
3441         mop |= MO_SIGN;
3442         break;
3443     case 006: /* LDUMAX */
3444         fn = tcg_gen_atomic_fetch_umax_i64;
3445         break;
3446     case 007: /* LDUMIN */
3447         fn = tcg_gen_atomic_fetch_umin_i64;
3448         break;
3449     case 010: /* SWP */
3450         fn = tcg_gen_atomic_xchg_i64;
3451         break;
3452     case 014: /* LDAPR, LDAPRH, LDAPRB */
3453         if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3454             rs != 31 || a != 1 || r != 0) {
3455             unallocated_encoding(s);
3456             return;
3457         }
3458         break;
3459     default:
3460         unallocated_encoding(s);
3461         return;
3462     }
3463 
3464     if (rn == 31) {
3465         gen_check_sp_alignment(s);
3466     }
3467 
3468     mop = check_atomic_align(s, rn, mop);
3469     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop);
3470 
3471     if (o3_opc == 014) {
3472         /*
3473          * LDAPR* are a special case because they are a simple load, not a
3474          * fetch-and-do-something op.
3475          * The architectural consistency requirements here are weaker than
3476          * full load-acquire (we only need "load-acquire processor consistent"),
3477          * but we choose to implement them as full LDAQ.
3478          */
3479         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false,
3480                   true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3481         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3482         return;
3483     }
3484 
3485     tcg_rs = read_cpu_reg(s, rs, true);
3486     tcg_rt = cpu_reg(s, rt);
3487 
3488     if (o3_opc == 1) { /* LDCLR */
3489         tcg_gen_not_i64(tcg_rs, tcg_rs);
3490     }
3491 
3492     /* The tcg atomic primitives are all full barriers.  Therefore we
3493      * can ignore the Acquire and Release bits of this instruction.
3494      */
3495     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3496 
3497     if (mop & MO_SIGN) {
3498         switch (size) {
3499         case MO_8:
3500             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3501             break;
3502         case MO_16:
3503             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3504             break;
3505         case MO_32:
3506             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_64:
3509             break;
3510         default:
3511             g_assert_not_reached();
3512         }
3513     }
3514 }
3515 
3516 /*
3517  * PAC memory operations
3518  *
3519  *  31  30      27  26    24    22  21       12  11  10    5     0
3520  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3521  * | size | 1 1 1 | V | 0 0 | M S | 1 |  imm9  | W | 1 | Rn |  Rt |
3522  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3523  *
3524  * Rt: the result register
3525  * Rn: base address or SP
3526  * V: vector flag (always 0 as of v8.3)
3527  * M: clear for key DA, set for key DB
3528  * W: pre-indexing flag
3529  * S: sign for imm9.
3530  */
3531 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3532                            int size, int rt, bool is_vector)
3533 {
3534     int rn = extract32(insn, 5, 5);
3535     bool is_wback = extract32(insn, 11, 1);
3536     bool use_key_a = !extract32(insn, 23, 1);
3537     int offset;
3538     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3539     MemOp memop;
3540 
3541     if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3542         unallocated_encoding(s);
3543         return;
3544     }
3545 
3546     if (rn == 31) {
3547         gen_check_sp_alignment(s);
3548     }
3549     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3550 
3551     if (s->pauth_active) {
3552         if (use_key_a) {
3553             gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3554                              tcg_constant_i64(0));
3555         } else {
3556             gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3557                              tcg_constant_i64(0));
3558         }
3559     }
3560 
3561     /* Form the 10-bit signed, scaled offset.  */
3562     offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3563     offset = sextract32(offset << size, 0, 10 + size);
3564     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3565 
3566     memop = finalize_memop(s, size);
3567 
3568     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3569     clean_addr = gen_mte_check1(s, dirty_addr, false,
3570                                 is_wback || rn != 31, memop);
3571 
3572     tcg_rt = cpu_reg(s, rt);
3573     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3574               /* extend */ false, /* iss_valid */ !is_wback,
3575               /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3576 
3577     if (is_wback) {
3578         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3579     }
3580 }
3581 
3582 /*
3583  * LDAPR/STLR (unscaled immediate)
3584  *
3585  *  31  30            24    22  21       12    10    5     0
3586  * +------+-------------+-----+---+--------+-----+----+-----+
3587  * | size | 0 1 1 0 0 1 | opc | 0 |  imm9  | 0 0 | Rn |  Rt |
3588  * +------+-------------+-----+---+--------+-----+----+-----+
3589  *
3590  * Rt: source or destination register
3591  * Rn: base register
3592  * imm9: unscaled immediate offset
3593  * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3594  * size: size of load/store
3595  */
3596 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3597 {
3598     int rt = extract32(insn, 0, 5);
3599     int rn = extract32(insn, 5, 5);
3600     int offset = sextract32(insn, 12, 9);
3601     int opc = extract32(insn, 22, 2);
3602     int size = extract32(insn, 30, 2);
3603     TCGv_i64 clean_addr, dirty_addr;
3604     bool is_store = false;
3605     bool extend = false;
3606     bool iss_sf;
3607     MemOp mop = size;
3608 
3609     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3610         unallocated_encoding(s);
3611         return;
3612     }
3613 
3614     switch (opc) {
3615     case 0: /* STLURB */
3616         is_store = true;
3617         break;
3618     case 1: /* LDAPUR* */
3619         break;
3620     case 2: /* LDAPURS* 64-bit variant */
3621         if (size == 3) {
3622             unallocated_encoding(s);
3623             return;
3624         }
3625         mop |= MO_SIGN;
3626         break;
3627     case 3: /* LDAPURS* 32-bit variant */
3628         if (size > 1) {
3629             unallocated_encoding(s);
3630             return;
3631         }
3632         mop |= MO_SIGN;
3633         extend = true; /* zero-extend 32->64 after signed load */
3634         break;
3635     default:
3636         g_assert_not_reached();
3637     }
3638 
3639     iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3640 
3641     if (rn == 31) {
3642         gen_check_sp_alignment(s);
3643     }
3644 
3645     mop = check_ordered_align(s, rn, offset, is_store, mop);
3646 
3647     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3648     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3649     clean_addr = clean_data_tbi(s, dirty_addr);
3650 
3651     if (is_store) {
3652         /* Store-Release semantics */
3653         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3654         do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3655     } else {
3656         /*
3657          * Load-AcquirePC semantics; we implement as the slightly more
3658          * restrictive Load-Acquire.
3659          */
3660         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3661                   extend, true, rt, iss_sf, true);
3662         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3663     }
3664 }
3665 
3666 /* Load/store register (all forms) */
3667 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3668 {
3669     int rt = extract32(insn, 0, 5);
3670     int opc = extract32(insn, 22, 2);
3671     bool is_vector = extract32(insn, 26, 1);
3672     int size = extract32(insn, 30, 2);
3673 
3674     switch (extract32(insn, 24, 2)) {
3675     case 0:
3676         if (extract32(insn, 21, 1) == 0) {
3677             /* Load/store register (unscaled immediate)
3678              * Load/store immediate pre/post-indexed
3679              * Load/store register unprivileged
3680              */
3681             disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3682             return;
3683         }
3684         switch (extract32(insn, 10, 2)) {
3685         case 0:
3686             disas_ldst_atomic(s, insn, size, rt, is_vector);
3687             return;
3688         case 2:
3689             disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3690             return;
3691         default:
3692             disas_ldst_pac(s, insn, size, rt, is_vector);
3693             return;
3694         }
3695         break;
3696     case 1:
3697         disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3698         return;
3699     }
3700     unallocated_encoding(s);
3701 }
3702 
3703 /* AdvSIMD load/store multiple structures
3704  *
3705  *  31  30  29           23 22  21         16 15    12 11  10 9    5 4    0
3706  * +---+---+---------------+---+-------------+--------+------+------+------+
3707  * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size |  Rn  |  Rt  |
3708  * +---+---+---------------+---+-------------+--------+------+------+------+
3709  *
3710  * AdvSIMD load/store multiple structures (post-indexed)
3711  *
3712  *  31  30  29           23 22  21  20     16 15    12 11  10 9    5 4    0
3713  * +---+---+---------------+---+---+---------+--------+------+------+------+
3714  * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 |   Rm    | opcode | size |  Rn  |  Rt  |
3715  * +---+---+---------------+---+---+---------+--------+------+------+------+
3716  *
3717  * Rt: first (or only) SIMD&FP register to be transferred
3718  * Rn: base address or SP
3719  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3720  */
3721 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3722 {
3723     int rt = extract32(insn, 0, 5);
3724     int rn = extract32(insn, 5, 5);
3725     int rm = extract32(insn, 16, 5);
3726     int size = extract32(insn, 10, 2);
3727     int opcode = extract32(insn, 12, 4);
3728     bool is_store = !extract32(insn, 22, 1);
3729     bool is_postidx = extract32(insn, 23, 1);
3730     bool is_q = extract32(insn, 30, 1);
3731     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3732     MemOp endian, align, mop;
3733 
3734     int total;    /* total bytes */
3735     int elements; /* elements per vector */
3736     int rpt;    /* num iterations */
3737     int selem;  /* structure elements */
3738     int r;
3739 
3740     if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3741         unallocated_encoding(s);
3742         return;
3743     }
3744 
3745     if (!is_postidx && rm != 0) {
3746         unallocated_encoding(s);
3747         return;
3748     }
3749 
3750     /* From the shared decode logic */
3751     switch (opcode) {
3752     case 0x0:
3753         rpt = 1;
3754         selem = 4;
3755         break;
3756     case 0x2:
3757         rpt = 4;
3758         selem = 1;
3759         break;
3760     case 0x4:
3761         rpt = 1;
3762         selem = 3;
3763         break;
3764     case 0x6:
3765         rpt = 3;
3766         selem = 1;
3767         break;
3768     case 0x7:
3769         rpt = 1;
3770         selem = 1;
3771         break;
3772     case 0x8:
3773         rpt = 1;
3774         selem = 2;
3775         break;
3776     case 0xa:
3777         rpt = 2;
3778         selem = 1;
3779         break;
3780     default:
3781         unallocated_encoding(s);
3782         return;
3783     }
3784 
3785     if (size == 3 && !is_q && selem != 1) {
3786         /* reserved */
3787         unallocated_encoding(s);
3788         return;
3789     }
3790 
3791     if (!fp_access_check(s)) {
3792         return;
3793     }
3794 
3795     if (rn == 31) {
3796         gen_check_sp_alignment(s);
3797     }
3798 
3799     /* For our purposes, bytes are always little-endian.  */
3800     endian = s->be_data;
3801     if (size == 0) {
3802         endian = MO_LE;
3803     }
3804 
3805     total = rpt * selem * (is_q ? 16 : 8);
3806     tcg_rn = cpu_reg_sp(s, rn);
3807 
3808     /*
3809      * Issue the MTE check vs the logical repeat count, before we
3810      * promote consecutive little-endian elements below.
3811      */
3812     clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3813                                 total, finalize_memop_asimd(s, size));
3814 
3815     /*
3816      * Consecutive little-endian elements from a single register
3817      * can be promoted to a larger little-endian operation.
3818      */
3819     align = MO_ALIGN;
3820     if (selem == 1 && endian == MO_LE) {
3821         align = pow2_align(size);
3822         size = 3;
3823     }
3824     if (!s->align_mem) {
3825         align = 0;
3826     }
3827     mop = endian | size | align;
3828 
3829     elements = (is_q ? 16 : 8) >> size;
3830     tcg_ebytes = tcg_constant_i64(1 << size);
3831     for (r = 0; r < rpt; r++) {
3832         int e;
3833         for (e = 0; e < elements; e++) {
3834             int xs;
3835             for (xs = 0; xs < selem; xs++) {
3836                 int tt = (rt + r + xs) % 32;
3837                 if (is_store) {
3838                     do_vec_st(s, tt, e, clean_addr, mop);
3839                 } else {
3840                     do_vec_ld(s, tt, e, clean_addr, mop);
3841                 }
3842                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3843             }
3844         }
3845     }
3846 
3847     if (!is_store) {
3848         /* For non-quad operations, setting a slice of the low
3849          * 64 bits of the register clears the high 64 bits (in
3850          * the ARM ARM pseudocode this is implicit in the fact
3851          * that 'rval' is a 64 bit wide variable).
3852          * For quad operations, we might still need to zero the
3853          * high bits of SVE.
3854          */
3855         for (r = 0; r < rpt * selem; r++) {
3856             int tt = (rt + r) % 32;
3857             clear_vec_high(s, is_q, tt);
3858         }
3859     }
3860 
3861     if (is_postidx) {
3862         if (rm == 31) {
3863             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3864         } else {
3865             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3866         }
3867     }
3868 }
3869 
3870 /* AdvSIMD load/store single structure
3871  *
3872  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3873  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3874  * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size |  Rn  |  Rt  |
3875  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3876  *
3877  * AdvSIMD load/store single structure (post-indexed)
3878  *
3879  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3880  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3881  * | 0 | Q | 0 0 1 1 0 1 1 | L R |     Rm    | opc | S | size |  Rn  |  Rt  |
3882  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3883  *
3884  * Rt: first (or only) SIMD&FP register to be transferred
3885  * Rn: base address or SP
3886  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3887  * index = encoded in Q:S:size dependent on size
3888  *
3889  * lane_size = encoded in R, opc
3890  * transfer width = encoded in opc, S, size
3891  */
3892 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3893 {
3894     int rt = extract32(insn, 0, 5);
3895     int rn = extract32(insn, 5, 5);
3896     int rm = extract32(insn, 16, 5);
3897     int size = extract32(insn, 10, 2);
3898     int S = extract32(insn, 12, 1);
3899     int opc = extract32(insn, 13, 3);
3900     int R = extract32(insn, 21, 1);
3901     int is_load = extract32(insn, 22, 1);
3902     int is_postidx = extract32(insn, 23, 1);
3903     int is_q = extract32(insn, 30, 1);
3904 
3905     int scale = extract32(opc, 1, 2);
3906     int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3907     bool replicate = false;
3908     int index = is_q << 3 | S << 2 | size;
3909     int xs, total;
3910     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3911     MemOp mop;
3912 
3913     if (extract32(insn, 31, 1)) {
3914         unallocated_encoding(s);
3915         return;
3916     }
3917     if (!is_postidx && rm != 0) {
3918         unallocated_encoding(s);
3919         return;
3920     }
3921 
3922     switch (scale) {
3923     case 3:
3924         if (!is_load || S) {
3925             unallocated_encoding(s);
3926             return;
3927         }
3928         scale = size;
3929         replicate = true;
3930         break;
3931     case 0:
3932         break;
3933     case 1:
3934         if (extract32(size, 0, 1)) {
3935             unallocated_encoding(s);
3936             return;
3937         }
3938         index >>= 1;
3939         break;
3940     case 2:
3941         if (extract32(size, 1, 1)) {
3942             unallocated_encoding(s);
3943             return;
3944         }
3945         if (!extract32(size, 0, 1)) {
3946             index >>= 2;
3947         } else {
3948             if (S) {
3949                 unallocated_encoding(s);
3950                 return;
3951             }
3952             index >>= 3;
3953             scale = 3;
3954         }
3955         break;
3956     default:
3957         g_assert_not_reached();
3958     }
3959 
3960     if (!fp_access_check(s)) {
3961         return;
3962     }
3963 
3964     if (rn == 31) {
3965         gen_check_sp_alignment(s);
3966     }
3967 
3968     total = selem << scale;
3969     tcg_rn = cpu_reg_sp(s, rn);
3970 
3971     mop = finalize_memop_asimd(s, scale);
3972 
3973     clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3974                                 total, mop);
3975 
3976     tcg_ebytes = tcg_constant_i64(1 << scale);
3977     for (xs = 0; xs < selem; xs++) {
3978         if (replicate) {
3979             /* Load and replicate to all elements */
3980             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3981 
3982             tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3983             tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3984                                  (is_q + 1) * 8, vec_full_reg_size(s),
3985                                  tcg_tmp);
3986         } else {
3987             /* Load/store one element per register */
3988             if (is_load) {
3989                 do_vec_ld(s, rt, index, clean_addr, mop);
3990             } else {
3991                 do_vec_st(s, rt, index, clean_addr, mop);
3992             }
3993         }
3994         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3995         rt = (rt + 1) % 32;
3996     }
3997 
3998     if (is_postidx) {
3999         if (rm == 31) {
4000             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4001         } else {
4002             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
4003         }
4004     }
4005 }
4006 
4007 /*
4008  * Load/Store memory tags
4009  *
4010  *  31 30 29         24     22  21     12    10      5      0
4011  * +-----+-------------+-----+---+------+-----+------+------+
4012  * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 |  Rn  |  Rt  |
4013  * +-----+-------------+-----+---+------+-----+------+------+
4014  */
4015 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
4016 {
4017     int rt = extract32(insn, 0, 5);
4018     int rn = extract32(insn, 5, 5);
4019     uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
4020     int op2 = extract32(insn, 10, 2);
4021     int op1 = extract32(insn, 22, 2);
4022     bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
4023     int index = 0;
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     /* We checked insn bits [29:24,21] in the caller.  */
4027     if (extract32(insn, 30, 2) != 3) {
4028         goto do_unallocated;
4029     }
4030 
4031     /*
4032      * @index is a tri-state variable which has 3 states:
4033      * < 0 : post-index, writeback
4034      * = 0 : signed offset
4035      * > 0 : pre-index, writeback
4036      */
4037     switch (op1) {
4038     case 0:
4039         if (op2 != 0) {
4040             /* STG */
4041             index = op2 - 2;
4042         } else {
4043             /* STZGM */
4044             if (s->current_el == 0 || offset != 0) {
4045                 goto do_unallocated;
4046             }
4047             is_mult = is_zero = true;
4048         }
4049         break;
4050     case 1:
4051         if (op2 != 0) {
4052             /* STZG */
4053             is_zero = true;
4054             index = op2 - 2;
4055         } else {
4056             /* LDG */
4057             is_load = true;
4058         }
4059         break;
4060     case 2:
4061         if (op2 != 0) {
4062             /* ST2G */
4063             is_pair = true;
4064             index = op2 - 2;
4065         } else {
4066             /* STGM */
4067             if (s->current_el == 0 || offset != 0) {
4068                 goto do_unallocated;
4069             }
4070             is_mult = true;
4071         }
4072         break;
4073     case 3:
4074         if (op2 != 0) {
4075             /* STZ2G */
4076             is_pair = is_zero = true;
4077             index = op2 - 2;
4078         } else {
4079             /* LDGM */
4080             if (s->current_el == 0 || offset != 0) {
4081                 goto do_unallocated;
4082             }
4083             is_mult = is_load = true;
4084         }
4085         break;
4086 
4087     default:
4088     do_unallocated:
4089         unallocated_encoding(s);
4090         return;
4091     }
4092 
4093     if (is_mult
4094         ? !dc_isar_feature(aa64_mte, s)
4095         : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4096         goto do_unallocated;
4097     }
4098 
4099     if (rn == 31) {
4100         gen_check_sp_alignment(s);
4101     }
4102 
4103     addr = read_cpu_reg_sp(s, rn, true);
4104     if (index >= 0) {
4105         /* pre-index or signed offset */
4106         tcg_gen_addi_i64(addr, addr, offset);
4107     }
4108 
4109     if (is_mult) {
4110         tcg_rt = cpu_reg(s, rt);
4111 
4112         if (is_zero) {
4113             int size = 4 << s->dcz_blocksize;
4114 
4115             if (s->ata) {
4116                 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4117             }
4118             /*
4119              * The non-tags portion of STZGM is mostly like DC_ZVA,
4120              * except the alignment happens before the access.
4121              */
4122             clean_addr = clean_data_tbi(s, addr);
4123             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4124             gen_helper_dc_zva(cpu_env, clean_addr);
4125         } else if (s->ata) {
4126             if (is_load) {
4127                 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4128             } else {
4129                 gen_helper_stgm(cpu_env, addr, tcg_rt);
4130             }
4131         } else {
4132             MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4133             int size = 4 << GMID_EL1_BS;
4134 
4135             clean_addr = clean_data_tbi(s, addr);
4136             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4137             gen_probe_access(s, clean_addr, acc, size);
4138 
4139             if (is_load) {
4140                 /* The result tags are zeros.  */
4141                 tcg_gen_movi_i64(tcg_rt, 0);
4142             }
4143         }
4144         return;
4145     }
4146 
4147     if (is_load) {
4148         tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4149         tcg_rt = cpu_reg(s, rt);
4150         if (s->ata) {
4151             gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4152         } else {
4153             /*
4154              * Tag access disabled: we must check for aborts on the load
4155              * load from [rn+offset], and then insert a 0 tag into rt.
4156              */
4157             clean_addr = clean_data_tbi(s, addr);
4158             gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4159             gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4160         }
4161     } else {
4162         tcg_rt = cpu_reg_sp(s, rt);
4163         if (!s->ata) {
4164             /*
4165              * For STG and ST2G, we need to check alignment and probe memory.
4166              * TODO: For STZG and STZ2G, we could rely on the stores below,
4167              * at least for system mode; user-only won't enforce alignment.
4168              */
4169             if (is_pair) {
4170                 gen_helper_st2g_stub(cpu_env, addr);
4171             } else {
4172                 gen_helper_stg_stub(cpu_env, addr);
4173             }
4174         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4175             if (is_pair) {
4176                 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4177             } else {
4178                 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4179             }
4180         } else {
4181             if (is_pair) {
4182                 gen_helper_st2g(cpu_env, addr, tcg_rt);
4183             } else {
4184                 gen_helper_stg(cpu_env, addr, tcg_rt);
4185             }
4186         }
4187     }
4188 
4189     if (is_zero) {
4190         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4191         TCGv_i64 zero64 = tcg_constant_i64(0);
4192         TCGv_i128 zero128 = tcg_temp_new_i128();
4193         int mem_index = get_mem_index(s);
4194         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4195 
4196         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4197 
4198         /* This is 1 or 2 atomic 16-byte operations. */
4199         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4200         if (is_pair) {
4201             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4202             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4203         }
4204     }
4205 
4206     if (index != 0) {
4207         /* pre-index or post-index */
4208         if (index < 0) {
4209             /* post-index */
4210             tcg_gen_addi_i64(addr, addr, offset);
4211         }
4212         tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4213     }
4214 }
4215 
4216 /* Loads and stores */
4217 static void disas_ldst(DisasContext *s, uint32_t insn)
4218 {
4219     switch (extract32(insn, 24, 6)) {
4220     case 0x08: /* Load/store exclusive */
4221         disas_ldst_excl(s, insn);
4222         break;
4223     case 0x18: case 0x1c: /* Load register (literal) */
4224         disas_ld_lit(s, insn);
4225         break;
4226     case 0x28: case 0x29:
4227     case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4228         disas_ldst_pair(s, insn);
4229         break;
4230     case 0x38: case 0x39:
4231     case 0x3c: case 0x3d: /* Load/store register (all forms) */
4232         disas_ldst_reg(s, insn);
4233         break;
4234     case 0x0c: /* AdvSIMD load/store multiple structures */
4235         disas_ldst_multiple_struct(s, insn);
4236         break;
4237     case 0x0d: /* AdvSIMD load/store single structure */
4238         disas_ldst_single_struct(s, insn);
4239         break;
4240     case 0x19:
4241         if (extract32(insn, 21, 1) != 0) {
4242             disas_ldst_tag(s, insn);
4243         } else if (extract32(insn, 10, 2) == 0) {
4244             disas_ldst_ldapr_stlr(s, insn);
4245         } else {
4246             unallocated_encoding(s);
4247         }
4248         break;
4249     default:
4250         unallocated_encoding(s);
4251         break;
4252     }
4253 }
4254 
4255 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4256 
4257 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4258                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4259 {
4260     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4261     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4262     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4263 
4264     fn(tcg_rd, tcg_rn, tcg_imm);
4265     if (!a->sf) {
4266         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4267     }
4268     return true;
4269 }
4270 
4271 /*
4272  * PC-rel. addressing
4273  */
4274 
4275 static bool trans_ADR(DisasContext *s, arg_ri *a)
4276 {
4277     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4278     return true;
4279 }
4280 
4281 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4282 {
4283     int64_t offset = (int64_t)a->imm << 12;
4284 
4285     /* The page offset is ok for CF_PCREL. */
4286     offset -= s->pc_curr & 0xfff;
4287     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4288     return true;
4289 }
4290 
4291 /*
4292  * Add/subtract (immediate)
4293  */
4294 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4295 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4296 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4297 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4298 
4299 /*
4300  * Add/subtract (immediate, with tags)
4301  */
4302 
4303 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4304                                       bool sub_op)
4305 {
4306     TCGv_i64 tcg_rn, tcg_rd;
4307     int imm;
4308 
4309     imm = a->uimm6 << LOG2_TAG_GRANULE;
4310     if (sub_op) {
4311         imm = -imm;
4312     }
4313 
4314     tcg_rn = cpu_reg_sp(s, a->rn);
4315     tcg_rd = cpu_reg_sp(s, a->rd);
4316 
4317     if (s->ata) {
4318         gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4319                            tcg_constant_i32(imm),
4320                            tcg_constant_i32(a->uimm4));
4321     } else {
4322         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4323         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4324     }
4325     return true;
4326 }
4327 
4328 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4329 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4330 
4331 /* The input should be a value in the bottom e bits (with higher
4332  * bits zero); returns that value replicated into every element
4333  * of size e in a 64 bit integer.
4334  */
4335 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4336 {
4337     assert(e != 0);
4338     while (e < 64) {
4339         mask |= mask << e;
4340         e *= 2;
4341     }
4342     return mask;
4343 }
4344 
4345 /*
4346  * Logical (immediate)
4347  */
4348 
4349 /*
4350  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4351  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4352  * value (ie should cause a guest UNDEF exception), and true if they are
4353  * valid, in which case the decoded bit pattern is written to result.
4354  */
4355 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4356                             unsigned int imms, unsigned int immr)
4357 {
4358     uint64_t mask;
4359     unsigned e, levels, s, r;
4360     int len;
4361 
4362     assert(immn < 2 && imms < 64 && immr < 64);
4363 
4364     /* The bit patterns we create here are 64 bit patterns which
4365      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4366      * 64 bits each. Each element contains the same value: a run
4367      * of between 1 and e-1 non-zero bits, rotated within the
4368      * element by between 0 and e-1 bits.
4369      *
4370      * The element size and run length are encoded into immn (1 bit)
4371      * and imms (6 bits) as follows:
4372      * 64 bit elements: immn = 1, imms = <length of run - 1>
4373      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4374      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4375      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4376      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4377      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4378      * Notice that immn = 0, imms = 11111x is the only combination
4379      * not covered by one of the above options; this is reserved.
4380      * Further, <length of run - 1> all-ones is a reserved pattern.
4381      *
4382      * In all cases the rotation is by immr % e (and immr is 6 bits).
4383      */
4384 
4385     /* First determine the element size */
4386     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4387     if (len < 1) {
4388         /* This is the immn == 0, imms == 0x11111x case */
4389         return false;
4390     }
4391     e = 1 << len;
4392 
4393     levels = e - 1;
4394     s = imms & levels;
4395     r = immr & levels;
4396 
4397     if (s == levels) {
4398         /* <length of run - 1> mustn't be all-ones. */
4399         return false;
4400     }
4401 
4402     /* Create the value of one element: s+1 set bits rotated
4403      * by r within the element (which is e bits wide)...
4404      */
4405     mask = MAKE_64BIT_MASK(0, s + 1);
4406     if (r) {
4407         mask = (mask >> r) | (mask << (e - r));
4408         mask &= MAKE_64BIT_MASK(0, e);
4409     }
4410     /* ...then replicate the element over the whole 64 bit value */
4411     mask = bitfield_replicate(mask, e);
4412     *result = mask;
4413     return true;
4414 }
4415 
4416 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4417                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4418 {
4419     TCGv_i64 tcg_rd, tcg_rn;
4420     uint64_t imm;
4421 
4422     /* Some immediate field values are reserved. */
4423     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4424                                 extract32(a->dbm, 0, 6),
4425                                 extract32(a->dbm, 6, 6))) {
4426         return false;
4427     }
4428     if (!a->sf) {
4429         imm &= 0xffffffffull;
4430     }
4431 
4432     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4433     tcg_rn = cpu_reg(s, a->rn);
4434 
4435     fn(tcg_rd, tcg_rn, imm);
4436     if (set_cc) {
4437         gen_logic_CC(a->sf, tcg_rd);
4438     }
4439     if (!a->sf) {
4440         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4441     }
4442     return true;
4443 }
4444 
4445 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4446 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4447 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4448 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4449 
4450 /*
4451  * Move wide (immediate)
4452  */
4453 
4454 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4455 {
4456     int pos = a->hw << 4;
4457     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4458     return true;
4459 }
4460 
4461 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4462 {
4463     int pos = a->hw << 4;
4464     uint64_t imm = a->imm;
4465 
4466     imm = ~(imm << pos);
4467     if (!a->sf) {
4468         imm = (uint32_t)imm;
4469     }
4470     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4471     return true;
4472 }
4473 
4474 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4475 {
4476     int pos = a->hw << 4;
4477     TCGv_i64 tcg_rd, tcg_im;
4478 
4479     tcg_rd = cpu_reg(s, a->rd);
4480     tcg_im = tcg_constant_i64(a->imm);
4481     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4482     if (!a->sf) {
4483         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4484     }
4485     return true;
4486 }
4487 
4488 /*
4489  * Bitfield
4490  */
4491 
4492 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4493 {
4494     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4495     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4496     unsigned int bitsize = a->sf ? 64 : 32;
4497     unsigned int ri = a->immr;
4498     unsigned int si = a->imms;
4499     unsigned int pos, len;
4500 
4501     if (si >= ri) {
4502         /* Wd<s-r:0> = Wn<s:r> */
4503         len = (si - ri) + 1;
4504         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4505         if (!a->sf) {
4506             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4507         }
4508     } else {
4509         /* Wd<32+s-r,32-r> = Wn<s:0> */
4510         len = si + 1;
4511         pos = (bitsize - ri) & (bitsize - 1);
4512 
4513         if (len < ri) {
4514             /*
4515              * Sign extend the destination field from len to fill the
4516              * balance of the word.  Let the deposit below insert all
4517              * of those sign bits.
4518              */
4519             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4520             len = ri;
4521         }
4522 
4523         /*
4524          * We start with zero, and we haven't modified any bits outside
4525          * bitsize, therefore no final zero-extension is unneeded for !sf.
4526          */
4527         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4528     }
4529     return true;
4530 }
4531 
4532 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4533 {
4534     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4535     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4536     unsigned int bitsize = a->sf ? 64 : 32;
4537     unsigned int ri = a->immr;
4538     unsigned int si = a->imms;
4539     unsigned int pos, len;
4540 
4541     tcg_rd = cpu_reg(s, a->rd);
4542     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4543 
4544     if (si >= ri) {
4545         /* Wd<s-r:0> = Wn<s:r> */
4546         len = (si - ri) + 1;
4547         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4548     } else {
4549         /* Wd<32+s-r,32-r> = Wn<s:0> */
4550         len = si + 1;
4551         pos = (bitsize - ri) & (bitsize - 1);
4552         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4553     }
4554     return true;
4555 }
4556 
4557 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4558 {
4559     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4560     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4561     unsigned int bitsize = a->sf ? 64 : 32;
4562     unsigned int ri = a->immr;
4563     unsigned int si = a->imms;
4564     unsigned int pos, len;
4565 
4566     tcg_rd = cpu_reg(s, a->rd);
4567     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4568 
4569     if (si >= ri) {
4570         /* Wd<s-r:0> = Wn<s:r> */
4571         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4572         len = (si - ri) + 1;
4573         pos = 0;
4574     } else {
4575         /* Wd<32+s-r,32-r> = Wn<s:0> */
4576         len = si + 1;
4577         pos = (bitsize - ri) & (bitsize - 1);
4578     }
4579 
4580     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4581     if (!a->sf) {
4582         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4583     }
4584     return true;
4585 }
4586 
4587 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4588 {
4589     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4590 
4591     tcg_rd = cpu_reg(s, a->rd);
4592 
4593     if (unlikely(a->imm == 0)) {
4594         /*
4595          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4596          * so an extract from bit 0 is a special case.
4597          */
4598         if (a->sf) {
4599             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4600         } else {
4601             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4602         }
4603     } else {
4604         tcg_rm = cpu_reg(s, a->rm);
4605         tcg_rn = cpu_reg(s, a->rn);
4606 
4607         if (a->sf) {
4608             /* Specialization to ROR happens in EXTRACT2.  */
4609             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4610         } else {
4611             TCGv_i32 t0 = tcg_temp_new_i32();
4612 
4613             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4614             if (a->rm == a->rn) {
4615                 tcg_gen_rotri_i32(t0, t0, a->imm);
4616             } else {
4617                 TCGv_i32 t1 = tcg_temp_new_i32();
4618                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4619                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4620             }
4621             tcg_gen_extu_i32_i64(tcg_rd, t0);
4622         }
4623     }
4624     return true;
4625 }
4626 
4627 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4628  * Note that it is the caller's responsibility to ensure that the
4629  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4630  * mandated semantics for out of range shifts.
4631  */
4632 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4633                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4634 {
4635     switch (shift_type) {
4636     case A64_SHIFT_TYPE_LSL:
4637         tcg_gen_shl_i64(dst, src, shift_amount);
4638         break;
4639     case A64_SHIFT_TYPE_LSR:
4640         tcg_gen_shr_i64(dst, src, shift_amount);
4641         break;
4642     case A64_SHIFT_TYPE_ASR:
4643         if (!sf) {
4644             tcg_gen_ext32s_i64(dst, src);
4645         }
4646         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4647         break;
4648     case A64_SHIFT_TYPE_ROR:
4649         if (sf) {
4650             tcg_gen_rotr_i64(dst, src, shift_amount);
4651         } else {
4652             TCGv_i32 t0, t1;
4653             t0 = tcg_temp_new_i32();
4654             t1 = tcg_temp_new_i32();
4655             tcg_gen_extrl_i64_i32(t0, src);
4656             tcg_gen_extrl_i64_i32(t1, shift_amount);
4657             tcg_gen_rotr_i32(t0, t0, t1);
4658             tcg_gen_extu_i32_i64(dst, t0);
4659         }
4660         break;
4661     default:
4662         assert(FALSE); /* all shift types should be handled */
4663         break;
4664     }
4665 
4666     if (!sf) { /* zero extend final result */
4667         tcg_gen_ext32u_i64(dst, dst);
4668     }
4669 }
4670 
4671 /* Shift a TCGv src by immediate, put result in dst.
4672  * The shift amount must be in range (this should always be true as the
4673  * relevant instructions will UNDEF on bad shift immediates).
4674  */
4675 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4676                           enum a64_shift_type shift_type, unsigned int shift_i)
4677 {
4678     assert(shift_i < (sf ? 64 : 32));
4679 
4680     if (shift_i == 0) {
4681         tcg_gen_mov_i64(dst, src);
4682     } else {
4683         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4684     }
4685 }
4686 
4687 /* Logical (shifted register)
4688  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4689  * +----+-----+-----------+-------+---+------+--------+------+------+
4690  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4691  * +----+-----+-----------+-------+---+------+--------+------+------+
4692  */
4693 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4694 {
4695     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4696     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4697 
4698     sf = extract32(insn, 31, 1);
4699     opc = extract32(insn, 29, 2);
4700     shift_type = extract32(insn, 22, 2);
4701     invert = extract32(insn, 21, 1);
4702     rm = extract32(insn, 16, 5);
4703     shift_amount = extract32(insn, 10, 6);
4704     rn = extract32(insn, 5, 5);
4705     rd = extract32(insn, 0, 5);
4706 
4707     if (!sf && (shift_amount & (1 << 5))) {
4708         unallocated_encoding(s);
4709         return;
4710     }
4711 
4712     tcg_rd = cpu_reg(s, rd);
4713 
4714     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4715         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4716          * register-register MOV and MVN, so it is worth special casing.
