1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1653 { 1654 return true; 1655 } 1656 1657 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1658 { 1659 /* 1660 * When running in MTTCG we don't generate jumps to the yield and 1661 * WFE helpers as it won't affect the scheduling of other vCPUs. 1662 * If we wanted to more completely model WFE/SEV so we don't busy 1663 * spin unnecessarily we would need to do something more involved. 1664 */ 1665 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1666 s->base.is_jmp = DISAS_YIELD; 1667 } 1668 return true; 1669 } 1670 1671 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1672 { 1673 s->base.is_jmp = DISAS_WFI; 1674 return true; 1675 } 1676 1677 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1678 { 1679 /* 1680 * When running in MTTCG we don't generate jumps to the yield and 1681 * WFE helpers as it won't affect the scheduling of other vCPUs. 1682 * If we wanted to more completely model WFE/SEV so we don't busy 1683 * spin unnecessarily we would need to do something more involved. 1684 */ 1685 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1686 s->base.is_jmp = DISAS_WFE; 1687 } 1688 return true; 1689 } 1690 1691 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1692 { 1693 if (s->pauth_active) { 1694 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1695 } 1696 return true; 1697 } 1698 1699 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1700 { 1701 if (s->pauth_active) { 1702 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1703 } 1704 return true; 1705 } 1706 1707 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1708 { 1709 if (s->pauth_active) { 1710 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1711 } 1712 return true; 1713 } 1714 1715 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1716 { 1717 if (s->pauth_active) { 1718 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1719 } 1720 return true; 1721 } 1722 1723 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1724 { 1725 if (s->pauth_active) { 1726 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1727 } 1728 return true; 1729 } 1730 1731 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1732 { 1733 /* Without RAS, we must implement this as NOP. */ 1734 if (dc_isar_feature(aa64_ras, s)) { 1735 /* 1736 * QEMU does not have a source of physical SErrors, 1737 * so we are only concerned with virtual SErrors. 1738 * The pseudocode in the ARM for this case is 1739 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1740 * AArch64.vESBOperation(); 1741 * Most of the condition can be evaluated at translation time. 1742 * Test for EL2 present, and defer test for SEL2 to runtime. 1743 */ 1744 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1745 gen_helper_vesb(cpu_env); 1746 } 1747 } 1748 return true; 1749 } 1750 1751 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1752 { 1753 if (s->pauth_active) { 1754 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1755 } 1756 return true; 1757 } 1758 1759 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1760 { 1761 if (s->pauth_active) { 1762 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1763 } 1764 return true; 1765 } 1766 1767 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1768 { 1769 if (s->pauth_active) { 1770 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1771 } 1772 return true; 1773 } 1774 1775 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1776 { 1777 if (s->pauth_active) { 1778 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1779 } 1780 return true; 1781 } 1782 1783 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1784 { 1785 if (s->pauth_active) { 1786 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1787 } 1788 return true; 1789 } 1790 1791 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1792 { 1793 if (s->pauth_active) { 1794 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1795 } 1796 return true; 1797 } 1798 1799 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1800 { 1801 if (s->pauth_active) { 1802 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1803 } 1804 return true; 1805 } 1806 1807 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1808 { 1809 if (s->pauth_active) { 1810 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1811 } 1812 return true; 1813 } 1814 1815 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1816 { 1817 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1818 return true; 1819 } 1820 1821 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1822 { 1823 /* We handle DSB and DMB the same way */ 1824 TCGBar bar; 1825 1826 switch (a->types) { 1827 case 1: /* MBReqTypes_Reads */ 1828 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1829 break; 1830 case 2: /* MBReqTypes_Writes */ 1831 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1832 break; 1833 default: /* MBReqTypes_All */ 1834 bar = TCG_BAR_SC | TCG_MO_ALL; 1835 break; 1836 } 1837 tcg_gen_mb(bar); 1838 return true; 1839 } 1840 1841 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1842 { 1843 /* 1844 * We need to break the TB after this insn to execute 1845 * self-modifying code correctly and also to take 1846 * any pending interrupts immediately. 1847 */ 1848 reset_btype(s); 1849 gen_goto_tb(s, 0, 4); 1850 return true; 1851 } 1852 1853 static bool trans_SB(DisasContext *s, arg_SB *a) 1854 { 1855 if (!dc_isar_feature(aa64_sb, s)) { 1856 return false; 1857 } 1858 /* 1859 * TODO: There is no speculation barrier opcode for TCG; 1860 * MB and end the TB instead. 1861 */ 1862 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1863 gen_goto_tb(s, 0, 4); 1864 return true; 1865 } 1866 1867 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1868 { 1869 if (!dc_isar_feature(aa64_condm_4, s)) { 1870 return false; 1871 } 1872 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1873 return true; 1874 } 1875 1876 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1877 { 1878 TCGv_i32 z; 1879 1880 if (!dc_isar_feature(aa64_condm_5, s)) { 1881 return false; 1882 } 1883 1884 z = tcg_temp_new_i32(); 1885 1886 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1887 1888 /* 1889 * (!C & !Z) << 31 1890 * (!(C | Z)) << 31 1891 * ~((C | Z) << 31) 1892 * ~-(C | Z) 1893 * (C | Z) - 1 1894 */ 1895 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1896 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1897 1898 /* !(Z & C) */ 1899 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1900 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1901 1902 /* (!C & Z) << 31 -> -(Z & ~C) */ 1903 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1904 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1905 1906 /* C | Z */ 1907 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1908 1909 return true; 1910 } 1911 1912 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1913 { 1914 if (!dc_isar_feature(aa64_condm_5, s)) { 1915 return false; 1916 } 1917 1918 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1919 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1920 1921 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1922 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1923 1924 tcg_gen_movi_i32(cpu_NF, 0); 1925 tcg_gen_movi_i32(cpu_VF, 0); 1926 1927 return true; 1928 } 1929 1930 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1931 { 1932 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1933 return false; 1934 } 1935 if (a->imm & 1) { 1936 set_pstate_bits(PSTATE_UAO); 1937 } else { 1938 clear_pstate_bits(PSTATE_UAO); 1939 } 1940 gen_rebuild_hflags(s); 1941 s->base.is_jmp = DISAS_TOO_MANY; 1942 return true; 1943 } 1944 1945 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1946 { 1947 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1948 return false; 1949 } 1950 if (a->imm & 1) { 1951 set_pstate_bits(PSTATE_PAN); 1952 } else { 1953 clear_pstate_bits(PSTATE_PAN); 1954 } 1955 gen_rebuild_hflags(s); 1956 s->base.is_jmp = DISAS_TOO_MANY; 1957 return true; 1958 } 1959 1960 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1961 { 1962 if (s->current_el == 0) { 1963 return false; 1964 } 1965 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1966 s->base.is_jmp = DISAS_TOO_MANY; 1967 return true; 1968 } 1969 1970 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1971 { 1972 if (!dc_isar_feature(aa64_ssbs, s)) { 1973 return false; 1974 } 1975 if (a->imm & 1) { 1976 set_pstate_bits(PSTATE_SSBS); 1977 } else { 1978 clear_pstate_bits(PSTATE_SSBS); 1979 } 1980 /* Don't need to rebuild hflags since SSBS is a nop */ 1981 s->base.is_jmp = DISAS_TOO_MANY; 1982 return true; 1983 } 1984 1985 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1986 { 1987 if (!dc_isar_feature(aa64_dit, s)) { 1988 return false; 1989 } 1990 if (a->imm & 1) { 1991 set_pstate_bits(PSTATE_DIT); 1992 } else { 1993 clear_pstate_bits(PSTATE_DIT); 1994 } 1995 /* There's no need to rebuild hflags because DIT is a nop */ 1996 s->base.is_jmp = DISAS_TOO_MANY; 1997 return true; 1998 } 1999 2000 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2001 { 2002 if (dc_isar_feature(aa64_mte, s)) { 2003 /* Full MTE is enabled -- set the TCO bit as directed. */ 2004 if (a->imm & 1) { 2005 set_pstate_bits(PSTATE_TCO); 2006 } else { 2007 clear_pstate_bits(PSTATE_TCO); 2008 } 2009 gen_rebuild_hflags(s); 2010 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2011 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2012 return true; 2013 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2014 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2015 return true; 2016 } else { 2017 /* Insn not present */ 2018 return false; 2019 } 2020 } 2021 2022 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2023 { 2024 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm)); 2025 s->base.is_jmp = DISAS_TOO_MANY; 2026 return true; 2027 } 2028 2029 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2030 { 2031 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm)); 2032 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2033 s->base.is_jmp = DISAS_UPDATE_EXIT; 2034 return true; 2035 } 2036 2037 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2038 { 2039 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2040 return false; 2041 } 2042 if (sme_access_check(s)) { 2043 int old = s->pstate_sm | (s->pstate_za << 1); 2044 int new = a->imm * 3; 2045 2046 if ((old ^ new) & a->mask) { 2047 /* At least one bit changes. */ 2048 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2049 tcg_constant_i32(a->mask)); 2050 s->base.is_jmp = DISAS_TOO_MANY; 2051 } 2052 } 2053 return true; 2054 } 2055 2056 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2057 { 2058 TCGv_i32 tmp = tcg_temp_new_i32(); 2059 TCGv_i32 nzcv = tcg_temp_new_i32(); 2060 2061 /* build bit 31, N */ 2062 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2063 /* build bit 30, Z */ 2064 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2065 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2066 /* build bit 29, C */ 2067 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2068 /* build bit 28, V */ 2069 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2070 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2071 /* generate result */ 2072 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2073 } 2074 2075 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2076 { 2077 TCGv_i32 nzcv = tcg_temp_new_i32(); 2078 2079 /* take NZCV from R[t] */ 2080 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2081 2082 /* bit 31, N */ 2083 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2084 /* bit 30, Z */ 2085 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2086 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2087 /* bit 29, C */ 2088 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2089 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2090 /* bit 28, V */ 2091 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2092 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2093 } 2094 2095 static void gen_sysreg_undef(DisasContext *s, bool isread, 2096 uint8_t op0, uint8_t op1, uint8_t op2, 2097 uint8_t crn, uint8_t crm, uint8_t rt) 2098 { 2099 /* 2100 * Generate code to emit an UNDEF with correct syndrome 2101 * information for a failed system register access. 2102 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2103 * but if FEAT_IDST is implemented then read accesses to registers 2104 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2105 * syndrome. 2106 */ 2107 uint32_t syndrome; 2108 2109 if (isread && dc_isar_feature(aa64_ids, s) && 2110 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2111 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2112 } else { 2113 syndrome = syn_uncategorized(); 2114 } 2115 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2116 } 2117 2118 /* MRS - move from system register 2119 * MSR (register) - move to system register 2120 * SYS 2121 * SYSL 2122 * These are all essentially the same insn in 'read' and 'write' 2123 * versions, with varying op0 fields. 2124 */ 2125 static void handle_sys(DisasContext *s, bool isread, 2126 unsigned int op0, unsigned int op1, unsigned int op2, 2127 unsigned int crn, unsigned int crm, unsigned int rt) 2128 { 2129 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2130 crn, crm, op0, op1, op2); 2131 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2132 bool need_exit_tb = false; 2133 TCGv_ptr tcg_ri = NULL; 2134 TCGv_i64 tcg_rt; 2135 2136 if (!ri) { 2137 /* Unknown register; this might be a guest error or a QEMU 2138 * unimplemented feature. 2139 */ 2140 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2141 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2142 isread ? "read" : "write", op0, op1, crn, crm, op2); 2143 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2144 return; 2145 } 2146 2147 /* Check access permissions */ 2148 if (!cp_access_ok(s->current_el, ri, isread)) { 2149 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2150 return; 2151 } 2152 2153 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2154 /* Emit code to perform further access permissions checks at 2155 * runtime; this may result in an exception. 2156 */ 2157 uint32_t syndrome; 2158 2159 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2160 gen_a64_update_pc(s, 0); 2161 tcg_ri = tcg_temp_new_ptr(); 2162 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2163 tcg_constant_i32(key), 2164 tcg_constant_i32(syndrome), 2165 tcg_constant_i32(isread)); 2166 } else if (ri->type & ARM_CP_RAISES_EXC) { 2167 /* 2168 * The readfn or writefn might raise an exception; 2169 * synchronize the CPU state in case it does. 2170 */ 2171 gen_a64_update_pc(s, 0); 2172 } 2173 2174 /* Handle special cases first */ 2175 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2176 case 0: 2177 break; 2178 case ARM_CP_NOP: 2179 return; 2180 case ARM_CP_NZCV: 2181 tcg_rt = cpu_reg(s, rt); 2182 if (isread) { 2183 gen_get_nzcv(tcg_rt); 2184 } else { 2185 gen_set_nzcv(tcg_rt); 2186 } 2187 return; 2188 case ARM_CP_CURRENTEL: 2189 /* Reads as current EL value from pstate, which is 2190 * guaranteed to be constant by the tb flags. 2191 */ 2192 tcg_rt = cpu_reg(s, rt); 2193 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2194 return; 2195 case ARM_CP_DC_ZVA: 2196 /* Writes clear the aligned block of memory which rt points into. */ 2197 if (s->mte_active[0]) { 2198 int desc = 0; 2199 2200 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2201 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2202 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2203 2204 tcg_rt = tcg_temp_new_i64(); 2205 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2206 tcg_constant_i32(desc), cpu_reg(s, rt)); 2207 } else { 2208 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2209 } 2210 gen_helper_dc_zva(cpu_env, tcg_rt); 2211 return; 2212 case ARM_CP_DC_GVA: 2213 { 2214 TCGv_i64 clean_addr, tag; 2215 2216 /* 2217 * DC_GVA, like DC_ZVA, requires that we supply the original 2218 * pointer for an invalid page. Probe that address first. 2219 */ 2220 tcg_rt = cpu_reg(s, rt); 2221 clean_addr = clean_data_tbi(s, tcg_rt); 2222 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2223 2224 if (s->ata) { 2225 /* Extract the tag from the register to match STZGM. */ 2226 tag = tcg_temp_new_i64(); 2227 tcg_gen_shri_i64(tag, tcg_rt, 56); 2228 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2229 } 2230 } 2231 return; 2232 case ARM_CP_DC_GZVA: 2233 { 2234 TCGv_i64 clean_addr, tag; 2235 2236 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2237 tcg_rt = cpu_reg(s, rt); 2238 clean_addr = clean_data_tbi(s, tcg_rt); 2239 gen_helper_dc_zva(cpu_env, clean_addr); 2240 2241 if (s->ata) { 2242 /* Extract the tag from the register to match STZGM. */ 2243 tag = tcg_temp_new_i64(); 2244 tcg_gen_shri_i64(tag, tcg_rt, 56); 2245 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2246 } 2247 } 2248 return; 2249 default: 2250 g_assert_not_reached(); 2251 } 2252 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2253 return; 2254 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2255 return; 2256 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2257 return; 2258 } 2259 2260 if (ri->type & ARM_CP_IO) { 2261 /* I/O operations must end the TB here (whether read or write) */ 2262 need_exit_tb = translator_io_start(&s->base); 2263 } 2264 2265 tcg_rt = cpu_reg(s, rt); 2266 2267 if (isread) { 2268 if (ri->type & ARM_CP_CONST) { 2269 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2270 } else if (ri->readfn) { 2271 if (!tcg_ri) { 2272 tcg_ri = gen_lookup_cp_reg(key); 2273 } 2274 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2275 } else { 2276 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2277 } 2278 } else { 2279 if (ri->type & ARM_CP_CONST) { 2280 /* If not forbidden by access permissions, treat as WI */ 2281 return; 2282 } else if (ri->writefn) { 2283 if (!tcg_ri) { 2284 tcg_ri = gen_lookup_cp_reg(key); 2285 } 2286 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2287 } else { 2288 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2289 } 2290 } 2291 2292 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2293 /* 2294 * A write to any coprocessor regiser that ends a TB 2295 * must rebuild the hflags for the next TB. 2296 */ 2297 gen_rebuild_hflags(s); 2298 /* 2299 * We default to ending the TB on a coprocessor register write, 2300 * but allow this to be suppressed by the register definition 2301 * (usually only necessary to work around guest bugs). 2302 */ 2303 need_exit_tb = true; 2304 } 2305 if (need_exit_tb) { 2306 s->base.is_jmp = DISAS_UPDATE_EXIT; 2307 } 2308 } 2309 2310 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2311 { 2312 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2313 return true; 2314 } 2315 2316 static bool trans_SVC(DisasContext *s, arg_i *a) 2317 { 2318 /* 2319 * For SVC, HVC and SMC we advance the single-step state 2320 * machine before taking the exception. This is architecturally 2321 * mandated, to ensure that single-stepping a system call 2322 * instruction works properly. 2323 */ 2324 uint32_t syndrome = syn_aa64_svc(a->imm); 2325 if (s->fgt_svc) { 2326 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2327 return true; 2328 } 2329 gen_ss_advance(s); 2330 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2331 return true; 2332 } 2333 2334 static bool trans_HVC(DisasContext *s, arg_i *a) 2335 { 2336 if (s->current_el == 0) { 2337 unallocated_encoding(s); 2338 return true; 2339 } 2340 /* 2341 * The pre HVC helper handles cases when HVC gets trapped 2342 * as an undefined insn by runtime configuration. 2343 */ 2344 gen_a64_update_pc(s, 0); 2345 gen_helper_pre_hvc(cpu_env); 2346 /* Architecture requires ss advance before we do the actual work */ 2347 gen_ss_advance(s); 2348 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2); 2349 return true; 2350 } 2351 2352 static bool trans_SMC(DisasContext *s, arg_i *a) 2353 { 2354 if (s->current_el == 0) { 2355 unallocated_encoding(s); 2356 return true; 2357 } 2358 gen_a64_update_pc(s, 0); 2359 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2360 /* Architecture requires ss advance before we do the actual work */ 2361 gen_ss_advance(s); 2362 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2363 return true; 2364 } 2365 2366 static bool trans_BRK(DisasContext *s, arg_i *a) 2367 { 2368 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2369 return true; 2370 } 2371 2372 static bool trans_HLT(DisasContext *s, arg_i *a) 2373 { 2374 /* 2375 * HLT. This has two purposes. 2376 * Architecturally, it is an external halting debug instruction. 2377 * Since QEMU doesn't implement external debug, we treat this as 2378 * it is required for halting debug disabled: it will UNDEF. 2379 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2380 */ 2381 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2382 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2383 } else { 2384 unallocated_encoding(s); 2385 } 2386 return true; 2387 } 2388 2389 /* 2390 * Load/Store exclusive instructions are implemented by remembering 2391 * the value/address loaded, and seeing if these are the same 2392 * when the store is performed. This is not actually the architecturally 2393 * mandated semantics, but it works for typical guest code sequences 2394 * and avoids having to monitor regular stores. 2395 * 2396 * The store exclusive uses the atomic cmpxchg primitives to avoid 2397 * races in multi-threaded linux-user and when MTTCG softmmu is 2398 * enabled. 2399 */ 2400 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2401 int size, bool is_pair) 2402 { 2403 int idx = get_mem_index(s); 2404 TCGv_i64 dirty_addr, clean_addr; 2405 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2406 2407 s->is_ldex = true; 2408 dirty_addr = cpu_reg_sp(s, rn); 2409 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2410 2411 g_assert(size <= 3); 2412 if (is_pair) { 2413 g_assert(size >= 2); 2414 if (size == 2) { 2415 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2416 if (s->be_data == MO_LE) { 2417 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2418 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2419 } else { 2420 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2421 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2422 } 2423 } else { 2424 TCGv_i128 t16 = tcg_temp_new_i128(); 2425 2426 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2427 2428 if (s->be_data == MO_LE) { 2429 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2430 cpu_exclusive_high, t16); 2431 } else { 2432 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2433 cpu_exclusive_val, t16); 2434 } 2435 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2436 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2437 } 2438 } else { 2439 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2440 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2441 } 2442 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2443 } 2444 2445 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2446 int rn, int size, int is_pair) 2447 { 2448 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2449 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2450 * [addr] = {Rt}; 2451 * if (is_pair) { 2452 * [addr + datasize] = {Rt2}; 2453 * } 2454 * {Rd} = 0; 2455 * } else { 2456 * {Rd} = 1; 2457 * } 2458 * env->exclusive_addr = -1; 2459 */ 2460 TCGLabel *fail_label = gen_new_label(); 2461 TCGLabel *done_label = gen_new_label(); 2462 TCGv_i64 tmp, clean_addr; 2463 MemOp memop; 2464 2465 /* 2466 * FIXME: We are out of spec here. We have recorded only the address 2467 * from load_exclusive, not the entire range, and we assume that the 2468 * size of the access on both sides match. The architecture allows the 2469 * store to be smaller than the load, so long as the stored bytes are 2470 * within the range recorded by the load. 2471 */ 2472 2473 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2474 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2475 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2476 2477 /* 2478 * The write, and any associated faults, only happen if the virtual 2479 * and physical addresses pass the exclusive monitor check. These 2480 * faults are exceedingly unlikely, because normally the guest uses 2481 * the exact same address register for the load_exclusive, and we 2482 * would have recognized these faults there. 