4717          */
4718         tcg_rm = cpu_reg(s, rm);
4719         if (invert) {
4720             tcg_gen_not_i64(tcg_rd, tcg_rm);
4721             if (!sf) {
4722                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4723             }
4724         } else {
4725             if (sf) {
4726                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4727             } else {
4728                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4729             }
4730         }
4731         return;
4732     }
4733 
4734     tcg_rm = read_cpu_reg(s, rm, sf);
4735 
4736     if (shift_amount) {
4737         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4738     }
4739 
4740     tcg_rn = cpu_reg(s, rn);
4741 
4742     switch (opc | (invert << 2)) {
4743     case 0: /* AND */
4744     case 3: /* ANDS */
4745         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4746         break;
4747     case 1: /* ORR */
4748         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4749         break;
4750     case 2: /* EOR */
4751         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4752         break;
4753     case 4: /* BIC */
4754     case 7: /* BICS */
4755         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4756         break;
4757     case 5: /* ORN */
4758         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4759         break;
4760     case 6: /* EON */
4761         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4762         break;
4763     default:
4764         assert(FALSE);
4765         break;
4766     }
4767 
4768     if (!sf) {
4769         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4770     }
4771 
4772     if (opc == 3) {
4773         gen_logic_CC(sf, tcg_rd);
4774     }
4775 }
4776 
4777 /*
4778  * Add/subtract (extended register)
4779  *
4780  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4781  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4782  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4783  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4784  *
4785  *  sf: 0 -> 32bit, 1 -> 64bit
4786  *  op: 0 -> add  , 1 -> sub
4787  *   S: 1 -> set flags
4788  * opt: 00
4789  * option: extension type (see DecodeRegExtend)
4790  * imm3: optional shift to Rm
4791  *
4792  * Rd = Rn + LSL(extend(Rm), amount)
4793  */
4794 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4795 {
4796     int rd = extract32(insn, 0, 5);
4797     int rn = extract32(insn, 5, 5);
4798     int imm3 = extract32(insn, 10, 3);
4799     int option = extract32(insn, 13, 3);
4800     int rm = extract32(insn, 16, 5);
4801     int opt = extract32(insn, 22, 2);
4802     bool setflags = extract32(insn, 29, 1);
4803     bool sub_op = extract32(insn, 30, 1);
4804     bool sf = extract32(insn, 31, 1);
4805 
4806     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4807     TCGv_i64 tcg_rd;
4808     TCGv_i64 tcg_result;
4809 
4810     if (imm3 > 4 || opt != 0) {
4811         unallocated_encoding(s);
4812         return;
4813     }
4814 
4815     /* non-flag setting ops may use SP */
4816     if (!setflags) {
4817         tcg_rd = cpu_reg_sp(s, rd);
4818     } else {
4819         tcg_rd = cpu_reg(s, rd);
4820     }
4821     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4822 
4823     tcg_rm = read_cpu_reg(s, rm, sf);
4824     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4825 
4826     tcg_result = tcg_temp_new_i64();
4827 
4828     if (!setflags) {
4829         if (sub_op) {
4830             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4831         } else {
4832             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4833         }
4834     } else {
4835         if (sub_op) {
4836             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4837         } else {
4838             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4839         }
4840     }
4841 
4842     if (sf) {
4843         tcg_gen_mov_i64(tcg_rd, tcg_result);
4844     } else {
4845         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4846     }
4847 }
4848 
4849 /*
4850  * Add/subtract (shifted register)
4851  *
4852  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4853  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4854  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4855  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4856  *
4857  *    sf: 0 -> 32bit, 1 -> 64bit
4858  *    op: 0 -> add  , 1 -> sub
4859  *     S: 1 -> set flags
4860  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4861  *  imm6: Shift amount to apply to Rm before the add/sub
4862  */
4863 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4864 {
4865     int rd = extract32(insn, 0, 5);
4866     int rn = extract32(insn, 5, 5);
4867     int imm6 = extract32(insn, 10, 6);
4868     int rm = extract32(insn, 16, 5);
4869     int shift_type = extract32(insn, 22, 2);
4870     bool setflags = extract32(insn, 29, 1);
4871     bool sub_op = extract32(insn, 30, 1);
4872     bool sf = extract32(insn, 31, 1);
4873 
4874     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4875     TCGv_i64 tcg_rn, tcg_rm;
4876     TCGv_i64 tcg_result;
4877 
4878     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4879         unallocated_encoding(s);
4880         return;
4881     }
4882 
4883     tcg_rn = read_cpu_reg(s, rn, sf);
4884     tcg_rm = read_cpu_reg(s, rm, sf);
4885 
4886     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4887 
4888     tcg_result = tcg_temp_new_i64();
4889 
4890     if (!setflags) {
4891         if (sub_op) {
4892             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4893         } else {
4894             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4895         }
4896     } else {
4897         if (sub_op) {
4898             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4899         } else {
4900             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4901         }
4902     }
4903 
4904     if (sf) {
4905         tcg_gen_mov_i64(tcg_rd, tcg_result);
4906     } else {
4907         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4908     }
4909 }
4910 
4911 /* Data-processing (3 source)
4912  *
4913  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4914  *  +--+------+-----------+------+------+----+------+------+------+
4915  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4916  *  +--+------+-----------+------+------+----+------+------+------+
4917  */
4918 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4919 {
4920     int rd = extract32(insn, 0, 5);
4921     int rn = extract32(insn, 5, 5);
4922     int ra = extract32(insn, 10, 5);
4923     int rm = extract32(insn, 16, 5);
4924     int op_id = (extract32(insn, 29, 3) << 4) |
4925         (extract32(insn, 21, 3) << 1) |
4926         extract32(insn, 15, 1);
4927     bool sf = extract32(insn, 31, 1);
4928     bool is_sub = extract32(op_id, 0, 1);
4929     bool is_high = extract32(op_id, 2, 1);
4930     bool is_signed = false;
4931     TCGv_i64 tcg_op1;
4932     TCGv_i64 tcg_op2;
4933     TCGv_i64 tcg_tmp;
4934 
4935     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4936     switch (op_id) {
4937     case 0x42: /* SMADDL */
4938     case 0x43: /* SMSUBL */
4939     case 0x44: /* SMULH */
4940         is_signed = true;
4941         break;
4942     case 0x0: /* MADD (32bit) */
4943     case 0x1: /* MSUB (32bit) */
4944     case 0x40: /* MADD (64bit) */
4945     case 0x41: /* MSUB (64bit) */
4946     case 0x4a: /* UMADDL */
4947     case 0x4b: /* UMSUBL */
4948     case 0x4c: /* UMULH */
4949         break;
4950     default:
4951         unallocated_encoding(s);
4952         return;
4953     }
4954 
4955     if (is_high) {
4956         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4957         TCGv_i64 tcg_rd = cpu_reg(s, rd);
4958         TCGv_i64 tcg_rn = cpu_reg(s, rn);
4959         TCGv_i64 tcg_rm = cpu_reg(s, rm);
4960 
4961         if (is_signed) {
4962             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4963         } else {
4964             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4965         }
4966         return;
4967     }
4968 
4969     tcg_op1 = tcg_temp_new_i64();
4970     tcg_op2 = tcg_temp_new_i64();
4971     tcg_tmp = tcg_temp_new_i64();
4972 
4973     if (op_id < 0x42) {
4974         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4975         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4976     } else {
4977         if (is_signed) {
4978             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4979             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4980         } else {
4981             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4982             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4983         }
4984     }
4985 
4986     if (ra == 31 && !is_sub) {
4987         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4988         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4989     } else {
4990         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4991         if (is_sub) {
4992             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4993         } else {
4994             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4995         }
4996     }
4997 
4998     if (!sf) {
4999         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5000     }
5001 }
5002 
5003 /* Add/subtract (with carry)
5004  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5005  * +--+--+--+------------------------+------+-------------+------+-----+
5006  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5007  * +--+--+--+------------------------+------+-------------+------+-----+
5008  */
5009 
5010 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5011 {
5012     unsigned int sf, op, setflags, rm, rn, rd;
5013     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5014 
5015     sf = extract32(insn, 31, 1);
5016     op = extract32(insn, 30, 1);
5017     setflags = extract32(insn, 29, 1);
5018     rm = extract32(insn, 16, 5);
5019     rn = extract32(insn, 5, 5);
5020     rd = extract32(insn, 0, 5);
5021 
5022     tcg_rd = cpu_reg(s, rd);
5023     tcg_rn = cpu_reg(s, rn);
5024 
5025     if (op) {
5026         tcg_y = tcg_temp_new_i64();
5027         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5028     } else {
5029         tcg_y = cpu_reg(s, rm);
5030     }
5031 
5032     if (setflags) {
5033         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5034     } else {
5035         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5036     }
5037 }
5038 
5039 /*
5040  * Rotate right into flags
5041  *  31 30 29                21       15          10      5  4      0
5042  * +--+--+--+-----------------+--------+-----------+------+--+------+
5043  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5044  * +--+--+--+-----------------+--------+-----------+------+--+------+
5045  */
5046 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5047 {
5048     int mask = extract32(insn, 0, 4);
5049     int o2 = extract32(insn, 4, 1);
5050     int rn = extract32(insn, 5, 5);
5051     int imm6 = extract32(insn, 15, 6);
5052     int sf_op_s = extract32(insn, 29, 3);
5053     TCGv_i64 tcg_rn;
5054     TCGv_i32 nzcv;
5055 
5056     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5057         unallocated_encoding(s);
5058         return;
5059     }
5060 
5061     tcg_rn = read_cpu_reg(s, rn, 1);
5062     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5063 
5064     nzcv = tcg_temp_new_i32();
5065     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5066 
5067     if (mask & 8) { /* N */
5068         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5069     }
5070     if (mask & 4) { /* Z */
5071         tcg_gen_not_i32(cpu_ZF, nzcv);
5072         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5073     }
5074     if (mask & 2) { /* C */
5075         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5076     }
5077     if (mask & 1) { /* V */
5078         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5079     }
5080 }
5081 
5082 /*
5083  * Evaluate into flags
5084  *  31 30 29                21        15   14        10      5  4      0
5085  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5086  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5087  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5088  */
5089 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5090 {
5091     int o3_mask = extract32(insn, 0, 5);
5092     int rn = extract32(insn, 5, 5);
5093     int o2 = extract32(insn, 15, 6);
5094     int sz = extract32(insn, 14, 1);
5095     int sf_op_s = extract32(insn, 29, 3);
5096     TCGv_i32 tmp;
5097     int shift;
5098 
5099     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5100         !dc_isar_feature(aa64_condm_4, s)) {
5101         unallocated_encoding(s);
5102         return;
5103     }
5104     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5105 
5106     tmp = tcg_temp_new_i32();
5107     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5108     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5109     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5110     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5111     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5112 }
5113 
5114 /* Conditional compare (immediate / register)
5115  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5116  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5117  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5118  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5119  *        [1]                             y                [0]       [0]
5120  */
5121 static void disas_cc(DisasContext *s, uint32_t insn)
5122 {
5123     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5124     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5125     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5126     DisasCompare c;
5127 
5128     if (!extract32(insn, 29, 1)) {
5129         unallocated_encoding(s);
5130         return;
5131     }
5132     if (insn & (1 << 10 | 1 << 4)) {
5133         unallocated_encoding(s);
5134         return;
5135     }
5136     sf = extract32(insn, 31, 1);
5137     op = extract32(insn, 30, 1);
5138     is_imm = extract32(insn, 11, 1);
5139     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5140     cond = extract32(insn, 12, 4);
5141     rn = extract32(insn, 5, 5);
5142     nzcv = extract32(insn, 0, 4);
5143 
5144     /* Set T0 = !COND.  */
5145     tcg_t0 = tcg_temp_new_i32();
5146     arm_test_cc(&c, cond);
5147     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5148 
5149     /* Load the arguments for the new comparison.  */
5150     if (is_imm) {
5151         tcg_y = tcg_temp_new_i64();
5152         tcg_gen_movi_i64(tcg_y, y);
5153     } else {
5154         tcg_y = cpu_reg(s, y);
5155     }
5156     tcg_rn = cpu_reg(s, rn);
5157 
5158     /* Set the flags for the new comparison.  */
5159     tcg_tmp = tcg_temp_new_i64();
5160     if (op) {
5161         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5162     } else {
5163         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5164     }
5165 
5166     /* If COND was false, force the flags to #nzcv.  Compute two masks
5167      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5168      * For tcg hosts that support ANDC, we can make do with just T1.
5169      * In either case, allow the tcg optimizer to delete any unused mask.
5170      */
5171     tcg_t1 = tcg_temp_new_i32();
5172     tcg_t2 = tcg_temp_new_i32();
5173     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5174     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5175 
5176     if (nzcv & 8) { /* N */
5177         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5178     } else {
5179         if (TCG_TARGET_HAS_andc_i32) {
5180             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5181         } else {
5182             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5183         }
5184     }
5185     if (nzcv & 4) { /* Z */
5186         if (TCG_TARGET_HAS_andc_i32) {
5187             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5188         } else {
5189             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5190         }
5191     } else {
5192         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5193     }
5194     if (nzcv & 2) { /* C */
5195         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5196     } else {
5197         if (TCG_TARGET_HAS_andc_i32) {
5198             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5199         } else {
5200             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5201         }
5202     }
5203     if (nzcv & 1) { /* V */
5204         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5205     } else {
5206         if (TCG_TARGET_HAS_andc_i32) {
5207             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5208         } else {
5209             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5210         }
5211     }
5212 }
5213 
5214 /* Conditional select
5215  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5216  * +----+----+---+-----------------+------+------+-----+------+------+
5217  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5218  * +----+----+---+-----------------+------+------+-----+------+------+
5219  */
5220 static void disas_cond_select(DisasContext *s, uint32_t insn)
5221 {
5222     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5223     TCGv_i64 tcg_rd, zero;
5224     DisasCompare64 c;
5225 
5226     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5227         /* S == 1 or op2<1> == 1 */
5228         unallocated_encoding(s);
5229         return;
5230     }
5231     sf = extract32(insn, 31, 1);
5232     else_inv = extract32(insn, 30, 1);
5233     rm = extract32(insn, 16, 5);
5234     cond = extract32(insn, 12, 4);
5235     else_inc = extract32(insn, 10, 1);
5236     rn = extract32(insn, 5, 5);
5237     rd = extract32(insn, 0, 5);
5238 
5239     tcg_rd = cpu_reg(s, rd);
5240 
5241     a64_test_cc(&c, cond);
5242     zero = tcg_constant_i64(0);
5243 
5244     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5245         /* CSET & CSETM.  */
5246         tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5247         if (else_inv) {
5248             tcg_gen_neg_i64(tcg_rd, tcg_rd);
5249         }
5250     } else {
5251         TCGv_i64 t_true = cpu_reg(s, rn);
5252         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5253         if (else_inv && else_inc) {
5254             tcg_gen_neg_i64(t_false, t_false);
5255         } else if (else_inv) {
5256             tcg_gen_not_i64(t_false, t_false);
5257         } else if (else_inc) {
5258             tcg_gen_addi_i64(t_false, t_false, 1);
5259         }
5260         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5261     }
5262 
5263     if (!sf) {
5264         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5265     }
5266 }
5267 
5268 static void handle_clz(DisasContext *s, unsigned int sf,
5269                        unsigned int rn, unsigned int rd)
5270 {
5271     TCGv_i64 tcg_rd, tcg_rn;
5272     tcg_rd = cpu_reg(s, rd);
5273     tcg_rn = cpu_reg(s, rn);
5274 
5275     if (sf) {
5276         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5277     } else {
5278         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5279         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5280         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5281         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5282     }
5283 }
5284 
5285 static void handle_cls(DisasContext *s, unsigned int sf,
5286                        unsigned int rn, unsigned int rd)
5287 {
5288     TCGv_i64 tcg_rd, tcg_rn;
5289     tcg_rd = cpu_reg(s, rd);
5290     tcg_rn = cpu_reg(s, rn);
5291 
5292     if (sf) {
5293         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5294     } else {
5295         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5296         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5297         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5298         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5299     }
5300 }
5301 
5302 static void handle_rbit(DisasContext *s, unsigned int sf,
5303                         unsigned int rn, unsigned int rd)
5304 {
5305     TCGv_i64 tcg_rd, tcg_rn;
5306     tcg_rd = cpu_reg(s, rd);
5307     tcg_rn = cpu_reg(s, rn);
5308 
5309     if (sf) {
5310         gen_helper_rbit64(tcg_rd, tcg_rn);
5311     } else {
5312         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5313         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5314         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5315         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5316     }
5317 }
5318 
5319 /* REV with sf==1, opcode==3 ("REV64") */
5320 static void handle_rev64(DisasContext *s, unsigned int sf,
5321                          unsigned int rn, unsigned int rd)
5322 {
5323     if (!sf) {
5324         unallocated_encoding(s);
5325         return;
5326     }
5327     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5328 }
5329 
5330 /* REV with sf==0, opcode==2
5331  * REV32 (sf==1, opcode==2)
5332  */
5333 static void handle_rev32(DisasContext *s, unsigned int sf,
5334                          unsigned int rn, unsigned int rd)
5335 {
5336     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5337     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5338 
5339     if (sf) {
5340         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5341         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5342     } else {
5343         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5344     }
5345 }
5346 
5347 /* REV16 (opcode==1) */
5348 static void handle_rev16(DisasContext *s, unsigned int sf,
5349                          unsigned int rn, unsigned int rd)
5350 {
5351     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5352     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5353     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5354     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5355 
5356     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5357     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5358     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5359     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5360     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5361 }
5362 
5363 /* Data-processing (1 source)
5364  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5365  * +----+---+---+-----------------+---------+--------+------+------+
5366  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5367  * +----+---+---+-----------------+---------+--------+------+------+
5368  */
5369 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5370 {
5371     unsigned int sf, opcode, opcode2, rn, rd;
5372     TCGv_i64 tcg_rd;
5373 
5374     if (extract32(insn, 29, 1)) {
5375         unallocated_encoding(s);
5376         return;
5377     }
5378 
5379     sf = extract32(insn, 31, 1);
5380     opcode = extract32(insn, 10, 6);
5381     opcode2 = extract32(insn, 16, 5);
5382     rn = extract32(insn, 5, 5);
5383     rd = extract32(insn, 0, 5);
5384 
5385 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5386 
5387     switch (MAP(sf, opcode2, opcode)) {
5388     case MAP(0, 0x00, 0x00): /* RBIT */
5389     case MAP(1, 0x00, 0x00):
5390         handle_rbit(s, sf, rn, rd);
5391         break;
5392     case MAP(0, 0x00, 0x01): /* REV16 */
5393     case MAP(1, 0x00, 0x01):
5394         handle_rev16(s, sf, rn, rd);
5395         break;
5396     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5397     case MAP(1, 0x00, 0x02):
5398         handle_rev32(s, sf, rn, rd);
5399         break;
5400     case MAP(1, 0x00, 0x03): /* REV64 */
5401         handle_rev64(s, sf, rn, rd);
5402         break;
5403     case MAP(0, 0x00, 0x04): /* CLZ */
5404     case MAP(1, 0x00, 0x04):
5405         handle_clz(s, sf, rn, rd);
5406         break;
5407     case MAP(0, 0x00, 0x05): /* CLS */
5408     case MAP(1, 0x00, 0x05):
5409         handle_cls(s, sf, rn, rd);
5410         break;
5411     case MAP(1, 0x01, 0x00): /* PACIA */
5412         if (s->pauth_active) {
5413             tcg_rd = cpu_reg(s, rd);
5414             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5415         } else if (!dc_isar_feature(aa64_pauth, s)) {
5416             goto do_unallocated;
5417         }
5418         break;
5419     case MAP(1, 0x01, 0x01): /* PACIB */
5420         if (s->pauth_active) {
5421             tcg_rd = cpu_reg(s, rd);
5422             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5423         } else if (!dc_isar_feature(aa64_pauth, s)) {
5424             goto do_unallocated;
5425         }
5426         break;
5427     case MAP(1, 0x01, 0x02): /* PACDA */
5428         if (s->pauth_active) {
5429             tcg_rd = cpu_reg(s, rd);
5430             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5431         } else if (!dc_isar_feature(aa64_pauth, s)) {
5432             goto do_unallocated;
5433         }
5434         break;
5435     case MAP(1, 0x01, 0x03): /* PACDB */
5436         if (s->pauth_active) {
5437             tcg_rd = cpu_reg(s, rd);
5438             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5439         } else if (!dc_isar_feature(aa64_pauth, s)) {
5440             goto do_unallocated;
5441         }
5442         break;
5443     case MAP(1, 0x01, 0x04): /* AUTIA */
5444         if (s->pauth_active) {
5445             tcg_rd = cpu_reg(s, rd);
5446             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5447         } else if (!dc_isar_feature(aa64_pauth, s)) {
5448             goto do_unallocated;
5449         }
5450         break;
5451     case MAP(1, 0x01, 0x05): /* AUTIB */
5452         if (s->pauth_active) {
5453             tcg_rd = cpu_reg(s, rd);
5454             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5455         } else if (!dc_isar_feature(aa64_pauth, s)) {
5456             goto do_unallocated;
5457         }
5458         break;
5459     case MAP(1, 0x01, 0x06): /* AUTDA */
5460         if (s->pauth_active) {
5461             tcg_rd = cpu_reg(s, rd);
5462             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5463         } else if (!dc_isar_feature(aa64_pauth, s)) {
5464             goto do_unallocated;
5465         }
5466         break;
5467     case MAP(1, 0x01, 0x07): /* AUTDB */
5468         if (s->pauth_active) {
5469             tcg_rd = cpu_reg(s, rd);
5470             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5471         } else if (!dc_isar_feature(aa64_pauth, s)) {
5472             goto do_unallocated;
5473         }
5474         break;
5475     case MAP(1, 0x01, 0x08): /* PACIZA */
5476         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5477             goto do_unallocated;
5478         } else if (s->pauth_active) {
5479             tcg_rd = cpu_reg(s, rd);
5480             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5481         }
5482         break;
5483     case MAP(1, 0x01, 0x09): /* PACIZB */
5484         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5485             goto do_unallocated;
5486         } else if (s->pauth_active) {
5487             tcg_rd = cpu_reg(s, rd);
5488             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5489         }
5490         break;
5491     case MAP(1, 0x01, 0x0a): /* PACDZA */
5492         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5493             goto do_unallocated;
5494         } else if (s->pauth_active) {
5495             tcg_rd = cpu_reg(s, rd);
5496             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5497         }
5498         break;
5499     case MAP(1, 0x01, 0x0b): /* PACDZB */
5500         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5501             goto do_unallocated;
5502         } else if (s->pauth_active) {
5503             tcg_rd = cpu_reg(s, rd);
5504             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5505         }
5506         break;
5507     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5508         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5509             goto do_unallocated;
5510         } else if (s->pauth_active) {
5511             tcg_rd = cpu_reg(s, rd);
5512             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5513         }
5514         break;
5515     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5516         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5517             goto do_unallocated;
5518         } else if (s->pauth_active) {
5519             tcg_rd = cpu_reg(s, rd);
5520             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5521         }
5522         break;
5523     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5524         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5525             goto do_unallocated;
5526         } else if (s->pauth_active) {
5527             tcg_rd = cpu_reg(s, rd);
5528             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5529         }
5530         break;
5531     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5532         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5533             goto do_unallocated;
5534         } else if (s->pauth_active) {
5535             tcg_rd = cpu_reg(s, rd);
5536             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5537         }
5538         break;
5539     case MAP(1, 0x01, 0x10): /* XPACI */
5540         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5541             goto do_unallocated;
5542         } else if (s->pauth_active) {
5543             tcg_rd = cpu_reg(s, rd);
5544             gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5545         }
5546         break;
5547     case MAP(1, 0x01, 0x11): /* XPACD */
5548         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5549             goto do_unallocated;
5550         } else if (s->pauth_active) {
5551             tcg_rd = cpu_reg(s, rd);
5552             gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5553         }
5554         break;
5555     default:
5556     do_unallocated:
5557         unallocated_encoding(s);
5558         break;
5559     }
5560 
5561 #undef MAP
5562 }
5563 
5564 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5565                        unsigned int rm, unsigned int rn, unsigned int rd)
5566 {
5567     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5568     tcg_rd = cpu_reg(s, rd);
5569 
5570     if (!sf && is_signed) {
5571         tcg_n = tcg_temp_new_i64();
5572         tcg_m = tcg_temp_new_i64();
5573         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5574         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5575     } else {
5576         tcg_n = read_cpu_reg(s, rn, sf);
5577         tcg_m = read_cpu_reg(s, rm, sf);
5578     }
5579 
5580     if (is_signed) {
5581         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5582     } else {
5583         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5584     }
5585 
5586     if (!sf) { /* zero extend final result */
5587         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5588     }
5589 }
5590 
5591 /* LSLV, LSRV, ASRV, RORV */
5592 static void handle_shift_reg(DisasContext *s,
5593                              enum a64_shift_type shift_type, unsigned int sf,
5594                              unsigned int rm, unsigned int rn, unsigned int rd)
5595 {
5596     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5597     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5598     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5599 
5600     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5601     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5602 }
5603 
5604 /* CRC32[BHWX], CRC32C[BHWX] */
5605 static void handle_crc32(DisasContext *s,
5606                          unsigned int sf, unsigned int sz, bool crc32c,
5607                          unsigned int rm, unsigned int rn, unsigned int rd)
5608 {
5609     TCGv_i64 tcg_acc, tcg_val;
5610     TCGv_i32 tcg_bytes;
5611 
5612     if (!dc_isar_feature(aa64_crc32, s)
5613         || (sf == 1 && sz != 3)
5614         || (sf == 0 && sz == 3)) {
5615         unallocated_encoding(s);
5616         return;
5617     }
5618 
5619     if (sz == 3) {
5620         tcg_val = cpu_reg(s, rm);
5621     } else {
5622         uint64_t mask;
5623         switch (sz) {
5624         case 0:
5625             mask = 0xFF;
5626             break;
5627         case 1:
5628             mask = 0xFFFF;
5629             break;
5630         case 2:
5631             mask = 0xFFFFFFFF;
5632             break;
5633         default:
5634             g_assert_not_reached();
5635         }
5636         tcg_val = tcg_temp_new_i64();
5637         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5638     }
5639 
5640     tcg_acc = cpu_reg(s, rn);
5641     tcg_bytes = tcg_constant_i32(1 << sz);
5642 
5643     if (crc32c) {
5644         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5645     } else {
5646         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5647     }
5648 }
5649 
5650 /* Data-processing (2 source)
5651  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5652  * +----+---+---+-----------------+------+--------+------+------+
5653  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5654  * +----+---+---+-----------------+------+--------+------+------+
5655  */
5656 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5657 {
5658     unsigned int sf, rm, opcode, rn, rd, setflag;
5659     sf = extract32(insn, 31, 1);
5660     setflag = extract32(insn, 29, 1);
5661     rm = extract32(insn, 16, 5);
5662     opcode = extract32(insn, 10, 6);
5663     rn = extract32(insn, 5, 5);
5664     rd = extract32(insn, 0, 5);
5665 
5666     if (setflag && opcode != 0) {
5667         unallocated_encoding(s);
5668         return;
5669     }
5670 
5671     switch (opcode) {
5672     case 0: /* SUBP(S) */
5673         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5674             goto do_unallocated;
5675         } else {
5676             TCGv_i64 tcg_n, tcg_m, tcg_d;
5677 
5678             tcg_n = read_cpu_reg_sp(s, rn, true);
5679             tcg_m = read_cpu_reg_sp(s, rm, true);
5680             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5681             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5682             tcg_d = cpu_reg(s, rd);
5683 
5684             if (setflag) {
5685                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5686             } else {
5687                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5688             }
5689         }
5690         break;
5691     case 2: /* UDIV */
5692         handle_div(s, false, sf, rm, rn, rd);
5693         break;
5694     case 3: /* SDIV */
5695         handle_div(s, true, sf, rm, rn, rd);
5696         break;
5697     case 4: /* IRG */
5698         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5699             goto do_unallocated;
5700         }
5701         if (s->ata) {
5702             gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5703                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5704         } else {
5705             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5706                                              cpu_reg_sp(s, rn));
5707         }
5708         break;
5709     case 5: /* GMI */
5710         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5711             goto do_unallocated;
5712         } else {
5713             TCGv_i64 t = tcg_temp_new_i64();
5714 
5715             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5716             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5717             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5718         }
5719         break;
5720     case 8: /* LSLV */
5721         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5722         break;
5723     case 9: /* LSRV */
5724         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5725         break;
5726     case 10: /* ASRV */
5727         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5728         break;
5729     case 11: /* RORV */
5730         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5731         break;
5732     case 12: /* PACGA */
5733         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5734             goto do_unallocated;
5735         }
5736         gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5737                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5738         break;
5739     case 16:
5740     case 17:
5741     case 18:
5742     case 19:
5743     case 20:
5744     case 21:
5745     case 22:
5746     case 23: /* CRC32 */
5747     {
5748         int sz = extract32(opcode, 0, 2);
5749         bool crc32c = extract32(opcode, 2, 1);
5750         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5751         break;
5752     }
5753     default:
5754     do_unallocated:
5755         unallocated_encoding(s);
5756         break;
5757     }
5758 }
5759 
5760 /*
5761  * Data processing - register
5762  *  31  30 29  28      25    21  20  16      10         0
5763  * +--+---+--+---+-------+-----+-------+-------+---------+
5764  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5765  * +--+---+--+---+-------+-----+-------+-------+---------+
5766  */
5767 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5768 {
5769     int op0 = extract32(insn, 30, 1);
5770     int op1 = extract32(insn, 28, 1);
5771     int op2 = extract32(insn, 21, 4);
5772     int op3 = extract32(insn, 10, 6);
5773 
5774     if (!op1) {
5775         if (op2 & 8) {
5776             if (op2 & 1) {
5777                 /* Add/sub (extended register) */
5778                 disas_add_sub_ext_reg(s, insn);
5779             } else {
5780                 /* Add/sub (shifted register) */
5781                 disas_add_sub_reg(s, insn);
5782             }
5783         } else {
5784             /* Logical (shifted register) */
5785             disas_logic_reg(s, insn);
5786         }
5787         return;
5788     }
5789 
5790     switch (op2) {
5791     case 0x0:
5792         switch (op3) {
5793         case 0x00: /* Add/subtract (with carry) */
5794             disas_adc_sbc(s, insn);
5795             break;
5796 
5797         case 0x01: /* Rotate right into flags */
5798         case 0x21:
5799             disas_rotate_right_into_flags(s, insn);
5800             break;
5801 
5802         case 0x02: /* Evaluate into flags */
5803         case 0x12:
5804         case 0x22:
5805         case 0x32:
5806             disas_evaluate_into_flags(s, insn);
5807             break;
5808 
5809         default:
5810             goto do_unallocated;
5811         }
5812         break;
5813 
5814     case 0x2: /* Conditional compare */
5815         disas_cc(s, insn); /* both imm and reg forms */
5816         break;
5817 
5818     case 0x4: /* Conditional select */
5819         disas_cond_select(s, insn);
5820         break;
5821 
5822     case 0x6: /* Data-processing */
5823         if (op0) {    /* (1 source) */
5824             disas_data_proc_1src(s, insn);
5825         } else {      /* (2 source) */
5826             disas_data_proc_2src(s, insn);
5827         }
5828         break;
5829     case 0x8 ... 0xf: /* (3 source) */
5830         disas_data_proc_3src(s, insn);
5831         break;
5832 
5833     default:
5834     do_unallocated:
5835         unallocated_encoding(s);
5836         break;
5837     }
5838 }
5839 
5840 static void handle_fp_compare(DisasContext *s, int size,
5841                               unsigned int rn, unsigned int rm,
5842                               bool cmp_with_zero, bool signal_all_nans)
5843 {
5844     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5845     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5846 
5847     if (size == MO_64) {
5848         TCGv_i64 tcg_vn, tcg_vm;
5849 
5850         tcg_vn = read_fp_dreg(s, rn);
5851         if (cmp_with_zero) {
5852             tcg_vm = tcg_constant_i64(0);
5853         } else {
5854             tcg_vm = read_fp_dreg(s, rm);
5855         }
5856         if (signal_all_nans) {
5857             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5858         } else {
5859             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5860         }
5861     } else {
5862         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5863         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5864 
5865         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5866         if (cmp_with_zero) {
5867             tcg_gen_movi_i32(tcg_vm, 0);
5868         } else {
5869             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5870         }
5871 
5872         switch (size) {
5873         case MO_32:
5874             if (signal_all_nans) {
5875                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5876             } else {
5877                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5878             }
5879             break;
5880         case MO_16:
5881             if (signal_all_nans) {
5882                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5883             } else {
5884                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5885             }
5886             break;
5887         default:
5888             g_assert_not_reached();
5889         }
5890     }
5891 
5892     gen_set_nzcv(tcg_flags);
5893 }
5894 
5895 /* Floating point compare
5896  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5897  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5898  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5899  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5900  */
5901 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5902 {
5903     unsigned int mos, type, rm, op, rn, opc, op2r;
5904     int size;
5905 
5906     mos = extract32(insn, 29, 3);
5907     type = extract32(insn, 22, 2);
5908     rm = extract32(insn, 16, 5);
5909     op = extract32(insn, 14, 2);
5910     rn = extract32(insn, 5, 5);
5911     opc = extract32(insn, 3, 2);
5912     op2r = extract32(insn, 0, 3);
5913 
5914     if (mos || op || op2r) {
5915         unallocated_encoding(s);
5916         return;
5917     }
5918 
5919     switch (type) {
5920     case 0:
5921         size = MO_32;
5922         break;
5923     case 1:
5924         size = MO_64;
5925         break;
5926     case 3:
5927         size = MO_16;
5928         if (dc_isar_feature(aa64_fp16, s)) {
5929             break;
5930         }
5931         /* fallthru */
5932     default:
5933         unallocated_encoding(s);
5934         return;
5935     }
5936 
5937     if (!fp_access_check(s)) {
5938         return;
5939     }
5940 
5941     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5942 }
5943 
5944 /* Floating point conditional compare
5945  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5946  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5947  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5948  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5949  */
5950 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5951 {
5952     unsigned int mos, type, rm, cond, rn, op, nzcv;
5953     TCGLabel *label_continue = NULL;
5954     int size;
5955 
5956     mos = extract32(insn, 29, 3);
5957     type = extract32(insn, 22, 2);
5958     rm = extract32(insn, 16, 5);
5959     cond = extract32(insn, 12, 4);
5960     rn = extract32(insn, 5, 5);
5961     op = extract32(insn, 4, 1);
5962     nzcv = extract32(insn, 0, 4);
5963 
5964     if (mos) {
5965         unallocated_encoding(s);
5966         return;
5967     }
5968 
5969     switch (type) {
5970     case 0:
5971         size = MO_32;
5972         break;
5973     case 1:
5974         size = MO_64;
5975         break;
5976     case 3:
5977         size = MO_16;
5978         if (dc_isar_feature(aa64_fp16, s)) {
5979             break;
5980         }
5981         /* fallthru */
5982     default:
5983         unallocated_encoding(s);
5984         return;
5985     }
5986 
5987     if (!fp_access_check(s)) {
5988         return;
5989     }
5990 
5991     if (cond < 0x0e) { /* not always */
5992         TCGLabel *label_match = gen_new_label();
5993         label_continue = gen_new_label();
5994         arm_gen_test_cc(cond, label_match);
5995         /* nomatch: */
5996         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5997         tcg_gen_br(label_continue);
5998         gen_set_label(label_match);
5999     }
6000 
6001     handle_fp_compare(s, size, rn, rm, false, op);
6002 
6003     if (cond < 0x0e) {
6004         gen_set_label(label_continue);
6005     }
6006 }
6007 
6008 /* Floating point conditional select
6009  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6010  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6011  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6012  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6013  */
6014 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6015 {
6016     unsigned int mos, type, rm, cond, rn, rd;
6017     TCGv_i64 t_true, t_false;
6018     DisasCompare64 c;
6019     MemOp sz;
6020 
6021     mos = extract32(insn, 29, 3);
6022     type = extract32(insn, 22, 2);
6023     rm = extract32(insn, 16, 5);
6024     cond = extract32(insn, 12, 4);
6025     rn = extract32(insn, 5, 5);
6026     rd = extract32(insn, 0, 5);
6027 
6028     if (mos) {
6029         unallocated_encoding(s);
6030         return;
6031     }
6032 
6033     switch (type) {
6034     case 0:
6035         sz = MO_32;
6036         break;
6037     case 1:
6038         sz = MO_64;
6039         break;
6040     case 3:
6041         sz = MO_16;
6042         if (dc_isar_feature(aa64_fp16, s)) {
6043             break;
6044         }
6045         /* fallthru */
6046     default:
6047         unallocated_encoding(s);
6048         return;
6049     }
6050 
6051     if (!fp_access_check(s)) {
6052         return;
6053     }
6054 
6055     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6056     t_true = tcg_temp_new_i64();
6057     t_false = tcg_temp_new_i64();
6058     read_vec_element(s, t_true, rn, 0, sz);
6059     read_vec_element(s, t_false, rm, 0, sz);
6060 
6061     a64_test_cc(&c, cond);
6062     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6063                         t_true, t_false);
6064 
6065     /* Note that sregs & hregs write back zeros to the high bits,
6066        and we've already done the zero-extension.  */
6067     write_fp_dreg(s, rd, t_true);
6068 }
6069 
6070 /* Floating-point data-processing (1 source) - half precision */
6071 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6072 {
6073     TCGv_ptr fpst = NULL;
6074     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6075     TCGv_i32 tcg_res = tcg_temp_new_i32();
6076 
6077     switch (opcode) {
6078     case 0x0: /* FMOV */
6079         tcg_gen_mov_i32(tcg_res, tcg_op);
6080         break;
6081     case 0x1: /* FABS */
6082         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6083         break;
6084     case 0x2: /* FNEG */
6085         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6086         break;
6087     case 0x3: /* FSQRT */
6088         fpst = fpstatus_ptr(FPST_FPCR_F16);
6089         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6090         break;
6091     case 0x8: /* FRINTN */
6092     case 0x9: /* FRINTP */
6093     case 0xa: /* FRINTM */
6094     case 0xb: /* FRINTZ */
6095     case 0xc: /* FRINTA */
6096     {
6097         TCGv_i32 tcg_rmode;
6098 
6099         fpst = fpstatus_ptr(FPST_FPCR_F16);
6100         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6101         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6102         gen_restore_rmode(tcg_rmode, fpst);
6103         break;
6104     }
6105     case 0xe: /* FRINTX */
6106         fpst = fpstatus_ptr(FPST_FPCR_F16);
6107         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6108         break;
6109     case 0xf: /* FRINTI */
6110         fpst = fpstatus_ptr(FPST_FPCR_F16);
6111         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6112         break;
6113     default:
6114         g_assert_not_reached();
6115     }
6116 
6117     write_fp_sreg(s, rd, tcg_res);
6118 }
6119 
6120 /* Floating-point data-processing (1 source) - single precision */
6121 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6122 {
6123     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6124     TCGv_i32 tcg_op, tcg_res;
6125     TCGv_ptr fpst;
6126     int rmode = -1;
6127 
6128     tcg_op = read_fp_sreg(s, rn);
6129     tcg_res = tcg_temp_new_i32();
6130 
6131     switch (opcode) {
6132     case 0x0: /* FMOV */
6133         tcg_gen_mov_i32(tcg_res, tcg_op);
6134         goto done;
6135     case 0x1: /* FABS */
6136         gen_helper_vfp_abss(tcg_res, tcg_op);
6137         goto done;
6138     case 0x2: /* FNEG */
6139         gen_helper_vfp_negs(tcg_res, tcg_op);
6140         goto done;
6141     case 0x3: /* FSQRT */
6142         gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6143         goto done;
6144     case 0x6: /* BFCVT */
6145         gen_fpst = gen_helper_bfcvt;
6146         break;
6147     case 0x8: /* FRINTN */
6148     case 0x9: /* FRINTP */
6149     case 0xa: /* FRINTM */
6150     case 0xb: /* FRINTZ */
6151     case 0xc: /* FRINTA */
6152         rmode = opcode & 7;
6153         gen_fpst = gen_helper_rints;
6154         break;
6155     case 0xe: /* FRINTX */
6156         gen_fpst = gen_helper_rints_exact;
6157         break;
6158     case 0xf: /* FRINTI */
6159         gen_fpst = gen_helper_rints;
6160         break;
6161     case 0x10: /* FRINT32Z */
6162         rmode = FPROUNDING_ZERO;
6163         gen_fpst = gen_helper_frint32_s;
6164         break;
6165     case 0x11: /* FRINT32X */
6166         gen_fpst = gen_helper_frint32_s;
6167         break;
6168     case 0x12: /* FRINT64Z */
6169         rmode = FPROUNDING_ZERO;
6170         gen_fpst = gen_helper_frint64_s;
6171         break;
6172     case 0x13: /* FRINT64X */
6173         gen_fpst = gen_helper_frint64_s;
6174         break;
6175     default:
6176         g_assert_not_reached();
6177     }
6178 
6179     fpst = fpstatus_ptr(FPST_FPCR);
6180     if (rmode >= 0) {
6181         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6182         gen_fpst(tcg_res, tcg_op, fpst);
6183         gen_restore_rmode(tcg_rmode, fpst);
6184     } else {
6185         gen_fpst(tcg_res, tcg_op, fpst);
6186     }
6187 
6188  done:
6189     write_fp_sreg(s, rd, tcg_res);
6190 }
6191 
6192 /* Floating-point data-processing (1 source) - double precision */
6193 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6194 {
6195     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6196     TCGv_i64 tcg_op, tcg_res;
6197     TCGv_ptr fpst;
6198     int rmode = -1;
6199 
6200     switch (opcode) {
6201     case 0x0: /* FMOV */
6202         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6203         return;
6204     }
6205 
6206     tcg_op = read_fp_dreg(s, rn);
6207     tcg_res = tcg_temp_new_i64();
6208 
6209     switch (opcode) {
6210     case 0x1: /* FABS */
6211         gen_helper_vfp_absd(tcg_res, tcg_op);
6212         goto done;
6213     case 0x2: /* FNEG */
6214         gen_helper_vfp_negd(tcg_res, tcg_op);
6215         goto done;
6216     case 0x3: /* FSQRT */
6217         gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6218         goto done;
6219     case 0x8: /* FRINTN */
6220     case 0x9: /* FRINTP */
6221     case 0xa: /* FRINTM */
6222     case 0xb: /* FRINTZ */
6223     case 0xc: /* FRINTA */
6224         rmode = opcode & 7;
6225         gen_fpst = gen_helper_rintd;
6226         break;
6227     case 0xe: /* FRINTX */
6228         gen_fpst = gen_helper_rintd_exact;
6229         break;
6230     case 0xf: /* FRINTI */
6231         gen_fpst = gen_helper_rintd;
6232         break;
6233     case 0x10: /* FRINT32Z */
6234         rmode = FPROUNDING_ZERO;
6235         gen_fpst = gen_helper_frint32_d;
6236         break;
6237     case 0x11: /* FRINT32X */
6238         gen_fpst = gen_helper_frint32_d;
6239         break;
6240     case 0x12: /* FRINT64Z */
6241         rmode = FPROUNDING_ZERO;
6242         gen_fpst = gen_helper_frint64_d;
6243         break;
6244     case 0x13: /* FRINT64X */
6245         gen_fpst = gen_helper_frint64_d;
6246         break;
6247     default:
6248         g_assert_not_reached();
6249     }
6250 
6251     fpst = fpstatus_ptr(FPST_FPCR);
6252     if (rmode >= 0) {
6253         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6254         gen_fpst(tcg_res, tcg_op, fpst);
6255         gen_restore_rmode(tcg_rmode, fpst);
6256     } else {
6257         gen_fpst(tcg_res, tcg_op, fpst);
6258     }
6259 
6260  done:
6261     write_fp_dreg(s, rd, tcg_res);
6262 }
6263 
6264 static void handle_fp_fcvt(DisasContext *s, int opcode,
6265                            int rd, int rn, int dtype, int ntype)
6266 {
6267     switch (ntype) {
6268     case 0x0:
6269     {
6270         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6271         if (dtype == 1) {
6272             /* Single to double */
6273             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6274             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6275             write_fp_dreg(s, rd, tcg_rd);
6276         } else {
6277             /* Single to half */
6278             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6279             TCGv_i32 ahp = get_ahp_flag();
6280             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6281 
6282             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6283             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6284             write_fp_sreg(s, rd, tcg_rd);
6285         }
6286         break;
6287     }
6288     case 0x1:
6289     {
6290         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6291         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6292         if (dtype == 0) {
6293             /* Double to single */
6294             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6295         } else {
6296             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6297             TCGv_i32 ahp = get_ahp_flag();
6298             /* Double to half */
6299             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6300             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6301         }
6302         write_fp_sreg(s, rd, tcg_rd);
6303         break;
6304     }
6305     case 0x3:
6306     {
6307         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6308         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6309         TCGv_i32 tcg_ahp = get_ahp_flag();
6310         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6311         if (dtype == 0) {
6312             /* Half to single */
6313             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6314             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6315             write_fp_sreg(s, rd, tcg_rd);
6316         } else {
6317             /* Half to double */
6318             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6319             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6320             write_fp_dreg(s, rd, tcg_rd);
6321         }
6322         break;
6323     }
6324     default:
6325         g_assert_not_reached();
6326     }
6327 }
6328 
6329 /* Floating point data-processing (1 source)
6330  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6331  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6332  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6333  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6334  */
6335 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6336 {
6337     int mos = extract32(insn, 29, 3);
6338     int type = extract32(insn, 22, 2);
6339     int opcode = extract32(insn, 15, 6);
6340     int rn = extract32(insn, 5, 5);
6341     int rd = extract32(insn, 0, 5);
6342 
6343     if (mos) {
6344         goto do_unallocated;
6345     }
6346 
6347     switch (opcode) {
6348     case 0x4: case 0x5: case 0x7:
6349     {
6350         /* FCVT between half, single and double precision */
6351         int dtype = extract32(opcode, 0, 2);
6352         if (type == 2 || dtype == type) {
6353             goto do_unallocated;
6354         }
6355         if (!fp_access_check(s)) {
6356             return;
6357         }
6358 
6359         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6360         break;
6361     }
6362 
6363     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6364         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6365             goto do_unallocated;
6366         }
6367         /* fall through */
6368     case 0x0 ... 0x3:
6369     case 0x8 ... 0xc:
6370     case 0xe ... 0xf:
6371         /* 32-to-32 and 64-to-64 ops */
6372         switch (type) {
6373         case 0:
6374             if (!fp_access_check(s)) {
6375                 return;
6376             }
6377             handle_fp_1src_single(s, opcode, rd, rn);
6378             break;
6379         case 1:
6380             if (!fp_access_check(s)) {
6381                 return;
6382             }
6383             handle_fp_1src_double(s, opcode, rd, rn);
6384             break;
6385         case 3:
6386             if (!dc_isar_feature(aa64_fp16, s)) {
6387                 goto do_unallocated;
6388             }
6389 
6390             if (!fp_access_check(s)) {
6391                 return;
6392             }
6393             handle_fp_1src_half(s, opcode, rd, rn);
6394             break;
6395         default:
6396             goto do_unallocated;
6397         }
6398         break;
6399 
6400     case 0x6:
6401         switch (type) {
6402         case 1: /* BFCVT */
6403             if (!dc_isar_feature(aa64_bf16, s)) {
6404                 goto do_unallocated;
6405             }
6406             if (!fp_access_check(s)) {
6407                 return;
6408             }
6409             handle_fp_1src_single(s, opcode, rd, rn);
6410             break;
6411         default:
6412             goto do_unallocated;
6413         }
6414         break;
6415 
6416     default:
6417     do_unallocated:
6418         unallocated_encoding(s);
6419         break;
6420     }
6421 }
6422 
6423 /* Floating-point data-processing (2 source) - single precision */
6424 static void handle_fp_2src_single(DisasContext *s, int opcode,
6425                                   int rd, int rn, int rm)
6426 {
6427     TCGv_i32 tcg_op1;
6428     TCGv_i32 tcg_op2;
6429     TCGv_i32 tcg_res;
6430     TCGv_ptr fpst;
6431 
6432     tcg_res = tcg_temp_new_i32();
6433     fpst = fpstatus_ptr(FPST_FPCR);
6434     tcg_op1 = read_fp_sreg(s, rn);
6435     tcg_op2 = read_fp_sreg(s, rm);
6436 
6437     switch (opcode) {
6438     case 0x0: /* FMUL */
6439         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6440         break;
6441     case 0x1: /* FDIV */
6442         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6443         break;
6444     case 0x2: /* FADD */
6445         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6446         break;
6447     case 0x3: /* FSUB */
6448         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6449         break;
6450     case 0x4: /* FMAX */
6451         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6452         break;
6453     case 0x5: /* FMIN */
6454         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6455         break;
6456     case 0x6: /* FMAXNM */
6457         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6458         break;
6459     case 0x7: /* FMINNM */
6460         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6461         break;
6462     case 0x8: /* FNMUL */
6463         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6464         gen_helper_vfp_negs(tcg_res, tcg_res);
6465         break;
6466     }
6467 
6468     write_fp_sreg(s, rd, tcg_res);
6469 }
6470 
6471 /* Floating-point data-processing (2 source) - double precision */
6472 static void handle_fp_2src_double(DisasContext *s, int opcode,
6473                                   int rd, int rn, int rm)
6474 {
6475     TCGv_i64 tcg_op1;
6476     TCGv_i64 tcg_op2;
6477     TCGv_i64 tcg_res;
6478     TCGv_ptr fpst;
6479 
6480     tcg_res = tcg_temp_new_i64();
6481     fpst = fpstatus_ptr(FPST_FPCR);
6482     tcg_op1 = read_fp_dreg(s, rn);
6483     tcg_op2 = read_fp_dreg(s, rm);
6484 
6485     switch (opcode) {
6486     case 0x0: /* FMUL */
6487         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6488         break;
6489     case 0x1: /* FDIV */
6490         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6491         break;
6492     case 0x2: /* FADD */
6493         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6494         break;
6495     case 0x3: /* FSUB */
6496         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6497         break;
6498     case 0x4: /* FMAX */
6499         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6500         break;
6501     case 0x5: /* FMIN */
6502         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6503         break;
6504     case 0x6: /* FMAXNM */
6505         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6506         break;
6507     case 0x7: /* FMINNM */
6508         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6509         break;
6510     case 0x8: /* FNMUL */
6511         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6512         gen_helper_vfp_negd(tcg_res, tcg_res);
6513         break;
6514     }
6515 
6516     write_fp_dreg(s, rd, tcg_res);
6517 }
6518 
6519 /* Floating-point data-processing (2 source) - half precision */
6520 static void handle_fp_2src_half(DisasContext *s, int opcode,
6521                                 int rd, int rn, int rm)
6522 {
6523     TCGv_i32 tcg_op1;
6524     TCGv_i32 tcg_op2;
6525     TCGv_i32 tcg_res;
6526     TCGv_ptr fpst;
6527 
6528     tcg_res = tcg_temp_new_i32();
6529     fpst = fpstatus_ptr(FPST_FPCR_F16);
6530     tcg_op1 = read_fp_hreg(s, rn);
6531     tcg_op2 = read_fp_hreg(s, rm);
6532 
6533     switch (opcode) {
6534     case 0x0: /* FMUL */
6535         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6536         break;
6537     case 0x1: /* FDIV */
6538         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6539         break;
6540     case 0x2: /* FADD */
6541         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6542         break;
6543     case 0x3: /* FSUB */
6544         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6545         break;
6546     case 0x4: /* FMAX */
6547         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6548         break;
6549     case 0x5: /* FMIN */
6550         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6551         break;
6552     case 0x6: /* FMAXNM */
6553         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6554         break;
6555     case 0x7: /* FMINNM */
6556         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6557         break;
6558     case 0x8: /* FNMUL */
6559         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6560         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6561         break;
6562     default:
6563         g_assert_not_reached();
6564     }
6565 
6566     write_fp_sreg(s, rd, tcg_res);
6567 }
6568 
6569 /* Floating point data-processing (2 source)
6570  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6571  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6572  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6573  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6574  */
6575 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6576 {
6577     int mos = extract32(insn, 29, 3);
6578     int type = extract32(insn, 22, 2);
6579     int rd = extract32(insn, 0, 5);
6580     int rn = extract32(insn, 5, 5);
6581     int rm = extract32(insn, 16, 5);
6582     int opcode = extract32(insn, 12, 4);
6583 
6584     if (opcode > 8 || mos) {
6585         unallocated_encoding(s);
6586         return;
6587     }
6588 
6589     switch (type) {
6590     case 0:
6591         if (!fp_access_check(s)) {
6592             return;
6593         }
6594         handle_fp_2src_single(s, opcode, rd, rn, rm);
6595         break;
6596     case 1:
6597         if (!fp_access_check(s)) {
6598             return;
6599         }
6600         handle_fp_2src_double(s, opcode, rd, rn, rm);
6601         break;
6602     case 3:
6603         if (!dc_isar_feature(aa64_fp16, s)) {
6604             unallocated_encoding(s);
6605             return;
6606         }
6607         if (!fp_access_check(s)) {
6608             return;
6609         }
6610         handle_fp_2src_half(s, opcode, rd, rn, rm);
6611         break;
6612     default:
6613         unallocated_encoding(s);
6614     }
6615 }
6616 
6617 /* Floating-point data-processing (3 source) - single precision */
6618 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6619                                   int rd, int rn, int rm, int ra)
6620 {
6621     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6622     TCGv_i32 tcg_res = tcg_temp_new_i32();
6623     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6624 
6625     tcg_op1 = read_fp_sreg(s, rn);
6626     tcg_op2 = read_fp_sreg(s, rm);
6627     tcg_op3 = read_fp_sreg(s, ra);
6628 
6629     /* These are fused multiply-add, and must be done as one
6630      * floating point operation with no rounding between the
6631      * multiplication and addition steps.
6632      * NB that doing the negations here as separate steps is
6633      * correct : an input NaN should come out with its sign bit
6634      * flipped if it is a negated-input.
6635      */
6636     if (o1 == true) {
6637         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6638     }
6639 
6640     if (o0 != o1) {
6641         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6642     }
6643 
6644     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6645 
6646     write_fp_sreg(s, rd, tcg_res);
6647 }
6648 
6649 /* Floating-point data-processing (3 source) - double precision */
6650 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6651                                   int rd, int rn, int rm, int ra)
6652 {
6653     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6654     TCGv_i64 tcg_res = tcg_temp_new_i64();
6655     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6656 
6657     tcg_op1 = read_fp_dreg(s, rn);
6658     tcg_op2 = read_fp_dreg(s, rm);
6659     tcg_op3 = read_fp_dreg(s, ra);
6660 
6661     /* These are fused multiply-add, and must be done as one
6662      * floating point operation with no rounding between the
6663      * multiplication and addition steps.
6664      * NB that doing the negations here as separate steps is
6665      * correct : an input NaN should come out with its sign bit
6666      * flipped if it is a negated-input.
6667      */
6668     if (o1 == true) {
6669         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6670     }
6671 
6672     if (o0 != o1) {
6673         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6674     }
6675 
6676     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6677 
6678     write_fp_dreg(s, rd, tcg_res);
6679 }
6680 
6681 /* Floating-point data-processing (3 source) - half precision */
6682 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6683                                 int rd, int rn, int rm, int ra)
6684 {
6685     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6686     TCGv_i32 tcg_res = tcg_temp_new_i32();
6687     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6688 
6689     tcg_op1 = read_fp_hreg(s, rn);
6690     tcg_op2 = read_fp_hreg(s, rm);
6691     tcg_op3 = read_fp_hreg(s, ra);
6692 
6693     /* These are fused multiply-add, and must be done as one
6694      * floating point operation with no rounding between the
6695      * multiplication and addition steps.
6696      * NB that doing the negations here as separate steps is
6697      * correct : an input NaN should come out with its sign bit
6698      * flipped if it is a negated-input.
6699      */
6700     if (o1 == true) {
6701         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6702     }
6703 
6704     if (o0 != o1) {
6705         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6706     }
6707 
6708     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6709 
6710     write_fp_sreg(s, rd, tcg_res);
6711 }
6712 
6713 /* Floating point data-processing (3 source)
6714  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6715  * +---+---+---+-----------+------+----+------+----+------+------+------+
6716  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6717  * +---+---+---+-----------+------+----+------+----+------+------+------+
6718  */
6719 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6720 {
6721     int mos = extract32(insn, 29, 3);
6722     int type = extract32(insn, 22, 2);
6723     int rd = extract32(insn, 0, 5);
6724     int rn = extract32(insn, 5, 5);
6725     int ra = extract32(insn, 10, 5);
6726     int rm = extract32(insn, 16, 5);
6727     bool o0 = extract32(insn, 15, 1);
6728     bool o1 = extract32(insn, 21, 1);
6729 
6730     if (mos) {
6731         unallocated_encoding(s);
6732         return;
6733     }
6734 
6735     switch (type) {
6736     case 0:
6737         if (!fp_access_check(s)) {
6738             return;
6739         }
6740         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6741         break;
6742     case 1:
6743         if (!fp_access_check(s)) {
6744             return;
6745         }
6746         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6747         break;
6748     case 3:
6749         if (!dc_isar_feature(aa64_fp16, s)) {
6750             unallocated_encoding(s);
6751             return;
6752         }
6753         if (!fp_access_check(s)) {
6754             return;
6755         }
6756         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6757         break;
6758     default:
6759         unallocated_encoding(s);
6760     }
6761 }
6762 
6763 /* Floating point immediate
6764  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6765  * +---+---+---+-----------+------+---+------------+-------+------+------+
6766  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6767  * +---+---+---+-----------+------+---+------------+-------+------+------+
6768  */
6769 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6770 {
6771     int rd = extract32(insn, 0, 5);
6772     int imm5 = extract32(insn, 5, 5);
6773     int imm8 = extract32(insn, 13, 8);
6774     int type = extract32(insn, 22, 2);
6775     int mos = extract32(insn, 29, 3);
6776     uint64_t imm;
6777     MemOp sz;
6778 
6779     if (mos || imm5) {
6780         unallocated_encoding(s);
6781         return;
6782     }
6783 
6784     switch (type) {
6785     case 0:
6786         sz = MO_32;
6787         break;
6788     case 1:
6789         sz = MO_64;
6790         break;
6791     case 3:
6792         sz = MO_16;
6793         if (dc_isar_feature(aa64_fp16, s)) {
6794             break;
6795         }
6796         /* fallthru */
6797     default:
6798         unallocated_encoding(s);
6799         return;
6800     }
6801 
6802     if (!fp_access_check(s)) {
6803         return;
6804     }
6805 
6806     imm = vfp_expand_imm(sz, imm8);
6807     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6808 }
6809 
6810 /* Handle floating point <=> fixed point conversions. Note that we can
6811  * also deal with fp <=> integer conversions as a special case (scale == 64)
6812  * OPTME: consider handling that special case specially or at least skipping
6813  * the call to scalbn in the helpers for zero shifts.
6814  */
6815 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6816                            bool itof, int rmode, int scale, int sf, int type)
6817 {
6818     bool is_signed = !(opcode & 1);
6819     TCGv_ptr tcg_fpstatus;
6820     TCGv_i32 tcg_shift, tcg_single;
6821     TCGv_i64 tcg_double;
6822 
6823     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6824 
6825     tcg_shift = tcg_constant_i32(64 - scale);
6826 
6827     if (itof) {
6828         TCGv_i64 tcg_int = cpu_reg(s, rn);
6829         if (!sf) {
6830             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6831 
6832             if (is_signed) {
6833                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6834             } else {
6835                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6836             }
6837 
6838             tcg_int = tcg_extend;
6839         }
6840 
6841         switch (type) {
6842         case 1: /* float64 */
6843             tcg_double = tcg_temp_new_i64();
6844             if (is_signed) {
6845                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6846                                      tcg_shift, tcg_fpstatus);
6847             } else {
6848                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6849                                      tcg_shift, tcg_fpstatus);
6850             }
6851             write_fp_dreg(s, rd, tcg_double);
6852             break;
6853 
6854         case 0: /* float32 */
6855             tcg_single = tcg_temp_new_i32();
6856             if (is_signed) {
6857                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6858                                      tcg_shift, tcg_fpstatus);
6859             } else {
6860                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6861                                      tcg_shift, tcg_fpstatus);
6862             }
6863             write_fp_sreg(s, rd, tcg_single);
6864             break;
6865 
6866         case 3: /* float16 */
6867             tcg_single = tcg_temp_new_i32();
6868             if (is_signed) {
6869                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6870                                      tcg_shift, tcg_fpstatus);
6871             } else {
6872                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6873                                      tcg_shift, tcg_fpstatus);
6874             }
6875             write_fp_sreg(s, rd, tcg_single);
6876             break;
6877 
6878         default:
6879             g_assert_not_reached();
6880         }
6881     } else {
6882         TCGv_i64 tcg_int = cpu_reg(s, rd);
6883         TCGv_i32 tcg_rmode;
6884 
6885         if (extract32(opcode, 2, 1)) {
6886             /* There are too many rounding modes to all fit into rmode,
6887              * so FCVTA[US] is a special case.
6888              */
6889             rmode = FPROUNDING_TIEAWAY;
6890         }
6891 
6892         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6893 
6894         switch (type) {
6895         case 1: /* float64 */
6896             tcg_double = read_fp_dreg(s, rn);
6897             if (is_signed) {
6898                 if (!sf) {
6899                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6900                                          tcg_shift, tcg_fpstatus);
6901                 } else {
6902                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6903                                          tcg_shift, tcg_fpstatus);
6904                 }
6905             } else {
6906                 if (!sf) {
6907                     gen_helper_vfp_tould(tcg_int, tcg_double,
6908                                          tcg_shift, tcg_fpstatus);
6909                 } else {
6910                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6911                                          tcg_shift, tcg_fpstatus);
6912                 }
6913             }
6914             if (!sf) {
6915                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6916             }
6917             break;
6918 
6919         case 0: /* float32 */
6920             tcg_single = read_fp_sreg(s, rn);
6921             if (sf) {
6922                 if (is_signed) {
6923                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6924                                          tcg_shift, tcg_fpstatus);
6925                 } else {
6926                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6927                                          tcg_shift, tcg_fpstatus);
6928                 }
6929             } else {
6930                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6931                 if (is_signed) {
6932                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
6933                                          tcg_shift, tcg_fpstatus);
6934                 } else {
6935                     gen_helper_vfp_touls(tcg_dest, tcg_single,
6936                                          tcg_shift, tcg_fpstatus);
6937                 }
6938                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6939             }
6940             break;
6941 
6942         case 3: /* float16 */
6943             tcg_single = read_fp_sreg(s, rn);
6944             if (sf) {
6945                 if (is_signed) {
6946                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
6947                                          tcg_shift, tcg_fpstatus);
6948                 } else {
6949                     gen_helper_vfp_touqh(tcg_int, tcg_single,
6950                                          tcg_shift, tcg_fpstatus);
6951                 }
6952             } else {
6953                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6954                 if (is_signed) {
6955                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
6956                                          tcg_shift, tcg_fpstatus);
6957                 } else {
6958                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
6959                                          tcg_shift, tcg_fpstatus);
6960                 }
6961                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6962             }
6963             break;
6964 
6965         default:
6966             g_assert_not_reached();
6967         }
6968 
6969         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6970     }
6971 }
6972 
6973 /* Floating point <-> fixed point conversions
6974  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
6975  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6976  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
6977  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6978  */
6979 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6980 {
6981     int rd = extract32(insn, 0, 5);
6982     int rn = extract32(insn, 5, 5);
6983     int scale = extract32(insn, 10, 6);
6984     int opcode = extract32(insn, 16, 3);
6985     int rmode = extract32(insn, 19, 2);
6986     int type = extract32(insn, 22, 2);
6987     bool sbit = extract32(insn, 29, 1);
6988     bool sf = extract32(insn, 31, 1);
6989     bool itof;
6990 
6991     if (sbit || (!sf && scale < 32)) {
6992         unallocated_encoding(s);
6993         return;
6994     }
6995 
6996     switch (type) {
6997     case 0: /* float32 */
6998     case 1: /* float64 */
6999         break;
7000     case 3: /* float16 */
7001         if (dc_isar_feature(aa64_fp16, s)) {
7002             break;
7003         }
7004         /* fallthru */
7005     default:
7006         unallocated_encoding(s);
7007         return;
7008     }
7009 
7010     switch ((rmode << 3) | opcode) {
7011     case 0x2: /* SCVTF */
7012     case 0x3: /* UCVTF */
7013         itof = true;
7014         break;
7015     case 0x18: /* FCVTZS */
7016     case 0x19: /* FCVTZU */
7017         itof = false;
7018         break;
7019     default:
7020         unallocated_encoding(s);
7021         return;
7022     }
7023 
7024     if (!fp_access_check(s)) {
7025         return;
7026     }
7027 
7028     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7029 }
7030 
7031 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7032 {
7033     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7034      * without conversion.
7035      */
7036 
7037     if (itof) {
7038         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7039         TCGv_i64 tmp;
7040 
7041         switch (type) {
7042         case 0:
7043             /* 32 bit */
7044             tmp = tcg_temp_new_i64();
7045             tcg_gen_ext32u_i64(tmp, tcg_rn);
7046             write_fp_dreg(s, rd, tmp);
7047             break;
7048         case 1:
7049             /* 64 bit */
7050             write_fp_dreg(s, rd, tcg_rn);
7051             break;
7052         case 2:
7053             /* 64 bit to top half. */
7054             tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7055             clear_vec_high(s, true, rd);
7056             break;
7057         case 3:
7058             /* 16 bit */
7059             tmp = tcg_temp_new_i64();
7060             tcg_gen_ext16u_i64(tmp, tcg_rn);
7061             write_fp_dreg(s, rd, tmp);
7062             break;
7063         default:
7064             g_assert_not_reached();
7065         }
7066     } else {
7067         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7068 
7069         switch (type) {
7070         case 0:
7071             /* 32 bit */
7072             tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7073             break;
7074         case 1:
7075             /* 64 bit */
7076             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7077             break;
7078         case 2:
7079             /* 64 bits from top half */
7080             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7081             break;
7082         case 3:
7083             /* 16 bit */
7084             tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7085             break;
7086         default:
7087             g_assert_not_reached();
7088         }
7089     }
7090 }
7091 
7092 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7093 {
7094     TCGv_i64 t = read_fp_dreg(s, rn);
7095     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7096 
7097     gen_helper_fjcvtzs(t, t, fpstatus);
7098 
7099     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7100     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7101     tcg_gen_movi_i32(cpu_CF, 0);
7102     tcg_gen_movi_i32(cpu_NF, 0);
7103     tcg_gen_movi_i32(cpu_VF, 0);
7104 }
7105 
7106 /* Floating point <-> integer conversions
7107  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7108  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7109  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7110  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7111  */
7112 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7113 {
7114     int rd = extract32(insn, 0, 5);
7115     int rn = extract32(insn, 5, 5);
7116     int opcode = extract32(insn, 16, 3);
7117     int rmode = extract32(insn, 19, 2);
7118     int type = extract32(insn, 22, 2);
7119     bool sbit = extract32(insn, 29, 1);
7120     bool sf = extract32(insn, 31, 1);
7121     bool itof = false;
7122 
7123     if (sbit) {
7124         goto do_unallocated;
7125     }
7126 
7127     switch (opcode) {
7128     case 2: /* SCVTF */
7129     case 3: /* UCVTF */
7130         itof = true;
7131         /* fallthru */
7132     case 4: /* FCVTAS */
7133     case 5: /* FCVTAU */
7134         if (rmode != 0) {
7135             goto do_unallocated;
7136         }
7137         /* fallthru */
7138     case 0: /* FCVT[NPMZ]S */
7139     case 1: /* FCVT[NPMZ]U */
7140         switch (type) {
7141         case 0: /* float32 */
7142         case 1: /* float64 */
7143             break;
7144         case 3: /* float16 */
7145             if (!dc_isar_feature(aa64_fp16, s)) {
7146                 goto do_unallocated;
7147             }
7148             break;
7149         default:
7150             goto do_unallocated;
7151         }
7152         if (!fp_access_check(s)) {
7153             return;
7154         }
7155         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7156         break;
7157 
7158     default:
7159         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7160         case 0b01100110: /* FMOV half <-> 32-bit int */
7161         case 0b01100111:
7162         case 0b11100110: /* FMOV half <-> 64-bit int */
7163         case 0b11100111:
7164             if (!dc_isar_feature(aa64_fp16, s)) {
7165                 goto do_unallocated;
7166             }
7167             /* fallthru */
7168         case 0b00000110: /* FMOV 32-bit */
7169         case 0b00000111:
7170         case 0b10100110: /* FMOV 64-bit */
7171         case 0b10100111:
7172         case 0b11001110: /* FMOV top half of 128-bit */
7173         case 0b11001111:
7174             if (!fp_access_check(s)) {
7175                 return;
7176             }
7177             itof = opcode & 1;
7178             handle_fmov(s, rd, rn, type, itof);
7179             break;
7180 
7181         case 0b00111110: /* FJCVTZS */
7182             if (!dc_isar_feature(aa64_jscvt, s)) {
7183                 goto do_unallocated;
7184             } else if (fp_access_check(s)) {
7185                 handle_fjcvtzs(s, rd, rn);
7186             }
7187             break;
7188 
7189         default:
7190         do_unallocated:
7191             unallocated_encoding(s);
7192             return;
7193         }
7194         break;
7195     }
7196 }
7197 
7198 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7199  *   31  30  29 28     25 24                          0
7200  * +---+---+---+---------+-----------------------------+
7201  * |   | 0 |   | 1 1 1 1 |                             |
7202  * +---+---+---+---------+-----------------------------+
7203  */
7204 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7205 {
7206     if (extract32(insn, 24, 1)) {
7207         /* Floating point data-processing (3 source) */
7208         disas_fp_3src(s, insn);
7209     } else if (extract32(insn, 21, 1) == 0) {
7210         /* Floating point to fixed point conversions */
7211         disas_fp_fixed_conv(s, insn);
7212     } else {
7213         switch (extract32(insn, 10, 2)) {
7214         case 1:
7215             /* Floating point conditional compare */
7216             disas_fp_ccomp(s, insn);
7217             break;
7218         case 2:
7219             /* Floating point data-processing (2 source) */
7220             disas_fp_2src(s, insn);
7221             break;
7222         case 3:
7223             /* Floating point conditional select */
7224             disas_fp_csel(s, insn);
7225             break;
7226         case 0:
7227             switch (ctz32(extract32(insn, 12, 4))) {
7228             case 0: /* [15:12] == xxx1 */
7229                 /* Floating point immediate */
7230                 disas_fp_imm(s, insn);
7231                 break;
7232             case 1: /* [15:12] == xx10 */
7233                 /* Floating point compare */
7234                 disas_fp_compare(s, insn);
7235                 break;
7236             case 2: /* [15:12] == x100 */
7237                 /* Floating point data-processing (1 source) */
7238                 disas_fp_1src(s, insn);
7239                 break;
7240             case 3: /* [15:12] == 1000 */
7241                 unallocated_encoding(s);
7242                 break;
7243             default: /* [15:12] == 0000 */
7244                 /* Floating point <-> integer conversions */
7245                 disas_fp_int_conv(s, insn);
7246                 break;
7247             }
7248             break;
7249         }
7250     }
7251 }
7252 
7253 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7254                      int pos)
7255 {
7256     /* Extract 64 bits from the middle of two concatenated 64 bit
7257      * vector register slices left:right. The extracted bits start
7258      * at 'pos' bits into the right (least significant) side.
7259      * We return the result in tcg_right, and guarantee not to
7260      * trash tcg_left.
7261      */
7262     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7263     assert(pos > 0 && pos < 64);
7264 
7265     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7266     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7267     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7268 }
7269 
7270 /* EXT
7271  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7272  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7273  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7274  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7275  */
7276 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7277 {
7278     int is_q = extract32(insn, 30, 1);
7279     int op2 = extract32(insn, 22, 2);
7280     int imm4 = extract32(insn, 11, 4);
7281     int rm = extract32(insn, 16, 5);
7282     int rn = extract32(insn, 5, 5);
7283     int rd = extract32(insn, 0, 5);
7284     int pos = imm4 << 3;
7285     TCGv_i64 tcg_resl, tcg_resh;
7286 
7287     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7288         unallocated_encoding(s);
7289         return;
7290     }
7291 
7292     if (!fp_access_check(s)) {
7293         return;
7294     }
7295 
7296     tcg_resh = tcg_temp_new_i64();
7297     tcg_resl = tcg_temp_new_i64();
7298 
7299     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7300      * either extracting 128 bits from a 128:128 concatenation, or
7301      * extracting 64 bits from a 64:64 concatenation.
7302      */
7303     if (!is_q) {
7304         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7305         if (pos != 0) {
7306             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7307             do_ext64(s, tcg_resh, tcg_resl, pos);
7308         }
7309     } else {
7310         TCGv_i64 tcg_hh;
7311         typedef struct {
7312             int reg;
7313             int elt;
7314         } EltPosns;
7315         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7316         EltPosns *elt = eltposns;
7317 
7318         if (pos >= 64) {
7319             elt++;
7320             pos -= 64;
7321         }
7322 
7323         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7324         elt++;
7325         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7326         elt++;
7327         if (pos != 0) {
7328             do_ext64(s, tcg_resh, tcg_resl, pos);
7329             tcg_hh = tcg_temp_new_i64();
7330             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7331             do_ext64(s, tcg_hh, tcg_resh, pos);
7332         }
7333     }
7334 
7335     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7336     if (is_q) {
7337         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7338     }
7339     clear_vec_high(s, is_q, rd);
7340 }
7341 
7342 /* TBL/TBX
7343  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7344  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7345  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7346  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7347  */
7348 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7349 {
7350     int op2 = extract32(insn, 22, 2);
7351     int is_q = extract32(insn, 30, 1);
7352     int rm = extract32(insn, 16, 5);
7353     int rn = extract32(insn, 5, 5);
7354     int rd = extract32(insn, 0, 5);
7355     int is_tbx = extract32(insn, 12, 1);
7356     int len = (extract32(insn, 13, 2) + 1) * 16;
7357 
7358     if (op2 != 0) {
7359         unallocated_encoding(s);
7360         return;
7361     }
7362 
7363     if (!fp_access_check(s)) {
7364         return;
7365     }
7366 
7367     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7368                        vec_full_reg_offset(s, rm), cpu_env,
7369                        is_q ? 16 : 8, vec_full_reg_size(s),
7370                        (len << 6) | (is_tbx << 5) | rn,
7371                        gen_helper_simd_tblx);
7372 }
7373 
7374 /* ZIP/UZP/TRN
7375  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7376  * +---+---+-------------+------+---+------+---+------------------+------+
7377  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7378  * +---+---+-------------+------+---+------+---+------------------+------+
7379  */
7380 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7381 {
7382     int rd = extract32(insn, 0, 5);
7383     int rn = extract32(insn, 5, 5);
7384     int rm = extract32(insn, 16, 5);
7385     int size = extract32(insn, 22, 2);
7386     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7387      * bit 2 indicates 1 vs 2 variant of the insn.
7388      */
7389     int opcode = extract32(insn, 12, 2);
7390     bool part = extract32(insn, 14, 1);
7391     bool is_q = extract32(insn, 30, 1);
7392     int esize = 8 << size;
7393     int i;
7394     int datasize = is_q ? 128 : 64;
7395     int elements = datasize / esize;
7396     TCGv_i64 tcg_res[2], tcg_ele;
7397 
7398     if (opcode == 0 || (size == 3 && !is_q)) {
7399         unallocated_encoding(s);
7400         return;
7401     }
7402 
7403     if (!fp_access_check(s)) {
7404         return;
7405     }
7406 
7407     tcg_res[0] = tcg_temp_new_i64();
7408     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7409     tcg_ele = tcg_temp_new_i64();
7410 
7411     for (i = 0; i < elements; i++) {
7412         int o, w;
7413 
7414         switch (opcode) {
7415         case 1: /* UZP1/2 */
7416         {
7417             int midpoint = elements / 2;
7418             if (i < midpoint) {
7419                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7420             } else {
7421                 read_vec_element(s, tcg_ele, rm,
7422                                  2 * (i - midpoint) + part, size);
7423             }
7424             break;
7425         }
7426         case 2: /* TRN1/2 */
7427             if (i & 1) {
7428                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7429             } else {
7430                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7431             }
7432             break;
7433         case 3: /* ZIP1/2 */
7434         {
7435             int base = part * elements / 2;
7436             if (i & 1) {
7437                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7438             } else {
7439                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7440             }
7441             break;
7442         }
7443         default:
7444             g_assert_not_reached();
7445         }
7446 
7447         w = (i * esize) / 64;
7448         o = (i * esize) % 64;
7449         if (o == 0) {
7450             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7451         } else {
7452             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7453             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7454         }
7455     }
7456 
7457     for (i = 0; i <= is_q; ++i) {
7458         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7459     }
7460     clear_vec_high(s, is_q, rd);
7461 }
7462 
7463 /*
7464  * do_reduction_op helper
7465  *
7466  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7467  * important for correct NaN propagation that we do these
7468  * operations in exactly the order specified by the pseudocode.
7469  *
7470  * This is a recursive function, TCG temps should be freed by the
7471  * calling function once it is done with the values.
7472  */
7473 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7474                                 int esize, int size, int vmap, TCGv_ptr fpst)
7475 {
7476     if (esize == size) {
7477         int element;
7478         MemOp msize = esize == 16 ? MO_16 : MO_32;
7479         TCGv_i32 tcg_elem;
7480 
7481         /* We should have one register left here */
7482         assert(ctpop8(vmap) == 1);
7483         element = ctz32(vmap);
7484         assert(element < 8);
7485 
7486         tcg_elem = tcg_temp_new_i32();
7487         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7488         return tcg_elem;
7489     } else {
7490         int bits = size / 2;
7491         int shift = ctpop8(vmap) / 2;
7492         int vmap_lo = (vmap >> shift) & vmap;
7493         int vmap_hi = (vmap & ~vmap_lo);
7494         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7495 
7496         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7497         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7498         tcg_res = tcg_temp_new_i32();
7499 
7500         switch (fpopcode) {
7501         case 0x0c: /* fmaxnmv half-precision */
7502             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7503             break;
7504         case 0x0f: /* fmaxv half-precision */
7505             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7506             break;
7507         case 0x1c: /* fminnmv half-precision */
7508             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7509             break;
7510         case 0x1f: /* fminv half-precision */
7511             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7512             break;
7513         case 0x2c: /* fmaxnmv */
7514             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7515             break;
7516         case 0x2f: /* fmaxv */
7517             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7518             break;
7519         case 0x3c: /* fminnmv */
7520             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7521             break;
7522         case 0x3f: /* fminv */
7523             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7524             break;
7525         default:
7526             g_assert_not_reached();
7527         }
7528         return tcg_res;
7529     }
7530 }
7531 
7532 /* AdvSIMD across lanes
7533  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7534  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7535  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7536  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7537  */
7538 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7539 {
7540     int rd = extract32(insn, 0, 5);
7541     int rn = extract32(insn, 5, 5);
7542     int size = extract32(insn, 22, 2);
7543     int opcode = extract32(insn, 12, 5);
7544     bool is_q = extract32(insn, 30, 1);
7545     bool is_u = extract32(insn, 29, 1);
7546     bool is_fp = false;
7547     bool is_min = false;
7548     int esize;
7549     int elements;
7550     int i;
7551     TCGv_i64 tcg_res, tcg_elt;
7552 
7553     switch (opcode) {
7554     case 0x1b: /* ADDV */
7555         if (is_u) {
7556             unallocated_encoding(s);
7557             return;
7558         }
7559         /* fall through */
7560     case 0x3: /* SADDLV, UADDLV */
7561     case 0xa: /* SMAXV, UMAXV */
7562     case 0x1a: /* SMINV, UMINV */
7563         if (size == 3 || (size == 2 && !is_q)) {
7564             unallocated_encoding(s);
7565             return;
7566         }
7567         break;
7568     case 0xc: /* FMAXNMV, FMINNMV */
7569     case 0xf: /* FMAXV, FMINV */
7570         /* Bit 1 of size field encodes min vs max and the actual size
7571          * depends on the encoding of the U bit. If not set (and FP16
7572          * enabled) then we do half-precision float instead of single
7573          * precision.