2483 * 2484 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2485 * unaligned 4-byte write within the range of an aligned 8-byte load. 2486 * With LSE2, the store would need to cross a 16-byte boundary when the 2487 * load did not, which would mean the store is outside the range 2488 * recorded for the monitor, which would have failed a corrected monitor 2489 * check above. For now, we assume no size change and retain the 2490 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2491 * 2492 * It is possible to trigger an MTE fault, by performing the load with 2493 * a virtual address with a valid tag and performing the store with the 2494 * same virtual address and a different invalid tag. 2495 */ 2496 memop = size + is_pair; 2497 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2498 memop |= MO_ALIGN; 2499 } 2500 memop = finalize_memop(s, memop); 2501 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2502 2503 tmp = tcg_temp_new_i64(); 2504 if (is_pair) { 2505 if (size == 2) { 2506 if (s->be_data == MO_LE) { 2507 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2508 } else { 2509 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2510 } 2511 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2512 cpu_exclusive_val, tmp, 2513 get_mem_index(s), memop); 2514 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2515 } else { 2516 TCGv_i128 t16 = tcg_temp_new_i128(); 2517 TCGv_i128 c16 = tcg_temp_new_i128(); 2518 TCGv_i64 a, b; 2519 2520 if (s->be_data == MO_LE) { 2521 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2522 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2523 cpu_exclusive_high); 2524 } else { 2525 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2526 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2527 cpu_exclusive_val); 2528 } 2529 2530 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2531 get_mem_index(s), memop); 2532 2533 a = tcg_temp_new_i64(); 2534 b = tcg_temp_new_i64(); 2535 if (s->be_data == MO_LE) { 2536 tcg_gen_extr_i128_i64(a, b, t16); 2537 } else { 2538 tcg_gen_extr_i128_i64(b, a, t16); 2539 } 2540 2541 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2542 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2543 tcg_gen_or_i64(tmp, a, b); 2544 2545 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2546 } 2547 } else { 2548 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2549 cpu_reg(s, rt), get_mem_index(s), memop); 2550 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2551 } 2552 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2553 tcg_gen_br(done_label); 2554 2555 gen_set_label(fail_label); 2556 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2557 gen_set_label(done_label); 2558 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2559 } 2560 2561 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2562 int rn, int size) 2563 { 2564 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2565 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2566 int memidx = get_mem_index(s); 2567 TCGv_i64 clean_addr; 2568 MemOp memop; 2569 2570 if (rn == 31) { 2571 gen_check_sp_alignment(s); 2572 } 2573 memop = check_atomic_align(s, rn, size); 2574 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2575 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2576 memidx, memop); 2577 } 2578 2579 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2580 int rn, int size) 2581 { 2582 TCGv_i64 s1 = cpu_reg(s, rs); 2583 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2584 TCGv_i64 t1 = cpu_reg(s, rt); 2585 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2586 TCGv_i64 clean_addr; 2587 int memidx = get_mem_index(s); 2588 MemOp memop; 2589 2590 if (rn == 31) { 2591 gen_check_sp_alignment(s); 2592 } 2593 2594 /* This is a single atomic access, despite the "pair". */ 2595 memop = check_atomic_align(s, rn, size + 1); 2596 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2597 2598 if (size == 2) { 2599 TCGv_i64 cmp = tcg_temp_new_i64(); 2600 TCGv_i64 val = tcg_temp_new_i64(); 2601 2602 if (s->be_data == MO_LE) { 2603 tcg_gen_concat32_i64(val, t1, t2); 2604 tcg_gen_concat32_i64(cmp, s1, s2); 2605 } else { 2606 tcg_gen_concat32_i64(val, t2, t1); 2607 tcg_gen_concat32_i64(cmp, s2, s1); 2608 } 2609 2610 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2611 2612 if (s->be_data == MO_LE) { 2613 tcg_gen_extr32_i64(s1, s2, cmp); 2614 } else { 2615 tcg_gen_extr32_i64(s2, s1, cmp); 2616 } 2617 } else { 2618 TCGv_i128 cmp = tcg_temp_new_i128(); 2619 TCGv_i128 val = tcg_temp_new_i128(); 2620 2621 if (s->be_data == MO_LE) { 2622 tcg_gen_concat_i64_i128(val, t1, t2); 2623 tcg_gen_concat_i64_i128(cmp, s1, s2); 2624 } else { 2625 tcg_gen_concat_i64_i128(val, t2, t1); 2626 tcg_gen_concat_i64_i128(cmp, s2, s1); 2627 } 2628 2629 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2630 2631 if (s->be_data == MO_LE) { 2632 tcg_gen_extr_i128_i64(s1, s2, cmp); 2633 } else { 2634 tcg_gen_extr_i128_i64(s2, s1, cmp); 2635 } 2636 } 2637 } 2638 2639 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2640 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2641 */ 2642 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2643 { 2644 int opc0 = extract32(opc, 0, 1); 2645 int regsize; 2646 2647 if (is_signed) { 2648 regsize = opc0 ? 32 : 64; 2649 } else { 2650 regsize = size == 3 ? 64 : 32; 2651 } 2652 return regsize == 64; 2653 } 2654 2655 /* Load/store exclusive 2656 * 2657 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2658 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2659 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2660 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2661 * 2662 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2663 * L: 0 -> store, 1 -> load 2664 * o2: 0 -> exclusive, 1 -> not 2665 * o1: 0 -> single register, 1 -> register pair 2666 * o0: 1 -> load-acquire/store-release, 0 -> not 2667 */ 2668 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2669 { 2670 int rt = extract32(insn, 0, 5); 2671 int rn = extract32(insn, 5, 5); 2672 int rt2 = extract32(insn, 10, 5); 2673 int rs = extract32(insn, 16, 5); 2674 int is_lasr = extract32(insn, 15, 1); 2675 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2676 int size = extract32(insn, 30, 2); 2677 TCGv_i64 clean_addr; 2678 MemOp memop; 2679 2680 switch (o2_L_o1_o0) { 2681 case 0x0: /* STXR */ 2682 case 0x1: /* STLXR */ 2683 if (rn == 31) { 2684 gen_check_sp_alignment(s); 2685 } 2686 if (is_lasr) { 2687 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2688 } 2689 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2690 return; 2691 2692 case 0x4: /* LDXR */ 2693 case 0x5: /* LDAXR */ 2694 if (rn == 31) { 2695 gen_check_sp_alignment(s); 2696 } 2697 gen_load_exclusive(s, rt, rt2, rn, size, false); 2698 if (is_lasr) { 2699 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2700 } 2701 return; 2702 2703 case 0x8: /* STLLR */ 2704 if (!dc_isar_feature(aa64_lor, s)) { 2705 break; 2706 } 2707 /* StoreLORelease is the same as Store-Release for QEMU. */ 2708 /* fall through */ 2709 case 0x9: /* STLR */ 2710 /* Generate ISS for non-exclusive accesses including LASR. */ 2711 if (rn == 31) { 2712 gen_check_sp_alignment(s); 2713 } 2714 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2715 memop = check_ordered_align(s, rn, 0, true, size); 2716 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2717 true, rn != 31, memop); 2718 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2719 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2720 return; 2721 2722 case 0xc: /* LDLAR */ 2723 if (!dc_isar_feature(aa64_lor, s)) { 2724 break; 2725 } 2726 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2727 /* fall through */ 2728 case 0xd: /* LDAR */ 2729 /* Generate ISS for non-exclusive accesses including LASR. */ 2730 if (rn == 31) { 2731 gen_check_sp_alignment(s); 2732 } 2733 memop = check_ordered_align(s, rn, 0, false, size); 2734 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2735 false, rn != 31, memop); 2736 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2737 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2738 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2739 return; 2740 2741 case 0x2: case 0x3: /* CASP / STXP */ 2742 if (size & 2) { /* STXP / STLXP */ 2743 if (rn == 31) { 2744 gen_check_sp_alignment(s); 2745 } 2746 if (is_lasr) { 2747 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2748 } 2749 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2750 return; 2751 } 2752 if (rt2 == 31 2753 && ((rt | rs) & 1) == 0 2754 && dc_isar_feature(aa64_atomics, s)) { 2755 /* CASP / CASPL */ 2756 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2757 return; 2758 } 2759 break; 2760 2761 case 0x6: case 0x7: /* CASPA / LDXP */ 2762 if (size & 2) { /* LDXP / LDAXP */ 2763 if (rn == 31) { 2764 gen_check_sp_alignment(s); 2765 } 2766 gen_load_exclusive(s, rt, rt2, rn, size, true); 2767 if (is_lasr) { 2768 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2769 } 2770 return; 2771 } 2772 if (rt2 == 31 2773 && ((rt | rs) & 1) == 0 2774 && dc_isar_feature(aa64_atomics, s)) { 2775 /* CASPA / CASPAL */ 2776 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2777 return; 2778 } 2779 break; 2780 2781 case 0xa: /* CAS */ 2782 case 0xb: /* CASL */ 2783 case 0xe: /* CASA */ 2784 case 0xf: /* CASAL */ 2785 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2786 gen_compare_and_swap(s, rs, rt, rn, size); 2787 return; 2788 } 2789 break; 2790 } 2791 unallocated_encoding(s); 2792 } 2793 2794 /* 2795 * Load register (literal) 2796 * 2797 * 31 30 29 27 26 25 24 23 5 4 0 2798 * +-----+-------+---+-----+-------------------+-------+ 2799 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2800 * +-----+-------+---+-----+-------------------+-------+ 2801 * 2802 * V: 1 -> vector (simd/fp) 2803 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2804 * 10-> 32 bit signed, 11 -> prefetch 2805 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2806 */ 2807 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2808 { 2809 int rt = extract32(insn, 0, 5); 2810 int64_t imm = sextract32(insn, 5, 19) << 2; 2811 bool is_vector = extract32(insn, 26, 1); 2812 int opc = extract32(insn, 30, 2); 2813 bool is_signed = false; 2814 int size = 2; 2815 TCGv_i64 tcg_rt, clean_addr; 2816 MemOp memop; 2817 2818 if (is_vector) { 2819 if (opc == 3) { 2820 unallocated_encoding(s); 2821 return; 2822 } 2823 size = 2 + opc; 2824 if (!fp_access_check(s)) { 2825 return; 2826 } 2827 memop = finalize_memop_asimd(s, size); 2828 } else { 2829 if (opc == 3) { 2830 /* PRFM (literal) : prefetch */ 2831 return; 2832 } 2833 size = 2 + extract32(opc, 0, 1); 2834 is_signed = extract32(opc, 1, 1); 2835 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2836 } 2837 2838 tcg_rt = cpu_reg(s, rt); 2839 2840 clean_addr = tcg_temp_new_i64(); 2841 gen_pc_plus_diff(s, clean_addr, imm); 2842 2843 if (is_vector) { 2844 do_fp_ld(s, rt, clean_addr, memop); 2845 } else { 2846 /* Only unsigned 32bit loads target 32bit registers. */ 2847 bool iss_sf = opc != 0; 2848 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2849 } 2850 } 2851 2852 /* 2853 * LDNP (Load Pair - non-temporal hint) 2854 * LDP (Load Pair - non vector) 2855 * LDPSW (Load Pair Signed Word - non vector) 2856 * STNP (Store Pair - non-temporal hint) 2857 * STP (Store Pair - non vector) 2858 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2859 * LDP (Load Pair of SIMD&FP) 2860 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2861 * STP (Store Pair of SIMD&FP) 2862 * 2863 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2864 * +-----+-------+---+---+-------+---+-----------------------------+ 2865 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2866 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2867 * 2868 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2869 * LDPSW/STGP 01 2870 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2871 * V: 0 -> GPR, 1 -> Vector 2872 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2873 * 10 -> signed offset, 11 -> pre-index 2874 * L: 0 -> Store 1 -> Load 2875 * 2876 * Rt, Rt2 = GPR or SIMD registers to be stored 2877 * Rn = general purpose register containing address 2878 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2879 */ 2880 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2881 { 2882 int rt = extract32(insn, 0, 5); 2883 int rn = extract32(insn, 5, 5); 2884 int rt2 = extract32(insn, 10, 5); 2885 uint64_t offset = sextract64(insn, 15, 7); 2886 int index = extract32(insn, 23, 2); 2887 bool is_vector = extract32(insn, 26, 1); 2888 bool is_load = extract32(insn, 22, 1); 2889 int opc = extract32(insn, 30, 2); 2890 bool is_signed = false; 2891 bool postindex = false; 2892 bool wback = false; 2893 bool set_tag = false; 2894 TCGv_i64 clean_addr, dirty_addr; 2895 MemOp mop; 2896 int size; 2897 2898 if (opc == 3) { 2899 unallocated_encoding(s); 2900 return; 2901 } 2902 2903 if (is_vector) { 2904 size = 2 + opc; 2905 } else if (opc == 1 && !is_load) { 2906 /* STGP */ 2907 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2908 unallocated_encoding(s); 2909 return; 2910 } 2911 size = 3; 2912 set_tag = true; 2913 } else { 2914 size = 2 + extract32(opc, 1, 1); 2915 is_signed = extract32(opc, 0, 1); 2916 if (!is_load && is_signed) { 2917 unallocated_encoding(s); 2918 return; 2919 } 2920 } 2921 2922 switch (index) { 2923 case 1: /* post-index */ 2924 postindex = true; 2925 wback = true; 2926 break; 2927 case 0: 2928 /* signed offset with "non-temporal" hint. Since we don't emulate 2929 * caches we don't care about hints to the cache system about 2930 * data access patterns, and handle this identically to plain 2931 * signed offset. 2932 */ 2933 if (is_signed) { 2934 /* There is no non-temporal-hint version of LDPSW */ 2935 unallocated_encoding(s); 2936 return; 2937 } 2938 postindex = false; 2939 break; 2940 case 2: /* signed offset, rn not updated */ 2941 postindex = false; 2942 break; 2943 case 3: /* pre-index */ 2944 postindex = false; 2945 wback = true; 2946 break; 2947 } 2948 2949 if (is_vector && !fp_access_check(s)) { 2950 return; 2951 } 2952 2953 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2954 2955 if (rn == 31) { 2956 gen_check_sp_alignment(s); 2957 } 2958 2959 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2960 if (!postindex) { 2961 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2962 } 2963 2964 if (set_tag) { 2965 if (!s->ata) { 2966 /* 2967 * TODO: We could rely on the stores below, at least for 2968 * system mode, if we arrange to add MO_ALIGN_16. 2969 */ 2970 gen_helper_stg_stub(cpu_env, dirty_addr); 2971 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2972 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2973 } else { 2974 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2975 } 2976 } 2977 2978 if (is_vector) { 2979 mop = finalize_memop_asimd(s, size); 2980 } else { 2981 mop = finalize_memop(s, size); 2982 } 2983 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2984 (wback || rn != 31) && !set_tag, 2985 2 << size, mop); 2986 2987 if (is_vector) { 2988 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2989 if (is_load) { 2990 do_fp_ld(s, rt, clean_addr, mop); 2991 } else { 2992 do_fp_st(s, rt, clean_addr, mop); 2993 } 2994 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2995 if (is_load) { 2996 do_fp_ld(s, rt2, clean_addr, mop); 2997 } else { 2998 do_fp_st(s, rt2, clean_addr, mop); 2999 } 3000 } else { 3001 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3002 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3003 3004 /* 3005 * We built mop above for the single logical access -- rebuild it 3006 * now for the paired operation. 3007 * 3008 * With LSE2, non-sign-extending pairs are treated atomically if 3009 * aligned, and if unaligned one of the pair will be completely 3010 * within a 16-byte block and that element will be atomic. 3011 * Otherwise each element is separately atomic. 3012 * In all cases, issue one operation with the correct atomicity. 3013 * 3014 * This treats sign-extending loads like zero-extending loads, 3015 * since that reuses the most code below. 3016 */ 3017 mop = size + 1; 3018 if (s->align_mem) { 3019 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3020 } 3021 mop = finalize_memop_pair(s, mop); 3022 3023 if (is_load) { 3024 if (size == 2) { 3025 int o2 = s->be_data == MO_LE ? 32 : 0; 3026 int o1 = o2 ^ 32; 3027 3028 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3029 if (is_signed) { 3030 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3031 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3032 } else { 3033 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3034 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3035 } 3036 } else { 3037 TCGv_i128 tmp = tcg_temp_new_i128(); 3038 3039 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3040 if (s->be_data == MO_LE) { 3041 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3042 } else { 3043 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3044 } 3045 } 3046 } else { 3047 if (size == 2) { 3048 TCGv_i64 tmp = tcg_temp_new_i64(); 3049 3050 if (s->be_data == MO_LE) { 3051 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3052 } else { 3053 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3054 } 3055 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3056 } else { 3057 TCGv_i128 tmp = tcg_temp_new_i128(); 3058 3059 if (s->be_data == MO_LE) { 3060 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3061 } else { 3062 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3063 } 3064 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3065 } 3066 } 3067 } 3068 3069 if (wback) { 3070 if (postindex) { 3071 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3072 } 3073 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3074 } 3075 } 3076 3077 /* 3078 * Load/store (immediate post-indexed) 3079 * Load/store (immediate pre-indexed) 3080 * Load/store (unscaled immediate) 3081 * 3082 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3083 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3084 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3085 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3086 * 3087 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3088 10 -> unprivileged 3089 * V = 0 -> non-vector 3090 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3091 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3092 */ 3093 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3094 int opc, 3095 int size, 3096 int rt, 3097 bool is_vector) 3098 { 3099 int rn = extract32(insn, 5, 5); 3100 int imm9 = sextract32(insn, 12, 9); 3101 int idx = extract32(insn, 10, 2); 3102 bool is_signed = false; 3103 bool is_store = false; 3104 bool is_extended = false; 3105 bool is_unpriv = (idx == 2); 3106 bool iss_valid; 3107 bool post_index; 3108 bool writeback; 3109 int memidx; 3110 MemOp memop; 3111 TCGv_i64 clean_addr, dirty_addr; 3112 3113 if (is_vector) { 3114 size |= (opc & 2) << 1; 3115 if (size > 4 || is_unpriv) { 3116 unallocated_encoding(s); 3117 return; 3118 } 3119 is_store = ((opc & 1) == 0); 3120 if (!fp_access_check(s)) { 3121 return; 3122 } 3123 memop = finalize_memop_asimd(s, size); 3124 } else { 3125 if (size == 3 && opc == 2) { 3126 /* PRFM - prefetch */ 3127 if (idx != 0) { 3128 unallocated_encoding(s); 3129 return; 3130 } 3131 return; 3132 } 3133 if (opc == 3 && size > 1) { 3134 unallocated_encoding(s); 3135 return; 3136 } 3137 is_store = (opc == 0); 3138 is_signed = !is_store && extract32(opc, 1, 1); 3139 is_extended = (size < 3) && extract32(opc, 0, 1); 3140 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3141 } 3142 3143 switch (idx) { 3144 case 0: 3145 case 2: 3146 post_index = false; 3147 writeback = false; 3148 break; 3149 case 1: 3150 post_index = true; 3151 writeback = true; 3152 break; 3153 case 3: 3154 post_index = false; 3155 writeback = true; 3156 break; 3157 default: 3158 g_assert_not_reached(); 3159 } 3160 3161 iss_valid = !is_vector && !writeback; 3162 3163 if (rn == 31) { 3164 gen_check_sp_alignment(s); 3165 } 3166 3167 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3168 if (!post_index) { 3169 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3170 } 3171 3172 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3173 3174 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3175 writeback || rn != 31, 3176 memop, is_unpriv, memidx); 3177 3178 if (is_vector) { 3179 if (is_store) { 3180 do_fp_st(s, rt, clean_addr, memop); 3181 } else { 3182 do_fp_ld(s, rt, clean_addr, memop); 3183 } 3184 } else { 3185 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3186 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3187 3188 if (is_store) { 3189 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3190 iss_valid, rt, iss_sf, false); 3191 } else { 3192 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3193 is_extended, memidx, 3194 iss_valid, rt, iss_sf, false); 3195 } 3196 } 3197 3198 if (writeback) { 3199 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3200 if (post_index) { 3201 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3202 } 3203 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3204 } 3205 } 3206 3207 /* 3208 * Load/store (register offset) 3209 * 3210 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3211 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3212 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3213 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3214 * 3215 * For non-vector: 3216 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3217 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3218 * For vector: 3219 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3220 * opc<0>: 0 -> store, 1 -> load 3221 * V: 1 -> vector/simd 3222 * opt: extend encoding (see DecodeRegExtend) 3223 * S: if S=1 then scale (essentially index by sizeof(size)) 3224 * Rt: register to transfer into/out of 3225 * Rn: address register or SP for base 3226 * Rm: offset register or ZR for offset 3227 */ 3228 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3229 int opc, 3230 int size, 3231 int rt, 3232 bool is_vector) 3233 { 3234 int rn = extract32(insn, 5, 5); 3235 int shift = extract32(insn, 12, 1); 3236 int rm = extract32(insn, 16, 5); 3237 int opt = extract32(insn, 13, 3); 3238 bool is_signed = false; 3239 bool is_store = false; 3240 bool is_extended = false; 3241 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3242 MemOp memop; 3243 3244 if (extract32(opt, 1, 1) == 0) { 3245 unallocated_encoding(s); 3246 return; 3247 } 3248 3249 if (is_vector) { 3250 size |= (opc & 2) << 1; 3251 if (size > 4) { 3252 unallocated_encoding(s); 3253 return; 3254 } 3255 is_store = !extract32(opc, 0, 1); 3256 if (!fp_access_check(s)) { 3257 return; 3258 } 3259 memop = finalize_memop_asimd(s, size); 3260 } else { 3261 if (size == 3 && opc == 2) { 3262 /* PRFM - prefetch */ 3263 return; 3264 } 3265 if (opc == 3 && size > 1) { 3266 unallocated_encoding(s); 3267 return; 3268 } 3269 is_store = (opc == 0); 3270 is_signed = !is_store && extract32(opc, 1, 1); 3271 is_extended = (size < 3) && extract32(opc, 0, 1); 3272 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3273 } 3274 3275 if (rn == 31) { 3276 gen_check_sp_alignment(s); 3277 } 3278 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3279 3280 tcg_rm = read_cpu_reg(s, rm, 1); 3281 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3282 3283 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3284 3285 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3286 3287 if (is_vector) { 3288 if (is_store) { 3289 do_fp_st(s, rt, clean_addr, memop); 3290 } else { 3291 do_fp_ld(s, rt, clean_addr, memop); 3292 } 3293 } else { 3294 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3295 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3296 3297 if (is_store) { 3298 do_gpr_st(s, tcg_rt, clean_addr, memop, 3299 true, rt, iss_sf, false); 3300 } else { 3301 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3302 is_extended, true, rt, iss_sf, false); 3303 } 3304 } 3305 } 3306 