7574          */
7575         is_min = extract32(size, 1, 1);
7576         is_fp = true;
7577         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7578             size = 1;
7579         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7580             unallocated_encoding(s);
7581             return;
7582         } else {
7583             size = 2;
7584         }
7585         break;
7586     default:
7587         unallocated_encoding(s);
7588         return;
7589     }
7590 
7591     if (!fp_access_check(s)) {
7592         return;
7593     }
7594 
7595     esize = 8 << size;
7596     elements = (is_q ? 128 : 64) / esize;
7597 
7598     tcg_res = tcg_temp_new_i64();
7599     tcg_elt = tcg_temp_new_i64();
7600 
7601     /* These instructions operate across all lanes of a vector
7602      * to produce a single result. We can guarantee that a 64
7603      * bit intermediate is sufficient:
7604      *  + for [US]ADDLV the maximum element size is 32 bits, and
7605      *    the result type is 64 bits
7606      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7607      *    same as the element size, which is 32 bits at most
7608      * For the integer operations we can choose to work at 64
7609      * or 32 bits and truncate at the end; for simplicity
7610      * we use 64 bits always. The floating point
7611      * ops do require 32 bit intermediates, though.
7612      */
7613     if (!is_fp) {
7614         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7615 
7616         for (i = 1; i < elements; i++) {
7617             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7618 
7619             switch (opcode) {
7620             case 0x03: /* SADDLV / UADDLV */
7621             case 0x1b: /* ADDV */
7622                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7623                 break;
7624             case 0x0a: /* SMAXV / UMAXV */
7625                 if (is_u) {
7626                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7627                 } else {
7628                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7629                 }
7630                 break;
7631             case 0x1a: /* SMINV / UMINV */
7632                 if (is_u) {
7633                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7634                 } else {
7635                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7636                 }
7637                 break;
7638             default:
7639                 g_assert_not_reached();
7640             }
7641 
7642         }
7643     } else {
7644         /* Floating point vector reduction ops which work across 32
7645          * bit (single) or 16 bit (half-precision) intermediates.
7646          * Note that correct NaN propagation requires that we do these
7647          * operations in exactly the order specified by the pseudocode.
7648          */
7649         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7650         int fpopcode = opcode | is_min << 4 | is_u << 5;
7651         int vmap = (1 << elements) - 1;
7652         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7653                                              (is_q ? 128 : 64), vmap, fpst);
7654         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7655     }
7656 
7657     /* Now truncate the result to the width required for the final output */
7658     if (opcode == 0x03) {
7659         /* SADDLV, UADDLV: result is 2*esize */
7660         size++;
7661     }
7662 
7663     switch (size) {
7664     case 0:
7665         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7666         break;
7667     case 1:
7668         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7669         break;
7670     case 2:
7671         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7672         break;
7673     case 3:
7674         break;
7675     default:
7676         g_assert_not_reached();
7677     }
7678 
7679     write_fp_dreg(s, rd, tcg_res);
7680 }
7681 
7682 /* DUP (Element, Vector)
7683  *
7684  *  31  30   29              21 20    16 15        10  9    5 4    0
7685  * +---+---+-------------------+--------+-------------+------+------+
7686  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7687  * +---+---+-------------------+--------+-------------+------+------+
7688  *
7689  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7690  */
7691 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7692                              int imm5)
7693 {
7694     int size = ctz32(imm5);
7695     int index;
7696 
7697     if (size > 3 || (size == 3 && !is_q)) {
7698         unallocated_encoding(s);
7699         return;
7700     }
7701 
7702     if (!fp_access_check(s)) {
7703         return;
7704     }
7705 
7706     index = imm5 >> (size + 1);
7707     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7708                          vec_reg_offset(s, rn, index, size),
7709                          is_q ? 16 : 8, vec_full_reg_size(s));
7710 }
7711 
7712 /* DUP (element, scalar)
7713  *  31                   21 20    16 15        10  9    5 4    0
7714  * +-----------------------+--------+-------------+------+------+
7715  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7716  * +-----------------------+--------+-------------+------+------+
7717  */
7718 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7719                               int imm5)
7720 {
7721     int size = ctz32(imm5);
7722     int index;
7723     TCGv_i64 tmp;
7724 
7725     if (size > 3) {
7726         unallocated_encoding(s);
7727         return;
7728     }
7729 
7730     if (!fp_access_check(s)) {
7731         return;
7732     }
7733 
7734     index = imm5 >> (size + 1);
7735 
7736     /* This instruction just extracts the specified element and
7737      * zero-extends it into the bottom of the destination register.
7738      */
7739     tmp = tcg_temp_new_i64();
7740     read_vec_element(s, tmp, rn, index, size);
7741     write_fp_dreg(s, rd, tmp);
7742 }
7743 
7744 /* DUP (General)
7745  *
7746  *  31  30   29              21 20    16 15        10  9    5 4    0
7747  * +---+---+-------------------+--------+-------------+------+------+
7748  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7749  * +---+---+-------------------+--------+-------------+------+------+
7750  *
7751  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7752  */
7753 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7754                              int imm5)
7755 {
7756     int size = ctz32(imm5);
7757     uint32_t dofs, oprsz, maxsz;
7758 
7759     if (size > 3 || ((size == 3) && !is_q)) {
7760         unallocated_encoding(s);
7761         return;
7762     }
7763 
7764     if (!fp_access_check(s)) {
7765         return;
7766     }
7767 
7768     dofs = vec_full_reg_offset(s, rd);
7769     oprsz = is_q ? 16 : 8;
7770     maxsz = vec_full_reg_size(s);
7771 
7772     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7773 }
7774 
7775 /* INS (Element)
7776  *
7777  *  31                   21 20    16 15  14    11  10 9    5 4    0
7778  * +-----------------------+--------+------------+---+------+------+
7779  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7780  * +-----------------------+--------+------------+---+------+------+
7781  *
7782  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7783  * index: encoded in imm5<4:size+1>
7784  */
7785 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7786                              int imm4, int imm5)
7787 {
7788     int size = ctz32(imm5);
7789     int src_index, dst_index;
7790     TCGv_i64 tmp;
7791 
7792     if (size > 3) {
7793         unallocated_encoding(s);
7794         return;
7795     }
7796 
7797     if (!fp_access_check(s)) {
7798         return;
7799     }
7800 
7801     dst_index = extract32(imm5, 1+size, 5);
7802     src_index = extract32(imm4, size, 4);
7803 
7804     tmp = tcg_temp_new_i64();
7805 
7806     read_vec_element(s, tmp, rn, src_index, size);
7807     write_vec_element(s, tmp, rd, dst_index, size);
7808 
7809     /* INS is considered a 128-bit write for SVE. */
7810     clear_vec_high(s, true, rd);
7811 }
7812 
7813 
7814 /* INS (General)
7815  *
7816  *  31                   21 20    16 15        10  9    5 4    0
7817  * +-----------------------+--------+-------------+------+------+
7818  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7819  * +-----------------------+--------+-------------+------+------+
7820  *
7821  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7822  * index: encoded in imm5<4:size+1>
7823  */
7824 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7825 {
7826     int size = ctz32(imm5);
7827     int idx;
7828 
7829     if (size > 3) {
7830         unallocated_encoding(s);
7831         return;
7832     }
7833 
7834     if (!fp_access_check(s)) {
7835         return;
7836     }
7837 
7838     idx = extract32(imm5, 1 + size, 4 - size);
7839     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7840 
7841     /* INS is considered a 128-bit write for SVE. */
7842     clear_vec_high(s, true, rd);
7843 }
7844 
7845 /*
7846  * UMOV (General)
7847  * SMOV (General)
7848  *
7849  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7850  * +---+---+-------------------+--------+-------------+------+------+
7851  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7852  * +---+---+-------------------+--------+-------------+------+------+
7853  *
7854  * U: unsigned when set
7855  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7856  */
7857 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7858                                   int rn, int rd, int imm5)
7859 {
7860     int size = ctz32(imm5);
7861     int element;
7862     TCGv_i64 tcg_rd;
7863 
7864     /* Check for UnallocatedEncodings */
7865     if (is_signed) {
7866         if (size > 2 || (size == 2 && !is_q)) {
7867             unallocated_encoding(s);
7868             return;
7869         }
7870     } else {
7871         if (size > 3
7872             || (size < 3 && is_q)
7873             || (size == 3 && !is_q)) {
7874             unallocated_encoding(s);
7875             return;
7876         }
7877     }
7878 
7879     if (!fp_access_check(s)) {
7880         return;
7881     }
7882 
7883     element = extract32(imm5, 1+size, 4);
7884 
7885     tcg_rd = cpu_reg(s, rd);
7886     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7887     if (is_signed && !is_q) {
7888         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7889     }
7890 }
7891 
7892 /* AdvSIMD copy
7893  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7894  * +---+---+----+-----------------+------+---+------+---+------+------+
7895  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7896  * +---+---+----+-----------------+------+---+------+---+------+------+
7897  */
7898 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7899 {
7900     int rd = extract32(insn, 0, 5);
7901     int rn = extract32(insn, 5, 5);
7902     int imm4 = extract32(insn, 11, 4);
7903     int op = extract32(insn, 29, 1);
7904     int is_q = extract32(insn, 30, 1);
7905     int imm5 = extract32(insn, 16, 5);
7906 
7907     if (op) {
7908         if (is_q) {
7909             /* INS (element) */
7910             handle_simd_inse(s, rd, rn, imm4, imm5);
7911         } else {
7912             unallocated_encoding(s);
7913         }
7914     } else {
7915         switch (imm4) {
7916         case 0:
7917             /* DUP (element - vector) */
7918             handle_simd_dupe(s, is_q, rd, rn, imm5);
7919             break;
7920         case 1:
7921             /* DUP (general) */
7922             handle_simd_dupg(s, is_q, rd, rn, imm5);
7923             break;
7924         case 3:
7925             if (is_q) {
7926                 /* INS (general) */
7927                 handle_simd_insg(s, rd, rn, imm5);
7928             } else {
7929                 unallocated_encoding(s);
7930             }
7931             break;
7932         case 5:
7933         case 7:
7934             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7935             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7936             break;
7937         default:
7938             unallocated_encoding(s);
7939             break;
7940         }
7941     }
7942 }
7943 
7944 /* AdvSIMD modified immediate
7945  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7946  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7947  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7948  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7949  *
7950  * There are a number of operations that can be carried out here:
7951  *   MOVI - move (shifted) imm into register
7952  *   MVNI - move inverted (shifted) imm into register
7953  *   ORR  - bitwise OR of (shifted) imm with register
7954  *   BIC  - bitwise clear of (shifted) imm with register
7955  * With ARMv8.2 we also have:
7956  *   FMOV half-precision
7957  */
7958 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7959 {
7960     int rd = extract32(insn, 0, 5);
7961     int cmode = extract32(insn, 12, 4);
7962     int o2 = extract32(insn, 11, 1);
7963     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7964     bool is_neg = extract32(insn, 29, 1);
7965     bool is_q = extract32(insn, 30, 1);
7966     uint64_t imm = 0;
7967 
7968     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7969         /* Check for FMOV (vector, immediate) - half-precision */
7970         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7971             unallocated_encoding(s);
7972             return;
7973         }
7974     }
7975 
7976     if (!fp_access_check(s)) {
7977         return;
7978     }
7979 
7980     if (cmode == 15 && o2 && !is_neg) {
7981         /* FMOV (vector, immediate) - half-precision */
7982         imm = vfp_expand_imm(MO_16, abcdefgh);
7983         /* now duplicate across the lanes */
7984         imm = dup_const(MO_16, imm);
7985     } else {
7986         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7987     }
7988 
7989     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7990         /* MOVI or MVNI, with MVNI negation handled above.  */
7991         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7992                              vec_full_reg_size(s), imm);
7993     } else {
7994         /* ORR or BIC, with BIC negation to AND handled above.  */
7995         if (is_neg) {
7996             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7997         } else {
7998             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7999         }
8000     }
8001 }
8002 
8003 /* AdvSIMD scalar copy
8004  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
8005  * +-----+----+-----------------+------+---+------+---+------+------+
8006  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
8007  * +-----+----+-----------------+------+---+------+---+------+------+
8008  */
8009 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8010 {
8011     int rd = extract32(insn, 0, 5);
8012     int rn = extract32(insn, 5, 5);
8013     int imm4 = extract32(insn, 11, 4);
8014     int imm5 = extract32(insn, 16, 5);
8015     int op = extract32(insn, 29, 1);
8016 
8017     if (op != 0 || imm4 != 0) {
8018         unallocated_encoding(s);
8019         return;
8020     }
8021 
8022     /* DUP (element, scalar) */
8023     handle_simd_dupes(s, rd, rn, imm5);
8024 }
8025 
8026 /* AdvSIMD scalar pairwise
8027  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8028  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8029  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8030  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8031  */
8032 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8033 {
8034     int u = extract32(insn, 29, 1);
8035     int size = extract32(insn, 22, 2);
8036     int opcode = extract32(insn, 12, 5);
8037     int rn = extract32(insn, 5, 5);
8038     int rd = extract32(insn, 0, 5);
8039     TCGv_ptr fpst;
8040 
8041     /* For some ops (the FP ones), size[1] is part of the encoding.
8042      * For ADDP strictly it is not but size[1] is always 1 for valid
8043      * encodings.
8044      */
8045     opcode |= (extract32(size, 1, 1) << 5);
8046 
8047     switch (opcode) {
8048     case 0x3b: /* ADDP */
8049         if (u || size != 3) {
8050             unallocated_encoding(s);
8051             return;
8052         }
8053         if (!fp_access_check(s)) {
8054             return;
8055         }
8056 
8057         fpst = NULL;
8058         break;
8059     case 0xc: /* FMAXNMP */
8060     case 0xd: /* FADDP */
8061     case 0xf: /* FMAXP */
8062     case 0x2c: /* FMINNMP */
8063     case 0x2f: /* FMINP */
8064         /* FP op, size[0] is 32 or 64 bit*/
8065         if (!u) {
8066             if (!dc_isar_feature(aa64_fp16, s)) {
8067                 unallocated_encoding(s);
8068                 return;
8069             } else {
8070                 size = MO_16;
8071             }
8072         } else {
8073             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8074         }
8075 
8076         if (!fp_access_check(s)) {
8077             return;
8078         }
8079 
8080         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8081         break;
8082     default:
8083         unallocated_encoding(s);
8084         return;
8085     }
8086 
8087     if (size == MO_64) {
8088         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8089         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8090         TCGv_i64 tcg_res = tcg_temp_new_i64();
8091 
8092         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8093         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8094 
8095         switch (opcode) {
8096         case 0x3b: /* ADDP */
8097             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8098             break;
8099         case 0xc: /* FMAXNMP */
8100             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8101             break;
8102         case 0xd: /* FADDP */
8103             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8104             break;
8105         case 0xf: /* FMAXP */
8106             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8107             break;
8108         case 0x2c: /* FMINNMP */
8109             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8110             break;
8111         case 0x2f: /* FMINP */
8112             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8113             break;
8114         default:
8115             g_assert_not_reached();
8116         }
8117 
8118         write_fp_dreg(s, rd, tcg_res);
8119     } else {
8120         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8121         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8122         TCGv_i32 tcg_res = tcg_temp_new_i32();
8123 
8124         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8125         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8126 
8127         if (size == MO_16) {
8128             switch (opcode) {
8129             case 0xc: /* FMAXNMP */
8130                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8131                 break;
8132             case 0xd: /* FADDP */
8133                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8134                 break;
8135             case 0xf: /* FMAXP */
8136                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8137                 break;
8138             case 0x2c: /* FMINNMP */
8139                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8140                 break;
8141             case 0x2f: /* FMINP */
8142                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8143                 break;
8144             default:
8145                 g_assert_not_reached();
8146             }
8147         } else {
8148             switch (opcode) {
8149             case 0xc: /* FMAXNMP */
8150                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8151                 break;
8152             case 0xd: /* FADDP */
8153                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8154                 break;
8155             case 0xf: /* FMAXP */
8156                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8157                 break;
8158             case 0x2c: /* FMINNMP */
8159                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8160                 break;
8161             case 0x2f: /* FMINP */
8162                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8163                 break;
8164             default:
8165                 g_assert_not_reached();
8166             }
8167         }
8168 
8169         write_fp_sreg(s, rd, tcg_res);
8170     }
8171 }
8172 
8173 /*
8174  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8175  *
8176  * This code is handles the common shifting code and is used by both
8177  * the vector and scalar code.
8178  */
8179 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8180                                     TCGv_i64 tcg_rnd, bool accumulate,
8181                                     bool is_u, int size, int shift)
8182 {
8183     bool extended_result = false;
8184     bool round = tcg_rnd != NULL;
8185     int ext_lshift = 0;
8186     TCGv_i64 tcg_src_hi;
8187 
8188     if (round && size == 3) {
8189         extended_result = true;
8190         ext_lshift = 64 - shift;
8191         tcg_src_hi = tcg_temp_new_i64();
8192     } else if (shift == 64) {
8193         if (!accumulate && is_u) {
8194             /* result is zero */
8195             tcg_gen_movi_i64(tcg_res, 0);
8196             return;
8197         }
8198     }
8199 
8200     /* Deal with the rounding step */
8201     if (round) {
8202         if (extended_result) {
8203             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8204             if (!is_u) {
8205                 /* take care of sign extending tcg_res */
8206                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8207                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8208                                  tcg_src, tcg_src_hi,
8209                                  tcg_rnd, tcg_zero);
8210             } else {
8211                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8212                                  tcg_src, tcg_zero,
8213                                  tcg_rnd, tcg_zero);
8214             }
8215         } else {
8216             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8217         }
8218     }
8219 
8220     /* Now do the shift right */
8221     if (round && extended_result) {
8222         /* extended case, >64 bit precision required */
8223         if (ext_lshift == 0) {
8224             /* special case, only high bits matter */
8225             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8226         } else {
8227             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8228             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8229             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8230         }
8231     } else {
8232         if (is_u) {
8233             if (shift == 64) {
8234                 /* essentially shifting in 64 zeros */
8235                 tcg_gen_movi_i64(tcg_src, 0);
8236             } else {
8237                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8238             }
8239         } else {
8240             if (shift == 64) {
8241                 /* effectively extending the sign-bit */
8242                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8243             } else {
8244                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8245             }
8246         }
8247     }
8248 
8249     if (accumulate) {
8250         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8251     } else {
8252         tcg_gen_mov_i64(tcg_res, tcg_src);
8253     }
8254 }
8255 
8256 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8257 static void handle_scalar_simd_shri(DisasContext *s,
8258                                     bool is_u, int immh, int immb,
8259                                     int opcode, int rn, int rd)
8260 {
8261     const int size = 3;
8262     int immhb = immh << 3 | immb;
8263     int shift = 2 * (8 << size) - immhb;
8264     bool accumulate = false;
8265     bool round = false;
8266     bool insert = false;
8267     TCGv_i64 tcg_rn;
8268     TCGv_i64 tcg_rd;
8269     TCGv_i64 tcg_round;
8270 
8271     if (!extract32(immh, 3, 1)) {
8272         unallocated_encoding(s);
8273         return;
8274     }
8275 
8276     if (!fp_access_check(s)) {
8277         return;
8278     }
8279 
8280     switch (opcode) {
8281     case 0x02: /* SSRA / USRA (accumulate) */
8282         accumulate = true;
8283         break;
8284     case 0x04: /* SRSHR / URSHR (rounding) */
8285         round = true;
8286         break;
8287     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8288         accumulate = round = true;
8289         break;
8290     case 0x08: /* SRI */
8291         insert = true;
8292         break;
8293     }
8294 
8295     if (round) {
8296         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8297     } else {
8298         tcg_round = NULL;
8299     }
8300 
8301     tcg_rn = read_fp_dreg(s, rn);
8302     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8303 
8304     if (insert) {
8305         /* shift count same as element size is valid but does nothing;
8306          * special case to avoid potential shift by 64.
8307          */
8308         int esize = 8 << size;
8309         if (shift != esize) {
8310             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8311             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8312         }
8313     } else {
8314         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8315                                 accumulate, is_u, size, shift);
8316     }
8317 
8318     write_fp_dreg(s, rd, tcg_rd);
8319 }
8320 
8321 /* SHL/SLI - Scalar shift left */
8322 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8323                                     int immh, int immb, int opcode,
8324                                     int rn, int rd)
8325 {
8326     int size = 32 - clz32(immh) - 1;
8327     int immhb = immh << 3 | immb;
8328     int shift = immhb - (8 << size);
8329     TCGv_i64 tcg_rn;
8330     TCGv_i64 tcg_rd;
8331 
8332     if (!extract32(immh, 3, 1)) {
8333         unallocated_encoding(s);
8334         return;
8335     }
8336 
8337     if (!fp_access_check(s)) {
8338         return;
8339     }
8340 
8341     tcg_rn = read_fp_dreg(s, rn);
8342     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8343 
8344     if (insert) {
8345         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8346     } else {
8347         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8348     }
8349 
8350     write_fp_dreg(s, rd, tcg_rd);
8351 }
8352 
8353 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8354  * (signed/unsigned) narrowing */
8355 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8356                                    bool is_u_shift, bool is_u_narrow,
8357                                    int immh, int immb, int opcode,
8358                                    int rn, int rd)
8359 {
8360     int immhb = immh << 3 | immb;
8361     int size = 32 - clz32(immh) - 1;
8362     int esize = 8 << size;
8363     int shift = (2 * esize) - immhb;
8364     int elements = is_scalar ? 1 : (64 / esize);
8365     bool round = extract32(opcode, 0, 1);
8366     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8367     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8368     TCGv_i32 tcg_rd_narrowed;
8369     TCGv_i64 tcg_final;
8370 
8371     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8372         { gen_helper_neon_narrow_sat_s8,
8373           gen_helper_neon_unarrow_sat8 },
8374         { gen_helper_neon_narrow_sat_s16,
8375           gen_helper_neon_unarrow_sat16 },
8376         { gen_helper_neon_narrow_sat_s32,
8377           gen_helper_neon_unarrow_sat32 },
8378         { NULL, NULL },
8379     };
8380     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8381         gen_helper_neon_narrow_sat_u8,
8382         gen_helper_neon_narrow_sat_u16,
8383         gen_helper_neon_narrow_sat_u32,
8384         NULL
8385     };
8386     NeonGenNarrowEnvFn *narrowfn;
8387 
8388     int i;
8389 
8390     assert(size < 4);
8391 
8392     if (extract32(immh, 3, 1)) {
8393         unallocated_encoding(s);
8394         return;
8395     }
8396 
8397     if (!fp_access_check(s)) {
8398         return;
8399     }
8400 
8401     if (is_u_shift) {
8402         narrowfn = unsigned_narrow_fns[size];
8403     } else {
8404         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8405     }
8406 
8407     tcg_rn = tcg_temp_new_i64();
8408     tcg_rd = tcg_temp_new_i64();
8409     tcg_rd_narrowed = tcg_temp_new_i32();
8410     tcg_final = tcg_temp_new_i64();
8411 
8412     if (round) {
8413         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8414     } else {
8415         tcg_round = NULL;
8416     }
8417 
8418     for (i = 0; i < elements; i++) {
8419         read_vec_element(s, tcg_rn, rn, i, ldop);
8420         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8421                                 false, is_u_shift, size+1, shift);
8422         narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8423         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8424         if (i == 0) {
8425             tcg_gen_mov_i64(tcg_final, tcg_rd);
8426         } else {
8427             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8428         }
8429     }
8430 
8431     if (!is_q) {
8432         write_vec_element(s, tcg_final, rd, 0, MO_64);
8433     } else {
8434         write_vec_element(s, tcg_final, rd, 1, MO_64);
8435     }
8436     clear_vec_high(s, is_q, rd);
8437 }
8438 
8439 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8440 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8441                              bool src_unsigned, bool dst_unsigned,
8442                              int immh, int immb, int rn, int rd)
8443 {
8444     int immhb = immh << 3 | immb;
8445     int size = 32 - clz32(immh) - 1;
8446     int shift = immhb - (8 << size);
8447     int pass;
8448 
8449     assert(immh != 0);
8450     assert(!(scalar && is_q));
8451 
8452     if (!scalar) {
8453         if (!is_q && extract32(immh, 3, 1)) {
8454             unallocated_encoding(s);
8455             return;
8456         }
8457 
8458         /* Since we use the variable-shift helpers we must
8459          * replicate the shift count into each element of
8460          * the tcg_shift value.
8461          */
8462         switch (size) {
8463         case 0:
8464             shift |= shift << 8;
8465             /* fall through */
8466         case 1:
8467             shift |= shift << 16;
8468             break;
8469         case 2:
8470         case 3:
8471             break;
8472         default:
8473             g_assert_not_reached();
8474         }
8475     }
8476 
8477     if (!fp_access_check(s)) {
8478         return;
8479     }
8480 
8481     if (size == 3) {
8482         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8483         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8484             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8485             { NULL, gen_helper_neon_qshl_u64 },
8486         };
8487         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8488         int maxpass = is_q ? 2 : 1;
8489 
8490         for (pass = 0; pass < maxpass; pass++) {
8491             TCGv_i64 tcg_op = tcg_temp_new_i64();
8492 
8493             read_vec_element(s, tcg_op, rn, pass, MO_64);
8494             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8495             write_vec_element(s, tcg_op, rd, pass, MO_64);
8496         }
8497         clear_vec_high(s, is_q, rd);
8498     } else {
8499         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8500         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8501             {
8502                 { gen_helper_neon_qshl_s8,
8503                   gen_helper_neon_qshl_s16,
8504                   gen_helper_neon_qshl_s32 },
8505                 { gen_helper_neon_qshlu_s8,
8506                   gen_helper_neon_qshlu_s16,
8507                   gen_helper_neon_qshlu_s32 }
8508             }, {
8509                 { NULL, NULL, NULL },
8510                 { gen_helper_neon_qshl_u8,
8511                   gen_helper_neon_qshl_u16,
8512                   gen_helper_neon_qshl_u32 }
8513             }
8514         };
8515         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8516         MemOp memop = scalar ? size : MO_32;
8517         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8518 
8519         for (pass = 0; pass < maxpass; pass++) {
8520             TCGv_i32 tcg_op = tcg_temp_new_i32();
8521 
8522             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8523             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8524             if (scalar) {
8525                 switch (size) {
8526                 case 0:
8527                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8528                     break;
8529                 case 1:
8530                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8531                     break;
8532                 case 2:
8533                     break;
8534                 default:
8535                     g_assert_not_reached();
8536                 }
8537                 write_fp_sreg(s, rd, tcg_op);
8538             } else {
8539                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8540             }
8541         }
8542 
8543         if (!scalar) {
8544             clear_vec_high(s, is_q, rd);
8545         }
8546     }
8547 }
8548 
8549 /* Common vector code for handling integer to FP conversion */
8550 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8551                                    int elements, int is_signed,
8552                                    int fracbits, int size)
8553 {
8554     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8555     TCGv_i32 tcg_shift = NULL;
8556 
8557     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8558     int pass;
8559 
8560     if (fracbits || size == MO_64) {
8561         tcg_shift = tcg_constant_i32(fracbits);
8562     }
8563 
8564     if (size == MO_64) {
8565         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8566         TCGv_i64 tcg_double = tcg_temp_new_i64();
8567 
8568         for (pass = 0; pass < elements; pass++) {
8569             read_vec_element(s, tcg_int64, rn, pass, mop);
8570 
8571             if (is_signed) {
8572                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8573                                      tcg_shift, tcg_fpst);
8574             } else {
8575                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8576                                      tcg_shift, tcg_fpst);
8577             }
8578             if (elements == 1) {
8579                 write_fp_dreg(s, rd, tcg_double);
8580             } else {
8581                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8582             }
8583         }
8584     } else {
8585         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8586         TCGv_i32 tcg_float = tcg_temp_new_i32();
8587 
8588         for (pass = 0; pass < elements; pass++) {
8589             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8590 
8591             switch (size) {
8592             case MO_32:
8593                 if (fracbits) {
8594                     if (is_signed) {
8595                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8596                                              tcg_shift, tcg_fpst);
8597                     } else {
8598                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8599                                              tcg_shift, tcg_fpst);
8600                     }
8601                 } else {
8602                     if (is_signed) {
8603                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8604                     } else {
8605                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8606                     }
8607                 }
8608                 break;
8609             case MO_16:
8610                 if (fracbits) {
8611                     if (is_signed) {
8612                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8613                                              tcg_shift, tcg_fpst);
8614                     } else {
8615                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8616                                              tcg_shift, tcg_fpst);
8617                     }
8618                 } else {
8619                     if (is_signed) {
8620                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8621                     } else {
8622                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8623                     }
8624                 }
8625                 break;
8626             default:
8627                 g_assert_not_reached();
8628             }
8629 
8630             if (elements == 1) {
8631                 write_fp_sreg(s, rd, tcg_float);
8632             } else {
8633                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8634             }
8635         }
8636     }
8637 
8638     clear_vec_high(s, elements << size == 16, rd);
8639 }
8640 
8641 /* UCVTF/SCVTF - Integer to FP conversion */
8642 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8643                                          bool is_q, bool is_u,
8644                                          int immh, int immb, int opcode,
8645                                          int rn, int rd)
8646 {
8647     int size, elements, fracbits;
8648     int immhb = immh << 3 | immb;
8649 
8650     if (immh & 8) {
8651         size = MO_64;
8652         if (!is_scalar && !is_q) {
8653             unallocated_encoding(s);
8654             return;
8655         }
8656     } else if (immh & 4) {
8657         size = MO_32;
8658     } else if (immh & 2) {
8659         size = MO_16;
8660         if (!dc_isar_feature(aa64_fp16, s)) {
8661             unallocated_encoding(s);
8662             return;
8663         }
8664     } else {
8665         /* immh == 0 would be a failure of the decode logic */
8666         g_assert(immh == 1);
8667         unallocated_encoding(s);
8668         return;
8669     }
8670 
8671     if (is_scalar) {
8672         elements = 1;
8673     } else {
8674         elements = (8 << is_q) >> size;
8675     }
8676     fracbits = (16 << size) - immhb;
8677 
8678     if (!fp_access_check(s)) {
8679         return;
8680     }
8681 
8682     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8683 }
8684 
8685 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8686 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8687                                          bool is_q, bool is_u,
8688                                          int immh, int immb, int rn, int rd)
8689 {
8690     int immhb = immh << 3 | immb;
8691     int pass, size, fracbits;
8692     TCGv_ptr tcg_fpstatus;
8693     TCGv_i32 tcg_rmode, tcg_shift;
8694 
8695     if (immh & 0x8) {
8696         size = MO_64;
8697         if (!is_scalar && !is_q) {
8698             unallocated_encoding(s);
8699             return;
8700         }
8701     } else if (immh & 0x4) {
8702         size = MO_32;
8703     } else if (immh & 0x2) {
8704         size = MO_16;
8705         if (!dc_isar_feature(aa64_fp16, s)) {
8706             unallocated_encoding(s);
8707             return;
8708         }
8709     } else {
8710         /* Should have split out AdvSIMD modified immediate earlier.  */
8711         assert(immh == 1);
8712         unallocated_encoding(s);
8713         return;
8714     }
8715 
8716     if (!fp_access_check(s)) {
8717         return;
8718     }
8719 
8720     assert(!(is_scalar && is_q));
8721 
8722     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8723     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8724     fracbits = (16 << size) - immhb;
8725     tcg_shift = tcg_constant_i32(fracbits);
8726 
8727     if (size == MO_64) {
8728         int maxpass = is_scalar ? 1 : 2;
8729 
8730         for (pass = 0; pass < maxpass; pass++) {
8731             TCGv_i64 tcg_op = tcg_temp_new_i64();
8732 
8733             read_vec_element(s, tcg_op, rn, pass, MO_64);
8734             if (is_u) {
8735                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8736             } else {
8737                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8738             }
8739             write_vec_element(s, tcg_op, rd, pass, MO_64);
8740         }
8741         clear_vec_high(s, is_q, rd);
8742     } else {
8743         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8744         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8745 
8746         switch (size) {
8747         case MO_16:
8748             if (is_u) {
8749                 fn = gen_helper_vfp_touhh;
8750             } else {
8751                 fn = gen_helper_vfp_toshh;
8752             }
8753             break;
8754         case MO_32:
8755             if (is_u) {
8756                 fn = gen_helper_vfp_touls;
8757             } else {
8758                 fn = gen_helper_vfp_tosls;
8759             }
8760             break;
8761         default:
8762             g_assert_not_reached();
8763         }
8764 
8765         for (pass = 0; pass < maxpass; pass++) {
8766             TCGv_i32 tcg_op = tcg_temp_new_i32();
8767 
8768             read_vec_element_i32(s, tcg_op, rn, pass, size);
8769             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8770             if (is_scalar) {
8771                 write_fp_sreg(s, rd, tcg_op);
8772             } else {
8773                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8774             }
8775         }
8776         if (!is_scalar) {
8777             clear_vec_high(s, is_q, rd);
8778         }
8779     }
8780 
8781     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8782 }
8783 
8784 /* AdvSIMD scalar shift by immediate
8785  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8786  * +-----+---+-------------+------+------+--------+---+------+------+
8787  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8788  * +-----+---+-------------+------+------+--------+---+------+------+
8789  *
8790  * This is the scalar version so it works on a fixed sized registers
8791  */
8792 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8793 {
8794     int rd = extract32(insn, 0, 5);
8795     int rn = extract32(insn, 5, 5);
8796     int opcode = extract32(insn, 11, 5);
8797     int immb = extract32(insn, 16, 3);
8798     int immh = extract32(insn, 19, 4);
8799     bool is_u = extract32(insn, 29, 1);
8800 
8801     if (immh == 0) {
8802         unallocated_encoding(s);
8803         return;
8804     }
8805 
8806     switch (opcode) {
8807     case 0x08: /* SRI */
8808         if (!is_u) {
8809             unallocated_encoding(s);
8810             return;
8811         }
8812         /* fall through */
8813     case 0x00: /* SSHR / USHR */
8814     case 0x02: /* SSRA / USRA */
8815     case 0x04: /* SRSHR / URSHR */
8816     case 0x06: /* SRSRA / URSRA */
8817         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8818         break;
8819     case 0x0a: /* SHL / SLI */
8820         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8821         break;
8822     case 0x1c: /* SCVTF, UCVTF */
8823         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8824                                      opcode, rn, rd);
8825         break;
8826     case 0x10: /* SQSHRUN, SQSHRUN2 */
8827     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8828         if (!is_u) {
8829             unallocated_encoding(s);
8830             return;
8831         }
8832         handle_vec_simd_sqshrn(s, true, false, false, true,
8833                                immh, immb, opcode, rn, rd);
8834         break;
8835     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8836     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8837         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8838                                immh, immb, opcode, rn, rd);
8839         break;
8840     case 0xc: /* SQSHLU */
8841         if (!is_u) {
8842             unallocated_encoding(s);
8843             return;
8844         }
8845         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8846         break;
8847     case 0xe: /* SQSHL, UQSHL */
8848         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8849         break;
8850     case 0x1f: /* FCVTZS, FCVTZU */
8851         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8852         break;
8853     default:
8854         unallocated_encoding(s);
8855         break;
8856     }
8857 }
8858 
8859 /* AdvSIMD scalar three different
8860  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8861  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8862  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8863  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8864  */
8865 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8866 {
8867     bool is_u = extract32(insn, 29, 1);
8868     int size = extract32(insn, 22, 2);
8869     int opcode = extract32(insn, 12, 4);
8870     int rm = extract32(insn, 16, 5);
8871     int rn = extract32(insn, 5, 5);
8872     int rd = extract32(insn, 0, 5);
8873 
8874     if (is_u) {
8875         unallocated_encoding(s);
8876         return;
8877     }
8878 
8879     switch (opcode) {
8880     case 0x9: /* SQDMLAL, SQDMLAL2 */
8881     case 0xb: /* SQDMLSL, SQDMLSL2 */
8882     case 0xd: /* SQDMULL, SQDMULL2 */
8883         if (size == 0 || size == 3) {
8884             unallocated_encoding(s);
8885             return;
8886         }
8887         break;
8888     default:
8889         unallocated_encoding(s);
8890         return;
8891     }
8892 
8893     if (!fp_access_check(s)) {
8894         return;
8895     }
8896 
8897     if (size == 2) {
8898         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8899         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8900         TCGv_i64 tcg_res = tcg_temp_new_i64();
8901 
8902         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8903         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8904 
8905         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8906         gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8907 
8908         switch (opcode) {
8909         case 0xd: /* SQDMULL, SQDMULL2 */
8910             break;
8911         case 0xb: /* SQDMLSL, SQDMLSL2 */
8912             tcg_gen_neg_i64(tcg_res, tcg_res);
8913             /* fall through */
8914         case 0x9: /* SQDMLAL, SQDMLAL2 */
8915             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8916             gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8917                                               tcg_res, tcg_op1);
8918             break;
8919         default:
8920             g_assert_not_reached();
8921         }
8922 
8923         write_fp_dreg(s, rd, tcg_res);
8924     } else {
8925         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8926         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8927         TCGv_i64 tcg_res = tcg_temp_new_i64();
8928 
8929         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8930         gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8931 
8932         switch (opcode) {
8933         case 0xd: /* SQDMULL, SQDMULL2 */
8934             break;
8935         case 0xb: /* SQDMLSL, SQDMLSL2 */
8936             gen_helper_neon_negl_u32(tcg_res, tcg_res);
8937             /* fall through */
8938         case 0x9: /* SQDMLAL, SQDMLAL2 */
8939         {
8940             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8941             read_vec_element(s, tcg_op3, rd, 0, MO_32);
8942             gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8943                                               tcg_res, tcg_op3);
8944             break;
8945         }
8946         default:
8947             g_assert_not_reached();
8948         }
8949 
8950         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8951         write_fp_dreg(s, rd, tcg_res);
8952     }
8953 }
8954 
8955 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8956                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8957 {
8958     /* Handle 64x64->64 opcodes which are shared between the scalar
8959      * and vector 3-same groups. We cover every opcode where size == 3
8960      * is valid in either the three-reg-same (integer, not pairwise)
8961      * or scalar-three-reg-same groups.
8962      */
8963     TCGCond cond;
8964 
8965     switch (opcode) {
8966     case 0x1: /* SQADD */
8967         if (u) {
8968             gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8969         } else {
8970             gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8971         }
8972         break;
8973     case 0x5: /* SQSUB */
8974         if (u) {
8975             gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8976         } else {
8977             gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8978         }
8979         break;
8980     case 0x6: /* CMGT, CMHI */
8981         /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8982          * We implement this using setcond (test) and then negating.
8983          */
8984         cond = u ? TCG_COND_GTU : TCG_COND_GT;
8985     do_cmop:
8986         tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8987         tcg_gen_neg_i64(tcg_rd, tcg_rd);
8988         break;
8989     case 0x7: /* CMGE, CMHS */
8990         cond = u ? TCG_COND_GEU : TCG_COND_GE;
8991         goto do_cmop;
8992     case 0x11: /* CMTST, CMEQ */
8993         if (u) {
8994             cond = TCG_COND_EQ;
8995             goto do_cmop;
8996         }
8997         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8998         break;
8999     case 0x8: /* SSHL, USHL */
9000         if (u) {
9001             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9002         } else {
9003             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9004         }
9005         break;
9006     case 0x9: /* SQSHL, UQSHL */
9007         if (u) {
9008             gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9009         } else {
9010             gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9011         }
9012         break;
9013     case 0xa: /* SRSHL, URSHL */
9014         if (u) {
9015             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9016         } else {
9017             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9018         }
9019         break;
9020     case 0xb: /* SQRSHL, UQRSHL */
9021         if (u) {
9022             gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9023         } else {
9024             gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9025         }
9026         break;
9027     case 0x10: /* ADD, SUB */
9028         if (u) {
9029             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9030         } else {
9031             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9032         }
9033         break;
9034     default:
9035         g_assert_not_reached();
9036     }
9037 }
9038 
9039 /* Handle the 3-same-operands float operations; shared by the scalar
9040  * and vector encodings. The caller must filter out any encodings
9041  * not allocated for the encoding it is dealing with.
9042  */
9043 static void handle_3same_float(DisasContext *s, int size, int elements,
9044                                int fpopcode, int rd, int rn, int rm)
9045 {
9046     int pass;
9047     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9048 
9049     for (pass = 0; pass < elements; pass++) {
9050         if (size) {
9051             /* Double */
9052             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9053             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9054             TCGv_i64 tcg_res = tcg_temp_new_i64();
9055 
9056             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9057             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9058 
9059             switch (fpopcode) {
9060             case 0x39: /* FMLS */
9061                 /* As usual for ARM, separate negation for fused multiply-add */
9062                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9063                 /* fall through */
9064             case 0x19: /* FMLA */
9065                 read_vec_element(s, tcg_res, rd, pass, MO_64);
9066                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9067                                        tcg_res, fpst);
9068                 break;
9069             case 0x18: /* FMAXNM */
9070                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9071                 break;
9072             case 0x1a: /* FADD */
9073                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9074                 break;
9075             case 0x1b: /* FMULX */
9076                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9077                 break;
9078             case 0x1c: /* FCMEQ */
9079                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9080                 break;
9081             case 0x1e: /* FMAX */
9082                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9083                 break;
9084             case 0x1f: /* FRECPS */
9085                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9086                 break;
9087             case 0x38: /* FMINNM */
9088                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9089                 break;
9090             case 0x3a: /* FSUB */
9091                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9092                 break;
9093             case 0x3e: /* FMIN */
9094                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9095                 break;
9096             case 0x3f: /* FRSQRTS */
9097                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9098                 break;
9099             case 0x5b: /* FMUL */
9100                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9101                 break;
9102             case 0x5c: /* FCMGE */
9103                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9104                 break;
9105             case 0x5d: /* FACGE */
9106                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9107                 break;
9108             case 0x5f: /* FDIV */
9109                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9110                 break;
9111             case 0x7a: /* FABD */
9112                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9113                 gen_helper_vfp_absd(tcg_res, tcg_res);
9114                 break;
9115             case 0x7c: /* FCMGT */
9116                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9117                 break;
9118             case 0x7d: /* FACGT */
9119                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9120                 break;
9121             default:
9122                 g_assert_not_reached();
9123             }
9124 
9125             write_vec_element(s, tcg_res, rd, pass, MO_64);
9126         } else {
9127             /* Single */
9128             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9129             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9130             TCGv_i32 tcg_res = tcg_temp_new_i32();
9131 
9132             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9133             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9134 
9135             switch (fpopcode) {
9136             case 0x39: /* FMLS */
9137                 /* As usual for ARM, separate negation for fused multiply-add */
9138                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9139                 /* fall through */
9140             case 0x19: /* FMLA */
9141                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9142                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9143                                        tcg_res, fpst);
9144                 break;
9145             case 0x1a: /* FADD */
9146                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9147                 break;
9148             case 0x1b: /* FMULX */
9149                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9150                 break;
9151             case 0x1c: /* FCMEQ */
9152                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9153                 break;
9154             case 0x1e: /* FMAX */
9155                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9156                 break;
9157             case 0x1f: /* FRECPS */
9158                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9159                 break;
9160             case 0x18: /* FMAXNM */
9161                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9162                 break;
9163             case 0x38: /* FMINNM */
9164                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9165                 break;
9166             case 0x3a: /* FSUB */
9167                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9168                 break;
9169             case 0x3e: /* FMIN */
9170                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9171                 break;
9172             case 0x3f: /* FRSQRTS */
9173                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9174                 break;
9175             case 0x5b: /* FMUL */
9176                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9177                 break;
9178             case 0x5c: /* FCMGE */
9179                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9180                 break;
9181             case 0x5d: /* FACGE */
9182                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9183                 break;
9184             case 0x5f: /* FDIV */
9185                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9186                 break;
9187             case 0x7a: /* FABD */
9188                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9189                 gen_helper_vfp_abss(tcg_res, tcg_res);
9190                 break;
9191             case 0x7c: /* FCMGT */
9192                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9193                 break;
9194             case 0x7d: /* FACGT */
9195                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9196                 break;
9197             default:
9198                 g_assert_not_reached();
9199             }
9200 
9201             if (elements == 1) {
9202                 /* scalar single so clear high part */
9203                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9204 
9205                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9206                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9207             } else {
9208                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9209             }
9210         }
9211     }
9212 
9213     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9214 }
9215 
9216 /* AdvSIMD scalar three same
9217  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9218  * +-----+---+-----------+------+---+------+--------+---+------+------+
9219  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9220  * +-----+---+-----------+------+---+------+--------+---+------+------+
9221  */
9222 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9223 {
9224     int rd = extract32(insn, 0, 5);
9225     int rn = extract32(insn, 5, 5);
9226     int opcode = extract32(insn, 11, 5);
9227     int rm = extract32(insn, 16, 5);
9228     int size = extract32(insn, 22, 2);
9229     bool u = extract32(insn, 29, 1);
9230     TCGv_i64 tcg_rd;
9231 
9232     if (opcode >= 0x18) {
9233         /* Floating point: U, size[1] and opcode indicate operation */
9234         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9235         switch (fpopcode) {
9236         case 0x1b: /* FMULX */
9237         case 0x1f: /* FRECPS */
9238         case 0x3f: /* FRSQRTS */
9239         case 0x5d: /* FACGE */
9240         case 0x7d: /* FACGT */
9241         case 0x1c: /* FCMEQ */
9242         case 0x5c: /* FCMGE */
9243         case 0x7c: /* FCMGT */
9244         case 0x7a: /* FABD */
9245             break;
9246         default:
9247             unallocated_encoding(s);
9248             return;
9249         }
9250 
9251         if (!fp_access_check(s)) {
9252             return;
9253         }
9254 
9255         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9256         return;
9257     }
9258 
9259     switch (opcode) {
9260     case 0x1: /* SQADD, UQADD */
9261     case 0x5: /* SQSUB, UQSUB */
9262     case 0x9: /* SQSHL, UQSHL */
9263     case 0xb: /* SQRSHL, UQRSHL */
9264         break;
9265     case 0x8: /* SSHL, USHL */
9266     case 0xa: /* SRSHL, URSHL */
9267     case 0x6: /* CMGT, CMHI */
9268     case 0x7: /* CMGE, CMHS */
9269     case 0x11: /* CMTST, CMEQ */
9270     case 0x10: /* ADD, SUB (vector) */
9271         if (size != 3) {
9272             unallocated_encoding(s);
9273             return;
9274         }
9275         break;
9276     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9277         if (size != 1 && size != 2) {
9278             unallocated_encoding(s);
9279             return;
9280         }
9281         break;
9282     default:
9283         unallocated_encoding(s);
9284         return;
9285     }
9286 
9287     if (!fp_access_check(s)) {
9288         return;
9289     }
9290 
9291     tcg_rd = tcg_temp_new_i64();
9292 
9293     if (size == 3) {
9294         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9295         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9296 
9297         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9298     } else {
9299         /* Do a single operation on the lowest element in the vector.
9300          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9301          * no side effects for all these operations.
9302          * OPTME: special-purpose helpers would avoid doing some
9303          * unnecessary work in the helper for the 8 and 16 bit cases.
9304          */
9305         NeonGenTwoOpEnvFn *genenvfn;
9306         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9307         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9308         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9309 
9310         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9311         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9312 
9313         switch (opcode) {
9314         case 0x1: /* SQADD, UQADD */
9315         {
9316             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9317                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9318                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9319                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9320             };
9321             genenvfn = fns[size][u];
9322             break;
9323         }
9324         case 0x5: /* SQSUB, UQSUB */
9325         {
9326             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9327                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9328                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9329                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9330             };
9331             genenvfn = fns[size][u];
9332             break;
9333         }
9334         case 0x9: /* SQSHL, UQSHL */
9335         {
9336             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9337                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9338                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9339                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9340             };
9341             genenvfn = fns[size][u];
9342             break;
9343         }
9344         case 0xb: /* SQRSHL, UQRSHL */
9345         {
9346             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9347                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9348                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9349                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9350             };
9351             genenvfn = fns[size][u];
9352             break;
9353         }
9354         case 0x16: /* SQDMULH, SQRDMULH */
9355         {
9356             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9357                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9358                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9359             };
9360             assert(size == 1 || size == 2);
9361             genenvfn = fns[size - 1][u];
9362             break;
9363         }
9364         default:
9365             g_assert_not_reached();
9366         }
9367 
9368         genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9369         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9370     }
9371 
9372     write_fp_dreg(s, rd, tcg_rd);
9373 }
9374 
9375 /* AdvSIMD scalar three same FP16
9376  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9377  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9378  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9379  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9380  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9381  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9382  */
9383 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9384                                                   uint32_t insn)
9385 {
9386     int rd = extract32(insn, 0, 5);
9387     int rn = extract32(insn, 5, 5);
9388     int opcode = extract32(insn, 11, 3);
9389     int rm = extract32(insn, 16, 5);
9390     bool u = extract32(insn, 29, 1);
9391     bool a = extract32(insn, 23, 1);
9392     int fpopcode = opcode | (a << 3) |  (u << 4);
9393     TCGv_ptr fpst;
9394     TCGv_i32 tcg_op1;
9395     TCGv_i32 tcg_op2;
9396     TCGv_i32 tcg_res;
9397 
9398     switch (fpopcode) {
9399     case 0x03: /* FMULX */
9400     case 0x04: /* FCMEQ (reg) */
9401     case 0x07: /* FRECPS */
9402     case 0x0f: /* FRSQRTS */
9403     case 0x14: /* FCMGE (reg) */
9404     case 0x15: /* FACGE */
9405     case 0x1a: /* FABD */
9406     case 0x1c: /* FCMGT (reg) */
9407     case 0x1d: /* FACGT */
9408         break;
9409     default:
9410         unallocated_encoding(s);
9411         return;
9412     }
9413 
9414     if (!dc_isar_feature(aa64_fp16, s)) {
9415         unallocated_encoding(s);
9416     }
9417 
9418     if (!fp_access_check(s)) {
9419         return;
9420     }
9421 
9422     fpst = fpstatus_ptr(FPST_FPCR_F16);
9423 
9424     tcg_op1 = read_fp_hreg(s, rn);
9425     tcg_op2 = read_fp_hreg(s, rm);
9426     tcg_res = tcg_temp_new_i32();
9427 
9428     switch (fpopcode) {
9429     case 0x03: /* FMULX */
9430         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9431         break;
9432     case 0x04: /* FCMEQ (reg) */
9433         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9434         break;
9435     case 0x07: /* FRECPS */
9436         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9437         break;
9438     case 0x0f: /* FRSQRTS */
9439         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9440         break;
9441     case 0x14: /* FCMGE (reg) */
9442         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9443         break;
9444     case 0x15: /* FACGE */
9445         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9446         break;
9447     case 0x1a: /* FABD */
9448         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9449         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9450         break;
9451     case 0x1c: /* FCMGT (reg) */
9452         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9453         break;
9454     case 0x1d: /* FACGT */
9455         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9456         break;
9457     default:
9458         g_assert_not_reached();
9459     }
9460 
9461     write_fp_sreg(s, rd, tcg_res);
9462 }
9463 
9464 /* AdvSIMD scalar three same extra
9465  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9466  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9467  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9468  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9469  */
9470 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9471                                                    uint32_t insn)
9472 {
9473     int rd = extract32(insn, 0, 5);
9474     int rn = extract32(insn, 5, 5);
9475     int opcode = extract32(insn, 11, 4);
9476     int rm = extract32(insn, 16, 5);
9477     int size = extract32(insn, 22, 2);
9478     bool u = extract32(insn, 29, 1);
9479     TCGv_i32 ele1, ele2, ele3;
9480     TCGv_i64 res;
9481     bool feature;
9482 
9483     switch (u * 16 + opcode) {
9484     case 0x10: /* SQRDMLAH (vector) */
9485     case 0x11: /* SQRDMLSH (vector) */
9486         if (size != 1 && size != 2) {
9487             unallocated_encoding(s);
9488             return;
9489         }
9490         feature = dc_isar_feature(aa64_rdm, s);
9491         break;
9492     default:
9493         unallocated_encoding(s);
9494         return;
9495     }
9496     if (!feature) {
9497         unallocated_encoding(s);
9498         return;
9499     }
9500     if (!fp_access_check(s)) {
9501         return;
9502     }
9503 
9504     /* Do a single operation on the lowest element in the vector.
9505      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9506      * with no side effects for all these operations.
9507      * OPTME: special-purpose helpers would avoid doing some
9508      * unnecessary work in the helper for the 16 bit cases.
9509      */
9510     ele1 = tcg_temp_new_i32();
9511     ele2 = tcg_temp_new_i32();
9512     ele3 = tcg_temp_new_i32();
9513 
9514     read_vec_element_i32(s, ele1, rn, 0, size);
9515     read_vec_element_i32(s, ele2, rm, 0, size);
9516     read_vec_element_i32(s, ele3, rd, 0, size);
9517 
9518     switch (opcode) {
9519     case 0x0: /* SQRDMLAH */
9520         if (size == 1) {
9521             gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9522         } else {
9523             gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9524         }
9525         break;
9526     case 0x1: /* SQRDMLSH */
9527         if (size == 1) {
9528             gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9529         } else {
9530             gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9531         }
9532         break;
9533     default:
9534         g_assert_not_reached();
9535     }
9536 
9537     res = tcg_temp_new_i64();
9538     tcg_gen_extu_i32_i64(res, ele3);
9539     write_fp_dreg(s, rd, res);
9540 }
9541 
9542 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9543                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9544                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9545 {
9546     /* Handle 64->64 opcodes which are shared between the scalar and
9547      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9548      * is valid in either group and also the double-precision fp ops.
9549      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9550      * requires them.
9551      */
9552     TCGCond cond;
9553 
9554     switch (opcode) {
9555     case 0x4: /* CLS, CLZ */
9556         if (u) {
9557             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9558         } else {
9559             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9560         }
9561         break;
9562     case 0x5: /* NOT */
9563         /* This opcode is shared with CNT and RBIT but we have earlier
9564          * enforced that size == 3 if and only if this is the NOT insn.
9565          */
9566         tcg_gen_not_i64(tcg_rd, tcg_rn);
9567         break;
9568     case 0x7: /* SQABS, SQNEG */
9569         if (u) {
9570             gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9571         } else {
9572             gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9573         }
9574         break;
9575     case 0xa: /* CMLT */
9576         /* 64 bit integer comparison against zero, result is
9577          * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9578          * subtracting 1.
9579          */
9580         cond = TCG_COND_LT;
9581     do_cmop:
9582         tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9583         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9584         break;
9585     case 0x8: /* CMGT, CMGE */
9586         cond = u ? TCG_COND_GE : TCG_COND_GT;
9587         goto do_cmop;
9588     case 0x9: /* CMEQ, CMLE */
9589         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9590         goto do_cmop;
9591     case 0xb: /* ABS, NEG */
9592         if (u) {
9593             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9594         } else {
9595             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9596         }
9597         break;
9598     case 0x2f: /* FABS */
9599         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9600         break;
9601     case 0x6f: /* FNEG */
9602         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9603         break;
9604     case 0x7f: /* FSQRT */
9605         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9606         break;
9607     case 0x1a: /* FCVTNS */
9608     case 0x1b: /* FCVTMS */
9609     case 0x1c: /* FCVTAS */
9610     case 0x3a: /* FCVTPS */
9611     case 0x3b: /* FCVTZS */
9612         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9613         break;
9614     case 0x5a: /* FCVTNU */
9615     case 0x5b: /* FCVTMU */
9616     case 0x5c: /* FCVTAU */
9617     case 0x7a: /* FCVTPU */
9618     case 0x7b: /* FCVTZU */
9619         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9620         break;
9621     case 0x18: /* FRINTN */
9622     case 0x19: /* FRINTM */
9623     case 0x38: /* FRINTP */
9624     case 0x39: /* FRINTZ */
9625     case 0x58: /* FRINTA */
9626     case 0x79: /* FRINTI */
9627         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9628         break;
9629     case 0x59: /* FRINTX */
9630         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9631         break;
9632     case 0x1e: /* FRINT32Z */
9633     case 0x5e: /* FRINT32X */
9634         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9635         break;
9636     case 0x1f: /* FRINT64Z */
9637     case 0x5f: /* FRINT64X */
9638         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9639         break;
9640     default:
9641         g_assert_not_reached();
9642     }
9643 }
9644 
9645 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9646                                    bool is_scalar, bool is_u, bool is_q,
9647                                    int size, int rn, int rd)
9648 {
9649     bool is_double = (size == MO_64);
9650     TCGv_ptr fpst;
9651 
9652     if (!fp_access_check(s)) {
9653         return;
9654     }
9655 
9656     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9657 
9658     if (is_double) {
9659         TCGv_i64 tcg_op = tcg_temp_new_i64();
9660         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9661         TCGv_i64 tcg_res = tcg_temp_new_i64();
9662         NeonGenTwoDoubleOpFn *genfn;
9663         bool swap = false;
9664         int pass;
9665 
9666         switch (opcode) {
9667         case 0x2e: /* FCMLT (zero) */
9668             swap = true;
9669             /* fallthrough */
9670         case 0x2c: /* FCMGT (zero) */
9671             genfn = gen_helper_neon_cgt_f64;
9672             break;
9673         case 0x2d: /* FCMEQ (zero) */
9674             genfn = gen_helper_neon_ceq_f64;
9675             break;
9676         case 0x6d: /* FCMLE (zero) */
9677             swap = true;
9678             /* fall through */
9679         case 0x6c: /* FCMGE (zero) */
9680             genfn = gen_helper_neon_cge_f64;
9681             break;
9682         default:
9683             g_assert_not_reached();
9684         }
9685 
9686         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9687             read_vec_element(s, tcg_op, rn, pass, MO_64);
9688             if (swap) {
9689                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9690             } else {
9691                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9692             }
9693             write_vec_element(s, tcg_res, rd, pass, MO_64);
9694         }
9695 
9696         clear_vec_high(s, !is_scalar, rd);
9697     } else {
9698         TCGv_i32 tcg_op = tcg_temp_new_i32();
9699         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9700         TCGv_i32 tcg_res = tcg_temp_new_i32();
9701         NeonGenTwoSingleOpFn *genfn;
9702         bool swap = false;
9703         int pass, maxpasses;
9704 
9705         if (size == MO_16) {
9706             switch (opcode) {
9707             case 0x2e: /* FCMLT (zero) */
9708                 swap = true;
9709                 /* fall through */
9710             case 0x2c: /* FCMGT (zero) */
9711                 genfn = gen_helper_advsimd_cgt_f16;
9712                 break;
9713             case 0x2d: /* FCMEQ (zero) */
9714                 genfn = gen_helper_advsimd_ceq_f16;
9715                 break;
9716             case 0x6d: /* FCMLE (zero) */
9717                 swap = true;
9718                 /* fall through */
9719             case 0x6c: /* FCMGE (zero) */
9720                 genfn = gen_helper_advsimd_cge_f16;
9721                 break;
9722             default:
9723                 g_assert_not_reached();
9724             }
9725         } else {
9726             switch (opcode) {
9727             case 0x2e: /* FCMLT (zero) */
9728                 swap = true;
9729                 /* fall through */
9730             case 0x2c: /* FCMGT (zero) */
9731                 genfn = gen_helper_neon_cgt_f32;
9732                 break;
9733             case 0x2d: /* FCMEQ (zero) */
9734                 genfn = gen_helper_neon_ceq_f32;
9735                 break;
9736             case 0x6d: /* FCMLE (zero) */
9737                 swap = true;
9738                 /* fall through */
9739             case 0x6c: /* FCMGE (zero) */
9740                 genfn = gen_helper_neon_cge_f32;
9741                 break;
9742             default:
9743                 g_assert_not_reached();
9744             }
9745         }
9746 
9747         if (is_scalar) {
9748             maxpasses = 1;
9749         } else {
9750             int vector_size = 8 << is_q;
9751             maxpasses = vector_size >> size;
9752         }
9753 
9754         for (pass = 0; pass < maxpasses; pass++) {
9755             read_vec_element_i32(s, tcg_op, rn, pass, size);
9756             if (swap) {
9757                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9758             } else {
9759                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9760             }
9761             if (is_scalar) {
9762                 write_fp_sreg(s, rd, tcg_res);
9763             } else {
9764                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9765             }
9766         }
9767 
9768         if (!is_scalar) {
9769             clear_vec_high(s, is_q, rd);
9770         }
9771     }
9772 }
9773 
9774 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9775                                     bool is_scalar, bool is_u, bool is_q,
9776                                     int size, int rn, int rd)
9777 {
9778     bool is_double = (size == 3);
9779     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9780 
9781     if (is_double) {
9782         TCGv_i64 tcg_op = tcg_temp_new_i64();
9783         TCGv_i64 tcg_res = tcg_temp_new_i64();
9784         int pass;
9785 
9786         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9787             read_vec_element(s, tcg_op, rn, pass, MO_64);
9788             switch (opcode) {
9789             case 0x3d: /* FRECPE */
9790                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9791                 break;
9792             case 0x3f: /* FRECPX */
9793                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9794                 break;
9795             case 0x7d: /* FRSQRTE */
9796                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9797                 break;
9798             default:
9799                 g_assert_not_reached();
9800             }
9801             write_vec_element(s, tcg_res, rd, pass, MO_64);
9802         }
9803         clear_vec_high(s, !is_scalar, rd);
9804     } else {
9805         TCGv_i32 tcg_op = tcg_temp_new_i32();
9806         TCGv_i32 tcg_res = tcg_temp_new_i32();
9807         int pass, maxpasses;
9808 
9809         if (is_scalar) {
9810             maxpasses = 1;
9811         } else {
9812             maxpasses = is_q ? 4 : 2;
9813         }
9814 
9815         for (pass = 0; pass < maxpasses; pass++) {
9816             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9817 
9818             switch (opcode) {
9819             case 0x3c: /* URECPE */
9820                 gen_helper_recpe_u32(tcg_res, tcg_op);
9821                 break;
9822             case 0x3d: /* FRECPE */
9823                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9824                 break;
9825             case 0x3f: /* FRECPX */
9826                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9827                 break;
9828             case 0x7d: /* FRSQRTE */
9829                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9830                 break;
9831             default:
9832                 g_assert_not_reached();
9833             }
9834 
9835             if (is_scalar) {
9836                 write_fp_sreg(s, rd, tcg_res);
9837             } else {
9838                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9839             }
9840         }
9841         if (!is_scalar) {
9842             clear_vec_high(s, is_q, rd);
9843         }
9844     }
9845 }
9846 
9847 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9848                                 int opcode, bool u, bool is_q,
9849                                 int size, int rn, int rd)
9850 {
9851     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9852      * in the source becomes a size element in the destination).
9853      */
9854     int pass;
9855     TCGv_i32 tcg_res[2];
9856     int destelt = is_q ? 2 : 0;
9857     int passes = scalar ? 1 : 2;
9858 
9859     if (scalar) {
9860         tcg_res[1] = tcg_constant_i32(0);
9861     }
9862 
9863     for (pass = 0; pass < passes; pass++) {
9864         TCGv_i64 tcg_op = tcg_temp_new_i64();
9865         NeonGenNarrowFn *genfn = NULL;
9866         NeonGenNarrowEnvFn *genenvfn = NULL;
9867 
9868         if (scalar) {
9869             read_vec_element(s, tcg_op, rn, pass, size + 1);
9870         } else {
9871             read_vec_element(s, tcg_op, rn, pass, MO_64);
9872         }
9873         tcg_res[pass] = tcg_temp_new_i32();
9874 
9875         switch (opcode) {
9876         case 0x12: /* XTN, SQXTUN */
9877         {
9878             static NeonGenNarrowFn * const xtnfns[3] = {
9879                 gen_helper_neon_narrow_u8,
9880                 gen_helper_neon_narrow_u16,
9881                 tcg_gen_extrl_i64_i32,
9882             };
9883             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9884                 gen_helper_neon_unarrow_sat8,
9885                 gen_helper_neon_unarrow_sat16,
9886                 gen_helper_neon_unarrow_sat32,
9887             };
9888             if (u) {
9889                 genenvfn = sqxtunfns[size];
9890             } else {
9891                 genfn = xtnfns[size];
9892             }
9893             break;
9894         }
9895         case 0x14: /* SQXTN, UQXTN */
9896         {
9897             static NeonGenNarrowEnvFn * const fns[3][2] = {
9898                 { gen_helper_neon_narrow_sat_s8,
9899                   gen_helper_neon_narrow_sat_u8 },
9900                 { gen_helper_neon_narrow_sat_s16,
9901                   gen_helper_neon_narrow_sat_u16 },
9902                 { gen_helper_neon_narrow_sat_s32,
9903                   gen_helper_neon_narrow_sat_u32 },
9904             };
9905             genenvfn = fns[size][u];
9906             break;
9907         }
9908         case 0x16: /* FCVTN, FCVTN2 */
9909             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9910             if (size == 2) {
9911                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9912             } else {
9913                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9914                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9915                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9916                 TCGv_i32 ahp = get_ahp_flag();
9917 
9918                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9919                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9920                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9921                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9922             }
9923             break;
9924         case 0x36: /* BFCVTN, BFCVTN2 */
9925             {
9926                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9927                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9928             }
9929             break;
9930         case 0x56:  /* FCVTXN, FCVTXN2 */
9931             /* 64 bit to 32 bit float conversion
9932              * with von Neumann rounding (round to odd)
9933              */
9934             assert(size == 2);
9935             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9936             break;
9937         default:
9938             g_assert_not_reached();
9939         }
9940 
9941         if (genfn) {
9942             genfn(tcg_res[pass], tcg_op);
9943         } else if (genenvfn) {
9944             genenvfn(tcg_res[pass], cpu_env, tcg_op);
9945         }
9946     }
9947 
9948     for (pass = 0; pass < 2; pass++) {
9949         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9950     }
9951     clear_vec_high(s, is_q, rd);
9952 }
9953 
9954 /* Remaining saturating accumulating ops */
9955 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9956                                 bool is_q, int size, int rn, int rd)
9957 {
9958     bool is_double = (size == 3);
9959 
9960     if (is_double) {
9961         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9962         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9963         int pass;
9964 
9965         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9966             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9967             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9968 
9969             if (is_u) { /* USQADD */
9970                 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9971             } else { /* SUQADD */
9972                 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9973             }
9974             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9975         }
9976         clear_vec_high(s, !is_scalar, rd);
9977     } else {
9978         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9979         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9980         int pass, maxpasses;
9981 
9982         if (is_scalar) {
9983             maxpasses = 1;
9984         } else {
9985             maxpasses = is_q ? 4 : 2;
9986         }
9987 
9988         for (pass = 0; pass < maxpasses; pass++) {
9989             if (is_scalar) {
9990                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9991                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9992             } else {
9993                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9994                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9995             }
9996 
9997             if (is_u) { /* USQADD */
9998                 switch (size) {
9999                 case 0:
10000                     gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10001                     break;
10002                 case 1:
10003                     gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10004                     break;
10005                 case 2:
10006                     gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10007                     break;
10008                 default:
10009                     g_assert_not_reached();
10010                 }
10011             } else { /* SUQADD */
10012                 switch (size) {
10013                 case 0:
10014                     gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10015                     break;
10016                 case 1:
10017                     gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10018                     break;
10019                 case 2:
10020                     gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10021                     break;
10022                 default:
10023                     g_assert_not_reached();
10024                 }
10025             }
10026 
10027             if (is_scalar) {
10028                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10029             }
10030             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10031         }
10032         clear_vec_high(s, is_q, rd);
10033     }
10034 }
10035 
10036 /* AdvSIMD scalar two reg misc
10037  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10038  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10039  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10040  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10041  */
10042 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10043 {
10044     int rd = extract32(insn, 0, 5);
10045     int rn = extract32(insn, 5, 5);
10046     int opcode = extract32(insn, 12, 5);
10047     int size = extract32(insn, 22, 2);
10048     bool u = extract32(insn, 29, 1);
10049     bool is_fcvt = false;
10050     int rmode;
10051     TCGv_i32 tcg_rmode;
10052     TCGv_ptr tcg_fpstatus;
10053 
10054     switch (opcode) {
10055     case 0x3: /* USQADD / SUQADD*/
10056         if (!fp_access_check(s)) {
10057             return;
10058         }
10059         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10060         return;
10061     case 0x7: /* SQABS / SQNEG */
10062         break;
10063     case 0xa: /* CMLT */
10064         if (u) {
10065             unallocated_encoding(s);
10066             return;
10067         }
10068         /* fall through */
10069     case 0x8: /* CMGT, CMGE */
10070     case 0x9: /* CMEQ, CMLE */
10071     case 0xb: /* ABS, NEG */
10072         if (size != 3) {
10073             unallocated_encoding(s);
10074             return;
10075         }
10076         break;
10077     case 0x12: /* SQXTUN */
10078         if (!u) {
10079             unallocated_encoding(s);
10080             return;
10081         }
10082         /* fall through */
10083     case 0x14: /* SQXTN, UQXTN */
10084         if (size == 3) {
10085             unallocated_encoding(s);
10086             return;
10087         }
10088         if (!fp_access_check(s)) {
10089             return;
10090         }
10091         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10092         return;
10093     case 0xc ... 0xf:
10094     case 0x16 ... 0x1d:
10095     case 0x1f:
10096         /* Floating point: U, size[1] and opcode indicate operation;
10097          * size[0] indicates single or double precision.
10098          */
10099         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10100         size = extract32(size, 0, 1) ? 3 : 2;
10101         switch (opcode) {
10102         case 0x2c: /* FCMGT (zero) */
10103         case 0x2d: /* FCMEQ (zero) */
10104         case 0x2e: /* FCMLT (zero) */
10105         case 0x6c: /* FCMGE (zero) */
10106         case 0x6d: /* FCMLE (zero) */
10107             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10108             return;
10109         case 0x1d: /* SCVTF */
10110         case 0x5d: /* UCVTF */
10111         {
10112             bool is_signed = (opcode == 0x1d);
10113             if (!fp_access_check(s)) {
10114                 return;
10115             }
10116             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10117             return;
10118         }
10119         case 0x3d: /* FRECPE */
10120         case 0x3f: /* FRECPX */
10121         case 0x7d: /* FRSQRTE */
10122             if (!fp_access_check(s)) {
10123                 return;
10124             }
10125             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10126             return;
10127         case 0x1a: /* FCVTNS */
10128         case 0x1b: /* FCVTMS */
10129         case 0x3a: /* FCVTPS */
10130         case 0x3b: /* FCVTZS */
10131         case 0x5a: /* FCVTNU */
10132         case 0x5b: /* FCVTMU */
10133         case 0x7a: /* FCVTPU */
10134         case 0x7b: /* FCVTZU */
10135             is_fcvt = true;
10136             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10137             break;
10138         case 0x1c: /* FCVTAS */
10139         case 0x5c: /* FCVTAU */
10140             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10141             is_fcvt = true;
10142             rmode = FPROUNDING_TIEAWAY;
10143             break;
10144         case 0x56: /* FCVTXN, FCVTXN2 */
10145             if (size == 2) {
10146                 unallocated_encoding(s);
10147                 return;
10148             }
10149             if (!fp_access_check(s)) {
10150                 return;
10151             }
10152             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10153             return;
10154         default:
10155             unallocated_encoding(s);
10156             return;
10157         }
10158         break;
10159     default:
10160         unallocated_encoding(s);
10161         return;
10162     }
10163 
10164     if (!fp_access_check(s)) {
10165         return;
10166     }
10167 
10168     if (is_fcvt) {
10169         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10170         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10171     } else {
10172         tcg_fpstatus = NULL;
10173         tcg_rmode = NULL;
10174     }
10175 
10176     if (size == 3) {
10177         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10178         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10179 
10180         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10181         write_fp_dreg(s, rd, tcg_rd);
10182     } else {
10183         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10184         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10185 
10186         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10187 
10188         switch (opcode) {
10189         case 0x7: /* SQABS, SQNEG */
10190         {
10191             NeonGenOneOpEnvFn *genfn;
10192             static NeonGenOneOpEnvFn * const fns[3][2] = {
10193                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10194                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10195                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10196             };
10197             genfn = fns[size][u];
10198             genfn(tcg_rd, cpu_env, tcg_rn);
10199             break;
10200         }
10201         case 0x1a: /* FCVTNS */
10202         case 0x1b: /* FCVTMS */
10203         case 0x1c: /* FCVTAS */
10204         case 0x3a: /* FCVTPS */
10205         case 0x3b: /* FCVTZS */
10206             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10207                                  tcg_fpstatus);
10208             break;
10209         case 0x5a: /* FCVTNU */
10210         case 0x5b: /* FCVTMU */
10211         case 0x5c: /* FCVTAU */
10212         case 0x7a: /* FCVTPU */
10213         case 0x7b: /* FCVTZU */
10214             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10215                                  tcg_fpstatus);
10216             break;
10217         default:
10218             g_assert_not_reached();
10219         }
10220 
10221         write_fp_sreg(s, rd, tcg_rd);
10222     }
10223 
10224     if (is_fcvt) {
10225         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10226     }
10227 }
10228 
10229 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10230 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10231                                  int immh, int immb, int opcode, int rn, int rd)
10232 {
10233     int size = 32 - clz32(immh) - 1;
10234     int immhb = immh << 3 | immb;
10235     int shift = 2 * (8 << size) - immhb;
10236     GVecGen2iFn *gvec_fn;
10237 
10238     if (extract32(immh, 3, 1) && !is_q) {
10239         unallocated_encoding(s);
10240         return;
10241     }
10242     tcg_debug_assert(size <= 3);
10243 
10244     if (!fp_access_check(s)) {
10245         return;
10246     }
10247 
10248     switch (opcode) {
10249     case 0x02: /* SSRA / USRA (accumulate) */
10250         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10251         break;
10252 
10253     case 0x08: /* SRI */
10254         gvec_fn = gen_gvec_sri;
10255         break;
10256 
10257     case 0x00: /* SSHR / USHR */
10258         if (is_u) {
10259             if (shift == 8 << size) {
10260                 /* Shift count the same size as element size produces zero.  */
10261                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10262                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10263                 return;
10264             }
10265             gvec_fn = tcg_gen_gvec_shri;
10266         } else {
10267             /* Shift count the same size as element size produces all sign.  */
10268             if (shift == 8 << size) {
10269                 shift -= 1;
10270             }
10271             gvec_fn = tcg_gen_gvec_sari;
10272         }
10273         break;
10274 
10275     case 0x04: /* SRSHR / URSHR (rounding) */
10276         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10277         break;
10278 
10279     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10280         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10281         break;
10282 
10283     default:
10284         g_assert_not_reached();
10285     }
10286 
10287     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10288 }
10289 
10290 /* SHL/SLI - Vector shift left */
10291 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10292                                  int immh, int immb, int opcode, int rn, int rd)
10293 {
10294     int size = 32 - clz32(immh) - 1;
10295     int immhb = immh << 3 | immb;
10296     int shift = immhb - (8 << size);
10297 
10298     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10299     assert(size >= 0 && size <= 3);
10300 
10301     if (extract32(immh, 3, 1) && !is_q) {
10302         unallocated_encoding(s);
10303         return;
10304     }
10305 
10306     if (!fp_access_check(s)) {
10307         return;
10308     }
10309 
10310     if (insert) {
10311         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10312     } else {
10313         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10314     }
10315 }
10316 
10317 /* USHLL/SHLL - Vector shift left with widening */
10318 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10319                                  int immh, int immb, int opcode, int rn, int rd)
10320 {
10321     int size = 32 - clz32(immh) - 1;
10322     int immhb = immh << 3 | immb;
10323     int shift = immhb - (8 << size);
10324     int dsize = 64;
10325     int esize = 8 << size;
10326     int elements = dsize/esize;
10327     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10328     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10329     int i;
10330 
10331     if (size >= 3) {
10332         unallocated_encoding(s);
10333         return;
10334     }
10335 
10336     if (!fp_access_check(s)) {
10337         return;
10338     }
10339 
10340     /* For the LL variants the store is larger than the load,
10341      * so if rd == rn we would overwrite parts of our input.
10342      * So load everything right now and use shifts in the main loop.