3307 /* 3308 * Load/store (unsigned immediate) 3309 * 3310 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3311 * +----+-------+---+-----+-----+------------+-------+------+ 3312 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3313 * +----+-------+---+-----+-----+------------+-------+------+ 3314 * 3315 * For non-vector: 3316 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3317 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3318 * For vector: 3319 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3320 * opc<0>: 0 -> store, 1 -> load 3321 * Rn: base address register (inc SP) 3322 * Rt: target register 3323 */ 3324 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3325 int opc, 3326 int size, 3327 int rt, 3328 bool is_vector) 3329 { 3330 int rn = extract32(insn, 5, 5); 3331 unsigned int imm12 = extract32(insn, 10, 12); 3332 unsigned int offset; 3333 TCGv_i64 clean_addr, dirty_addr; 3334 bool is_store; 3335 bool is_signed = false; 3336 bool is_extended = false; 3337 MemOp memop; 3338 3339 if (is_vector) { 3340 size |= (opc & 2) << 1; 3341 if (size > 4) { 3342 unallocated_encoding(s); 3343 return; 3344 } 3345 is_store = !extract32(opc, 0, 1); 3346 if (!fp_access_check(s)) { 3347 return; 3348 } 3349 memop = finalize_memop_asimd(s, size); 3350 } else { 3351 if (size == 3 && opc == 2) { 3352 /* PRFM - prefetch */ 3353 return; 3354 } 3355 if (opc == 3 && size > 1) { 3356 unallocated_encoding(s); 3357 return; 3358 } 3359 is_store = (opc == 0); 3360 is_signed = !is_store && extract32(opc, 1, 1); 3361 is_extended = (size < 3) && extract32(opc, 0, 1); 3362 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3363 } 3364 3365 if (rn == 31) { 3366 gen_check_sp_alignment(s); 3367 } 3368 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3369 offset = imm12 << size; 3370 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3371 3372 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3373 3374 if (is_vector) { 3375 if (is_store) { 3376 do_fp_st(s, rt, clean_addr, memop); 3377 } else { 3378 do_fp_ld(s, rt, clean_addr, memop); 3379 } 3380 } else { 3381 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3382 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3383 if (is_store) { 3384 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3385 } else { 3386 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3387 is_extended, true, rt, iss_sf, false); 3388 } 3389 } 3390 } 3391 3392 /* Atomic memory operations 3393 * 3394 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3395 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3396 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3397 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3398 * 3399 * Rt: the result register 3400 * Rn: base address or SP 3401 * Rs: the source register for the operation 3402 * V: vector flag (always 0 as of v8.3) 3403 * A: acquire flag 3404 * R: release flag 3405 */ 3406 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3407 int size, int rt, bool is_vector) 3408 { 3409 int rs = extract32(insn, 16, 5); 3410 int rn = extract32(insn, 5, 5); 3411 int o3_opc = extract32(insn, 12, 4); 3412 bool r = extract32(insn, 22, 1); 3413 bool a = extract32(insn, 23, 1); 3414 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3415 AtomicThreeOpFn *fn = NULL; 3416 MemOp mop = size; 3417 3418 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3419 unallocated_encoding(s); 3420 return; 3421 } 3422 switch (o3_opc) { 3423 case 000: /* LDADD */ 3424 fn = tcg_gen_atomic_fetch_add_i64; 3425 break; 3426 case 001: /* LDCLR */ 3427 fn = tcg_gen_atomic_fetch_and_i64; 3428 break; 3429 case 002: /* LDEOR */ 3430 fn = tcg_gen_atomic_fetch_xor_i64; 3431 break; 3432 case 003: /* LDSET */ 3433 fn = tcg_gen_atomic_fetch_or_i64; 3434 break; 3435 case 004: /* LDSMAX */ 3436 fn = tcg_gen_atomic_fetch_smax_i64; 3437 mop |= MO_SIGN; 3438 break; 3439 case 005: /* LDSMIN */ 3440 fn = tcg_gen_atomic_fetch_smin_i64; 3441 mop |= MO_SIGN; 3442 break; 3443 case 006: /* LDUMAX */ 3444 fn = tcg_gen_atomic_fetch_umax_i64; 3445 break; 3446 case 007: /* LDUMIN */ 3447 fn = tcg_gen_atomic_fetch_umin_i64; 3448 break; 3449 case 010: /* SWP */ 3450 fn = tcg_gen_atomic_xchg_i64; 3451 break; 3452 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3453 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3454 rs != 31 || a != 1 || r != 0) { 3455 unallocated_encoding(s); 3456 return; 3457 } 3458 break; 3459 default: 3460 unallocated_encoding(s); 3461 return; 3462 } 3463 3464 if (rn == 31) { 3465 gen_check_sp_alignment(s); 3466 } 3467 3468 mop = check_atomic_align(s, rn, mop); 3469 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3470 3471 if (o3_opc == 014) { 3472 /* 3473 * LDAPR* are a special case because they are a simple load, not a 3474 * fetch-and-do-something op. 3475 * The architectural consistency requirements here are weaker than 3476 * full load-acquire (we only need "load-acquire processor consistent"), 3477 * but we choose to implement them as full LDAQ. 3478 */ 3479 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3480 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3481 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3482 return; 3483 } 3484 3485 tcg_rs = read_cpu_reg(s, rs, true); 3486 tcg_rt = cpu_reg(s, rt); 3487 3488 if (o3_opc == 1) { /* LDCLR */ 3489 tcg_gen_not_i64(tcg_rs, tcg_rs); 3490 } 3491 3492 /* The tcg atomic primitives are all full barriers. Therefore we 3493 * can ignore the Acquire and Release bits of this instruction. 3494 */ 3495 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3496 3497 if (mop & MO_SIGN) { 3498 switch (size) { 3499 case MO_8: 3500 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3501 break; 3502 case MO_16: 3503 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3504 break; 3505 case MO_32: 3506 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3507 break; 3508 case MO_64: 3509 break; 3510 default: 3511 g_assert_not_reached(); 3512 } 3513 } 3514 } 3515 3516 /* 3517 * PAC memory operations 3518 * 3519 * 31 30 27 26 24 22 21 12 11 10 5 0 3520 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3521 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3522 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3523 * 3524 * Rt: the result register 3525 * Rn: base address or SP 3526 * V: vector flag (always 0 as of v8.3) 3527 * M: clear for key DA, set for key DB 3528 * W: pre-indexing flag 3529 * S: sign for imm9. 3530 */ 3531 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3532 int size, int rt, bool is_vector) 3533 { 3534 int rn = extract32(insn, 5, 5); 3535 bool is_wback = extract32(insn, 11, 1); 3536 bool use_key_a = !extract32(insn, 23, 1); 3537 int offset; 3538 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3539 MemOp memop; 3540 3541 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3542 unallocated_encoding(s); 3543 return; 3544 } 3545 3546 if (rn == 31) { 3547 gen_check_sp_alignment(s); 3548 } 3549 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3550 3551 if (s->pauth_active) { 3552 if (use_key_a) { 3553 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3554 tcg_constant_i64(0)); 3555 } else { 3556 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3557 tcg_constant_i64(0)); 3558 } 3559 } 3560 3561 /* Form the 10-bit signed, scaled offset. */ 3562 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3563 offset = sextract32(offset << size, 0, 10 + size); 3564 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3565 3566 memop = finalize_memop(s, size); 3567 3568 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3569 clean_addr = gen_mte_check1(s, dirty_addr, false, 3570 is_wback || rn != 31, memop); 3571 3572 tcg_rt = cpu_reg(s, rt); 3573 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3574 /* extend */ false, /* iss_valid */ !is_wback, 3575 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3576 3577 if (is_wback) { 3578 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3579 } 3580 } 3581 3582 /* 3583 * LDAPR/STLR (unscaled immediate) 3584 * 3585 * 31 30 24 22 21 12 10 5 0 3586 * +------+-------------+-----+---+--------+-----+----+-----+ 3587 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3588 * +------+-------------+-----+---+--------+-----+----+-----+ 3589 * 3590 * Rt: source or destination register 3591 * Rn: base register 3592 * imm9: unscaled immediate offset 3593 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3594 * size: size of load/store 3595 */ 3596 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3597 { 3598 int rt = extract32(insn, 0, 5); 3599 int rn = extract32(insn, 5, 5); 3600 int offset = sextract32(insn, 12, 9); 3601 int opc = extract32(insn, 22, 2); 3602 int size = extract32(insn, 30, 2); 3603 TCGv_i64 clean_addr, dirty_addr; 3604 bool is_store = false; 3605 bool extend = false; 3606 bool iss_sf; 3607 MemOp mop = size; 3608 3609 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3610 unallocated_encoding(s); 3611 return; 3612 } 3613 3614 switch (opc) { 3615 case 0: /* STLURB */ 3616 is_store = true; 3617 break; 3618 case 1: /* LDAPUR* */ 3619 break; 3620 case 2: /* LDAPURS* 64-bit variant */ 3621 if (size == 3) { 3622 unallocated_encoding(s); 3623 return; 3624 } 3625 mop |= MO_SIGN; 3626 break; 3627 case 3: /* LDAPURS* 32-bit variant */ 3628 if (size > 1) { 3629 unallocated_encoding(s); 3630 return; 3631 } 3632 mop |= MO_SIGN; 3633 extend = true; /* zero-extend 32->64 after signed load */ 3634 break; 3635 default: 3636 g_assert_not_reached(); 3637 } 3638 3639 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3640 3641 if (rn == 31) { 3642 gen_check_sp_alignment(s); 3643 } 3644 3645 mop = check_ordered_align(s, rn, offset, is_store, mop); 3646 3647 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3648 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3649 clean_addr = clean_data_tbi(s, dirty_addr); 3650 3651 if (is_store) { 3652 /* Store-Release semantics */ 3653 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3654 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3655 } else { 3656 /* 3657 * Load-AcquirePC semantics; we implement as the slightly more 3658 * restrictive Load-Acquire. 3659 */ 3660 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3661 extend, true, rt, iss_sf, true); 3662 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3663 } 3664 } 3665 3666 /* Load/store register (all forms) */ 3667 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3668 { 3669 int rt = extract32(insn, 0, 5); 3670 int opc = extract32(insn, 22, 2); 3671 bool is_vector = extract32(insn, 26, 1); 3672 int size = extract32(insn, 30, 2); 3673 3674 switch (extract32(insn, 24, 2)) { 3675 case 0: 3676 if (extract32(insn, 21, 1) == 0) { 3677 /* Load/store register (unscaled immediate) 3678 * Load/store immediate pre/post-indexed 3679 * Load/store register unprivileged 3680 */ 3681 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3682 return; 3683 } 3684 switch (extract32(insn, 10, 2)) { 3685 case 0: 3686 disas_ldst_atomic(s, insn, size, rt, is_vector); 3687 return; 3688 case 2: 3689 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3690 return; 3691 default: 3692 disas_ldst_pac(s, insn, size, rt, is_vector); 3693 return; 3694 } 3695 break; 3696 case 1: 3697 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3698 return; 3699 } 3700 unallocated_encoding(s); 3701 } 3702 3703 /* AdvSIMD load/store multiple structures 3704 * 3705 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3706 * +---+---+---------------+---+-------------+--------+------+------+------+ 3707 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3708 * +---+---+---------------+---+-------------+--------+------+------+------+ 3709 * 3710 * AdvSIMD load/store multiple structures (post-indexed) 3711 * 3712 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3713 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3714 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3715 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3716 * 3717 * Rt: first (or only) SIMD&FP register to be transferred 3718 * Rn: base address or SP 3719 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3720 */ 3721 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3722 { 3723 int rt = extract32(insn, 0, 5); 3724 int rn = extract32(insn, 5, 5); 3725 int rm = extract32(insn, 16, 5); 3726 int size = extract32(insn, 10, 2); 3727 int opcode = extract32(insn, 12, 4); 3728 bool is_store = !extract32(insn, 22, 1); 3729 bool is_postidx = extract32(insn, 23, 1); 3730 bool is_q = extract32(insn, 30, 1); 3731 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3732 MemOp endian, align, mop; 3733 3734 int total; /* total bytes */ 3735 int elements; /* elements per vector */ 3736 int rpt; /* num iterations */ 3737 int selem; /* structure elements */ 3738 int r; 3739 3740 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3741 unallocated_encoding(s); 3742 return; 3743 } 3744 3745 if (!is_postidx && rm != 0) { 3746 unallocated_encoding(s); 3747 return; 3748 } 3749 3750 /* From the shared decode logic */ 3751 switch (opcode) { 3752 case 0x0: 3753 rpt = 1; 3754 selem = 4; 3755 break; 3756 case 0x2: 3757 rpt = 4; 3758 selem = 1; 3759 break; 3760 case 0x4: 3761 rpt = 1; 3762 selem = 3; 3763 break; 3764 case 0x6: 3765 rpt = 3; 3766 selem = 1; 3767 break; 3768 case 0x7: 3769 rpt = 1; 3770 selem = 1; 3771 break; 3772 case 0x8: 3773 rpt = 1; 3774 selem = 2; 3775 break; 3776 case 0xa: 3777 rpt = 2; 3778 selem = 1; 3779 break; 3780 default: 3781 unallocated_encoding(s); 3782 return; 3783 } 3784 3785 if (size == 3 && !is_q && selem != 1) { 3786 /* reserved */ 3787 unallocated_encoding(s); 3788 return; 3789 } 3790 3791 if (!fp_access_check(s)) { 3792 return; 3793 } 3794 3795 if (rn == 31) { 3796 gen_check_sp_alignment(s); 3797 } 3798 3799 /* For our purposes, bytes are always little-endian. */ 3800 endian = s->be_data; 3801 if (size == 0) { 3802 endian = MO_LE; 3803 } 3804 3805 total = rpt * selem * (is_q ? 16 : 8); 3806 tcg_rn = cpu_reg_sp(s, rn); 3807 3808 /* 3809 * Issue the MTE check vs the logical repeat count, before we 3810 * promote consecutive little-endian elements below. 3811 */ 3812 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3813 total, finalize_memop_asimd(s, size)); 3814 3815 /* 3816 * Consecutive little-endian elements from a single register 3817 * can be promoted to a larger little-endian operation. 3818 */ 3819 align = MO_ALIGN; 3820 if (selem == 1 && endian == MO_LE) { 3821 align = pow2_align(size); 3822 size = 3; 3823 } 3824 if (!s->align_mem) { 3825 align = 0; 3826 } 3827 mop = endian | size | align; 3828 3829 elements = (is_q ? 16 : 8) >> size; 3830 tcg_ebytes = tcg_constant_i64(1 << size); 3831 for (r = 0; r < rpt; r++) { 3832 int e; 3833 for (e = 0; e < elements; e++) { 3834 int xs; 3835 for (xs = 0; xs < selem; xs++) { 3836 int tt = (rt + r + xs) % 32; 3837 if (is_store) { 3838 do_vec_st(s, tt, e, clean_addr, mop); 3839 } else { 3840 do_vec_ld(s, tt, e, clean_addr, mop); 3841 } 3842 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3843 } 3844 } 3845 } 3846 3847 if (!is_store) { 3848 /* For non-quad operations, setting a slice of the low 3849 * 64 bits of the register clears the high 64 bits (in 3850 * the ARM ARM pseudocode this is implicit in the fact 3851 * that 'rval' is a 64 bit wide variable). 3852 * For quad operations, we might still need to zero the 3853 * high bits of SVE. 3854 */ 3855 for (r = 0; r < rpt * selem; r++) { 3856 int tt = (rt + r) % 32; 3857 clear_vec_high(s, is_q, tt); 3858 } 3859 } 3860 3861 if (is_postidx) { 3862 if (rm == 31) { 3863 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3864 } else { 3865 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3866 } 3867 } 3868 } 3869 3870 /* AdvSIMD load/store single structure 3871 * 3872 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3873 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3874 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3875 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3876 * 3877 * AdvSIMD load/store single structure (post-indexed) 3878 * 3879 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3880 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3881 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3882 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3883 * 3884 * Rt: first (or only) SIMD&FP register to be transferred 3885 * Rn: base address or SP 3886 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3887 * index = encoded in Q:S:size dependent on size 3888 * 3889 * lane_size = encoded in R, opc 3890 * transfer width = encoded in opc, S, size 3891 */ 3892 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3893 { 3894 int rt = extract32(insn, 0, 5); 3895 int rn = extract32(insn, 5, 5); 3896 int rm = extract32(insn, 16, 5); 3897 int size = extract32(insn, 10, 2); 3898 int S = extract32(insn, 12, 1); 3899 int opc = extract32(insn, 13, 3); 3900 int R = extract32(insn, 21, 1); 3901 int is_load = extract32(insn, 22, 1); 3902 int is_postidx = extract32(insn, 23, 1); 3903 int is_q = extract32(insn, 30, 1); 3904 3905 int scale = extract32(opc, 1, 2); 3906 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3907 bool replicate = false; 3908 int index = is_q << 3 | S << 2 | size; 3909 int xs, total; 3910 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3911 MemOp mop; 3912 3913 if (extract32(insn, 31, 1)) { 3914 unallocated_encoding(s); 3915 return; 3916 } 3917 if (!is_postidx && rm != 0) { 3918 unallocated_encoding(s); 3919 return; 3920 } 3921 3922 switch (scale) { 3923 case 3: 3924 if (!is_load || S) { 3925 unallocated_encoding(s); 3926 return; 3927 } 3928 scale = size; 3929 replicate = true; 3930 break; 3931 case 0: 3932 break; 3933 case 1: 3934 if (extract32(size, 0, 1)) { 3935 unallocated_encoding(s); 3936 return; 3937 } 3938 index >>= 1; 3939 break; 3940 case 2: 3941 if (extract32(size, 1, 1)) { 3942 unallocated_encoding(s); 3943 return; 3944 } 3945 if (!extract32(size, 0, 1)) { 3946 index >>= 2; 3947 } else { 3948 if (S) { 3949 unallocated_encoding(s); 3950 return; 3951 } 3952 index >>= 3; 3953 scale = 3; 3954 } 3955 break; 3956 default: 3957 g_assert_not_reached(); 3958 } 3959 3960 if (!fp_access_check(s)) { 3961 return; 3962 } 3963 3964 if (rn == 31) { 3965 gen_check_sp_alignment(s); 3966 } 3967 3968 total = selem << scale; 3969 tcg_rn = cpu_reg_sp(s, rn); 3970 3971 mop = finalize_memop_asimd(s, scale); 3972 3973 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3974 total, mop); 3975 3976 tcg_ebytes = tcg_constant_i64(1 << scale); 3977 for (xs = 0; xs < selem; xs++) { 3978 if (replicate) { 3979 /* Load and replicate to all elements */ 3980 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3981 3982 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3983 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3984 (is_q + 1) * 8, vec_full_reg_size(s), 3985 tcg_tmp); 3986 } else { 3987 /* Load/store one element per register */ 3988 if (is_load) { 3989 do_vec_ld(s, rt, index, clean_addr, mop); 3990 } else { 3991 do_vec_st(s, rt, index, clean_addr, mop); 3992 } 3993 } 3994 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3995 rt = (rt + 1) % 32; 3996 } 3997 3998 if (is_postidx) { 3999 if (rm == 31) { 4000 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4001 } else { 4002 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4003 } 4004 } 4005 } 4006 4007 /* 4008 * Load/Store memory tags 4009 * 4010 * 31 30 29 24 22 21 12 10 5 0 4011 * +-----+-------------+-----+---+------+-----+------+------+ 4012 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4013 * +-----+-------------+-----+---+------+-----+------+------+ 4014 */ 4015 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4016 { 4017 int rt = extract32(insn, 0, 5); 4018 int rn = extract32(insn, 5, 5); 4019 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4020 int op2 = extract32(insn, 10, 2); 4021 int op1 = extract32(insn, 22, 2); 4022 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4023 int index = 0; 4024 TCGv_i64 addr, clean_addr, tcg_rt; 4025 4026 /* We checked insn bits [29:24,21] in the caller. */ 4027 if (extract32(insn, 30, 2) != 3) { 4028 goto do_unallocated; 4029 } 4030 4031 /* 4032 * @index is a tri-state variable which has 3 states: 4033 * < 0 : post-index, writeback 4034 * = 0 : signed offset 4035 * > 0 : pre-index, writeback 4036 */ 4037 switch (op1) { 4038 case 0: 4039 if (op2 != 0) { 4040 /* STG */ 4041 index = op2 - 2; 4042 } else { 4043 /* STZGM */ 4044 if (s->current_el == 0 || offset != 0) { 4045 goto do_unallocated; 4046 } 4047 is_mult = is_zero = true; 4048 } 4049 break; 4050 case 1: 4051 if (op2 != 0) { 4052 /* STZG */ 4053 is_zero = true; 4054 index = op2 - 2; 4055 } else { 4056 /* LDG */ 4057 is_load = true; 4058 } 4059 break; 4060 case 2: 4061 if (op2 != 0) { 4062 /* ST2G */ 4063 is_pair = true; 4064 index = op2 - 2; 4065 } else { 4066 /* STGM */ 4067 if (s->current_el == 0 || offset != 0) { 4068 goto do_unallocated; 4069 } 4070 is_mult = true; 4071 } 4072 break; 4073 case 3: 4074 if (op2 != 0) { 4075 /* STZ2G */ 4076 is_pair = is_zero = true; 4077 index = op2 - 2; 4078 } else { 4079 /* LDGM */ 4080 if (s->current_el == 0 || offset != 0) { 4081 goto do_unallocated; 4082 } 4083 is_mult = is_load = true; 4084 } 4085 break; 4086 4087 default: 4088 do_unallocated: 4089 unallocated_encoding(s); 4090 return; 4091 } 4092 4093 if (is_mult 4094 ? !dc_isar_feature(aa64_mte, s) 4095 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4096 goto do_unallocated; 4097 } 4098 4099 if (rn == 31) { 4100 gen_check_sp_alignment(s); 4101 } 4102 4103 addr = read_cpu_reg_sp(s, rn, true); 4104 if (index >= 0) { 4105 /* pre-index or signed offset */ 4106 tcg_gen_addi_i64(addr, addr, offset); 4107 } 4108 4109 if (is_mult) { 4110 tcg_rt = cpu_reg(s, rt); 4111 4112 if (is_zero) { 4113 int size = 4 << s->dcz_blocksize; 4114 4115 if (s->ata) { 4116 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4117 } 4118 /* 4119 * The non-tags portion of STZGM is mostly like DC_ZVA, 4120 * except the alignment happens before the access. 4121 */ 4122 clean_addr = clean_data_tbi(s, addr); 4123 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4124 gen_helper_dc_zva(cpu_env, clean_addr); 4125 } else if (s->ata) { 4126 if (is_load) { 4127 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4128 } else { 4129 gen_helper_stgm(cpu_env, addr, tcg_rt); 4130 } 4131 } else { 4132 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4133 int size = 4 << GMID_EL1_BS; 4134 4135 clean_addr = clean_data_tbi(s, addr); 4136 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4137 gen_probe_access(s, clean_addr, acc, size); 4138 4139 if (is_load) { 4140 /* The result tags are zeros. */ 4141 tcg_gen_movi_i64(tcg_rt, 0); 4142 } 4143 } 4144 return; 4145 } 4146 4147 if (is_load) { 4148 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4149 tcg_rt = cpu_reg(s, rt); 4150 if (s->ata) { 4151 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4152 } else { 4153 /* 4154 * Tag access disabled: we must check for aborts on the load 4155 * load from [rn+offset], and then insert a 0 tag into rt. 4156 */ 4157 clean_addr = clean_data_tbi(s, addr); 4158 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4159 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4160 } 4161 } else { 4162 tcg_rt = cpu_reg_sp(s, rt); 4163 if (!s->ata) { 4164 /* 4165 * For STG and ST2G, we need to check alignment and probe memory. 4166 * TODO: For STZG and STZ2G, we could rely on the stores below, 4167 * at least for system mode; user-only won't enforce alignment. 