10343      */
10344     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10345 
10346     for (i = 0; i < elements; i++) {
10347         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10348         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10349         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10350         write_vec_element(s, tcg_rd, rd, i, size + 1);
10351     }
10352 }
10353 
10354 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10355 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10356                                  int immh, int immb, int opcode, int rn, int rd)
10357 {
10358     int immhb = immh << 3 | immb;
10359     int size = 32 - clz32(immh) - 1;
10360     int dsize = 64;
10361     int esize = 8 << size;
10362     int elements = dsize/esize;
10363     int shift = (2 * esize) - immhb;
10364     bool round = extract32(opcode, 0, 1);
10365     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10366     TCGv_i64 tcg_round;
10367     int i;
10368 
10369     if (extract32(immh, 3, 1)) {
10370         unallocated_encoding(s);
10371         return;
10372     }
10373 
10374     if (!fp_access_check(s)) {
10375         return;
10376     }
10377 
10378     tcg_rn = tcg_temp_new_i64();
10379     tcg_rd = tcg_temp_new_i64();
10380     tcg_final = tcg_temp_new_i64();
10381     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10382 
10383     if (round) {
10384         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10385     } else {
10386         tcg_round = NULL;
10387     }
10388 
10389     for (i = 0; i < elements; i++) {
10390         read_vec_element(s, tcg_rn, rn, i, size+1);
10391         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10392                                 false, true, size+1, shift);
10393 
10394         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10395     }
10396 
10397     if (!is_q) {
10398         write_vec_element(s, tcg_final, rd, 0, MO_64);
10399     } else {
10400         write_vec_element(s, tcg_final, rd, 1, MO_64);
10401     }
10402 
10403     clear_vec_high(s, is_q, rd);
10404 }
10405 
10406 
10407 /* AdvSIMD shift by immediate
10408  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10409  * +---+---+---+-------------+------+------+--------+---+------+------+
10410  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10411  * +---+---+---+-------------+------+------+--------+---+------+------+
10412  */
10413 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10414 {
10415     int rd = extract32(insn, 0, 5);
10416     int rn = extract32(insn, 5, 5);
10417     int opcode = extract32(insn, 11, 5);
10418     int immb = extract32(insn, 16, 3);
10419     int immh = extract32(insn, 19, 4);
10420     bool is_u = extract32(insn, 29, 1);
10421     bool is_q = extract32(insn, 30, 1);
10422 
10423     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10424     assert(immh != 0);
10425 
10426     switch (opcode) {
10427     case 0x08: /* SRI */
10428         if (!is_u) {
10429             unallocated_encoding(s);
10430             return;
10431         }
10432         /* fall through */
10433     case 0x00: /* SSHR / USHR */
10434     case 0x02: /* SSRA / USRA (accumulate) */
10435     case 0x04: /* SRSHR / URSHR (rounding) */
10436     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10437         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10438         break;
10439     case 0x0a: /* SHL / SLI */
10440         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10441         break;
10442     case 0x10: /* SHRN */
10443     case 0x11: /* RSHRN / SQRSHRUN */
10444         if (is_u) {
10445             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10446                                    opcode, rn, rd);
10447         } else {
10448             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10449         }
10450         break;
10451     case 0x12: /* SQSHRN / UQSHRN */
10452     case 0x13: /* SQRSHRN / UQRSHRN */
10453         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10454                                opcode, rn, rd);
10455         break;
10456     case 0x14: /* SSHLL / USHLL */
10457         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10458         break;
10459     case 0x1c: /* SCVTF / UCVTF */
10460         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10461                                      opcode, rn, rd);
10462         break;
10463     case 0xc: /* SQSHLU */
10464         if (!is_u) {
10465             unallocated_encoding(s);
10466             return;
10467         }
10468         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10469         break;
10470     case 0xe: /* SQSHL, UQSHL */
10471         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10472         break;
10473     case 0x1f: /* FCVTZS/ FCVTZU */
10474         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10475         return;
10476     default:
10477         unallocated_encoding(s);
10478         return;
10479     }
10480 }
10481 
10482 /* Generate code to do a "long" addition or subtraction, ie one done in
10483  * TCGv_i64 on vector lanes twice the width specified by size.
10484  */
10485 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10486                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10487 {
10488     static NeonGenTwo64OpFn * const fns[3][2] = {
10489         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10490         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10491         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10492     };
10493     NeonGenTwo64OpFn *genfn;
10494     assert(size < 3);
10495 
10496     genfn = fns[size][is_sub];
10497     genfn(tcg_res, tcg_op1, tcg_op2);
10498 }
10499 
10500 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10501                                 int opcode, int rd, int rn, int rm)
10502 {
10503     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10504     TCGv_i64 tcg_res[2];
10505     int pass, accop;
10506 
10507     tcg_res[0] = tcg_temp_new_i64();
10508     tcg_res[1] = tcg_temp_new_i64();
10509 
10510     /* Does this op do an adding accumulate, a subtracting accumulate,
10511      * or no accumulate at all?
10512      */
10513     switch (opcode) {
10514     case 5:
10515     case 8:
10516     case 9:
10517         accop = 1;
10518         break;
10519     case 10:
10520     case 11:
10521         accop = -1;
10522         break;
10523     default:
10524         accop = 0;
10525         break;
10526     }
10527 
10528     if (accop != 0) {
10529         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10530         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10531     }
10532 
10533     /* size == 2 means two 32x32->64 operations; this is worth special
10534      * casing because we can generally handle it inline.
10535      */
10536     if (size == 2) {
10537         for (pass = 0; pass < 2; pass++) {
10538             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10539             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10540             TCGv_i64 tcg_passres;
10541             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10542 
10543             int elt = pass + is_q * 2;
10544 
10545             read_vec_element(s, tcg_op1, rn, elt, memop);
10546             read_vec_element(s, tcg_op2, rm, elt, memop);
10547 
10548             if (accop == 0) {
10549                 tcg_passres = tcg_res[pass];
10550             } else {
10551                 tcg_passres = tcg_temp_new_i64();
10552             }
10553 
10554             switch (opcode) {
10555             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10556                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10557                 break;
10558             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10559                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10560                 break;
10561             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10562             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10563             {
10564                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10565                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10566 
10567                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10568                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10569                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10570                                     tcg_passres,
10571                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10572                 break;
10573             }
10574             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10575             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10576             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10577                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10578                 break;
10579             case 9: /* SQDMLAL, SQDMLAL2 */
10580             case 11: /* SQDMLSL, SQDMLSL2 */
10581             case 13: /* SQDMULL, SQDMULL2 */
10582                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10583                 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10584                                                   tcg_passres, tcg_passres);
10585                 break;
10586             default:
10587                 g_assert_not_reached();
10588             }
10589 
10590             if (opcode == 9 || opcode == 11) {
10591                 /* saturating accumulate ops */
10592                 if (accop < 0) {
10593                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10594                 }
10595                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10596                                                   tcg_res[pass], tcg_passres);
10597             } else if (accop > 0) {
10598                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10599             } else if (accop < 0) {
10600                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10601             }
10602         }
10603     } else {
10604         /* size 0 or 1, generally helper functions */
10605         for (pass = 0; pass < 2; pass++) {
10606             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10607             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10608             TCGv_i64 tcg_passres;
10609             int elt = pass + is_q * 2;
10610 
10611             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10612             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10613 
10614             if (accop == 0) {
10615                 tcg_passres = tcg_res[pass];
10616             } else {
10617                 tcg_passres = tcg_temp_new_i64();
10618             }
10619 
10620             switch (opcode) {
10621             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10622             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10623             {
10624                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10625                 static NeonGenWidenFn * const widenfns[2][2] = {
10626                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10627                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10628                 };
10629                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10630 
10631                 widenfn(tcg_op2_64, tcg_op2);
10632                 widenfn(tcg_passres, tcg_op1);
10633                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10634                               tcg_passres, tcg_op2_64);
10635                 break;
10636             }
10637             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10638             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10639                 if (size == 0) {
10640                     if (is_u) {
10641                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10642                     } else {
10643                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10644                     }
10645                 } else {
10646                     if (is_u) {
10647                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10648                     } else {
10649                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10650                     }
10651                 }
10652                 break;
10653             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10654             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10655             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10656                 if (size == 0) {
10657                     if (is_u) {
10658                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10659                     } else {
10660                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10661                     }
10662                 } else {
10663                     if (is_u) {
10664                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10665                     } else {
10666                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10667                     }
10668                 }
10669                 break;
10670             case 9: /* SQDMLAL, SQDMLAL2 */
10671             case 11: /* SQDMLSL, SQDMLSL2 */
10672             case 13: /* SQDMULL, SQDMULL2 */
10673                 assert(size == 1);
10674                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10675                 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10676                                                   tcg_passres, tcg_passres);
10677                 break;
10678             default:
10679                 g_assert_not_reached();
10680             }
10681 
10682             if (accop != 0) {
10683                 if (opcode == 9 || opcode == 11) {
10684                     /* saturating accumulate ops */
10685                     if (accop < 0) {
10686                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10687                     }
10688                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10689                                                       tcg_res[pass],
10690                                                       tcg_passres);
10691                 } else {
10692                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10693                                   tcg_res[pass], tcg_passres);
10694                 }
10695             }
10696         }
10697     }
10698 
10699     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10700     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10701 }
10702 
10703 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10704                             int opcode, int rd, int rn, int rm)
10705 {
10706     TCGv_i64 tcg_res[2];
10707     int part = is_q ? 2 : 0;
10708     int pass;
10709 
10710     for (pass = 0; pass < 2; pass++) {
10711         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10712         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10713         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10714         static NeonGenWidenFn * const widenfns[3][2] = {
10715             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10716             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10717             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10718         };
10719         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10720 
10721         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10722         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10723         widenfn(tcg_op2_wide, tcg_op2);
10724         tcg_res[pass] = tcg_temp_new_i64();
10725         gen_neon_addl(size, (opcode == 3),
10726                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10727     }
10728 
10729     for (pass = 0; pass < 2; pass++) {
10730         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10731     }
10732 }
10733 
10734 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10735 {
10736     tcg_gen_addi_i64(in, in, 1U << 31);
10737     tcg_gen_extrh_i64_i32(res, in);
10738 }
10739 
10740 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10741                                  int opcode, int rd, int rn, int rm)
10742 {
10743     TCGv_i32 tcg_res[2];
10744     int part = is_q ? 2 : 0;
10745     int pass;
10746 
10747     for (pass = 0; pass < 2; pass++) {
10748         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10749         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10750         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10751         static NeonGenNarrowFn * const narrowfns[3][2] = {
10752             { gen_helper_neon_narrow_high_u8,
10753               gen_helper_neon_narrow_round_high_u8 },
10754             { gen_helper_neon_narrow_high_u16,
10755               gen_helper_neon_narrow_round_high_u16 },
10756             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10757         };
10758         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10759 
10760         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10761         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10762 
10763         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10764 
10765         tcg_res[pass] = tcg_temp_new_i32();
10766         gennarrow(tcg_res[pass], tcg_wideres);
10767     }
10768 
10769     for (pass = 0; pass < 2; pass++) {
10770         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10771     }
10772     clear_vec_high(s, is_q, rd);
10773 }
10774 
10775 /* AdvSIMD three different
10776  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10777  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10778  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10779  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10780  */
10781 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10782 {
10783     /* Instructions in this group fall into three basic classes
10784      * (in each case with the operation working on each element in
10785      * the input vectors):
10786      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10787      *     128 bit input)
10788      * (2) wide 64 x 128 -> 128
10789      * (3) narrowing 128 x 128 -> 64
10790      * Here we do initial decode, catch unallocated cases and
10791      * dispatch to separate functions for each class.
10792      */
10793     int is_q = extract32(insn, 30, 1);
10794     int is_u = extract32(insn, 29, 1);
10795     int size = extract32(insn, 22, 2);
10796     int opcode = extract32(insn, 12, 4);
10797     int rm = extract32(insn, 16, 5);
10798     int rn = extract32(insn, 5, 5);
10799     int rd = extract32(insn, 0, 5);
10800 
10801     switch (opcode) {
10802     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10803     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10804         /* 64 x 128 -> 128 */
10805         if (size == 3) {
10806             unallocated_encoding(s);
10807             return;
10808         }
10809         if (!fp_access_check(s)) {
10810             return;
10811         }
10812         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10813         break;
10814     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10815     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10816         /* 128 x 128 -> 64 */
10817         if (size == 3) {
10818             unallocated_encoding(s);
10819             return;
10820         }
10821         if (!fp_access_check(s)) {
10822             return;
10823         }
10824         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10825         break;
10826     case 14: /* PMULL, PMULL2 */
10827         if (is_u) {
10828             unallocated_encoding(s);
10829             return;
10830         }
10831         switch (size) {
10832         case 0: /* PMULL.P8 */
10833             if (!fp_access_check(s)) {
10834                 return;
10835             }
10836             /* The Q field specifies lo/hi half input for this insn.  */
10837             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10838                              gen_helper_neon_pmull_h);
10839             break;
10840 
10841         case 3: /* PMULL.P64 */
10842             if (!dc_isar_feature(aa64_pmull, s)) {
10843                 unallocated_encoding(s);
10844                 return;
10845             }
10846             if (!fp_access_check(s)) {
10847                 return;
10848             }
10849             /* The Q field specifies lo/hi half input for this insn.  */
10850             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10851                              gen_helper_gvec_pmull_q);
10852             break;
10853 
10854         default:
10855             unallocated_encoding(s);
10856             break;
10857         }
10858         return;
10859     case 9: /* SQDMLAL, SQDMLAL2 */
10860     case 11: /* SQDMLSL, SQDMLSL2 */
10861     case 13: /* SQDMULL, SQDMULL2 */
10862         if (is_u || size == 0) {
10863             unallocated_encoding(s);
10864             return;
10865         }
10866         /* fall through */
10867     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10868     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10869     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10870     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10871     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10872     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10873     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10874         /* 64 x 64 -> 128 */
10875         if (size == 3) {
10876             unallocated_encoding(s);
10877             return;
10878         }
10879         if (!fp_access_check(s)) {
10880             return;
10881         }
10882 
10883         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10884         break;
10885     default:
10886         /* opcode 15 not allocated */
10887         unallocated_encoding(s);
10888         break;
10889     }
10890 }
10891 
10892 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10893 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10894 {
10895     int rd = extract32(insn, 0, 5);
10896     int rn = extract32(insn, 5, 5);
10897     int rm = extract32(insn, 16, 5);
10898     int size = extract32(insn, 22, 2);
10899     bool is_u = extract32(insn, 29, 1);
10900     bool is_q = extract32(insn, 30, 1);
10901 
10902     if (!fp_access_check(s)) {
10903         return;
10904     }
10905 
10906     switch (size + 4 * is_u) {
10907     case 0: /* AND */
10908         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10909         return;
10910     case 1: /* BIC */
10911         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10912         return;
10913     case 2: /* ORR */
10914         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10915         return;
10916     case 3: /* ORN */
10917         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10918         return;
10919     case 4: /* EOR */
10920         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10921         return;
10922 
10923     case 5: /* BSL bitwise select */
10924         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10925         return;
10926     case 6: /* BIT, bitwise insert if true */
10927         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10928         return;
10929     case 7: /* BIF, bitwise insert if false */
10930         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10931         return;
10932 
10933     default:
10934         g_assert_not_reached();
10935     }
10936 }
10937 
10938 /* Pairwise op subgroup of C3.6.16.
10939  *
10940  * This is called directly or via the handle_3same_float for float pairwise
10941  * operations where the opcode and size are calculated differently.
10942  */
10943 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10944                                    int size, int rn, int rm, int rd)
10945 {
10946     TCGv_ptr fpst;
10947     int pass;
10948 
10949     /* Floating point operations need fpst */
10950     if (opcode >= 0x58) {
10951         fpst = fpstatus_ptr(FPST_FPCR);
10952     } else {
10953         fpst = NULL;
10954     }
10955 
10956     if (!fp_access_check(s)) {
10957         return;
10958     }
10959 
10960     /* These operations work on the concatenated rm:rn, with each pair of
10961      * adjacent elements being operated on to produce an element in the result.
10962      */
10963     if (size == 3) {
10964         TCGv_i64 tcg_res[2];
10965 
10966         for (pass = 0; pass < 2; pass++) {
10967             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10968             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10969             int passreg = (pass == 0) ? rn : rm;
10970 
10971             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10972             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10973             tcg_res[pass] = tcg_temp_new_i64();
10974 
10975             switch (opcode) {
10976             case 0x17: /* ADDP */
10977                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10978                 break;
10979             case 0x58: /* FMAXNMP */
10980                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10981                 break;
10982             case 0x5a: /* FADDP */
10983                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10984                 break;
10985             case 0x5e: /* FMAXP */
10986                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10987                 break;
10988             case 0x78: /* FMINNMP */
10989                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10990                 break;
10991             case 0x7e: /* FMINP */
10992                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10993                 break;
10994             default:
10995                 g_assert_not_reached();
10996             }
10997         }
10998 
10999         for (pass = 0; pass < 2; pass++) {
11000             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11001         }
11002     } else {
11003         int maxpass = is_q ? 4 : 2;
11004         TCGv_i32 tcg_res[4];
11005 
11006         for (pass = 0; pass < maxpass; pass++) {
11007             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11008             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11009             NeonGenTwoOpFn *genfn = NULL;
11010             int passreg = pass < (maxpass / 2) ? rn : rm;
11011             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11012 
11013             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11014             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11015             tcg_res[pass] = tcg_temp_new_i32();
11016 
11017             switch (opcode) {
11018             case 0x17: /* ADDP */
11019             {
11020                 static NeonGenTwoOpFn * const fns[3] = {
11021                     gen_helper_neon_padd_u8,
11022                     gen_helper_neon_padd_u16,
11023                     tcg_gen_add_i32,
11024                 };
11025                 genfn = fns[size];
11026                 break;
11027             }
11028             case 0x14: /* SMAXP, UMAXP */
11029             {
11030                 static NeonGenTwoOpFn * const fns[3][2] = {
11031                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11032                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11033                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11034                 };
11035                 genfn = fns[size][u];
11036                 break;
11037             }
11038             case 0x15: /* SMINP, UMINP */
11039             {
11040                 static NeonGenTwoOpFn * const fns[3][2] = {
11041                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11042                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11043                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11044                 };
11045                 genfn = fns[size][u];
11046                 break;
11047             }
11048             /* The FP operations are all on single floats (32 bit) */
11049             case 0x58: /* FMAXNMP */
11050                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11051                 break;
11052             case 0x5a: /* FADDP */
11053                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11054                 break;
11055             case 0x5e: /* FMAXP */
11056                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11057                 break;
11058             case 0x78: /* FMINNMP */
11059                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11060                 break;
11061             case 0x7e: /* FMINP */
11062                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11063                 break;
11064             default:
11065                 g_assert_not_reached();
11066             }
11067 
11068             /* FP ops called directly, otherwise call now */
11069             if (genfn) {
11070                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11071             }
11072         }
11073 
11074         for (pass = 0; pass < maxpass; pass++) {
11075             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11076         }
11077         clear_vec_high(s, is_q, rd);
11078     }
11079 }
11080 
11081 /* Floating point op subgroup of C3.6.16. */
11082 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11083 {
11084     /* For floating point ops, the U, size[1] and opcode bits
11085      * together indicate the operation. size[0] indicates single
11086      * or double.
11087      */
11088     int fpopcode = extract32(insn, 11, 5)
11089         | (extract32(insn, 23, 1) << 5)
11090         | (extract32(insn, 29, 1) << 6);
11091     int is_q = extract32(insn, 30, 1);
11092     int size = extract32(insn, 22, 1);
11093     int rm = extract32(insn, 16, 5);
11094     int rn = extract32(insn, 5, 5);
11095     int rd = extract32(insn, 0, 5);
11096 
11097     int datasize = is_q ? 128 : 64;
11098     int esize = 32 << size;
11099     int elements = datasize / esize;
11100 
11101     if (size == 1 && !is_q) {
11102         unallocated_encoding(s);
11103         return;
11104     }
11105 
11106     switch (fpopcode) {
11107     case 0x58: /* FMAXNMP */
11108     case 0x5a: /* FADDP */
11109     case 0x5e: /* FMAXP */
11110     case 0x78: /* FMINNMP */
11111     case 0x7e: /* FMINP */
11112         if (size && !is_q) {
11113             unallocated_encoding(s);
11114             return;
11115         }
11116         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11117                                rn, rm, rd);
11118         return;
11119     case 0x1b: /* FMULX */
11120     case 0x1f: /* FRECPS */
11121     case 0x3f: /* FRSQRTS */
11122     case 0x5d: /* FACGE */
11123     case 0x7d: /* FACGT */
11124     case 0x19: /* FMLA */
11125     case 0x39: /* FMLS */
11126     case 0x18: /* FMAXNM */
11127     case 0x1a: /* FADD */
11128     case 0x1c: /* FCMEQ */
11129     case 0x1e: /* FMAX */
11130     case 0x38: /* FMINNM */
11131     case 0x3a: /* FSUB */
11132     case 0x3e: /* FMIN */
11133     case 0x5b: /* FMUL */
11134     case 0x5c: /* FCMGE */
11135     case 0x5f: /* FDIV */
11136     case 0x7a: /* FABD */
11137     case 0x7c: /* FCMGT */
11138         if (!fp_access_check(s)) {
11139             return;
11140         }
11141         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11142         return;
11143 
11144     case 0x1d: /* FMLAL  */
11145     case 0x3d: /* FMLSL  */
11146     case 0x59: /* FMLAL2 */
11147     case 0x79: /* FMLSL2 */
11148         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11149             unallocated_encoding(s);
11150             return;
11151         }
11152         if (fp_access_check(s)) {
11153             int is_s = extract32(insn, 23, 1);
11154             int is_2 = extract32(insn, 29, 1);
11155             int data = (is_2 << 1) | is_s;
11156             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11157                                vec_full_reg_offset(s, rn),
11158                                vec_full_reg_offset(s, rm), cpu_env,
11159                                is_q ? 16 : 8, vec_full_reg_size(s),
11160                                data, gen_helper_gvec_fmlal_a64);
11161         }
11162         return;
11163 
11164     default:
11165         unallocated_encoding(s);
11166         return;
11167     }
11168 }
11169 
11170 /* Integer op subgroup of C3.6.16. */
11171 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11172 {
11173     int is_q = extract32(insn, 30, 1);
11174     int u = extract32(insn, 29, 1);
11175     int size = extract32(insn, 22, 2);
11176     int opcode = extract32(insn, 11, 5);
11177     int rm = extract32(insn, 16, 5);
11178     int rn = extract32(insn, 5, 5);
11179     int rd = extract32(insn, 0, 5);
11180     int pass;
11181     TCGCond cond;
11182 
11183     switch (opcode) {
11184     case 0x13: /* MUL, PMUL */
11185         if (u && size != 0) {
11186             unallocated_encoding(s);
11187             return;
11188         }
11189         /* fall through */
11190     case 0x0: /* SHADD, UHADD */
11191     case 0x2: /* SRHADD, URHADD */
11192     case 0x4: /* SHSUB, UHSUB */
11193     case 0xc: /* SMAX, UMAX */
11194     case 0xd: /* SMIN, UMIN */
11195     case 0xe: /* SABD, UABD */
11196     case 0xf: /* SABA, UABA */
11197     case 0x12: /* MLA, MLS */
11198         if (size == 3) {
11199             unallocated_encoding(s);
11200             return;
11201         }
11202         break;
11203     case 0x16: /* SQDMULH, SQRDMULH */
11204         if (size == 0 || size == 3) {
11205             unallocated_encoding(s);
11206             return;
11207         }
11208         break;
11209     default:
11210         if (size == 3 && !is_q) {
11211             unallocated_encoding(s);
11212             return;
11213         }
11214         break;
11215     }
11216 
11217     if (!fp_access_check(s)) {
11218         return;
11219     }
11220 
11221     switch (opcode) {
11222     case 0x01: /* SQADD, UQADD */
11223         if (u) {
11224             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11225         } else {
11226             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11227         }
11228         return;
11229     case 0x05: /* SQSUB, UQSUB */
11230         if (u) {
11231             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11232         } else {
11233             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11234         }
11235         return;
11236     case 0x08: /* SSHL, USHL */
11237         if (u) {
11238             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11239         } else {
11240             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11241         }
11242         return;
11243     case 0x0c: /* SMAX, UMAX */
11244         if (u) {
11245             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11246         } else {
11247             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11248         }
11249         return;
11250     case 0x0d: /* SMIN, UMIN */
11251         if (u) {
11252             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11253         } else {
11254             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11255         }
11256         return;
11257     case 0xe: /* SABD, UABD */
11258         if (u) {
11259             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11260         } else {
11261             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11262         }
11263         return;
11264     case 0xf: /* SABA, UABA */
11265         if (u) {
11266             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11267         } else {
11268             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11269         }
11270         return;
11271     case 0x10: /* ADD, SUB */
11272         if (u) {
11273             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11274         } else {
11275             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11276         }
11277         return;
11278     case 0x13: /* MUL, PMUL */
11279         if (!u) { /* MUL */
11280             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11281         } else {  /* PMUL */
11282             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11283         }
11284         return;
11285     case 0x12: /* MLA, MLS */
11286         if (u) {
11287             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11288         } else {
11289             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11290         }
11291         return;
11292     case 0x16: /* SQDMULH, SQRDMULH */
11293         {
11294             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11295                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11296                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11297             };
11298             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11299         }
11300         return;
11301     case 0x11:
11302         if (!u) { /* CMTST */
11303             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11304             return;
11305         }
11306         /* else CMEQ */
11307         cond = TCG_COND_EQ;
11308         goto do_gvec_cmp;
11309     case 0x06: /* CMGT, CMHI */
11310         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11311         goto do_gvec_cmp;
11312     case 0x07: /* CMGE, CMHS */
11313         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11314     do_gvec_cmp:
11315         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11316                          vec_full_reg_offset(s, rn),
11317                          vec_full_reg_offset(s, rm),
11318                          is_q ? 16 : 8, vec_full_reg_size(s));
11319         return;
11320     }
11321 
11322     if (size == 3) {
11323         assert(is_q);
11324         for (pass = 0; pass < 2; pass++) {
11325             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11326             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11327             TCGv_i64 tcg_res = tcg_temp_new_i64();
11328 
11329             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11330             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11331 
11332             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11333 
11334             write_vec_element(s, tcg_res, rd, pass, MO_64);
11335         }
11336     } else {
11337         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11338             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11339             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11340             TCGv_i32 tcg_res = tcg_temp_new_i32();
11341             NeonGenTwoOpFn *genfn = NULL;
11342             NeonGenTwoOpEnvFn *genenvfn = NULL;
11343 
11344             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11345             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11346 
11347             switch (opcode) {
11348             case 0x0: /* SHADD, UHADD */
11349             {
11350                 static NeonGenTwoOpFn * const fns[3][2] = {
11351                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11352                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11353                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11354                 };
11355                 genfn = fns[size][u];
11356                 break;
11357             }
11358             case 0x2: /* SRHADD, URHADD */
11359             {
11360                 static NeonGenTwoOpFn * const fns[3][2] = {
11361                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11362                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11363                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11364                 };
11365                 genfn = fns[size][u];
11366                 break;
11367             }
11368             case 0x4: /* SHSUB, UHSUB */
11369             {
11370                 static NeonGenTwoOpFn * const fns[3][2] = {
11371                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11372                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11373                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11374                 };
11375                 genfn = fns[size][u];
11376                 break;
11377             }
11378             case 0x9: /* SQSHL, UQSHL */
11379             {
11380                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11381                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11382                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11383                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11384                 };
11385                 genenvfn = fns[size][u];
11386                 break;
11387             }
11388             case 0xa: /* SRSHL, URSHL */
11389             {
11390                 static NeonGenTwoOpFn * const fns[3][2] = {
11391                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11392                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11393                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11394                 };
11395                 genfn = fns[size][u];
11396                 break;
11397             }
11398             case 0xb: /* SQRSHL, UQRSHL */
11399             {
11400                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11401                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11402                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11403                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11404                 };
11405                 genenvfn = fns[size][u];
11406                 break;
11407             }
11408             default:
11409                 g_assert_not_reached();
11410             }
11411 
11412             if (genenvfn) {
11413                 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11414             } else {
11415                 genfn(tcg_res, tcg_op1, tcg_op2);
11416             }
11417 
11418             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11419         }
11420     }
11421     clear_vec_high(s, is_q, rd);
11422 }
11423 
11424 /* AdvSIMD three same
11425  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11426  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11427  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11428  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11429  */
11430 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11431 {
11432     int opcode = extract32(insn, 11, 5);
11433 
11434     switch (opcode) {
11435     case 0x3: /* logic ops */
11436         disas_simd_3same_logic(s, insn);
11437         break;
11438     case 0x17: /* ADDP */
11439     case 0x14: /* SMAXP, UMAXP */
11440     case 0x15: /* SMINP, UMINP */
11441     {
11442         /* Pairwise operations */
11443         int is_q = extract32(insn, 30, 1);
11444         int u = extract32(insn, 29, 1);
11445         int size = extract32(insn, 22, 2);
11446         int rm = extract32(insn, 16, 5);
11447         int rn = extract32(insn, 5, 5);
11448         int rd = extract32(insn, 0, 5);
11449         if (opcode == 0x17) {
11450             if (u || (size == 3 && !is_q)) {
11451                 unallocated_encoding(s);
11452                 return;
11453             }
11454         } else {
11455             if (size == 3) {
11456                 unallocated_encoding(s);
11457                 return;
11458             }
11459         }
11460         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11461         break;
11462     }
11463     case 0x18 ... 0x31:
11464         /* floating point ops, sz[1] and U are part of opcode */
11465         disas_simd_3same_float(s, insn);
11466         break;
11467     default:
11468         disas_simd_3same_int(s, insn);
11469         break;
11470     }
11471 }
11472 
11473 /*
11474  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11475  *
11476  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11477  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11478  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11479  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11480  *
11481  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11482  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11483  *
11484  */
11485 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11486 {
11487     int opcode = extract32(insn, 11, 3);
11488     int u = extract32(insn, 29, 1);
11489     int a = extract32(insn, 23, 1);
11490     int is_q = extract32(insn, 30, 1);
11491     int rm = extract32(insn, 16, 5);
11492     int rn = extract32(insn, 5, 5);
11493     int rd = extract32(insn, 0, 5);
11494     /*
11495      * For these floating point ops, the U, a and opcode bits
11496      * together indicate the operation.
11497      */
11498     int fpopcode = opcode | (a << 3) | (u << 4);
11499     int datasize = is_q ? 128 : 64;
11500     int elements = datasize / 16;
11501     bool pairwise;
11502     TCGv_ptr fpst;
11503     int pass;
11504 
11505     switch (fpopcode) {
11506     case 0x0: /* FMAXNM */
11507     case 0x1: /* FMLA */
11508     case 0x2: /* FADD */
11509     case 0x3: /* FMULX */
11510     case 0x4: /* FCMEQ */
11511     case 0x6: /* FMAX */
11512     case 0x7: /* FRECPS */
11513     case 0x8: /* FMINNM */
11514     case 0x9: /* FMLS */
11515     case 0xa: /* FSUB */
11516     case 0xe: /* FMIN */
11517     case 0xf: /* FRSQRTS */
11518     case 0x13: /* FMUL */
11519     case 0x14: /* FCMGE */
11520     case 0x15: /* FACGE */
11521     case 0x17: /* FDIV */
11522     case 0x1a: /* FABD */
11523     case 0x1c: /* FCMGT */
11524     case 0x1d: /* FACGT */
11525         pairwise = false;
11526         break;
11527     case 0x10: /* FMAXNMP */
11528     case 0x12: /* FADDP */
11529     case 0x16: /* FMAXP */
11530     case 0x18: /* FMINNMP */
11531     case 0x1e: /* FMINP */
11532         pairwise = true;
11533         break;
11534     default:
11535         unallocated_encoding(s);
11536         return;
11537     }
11538 
11539     if (!dc_isar_feature(aa64_fp16, s)) {
11540         unallocated_encoding(s);
11541         return;
11542     }
11543 
11544     if (!fp_access_check(s)) {
11545         return;
11546     }
11547 
11548     fpst = fpstatus_ptr(FPST_FPCR_F16);
11549 
11550     if (pairwise) {
11551         int maxpass = is_q ? 8 : 4;
11552         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11553         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11554         TCGv_i32 tcg_res[8];
11555 
11556         for (pass = 0; pass < maxpass; pass++) {
11557             int passreg = pass < (maxpass / 2) ? rn : rm;
11558             int passelt = (pass << 1) & (maxpass - 1);
11559 
11560             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11561             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11562             tcg_res[pass] = tcg_temp_new_i32();
11563 
11564             switch (fpopcode) {
11565             case 0x10: /* FMAXNMP */
11566                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11567                                            fpst);
11568                 break;
11569             case 0x12: /* FADDP */
11570                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11571                 break;
11572             case 0x16: /* FMAXP */
11573                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11574                 break;
11575             case 0x18: /* FMINNMP */
11576                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11577                                            fpst);
11578                 break;
11579             case 0x1e: /* FMINP */
11580                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11581                 break;
11582             default:
11583                 g_assert_not_reached();
11584             }
11585         }
11586 
11587         for (pass = 0; pass < maxpass; pass++) {
11588             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11589         }
11590     } else {
11591         for (pass = 0; pass < elements; pass++) {
11592             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11593             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11594             TCGv_i32 tcg_res = tcg_temp_new_i32();
11595 
11596             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11597             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11598 
11599             switch (fpopcode) {
11600             case 0x0: /* FMAXNM */
11601                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11602                 break;
11603             case 0x1: /* FMLA */
11604                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11605                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11606                                            fpst);
11607                 break;
11608             case 0x2: /* FADD */
11609                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11610                 break;
11611             case 0x3: /* FMULX */
11612                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11613                 break;
11614             case 0x4: /* FCMEQ */
11615                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11616                 break;
11617             case 0x6: /* FMAX */
11618                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11619                 break;
11620             case 0x7: /* FRECPS */
11621                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11622                 break;
11623             case 0x8: /* FMINNM */
11624                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11625                 break;
11626             case 0x9: /* FMLS */
11627                 /* As usual for ARM, separate negation for fused multiply-add */
11628                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11629                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11630                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11631                                            fpst);
11632                 break;
11633             case 0xa: /* FSUB */
11634                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11635                 break;
11636             case 0xe: /* FMIN */
11637                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11638                 break;
11639             case 0xf: /* FRSQRTS */
11640                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11641                 break;
11642             case 0x13: /* FMUL */
11643                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11644                 break;
11645             case 0x14: /* FCMGE */
11646                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11647                 break;
11648             case 0x15: /* FACGE */
11649                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11650                 break;
11651             case 0x17: /* FDIV */
11652                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11653                 break;
11654             case 0x1a: /* FABD */
11655                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11656                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11657                 break;
11658             case 0x1c: /* FCMGT */
11659                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11660                 break;
11661             case 0x1d: /* FACGT */
11662                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11663                 break;
11664             default:
11665                 g_assert_not_reached();
11666             }
11667 
11668             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11669         }
11670     }
11671 
11672     clear_vec_high(s, is_q, rd);
11673 }
11674 
11675 /* AdvSIMD three same extra
11676  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11677  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11678  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11679  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11680  */
11681 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11682 {
11683     int rd = extract32(insn, 0, 5);
11684     int rn = extract32(insn, 5, 5);
11685     int opcode = extract32(insn, 11, 4);
11686     int rm = extract32(insn, 16, 5);
11687     int size = extract32(insn, 22, 2);
11688     bool u = extract32(insn, 29, 1);
11689     bool is_q = extract32(insn, 30, 1);
11690     bool feature;
11691     int rot;
11692 
11693     switch (u * 16 + opcode) {
11694     case 0x10: /* SQRDMLAH (vector) */
11695     case 0x11: /* SQRDMLSH (vector) */
11696         if (size != 1 && size != 2) {
11697             unallocated_encoding(s);
11698             return;
11699         }
11700         feature = dc_isar_feature(aa64_rdm, s);
11701         break;
11702     case 0x02: /* SDOT (vector) */
11703     case 0x12: /* UDOT (vector) */
11704         if (size != MO_32) {
11705             unallocated_encoding(s);
11706             return;
11707         }
11708         feature = dc_isar_feature(aa64_dp, s);
11709         break;
11710     case 0x03: /* USDOT */
11711         if (size != MO_32) {
11712             unallocated_encoding(s);
11713             return;
11714         }
11715         feature = dc_isar_feature(aa64_i8mm, s);
11716         break;
11717     case 0x04: /* SMMLA */
11718     case 0x14: /* UMMLA */
11719     case 0x05: /* USMMLA */
11720         if (!is_q || size != MO_32) {
11721             unallocated_encoding(s);
11722             return;
11723         }
11724         feature = dc_isar_feature(aa64_i8mm, s);
11725         break;
11726     case 0x18: /* FCMLA, #0 */
11727     case 0x19: /* FCMLA, #90 */
11728     case 0x1a: /* FCMLA, #180 */
11729     case 0x1b: /* FCMLA, #270 */
11730     case 0x1c: /* FCADD, #90 */
11731     case 0x1e: /* FCADD, #270 */
11732         if (size == 0
11733             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11734             || (size == 3 && !is_q)) {
11735             unallocated_encoding(s);
11736             return;
11737         }
11738         feature = dc_isar_feature(aa64_fcma, s);
11739         break;
11740     case 0x1d: /* BFMMLA */
11741         if (size != MO_16 || !is_q) {
11742             unallocated_encoding(s);
11743             return;
11744         }
11745         feature = dc_isar_feature(aa64_bf16, s);
11746         break;
11747     case 0x1f:
11748         switch (size) {
11749         case 1: /* BFDOT */
11750         case 3: /* BFMLAL{B,T} */
11751             feature = dc_isar_feature(aa64_bf16, s);
11752             break;
11753         default:
11754             unallocated_encoding(s);
11755             return;
11756         }
11757         break;
11758     default:
11759         unallocated_encoding(s);
11760         return;
11761     }
11762     if (!feature) {
11763         unallocated_encoding(s);
11764         return;
11765     }
11766     if (!fp_access_check(s)) {
11767         return;
11768     }
11769 
11770     switch (opcode) {
11771     case 0x0: /* SQRDMLAH (vector) */
11772         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11773         return;
11774 
11775     case 0x1: /* SQRDMLSH (vector) */
11776         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11777         return;
11778 
11779     case 0x2: /* SDOT / UDOT */
11780         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11781                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11782         return;
11783 
11784     case 0x3: /* USDOT */
11785         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11786         return;
11787 
11788     case 0x04: /* SMMLA, UMMLA */
11789         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11790                          u ? gen_helper_gvec_ummla_b
11791                          : gen_helper_gvec_smmla_b);
11792         return;
11793     case 0x05: /* USMMLA */
11794         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11795         return;
11796 
11797     case 0x8: /* FCMLA, #0 */
11798     case 0x9: /* FCMLA, #90 */
11799     case 0xa: /* FCMLA, #180 */
11800     case 0xb: /* FCMLA, #270 */
11801         rot = extract32(opcode, 0, 2);
11802         switch (size) {
11803         case 1:
11804             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11805                               gen_helper_gvec_fcmlah);
11806             break;
11807         case 2:
11808             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11809                               gen_helper_gvec_fcmlas);
11810             break;
11811         case 3:
11812             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11813                               gen_helper_gvec_fcmlad);
11814             break;
11815         default:
11816             g_assert_not_reached();
11817         }
11818         return;
11819 
11820     case 0xc: /* FCADD, #90 */
11821     case 0xe: /* FCADD, #270 */
11822         rot = extract32(opcode, 1, 1);
11823         switch (size) {
11824         case 1:
11825             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11826                               gen_helper_gvec_fcaddh);
11827             break;
11828         case 2:
11829             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11830                               gen_helper_gvec_fcadds);
11831             break;
11832         case 3:
11833             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11834                               gen_helper_gvec_fcaddd);
11835             break;
11836         default:
11837             g_assert_not_reached();
11838         }
11839         return;
11840 
11841     case 0xd: /* BFMMLA */
11842         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11843         return;
11844     case 0xf:
11845         switch (size) {
11846         case 1: /* BFDOT */
11847             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11848             break;
11849         case 3: /* BFMLAL{B,T} */
11850             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11851                               gen_helper_gvec_bfmlal);
11852             break;
11853         default:
11854             g_assert_not_reached();
11855         }
11856         return;
11857 
11858     default:
11859         g_assert_not_reached();
11860     }
11861 }
11862 
11863 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11864                                   int size, int rn, int rd)
11865 {
11866     /* Handle 2-reg-misc ops which are widening (so each size element
11867      * in the source becomes a 2*size element in the destination.