4168 */ 4169 if (is_pair) { 4170 gen_helper_st2g_stub(cpu_env, addr); 4171 } else { 4172 gen_helper_stg_stub(cpu_env, addr); 4173 } 4174 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4175 if (is_pair) { 4176 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4177 } else { 4178 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4179 } 4180 } else { 4181 if (is_pair) { 4182 gen_helper_st2g(cpu_env, addr, tcg_rt); 4183 } else { 4184 gen_helper_stg(cpu_env, addr, tcg_rt); 4185 } 4186 } 4187 } 4188 4189 if (is_zero) { 4190 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4191 TCGv_i64 zero64 = tcg_constant_i64(0); 4192 TCGv_i128 zero128 = tcg_temp_new_i128(); 4193 int mem_index = get_mem_index(s); 4194 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4195 4196 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4197 4198 /* This is 1 or 2 atomic 16-byte operations. */ 4199 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4200 if (is_pair) { 4201 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4202 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4203 } 4204 } 4205 4206 if (index != 0) { 4207 /* pre-index or post-index */ 4208 if (index < 0) { 4209 /* post-index */ 4210 tcg_gen_addi_i64(addr, addr, offset); 4211 } 4212 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4213 } 4214 } 4215 4216 /* Loads and stores */ 4217 static void disas_ldst(DisasContext *s, uint32_t insn) 4218 { 4219 switch (extract32(insn, 24, 6)) { 4220 case 0x08: /* Load/store exclusive */ 4221 disas_ldst_excl(s, insn); 4222 break; 4223 case 0x18: case 0x1c: /* Load register (literal) */ 4224 disas_ld_lit(s, insn); 4225 break; 4226 case 0x28: case 0x29: 4227 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4228 disas_ldst_pair(s, insn); 4229 break; 4230 case 0x38: case 0x39: 4231 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4232 disas_ldst_reg(s, insn); 4233 break; 4234 case 0x0c: /* AdvSIMD load/store multiple structures */ 4235 disas_ldst_multiple_struct(s, insn); 4236 break; 4237 case 0x0d: /* AdvSIMD load/store single structure */ 4238 disas_ldst_single_struct(s, insn); 4239 break; 4240 case 0x19: 4241 if (extract32(insn, 21, 1) != 0) { 4242 disas_ldst_tag(s, insn); 4243 } else if (extract32(insn, 10, 2) == 0) { 4244 disas_ldst_ldapr_stlr(s, insn); 4245 } else { 4246 unallocated_encoding(s); 4247 } 4248 break; 4249 default: 4250 unallocated_encoding(s); 4251 break; 4252 } 4253 } 4254 4255 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4256 4257 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4258 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4259 { 4260 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4261 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4262 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4263 4264 fn(tcg_rd, tcg_rn, tcg_imm); 4265 if (!a->sf) { 4266 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4267 } 4268 return true; 4269 } 4270 4271 /* 4272 * PC-rel. addressing 4273 */ 4274 4275 static bool trans_ADR(DisasContext *s, arg_ri *a) 4276 { 4277 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4278 return true; 4279 } 4280 4281 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4282 { 4283 int64_t offset = (int64_t)a->imm << 12; 4284 4285 /* The page offset is ok for CF_PCREL. */ 4286 offset -= s->pc_curr & 0xfff; 4287 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4288 return true; 4289 } 4290 4291 /* 4292 * Add/subtract (immediate) 4293 */ 4294 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4295 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4296 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4297 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4298 4299 /* 4300 * Add/subtract (immediate, with tags) 4301 */ 4302 4303 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4304 bool sub_op) 4305 { 4306 TCGv_i64 tcg_rn, tcg_rd; 4307 int imm; 4308 4309 imm = a->uimm6 << LOG2_TAG_GRANULE; 4310 if (sub_op) { 4311 imm = -imm; 4312 } 4313 4314 tcg_rn = cpu_reg_sp(s, a->rn); 4315 tcg_rd = cpu_reg_sp(s, a->rd); 4316 4317 if (s->ata) { 4318 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4319 tcg_constant_i32(imm), 4320 tcg_constant_i32(a->uimm4)); 4321 } else { 4322 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4323 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4324 } 4325 return true; 4326 } 4327 4328 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4329 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4330 4331 /* The input should be a value in the bottom e bits (with higher 4332 * bits zero); returns that value replicated into every element 4333 * of size e in a 64 bit integer. 4334 */ 4335 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4336 { 4337 assert(e != 0); 4338 while (e < 64) { 4339 mask |= mask << e; 4340 e *= 2; 4341 } 4342 return mask; 4343 } 4344 4345 /* 4346 * Logical (immediate) 4347 */ 4348 4349 /* 4350 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4351 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4352 * value (ie should cause a guest UNDEF exception), and true if they are 4353 * valid, in which case the decoded bit pattern is written to result. 4354 */ 4355 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4356 unsigned int imms, unsigned int immr) 4357 { 4358 uint64_t mask; 4359 unsigned e, levels, s, r; 4360 int len; 4361 4362 assert(immn < 2 && imms < 64 && immr < 64); 4363 4364 /* The bit patterns we create here are 64 bit patterns which 4365 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4366 * 64 bits each. Each element contains the same value: a run 4367 * of between 1 and e-1 non-zero bits, rotated within the 4368 * element by between 0 and e-1 bits. 4369 * 4370 * The element size and run length are encoded into immn (1 bit) 4371 * and imms (6 bits) as follows: 4372 * 64 bit elements: immn = 1, imms = <length of run - 1> 4373 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4374 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4375 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4376 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4377 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4378 * Notice that immn = 0, imms = 11111x is the only combination 4379 * not covered by one of the above options; this is reserved. 4380 * Further, <length of run - 1> all-ones is a reserved pattern. 4381 * 4382 * In all cases the rotation is by immr % e (and immr is 6 bits). 4383 */ 4384 4385 /* First determine the element size */ 4386 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4387 if (len < 1) { 4388 /* This is the immn == 0, imms == 0x11111x case */ 4389 return false; 4390 } 4391 e = 1 << len; 4392 4393 levels = e - 1; 4394 s = imms & levels; 4395 r = immr & levels; 4396 4397 if (s == levels) { 4398 /* <length of run - 1> mustn't be all-ones. */ 4399 return false; 4400 } 4401 4402 /* Create the value of one element: s+1 set bits rotated 4403 * by r within the element (which is e bits wide)... 4404 */ 4405 mask = MAKE_64BIT_MASK(0, s + 1); 4406 if (r) { 4407 mask = (mask >> r) | (mask << (e - r)); 4408 mask &= MAKE_64BIT_MASK(0, e); 4409 } 4410 /* ...then replicate the element over the whole 64 bit value */ 4411 mask = bitfield_replicate(mask, e); 4412 *result = mask; 4413 return true; 4414 } 4415 4416 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4417 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4418 { 4419 TCGv_i64 tcg_rd, tcg_rn; 4420 uint64_t imm; 4421 4422 /* Some immediate field values are reserved. */ 4423 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4424 extract32(a->dbm, 0, 6), 4425 extract32(a->dbm, 6, 6))) { 4426 return false; 4427 } 4428 if (!a->sf) { 4429 imm &= 0xffffffffull; 4430 } 4431 4432 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4433 tcg_rn = cpu_reg(s, a->rn); 4434 4435 fn(tcg_rd, tcg_rn, imm); 4436 if (set_cc) { 4437 gen_logic_CC(a->sf, tcg_rd); 4438 } 4439 if (!a->sf) { 4440 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4441 } 4442 return true; 4443 } 4444 4445 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4446 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4447 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4448 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4449 4450 /* 4451 * Move wide (immediate) 4452 */ 4453 4454 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4455 { 4456 int pos = a->hw << 4; 4457 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4458 return true; 4459 } 4460 4461 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4462 { 4463 int pos = a->hw << 4; 4464 uint64_t imm = a->imm; 4465 4466 imm = ~(imm << pos); 4467 if (!a->sf) { 4468 imm = (uint32_t)imm; 4469 } 4470 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4471 return true; 4472 } 4473 4474 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4475 { 4476 int pos = a->hw << 4; 4477 TCGv_i64 tcg_rd, tcg_im; 4478 4479 tcg_rd = cpu_reg(s, a->rd); 4480 tcg_im = tcg_constant_i64(a->imm); 4481 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4482 if (!a->sf) { 4483 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4484 } 4485 return true; 4486 } 4487 4488 /* 4489 * Bitfield 4490 */ 4491 4492 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4493 { 4494 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4495 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4496 unsigned int bitsize = a->sf ? 64 : 32; 4497 unsigned int ri = a->immr; 4498 unsigned int si = a->imms; 4499 unsigned int pos, len; 4500 4501 if (si >= ri) { 4502 /* Wd<s-r:0> = Wn<s:r> */ 4503 len = (si - ri) + 1; 4504 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4505 if (!a->sf) { 4506 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4507 } 4508 } else { 4509 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4510 len = si + 1; 4511 pos = (bitsize - ri) & (bitsize - 1); 4512 4513 if (len < ri) { 4514 /* 4515 * Sign extend the destination field from len to fill the 4516 * balance of the word. Let the deposit below insert all 4517 * of those sign bits. 4518 */ 4519 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4520 len = ri; 4521 } 4522 4523 /* 4524 * We start with zero, and we haven't modified any bits outside 4525 * bitsize, therefore no final zero-extension is unneeded for !sf. 4526 */ 4527 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4528 } 4529 return true; 4530 } 4531 4532 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4533 { 4534 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4535 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4536 unsigned int bitsize = a->sf ? 64 : 32; 4537 unsigned int ri = a->immr; 4538 unsigned int si = a->imms; 4539 unsigned int pos, len; 4540 4541 tcg_rd = cpu_reg(s, a->rd); 4542 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4543 4544 if (si >= ri) { 4545 /* Wd<s-r:0> = Wn<s:r> */ 4546 len = (si - ri) + 1; 4547 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4548 } else { 4549 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4550 len = si + 1; 4551 pos = (bitsize - ri) & (bitsize - 1); 4552 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4553 } 4554 return true; 4555 } 4556 4557 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4558 { 4559 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4560 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4561 unsigned int bitsize = a->sf ? 64 : 32; 4562 unsigned int ri = a->immr; 4563 unsigned int si = a->imms; 4564 unsigned int pos, len; 4565 4566 tcg_rd = cpu_reg(s, a->rd); 4567 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4568 4569 if (si >= ri) { 4570 /* Wd<s-r:0> = Wn<s:r> */ 4571 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4572 len = (si - ri) + 1; 4573 pos = 0; 4574 } else { 4575 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4576 len = si + 1; 4577 pos = (bitsize - ri) & (bitsize - 1); 4578 } 4579 4580 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4581 if (!a->sf) { 4582 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4583 } 4584 return true; 4585 } 4586 4587 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4588 { 4589 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4590 4591 tcg_rd = cpu_reg(s, a->rd); 4592 4593 if (unlikely(a->imm == 0)) { 4594 /* 4595 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4596 * so an extract from bit 0 is a special case. 4597 */ 4598 if (a->sf) { 4599 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4600 } else { 4601 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4602 } 4603 } else { 4604 tcg_rm = cpu_reg(s, a->rm); 4605 tcg_rn = cpu_reg(s, a->rn); 4606 4607 if (a->sf) { 4608 /* Specialization to ROR happens in EXTRACT2. */ 4609 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4610 } else { 4611 TCGv_i32 t0 = tcg_temp_new_i32(); 4612 4613 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4614 if (a->rm == a->rn) { 4615 tcg_gen_rotri_i32(t0, t0, a->imm); 4616 } else { 4617 TCGv_i32 t1 = tcg_temp_new_i32(); 4618 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4619 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4620 } 4621 tcg_gen_extu_i32_i64(tcg_rd, t0); 4622 } 4623 } 4624 return true; 4625 } 4626 4627 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4628 * Note that it is the caller's responsibility to ensure that the 4629 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4630 * mandated semantics for out of range shifts. 4631 */ 4632 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4633 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4634 { 4635 switch (shift_type) { 4636 case A64_SHIFT_TYPE_LSL: 4637 tcg_gen_shl_i64(dst, src, shift_amount); 4638 break; 4639 case A64_SHIFT_TYPE_LSR: 4640 tcg_gen_shr_i64(dst, src, shift_amount); 4641 break; 4642 case A64_SHIFT_TYPE_ASR: 4643 if (!sf) { 4644 tcg_gen_ext32s_i64(dst, src); 4645 } 4646 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4647 break; 4648 case A64_SHIFT_TYPE_ROR: 4649 if (sf) { 4650 tcg_gen_rotr_i64(dst, src, shift_amount); 4651 } else { 4652 TCGv_i32 t0, t1; 4653 t0 = tcg_temp_new_i32(); 4654 t1 = tcg_temp_new_i32(); 4655 tcg_gen_extrl_i64_i32(t0, src); 4656 tcg_gen_extrl_i64_i32(t1, shift_amount); 4657 tcg_gen_rotr_i32(t0, t0, t1); 4658 tcg_gen_extu_i32_i64(dst, t0); 4659 } 4660 break; 4661 default: 4662 assert(FALSE); /* all shift types should be handled */ 4663 break; 4664 } 4665 4666 if (!sf) { /* zero extend final result */ 4667 tcg_gen_ext32u_i64(dst, dst); 4668 } 4669 } 4670 4671 /* Shift a TCGv src by immediate, put result in dst. 4672 * The shift amount must be in range (this should always be true as the 4673 * relevant instructions will UNDEF on bad shift immediates). 4674 */ 4675 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4676 enum a64_shift_type shift_type, unsigned int shift_i) 4677 { 4678 assert(shift_i < (sf ? 64 : 32)); 4679 4680 if (shift_i == 0) { 4681 tcg_gen_mov_i64(dst, src); 4682 } else { 4683 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4684 } 4685 } 4686 4687 /* Logical (shifted register) 4688 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4689 * +----+-----+-----------+-------+---+------+--------+------+------+ 4690 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4691 * +----+-----+-----------+-------+---+------+--------+------+------+ 4692 */ 4693 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4694 { 4695 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4696 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4697 4698 sf = extract32(insn, 31, 1); 4699 opc = extract32(insn, 29, 2); 4700 shift_type = extract32(insn, 22, 2); 4701 invert = extract32(insn, 21, 1); 4702 rm = extract32(insn, 16, 5); 4703 shift_amount = extract32(insn, 10, 6); 4704 rn = extract32(insn, 5, 5); 4705 rd = extract32(insn, 0, 5); 4706 4707 if (!sf && (shift_amount & (1 << 5))) { 4708 unallocated_encoding(s); 4709 return; 4710 } 4711 4712 tcg_rd = cpu_reg(s, rd); 4713 4714 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4715 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4716 * register-register MOV and MVN, so it is worth special casing. 4717 */ 4718 tcg_rm = cpu_reg(s, rm); 4719 if (invert) { 4720 tcg_gen_not_i64(tcg_rd, tcg_rm); 4721 if (!sf) { 4722 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4723 } 4724 } else { 4725 if (sf) { 4726 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4727 } else { 4728 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4729 } 4730 } 4731 return; 4732 } 4733 4734 tcg_rm = read_cpu_reg(s, rm, sf); 4735 4736 if (shift_amount) { 4737 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4738 } 4739 4740 tcg_rn = cpu_reg(s, rn); 4741 4742 switch (opc | (invert << 2)) { 4743 case 0: /* AND */ 4744 case 3: /* ANDS */ 4745 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4746 break; 4747 case 1: /* ORR */ 4748 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4749 break; 4750 case 2: /* EOR */ 4751 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4752 break; 4753 case 4: /* BIC */ 4754 case 7: /* BICS */ 4755 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4756 break; 4757 case 5: /* ORN */ 4758 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4759 break; 4760 case 6: /* EON */ 4761 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4762 break; 4763 default: 4764 assert(FALSE); 4765 break; 4766 } 4767 4768 if (!sf) { 4769 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4770 } 4771 4772 if (opc == 3) { 4773 gen_logic_CC(sf, tcg_rd); 4774 } 4775 } 4776 4777 /* 4778 * Add/subtract (extended register) 4779 * 4780 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4781 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4782 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4783 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4784 * 4785 * sf: 0 -> 32bit, 1 -> 64bit 4786 * op: 0 -> add , 1 -> sub 4787 * S: 1 -> set flags 4788 * opt: 00 4789 * option: extension type (see DecodeRegExtend) 4790 * imm3: optional shift to Rm 4791 * 4792 * Rd = Rn + LSL(extend(Rm), amount) 4793 */ 4794 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4795 { 4796 int rd = extract32(insn, 0, 5); 4797 int rn = extract32(insn, 5, 5); 4798 int imm3 = extract32(insn, 10, 3); 4799 int option = extract32(insn, 13, 3); 4800 int rm = extract32(insn, 16, 5); 4801 int opt = extract32(insn, 22, 2); 4802 bool setflags = extract32(insn, 29, 1); 4803 bool sub_op = extract32(insn, 30, 1); 4804 bool sf = extract32(insn, 31, 1); 4805 4806 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4807 TCGv_i64 tcg_rd; 4808 TCGv_i64 tcg_result; 4809 4810 if (imm3 > 4 || opt != 0) { 4811 unallocated_encoding(s); 4812 return; 4813 } 4814 4815 /* non-flag setting ops may use SP */ 4816 if (!setflags) { 4817 tcg_rd = cpu_reg_sp(s, rd); 4818 } else { 4819 tcg_rd = cpu_reg(s, rd); 4820 } 4821 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4822 4823 tcg_rm = read_cpu_reg(s, rm, sf); 4824 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4825 4826 tcg_result = tcg_temp_new_i64(); 4827 4828 if (!setflags) { 4829 if (sub_op) { 4830 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4831 } else { 4832 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4833 } 4834 } else { 4835 if (sub_op) { 4836 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4837 } else { 4838 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4839 } 4840 } 4841 4842 if (sf) { 4843 tcg_gen_mov_i64(tcg_rd, tcg_result); 4844 } else { 4845 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4846 } 4847 } 4848 4849 /* 4850 * Add/subtract (shifted register) 4851 * 4852 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4853 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4854 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4855 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4856 * 4857 * sf: 0 -> 32bit, 1 -> 64bit 4858 * op: 0 -> add , 1 -> sub 4859 * S: 1 -> set flags 4860 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4861 * imm6: Shift amount to apply to Rm before the add/sub 4862 */ 4863 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4864 { 4865 int rd = extract32(insn, 0, 5); 4866 int rn = extract32(insn, 5, 5); 4867 int imm6 = extract32(insn, 10, 6); 4868 int rm = extract32(insn, 16, 5); 4869 int shift_type = extract32(insn, 22, 2); 4870 bool setflags = extract32(insn, 29, 1); 4871 bool sub_op = extract32(insn, 30, 1); 4872 bool sf = extract32(insn, 31, 1); 4873 4874 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4875 TCGv_i64 tcg_rn, tcg_rm; 4876 TCGv_i64 tcg_result; 4877 4878 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4879 unallocated_encoding(s); 4880 return; 4881 } 4882 4883 tcg_rn = read_cpu_reg(s, rn, sf); 4884 tcg_rm = read_cpu_reg(s, rm, sf); 4885 4886 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4887 4888 tcg_result = tcg_temp_new_i64(); 4889 4890 if (!setflags) { 4891 if (sub_op) { 4892 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4893 } else { 4894 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4895 } 4896 } else { 4897 if (sub_op) { 4898 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4899 } else { 4900 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4901 } 4902 } 4903 4904 if (sf) { 4905 tcg_gen_mov_i64(tcg_rd, tcg_result); 4906 } else { 4907 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4908 } 4909 } 4910 4911 /* Data-processing (3 source) 4912 * 4913 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4914 * +--+------+-----------+------+------+----+------+------+------+ 4915 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4916 * +--+------+-----------+------+------+----+------+------+------+ 4917 */ 4918 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4919 { 4920 int rd = extract32(insn, 0, 5); 4921 int rn = extract32(insn, 5, 5); 4922 int ra = extract32(insn, 10, 5); 4923 int rm = extract32(insn, 16, 5); 4924 int op_id = (extract32(insn, 29, 3) << 4) | 4925 (extract32(insn, 21, 3) << 1) | 4926 extract32(insn, 15, 1); 4927 bool sf = extract32(insn, 31, 1); 4928 bool is_sub = extract32(op_id, 0, 1); 4929 bool is_high = extract32(op_id, 2, 1); 4930 bool is_signed = false; 4931 TCGv_i64 tcg_op1; 4932 TCGv_i64 tcg_op2; 4933 TCGv_i64 tcg_tmp; 4934 4935 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4936 switch (op_id) { 4937 case 0x42: /* SMADDL */ 4938 case 0x43: /* SMSUBL */ 4939 case 0x44: /* SMULH */ 4940 is_signed = true; 4941 break; 4942 case 0x0: /* MADD (32bit) */ 4943 case 0x1: /* MSUB (32bit) */ 4944 case 0x40: /* MADD (64bit) */ 4945 case 0x41: /* MSUB (64bit) */ 4946 case 0x4a: /* UMADDL */ 4947 case 0x4b: /* UMSUBL */ 4948 case 0x4c: /* UMULH */ 4949 break; 4950 default: 4951 unallocated_encoding(s); 4952 return; 4953 } 4954 4955 if (is_high) { 4956 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4957 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4958 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4959 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4960 4961 if (is_signed) { 4962 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4963 } else { 4964 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4965 } 4966 return; 4967 } 4968 4969 tcg_op1 = tcg_temp_new_i64(); 4970 tcg_op2 = tcg_temp_new_i64(); 4971 tcg_tmp = tcg_temp_new_i64(); 4972 4973 if (op_id < 0x42) { 4974 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4975 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4976 } else { 4977 if (is_signed) { 4978 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4979 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4980 } else { 4981 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4982 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4983 } 4984 } 4985 4986 if (ra == 31 && !is_sub) { 4987 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4988 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4989 } else { 4990 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4991 if (is_sub) { 4992 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4993 } else { 4994 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4995 } 4996 } 4997 4998 if (!sf) { 4999 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5000 } 5001 } 5002 5003 /* Add/subtract (with carry) 5004 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5005 * +--+--+--+------------------------+------+-------------+------+-----+ 5006 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5007 * +--+--+--+------------------------+------+-------------+------+-----+ 5008 */ 5009 5010 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5011 { 5012 unsigned int sf, op, setflags, rm, rn, rd; 5013 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5014 5015 sf = extract32(insn, 31, 1); 5016 op = extract32(insn, 30, 1); 5017 setflags = extract32(insn, 29, 1); 5018 rm = extract32(insn, 16, 5); 5019 rn = extract32(insn, 5, 5); 5020 rd = extract32(insn, 0, 5); 5021 5022 tcg_rd = cpu_reg(s, rd); 5023 tcg_rn = cpu_reg(s, rn); 5024 5025 if (op) { 5026 tcg_y = tcg_temp_new_i64(); 5027 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5028 } else { 5029 tcg_y = cpu_reg(s, rm); 5030 } 5031 5032 if (setflags) { 5033 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5034 } else { 5035 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5036 } 5037 } 5038 5039 /* 5040 * Rotate right into flags 5041 * 31 30 29 21 15 10 5 4 0 5042 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5043 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5044 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5045 */ 5046 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5047 { 5048 int mask = extract32(insn, 0, 4); 5049 int o2 = extract32(insn, 4, 1); 5050 int rn = extract32(insn, 5, 5); 5051 int imm6 = extract32(insn, 15, 6); 5052 int sf_op_s = extract32(insn, 29, 3); 5053 TCGv_i64 tcg_rn; 5054 TCGv_i32 nzcv; 5055 5056 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5057 unallocated_encoding(s); 5058 return; 5059 } 5060 5061 tcg_rn = read_cpu_reg(s, rn, 1); 5062 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5063 5064 nzcv = tcg_temp_new_i32(); 5065 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5066 5067 if (mask & 8) { /* N */ 5068 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5069 } 5070 if (mask & 4) { /* Z */ 5071 tcg_gen_not_i32(cpu_ZF, nzcv); 5072 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5073 } 5074 if (mask & 2) { /* C */ 5075 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5076 } 5077 if (mask & 1) { /* V */ 5078 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5079 } 5080 } 5081 5082 /* 5083 * Evaluate into flags 5084 * 31 30 29 21 15 14 10 5 4 0 5085 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5086 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5087 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5088 */ 5089 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5090 { 5091 int o3_mask = extract32(insn, 0, 5); 5092 int rn = extract32(insn, 5, 5); 5093 int o2 = extract32(insn, 15, 6); 5094 int sz = extract32(insn, 14, 1); 5095 int sf_op_s = extract32(insn, 29, 3); 5096 TCGv_i32 tmp; 5097 int shift; 5098 5099 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5100 !dc_isar_feature(aa64_condm_4, s)) { 5101 unallocated_encoding(s); 5102 return; 5103 } 5104 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5105 5106 tmp = tcg_temp_new_i32(); 5107 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5108 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5109 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5110 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5111 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5112 } 5113 5114 /* Conditional compare (immediate / register) 5115 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5116 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5117 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5118 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5119 * [1] y [0] [0] 5120 */ 5121 static void disas_cc(DisasContext *s, uint32_t insn) 5122 { 5123 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5124 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5125 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5126 DisasCompare c; 5127 5128 if (!extract32(insn, 29, 1)) { 5129 unallocated_encoding(s); 5130 return; 5131 } 5132 if (insn & (1 << 10 | 1 << 4)) { 5133 unallocated_encoding(s); 5134 return; 5135 } 5136 sf = extract32(insn, 31, 1); 5137 op = extract32(insn, 30, 1); 5138 is_imm = extract32(insn, 11, 1); 5139 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5140 cond = extract32(insn, 12, 4); 5141 rn = extract32(insn, 5, 5); 5142 nzcv = extract32(insn, 0, 4); 5143 5144 /* Set T0 = !COND. */ 5145 tcg_t0 = tcg_temp_new_i32(); 5146 arm_test_cc(&c, cond); 5147 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5148 5149 /* Load the arguments for the new comparison. */ 5150 if (is_imm) { 5151 tcg_y = tcg_temp_new_i64(); 5152 tcg_gen_movi_i64(tcg_y, y); 5153 } else { 5154 tcg_y = cpu_reg(s, y); 5155 } 5156 tcg_rn = cpu_reg(s, rn); 5157 5158 /* Set the flags for the new comparison. */ 5159 tcg_tmp = tcg_temp_new_i64(); 5160 if (op) { 5161 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5162 } else { 5163 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5164 } 5165 5166 /* If COND was false, force the flags to #nzcv. Compute two masks 5167 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5168 * For tcg hosts that support ANDC, we can make do with just T1. 5169 * In either case, allow the tcg optimizer to delete any unused mask. 5170 */ 5171 tcg_t1 = tcg_temp_new_i32(); 5172 tcg_t2 = tcg_temp_new_i32(); 5173 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5174 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5175 5176 if (nzcv & 8) { /* N */ 5177 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5178 } else { 5179 if (TCG_TARGET_HAS_andc_i32) { 5180 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5181 } else { 5182 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5183 } 5184 } 5185 if (nzcv & 4) { /* Z */ 5186 if (TCG_TARGET_HAS_andc_i32) { 5187 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5188 } else { 5189 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5190 } 5191 } else { 5192 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5193 } 5194 if (nzcv & 2) { /* C */ 5195 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5196 } else { 5197 if (TCG_TARGET_HAS_andc_i32) { 5198 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5199 } else { 5200 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5201 } 5202 } 5203 if (nzcv & 1) { /* V */ 5204 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5205 } else { 5206 if (TCG_TARGET_HAS_andc_i32) { 5207 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5208 } else { 5209 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5210 } 5211 } 5212 } 5213 5214 /* Conditional select 5215 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5216 * +----+----+---+-----------------+------+------+-----+------+------+ 5217 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5218 * +----+----+---+-----------------+------+------+-----+------+------+ 5219 */ 5220 static void disas_cond_select(DisasContext *s, uint32_t insn) 5221 { 5222 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5223 TCGv_i64 tcg_rd, zero; 5224 DisasCompare64 c; 5225 5226 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5227 /* S == 1 or op2<1> == 1 */ 5228 unallocated_encoding(s); 5229 return; 5230 } 5231 sf = extract32(insn, 31, 1); 5232 else_inv = extract32(insn, 30, 1); 5233 rm = extract32(insn, 16, 5); 5234 cond = extract32(insn, 12, 4); 5235 else_inc = extract32(insn, 10, 1); 5236 rn = extract32(insn, 5, 5); 5237 rd = extract32(insn, 0, 5); 5238 5239 tcg_rd = cpu_reg(s, rd); 5240 5241 a64_test_cc(&c, cond); 5242 zero = tcg_constant_i64(0); 5243 5244 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5245 /* CSET & CSETM. */ 5246 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5247 if (else_inv) { 5248 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5249 } 5250 } else { 5251 TCGv_i64 t_true = cpu_reg(s, rn); 5252 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5253 if (else_inv && else_inc) { 5254 tcg_gen_neg_i64(t_false, t_false); 5255 } else if (else_inv) { 5256 tcg_gen_not_i64(t_false, t_false); 5257 } else if (else_inc) { 5258 tcg_gen_addi_i64(t_false, t_false, 1); 5259 } 5260 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5261 } 5262 5263 if (!sf) { 5264 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5265 } 5266 } 5267 5268 static void handle_clz(DisasContext *s, unsigned int sf, 5269 unsigned int rn, unsigned int rd) 5270 { 5271 TCGv_i64 tcg_rd, tcg_rn; 5272 tcg_rd = cpu_reg(s, rd); 5273 tcg_rn = cpu_reg(s, rn); 5274 5275 if (sf) { 5276 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5277 } else { 5278 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5279 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5280 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5281 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5282 } 5283 } 5284 5285 static void handle_cls(DisasContext *s, unsigned int sf, 5286 unsigned int rn, unsigned int rd) 5287 { 5288 TCGv_i64 tcg_rd, tcg_rn; 5289 tcg_rd = cpu_reg(s, rd); 5290 tcg_rn = cpu_reg(s, rn); 5291 5292 if (sf) { 5293 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5294 } else { 5295 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5296 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5297 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5298 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5299 } 5300 } 5301 5302 static void handle_rbit(DisasContext *s, unsigned int sf, 5303 unsigned int rn, unsigned int rd) 5304 { 5305 TCGv_i64 tcg_rd, tcg_rn; 5306 tcg_rd = cpu_reg(s, rd); 5307 tcg_rn = cpu_reg(s, rn); 5308 5309 if (sf) { 5310 gen_helper_rbit64(tcg_rd, tcg_rn); 5311 } else { 5312 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5313 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5314 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5315 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5316 } 5317 } 5318 5319 /* REV with sf==1, opcode==3 ("REV64") */ 5320 static void handle_rev64(DisasContext *s, unsigned int sf, 5321 unsigned int rn, unsigned int rd) 5322 { 5323 if (!sf) { 5324 unallocated_encoding(s); 5325 return; 5326 } 5327 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5328 } 5329 5330 /* REV with sf==0, opcode==2 5331 * REV32 (sf==1, opcode==2) 5332 */ 5333 static void handle_rev32(DisasContext *s, unsigned int sf, 5334 unsigned int rn, unsigned int rd) 5335 { 5336 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5337 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5338 5339 if (sf) { 5340 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5341 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5342 } else { 5343 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5344 } 5345 } 5346 5347 /* REV16 (opcode==1) */ 5348 static void handle_rev16(DisasContext *s, unsigned int sf, 5349 unsigned int rn, unsigned int rd) 5350 { 5351 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5352 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5353 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5354 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5355 5356 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5357 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5358 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5359 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5360 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5361 } 5362 5363 /* Data-processing (1 source) 5364 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5365 * +----+---+---+-----------------+---------+--------+------+------+ 5366 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5367 * +----+---+---+-----------------+---------+--------+------+------+ 5368 */ 5369 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5370 { 5371 unsigned int sf, opcode, opcode2, rn, rd; 5372 TCGv_i64 tcg_rd; 5373 5374 if (extract32(insn, 29, 1)) { 5375 unallocated_encoding(s); 5376 return; 5377 } 5378 5379 sf = extract32(insn, 31, 1); 5380 opcode = extract32(insn, 10, 6); 5381 opcode2 = extract32(insn, 16, 5); 5382 rn = extract32(insn, 5, 5); 5383 rd = extract32(insn, 0, 5); 5384 5385 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5386 5387 switch (MAP(sf, opcode2, opcode)) { 5388 case MAP(0, 0x00, 0x00): /* RBIT */ 5389 case MAP(1, 0x00, 0x00): 5390 handle_rbit(s, sf, rn, rd); 5391 break; 5392 case MAP(0, 0x00, 0x01): /* REV16 */ 5393 case MAP(1, 0x00, 0x01): 5394 handle_rev16(s, sf, rn, rd); 5395 break; 5396 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5397 case MAP(1, 0x00, 0x02): 5398 handle_rev32(s, sf, rn, rd); 5399 break; 5400 case MAP(1, 0x00, 0x03): /* REV64 */ 5401 handle_rev64(s, sf, rn, rd); 5402 break; 5403 case MAP(0, 0x00, 0x04): /* CLZ */ 5404 case MAP(1, 0x00, 0x04): 5405 handle_clz(s, sf, rn, rd); 5406 break; 5407 case MAP(0, 0x00, 0x05): /* CLS */ 5408 case MAP(1, 0x00, 0x05): 5409 handle_cls(s, sf, rn, rd); 5410 break; 5411 case MAP(1, 0x01, 0x00): /* PACIA */ 5412 if (s->pauth_active) { 5413 tcg_rd = cpu_reg(s, rd); 5414 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5415 } else if (!dc_isar_feature(aa64_pauth, s)) { 5416 goto do_unallocated; 5417 } 5418 break; 5419 case MAP(1, 0x01, 0x01): /* PACIB */ 5420 if (s->pauth_active) { 5421 tcg_rd = cpu_reg(s, rd); 5422 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5423 } else if (!dc_isar_feature(aa64_pauth, s)) { 5424 goto do_unallocated; 5425 } 5426 break; 5427 case MAP(1, 0x01, 0x02): /* PACDA */ 5428 if (s->pauth_active) { 5429 tcg_rd = cpu_reg(s, rd); 5430 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5431 } else if (!dc_isar_feature(aa64_pauth, s)) { 5432 goto do_unallocated; 5433 } 5434 break; 5435 case MAP(1, 0x01, 0x03): /* PACDB */ 5436 if (s->pauth_active) { 5437 tcg_rd = cpu_reg(s, rd); 5438 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5439 } else if (!dc_isar_feature(aa64_pauth, s)) { 5440 goto do_unallocated; 5441 } 5442 break; 5443 case MAP(1, 0x01, 0x04): /* AUTIA */ 5444 if (s->pauth_active) { 5445 tcg_rd = cpu_reg(s, rd); 5446 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5447 } else if (!dc_isar_feature(aa64_pauth, s)) { 5448 goto do_unallocated; 5449 } 5450 break; 5451 case MAP(1, 0x01, 0x05): /* AUTIB */ 5452 if (s->pauth_active) { 5453 tcg_rd = cpu_reg(s, rd); 5454 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5455 } else if (!dc_isar_feature(aa64_pauth, s)) { 5456 goto do_unallocated; 5457 } 5458 break; 5459 case MAP(1, 0x01, 0x06): /* AUTDA */ 5460 if (s->pauth_active) { 5461 tcg_rd = cpu_reg(s, rd); 5462 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5463 } else if (!dc_isar_feature(aa64_pauth, s)) { 5464 goto do_unallocated; 5465 } 5466 break; 5467 case MAP(1, 0x01, 0x07): /* AUTDB */ 5468 if (s->pauth_active) { 5469 tcg_rd = cpu_reg(s, rd); 5470 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5471 } else if (!dc_isar_feature(aa64_pauth, s)) { 5472 goto do_unallocated; 5473 } 5474 break; 5475 case MAP(1, 0x01, 0x08): /* PACIZA */ 5476 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5477 goto do_unallocated; 5478 } else if (s->pauth_active) { 5479 tcg_rd = cpu_reg(s, rd); 5480 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5481 } 5482 break; 5483 case MAP(1, 0x01, 0x09): /* PACIZB */ 5484 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5485 goto do_unallocated; 5486 } else if (s->pauth_active) { 5487 tcg_rd = cpu_reg(s, rd); 5488 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5489 } 5490 break; 5491 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5492 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5493 goto do_unallocated; 5494 } else if (s->pauth_active) { 5495 tcg_rd = cpu_reg(s, rd); 5496 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5497 } 5498 break; 5499 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5500 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5501 goto do_unallocated; 5502 } else if (s->pauth_active) { 5503 tcg_rd = cpu_reg(s, rd); 5504 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5505 } 5506 break; 5507 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5508 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5509 goto do_unallocated; 5510 } else if (s->pauth_active) { 5511 tcg_rd = cpu_reg(s, rd); 5512 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5513 } 5514 break; 5515 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5516 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5517 goto do_unallocated; 5518 } else if (s->pauth_active) { 5519 tcg_rd = cpu_reg(s, rd); 5520 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5521 } 5522 break; 5523 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5524 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5525 goto do_unallocated; 5526 } else if (s->pauth_active) { 5527 tcg_rd = cpu_reg(s, rd); 5528 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5529 } 5530 break; 5531 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5532 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5533 goto do_unallocated; 5534 } else if (s->pauth_active) { 5535 tcg_rd = cpu_reg(s, rd); 5536 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5537 } 5538 break; 5539 case MAP(1, 0x01, 0x10): /* XPACI */ 5540 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5541 goto do_unallocated; 5542 } else if (s->pauth_active) { 5543 tcg_rd = cpu_reg(s, rd); 5544 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5545 } 5546 break; 5547 case MAP(1, 0x01, 0x11): /* XPACD */ 5548 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5549 goto do_unallocated; 5550 } else if (s->pauth_active) { 5551 tcg_rd = cpu_reg(s, rd); 5552 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5553 } 5554 break; 5555 default: 5556 do_unallocated: 5557 unallocated_encoding(s); 5558 break; 5559 } 5560 5561 #undef MAP 5562 } 5563 5564 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5565 unsigned int rm, unsigned int rn, unsigned int rd) 5566 { 5567 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5568 tcg_rd = cpu_reg(s, rd); 5569 5570 if (!sf && is_signed) { 5571 tcg_n = tcg_temp_new_i64(); 5572 tcg_m = tcg_temp_new_i64(); 5573 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5574 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5575 } else { 5576 tcg_n = read_cpu_reg(s, rn, sf); 5577 tcg_m = read_cpu_reg(s, rm, sf); 5578 } 5579 5580 if (is_signed) { 5581 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5582 } else { 5583 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5584 } 5585 5586 if (!sf) { /* zero extend final result */ 5587 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5588 } 5589 } 5590 5591 /* LSLV, LSRV, ASRV, RORV */ 5592 static void handle_shift_reg(DisasContext *s, 5593 enum a64_shift_type shift_type, unsigned int sf, 5594 unsigned int rm, unsigned int rn, unsigned int rd) 5595 { 5596 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5597 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5598 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5599 5600 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5601 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5602 } 5603 5604 /* CRC32[BHWX], CRC32C[BHWX] */ 5605 static void handle_crc32(DisasContext *s, 5606 unsigned int sf, unsigned int sz, bool crc32c, 5607 unsigned int rm, unsigned int rn, unsigned int rd) 5608 { 5609 TCGv_i64 tcg_acc, tcg_val; 5610 TCGv_i32 tcg_bytes; 5611 5612 if (!dc_isar_feature(aa64_crc32, s) 5613 || (sf == 1 && sz != 3) 5614 || (sf == 0 && sz == 3)) { 5615 unallocated_encoding(s); 5616 return; 5617 } 5618 5619 if (sz == 3) { 5620 tcg_val = cpu_reg(s, rm); 5621 } else { 5622 uint64_t mask; 5623 switch (sz) { 5624 case 0: 5625 mask = 0xFF; 5626 break; 5627 case 1: 5628 mask = 0xFFFF; 5629 break; 5630 case 2: 5631 mask = 0xFFFFFFFF; 5632 break; 5633 default: 5634 g_assert_not_reached(); 5635 } 5636 tcg_val = tcg_temp_new_i64(); 5637 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5638 } 5639 5640 tcg_acc = cpu_reg(s, rn); 5641 tcg_bytes = tcg_constant_i32(1 << sz); 5642 5643 if (crc32c) { 5644 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5645 } else { 5646 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5647 } 5648 } 5649 5650 /* Data-processing (2 source) 5651 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5652 * +----+---+---+-----------------+------+--------+------+------+ 5653 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5654 * +----+---+---+-----------------+------+--------+------+------+ 5655 */ 5656 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5657 { 5658 unsigned int sf, rm, opcode, rn, rd, setflag; 5659 sf = extract32(insn, 31, 1); 5660 setflag = extract32(insn, 29, 1); 5661 rm = extract32(insn, 16, 5); 5662 opcode = extract32(insn, 10, 6); 5663 rn = extract32(insn, 5, 5); 5664 rd = extract32(insn, 0, 5); 5665 5666 if (setflag && opcode != 0) { 5667 unallocated_encoding(s); 5668 return; 5669 } 5670 5671 switch (opcode) { 5672 case 0: /* SUBP(S) */ 5673 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5674 goto do_unallocated; 5675 } else { 5676 TCGv_i64 tcg_n, tcg_m, tcg_d; 5677 5678 tcg_n = read_cpu_reg_sp(s, rn, true); 5679 tcg_m = read_cpu_reg_sp(s, rm, true); 5680 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5681 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5682 tcg_d = cpu_reg(s, rd); 5683 5684 if (setflag) { 5685 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5686 } else { 5687 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5688 } 5689 } 5690 break; 5691 case 2: /* UDIV */ 5692 handle_div(s, false, sf, rm, rn, rd); 5693 break; 5694 case 3: /* SDIV */ 5695 handle_div(s, true, sf, rm, rn, rd); 5696 break; 5697 case 4: /* IRG */ 5698 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5699 goto do_unallocated; 5700 } 5701 if (s->ata) { 5702 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5703 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5704 } else { 5705 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5706 cpu_reg_sp(s, rn)); 5707 } 5708 break; 5709 case 5: /* GMI */ 5710 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5711 goto do_unallocated; 5712 } else { 5713 TCGv_i64 t = tcg_temp_new_i64(); 5714 5715 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5716 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5717 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5718 } 5719 break; 5720 case 8: /* LSLV */ 5721 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5722 break; 5723 case 9: /* LSRV */ 5724 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5725 break; 5726 case 10: /* ASRV */ 5727 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5728 break; 5729 case 11: /* RORV */ 5730 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5731 break; 5732 case 12: /* PACGA */ 5733 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5734 goto do_unallocated; 5735 } 5736 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5737 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5738 break; 5739 case 16: 5740 case 17: 5741 case 18: 5742 case 19: 5743 case 20: 5744 case 21: 5745 case 22: 5746 case 23: /* CRC32 */ 5747 { 5748 int sz = extract32(opcode, 0, 2); 5749 bool crc32c = extract32(opcode, 2, 1); 5750 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5751 break; 5752 } 5753 default: 5754 do_unallocated: 5755 unallocated_encoding(s); 5756 break; 5757 } 5758 } 5759 5760 /* 5761 * Data processing - register 5762 * 31 30 29 28 25 21 20 16 10 0 5763 * +--+---+--+---+-------+-----+-------+-------+---------+ 5764 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5765 * +--+---+--+---+-------+-----+-------+-------+---------+ 5766 */ 5767 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5768 { 5769 int op0 = extract32(insn, 30, 1); 5770 int op1 = extract32(insn, 28, 1); 5771 int op2 = extract32(insn, 21, 4); 5772 int op3 = extract32(insn, 10, 6); 5773 5774 if (!op1) { 5775 if (op2 & 8) { 5776 if (op2 & 1) { 5777 /* Add/sub (extended register) */ 5778 disas_add_sub_ext_reg(s, insn); 5779 } else { 5780 /* Add/sub (shifted register) */ 5781 disas_add_sub_reg(s, insn); 5782 } 5783 } else { 5784 /* Logical (shifted register) */ 5785 disas_logic_reg(s, insn); 5786 } 5787 return; 5788 } 5789 5790 switch (op2) { 5791 case 0x0: 5792 switch (op3) { 5793 case 0x00: /* Add/subtract (with carry) */ 5794 disas_adc_sbc(s, insn); 5795 break; 5796 5797 case 0x01: /* Rotate right into flags */ 5798 case 0x21: 5799 disas_rotate_right_into_flags(s, insn); 5800 break; 5801 5802 case 0x02: /* Evaluate into flags */ 5803 case 0x12: 5804 case 0x22: 5805 case 0x32: 5806 disas_evaluate_into_flags(s, insn); 5807 break; 5808 5809 default: 5810 goto do_unallocated; 5811 } 5812 break; 5813 5814 case 0x2: /* Conditional compare */ 5815 disas_cc(s, insn); /* both imm and reg forms */ 5816 break; 5817 5818 case 0x4: /* Conditional select */ 5819 disas_cond_select(s, insn); 5820 break; 5821 5822 case 0x6: /* Data-processing */ 5823 if (op0) { /* (1 source) */ 5824 disas_data_proc_1src(s, insn); 5825 } else { /* (2 source) */ 5826 disas_data_proc_2src(s, insn); 5827 } 5828 break; 5829 case 0x8 ... 