11868      * The only instruction like this is FCVTL.
11869      */
11870     int pass;
11871 
11872     if (size == 3) {
11873         /* 32 -> 64 bit fp conversion */
11874         TCGv_i64 tcg_res[2];
11875         int srcelt = is_q ? 2 : 0;
11876 
11877         for (pass = 0; pass < 2; pass++) {
11878             TCGv_i32 tcg_op = tcg_temp_new_i32();
11879             tcg_res[pass] = tcg_temp_new_i64();
11880 
11881             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11882             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11883         }
11884         for (pass = 0; pass < 2; pass++) {
11885             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11886         }
11887     } else {
11888         /* 16 -> 32 bit fp conversion */
11889         int srcelt = is_q ? 4 : 0;
11890         TCGv_i32 tcg_res[4];
11891         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11892         TCGv_i32 ahp = get_ahp_flag();
11893 
11894         for (pass = 0; pass < 4; pass++) {
11895             tcg_res[pass] = tcg_temp_new_i32();
11896 
11897             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11898             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11899                                            fpst, ahp);
11900         }
11901         for (pass = 0; pass < 4; pass++) {
11902             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11903         }
11904     }
11905 }
11906 
11907 static void handle_rev(DisasContext *s, int opcode, bool u,
11908                        bool is_q, int size, int rn, int rd)
11909 {
11910     int op = (opcode << 1) | u;
11911     int opsz = op + size;
11912     int grp_size = 3 - opsz;
11913     int dsize = is_q ? 128 : 64;
11914     int i;
11915 
11916     if (opsz >= 3) {
11917         unallocated_encoding(s);
11918         return;
11919     }
11920 
11921     if (!fp_access_check(s)) {
11922         return;
11923     }
11924 
11925     if (size == 0) {
11926         /* Special case bytes, use bswap op on each group of elements */
11927         int groups = dsize / (8 << grp_size);
11928 
11929         for (i = 0; i < groups; i++) {
11930             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11931 
11932             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11933             switch (grp_size) {
11934             case MO_16:
11935                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11936                 break;
11937             case MO_32:
11938                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11939                 break;
11940             case MO_64:
11941                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11942                 break;
11943             default:
11944                 g_assert_not_reached();
11945             }
11946             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11947         }
11948         clear_vec_high(s, is_q, rd);
11949     } else {
11950         int revmask = (1 << grp_size) - 1;
11951         int esize = 8 << size;
11952         int elements = dsize / esize;
11953         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11954         TCGv_i64 tcg_rd[2];
11955 
11956         for (i = 0; i < 2; i++) {
11957             tcg_rd[i] = tcg_temp_new_i64();
11958             tcg_gen_movi_i64(tcg_rd[i], 0);
11959         }
11960 
11961         for (i = 0; i < elements; i++) {
11962             int e_rev = (i & 0xf) ^ revmask;
11963             int w = (e_rev * esize) / 64;
11964             int o = (e_rev * esize) % 64;
11965 
11966             read_vec_element(s, tcg_rn, rn, i, size);
11967             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11968         }
11969 
11970         for (i = 0; i < 2; i++) {
11971             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11972         }
11973         clear_vec_high(s, true, rd);
11974     }
11975 }
11976 
11977 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11978                                   bool is_q, int size, int rn, int rd)
11979 {
11980     /* Implement the pairwise operations from 2-misc:
11981      * SADDLP, UADDLP, SADALP, UADALP.
11982      * These all add pairs of elements in the input to produce a
11983      * double-width result element in the output (possibly accumulating).
11984      */
11985     bool accum = (opcode == 0x6);
11986     int maxpass = is_q ? 2 : 1;
11987     int pass;
11988     TCGv_i64 tcg_res[2];
11989 
11990     if (size == 2) {
11991         /* 32 + 32 -> 64 op */
11992         MemOp memop = size + (u ? 0 : MO_SIGN);
11993 
11994         for (pass = 0; pass < maxpass; pass++) {
11995             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11996             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11997 
11998             tcg_res[pass] = tcg_temp_new_i64();
11999 
12000             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12001             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12002             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12003             if (accum) {
12004                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12005                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12006             }
12007         }
12008     } else {
12009         for (pass = 0; pass < maxpass; pass++) {
12010             TCGv_i64 tcg_op = tcg_temp_new_i64();
12011             NeonGenOne64OpFn *genfn;
12012             static NeonGenOne64OpFn * const fns[2][2] = {
12013                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12014                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12015             };
12016 
12017             genfn = fns[size][u];
12018 
12019             tcg_res[pass] = tcg_temp_new_i64();
12020 
12021             read_vec_element(s, tcg_op, rn, pass, MO_64);
12022             genfn(tcg_res[pass], tcg_op);
12023 
12024             if (accum) {
12025                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12026                 if (size == 0) {
12027                     gen_helper_neon_addl_u16(tcg_res[pass],
12028                                              tcg_res[pass], tcg_op);
12029                 } else {
12030                     gen_helper_neon_addl_u32(tcg_res[pass],
12031                                              tcg_res[pass], tcg_op);
12032                 }
12033             }
12034         }
12035     }
12036     if (!is_q) {
12037         tcg_res[1] = tcg_constant_i64(0);
12038     }
12039     for (pass = 0; pass < 2; pass++) {
12040         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12041     }
12042 }
12043 
12044 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12045 {
12046     /* Implement SHLL and SHLL2 */
12047     int pass;
12048     int part = is_q ? 2 : 0;
12049     TCGv_i64 tcg_res[2];
12050 
12051     for (pass = 0; pass < 2; pass++) {
12052         static NeonGenWidenFn * const widenfns[3] = {
12053             gen_helper_neon_widen_u8,
12054             gen_helper_neon_widen_u16,
12055             tcg_gen_extu_i32_i64,
12056         };
12057         NeonGenWidenFn *widenfn = widenfns[size];
12058         TCGv_i32 tcg_op = tcg_temp_new_i32();
12059 
12060         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12061         tcg_res[pass] = tcg_temp_new_i64();
12062         widenfn(tcg_res[pass], tcg_op);
12063         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12064     }
12065 
12066     for (pass = 0; pass < 2; pass++) {
12067         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12068     }
12069 }
12070 
12071 /* AdvSIMD two reg misc
12072  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12073  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12074  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12075  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12076  */
12077 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12078 {
12079     int size = extract32(insn, 22, 2);
12080     int opcode = extract32(insn, 12, 5);
12081     bool u = extract32(insn, 29, 1);
12082     bool is_q = extract32(insn, 30, 1);
12083     int rn = extract32(insn, 5, 5);
12084     int rd = extract32(insn, 0, 5);
12085     bool need_fpstatus = false;
12086     int rmode = -1;
12087     TCGv_i32 tcg_rmode;
12088     TCGv_ptr tcg_fpstatus;
12089 
12090     switch (opcode) {
12091     case 0x0: /* REV64, REV32 */
12092     case 0x1: /* REV16 */
12093         handle_rev(s, opcode, u, is_q, size, rn, rd);
12094         return;
12095     case 0x5: /* CNT, NOT, RBIT */
12096         if (u && size == 0) {
12097             /* NOT */
12098             break;
12099         } else if (u && size == 1) {
12100             /* RBIT */
12101             break;
12102         } else if (!u && size == 0) {
12103             /* CNT */
12104             break;
12105         }
12106         unallocated_encoding(s);
12107         return;
12108     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12109     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12110         if (size == 3) {
12111             unallocated_encoding(s);
12112             return;
12113         }
12114         if (!fp_access_check(s)) {
12115             return;
12116         }
12117 
12118         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12119         return;
12120     case 0x4: /* CLS, CLZ */
12121         if (size == 3) {
12122             unallocated_encoding(s);
12123             return;
12124         }
12125         break;
12126     case 0x2: /* SADDLP, UADDLP */
12127     case 0x6: /* SADALP, UADALP */
12128         if (size == 3) {
12129             unallocated_encoding(s);
12130             return;
12131         }
12132         if (!fp_access_check(s)) {
12133             return;
12134         }
12135         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12136         return;
12137     case 0x13: /* SHLL, SHLL2 */
12138         if (u == 0 || size == 3) {
12139             unallocated_encoding(s);
12140             return;
12141         }
12142         if (!fp_access_check(s)) {
12143             return;
12144         }
12145         handle_shll(s, is_q, size, rn, rd);
12146         return;
12147     case 0xa: /* CMLT */
12148         if (u == 1) {
12149             unallocated_encoding(s);
12150             return;
12151         }
12152         /* fall through */
12153     case 0x8: /* CMGT, CMGE */
12154     case 0x9: /* CMEQ, CMLE */
12155     case 0xb: /* ABS, NEG */
12156         if (size == 3 && !is_q) {
12157             unallocated_encoding(s);
12158             return;
12159         }
12160         break;
12161     case 0x3: /* SUQADD, USQADD */
12162         if (size == 3 && !is_q) {
12163             unallocated_encoding(s);
12164             return;
12165         }
12166         if (!fp_access_check(s)) {
12167             return;
12168         }
12169         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12170         return;
12171     case 0x7: /* SQABS, SQNEG */
12172         if (size == 3 && !is_q) {
12173             unallocated_encoding(s);
12174             return;
12175         }
12176         break;
12177     case 0xc ... 0xf:
12178     case 0x16 ... 0x1f:
12179     {
12180         /* Floating point: U, size[1] and opcode indicate operation;
12181          * size[0] indicates single or double precision.
12182          */
12183         int is_double = extract32(size, 0, 1);
12184         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12185         size = is_double ? 3 : 2;
12186         switch (opcode) {
12187         case 0x2f: /* FABS */
12188         case 0x6f: /* FNEG */
12189             if (size == 3 && !is_q) {
12190                 unallocated_encoding(s);
12191                 return;
12192             }
12193             break;
12194         case 0x1d: /* SCVTF */
12195         case 0x5d: /* UCVTF */
12196         {
12197             bool is_signed = (opcode == 0x1d) ? true : false;
12198             int elements = is_double ? 2 : is_q ? 4 : 2;
12199             if (is_double && !is_q) {
12200                 unallocated_encoding(s);
12201                 return;
12202             }
12203             if (!fp_access_check(s)) {
12204                 return;
12205             }
12206             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12207             return;
12208         }
12209         case 0x2c: /* FCMGT (zero) */
12210         case 0x2d: /* FCMEQ (zero) */
12211         case 0x2e: /* FCMLT (zero) */
12212         case 0x6c: /* FCMGE (zero) */
12213         case 0x6d: /* FCMLE (zero) */
12214             if (size == 3 && !is_q) {
12215                 unallocated_encoding(s);
12216                 return;
12217             }
12218             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12219             return;
12220         case 0x7f: /* FSQRT */
12221             if (size == 3 && !is_q) {
12222                 unallocated_encoding(s);
12223                 return;
12224             }
12225             break;
12226         case 0x1a: /* FCVTNS */
12227         case 0x1b: /* FCVTMS */
12228         case 0x3a: /* FCVTPS */
12229         case 0x3b: /* FCVTZS */
12230         case 0x5a: /* FCVTNU */
12231         case 0x5b: /* FCVTMU */
12232         case 0x7a: /* FCVTPU */
12233         case 0x7b: /* FCVTZU */
12234             need_fpstatus = true;
12235             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12236             if (size == 3 && !is_q) {
12237                 unallocated_encoding(s);
12238                 return;
12239             }
12240             break;
12241         case 0x5c: /* FCVTAU */
12242         case 0x1c: /* FCVTAS */
12243             need_fpstatus = true;
12244             rmode = FPROUNDING_TIEAWAY;
12245             if (size == 3 && !is_q) {
12246                 unallocated_encoding(s);
12247                 return;
12248             }
12249             break;
12250         case 0x3c: /* URECPE */
12251             if (size == 3) {
12252                 unallocated_encoding(s);
12253                 return;
12254             }
12255             /* fall through */
12256         case 0x3d: /* FRECPE */
12257         case 0x7d: /* FRSQRTE */
12258             if (size == 3 && !is_q) {
12259                 unallocated_encoding(s);
12260                 return;
12261             }
12262             if (!fp_access_check(s)) {
12263                 return;
12264             }
12265             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12266             return;
12267         case 0x56: /* FCVTXN, FCVTXN2 */
12268             if (size == 2) {
12269                 unallocated_encoding(s);
12270                 return;
12271             }
12272             /* fall through */
12273         case 0x16: /* FCVTN, FCVTN2 */
12274             /* handle_2misc_narrow does a 2*size -> size operation, but these
12275              * instructions encode the source size rather than dest size.
12276              */
12277             if (!fp_access_check(s)) {
12278                 return;
12279             }
12280             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12281             return;
12282         case 0x36: /* BFCVTN, BFCVTN2 */
12283             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12284                 unallocated_encoding(s);
12285                 return;
12286             }
12287             if (!fp_access_check(s)) {
12288                 return;
12289             }
12290             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12291             return;
12292         case 0x17: /* FCVTL, FCVTL2 */
12293             if (!fp_access_check(s)) {
12294                 return;
12295             }
12296             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12297             return;
12298         case 0x18: /* FRINTN */
12299         case 0x19: /* FRINTM */
12300         case 0x38: /* FRINTP */
12301         case 0x39: /* FRINTZ */
12302             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12303             /* fall through */
12304         case 0x59: /* FRINTX */
12305         case 0x79: /* FRINTI */
12306             need_fpstatus = true;
12307             if (size == 3 && !is_q) {
12308                 unallocated_encoding(s);
12309                 return;
12310             }
12311             break;
12312         case 0x58: /* FRINTA */
12313             rmode = FPROUNDING_TIEAWAY;
12314             need_fpstatus = true;
12315             if (size == 3 && !is_q) {
12316                 unallocated_encoding(s);
12317                 return;
12318             }
12319             break;
12320         case 0x7c: /* URSQRTE */
12321             if (size == 3) {
12322                 unallocated_encoding(s);
12323                 return;
12324             }
12325             break;
12326         case 0x1e: /* FRINT32Z */
12327         case 0x1f: /* FRINT64Z */
12328             rmode = FPROUNDING_ZERO;
12329             /* fall through */
12330         case 0x5e: /* FRINT32X */
12331         case 0x5f: /* FRINT64X */
12332             need_fpstatus = true;
12333             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12334                 unallocated_encoding(s);
12335                 return;
12336             }
12337             break;
12338         default:
12339             unallocated_encoding(s);
12340             return;
12341         }
12342         break;
12343     }
12344     default:
12345         unallocated_encoding(s);
12346         return;
12347     }
12348 
12349     if (!fp_access_check(s)) {
12350         return;
12351     }
12352 
12353     if (need_fpstatus || rmode >= 0) {
12354         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12355     } else {
12356         tcg_fpstatus = NULL;
12357     }
12358     if (rmode >= 0) {
12359         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12360     } else {
12361         tcg_rmode = NULL;
12362     }
12363 
12364     switch (opcode) {
12365     case 0x5:
12366         if (u && size == 0) { /* NOT */
12367             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12368             return;
12369         }
12370         break;
12371     case 0x8: /* CMGT, CMGE */
12372         if (u) {
12373             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12374         } else {
12375             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12376         }
12377         return;
12378     case 0x9: /* CMEQ, CMLE */
12379         if (u) {
12380             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12381         } else {
12382             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12383         }
12384         return;
12385     case 0xa: /* CMLT */
12386         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12387         return;
12388     case 0xb:
12389         if (u) { /* ABS, NEG */
12390             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12391         } else {
12392             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12393         }
12394         return;
12395     }
12396 
12397     if (size == 3) {
12398         /* All 64-bit element operations can be shared with scalar 2misc */
12399         int pass;
12400 
12401         /* Coverity claims (size == 3 && !is_q) has been eliminated
12402          * from all paths leading to here.
12403          */
12404         tcg_debug_assert(is_q);
12405         for (pass = 0; pass < 2; pass++) {
12406             TCGv_i64 tcg_op = tcg_temp_new_i64();
12407             TCGv_i64 tcg_res = tcg_temp_new_i64();
12408 
12409             read_vec_element(s, tcg_op, rn, pass, MO_64);
12410 
12411             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12412                             tcg_rmode, tcg_fpstatus);
12413 
12414             write_vec_element(s, tcg_res, rd, pass, MO_64);
12415         }
12416     } else {
12417         int pass;
12418 
12419         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12420             TCGv_i32 tcg_op = tcg_temp_new_i32();
12421             TCGv_i32 tcg_res = tcg_temp_new_i32();
12422 
12423             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12424 
12425             if (size == 2) {
12426                 /* Special cases for 32 bit elements */
12427                 switch (opcode) {
12428                 case 0x4: /* CLS */
12429                     if (u) {
12430                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12431                     } else {
12432                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12433                     }
12434                     break;
12435                 case 0x7: /* SQABS, SQNEG */
12436                     if (u) {
12437                         gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12438                     } else {
12439                         gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12440                     }
12441                     break;
12442                 case 0x2f: /* FABS */
12443                     gen_helper_vfp_abss(tcg_res, tcg_op);
12444                     break;
12445                 case 0x6f: /* FNEG */
12446                     gen_helper_vfp_negs(tcg_res, tcg_op);
12447                     break;
12448                 case 0x7f: /* FSQRT */
12449                     gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12450                     break;
12451                 case 0x1a: /* FCVTNS */
12452                 case 0x1b: /* FCVTMS */
12453                 case 0x1c: /* FCVTAS */
12454                 case 0x3a: /* FCVTPS */
12455                 case 0x3b: /* FCVTZS */
12456                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12457                                          tcg_constant_i32(0), tcg_fpstatus);
12458                     break;
12459                 case 0x5a: /* FCVTNU */
12460                 case 0x5b: /* FCVTMU */
12461                 case 0x5c: /* FCVTAU */
12462                 case 0x7a: /* FCVTPU */
12463                 case 0x7b: /* FCVTZU */
12464                     gen_helper_vfp_touls(tcg_res, tcg_op,
12465                                          tcg_constant_i32(0), tcg_fpstatus);
12466                     break;
12467                 case 0x18: /* FRINTN */
12468                 case 0x19: /* FRINTM */
12469                 case 0x38: /* FRINTP */
12470                 case 0x39: /* FRINTZ */
12471                 case 0x58: /* FRINTA */
12472                 case 0x79: /* FRINTI */
12473                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12474                     break;
12475                 case 0x59: /* FRINTX */
12476                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12477                     break;
12478                 case 0x7c: /* URSQRTE */
12479                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12480                     break;
12481                 case 0x1e: /* FRINT32Z */
12482                 case 0x5e: /* FRINT32X */
12483                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12484                     break;
12485                 case 0x1f: /* FRINT64Z */
12486                 case 0x5f: /* FRINT64X */
12487                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12488                     break;
12489                 default:
12490                     g_assert_not_reached();
12491                 }
12492             } else {
12493                 /* Use helpers for 8 and 16 bit elements */
12494                 switch (opcode) {
12495                 case 0x5: /* CNT, RBIT */
12496                     /* For these two insns size is part of the opcode specifier
12497                      * (handled earlier); they always operate on byte elements.
12498                      */
12499                     if (u) {
12500                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12501                     } else {
12502                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12503                     }
12504                     break;
12505                 case 0x7: /* SQABS, SQNEG */
12506                 {
12507                     NeonGenOneOpEnvFn *genfn;
12508                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12509                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12510                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12511                     };
12512                     genfn = fns[size][u];
12513                     genfn(tcg_res, cpu_env, tcg_op);
12514                     break;
12515                 }
12516                 case 0x4: /* CLS, CLZ */
12517                     if (u) {
12518                         if (size == 0) {
12519                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12520                         } else {
12521                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12522                         }
12523                     } else {
12524                         if (size == 0) {
12525                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12526                         } else {
12527                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12528                         }
12529                     }
12530                     break;
12531                 default:
12532                     g_assert_not_reached();
12533                 }
12534             }
12535 
12536             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12537         }
12538     }
12539     clear_vec_high(s, is_q, rd);
12540 
12541     if (tcg_rmode) {
12542         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12543     }
12544 }
12545 
12546 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12547  *
12548  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12549  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12550  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12551  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12552  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12553  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12554  *
12555  * This actually covers two groups where scalar access is governed by
12556  * bit 28. A bunch of the instructions (float to integral) only exist
12557  * in the vector form and are un-allocated for the scalar decode. Also
12558  * in the scalar decode Q is always 1.
12559  */
12560 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12561 {
12562     int fpop, opcode, a, u;
12563     int rn, rd;
12564     bool is_q;
12565     bool is_scalar;
12566     bool only_in_vector = false;
12567 
12568     int pass;
12569     TCGv_i32 tcg_rmode = NULL;
12570     TCGv_ptr tcg_fpstatus = NULL;
12571     bool need_fpst = true;
12572     int rmode = -1;
12573 
12574     if (!dc_isar_feature(aa64_fp16, s)) {
12575         unallocated_encoding(s);
12576         return;
12577     }
12578 
12579     rd = extract32(insn, 0, 5);
12580     rn = extract32(insn, 5, 5);
12581 
12582     a = extract32(insn, 23, 1);
12583     u = extract32(insn, 29, 1);
12584     is_scalar = extract32(insn, 28, 1);
12585     is_q = extract32(insn, 30, 1);
12586 
12587     opcode = extract32(insn, 12, 5);
12588     fpop = deposit32(opcode, 5, 1, a);
12589     fpop = deposit32(fpop, 6, 1, u);
12590 
12591     switch (fpop) {
12592     case 0x1d: /* SCVTF */
12593     case 0x5d: /* UCVTF */
12594     {
12595         int elements;
12596 
12597         if (is_scalar) {
12598             elements = 1;
12599         } else {
12600             elements = (is_q ? 8 : 4);
12601         }
12602 
12603         if (!fp_access_check(s)) {
12604             return;
12605         }
12606         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12607         return;
12608     }
12609     break;
12610     case 0x2c: /* FCMGT (zero) */
12611     case 0x2d: /* FCMEQ (zero) */
12612     case 0x2e: /* FCMLT (zero) */
12613     case 0x6c: /* FCMGE (zero) */
12614     case 0x6d: /* FCMLE (zero) */
12615         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12616         return;
12617     case 0x3d: /* FRECPE */
12618     case 0x3f: /* FRECPX */
12619         break;
12620     case 0x18: /* FRINTN */
12621         only_in_vector = true;
12622         rmode = FPROUNDING_TIEEVEN;
12623         break;
12624     case 0x19: /* FRINTM */
12625         only_in_vector = true;
12626         rmode = FPROUNDING_NEGINF;
12627         break;
12628     case 0x38: /* FRINTP */
12629         only_in_vector = true;
12630         rmode = FPROUNDING_POSINF;
12631         break;
12632     case 0x39: /* FRINTZ */
12633         only_in_vector = true;
12634         rmode = FPROUNDING_ZERO;
12635         break;
12636     case 0x58: /* FRINTA */
12637         only_in_vector = true;
12638         rmode = FPROUNDING_TIEAWAY;
12639         break;
12640     case 0x59: /* FRINTX */
12641     case 0x79: /* FRINTI */
12642         only_in_vector = true;
12643         /* current rounding mode */
12644         break;
12645     case 0x1a: /* FCVTNS */
12646         rmode = FPROUNDING_TIEEVEN;
12647         break;
12648     case 0x1b: /* FCVTMS */
12649         rmode = FPROUNDING_NEGINF;
12650         break;
12651     case 0x1c: /* FCVTAS */
12652         rmode = FPROUNDING_TIEAWAY;
12653         break;
12654     case 0x3a: /* FCVTPS */
12655         rmode = FPROUNDING_POSINF;
12656         break;
12657     case 0x3b: /* FCVTZS */
12658         rmode = FPROUNDING_ZERO;
12659         break;
12660     case 0x5a: /* FCVTNU */
12661         rmode = FPROUNDING_TIEEVEN;
12662         break;
12663     case 0x5b: /* FCVTMU */
12664         rmode = FPROUNDING_NEGINF;
12665         break;
12666     case 0x5c: /* FCVTAU */
12667         rmode = FPROUNDING_TIEAWAY;
12668         break;
12669     case 0x7a: /* FCVTPU */
12670         rmode = FPROUNDING_POSINF;
12671         break;
12672     case 0x7b: /* FCVTZU */
12673         rmode = FPROUNDING_ZERO;
12674         break;
12675     case 0x2f: /* FABS */
12676     case 0x6f: /* FNEG */
12677         need_fpst = false;
12678         break;
12679     case 0x7d: /* FRSQRTE */
12680     case 0x7f: /* FSQRT (vector) */
12681         break;
12682     default:
12683         unallocated_encoding(s);
12684         return;
12685     }
12686 
12687 
12688     /* Check additional constraints for the scalar encoding */
12689     if (is_scalar) {
12690         if (!is_q) {
12691             unallocated_encoding(s);
12692             return;
12693         }
12694         /* FRINTxx is only in the vector form */
12695         if (only_in_vector) {
12696             unallocated_encoding(s);
12697             return;
12698         }
12699     }
12700 
12701     if (!fp_access_check(s)) {
12702         return;
12703     }
12704 
12705     if (rmode >= 0 || need_fpst) {
12706         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12707     }
12708 
12709     if (rmode >= 0) {
12710         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12711     }
12712 
12713     if (is_scalar) {
12714         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12715         TCGv_i32 tcg_res = tcg_temp_new_i32();
12716 
12717         switch (fpop) {
12718         case 0x1a: /* FCVTNS */
12719         case 0x1b: /* FCVTMS */
12720         case 0x1c: /* FCVTAS */
12721         case 0x3a: /* FCVTPS */
12722         case 0x3b: /* FCVTZS */
12723             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12724             break;
12725         case 0x3d: /* FRECPE */
12726             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12727             break;
12728         case 0x3f: /* FRECPX */
12729             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12730             break;
12731         case 0x5a: /* FCVTNU */
12732         case 0x5b: /* FCVTMU */
12733         case 0x5c: /* FCVTAU */
12734         case 0x7a: /* FCVTPU */
12735         case 0x7b: /* FCVTZU */
12736             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12737             break;
12738         case 0x6f: /* FNEG */
12739             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12740             break;
12741         case 0x7d: /* FRSQRTE */
12742             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12743             break;
12744         default:
12745             g_assert_not_reached();
12746         }
12747 
12748         /* limit any sign extension going on */
12749         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12750         write_fp_sreg(s, rd, tcg_res);
12751     } else {
12752         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12753             TCGv_i32 tcg_op = tcg_temp_new_i32();
12754             TCGv_i32 tcg_res = tcg_temp_new_i32();
12755 
12756             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12757 
12758             switch (fpop) {
12759             case 0x1a: /* FCVTNS */
12760             case 0x1b: /* FCVTMS */
12761             case 0x1c: /* FCVTAS */
12762             case 0x3a: /* FCVTPS */
12763             case 0x3b: /* FCVTZS */
12764                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12765                 break;
12766             case 0x3d: /* FRECPE */
12767                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12768                 break;
12769             case 0x5a: /* FCVTNU */
12770             case 0x5b: /* FCVTMU */
12771             case 0x5c: /* FCVTAU */
12772             case 0x7a: /* FCVTPU */
12773             case 0x7b: /* FCVTZU */
12774                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12775                 break;
12776             case 0x18: /* FRINTN */
12777             case 0x19: /* FRINTM */
12778             case 0x38: /* FRINTP */
12779             case 0x39: /* FRINTZ */
12780             case 0x58: /* FRINTA */
12781             case 0x79: /* FRINTI */
12782                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12783                 break;
12784             case 0x59: /* FRINTX */
12785                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12786                 break;
12787             case 0x2f: /* FABS */
12788                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12789                 break;
12790             case 0x6f: /* FNEG */
12791                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12792                 break;
12793             case 0x7d: /* FRSQRTE */
12794                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12795                 break;
12796             case 0x7f: /* FSQRT */
12797                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12798                 break;
12799             default:
12800                 g_assert_not_reached();
12801             }
12802 
12803             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12804         }
12805 
12806         clear_vec_high(s, is_q, rd);
12807     }
12808 
12809     if (tcg_rmode) {
12810         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12811     }
12812 }
12813 
12814 /* AdvSIMD scalar x indexed element
12815  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12816  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12817  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12818  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12819  * AdvSIMD vector x indexed element
12820  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12821  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12822  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12823  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12824  */
12825 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12826 {
12827     /* This encoding has two kinds of instruction:
12828      *  normal, where we perform elt x idxelt => elt for each
12829      *     element in the vector
12830      *  long, where we perform elt x idxelt and generate a result of
12831      *     double the width of the input element
12832      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12833      */
12834     bool is_scalar = extract32(insn, 28, 1);
12835     bool is_q = extract32(insn, 30, 1);
12836     bool u = extract32(insn, 29, 1);
12837     int size = extract32(insn, 22, 2);
12838     int l = extract32(insn, 21, 1);
12839     int m = extract32(insn, 20, 1);
12840     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12841     int rm = extract32(insn, 16, 4);
12842     int opcode = extract32(insn, 12, 4);
12843     int h = extract32(insn, 11, 1);
12844     int rn = extract32(insn, 5, 5);
12845     int rd = extract32(insn, 0, 5);
12846     bool is_long = false;
12847     int is_fp = 0;
12848     bool is_fp16 = false;
12849     int index;
12850     TCGv_ptr fpst;
12851 
12852     switch (16 * u + opcode) {
12853     case 0x08: /* MUL */
12854     case 0x10: /* MLA */
12855     case 0x14: /* MLS */
12856         if (is_scalar) {
12857             unallocated_encoding(s);
12858             return;
12859         }
12860         break;
12861     case 0x02: /* SMLAL, SMLAL2 */
12862     case 0x12: /* UMLAL, UMLAL2 */
12863     case 0x06: /* SMLSL, SMLSL2 */
12864     case 0x16: /* UMLSL, UMLSL2 */
12865     case 0x0a: /* SMULL, SMULL2 */
12866     case 0x1a: /* UMULL, UMULL2 */
12867         if (is_scalar) {
12868             unallocated_encoding(s);
12869             return;
12870         }
12871         is_long = true;
12872         break;
12873     case 0x03: /* SQDMLAL, SQDMLAL2 */
12874     case 0x07: /* SQDMLSL, SQDMLSL2 */
12875     case 0x0b: /* SQDMULL, SQDMULL2 */
12876         is_long = true;
12877         break;
12878     case 0x0c: /* SQDMULH */
12879     case 0x0d: /* SQRDMULH */
12880         break;
12881     case 0x01: /* FMLA */
12882     case 0x05: /* FMLS */
12883     case 0x09: /* FMUL */
12884     case 0x19: /* FMULX */
12885         is_fp = 1;
12886         break;
12887     case 0x1d: /* SQRDMLAH */
12888     case 0x1f: /* SQRDMLSH */
12889         if (!dc_isar_feature(aa64_rdm, s)) {
12890             unallocated_encoding(s);
12891             return;
12892         }
12893         break;
12894     case 0x0e: /* SDOT */
12895     case 0x1e: /* UDOT */
12896         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12897             unallocated_encoding(s);
12898             return;
12899         }
12900         break;
12901     case 0x0f:
12902         switch (size) {
12903         case 0: /* SUDOT */
12904         case 2: /* USDOT */
12905             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12906                 unallocated_encoding(s);
12907                 return;
12908             }
12909             size = MO_32;
12910             break;
12911         case 1: /* BFDOT */
12912             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12913                 unallocated_encoding(s);
12914                 return;
12915             }
12916             size = MO_32;
12917             break;
12918         case 3: /* BFMLAL{B,T} */
12919             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12920                 unallocated_encoding(s);
12921                 return;
12922             }
12923             /* can't set is_fp without other incorrect size checks */
12924             size = MO_16;
12925             break;
12926         default:
12927             unallocated_encoding(s);
12928             return;
12929         }
12930         break;
12931     case 0x11: /* FCMLA #0 */
12932     case 0x13: /* FCMLA #90 */
12933     case 0x15: /* FCMLA #180 */
12934     case 0x17: /* FCMLA #270 */
12935         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12936             unallocated_encoding(s);
12937             return;
12938         }
12939         is_fp = 2;
12940         break;
12941     case 0x00: /* FMLAL */
12942     case 0x04: /* FMLSL */
12943     case 0x18: /* FMLAL2 */
12944     case 0x1c: /* FMLSL2 */
12945         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12946             unallocated_encoding(s);
12947             return;
12948         }
12949         size = MO_16;
12950         /* is_fp, but we pass cpu_env not fp_status.  */
12951         break;
12952     default:
12953         unallocated_encoding(s);
12954         return;
12955     }
12956 
12957     switch (is_fp) {
12958     case 1: /* normal fp */
12959         /* convert insn encoded size to MemOp size */
12960         switch (size) {
12961         case 0: /* half-precision */
12962             size = MO_16;
12963             is_fp16 = true;
12964             break;
12965         case MO_32: /* single precision */
12966         case MO_64: /* double precision */
12967             break;
12968         default:
12969             unallocated_encoding(s);
12970             return;
12971         }
12972         break;
12973 
12974     case 2: /* complex fp */
12975         /* Each indexable element is a complex pair.  */
12976         size += 1;
12977         switch (size) {
12978         case MO_32:
12979             if (h && !is_q) {
12980                 unallocated_encoding(s);
12981                 return;
12982             }
12983             is_fp16 = true;
12984             break;
12985         case MO_64:
12986             break;
12987         default:
12988             unallocated_encoding(s);
12989             return;
12990         }
12991         break;
12992 
12993     default: /* integer */
12994         switch (size) {
12995         case MO_8:
12996         case MO_64:
12997             unallocated_encoding(s);
12998             return;
12999         }
13000         break;
13001     }
13002     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13003         unallocated_encoding(s);
13004         return;
13005     }
13006 
13007     /* Given MemOp size, adjust register and indexing.  */
13008     switch (size) {
13009     case MO_16:
13010         index = h << 2 | l << 1 | m;
13011         break;
13012     case MO_32:
13013         index = h << 1 | l;
13014         rm |= m << 4;
13015         break;
13016     case MO_64:
13017         if (l || !is_q) {
13018             unallocated_encoding(s);
13019             return;
13020         }
13021         index = h;
13022         rm |= m << 4;
13023         break;
13024     default:
13025         g_assert_not_reached();
13026     }
13027 
13028     if (!fp_access_check(s)) {
13029         return;
13030     }
13031 
13032     if (is_fp) {
13033         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13034     } else {
13035         fpst = NULL;
13036     }
13037 
13038     switch (16 * u + opcode) {
13039     case 0x0e: /* SDOT */
13040     case 0x1e: /* UDOT */
13041         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13042                          u ? gen_helper_gvec_udot_idx_b
13043                          : gen_helper_gvec_sdot_idx_b);
13044         return;
13045     case 0x0f:
13046         switch (extract32(insn, 22, 2)) {
13047         case 0: /* SUDOT */
13048             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13049                              gen_helper_gvec_sudot_idx_b);
13050             return;
13051         case 1: /* BFDOT */
13052             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13053                              gen_helper_gvec_bfdot_idx);
13054             return;
13055         case 2: /* USDOT */
13056             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13057                              gen_helper_gvec_usdot_idx_b);
13058             return;
13059         case 3: /* BFMLAL{B,T} */
13060             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13061                               gen_helper_gvec_bfmlal_idx);
13062             return;
13063         }
13064         g_assert_not_reached();
13065     case 0x11: /* FCMLA #0 */
13066     case 0x13: /* FCMLA #90 */
13067     case 0x15: /* FCMLA #180 */
13068     case 0x17: /* FCMLA #270 */
13069         {
13070             int rot = extract32(insn, 13, 2);
13071             int data = (index << 2) | rot;
13072             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13073                                vec_full_reg_offset(s, rn),
13074                                vec_full_reg_offset(s, rm),
13075                                vec_full_reg_offset(s, rd), fpst,
13076                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13077                                size == MO_64
13078                                ? gen_helper_gvec_fcmlas_idx
13079                                : gen_helper_gvec_fcmlah_idx);
13080         }
13081         return;
13082 
13083     case 0x00: /* FMLAL */
13084     case 0x04: /* FMLSL */
13085     case 0x18: /* FMLAL2 */
13086     case 0x1c: /* FMLSL2 */
13087         {
13088             int is_s = extract32(opcode, 2, 1);
13089             int is_2 = u;
13090             int data = (index << 2) | (is_2 << 1) | is_s;
13091             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13092                                vec_full_reg_offset(s, rn),
13093                                vec_full_reg_offset(s, rm), cpu_env,
13094                                is_q ? 16 : 8, vec_full_reg_size(s),
13095                                data, gen_helper_gvec_fmlal_idx_a64);
13096         }
13097         return;
13098 
13099     case 0x08: /* MUL */
13100         if (!is_long && !is_scalar) {
13101             static gen_helper_gvec_3 * const fns[3] = {
13102                 gen_helper_gvec_mul_idx_h,
13103                 gen_helper_gvec_mul_idx_s,
13104                 gen_helper_gvec_mul_idx_d,
13105             };
13106             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13107                                vec_full_reg_offset(s, rn),
13108                                vec_full_reg_offset(s, rm),
13109                                is_q ? 16 : 8, vec_full_reg_size(s),
13110                                index, fns[size - 1]);
13111             return;
13112         }
13113         break;
13114 
13115     case 0x10: /* MLA */
13116         if (!is_long && !is_scalar) {
13117             static gen_helper_gvec_4 * const fns[3] = {
13118                 gen_helper_gvec_mla_idx_h,
13119                 gen_helper_gvec_mla_idx_s,
13120                 gen_helper_gvec_mla_idx_d,
13121             };
13122             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13123                                vec_full_reg_offset(s, rn),
13124                                vec_full_reg_offset(s, rm),
13125                                vec_full_reg_offset(s, rd),
13126                                is_q ? 16 : 8, vec_full_reg_size(s),
13127                                index, fns[size - 1]);
13128             return;
13129         }
13130         break;
13131 
13132     case 0x14: /* MLS */
13133         if (!is_long && !is_scalar) {
13134             static gen_helper_gvec_4 * const fns[3] = {
13135                 gen_helper_gvec_mls_idx_h,
13136                 gen_helper_gvec_mls_idx_s,
13137                 gen_helper_gvec_mls_idx_d,
13138             };
13139             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13140                                vec_full_reg_offset(s, rn),
13141                                vec_full_reg_offset(s, rm),
13142                                vec_full_reg_offset(s, rd),
13143                                is_q ? 16 : 8, vec_full_reg_size(s),
13144                                index, fns[size - 1]);
13145             return;
13146         }
13147         break;
13148     }
13149 
13150     if (size == 3) {
13151         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13152         int pass;
13153 
13154         assert(is_fp && is_q && !is_long);
13155 
13156         read_vec_element(s, tcg_idx, rm, index, MO_64);
13157 
13158         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13159             TCGv_i64 tcg_op = tcg_temp_new_i64();
13160             TCGv_i64 tcg_res = tcg_temp_new_i64();
13161 
13162             read_vec_element(s, tcg_op, rn, pass, MO_64);
13163 
13164             switch (16 * u + opcode) {
13165             case 0x05: /* FMLS */
13166                 /* As usual for ARM, separate negation for fused multiply-add */
13167                 gen_helper_vfp_negd(tcg_op, tcg_op);
13168                 /* fall through */
13169             case 0x01: /* FMLA */
13170                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13171                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13172                 break;
13173             case 0x09: /* FMUL */
13174                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13175                 break;
13176             case 0x19: /* FMULX */
13177                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13178                 break;
13179             default:
13180                 g_assert_not_reached();
13181             }
13182 
13183             write_vec_element(s, tcg_res, rd, pass, MO_64);
13184         }
13185 
13186         clear_vec_high(s, !is_scalar, rd);
13187     } else if (!is_long) {
13188         /* 32 bit floating point, or 16 or 32 bit integer.