0xf: /* (3 source) */ 5830 disas_data_proc_3src(s, insn); 5831 break; 5832 5833 default: 5834 do_unallocated: 5835 unallocated_encoding(s); 5836 break; 5837 } 5838 } 5839 5840 static void handle_fp_compare(DisasContext *s, int size, 5841 unsigned int rn, unsigned int rm, 5842 bool cmp_with_zero, bool signal_all_nans) 5843 { 5844 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5845 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5846 5847 if (size == MO_64) { 5848 TCGv_i64 tcg_vn, tcg_vm; 5849 5850 tcg_vn = read_fp_dreg(s, rn); 5851 if (cmp_with_zero) { 5852 tcg_vm = tcg_constant_i64(0); 5853 } else { 5854 tcg_vm = read_fp_dreg(s, rm); 5855 } 5856 if (signal_all_nans) { 5857 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5858 } else { 5859 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5860 } 5861 } else { 5862 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5863 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5864 5865 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5866 if (cmp_with_zero) { 5867 tcg_gen_movi_i32(tcg_vm, 0); 5868 } else { 5869 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5870 } 5871 5872 switch (size) { 5873 case MO_32: 5874 if (signal_all_nans) { 5875 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5876 } else { 5877 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5878 } 5879 break; 5880 case MO_16: 5881 if (signal_all_nans) { 5882 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5883 } else { 5884 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5885 } 5886 break; 5887 default: 5888 g_assert_not_reached(); 5889 } 5890 } 5891 5892 gen_set_nzcv(tcg_flags); 5893 } 5894 5895 /* Floating point compare 5896 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5897 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5898 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5899 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5900 */ 5901 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5902 { 5903 unsigned int mos, type, rm, op, rn, opc, op2r; 5904 int size; 5905 5906 mos = extract32(insn, 29, 3); 5907 type = extract32(insn, 22, 2); 5908 rm = extract32(insn, 16, 5); 5909 op = extract32(insn, 14, 2); 5910 rn = extract32(insn, 5, 5); 5911 opc = extract32(insn, 3, 2); 5912 op2r = extract32(insn, 0, 3); 5913 5914 if (mos || op || op2r) { 5915 unallocated_encoding(s); 5916 return; 5917 } 5918 5919 switch (type) { 5920 case 0: 5921 size = MO_32; 5922 break; 5923 case 1: 5924 size = MO_64; 5925 break; 5926 case 3: 5927 size = MO_16; 5928 if (dc_isar_feature(aa64_fp16, s)) { 5929 break; 5930 } 5931 /* fallthru */ 5932 default: 5933 unallocated_encoding(s); 5934 return; 5935 } 5936 5937 if (!fp_access_check(s)) { 5938 return; 5939 } 5940 5941 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5942 } 5943 5944 /* Floating point conditional compare 5945 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5946 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5947 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5948 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5949 */ 5950 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5951 { 5952 unsigned int mos, type, rm, cond, rn, op, nzcv; 5953 TCGLabel *label_continue = NULL; 5954 int size; 5955 5956 mos = extract32(insn, 29, 3); 5957 type = extract32(insn, 22, 2); 5958 rm = extract32(insn, 16, 5); 5959 cond = extract32(insn, 12, 4); 5960 rn = extract32(insn, 5, 5); 5961 op = extract32(insn, 4, 1); 5962 nzcv = extract32(insn, 0, 4); 5963 5964 if (mos) { 5965 unallocated_encoding(s); 5966 return; 5967 } 5968 5969 switch (type) { 5970 case 0: 5971 size = MO_32; 5972 break; 5973 case 1: 5974 size = MO_64; 5975 break; 5976 case 3: 5977 size = MO_16; 5978 if (dc_isar_feature(aa64_fp16, s)) { 5979 break; 5980 } 5981 /* fallthru */ 5982 default: 5983 unallocated_encoding(s); 5984 return; 5985 } 5986 5987 if (!fp_access_check(s)) { 5988 return; 5989 } 5990 5991 if (cond < 0x0e) { /* not always */ 5992 TCGLabel *label_match = gen_new_label(); 5993 label_continue = gen_new_label(); 5994 arm_gen_test_cc(cond, label_match); 5995 /* nomatch: */ 5996 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5997 tcg_gen_br(label_continue); 5998 gen_set_label(label_match); 5999 } 6000 6001 handle_fp_compare(s, size, rn, rm, false, op); 6002 6003 if (cond < 0x0e) { 6004 gen_set_label(label_continue); 6005 } 6006 } 6007 6008 /* Floating point conditional select 6009 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6010 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6011 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6012 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6013 */ 6014 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6015 { 6016 unsigned int mos, type, rm, cond, rn, rd; 6017 TCGv_i64 t_true, t_false; 6018 DisasCompare64 c; 6019 MemOp sz; 6020 6021 mos = extract32(insn, 29, 3); 6022 type = extract32(insn, 22, 2); 6023 rm = extract32(insn, 16, 5); 6024 cond = extract32(insn, 12, 4); 6025 rn = extract32(insn, 5, 5); 6026 rd = extract32(insn, 0, 5); 6027 6028 if (mos) { 6029 unallocated_encoding(s); 6030 return; 6031 } 6032 6033 switch (type) { 6034 case 0: 6035 sz = MO_32; 6036 break; 6037 case 1: 6038 sz = MO_64; 6039 break; 6040 case 3: 6041 sz = MO_16; 6042 if (dc_isar_feature(aa64_fp16, s)) { 6043 break; 6044 } 6045 /* fallthru */ 6046 default: 6047 unallocated_encoding(s); 6048 return; 6049 } 6050 6051 if (!fp_access_check(s)) { 6052 return; 6053 } 6054 6055 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6056 t_true = tcg_temp_new_i64(); 6057 t_false = tcg_temp_new_i64(); 6058 read_vec_element(s, t_true, rn, 0, sz); 6059 read_vec_element(s, t_false, rm, 0, sz); 6060 6061 a64_test_cc(&c, cond); 6062 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6063 t_true, t_false); 6064 6065 /* Note that sregs & hregs write back zeros to the high bits, 6066 and we've already done the zero-extension. */ 6067 write_fp_dreg(s, rd, t_true); 6068 } 6069 6070 /* Floating-point data-processing (1 source) - half precision */ 6071 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6072 { 6073 TCGv_ptr fpst = NULL; 6074 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6075 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6076 6077 switch (opcode) { 6078 case 0x0: /* FMOV */ 6079 tcg_gen_mov_i32(tcg_res, tcg_op); 6080 break; 6081 case 0x1: /* FABS */ 6082 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6083 break; 6084 case 0x2: /* FNEG */ 6085 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6086 break; 6087 case 0x3: /* FSQRT */ 6088 fpst = fpstatus_ptr(FPST_FPCR_F16); 6089 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6090 break; 6091 case 0x8: /* FRINTN */ 6092 case 0x9: /* FRINTP */ 6093 case 0xa: /* FRINTM */ 6094 case 0xb: /* FRINTZ */ 6095 case 0xc: /* FRINTA */ 6096 { 6097 TCGv_i32 tcg_rmode; 6098 6099 fpst = fpstatus_ptr(FPST_FPCR_F16); 6100 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6101 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6102 gen_restore_rmode(tcg_rmode, fpst); 6103 break; 6104 } 6105 case 0xe: /* FRINTX */ 6106 fpst = fpstatus_ptr(FPST_FPCR_F16); 6107 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6108 break; 6109 case 0xf: /* FRINTI */ 6110 fpst = fpstatus_ptr(FPST_FPCR_F16); 6111 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6112 break; 6113 default: 6114 g_assert_not_reached(); 6115 } 6116 6117 write_fp_sreg(s, rd, tcg_res); 6118 } 6119 6120 /* Floating-point data-processing (1 source) - single precision */ 6121 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6122 { 6123 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6124 TCGv_i32 tcg_op, tcg_res; 6125 TCGv_ptr fpst; 6126 int rmode = -1; 6127 6128 tcg_op = read_fp_sreg(s, rn); 6129 tcg_res = tcg_temp_new_i32(); 6130 6131 switch (opcode) { 6132 case 0x0: /* FMOV */ 6133 tcg_gen_mov_i32(tcg_res, tcg_op); 6134 goto done; 6135 case 0x1: /* FABS */ 6136 gen_helper_vfp_abss(tcg_res, tcg_op); 6137 goto done; 6138 case 0x2: /* FNEG */ 6139 gen_helper_vfp_negs(tcg_res, tcg_op); 6140 goto done; 6141 case 0x3: /* FSQRT */ 6142 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6143 goto done; 6144 case 0x6: /* BFCVT */ 6145 gen_fpst = gen_helper_bfcvt; 6146 break; 6147 case 0x8: /* FRINTN */ 6148 case 0x9: /* FRINTP */ 6149 case 0xa: /* FRINTM */ 6150 case 0xb: /* FRINTZ */ 6151 case 0xc: /* FRINTA */ 6152 rmode = opcode & 7; 6153 gen_fpst = gen_helper_rints; 6154 break; 6155 case 0xe: /* FRINTX */ 6156 gen_fpst = gen_helper_rints_exact; 6157 break; 6158 case 0xf: /* FRINTI */ 6159 gen_fpst = gen_helper_rints; 6160 break; 6161 case 0x10: /* FRINT32Z */ 6162 rmode = FPROUNDING_ZERO; 6163 gen_fpst = gen_helper_frint32_s; 6164 break; 6165 case 0x11: /* FRINT32X */ 6166 gen_fpst = gen_helper_frint32_s; 6167 break; 6168 case 0x12: /* FRINT64Z */ 6169 rmode = FPROUNDING_ZERO; 6170 gen_fpst = gen_helper_frint64_s; 6171 break; 6172 case 0x13: /* FRINT64X */ 6173 gen_fpst = gen_helper_frint64_s; 6174 break; 6175 default: 6176 g_assert_not_reached(); 6177 } 6178 6179 fpst = fpstatus_ptr(FPST_FPCR); 6180 if (rmode >= 0) { 6181 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6182 gen_fpst(tcg_res, tcg_op, fpst); 6183 gen_restore_rmode(tcg_rmode, fpst); 6184 } else { 6185 gen_fpst(tcg_res, tcg_op, fpst); 6186 } 6187 6188 done: 6189 write_fp_sreg(s, rd, tcg_res); 6190 } 6191 6192 /* Floating-point data-processing (1 source) - double precision */ 6193 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6194 { 6195 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6196 TCGv_i64 tcg_op, tcg_res; 6197 TCGv_ptr fpst; 6198 int rmode = -1; 6199 6200 switch (opcode) { 6201 case 0x0: /* FMOV */ 6202 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6203 return; 6204 } 6205 6206 tcg_op = read_fp_dreg(s, rn); 6207 tcg_res = tcg_temp_new_i64(); 6208 6209 switch (opcode) { 6210 case 0x1: /* FABS */ 6211 gen_helper_vfp_absd(tcg_res, tcg_op); 6212 goto done; 6213 case 0x2: /* FNEG */ 6214 gen_helper_vfp_negd(tcg_res, tcg_op); 6215 goto done; 6216 case 0x3: /* FSQRT */ 6217 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6218 goto done; 6219 case 0x8: /* FRINTN */ 6220 case 0x9: /* FRINTP */ 6221 case 0xa: /* FRINTM */ 6222 case 0xb: /* FRINTZ */ 6223 case 0xc: /* FRINTA */ 6224 rmode = opcode & 7; 6225 gen_fpst = gen_helper_rintd; 6226 break; 6227 case 0xe: /* FRINTX */ 6228 gen_fpst = gen_helper_rintd_exact; 6229 break; 6230 case 0xf: /* FRINTI */ 6231 gen_fpst = gen_helper_rintd; 6232 break; 6233 case 0x10: /* FRINT32Z */ 6234 rmode = FPROUNDING_ZERO; 6235 gen_fpst = gen_helper_frint32_d; 6236 break; 6237 case 0x11: /* FRINT32X */ 6238 gen_fpst = gen_helper_frint32_d; 6239 break; 6240 case 0x12: /* FRINT64Z */ 6241 rmode = FPROUNDING_ZERO; 6242 gen_fpst = gen_helper_frint64_d; 6243 break; 6244 case 0x13: /* FRINT64X */ 6245 gen_fpst = gen_helper_frint64_d; 6246 break; 6247 default: 6248 g_assert_not_reached(); 6249 } 6250 6251 fpst = fpstatus_ptr(FPST_FPCR); 6252 if (rmode >= 0) { 6253 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6254 gen_fpst(tcg_res, tcg_op, fpst); 6255 gen_restore_rmode(tcg_rmode, fpst); 6256 } else { 6257 gen_fpst(tcg_res, tcg_op, fpst); 6258 } 6259 6260 done: 6261 write_fp_dreg(s, rd, tcg_res); 6262 } 6263 6264 static void handle_fp_fcvt(DisasContext *s, int opcode, 6265 int rd, int rn, int dtype, int ntype) 6266 { 6267 switch (ntype) { 6268 case 0x0: 6269 { 6270 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6271 if (dtype == 1) { 6272 /* Single to double */ 6273 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6274 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6275 write_fp_dreg(s, rd, tcg_rd); 6276 } else { 6277 /* Single to half */ 6278 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6279 TCGv_i32 ahp = get_ahp_flag(); 6280 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6281 6282 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6283 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6284 write_fp_sreg(s, rd, tcg_rd); 6285 } 6286 break; 6287 } 6288 case 0x1: 6289 { 6290 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6291 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6292 if (dtype == 0) { 6293 /* Double to single */ 6294 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6295 } else { 6296 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6297 TCGv_i32 ahp = get_ahp_flag(); 6298 /* Double to half */ 6299 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6300 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6301 } 6302 write_fp_sreg(s, rd, tcg_rd); 6303 break; 6304 } 6305 case 0x3: 6306 { 6307 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6308 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6309 TCGv_i32 tcg_ahp = get_ahp_flag(); 6310 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6311 if (dtype == 0) { 6312 /* Half to single */ 6313 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6314 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6315 write_fp_sreg(s, rd, tcg_rd); 6316 } else { 6317 /* Half to double */ 6318 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6319 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6320 write_fp_dreg(s, rd, tcg_rd); 6321 } 6322 break; 6323 } 6324 default: 6325 g_assert_not_reached(); 6326 } 6327 } 6328 6329 /* Floating point data-processing (1 source) 6330 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6331 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6332 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6333 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6334 */ 6335 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6336 { 6337 int mos = extract32(insn, 29, 3); 6338 int type = extract32(insn, 22, 2); 6339 int opcode = extract32(insn, 15, 6); 6340 int rn = extract32(insn, 5, 5); 6341 int rd = extract32(insn, 0, 5); 6342 6343 if (mos) { 6344 goto do_unallocated; 6345 } 6346 6347 switch (opcode) { 6348 case 0x4: case 0x5: case 0x7: 6349 { 6350 /* FCVT between half, single and double precision */ 6351 int dtype = extract32(opcode, 0, 2); 6352 if (type == 2 || dtype == type) { 6353 goto do_unallocated; 6354 } 6355 if (!fp_access_check(s)) { 6356 return; 6357 } 6358 6359 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6360 break; 6361 } 6362 6363 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6364 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6365 goto do_unallocated; 6366 } 6367 /* fall through */ 6368 case 0x0 ... 0x3: 6369 case 0x8 ... 0xc: 6370 case 0xe ... 0xf: 6371 /* 32-to-32 and 64-to-64 ops */ 6372 switch (type) { 6373 case 0: 6374 if (!fp_access_check(s)) { 6375 return; 6376 } 6377 handle_fp_1src_single(s, opcode, rd, rn); 6378 break; 6379 case 1: 6380 if (!fp_access_check(s)) { 6381 return; 6382 } 6383 handle_fp_1src_double(s, opcode, rd, rn); 6384 break; 6385 case 3: 6386 if (!dc_isar_feature(aa64_fp16, s)) { 6387 goto do_unallocated; 6388 } 6389 6390 if (!fp_access_check(s)) { 6391 return; 6392 } 6393 handle_fp_1src_half(s, opcode, rd, rn); 6394 break; 6395 default: 6396 goto do_unallocated; 6397 } 6398 break; 6399 6400 case 0x6: 6401 switch (type) { 6402 case 1: /* BFCVT */ 6403 if (!dc_isar_feature(aa64_bf16, s)) { 6404 goto do_unallocated; 6405 } 6406 if (!fp_access_check(s)) { 6407 return; 6408 } 6409 handle_fp_1src_single(s, opcode, rd, rn); 6410 break; 6411 default: 6412 goto do_unallocated; 6413 } 6414 break; 6415 6416 default: 6417 do_unallocated: 6418 unallocated_encoding(s); 6419 break; 6420 } 6421 } 6422 6423 /* Floating-point data-processing (2 source) - single precision */ 6424 static void handle_fp_2src_single(DisasContext *s, int opcode, 6425 int rd, int rn, int rm) 6426 { 6427 TCGv_i32 tcg_op1; 6428 TCGv_i32 tcg_op2; 6429 TCGv_i32 tcg_res; 6430 TCGv_ptr fpst; 6431 6432 tcg_res = tcg_temp_new_i32(); 6433 fpst = fpstatus_ptr(FPST_FPCR); 6434 tcg_op1 = read_fp_sreg(s, rn); 6435 tcg_op2 = read_fp_sreg(s, rm); 6436 6437 switch (opcode) { 6438 case 0x0: /* FMUL */ 6439 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6440 break; 6441 case 0x1: /* FDIV */ 6442 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6443 break; 6444 case 0x2: /* FADD */ 6445 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6446 break; 6447 case 0x3: /* FSUB */ 6448 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6449 break; 6450 case 0x4: /* FMAX */ 6451 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6452 break; 6453 case 0x5: /* FMIN */ 6454 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6455 break; 6456 case 0x6: /* FMAXNM */ 6457 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6458 break; 6459 case 0x7: /* FMINNM */ 6460 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6461 break; 6462 case 0x8: /* FNMUL */ 6463 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6464 gen_helper_vfp_negs(tcg_res, tcg_res); 6465 break; 6466 } 6467 6468 write_fp_sreg(s, rd, tcg_res); 6469 } 6470 6471 /* Floating-point data-processing (2 source) - double precision */ 6472 static void handle_fp_2src_double(DisasContext *s, int opcode, 6473 int rd, int rn, int rm) 6474 { 6475 TCGv_i64 tcg_op1; 6476 TCGv_i64 tcg_op2; 6477 TCGv_i64 tcg_res; 6478 TCGv_ptr fpst; 6479 6480 tcg_res = tcg_temp_new_i64(); 6481 fpst = fpstatus_ptr(FPST_FPCR); 6482 tcg_op1 = read_fp_dreg(s, rn); 6483 tcg_op2 = read_fp_dreg(s, rm); 6484 6485 switch (opcode) { 6486 case 0x0: /* FMUL */ 6487 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6488 break; 6489 case 0x1: /* FDIV */ 6490 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6491 break; 6492 case 0x2: /* FADD */ 6493 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6494 break; 6495 case 0x3: /* FSUB */ 6496 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6497 break; 6498 case 0x4: /* FMAX */ 6499 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6500 break; 6501 case 0x5: /* FMIN */ 6502 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6503 break; 6504 case 0x6: /* FMAXNM */ 6505 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6506 break; 6507 case 0x7: /* FMINNM */ 6508 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6509 break; 6510 case 0x8: /* FNMUL */ 6511 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6512 gen_helper_vfp_negd(tcg_res, tcg_res); 6513 break; 6514 } 6515 6516 write_fp_dreg(s, rd, tcg_res); 6517 } 6518 6519 /* Floating-point data-processing (2 source) - half precision */ 6520 static void handle_fp_2src_half(DisasContext *s, int opcode, 6521 int rd, int rn, int rm) 6522 { 6523 TCGv_i32 tcg_op1; 6524 TCGv_i32 tcg_op2; 6525 TCGv_i32 tcg_res; 6526 TCGv_ptr fpst; 6527 6528 tcg_res = tcg_temp_new_i32(); 6529 fpst = fpstatus_ptr(FPST_FPCR_F16); 6530 tcg_op1 = read_fp_hreg(s, rn); 6531 tcg_op2 = read_fp_hreg(s, rm); 6532 6533 switch (opcode) { 6534 case 0x0: /* FMUL */ 6535 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6536 break; 6537 case 0x1: /* FDIV */ 6538 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6539 break; 6540 case 0x2: /* FADD */ 6541 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6542 break; 6543 case 0x3: /* FSUB */ 6544 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6545 break; 6546 case 0x4: /* FMAX */ 6547 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6548 break; 6549 case 0x5: /* FMIN */ 6550 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6551 break; 6552 case 0x6: /* FMAXNM */ 6553 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6554 break; 6555 case 0x7: /* FMINNM */ 6556 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6557 break; 6558 case 0x8: /* FNMUL */ 6559 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6560 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6561 break; 6562 default: 6563 g_assert_not_reached(); 6564 } 6565 6566 write_fp_sreg(s, rd, tcg_res); 6567 } 6568 6569 /* Floating point data-processing (2 source) 6570 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6571 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6572 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6573 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6574 */ 6575 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6576 { 6577 int mos = extract32(insn, 29, 3); 6578 int type = extract32(insn, 22, 2); 6579 int rd = extract32(insn, 0, 5); 6580 int rn = extract32(insn, 5, 5); 6581 int rm = extract32(insn, 16, 5); 6582 int opcode = extract32(insn, 12, 4); 6583 6584 if (opcode > 8 || mos) { 6585 unallocated_encoding(s); 6586 return; 6587 } 6588 6589 switch (type) { 6590 case 0: 6591 if (!fp_access_check(s)) { 6592 return; 6593 } 6594 handle_fp_2src_single(s, opcode, rd, rn, rm); 6595 break; 6596 case 1: 6597 if (!fp_access_check(s)) { 6598 return; 6599 } 6600 handle_fp_2src_double(s, opcode, rd, rn, rm); 6601 break; 6602 case 3: 6603 if (!dc_isar_feature(aa64_fp16, s)) { 6604 unallocated_encoding(s); 6605 return; 6606 } 6607 if (!fp_access_check(s)) { 6608 return; 6609 } 6610 handle_fp_2src_half(s, opcode, rd, rn, rm); 6611 break; 6612 default: 6613 unallocated_encoding(s); 6614 } 6615 } 6616 6617 /* Floating-point data-processing (3 source) - single precision */ 6618 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6619 int rd, int rn, int rm, int ra) 6620 { 6621 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6622 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6623 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6624 6625 tcg_op1 = read_fp_sreg(s, rn); 6626 tcg_op2 = read_fp_sreg(s, rm); 6627 tcg_op3 = read_fp_sreg(s, ra); 6628 6629 /* These are fused multiply-add, and must be done as one 6630 * floating point operation with no rounding between the 6631 * multiplication and addition steps. 6632 * NB that doing the negations here as separate steps is 6633 * correct : an input NaN should come out with its sign bit 6634 * flipped if it is a negated-input. 6635 */ 6636 if (o1 == true) { 6637 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6638 } 6639 6640 if (o0 != o1) { 6641 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6642 } 6643 6644 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6645 6646 write_fp_sreg(s, rd, tcg_res); 6647 } 6648 6649 /* Floating-point data-processing (3 source) - double precision */ 6650 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6651 int rd, int rn, int rm, int ra) 6652 { 6653 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6654 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6655 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6656 6657 tcg_op1 = read_fp_dreg(s, rn); 6658 tcg_op2 = read_fp_dreg(s, rm); 6659 tcg_op3 = read_fp_dreg(s, ra); 6660 6661 /* These are fused multiply-add, and must be done as one 6662 * floating point operation with no rounding between the 6663 * multiplication and addition steps. 6664 * NB that doing the negations here as separate steps is 6665 * correct : an input NaN should come out with its sign bit 6666 * flipped if it is a negated-input. 6667 */ 6668 if (o1 == true) { 6669 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6670 } 6671 6672 if (o0 != o1) { 6673 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6674 } 6675 6676 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6677 6678 write_fp_dreg(s, rd, tcg_res); 6679 } 6680 6681 /* Floating-point data-processing (3 source) - half precision */ 6682 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6683 int rd, int rn, int rm, int ra) 6684 { 6685 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6686 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6687 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6688 6689 tcg_op1 = read_fp_hreg(s, rn); 6690 tcg_op2 = read_fp_hreg(s, rm); 6691 tcg_op3 = read_fp_hreg(s, ra); 6692 6693 /* These are fused multiply-add, and must be done as one 6694 * floating point operation with no rounding between the 6695 * multiplication and addition steps. 6696 * NB that doing the negations here as separate steps is 6697 * correct : an input NaN should come out with its sign bit 6698 * flipped if it is a negated-input. 6699 */ 6700 if (o1 == true) { 6701 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6702 } 6703 6704 if (o0 != o1) { 6705 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6706 } 6707 6708 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6709 6710 write_fp_sreg(s, rd, tcg_res); 6711 } 6712 6713 /* Floating point data-processing (3 source) 6714 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6715 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6716 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6717 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6718 */ 6719 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6720 { 6721 int mos = extract32(insn, 29, 3); 6722 int type = extract32(insn, 22, 2); 6723 int rd = extract32(insn, 0, 5); 6724 int rn = extract32(insn, 5, 5); 6725 int ra = extract32(insn, 10, 5); 6726 int rm = extract32(insn, 16, 5); 6727 bool o0 = extract32(insn, 15, 1); 6728 bool o1 = extract32(insn, 21, 1); 6729 6730 if (mos) { 6731 unallocated_encoding(s); 6732 return; 6733 } 6734 6735 switch (type) { 6736 case 0: 6737 if (!fp_access_check(s)) { 6738 return; 6739 } 6740 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6741 break; 6742 case 1: 6743 if (!fp_access_check(s)) { 6744 return; 6745 } 6746 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6747 break; 6748 case 3: 6749 if (!dc_isar_feature(aa64_fp16, s)) { 6750 unallocated_encoding(s); 6751 return; 6752 } 6753 if (!fp_access_check(s)) { 6754 return; 6755 } 6756 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6757 break; 6758 default: 6759 unallocated_encoding(s); 6760 } 6761 } 6762 6763 /* Floating point immediate 6764 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6765 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6766 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6767 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6768 */ 6769 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6770 { 6771 int rd = extract32(insn, 0, 5); 6772 int imm5 = extract32(insn, 5, 5); 6773 int imm8 = extract32(insn, 13, 8); 6774 int type = extract32(insn, 22, 2); 6775 int mos = extract32(insn, 29, 3); 6776 uint64_t imm; 6777 MemOp sz; 6778 6779 if (mos || imm5) { 6780 unallocated_encoding(s); 6781 return; 6782 } 6783 6784 switch (type) { 6785 case 0: 6786 sz = MO_32; 6787 break; 6788 case 1: 6789 sz = MO_64; 6790 break; 6791 case 3: 6792 sz = MO_16; 6793 if (dc_isar_feature(aa64_fp16, s)) { 6794 break; 6795 } 6796 /* fallthru */ 6797 default: 6798 unallocated_encoding(s); 6799 return; 6800 } 6801 6802 if (!fp_access_check(s)) { 6803 return; 6804 } 6805 6806 imm = vfp_expand_imm(sz, imm8); 6807 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6808 } 6809 6810 /* Handle floating point <=> fixed point conversions. Note that we can 6811 * also deal with fp <=> integer conversions as a special case (scale == 64) 6812 * OPTME: consider handling that special case specially or at least skipping 6813 * the call to scalbn in the helpers for zero shifts. 6814 */ 6815 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6816 bool itof, int rmode, int scale, int sf, int type) 6817 { 6818 bool is_signed = !(opcode & 1); 6819 TCGv_ptr tcg_fpstatus; 6820 TCGv_i32 tcg_shift, tcg_single; 6821 TCGv_i64 tcg_double; 6822 6823 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6824 6825 tcg_shift = tcg_constant_i32(64 - scale); 6826 6827 if (itof) { 6828 TCGv_i64 tcg_int = cpu_reg(s, rn); 6829 if (!sf) { 6830 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6831 6832 if (is_signed) { 6833 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6834 } else { 6835 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6836 } 6837 6838 tcg_int = tcg_extend; 6839 } 6840 6841 switch (type) { 6842 case 1: /* float64 */ 6843 tcg_double = tcg_temp_new_i64(); 6844 if (is_signed) { 6845 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6846 tcg_shift, tcg_fpstatus); 6847 } else { 6848 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6849 tcg_shift, tcg_fpstatus); 6850 } 6851 write_fp_dreg(s, rd, tcg_double); 6852 break; 6853 6854 case 0: /* float32 */ 6855 tcg_single = tcg_temp_new_i32(); 6856 if (is_signed) { 6857 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6858 tcg_shift, tcg_fpstatus); 6859 } else { 6860 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6861 tcg_shift, tcg_fpstatus); 6862 } 6863 write_fp_sreg(s, rd, tcg_single); 6864 break; 6865 6866 case 3: /* float16 */ 6867 tcg_single = tcg_temp_new_i32(); 6868 if (is_signed) { 6869 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6870 tcg_shift, tcg_fpstatus); 6871 } else { 6872 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6873 tcg_shift, tcg_fpstatus); 6874 } 6875 write_fp_sreg(s, rd, tcg_single); 6876 break; 6877 6878 default: 6879 g_assert_not_reached(); 6880 } 6881 } else { 6882 TCGv_i64 tcg_int = cpu_reg(s, rd); 6883 TCGv_i32 tcg_rmode; 6884 6885 if (extract32(opcode, 2, 1)) { 6886 /* There are too many rounding modes to all fit into rmode, 6887 * so FCVTA[US] is a special case. 6888 */ 6889 rmode = FPROUNDING_TIEAWAY; 6890 } 6891 6892 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6893 6894 switch (type) { 6895 case 1: /* float64 */ 6896 tcg_double = read_fp_dreg(s, rn); 6897 if (is_signed) { 6898 if (!sf) { 6899 gen_helper_vfp_tosld(tcg_int, tcg_double, 6900 tcg_shift, tcg_fpstatus); 6901 } else { 6902 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6903 tcg_shift, tcg_fpstatus); 6904 } 6905 } else { 6906 if (!sf) { 6907 gen_helper_vfp_tould(tcg_int, tcg_double, 6908 tcg_shift, tcg_fpstatus); 6909 } else { 6910 gen_helper_vfp_touqd(tcg_int, tcg_double, 6911 tcg_shift, tcg_fpstatus); 6912 } 6913 } 6914 if (!sf) { 6915 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6916 } 6917 break; 6918 6919 case 0: /* float32 */ 6920 tcg_single = read_fp_sreg(s, rn); 6921 if (sf) { 6922 if (is_signed) { 6923 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6924 tcg_shift, tcg_fpstatus); 6925 } else { 6926 gen_helper_vfp_touqs(tcg_int, tcg_single, 6927 tcg_shift, tcg_fpstatus); 6928 } 6929 } else { 6930 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6931 if (is_signed) { 6932 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6933 tcg_shift, tcg_fpstatus); 6934 } else { 6935 gen_helper_vfp_touls(tcg_dest, tcg_single, 6936 tcg_shift, tcg_fpstatus); 6937 } 6938 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6939 } 6940 break; 6941 6942 case 3: /* float16 */ 6943 tcg_single = read_fp_sreg(s, rn); 6944 if (sf) { 6945 if (is_signed) { 6946 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6947 tcg_shift, tcg_fpstatus); 6948 } else { 6949 gen_helper_vfp_touqh(tcg_int, tcg_single, 6950 tcg_shift, tcg_fpstatus); 6951 } 6952 } else { 6953 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6954 if (is_signed) { 6955 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6956 tcg_shift, tcg_fpstatus); 6957 } else { 6958 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6959 tcg_shift, tcg_fpstatus); 6960 } 6961 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6962 } 6963 break; 6964 6965 default: 6966 g_assert_not_reached(); 6967 } 6968 6969 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6970 } 6971 } 6972 6973 /* Floating point <-> fixed point conversions 6974 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6975 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6976 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6977 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6978 */ 6979 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6980 { 6981 int rd = extract32(insn, 0, 5); 6982 int rn = extract32(insn, 5, 5); 6983 int scale = extract32(insn, 10, 6); 6984 int opcode = extract32(insn, 16, 3); 6985 int rmode = extract32(insn, 19, 2); 6986 int type = extract32(insn, 22, 2); 6987 bool sbit = extract32(insn, 29, 1); 6988 bool sf = extract32(insn, 31, 1); 6989 bool itof; 6990 6991 if (sbit || (!sf && scale < 32)) { 6992 unallocated_encoding(s); 6993 return; 6994 } 6995 6996 switch (type) { 6997 case 0: /* float32 */ 6998 case 1: /* float64 */ 6999 break; 7000 case 3: /* float16 */ 7001 if (dc_isar_feature(aa64_fp16, s)) { 7002 break; 7003 } 7004 /* fallthru */ 7005 default: 7006 unallocated_encoding(s); 7007 return; 7008 } 7009 7010 switch ((rmode << 3) | opcode) { 7011 case 0x2: /* SCVTF */ 7012 case 0x3: /* UCVTF */ 7013 itof = true; 7014 break; 7015 case 0x18: /* FCVTZS */ 7016 case 0x19: /* FCVTZU */ 7017 itof = false; 7018 break; 7019 default: 7020 unallocated_encoding(s); 7021 return; 7022 } 7023 7024 if (!fp_access_check(s)) { 7025 return; 7026 } 7027 7028 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7029 } 7030 7031 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7032 { 7033 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7034 * without conversion. 7035 */ 7036 7037 if (itof) { 7038 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7039 TCGv_i64 tmp; 7040 7041 switch (type) { 7042 case 0: 7043 /* 32 bit */ 7044 tmp = tcg_temp_new_i64(); 7045 tcg_gen_ext32u_i64(tmp, tcg_rn); 7046 write_fp_dreg(s, rd, tmp); 7047 break; 7048 case 1: 7049 /* 64 bit */ 7050 write_fp_dreg(s, rd, tcg_rn); 7051 break; 7052 case 2: 7053 /* 64 bit to top half. */ 7054 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7055 clear_vec_high(s, true, rd); 7056 break; 7057 case 3: 7058 /* 16 bit */ 7059 tmp = tcg_temp_new_i64(); 7060 tcg_gen_ext16u_i64(tmp, tcg_rn); 7061 write_fp_dreg(s, rd, tmp); 7062 break; 7063 default: 7064 g_assert_not_reached(); 7065 } 7066 } else { 7067 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7068 7069 switch (type) { 7070 case 0: 7071 /* 32 bit */ 7072 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7073 break; 7074 case 1: 7075 /* 64 bit */ 7076 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7077 break; 7078 case 2: 7079 /* 64 bits from top half */ 7080 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7081 break; 7082 case 3: 7083 /* 16 bit */ 7084 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7085 break; 7086 default: 7087 g_assert_not_reached(); 7088 } 7089 } 7090 } 7091 7092 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7093 { 7094 TCGv_i64 t = read_fp_dreg(s, rn); 7095 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7096 7097 gen_helper_fjcvtzs(t, t, fpstatus); 7098 7099 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7100 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7101 tcg_gen_movi_i32(cpu_CF, 0); 7102 tcg_gen_movi_i32(cpu_NF, 0); 7103 tcg_gen_movi_i32(cpu_VF, 0); 7104 } 7105 7106 /* Floating point <-> integer conversions 7107 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7108 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7109 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7110 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7111 */ 7112 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7113 { 7114 int rd = extract32(insn, 0, 5); 7115 int rn = extract32(insn, 5, 5); 7116 int opcode = extract32(insn, 16, 3); 7117 int rmode = extract32(insn, 19, 2); 7118 int type = extract32(insn, 22, 2); 7119 bool sbit = extract32(insn, 29, 1); 7120 bool sf = extract32(insn, 31, 1); 7121 bool itof = false; 7122 7123 if (sbit) { 7124 goto do_unallocated; 7125 } 7126 7127 switch (opcode) { 7128 case 2: /* SCVTF */ 7129 case 3: /* UCVTF */ 7130 itof = true; 7131 /* fallthru */ 7132 case 4: /* FCVTAS */ 7133 case 5: /* FCVTAU */ 7134 if (rmode != 0) { 7135 goto do_unallocated; 7136 } 7137 /* fallthru */ 7138 case 0: /* FCVT[NPMZ]S */ 7139 case 1: /* FCVT[NPMZ]U */ 7140 switch (type) { 7141 case 0: /* float32 */ 7142 case 1: /* float64 */ 7143 break; 7144 case 3: /* float16 */ 7145 if (!dc_isar_feature(aa64_fp16, s)) { 7146 goto do_unallocated; 7147 } 7148 break; 7149 default: 7150 goto do_unallocated; 7151 } 7152 if (!fp_access_check(s)) { 7153 return; 7154 } 7155 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7156 break; 7157 7158 default: 7159 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7160 case 0b01100110: /* FMOV half <-> 32-bit int */ 7161 case 0b01100111: 7162 case 0b11100110: /* FMOV half <-> 64-bit int */ 7163 case 0b11100111: 7164 if (!dc_isar_feature(aa64_fp16, s)) { 7165 goto do_unallocated; 7166 } 7167 /* fallthru */ 7168 case 0b00000110: /* FMOV 32-bit */ 7169 case 0b00000111: 7170 case 0b10100110: /* FMOV 64-bit */ 7171 case 0b10100111: 7172 case 0b11001110: /* FMOV top half of 128-bit */ 7173 case 0b11001111: 7174 if (!fp_access_check(s)) { 7175 return; 7176 } 7177 itof = opcode & 1; 7178 handle_fmov(s, rd, rn, type, itof); 7179 break; 7180 7181 case 0b00111110: /* FJCVTZS */ 7182 if (!dc_isar_feature(aa64_jscvt, s)) { 7183 goto do_unallocated; 7184 } else if (fp_access_check(s)) { 7185 handle_fjcvtzs(s, rd, rn); 7186 } 7187 break; 7188 7189 default: 7190 do_unallocated: 7191 unallocated_encoding(s); 7192 return; 7193 } 7194 break; 7195 } 7196 } 7197 7198 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7199 * 31 30 29 28 25 24 0 7200 * +---+---+---+---------+-----------------------------+ 7201 * | | 0 | | 1 1 1 1 | | 7202 * +---+---+---+---------+-----------------------------+ 7203 */ 7204 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7205 { 7206 if (extract32(insn, 24, 1)) { 7207 /* Floating point data-processing (3 source) */ 7208 disas_fp_3src(s, insn); 7209 } else if (extract32(insn, 21, 1) == 0) { 7210 /* Floating point to fixed point conversions */ 7211 disas_fp_fixed_conv(s, insn); 7212 } else { 7213 switch (extract32(insn, 10, 2)) { 7214 case 1: 7215 /* Floating point conditional compare */ 7216 disas_fp_ccomp(s, insn); 7217 break; 7218 case 2: 7219 /* Floating point data-processing (2 source) */ 7220 disas_fp_2src(s, insn); 7221 break; 7222 case 3: 7223 /* Floating point conditional select */ 7224 disas_fp_csel(s, insn); 7225 break; 7226 case 0: 7227 switch (ctz32(extract32(insn, 12, 4))) { 7228 case 0: /* [15:12] == xxx1 */ 7229 /* Floating point immediate */ 7230 disas_fp_imm(s, insn); 7231 break; 7232 case 1: /* [15:12] == xx10 */ 7233 /* Floating point compare */ 7234 disas_fp_compare(s, insn); 7235 break; 7236 case 2: /* [15:12] == x100 */ 7237 /* Floating point data-processing (1 source) */ 7238 disas_fp_1src(s, insn); 7239 break; 7240 case 3: /* [15:12] == 1000 */ 7241 unallocated_encoding(s); 7242 break; 7243 default: /* [15:12] == 0000 */ 7244 /* Floating point <-> integer conversions */ 7245 disas_fp_int_conv(s, insn); 7246 break; 7247 } 7248 break; 7249 } 7250 } 7251 } 7252 7253 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7254 int pos) 7255 { 7256 /* Extract 64 bits from the middle of two concatenated 64 bit 7257 * vector register slices left:right. The extracted bits start 7258 * at 'pos' bits into the right (least significant) side. 7259 * We return the result in tcg_right, and guarantee not to 7260 * trash tcg_left. 7261 */ 7262 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7263 assert(pos > 0 && pos < 64); 7264 7265 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7266 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7267 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7268 } 7269 7270 /* EXT 7271 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7272 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7273 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7274 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7275 */ 7276 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7277 { 7278 int is_q = extract32(insn, 30, 1); 7279 int op2 = extract32(insn, 22, 2); 7280 int imm4 = extract32(insn, 11, 4); 7281 int rm = extract32(insn, 16, 5); 7282 int rn = extract32(insn, 5, 5); 7283 int rd = extract32(insn, 0, 5); 7284 int pos = imm4 << 3; 7285 TCGv_i64 tcg_resl, tcg_resh; 7286 7287 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7288 unallocated_encoding(s); 7289 return; 7290 } 7291 7292 if (!fp_access_check(s)) { 7293 return; 7294 } 7295 7296 tcg_resh = tcg_temp_new_i64(); 7297 tcg_resl = tcg_temp_new_i64(); 7298 7299 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7300 * either extracting 128 bits from a 128:128 concatenation, or 7301 * extracting 64 bits from a 64:64 concatenation. 7302 */ 7303 if (!is_q) { 7304 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7305 if (pos != 0) { 7306 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7307 do_ext64(s, tcg_resh, tcg_resl, pos); 7308 } 7309 } else { 7310 TCGv_i64 tcg_hh; 7311 typedef struct { 7312 int reg; 7313 int elt; 7314 } EltPosns; 7315 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7316 EltPosns *elt = eltposns; 7317 7318 if (pos >= 64) { 7319 elt++; 7320 pos -= 64; 7321 } 7322 7323 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7324 elt++; 7325 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7326 elt++; 7327 if (pos != 0) { 7328 do_ext64(s, tcg_resh, tcg_resl, pos); 7329 tcg_hh = tcg_temp_new_i64(); 7330 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7331 do_ext64(s, tcg_hh, tcg_resh, pos); 7332 } 7333 } 7334 7335 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7336 if (is_q) { 7337 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7338 } 7339 clear_vec_high(s, is_q, rd); 7340 } 7341 7342 /* TBL/TBX 7343 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7344 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7345 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7346 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7347 */ 7348 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7349 { 7350 int op2 = extract32(insn, 22, 2); 7351 int is_q = extract32(insn, 30, 1); 7352 int rm = extract32(insn, 16, 5); 7353 int rn = extract32(insn, 5, 5); 7354 int rd = extract32(insn, 0, 5); 7355 int is_tbx = extract32(insn, 12, 1); 7356 int len = (extract32(insn, 13, 2) + 1) * 16; 7357 7358 if (op2 != 0) { 7359 unallocated_encoding(s); 7360 return; 7361 } 7362 7363 if (!fp_access_check(s)) { 7364 return; 7365 } 7366 7367 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7368 vec_full_reg_offset(s, rm), cpu_env, 7369 is_q ? 16 : 8, vec_full_reg_size(s), 7370 (len << 6) | (is_tbx << 5) | rn, 7371 gen_helper_simd_tblx); 7372 } 7373 7374 /* ZIP/UZP/TRN 7375 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7376 * +---+---+-------------+------+---+------+---+------------------+------+ 7377 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7378 * +---+---+-------------+------+---+------+---+------------------+------+ 7379 */ 7380 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7381 { 7382 int rd = extract32(insn, 0, 5); 7383 int rn = extract32(insn, 5, 5); 7384 int rm = extract32(insn, 16, 5); 7385 int size = extract32(insn, 22, 2); 7386 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7387 * bit 2 indicates 1 vs 2 variant of the insn. 7388 */ 7389 int opcode = extract32(insn, 12, 2); 7390 bool part = extract32(insn, 14, 1); 7391 bool is_q = extract32(insn, 30, 1); 7392 int esize = 8 << size; 7393 int i; 7394 int datasize = is_q ? 128 : 64; 7395 int elements = datasize / esize; 7396 TCGv_i64 tcg_res[2], tcg_ele; 7397 7398 if (opcode == 0 || (size == 3 && !is_q)) { 7399 unallocated_encoding(s); 7400 return; 7401 } 7402 7403 if (!fp_access_check(s)) { 7404 return; 7405 } 7406 7407 tcg_res[0] = tcg_temp_new_i64(); 7408 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7409 tcg_ele = tcg_temp_new_i64(); 7410 7411 for (i = 0; i < elements; i++) { 7412 int o, w; 7413 7414 switch (opcode) { 7415 case 1: /* UZP1/2 */ 7416 { 7417 int midpoint = elements / 2; 7418 if (i < midpoint) { 7419 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7420 } else { 7421 read_vec_element(s, tcg_ele, rm, 7422 2 * (i - midpoint) + part, size); 7423 } 7424 break; 7425 } 7426 case 2: /* TRN1/2 */ 7427 if (i & 1) { 7428 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7429 } else { 7430 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7431 } 7432 break; 7433 case 3: /* ZIP1/2 */ 7434 { 7435 int base = part * elements / 2; 7436 if (i & 1) { 7437 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7438 } else { 7439 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7440 } 7441 break; 7442 } 7443 default: 7444 g_assert_not_reached(); 7445 } 7446 7447 w = (i * esize) / 64; 7448 o = (i * esize) % 64; 7449 if (o == 0) { 7450 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7451 } else { 7452 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7453 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7454 } 7455 } 7456 7457 for (i = 0; i <= is_q; ++i) { 7458 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7459 } 7460 clear_vec_high(s, is_q, rd); 7461 } 7462 7463 /* 7464 * do_reduction_op helper 7465 * 7466 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7467 * important for correct NaN propagation that we do these 7468 * operations in exactly the order specified by the pseudocode. 7469 * 7470 * This is a recursive function, TCG temps should be freed by the 7471 * calling function once it is done with the values. 7472 */ 7473 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7474 int esize, int size, int vmap, TCGv_ptr fpst) 7475 { 7476 if (esize == size) { 7477 int element; 7478 MemOp msize = esize == 16 ? MO_16 : MO_32; 7479 TCGv_i32 tcg_elem; 7480 7481 /* We should have one register left here */ 7482 assert(ctpop8(vmap) == 1); 7483 element = ctz32(vmap); 7484 assert(element < 8); 7485 7486 tcg_elem = tcg_temp_new_i32(); 7487 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7488 return tcg_elem; 7489 } else { 7490 int bits = size / 2; 7491 int shift = ctpop8(vmap) / 2; 7492 int vmap_lo = (vmap >> shift) & vmap; 7493 int vmap_hi = (vmap & ~vmap_lo); 7494 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7495 7496 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7497 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7498 tcg_res = tcg_temp_new_i32(); 7499 7500 switch (fpopcode) { 7501 case 0x0c: /* fmaxnmv half-precision */ 7502 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7503 break; 7504 case 0x0f: /* fmaxv half-precision */ 7505 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7506 break; 7507 case 0x1c: /* fminnmv half-precision */ 7508 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7509 break; 7510 case 0x1f: /* fminv half-precision */ 7511 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7512 break; 7513 case 0x2c: /* fmaxnmv */ 7514 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7515 break; 7516 case 0x2f: /* fmaxv */ 7517 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7518 break; 7519 case 0x3c: /* fminnmv */ 7520 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7521 break; 7522 case 0x3f: /* fminv */ 7523 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7524 break; 7525 default: 7526 g_assert_not_reached(); 7527 } 7528 return tcg_res; 7529 } 7530 } 7531 7532 /* AdvSIMD across lanes 7533 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7534 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7535 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7536 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7537 */ 7538 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7539 { 7540 int rd = extract32(insn, 0, 5); 7541 int rn = extract32(insn, 5, 5); 7542 int size = extract32(insn, 22, 2); 7543 int opcode = extract32(insn, 12, 5); 7544 bool is_q = extract32(insn, 30, 1); 7545 bool is_u = extract32(insn, 29, 1); 7546 bool is_fp = false; 7547 bool is_min = false; 7548 int esize; 7549 int elements; 7550 int i; 7551 TCGv_i64 tcg_res, tcg_elt; 7552 7553 switch (opcode) { 7554 case 0x1b: /* ADDV */ 7555 if (is_u) { 7556 unallocated_encoding(s); 7557 return; 7558 } 7559 /* fall through */ 7560 case 0x3: /* SADDLV, UADDLV */ 7561 case 0xa: /* SMAXV, UMAXV */ 7562 case 0x1a: /* SMINV, UMINV */ 7563 if (size == 3 || (size == 2 && !is_q)) { 7564 unallocated_encoding(s); 7565 return; 7566 } 7567 break; 7568 case 0xc: /* FMAXNMV, FMINNMV */ 7569 case 0xf: /* FMAXV, FMINV */ 7570 /* Bit 1 of size field encodes min vs max and the actual size 7571 * depends on the encoding of the U bit. If not set (and FP16 7572 * enabled) then we do half-precision float instead of single 7573 * precision. 