13189          * For the 16 bit scalar case we use the usual Neon helpers and
13190          * rely on the fact that 0 op 0 == 0 with no side effects.
13191          */
13192         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13193         int pass, maxpasses;
13194 
13195         if (is_scalar) {
13196             maxpasses = 1;
13197         } else {
13198             maxpasses = is_q ? 4 : 2;
13199         }
13200 
13201         read_vec_element_i32(s, tcg_idx, rm, index, size);
13202 
13203         if (size == 1 && !is_scalar) {
13204             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13205              * the index into both halves of the 32 bit tcg_idx and then use
13206              * the usual Neon helpers.
13207              */
13208             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13209         }
13210 
13211         for (pass = 0; pass < maxpasses; pass++) {
13212             TCGv_i32 tcg_op = tcg_temp_new_i32();
13213             TCGv_i32 tcg_res = tcg_temp_new_i32();
13214 
13215             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13216 
13217             switch (16 * u + opcode) {
13218             case 0x08: /* MUL */
13219             case 0x10: /* MLA */
13220             case 0x14: /* MLS */
13221             {
13222                 static NeonGenTwoOpFn * const fns[2][2] = {
13223                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13224                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13225                 };
13226                 NeonGenTwoOpFn *genfn;
13227                 bool is_sub = opcode == 0x4;
13228 
13229                 if (size == 1) {
13230                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13231                 } else {
13232                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13233                 }
13234                 if (opcode == 0x8) {
13235                     break;
13236                 }
13237                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13238                 genfn = fns[size - 1][is_sub];
13239                 genfn(tcg_res, tcg_op, tcg_res);
13240                 break;
13241             }
13242             case 0x05: /* FMLS */
13243             case 0x01: /* FMLA */
13244                 read_vec_element_i32(s, tcg_res, rd, pass,
13245                                      is_scalar ? size : MO_32);
13246                 switch (size) {
13247                 case 1:
13248                     if (opcode == 0x5) {
13249                         /* As usual for ARM, separate negation for fused
13250                          * multiply-add */
13251                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13252                     }
13253                     if (is_scalar) {
13254                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13255                                                    tcg_res, fpst);
13256                     } else {
13257                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13258                                                     tcg_res, fpst);
13259                     }
13260                     break;
13261                 case 2:
13262                     if (opcode == 0x5) {
13263                         /* As usual for ARM, separate negation for
13264                          * fused multiply-add */
13265                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13266                     }
13267                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13268                                            tcg_res, fpst);
13269                     break;
13270                 default:
13271                     g_assert_not_reached();
13272                 }
13273                 break;
13274             case 0x09: /* FMUL */
13275                 switch (size) {
13276                 case 1:
13277                     if (is_scalar) {
13278                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13279                                                 tcg_idx, fpst);
13280                     } else {
13281                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13282                                                  tcg_idx, fpst);
13283                     }
13284                     break;
13285                 case 2:
13286                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13287                     break;
13288                 default:
13289                     g_assert_not_reached();
13290                 }
13291                 break;
13292             case 0x19: /* FMULX */
13293                 switch (size) {
13294                 case 1:
13295                     if (is_scalar) {
13296                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13297                                                  tcg_idx, fpst);
13298                     } else {
13299                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13300                                                   tcg_idx, fpst);
13301                     }
13302                     break;
13303                 case 2:
13304                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13305                     break;
13306                 default:
13307                     g_assert_not_reached();
13308                 }
13309                 break;
13310             case 0x0c: /* SQDMULH */
13311                 if (size == 1) {
13312                     gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13313                                                tcg_op, tcg_idx);
13314                 } else {
13315                     gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13316                                                tcg_op, tcg_idx);
13317                 }
13318                 break;
13319             case 0x0d: /* SQRDMULH */
13320                 if (size == 1) {
13321                     gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13322                                                 tcg_op, tcg_idx);
13323                 } else {
13324                     gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13325                                                 tcg_op, tcg_idx);
13326                 }
13327                 break;
13328             case 0x1d: /* SQRDMLAH */
13329                 read_vec_element_i32(s, tcg_res, rd, pass,
13330                                      is_scalar ? size : MO_32);
13331                 if (size == 1) {
13332                     gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13333                                                 tcg_op, tcg_idx, tcg_res);
13334                 } else {
13335                     gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13336                                                 tcg_op, tcg_idx, tcg_res);
13337                 }
13338                 break;
13339             case 0x1f: /* SQRDMLSH */
13340                 read_vec_element_i32(s, tcg_res, rd, pass,
13341                                      is_scalar ? size : MO_32);
13342                 if (size == 1) {
13343                     gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13344                                                 tcg_op, tcg_idx, tcg_res);
13345                 } else {
13346                     gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13347                                                 tcg_op, tcg_idx, tcg_res);
13348                 }
13349                 break;
13350             default:
13351                 g_assert_not_reached();
13352             }
13353 
13354             if (is_scalar) {
13355                 write_fp_sreg(s, rd, tcg_res);
13356             } else {
13357                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13358             }
13359         }
13360 
13361         clear_vec_high(s, is_q, rd);
13362     } else {
13363         /* long ops: 16x16->32 or 32x32->64 */
13364         TCGv_i64 tcg_res[2];
13365         int pass;
13366         bool satop = extract32(opcode, 0, 1);
13367         MemOp memop = MO_32;
13368 
13369         if (satop || !u) {
13370             memop |= MO_SIGN;
13371         }
13372 
13373         if (size == 2) {
13374             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13375 
13376             read_vec_element(s, tcg_idx, rm, index, memop);
13377 
13378             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13379                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13380                 TCGv_i64 tcg_passres;
13381                 int passelt;
13382 
13383                 if (is_scalar) {
13384                     passelt = 0;
13385                 } else {
13386                     passelt = pass + (is_q * 2);
13387                 }
13388 
13389                 read_vec_element(s, tcg_op, rn, passelt, memop);
13390 
13391                 tcg_res[pass] = tcg_temp_new_i64();
13392 
13393                 if (opcode == 0xa || opcode == 0xb) {
13394                     /* Non-accumulating ops */
13395                     tcg_passres = tcg_res[pass];
13396                 } else {
13397                     tcg_passres = tcg_temp_new_i64();
13398                 }
13399 
13400                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13401 
13402                 if (satop) {
13403                     /* saturating, doubling */
13404                     gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13405                                                       tcg_passres, tcg_passres);
13406                 }
13407 
13408                 if (opcode == 0xa || opcode == 0xb) {
13409                     continue;
13410                 }
13411 
13412                 /* Accumulating op: handle accumulate step */
13413                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13414 
13415                 switch (opcode) {
13416                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13417                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13418                     break;
13419                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13420                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13421                     break;
13422                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13423                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13424                     /* fall through */
13425                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13426                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13427                                                       tcg_res[pass],
13428                                                       tcg_passres);
13429                     break;
13430                 default:
13431                     g_assert_not_reached();
13432                 }
13433             }
13434 
13435             clear_vec_high(s, !is_scalar, rd);
13436         } else {
13437             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13438 
13439             assert(size == 1);
13440             read_vec_element_i32(s, tcg_idx, rm, index, size);
13441 
13442             if (!is_scalar) {
13443                 /* The simplest way to handle the 16x16 indexed ops is to
13444                  * duplicate the index into both halves of the 32 bit tcg_idx
13445                  * and then use the usual Neon helpers.
13446                  */
13447                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13448             }
13449 
13450             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13451                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13452                 TCGv_i64 tcg_passres;
13453 
13454                 if (is_scalar) {
13455                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13456                 } else {
13457                     read_vec_element_i32(s, tcg_op, rn,
13458                                          pass + (is_q * 2), MO_32);
13459                 }
13460 
13461                 tcg_res[pass] = tcg_temp_new_i64();
13462 
13463                 if (opcode == 0xa || opcode == 0xb) {
13464                     /* Non-accumulating ops */
13465                     tcg_passres = tcg_res[pass];
13466                 } else {
13467                     tcg_passres = tcg_temp_new_i64();
13468                 }
13469 
13470                 if (memop & MO_SIGN) {
13471                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13472                 } else {
13473                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13474                 }
13475                 if (satop) {
13476                     gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13477                                                       tcg_passres, tcg_passres);
13478                 }
13479 
13480                 if (opcode == 0xa || opcode == 0xb) {
13481                     continue;
13482                 }
13483 
13484                 /* Accumulating op: handle accumulate step */
13485                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13486 
13487                 switch (opcode) {
13488                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13489                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13490                                              tcg_passres);
13491                     break;
13492                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13493                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13494                                              tcg_passres);
13495                     break;
13496                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13497                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13498                     /* fall through */
13499                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13500                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13501                                                       tcg_res[pass],
13502                                                       tcg_passres);
13503                     break;
13504                 default:
13505                     g_assert_not_reached();
13506                 }
13507             }
13508 
13509             if (is_scalar) {
13510                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13511             }
13512         }
13513 
13514         if (is_scalar) {
13515             tcg_res[1] = tcg_constant_i64(0);
13516         }
13517 
13518         for (pass = 0; pass < 2; pass++) {
13519             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13520         }
13521     }
13522 }
13523 
13524 /* Crypto AES
13525  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13526  * +-----------------+------+-----------+--------+-----+------+------+
13527  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13528  * +-----------------+------+-----------+--------+-----+------+------+
13529  */
13530 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13531 {
13532     int size = extract32(insn, 22, 2);
13533     int opcode = extract32(insn, 12, 5);
13534     int rn = extract32(insn, 5, 5);
13535     int rd = extract32(insn, 0, 5);
13536     int decrypt;
13537     gen_helper_gvec_2 *genfn2 = NULL;
13538     gen_helper_gvec_3 *genfn3 = NULL;
13539 
13540     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13541         unallocated_encoding(s);
13542         return;
13543     }
13544 
13545     switch (opcode) {
13546     case 0x4: /* AESE */
13547         decrypt = 0;
13548         genfn3 = gen_helper_crypto_aese;
13549         break;
13550     case 0x6: /* AESMC */
13551         decrypt = 0;
13552         genfn2 = gen_helper_crypto_aesmc;
13553         break;
13554     case 0x5: /* AESD */
13555         decrypt = 1;
13556         genfn3 = gen_helper_crypto_aese;
13557         break;
13558     case 0x7: /* AESIMC */
13559         decrypt = 1;
13560         genfn2 = gen_helper_crypto_aesmc;
13561         break;
13562     default:
13563         unallocated_encoding(s);
13564         return;
13565     }
13566 
13567     if (!fp_access_check(s)) {
13568         return;
13569     }
13570     if (genfn2) {
13571         gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13572     } else {
13573         gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13574     }
13575 }
13576 
13577 /* Crypto three-reg SHA
13578  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13579  * +-----------------+------+---+------+---+--------+-----+------+------+
13580  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13581  * +-----------------+------+---+------+---+--------+-----+------+------+
13582  */
13583 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13584 {
13585     int size = extract32(insn, 22, 2);
13586     int opcode = extract32(insn, 12, 3);
13587     int rm = extract32(insn, 16, 5);
13588     int rn = extract32(insn, 5, 5);
13589     int rd = extract32(insn, 0, 5);
13590     gen_helper_gvec_3 *genfn;
13591     bool feature;
13592 
13593     if (size != 0) {
13594         unallocated_encoding(s);
13595         return;
13596     }
13597 
13598     switch (opcode) {
13599     case 0: /* SHA1C */
13600         genfn = gen_helper_crypto_sha1c;
13601         feature = dc_isar_feature(aa64_sha1, s);
13602         break;
13603     case 1: /* SHA1P */
13604         genfn = gen_helper_crypto_sha1p;
13605         feature = dc_isar_feature(aa64_sha1, s);
13606         break;
13607     case 2: /* SHA1M */
13608         genfn = gen_helper_crypto_sha1m;
13609         feature = dc_isar_feature(aa64_sha1, s);
13610         break;
13611     case 3: /* SHA1SU0 */
13612         genfn = gen_helper_crypto_sha1su0;
13613         feature = dc_isar_feature(aa64_sha1, s);
13614         break;
13615     case 4: /* SHA256H */
13616         genfn = gen_helper_crypto_sha256h;
13617         feature = dc_isar_feature(aa64_sha256, s);
13618         break;
13619     case 5: /* SHA256H2 */
13620         genfn = gen_helper_crypto_sha256h2;
13621         feature = dc_isar_feature(aa64_sha256, s);
13622         break;
13623     case 6: /* SHA256SU1 */
13624         genfn = gen_helper_crypto_sha256su1;
13625         feature = dc_isar_feature(aa64_sha256, s);
13626         break;
13627     default:
13628         unallocated_encoding(s);
13629         return;
13630     }
13631 
13632     if (!feature) {
13633         unallocated_encoding(s);
13634         return;
13635     }
13636 
13637     if (!fp_access_check(s)) {
13638         return;
13639     }
13640     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13641 }
13642 
13643 /* Crypto two-reg SHA
13644  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13645  * +-----------------+------+-----------+--------+-----+------+------+
13646  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13647  * +-----------------+------+-----------+--------+-----+------+------+
13648  */
13649 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13650 {
13651     int size = extract32(insn, 22, 2);
13652     int opcode = extract32(insn, 12, 5);
13653     int rn = extract32(insn, 5, 5);
13654     int rd = extract32(insn, 0, 5);
13655     gen_helper_gvec_2 *genfn;
13656     bool feature;
13657 
13658     if (size != 0) {
13659         unallocated_encoding(s);
13660         return;
13661     }
13662 
13663     switch (opcode) {
13664     case 0: /* SHA1H */
13665         feature = dc_isar_feature(aa64_sha1, s);
13666         genfn = gen_helper_crypto_sha1h;
13667         break;
13668     case 1: /* SHA1SU1 */
13669         feature = dc_isar_feature(aa64_sha1, s);
13670         genfn = gen_helper_crypto_sha1su1;
13671         break;
13672     case 2: /* SHA256SU0 */
13673         feature = dc_isar_feature(aa64_sha256, s);
13674         genfn = gen_helper_crypto_sha256su0;
13675         break;
13676     default:
13677         unallocated_encoding(s);
13678         return;
13679     }
13680 
13681     if (!feature) {
13682         unallocated_encoding(s);
13683         return;
13684     }
13685 
13686     if (!fp_access_check(s)) {
13687         return;
13688     }
13689     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13690 }
13691 
13692 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13693 {
13694     tcg_gen_rotli_i64(d, m, 1);
13695     tcg_gen_xor_i64(d, d, n);
13696 }
13697 
13698 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13699 {
13700     tcg_gen_rotli_vec(vece, d, m, 1);
13701     tcg_gen_xor_vec(vece, d, d, n);
13702 }
13703 
13704 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13705                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13706 {
13707     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13708     static const GVecGen3 op = {
13709         .fni8 = gen_rax1_i64,
13710         .fniv = gen_rax1_vec,
13711         .opt_opc = vecop_list,
13712         .fno = gen_helper_crypto_rax1,
13713         .vece = MO_64,
13714     };
13715     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13716 }
13717 
13718 /* Crypto three-reg SHA512
13719  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13720  * +-----------------------+------+---+---+-----+--------+------+------+
13721  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13722  * +-----------------------+------+---+---+-----+--------+------+------+
13723  */
13724 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13725 {
13726     int opcode = extract32(insn, 10, 2);
13727     int o =  extract32(insn, 14, 1);
13728     int rm = extract32(insn, 16, 5);
13729     int rn = extract32(insn, 5, 5);
13730     int rd = extract32(insn, 0, 5);
13731     bool feature;
13732     gen_helper_gvec_3 *oolfn = NULL;
13733     GVecGen3Fn *gvecfn = NULL;
13734 
13735     if (o == 0) {
13736         switch (opcode) {
13737         case 0: /* SHA512H */
13738             feature = dc_isar_feature(aa64_sha512, s);
13739             oolfn = gen_helper_crypto_sha512h;
13740             break;
13741         case 1: /* SHA512H2 */
13742             feature = dc_isar_feature(aa64_sha512, s);
13743             oolfn = gen_helper_crypto_sha512h2;
13744             break;
13745         case 2: /* SHA512SU1 */
13746             feature = dc_isar_feature(aa64_sha512, s);
13747             oolfn = gen_helper_crypto_sha512su1;
13748             break;
13749         case 3: /* RAX1 */
13750             feature = dc_isar_feature(aa64_sha3, s);
13751             gvecfn = gen_gvec_rax1;
13752             break;
13753         default:
13754             g_assert_not_reached();
13755         }
13756     } else {
13757         switch (opcode) {
13758         case 0: /* SM3PARTW1 */
13759             feature = dc_isar_feature(aa64_sm3, s);
13760             oolfn = gen_helper_crypto_sm3partw1;
13761             break;
13762         case 1: /* SM3PARTW2 */
13763             feature = dc_isar_feature(aa64_sm3, s);
13764             oolfn = gen_helper_crypto_sm3partw2;
13765             break;
13766         case 2: /* SM4EKEY */
13767             feature = dc_isar_feature(aa64_sm4, s);
13768             oolfn = gen_helper_crypto_sm4ekey;
13769             break;
13770         default:
13771             unallocated_encoding(s);
13772             return;
13773         }
13774     }
13775 
13776     if (!feature) {
13777         unallocated_encoding(s);
13778         return;
13779     }
13780 
13781     if (!fp_access_check(s)) {
13782         return;
13783     }
13784 
13785     if (oolfn) {
13786         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13787     } else {
13788         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13789     }
13790 }
13791 
13792 /* Crypto two-reg SHA512
13793  *  31                                     12  11  10  9    5 4    0
13794  * +-----------------------------------------+--------+------+------+
13795  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13796  * +-----------------------------------------+--------+------+------+
13797  */
13798 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13799 {
13800     int opcode = extract32(insn, 10, 2);
13801     int rn = extract32(insn, 5, 5);
13802     int rd = extract32(insn, 0, 5);
13803     bool feature;
13804 
13805     switch (opcode) {
13806     case 0: /* SHA512SU0 */
13807         feature = dc_isar_feature(aa64_sha512, s);
13808         break;
13809     case 1: /* SM4E */
13810         feature = dc_isar_feature(aa64_sm4, s);
13811         break;
13812     default:
13813         unallocated_encoding(s);
13814         return;
13815     }
13816 
13817     if (!feature) {
13818         unallocated_encoding(s);
13819         return;
13820     }
13821 
13822     if (!fp_access_check(s)) {
13823         return;
13824     }
13825 
13826     switch (opcode) {
13827     case 0: /* SHA512SU0 */
13828         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13829         break;
13830     case 1: /* SM4E */
13831         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13832         break;
13833     default:
13834         g_assert_not_reached();
13835     }
13836 }
13837 
13838 /* Crypto four-register
13839  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13840  * +-------------------+-----+------+---+------+------+------+
13841  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13842  * +-------------------+-----+------+---+------+------+------+
13843  */
13844 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13845 {
13846     int op0 = extract32(insn, 21, 2);
13847     int rm = extract32(insn, 16, 5);
13848     int ra = extract32(insn, 10, 5);
13849     int rn = extract32(insn, 5, 5);
13850     int rd = extract32(insn, 0, 5);
13851     bool feature;
13852 
13853     switch (op0) {
13854     case 0: /* EOR3 */
13855     case 1: /* BCAX */
13856         feature = dc_isar_feature(aa64_sha3, s);
13857         break;
13858     case 2: /* SM3SS1 */
13859         feature = dc_isar_feature(aa64_sm3, s);
13860         break;
13861     default:
13862         unallocated_encoding(s);
13863         return;
13864     }
13865 
13866     if (!feature) {
13867         unallocated_encoding(s);
13868         return;
13869     }
13870 
13871     if (!fp_access_check(s)) {
13872         return;
13873     }
13874 
13875     if (op0 < 2) {
13876         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13877         int pass;
13878 
13879         tcg_op1 = tcg_temp_new_i64();
13880         tcg_op2 = tcg_temp_new_i64();
13881         tcg_op3 = tcg_temp_new_i64();
13882         tcg_res[0] = tcg_temp_new_i64();
13883         tcg_res[1] = tcg_temp_new_i64();
13884 
13885         for (pass = 0; pass < 2; pass++) {
13886             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13887             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13888             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13889 
13890             if (op0 == 0) {
13891                 /* EOR3 */
13892                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13893             } else {
13894                 /* BCAX */
13895                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13896             }
13897             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13898         }
13899         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13900         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13901     } else {
13902         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13903 
13904         tcg_op1 = tcg_temp_new_i32();
13905         tcg_op2 = tcg_temp_new_i32();
13906         tcg_op3 = tcg_temp_new_i32();
13907         tcg_res = tcg_temp_new_i32();
13908         tcg_zero = tcg_constant_i32(0);
13909 
13910         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13911         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13912         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13913 
13914         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13915         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13916         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13917         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13918 
13919         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13920         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13921         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13922         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13923     }
13924 }
13925 
13926 /* Crypto XAR
13927  *  31                   21 20  16 15    10 9    5 4    0
13928  * +-----------------------+------+--------+------+------+
13929  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13930  * +-----------------------+------+--------+------+------+
13931  */
13932 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13933 {
13934     int rm = extract32(insn, 16, 5);
13935     int imm6 = extract32(insn, 10, 6);
13936     int rn = extract32(insn, 5, 5);
13937     int rd = extract32(insn, 0, 5);
13938 
13939     if (!dc_isar_feature(aa64_sha3, s)) {
13940         unallocated_encoding(s);
13941         return;
13942     }
13943 
13944     if (!fp_access_check(s)) {
13945         return;
13946     }
13947 
13948     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13949                  vec_full_reg_offset(s, rn),
13950                  vec_full_reg_offset(s, rm), imm6, 16,
13951                  vec_full_reg_size(s));
13952 }
13953 
13954 /* Crypto three-reg imm2
13955  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
13956  * +-----------------------+------+-----+------+--------+------+------+
13957  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
13958  * +-----------------------+------+-----+------+--------+------+------+
13959  */
13960 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13961 {
13962     static gen_helper_gvec_3 * const fns[4] = {
13963         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13964         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13965     };
13966     int opcode = extract32(insn, 10, 2);
13967     int imm2 = extract32(insn, 12, 2);
13968     int rm = extract32(insn, 16, 5);
13969     int rn = extract32(insn, 5, 5);
13970     int rd = extract32(insn, 0, 5);
13971 
13972     if (!dc_isar_feature(aa64_sm3, s)) {
13973         unallocated_encoding(s);
13974         return;
13975     }
13976 
13977     if (!fp_access_check(s)) {
13978         return;
13979     }
13980 
13981     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13982 }
13983 
13984 /* C3.6 Data processing - SIMD, inc Crypto
13985  *
13986  * As the decode gets a little complex we are using a table based
13987  * approach for this part of the decode.
13988  */
13989 static const AArch64DecodeTable data_proc_simd[] = {
13990     /* pattern  ,  mask     ,  fn                        */
13991     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13992     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13993     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13994     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13995     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13996     { 0x0e000400, 0x9fe08400, disas_simd_copy },
13997     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13998     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13999     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14000     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14001     { 0x0e000000, 0xbf208c00, disas_simd_tb },
14002     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14003     { 0x2e000000, 0xbf208400, disas_simd_ext },
14004     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14005     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14006     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14007     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14008     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14009     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14010     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14011     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14012     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14013     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14014     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14015     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14016     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14017     { 0xce000000, 0xff808000, disas_crypto_four_reg },
14018     { 0xce800000, 0xffe00000, disas_crypto_xar },
14019     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14020     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14021     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14022     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14023     { 0x00000000, 0x00000000, NULL }
14024 };
14025 
14026 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14027 {
14028     /* Note that this is called with all non-FP cases from
14029      * table C3-6 so it must UNDEF for entries not specifically
14030      * allocated to instructions in that table.
14031      */
14032     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14033     if (fn) {
14034         fn(s, insn);
14035     } else {
14036         unallocated_encoding(s);
14037     }
14038 }
14039 
14040 /* C3.6 Data processing - SIMD and floating point */
14041 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14042 {
14043     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14044         disas_data_proc_fp(s, insn);
14045     } else {
14046         /* SIMD, including crypto */
14047         disas_data_proc_simd(s, insn);
14048     }
14049 }
14050 
14051 static bool trans_OK(DisasContext *s, arg_OK *a)
14052 {
14053     return true;
14054 }
14055 
14056 static bool trans_FAIL(DisasContext *s, arg_OK *a)
14057 {
14058     s->is_nonstreaming = true;
14059     return true;
14060 }
14061 
14062 /**
14063  * is_guarded_page:
14064  * @env: The cpu environment
14065  * @s: The DisasContext
14066  *
14067  * Return true if the page is guarded.
14068  */
14069 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14070 {
14071     uint64_t addr = s->base.pc_first;
14072 #ifdef CONFIG_USER_ONLY
14073     return page_get_flags(addr) & PAGE_BTI;
14074 #else
14075     CPUTLBEntryFull *full;
14076     void *host;
14077     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14078     int flags;
14079 
14080     /*
14081      * We test this immediately after reading an insn, which means
14082      * that the TLB entry must be present and valid, and thus this
14083      * access will never raise an exception.
14084      */
14085     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
14086                               false, &host, &full, 0);
14087     assert(!(flags & TLB_INVALID_MASK));
14088 
14089     return full->guarded;
14090 #endif
14091 }
14092 
14093 /**
14094  * btype_destination_ok:
14095  * @insn: The instruction at the branch destination
14096  * @bt: SCTLR_ELx.BT
14097  * @btype: PSTATE.BTYPE, and is non-zero
14098  *
14099  * On a guarded page, there are a limited number of insns
14100  * that may be present at the branch target:
14101  *   - branch target identifiers,
14102  *   - paciasp, pacibsp,
14103  *   - BRK insn
14104  *   - HLT insn
14105  * Anything else causes a Branch Target Exception.
14106  *
14107  * Return true if the branch is compatible, false to raise BTITRAP.
14108  */
14109 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14110 {
14111     if ((insn & 0xfffff01fu) == 0xd503201fu) {
14112         /* HINT space */
14113         switch (extract32(insn, 5, 7)) {
14114         case 0b011001: /* PACIASP */
14115         case 0b011011: /* PACIBSP */
14116             /*
14117              * If SCTLR_ELx.BT, then PACI*SP are not compatible
14118              * with btype == 3.  Otherwise all btype are ok.
14119              */
14120             return !bt || btype != 3;
14121         case 0b100000: /* BTI */
14122             /* Not compatible with any btype.  */
14123             return false;
14124         case 0b100010: /* BTI c */
14125             /* Not compatible with btype == 3 */
14126             return btype != 3;
14127         case 0b100100: /* BTI j */
14128             /* Not compatible with btype == 2 */
14129             return btype != 2;
14130         case 0b100110: /* BTI jc */
14131             /* Compatible with any btype.  */
14132             return true;
14133         }
14134     } else {
14135         switch (insn & 0xffe0001fu) {
14136         case 0xd4200000u: /* BRK */
14137         case 0xd4400000u: /* HLT */
14138             /* Give priority to the breakpoint exception.  */
14139             return true;
14140         }
14141     }
14142     return false;
14143 }
14144 
14145 /* C3.1 A64 instruction index by encoding */
14146 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14147 {
14148     switch (extract32(insn, 25, 4)) {
14149     case 0x4:
14150     case 0x6:
14151     case 0xc:
14152     case 0xe:      /* Loads and stores */
14153         disas_ldst(s, insn);
14154         break;
14155     case 0x5:
14156     case 0xd:      /* Data processing - register */
14157         disas_data_proc_reg(s, insn);
14158         break;
14159     case 0x7:
14160     case 0xf:      /* Data processing - SIMD and floating point */
14161         disas_data_proc_simd_fp(s, insn);
14162         break;
14163     default:
14164         unallocated_encoding(s);
14165         break;
14166     }
14167 }
14168 
14169 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14170                                           CPUState *cpu)
14171 {
14172     DisasContext *dc = container_of(dcbase, DisasContext, base);
14173     CPUARMState *env = cpu->env_ptr;
14174     ARMCPU *arm_cpu = env_archcpu(env);
14175     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14176     int bound, core_mmu_idx;
14177 
14178     dc->isar = &arm_cpu->isar;
14179     dc->condjmp = 0;
14180     dc->pc_save = dc->base.pc_first;
14181     dc->aarch64 = true;
14182     dc->thumb = false;
14183     dc->sctlr_b = 0;
14184     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14185     dc->condexec_mask = 0;
14186     dc->condexec_cond = 0;
14187     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14188     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14189     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14190     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14191     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14192     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14193 #if !defined(CONFIG_USER_ONLY)
14194     dc->user = (dc->current_el == 0);
14195 #endif
14196     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14197     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14198     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14199     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14200     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14201     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14202     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14203     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14204     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14205     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14206     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14207     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14208     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14209     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14210     dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14211     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14212     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14213     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14214     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14215     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14216     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
14217     dc->vec_len = 0;
14218     dc->vec_stride = 0;
14219     dc->cp_regs = arm_cpu->cp_regs;
14220     dc->features = env->features;
14221     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14222 
14223 #ifdef CONFIG_USER_ONLY
14224     /* In sve_probe_page, we assume TBI is enabled. */
14225     tcg_debug_assert(dc->tbid & 1);
14226 #endif
14227 
14228     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14229 
14230     /* Single step state. The code-generation logic here is:
14231      *  SS_ACTIVE == 0:
14232      *   generate code with no special handling for single-stepping (except
14233      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14234      *   this happens anyway because those changes are all system register or
14235      *   PSTATE writes).
14236      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14237      *   emit code for one insn
14238      *   emit code to clear PSTATE.SS
14239      *   emit code to generate software step exception for completed step
14240      *   end TB (as usual for having generated an exception)
14241      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14242      *   emit code to generate a software step exception
14243      *   end the TB
14244      */
14245     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14246     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14247     dc->is_ldex = false;
14248 
14249     /* Bound the number of insns to execute to those left on the page.  */
14250     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14251 
14252     /* If architectural single step active, limit to 1.  */
14253     if (dc->ss_active) {
14254         bound = 1;
14255     }
14256     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14257 }
14258 
14259 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14260 {
14261 }
14262 
14263 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14264 {
14265     DisasContext *dc = container_of(dcbase, DisasContext, base);
14266     target_ulong pc_arg = dc->base.pc_next;
14267 
14268     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14269         pc_arg &= ~TARGET_PAGE_MASK;
14270     }
14271     tcg_gen_insn_start(pc_arg, 0, 0);
14272     dc->insn_start = tcg_last_op();
14273 }
14274 
14275 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14276 {
14277     DisasContext *s = container_of(dcbase, DisasContext, base);
14278     CPUARMState *env = cpu->env_ptr;
14279     uint64_t pc = s->base.pc_next;
14280     uint32_t insn;
14281 
14282     /* Singlestep exceptions have the highest priority. */
14283     if (s->ss_active && !s->pstate_ss) {
14284         /* Singlestep state is Active-pending.
14285          * If we're in this state at the start of a TB then either
14286          *  a) we just took an exception to an EL which is being debugged
14287          *     and this is the first insn in the exception handler
14288          *  b) debug exceptions were masked and we just unmasked them
14289          *     without changing EL (eg by clearing PSTATE.D)
14290          * In either case we're going to take a swstep exception in the
14291          * "did not step an insn" case, and so the syndrome ISV and EX
14292          * bits should be zero.
14293          */
14294         assert(s->base.num_insns == 1);
14295         gen_swstep_exception(s, 0, 0);
14296         s->base.is_jmp = DISAS_NORETURN;
14297         s->base.pc_next = pc + 4;
14298         return;
14299     }
14300 
14301     if (pc & 3) {
14302         /*
14303          * PC alignment fault.  This has priority over the instruction abort
14304          * that we would receive from a translation fault via arm_ldl_code.
14305          * This should only be possible after an indirect branch, at the
14306          * start of the TB.
14307          */
14308         assert(s->base.num_insns == 1);
14309         gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14310         s->base.is_jmp = DISAS_NORETURN;
14311         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14312         return;
14313     }
14314 
14315     s->pc_curr = pc;
14316     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14317     s->insn = insn;
14318     s->base.pc_next = pc + 4;
14319 
14320     s->fp_access_checked = false;
14321     s->sve_access_checked = false;
14322 
14323     if (s->pstate_il) {
14324         /*
14325          * Illegal execution state. This has priority over BTI
14326          * exceptions, but comes after instruction abort exceptions.
14327          */
14328         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14329         return;
14330     }
14331 
14332     if (dc_isar_feature(aa64_bti, s)) {
14333         if (s->base.num_insns == 1) {
14334             /*
14335              * At the first insn of the TB, compute s->guarded_page.
14336              * We delayed computing this until successfully reading
14337              * the first insn of the TB, above.  This (mostly) ensures
14338              * that the softmmu tlb entry has been populated, and the
14339              * page table GP bit is available.
14340              *
14341              * Note that we need to compute this even if btype == 0,
14342              * because this value is used for BR instructions later
14343              * where ENV is not available.
14344              */
14345             s->guarded_page = is_guarded_page(env, s);
14346 
14347             /* First insn can have btype set to non-zero.  */
14348             tcg_debug_assert(s->btype >= 0);
14349 
14350             /*
14351              * Note that the Branch Target Exception has fairly high
14352              * priority -- below debugging exceptions but above most
14353              * everything else.  This allows us to handle this now
14354              * instead of waiting until the insn is otherwise decoded.
14355              */
14356             if (s->btype != 0
14357                 && s->guarded_page
14358                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14359                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14360                 return;
14361             }
14362         } else {
14363             /* Not the first insn: btype must be 0.  */
14364             tcg_debug_assert(s->btype == 0);
14365         }
14366     }
14367 
14368     s->is_nonstreaming = false;
14369     if (s->sme_trap_nonstreaming) {
14370         disas_sme_fa64(s, insn);
14371     }
14372 
14373     if (!disas_a64(s, insn) &&
14374         !disas_sme(s, insn) &&
14375         !disas_sve(s, insn)) {
14376         disas_a64_legacy(s, insn);
14377     }
14378 
14379     /*
14380      * After execution of most insns, btype is reset to 0.
14381      * Note that we set btype == -1 when the insn sets btype.
14382      */
14383     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14384         reset_btype(s);
14385     }
14386 }
14387 
14388 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14389 {
14390     DisasContext *dc = container_of(dcbase, DisasContext, base);
14391 
14392     if (unlikely(dc->ss_active)) {
14393         /* Note that this means single stepping WFI doesn't halt the CPU.
14394          * For conditional branch insns this is harmless unreachable code as
14395          * gen_goto_tb() has already handled emitting the debug exception
14396          * (and thus a tb-jump is not possible when singlestepping).
14397          */
14398         switch (dc->base.is_jmp) {
14399         default:
14400             gen_a64_update_pc(dc, 4);
14401             /* fall through */
14402         case DISAS_EXIT:
14403         case DISAS_JUMP:
14404             gen_step_complete_exception(dc);
14405             break;
14406         case DISAS_NORETURN:
14407             break;
14408         }
14409     } else {
14410         switch (dc->base.is_jmp) {
14411         case DISAS_NEXT:
14412         case DISAS_TOO_MANY:
14413             gen_goto_tb(dc, 1, 4);
14414             break;
14415         default:
14416         case DISAS_UPDATE_EXIT:
14417             gen_a64_update_pc(dc, 4);
14418             /* fall through */
14419         case DISAS_EXIT:
14420             tcg_gen_exit_tb(NULL, 0);
14421             break;
14422         case DISAS_UPDATE_NOCHAIN:
14423             gen_a64_update_pc(dc, 4);
14424             /* fall through */
14425         case DISAS_JUMP:
14426             tcg_gen_lookup_and_goto_ptr();
14427             break;
14428         case DISAS_NORETURN:
14429         case DISAS_SWI:
14430             break;
14431         case DISAS_WFE:
14432             gen_a64_update_pc(dc, 4);
14433             gen_helper_wfe(cpu_env);
14434             break;
14435         case DISAS_YIELD:
14436             gen_a64_update_pc(dc, 4);
14437             gen_helper_yield(cpu_env);
14438             break;
14439         case DISAS_WFI:
14440             /*
14441              * This is a special case because we don't want to just halt
14442              * the CPU if trying to debug across a WFI.
14443              */
14444             gen_a64_update_pc(dc, 4);
14445             gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14446             /*
14447              * The helper doesn't necessarily throw an exception, but we
14448              * must go back to the main loop to check for interrupts anyway.
14449              */
14450             tcg_gen_exit_tb(NULL, 0);
14451             break;
14452         }
14453     }
14454 }
14455 
14456 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14457                                  CPUState *cpu, FILE *logfile)
14458 {
14459     DisasContext *dc = container_of(dcbase, DisasContext, base);
14460 
14461     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14462     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14463 }
14464 
14465 const TranslatorOps aarch64_translator_ops = {
14466     .init_disas_context = aarch64_tr_init_disas_context,
14467     .tb_start           = aarch64_tr_tb_start,
14468     .insn_start         = aarch64_tr_insn_start,
14469     .translate_insn     = aarch64_tr_translate_insn,
14470     .tb_stop            = aarch64_tr_tb_stop,
14471     .disas_log          = aarch64_tr_disas_log,
14472 };
14473