7574 */ 7575 is_min = extract32(size, 1, 1); 7576 is_fp = true; 7577 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7578 size = 1; 7579 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7580 unallocated_encoding(s); 7581 return; 7582 } else { 7583 size = 2; 7584 } 7585 break; 7586 default: 7587 unallocated_encoding(s); 7588 return; 7589 } 7590 7591 if (!fp_access_check(s)) { 7592 return; 7593 } 7594 7595 esize = 8 << size; 7596 elements = (is_q ? 128 : 64) / esize; 7597 7598 tcg_res = tcg_temp_new_i64(); 7599 tcg_elt = tcg_temp_new_i64(); 7600 7601 /* These instructions operate across all lanes of a vector 7602 * to produce a single result. We can guarantee that a 64 7603 * bit intermediate is sufficient: 7604 * + for [US]ADDLV the maximum element size is 32 bits, and 7605 * the result type is 64 bits 7606 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7607 * same as the element size, which is 32 bits at most 7608 * For the integer operations we can choose to work at 64 7609 * or 32 bits and truncate at the end; for simplicity 7610 * we use 64 bits always. The floating point 7611 * ops do require 32 bit intermediates, though. 7612 */ 7613 if (!is_fp) { 7614 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7615 7616 for (i = 1; i < elements; i++) { 7617 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7618 7619 switch (opcode) { 7620 case 0x03: /* SADDLV / UADDLV */ 7621 case 0x1b: /* ADDV */ 7622 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7623 break; 7624 case 0x0a: /* SMAXV / UMAXV */ 7625 if (is_u) { 7626 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7627 } else { 7628 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7629 } 7630 break; 7631 case 0x1a: /* SMINV / UMINV */ 7632 if (is_u) { 7633 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7634 } else { 7635 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7636 } 7637 break; 7638 default: 7639 g_assert_not_reached(); 7640 } 7641 7642 } 7643 } else { 7644 /* Floating point vector reduction ops which work across 32 7645 * bit (single) or 16 bit (half-precision) intermediates. 7646 * Note that correct NaN propagation requires that we do these 7647 * operations in exactly the order specified by the pseudocode. 7648 */ 7649 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7650 int fpopcode = opcode | is_min << 4 | is_u << 5; 7651 int vmap = (1 << elements) - 1; 7652 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7653 (is_q ? 128 : 64), vmap, fpst); 7654 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7655 } 7656 7657 /* Now truncate the result to the width required for the final output */ 7658 if (opcode == 0x03) { 7659 /* SADDLV, UADDLV: result is 2*esize */ 7660 size++; 7661 } 7662 7663 switch (size) { 7664 case 0: 7665 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7666 break; 7667 case 1: 7668 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7669 break; 7670 case 2: 7671 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7672 break; 7673 case 3: 7674 break; 7675 default: 7676 g_assert_not_reached(); 7677 } 7678 7679 write_fp_dreg(s, rd, tcg_res); 7680 } 7681 7682 /* DUP (Element, Vector) 7683 * 7684 * 31 30 29 21 20 16 15 10 9 5 4 0 7685 * +---+---+-------------------+--------+-------------+------+------+ 7686 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7687 * +---+---+-------------------+--------+-------------+------+------+ 7688 * 7689 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7690 */ 7691 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7692 int imm5) 7693 { 7694 int size = ctz32(imm5); 7695 int index; 7696 7697 if (size > 3 || (size == 3 && !is_q)) { 7698 unallocated_encoding(s); 7699 return; 7700 } 7701 7702 if (!fp_access_check(s)) { 7703 return; 7704 } 7705 7706 index = imm5 >> (size + 1); 7707 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7708 vec_reg_offset(s, rn, index, size), 7709 is_q ? 16 : 8, vec_full_reg_size(s)); 7710 } 7711 7712 /* DUP (element, scalar) 7713 * 31 21 20 16 15 10 9 5 4 0 7714 * +-----------------------+--------+-------------+------+------+ 7715 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7716 * +-----------------------+--------+-------------+------+------+ 7717 */ 7718 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7719 int imm5) 7720 { 7721 int size = ctz32(imm5); 7722 int index; 7723 TCGv_i64 tmp; 7724 7725 if (size > 3) { 7726 unallocated_encoding(s); 7727 return; 7728 } 7729 7730 if (!fp_access_check(s)) { 7731 return; 7732 } 7733 7734 index = imm5 >> (size + 1); 7735 7736 /* This instruction just extracts the specified element and 7737 * zero-extends it into the bottom of the destination register. 7738 */ 7739 tmp = tcg_temp_new_i64(); 7740 read_vec_element(s, tmp, rn, index, size); 7741 write_fp_dreg(s, rd, tmp); 7742 } 7743 7744 /* DUP (General) 7745 * 7746 * 31 30 29 21 20 16 15 10 9 5 4 0 7747 * +---+---+-------------------+--------+-------------+------+------+ 7748 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7749 * +---+---+-------------------+--------+-------------+------+------+ 7750 * 7751 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7752 */ 7753 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7754 int imm5) 7755 { 7756 int size = ctz32(imm5); 7757 uint32_t dofs, oprsz, maxsz; 7758 7759 if (size > 3 || ((size == 3) && !is_q)) { 7760 unallocated_encoding(s); 7761 return; 7762 } 7763 7764 if (!fp_access_check(s)) { 7765 return; 7766 } 7767 7768 dofs = vec_full_reg_offset(s, rd); 7769 oprsz = is_q ? 16 : 8; 7770 maxsz = vec_full_reg_size(s); 7771 7772 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7773 } 7774 7775 /* INS (Element) 7776 * 7777 * 31 21 20 16 15 14 11 10 9 5 4 0 7778 * +-----------------------+--------+------------+---+------+------+ 7779 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7780 * +-----------------------+--------+------------+---+------+------+ 7781 * 7782 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7783 * index: encoded in imm5<4:size+1> 7784 */ 7785 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7786 int imm4, int imm5) 7787 { 7788 int size = ctz32(imm5); 7789 int src_index, dst_index; 7790 TCGv_i64 tmp; 7791 7792 if (size > 3) { 7793 unallocated_encoding(s); 7794 return; 7795 } 7796 7797 if (!fp_access_check(s)) { 7798 return; 7799 } 7800 7801 dst_index = extract32(imm5, 1+size, 5); 7802 src_index = extract32(imm4, size, 4); 7803 7804 tmp = tcg_temp_new_i64(); 7805 7806 read_vec_element(s, tmp, rn, src_index, size); 7807 write_vec_element(s, tmp, rd, dst_index, size); 7808 7809 /* INS is considered a 128-bit write for SVE. */ 7810 clear_vec_high(s, true, rd); 7811 } 7812 7813 7814 /* INS (General) 7815 * 7816 * 31 21 20 16 15 10 9 5 4 0 7817 * +-----------------------+--------+-------------+------+------+ 7818 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7819 * +-----------------------+--------+-------------+------+------+ 7820 * 7821 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7822 * index: encoded in imm5<4:size+1> 7823 */ 7824 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7825 { 7826 int size = ctz32(imm5); 7827 int idx; 7828 7829 if (size > 3) { 7830 unallocated_encoding(s); 7831 return; 7832 } 7833 7834 if (!fp_access_check(s)) { 7835 return; 7836 } 7837 7838 idx = extract32(imm5, 1 + size, 4 - size); 7839 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7840 7841 /* INS is considered a 128-bit write for SVE. */ 7842 clear_vec_high(s, true, rd); 7843 } 7844 7845 /* 7846 * UMOV (General) 7847 * SMOV (General) 7848 * 7849 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7850 * +---+---+-------------------+--------+-------------+------+------+ 7851 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7852 * +---+---+-------------------+--------+-------------+------+------+ 7853 * 7854 * U: unsigned when set 7855 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7856 */ 7857 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7858 int rn, int rd, int imm5) 7859 { 7860 int size = ctz32(imm5); 7861 int element; 7862 TCGv_i64 tcg_rd; 7863 7864 /* Check for UnallocatedEncodings */ 7865 if (is_signed) { 7866 if (size > 2 || (size == 2 && !is_q)) { 7867 unallocated_encoding(s); 7868 return; 7869 } 7870 } else { 7871 if (size > 3 7872 || (size < 3 && is_q) 7873 || (size == 3 && !is_q)) { 7874 unallocated_encoding(s); 7875 return; 7876 } 7877 } 7878 7879 if (!fp_access_check(s)) { 7880 return; 7881 } 7882 7883 element = extract32(imm5, 1+size, 4); 7884 7885 tcg_rd = cpu_reg(s, rd); 7886 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7887 if (is_signed && !is_q) { 7888 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7889 } 7890 } 7891 7892 /* AdvSIMD copy 7893 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7894 * +---+---+----+-----------------+------+---+------+---+------+------+ 7895 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7896 * +---+---+----+-----------------+------+---+------+---+------+------+ 7897 */ 7898 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7899 { 7900 int rd = extract32(insn, 0, 5); 7901 int rn = extract32(insn, 5, 5); 7902 int imm4 = extract32(insn, 11, 4); 7903 int op = extract32(insn, 29, 1); 7904 int is_q = extract32(insn, 30, 1); 7905 int imm5 = extract32(insn, 16, 5); 7906 7907 if (op) { 7908 if (is_q) { 7909 /* INS (element) */ 7910 handle_simd_inse(s, rd, rn, imm4, imm5); 7911 } else { 7912 unallocated_encoding(s); 7913 } 7914 } else { 7915 switch (imm4) { 7916 case 0: 7917 /* DUP (element - vector) */ 7918 handle_simd_dupe(s, is_q, rd, rn, imm5); 7919 break; 7920 case 1: 7921 /* DUP (general) */ 7922 handle_simd_dupg(s, is_q, rd, rn, imm5); 7923 break; 7924 case 3: 7925 if (is_q) { 7926 /* INS (general) */ 7927 handle_simd_insg(s, rd, rn, imm5); 7928 } else { 7929 unallocated_encoding(s); 7930 } 7931 break; 7932 case 5: 7933 case 7: 7934 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7935 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7936 break; 7937 default: 7938 unallocated_encoding(s); 7939 break; 7940 } 7941 } 7942 } 7943 7944 /* AdvSIMD modified immediate 7945 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7946 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7947 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7948 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7949 * 7950 * There are a number of operations that can be carried out here: 7951 * MOVI - move (shifted) imm into register 7952 * MVNI - move inverted (shifted) imm into register 7953 * ORR - bitwise OR of (shifted) imm with register 7954 * BIC - bitwise clear of (shifted) imm with register 7955 * With ARMv8.2 we also have: 7956 * FMOV half-precision 7957 */ 7958 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7959 { 7960 int rd = extract32(insn, 0, 5); 7961 int cmode = extract32(insn, 12, 4); 7962 int o2 = extract32(insn, 11, 1); 7963 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7964 bool is_neg = extract32(insn, 29, 1); 7965 bool is_q = extract32(insn, 30, 1); 7966 uint64_t imm = 0; 7967 7968 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7969 /* Check for FMOV (vector, immediate) - half-precision */ 7970 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7971 unallocated_encoding(s); 7972 return; 7973 } 7974 } 7975 7976 if (!fp_access_check(s)) { 7977 return; 7978 } 7979 7980 if (cmode == 15 && o2 && !is_neg) { 7981 /* FMOV (vector, immediate) - half-precision */ 7982 imm = vfp_expand_imm(MO_16, abcdefgh); 7983 /* now duplicate across the lanes */ 7984 imm = dup_const(MO_16, imm); 7985 } else { 7986 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7987 } 7988 7989 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7990 /* MOVI or MVNI, with MVNI negation handled above. */ 7991 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7992 vec_full_reg_size(s), imm); 7993 } else { 7994 /* ORR or BIC, with BIC negation to AND handled above. */ 7995 if (is_neg) { 7996 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7997 } else { 7998 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7999 } 8000 } 8001 } 8002 8003 /* AdvSIMD scalar copy 8004 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8005 * +-----+----+-----------------+------+---+------+---+------+------+ 8006 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8007 * +-----+----+-----------------+------+---+------+---+------+------+ 8008 */ 8009 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8010 { 8011 int rd = extract32(insn, 0, 5); 8012 int rn = extract32(insn, 5, 5); 8013 int imm4 = extract32(insn, 11, 4); 8014 int imm5 = extract32(insn, 16, 5); 8015 int op = extract32(insn, 29, 1); 8016 8017 if (op != 0 || imm4 != 0) { 8018 unallocated_encoding(s); 8019 return; 8020 } 8021 8022 /* DUP (element, scalar) */ 8023 handle_simd_dupes(s, rd, rn, imm5); 8024 } 8025 8026 /* AdvSIMD scalar pairwise 8027 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8028 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8029 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8030 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8031 */ 8032 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8033 { 8034 int u = extract32(insn, 29, 1); 8035 int size = extract32(insn, 22, 2); 8036 int opcode = extract32(insn, 12, 5); 8037 int rn = extract32(insn, 5, 5); 8038 int rd = extract32(insn, 0, 5); 8039 TCGv_ptr fpst; 8040 8041 /* For some ops (the FP ones), size[1] is part of the encoding. 8042 * For ADDP strictly it is not but size[1] is always 1 for valid 8043 * encodings. 8044 */ 8045 opcode |= (extract32(size, 1, 1) << 5); 8046 8047 switch (opcode) { 8048 case 0x3b: /* ADDP */ 8049 if (u || size != 3) { 8050 unallocated_encoding(s); 8051 return; 8052 } 8053 if (!fp_access_check(s)) { 8054 return; 8055 } 8056 8057 fpst = NULL; 8058 break; 8059 case 0xc: /* FMAXNMP */ 8060 case 0xd: /* FADDP */ 8061 case 0xf: /* FMAXP */ 8062 case 0x2c: /* FMINNMP */ 8063 case 0x2f: /* FMINP */ 8064 /* FP op, size[0] is 32 or 64 bit*/ 8065 if (!u) { 8066 if (!dc_isar_feature(aa64_fp16, s)) { 8067 unallocated_encoding(s); 8068 return; 8069 } else { 8070 size = MO_16; 8071 } 8072 } else { 8073 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8074 } 8075 8076 if (!fp_access_check(s)) { 8077 return; 8078 } 8079 8080 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8081 break; 8082 default: 8083 unallocated_encoding(s); 8084 return; 8085 } 8086 8087 if (size == MO_64) { 8088 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8089 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8090 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8091 8092 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8093 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8094 8095 switch (opcode) { 8096 case 0x3b: /* ADDP */ 8097 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8098 break; 8099 case 0xc: /* FMAXNMP */ 8100 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8101 break; 8102 case 0xd: /* FADDP */ 8103 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8104 break; 8105 case 0xf: /* FMAXP */ 8106 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8107 break; 8108 case 0x2c: /* FMINNMP */ 8109 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8110 break; 8111 case 0x2f: /* FMINP */ 8112 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8113 break; 8114 default: 8115 g_assert_not_reached(); 8116 } 8117 8118 write_fp_dreg(s, rd, tcg_res); 8119 } else { 8120 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8121 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8122 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8123 8124 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8125 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8126 8127 if (size == MO_16) { 8128 switch (opcode) { 8129 case 0xc: /* FMAXNMP */ 8130 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8131 break; 8132 case 0xd: /* FADDP */ 8133 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8134 break; 8135 case 0xf: /* FMAXP */ 8136 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8137 break; 8138 case 0x2c: /* FMINNMP */ 8139 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8140 break; 8141 case 0x2f: /* FMINP */ 8142 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8143 break; 8144 default: 8145 g_assert_not_reached(); 8146 } 8147 } else { 8148 switch (opcode) { 8149 case 0xc: /* FMAXNMP */ 8150 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8151 break; 8152 case 0xd: /* FADDP */ 8153 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8154 break; 8155 case 0xf: /* FMAXP */ 8156 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8157 break; 8158 case 0x2c: /* FMINNMP */ 8159 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8160 break; 8161 case 0x2f: /* FMINP */ 8162 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8163 break; 8164 default: 8165 g_assert_not_reached(); 8166 } 8167 } 8168 8169 write_fp_sreg(s, rd, tcg_res); 8170 } 8171 } 8172 8173 /* 8174 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8175 * 8176 * This code is handles the common shifting code and is used by both 8177 * the vector and scalar code. 8178 */ 8179 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8180 TCGv_i64 tcg_rnd, bool accumulate, 8181 bool is_u, int size, int shift) 8182 { 8183 bool extended_result = false; 8184 bool round = tcg_rnd != NULL; 8185 int ext_lshift = 0; 8186 TCGv_i64 tcg_src_hi; 8187 8188 if (round && size == 3) { 8189 extended_result = true; 8190 ext_lshift = 64 - shift; 8191 tcg_src_hi = tcg_temp_new_i64(); 8192 } else if (shift == 64) { 8193 if (!accumulate && is_u) { 8194 /* result is zero */ 8195 tcg_gen_movi_i64(tcg_res, 0); 8196 return; 8197 } 8198 } 8199 8200 /* Deal with the rounding step */ 8201 if (round) { 8202 if (extended_result) { 8203 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8204 if (!is_u) { 8205 /* take care of sign extending tcg_res */ 8206 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8207 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8208 tcg_src, tcg_src_hi, 8209 tcg_rnd, tcg_zero); 8210 } else { 8211 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8212 tcg_src, tcg_zero, 8213 tcg_rnd, tcg_zero); 8214 } 8215 } else { 8216 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8217 } 8218 } 8219 8220 /* Now do the shift right */ 8221 if (round && extended_result) { 8222 /* extended case, >64 bit precision required */ 8223 if (ext_lshift == 0) { 8224 /* special case, only high bits matter */ 8225 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8226 } else { 8227 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8228 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8229 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8230 } 8231 } else { 8232 if (is_u) { 8233 if (shift == 64) { 8234 /* essentially shifting in 64 zeros */ 8235 tcg_gen_movi_i64(tcg_src, 0); 8236 } else { 8237 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8238 } 8239 } else { 8240 if (shift == 64) { 8241 /* effectively extending the sign-bit */ 8242 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8243 } else { 8244 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8245 } 8246 } 8247 } 8248 8249 if (accumulate) { 8250 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8251 } else { 8252 tcg_gen_mov_i64(tcg_res, tcg_src); 8253 } 8254 } 8255 8256 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8257 static void handle_scalar_simd_shri(DisasContext *s, 8258 bool is_u, int immh, int immb, 8259 int opcode, int rn, int rd) 8260 { 8261 const int size = 3; 8262 int immhb = immh << 3 | immb; 8263 int shift = 2 * (8 << size) - immhb; 8264 bool accumulate = false; 8265 bool round = false; 8266 bool insert = false; 8267 TCGv_i64 tcg_rn; 8268 TCGv_i64 tcg_rd; 8269 TCGv_i64 tcg_round; 8270 8271 if (!extract32(immh, 3, 1)) { 8272 unallocated_encoding(s); 8273 return; 8274 } 8275 8276 if (!fp_access_check(s)) { 8277 return; 8278 } 8279 8280 switch (opcode) { 8281 case 0x02: /* SSRA / USRA (accumulate) */ 8282 accumulate = true; 8283 break; 8284 case 0x04: /* SRSHR / URSHR (rounding) */ 8285 round = true; 8286 break; 8287 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8288 accumulate = round = true; 8289 break; 8290 case 0x08: /* SRI */ 8291 insert = true; 8292 break; 8293 } 8294 8295 if (round) { 8296 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8297 } else { 8298 tcg_round = NULL; 8299 } 8300 8301 tcg_rn = read_fp_dreg(s, rn); 8302 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8303 8304 if (insert) { 8305 /* shift count same as element size is valid but does nothing; 8306 * special case to avoid potential shift by 64. 8307 */ 8308 int esize = 8 << size; 8309 if (shift != esize) { 8310 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8311 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8312 } 8313 } else { 8314 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8315 accumulate, is_u, size, shift); 8316 } 8317 8318 write_fp_dreg(s, rd, tcg_rd); 8319 } 8320 8321 /* SHL/SLI - Scalar shift left */ 8322 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8323 int immh, int immb, int opcode, 8324 int rn, int rd) 8325 { 8326 int size = 32 - clz32(immh) - 1; 8327 int immhb = immh << 3 | immb; 8328 int shift = immhb - (8 << size); 8329 TCGv_i64 tcg_rn; 8330 TCGv_i64 tcg_rd; 8331 8332 if (!extract32(immh, 3, 1)) { 8333 unallocated_encoding(s); 8334 return; 8335 } 8336 8337 if (!fp_access_check(s)) { 8338 return; 8339 } 8340 8341 tcg_rn = read_fp_dreg(s, rn); 8342 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8343 8344 if (insert) { 8345 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8346 } else { 8347 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8348 } 8349 8350 write_fp_dreg(s, rd, tcg_rd); 8351 } 8352 8353 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8354 * (signed/unsigned) narrowing */ 8355 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8356 bool is_u_shift, bool is_u_narrow, 8357 int immh, int immb, int opcode, 8358 int rn, int rd) 8359 { 8360 int immhb = immh << 3 | immb; 8361 int size = 32 - clz32(immh) - 1; 8362 int esize = 8 << size; 8363 int shift = (2 * esize) - immhb; 8364 int elements = is_scalar ? 1 : (64 / esize); 8365 bool round = extract32(opcode, 0, 1); 8366 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8367 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8368 TCGv_i32 tcg_rd_narrowed; 8369 TCGv_i64 tcg_final; 8370 8371 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8372 { gen_helper_neon_narrow_sat_s8, 8373 gen_helper_neon_unarrow_sat8 }, 8374 { gen_helper_neon_narrow_sat_s16, 8375 gen_helper_neon_unarrow_sat16 }, 8376 { gen_helper_neon_narrow_sat_s32, 8377 gen_helper_neon_unarrow_sat32 }, 8378 { NULL, NULL }, 8379 }; 8380 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8381 gen_helper_neon_narrow_sat_u8, 8382 gen_helper_neon_narrow_sat_u16, 8383 gen_helper_neon_narrow_sat_u32, 8384 NULL 8385 }; 8386 NeonGenNarrowEnvFn *narrowfn; 8387 8388 int i; 8389 8390 assert(size < 4); 8391 8392 if (extract32(immh, 3, 1)) { 8393 unallocated_encoding(s); 8394 return; 8395 } 8396 8397 if (!fp_access_check(s)) { 8398 return; 8399 } 8400 8401 if (is_u_shift) { 8402 narrowfn = unsigned_narrow_fns[size]; 8403 } else { 8404 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8405 } 8406 8407 tcg_rn = tcg_temp_new_i64(); 8408 tcg_rd = tcg_temp_new_i64(); 8409 tcg_rd_narrowed = tcg_temp_new_i32(); 8410 tcg_final = tcg_temp_new_i64(); 8411 8412 if (round) { 8413 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8414 } else { 8415 tcg_round = NULL; 8416 } 8417 8418 for (i = 0; i < elements; i++) { 8419 read_vec_element(s, tcg_rn, rn, i, ldop); 8420 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8421 false, is_u_shift, size+1, shift); 8422 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8423 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8424 if (i == 0) { 8425 tcg_gen_mov_i64(tcg_final, tcg_rd); 8426 } else { 8427 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8428 } 8429 } 8430 8431 if (!is_q) { 8432 write_vec_element(s, tcg_final, rd, 0, MO_64); 8433 } else { 8434 write_vec_element(s, tcg_final, rd, 1, MO_64); 8435 } 8436 clear_vec_high(s, is_q, rd); 8437 } 8438 8439 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8440 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8441 bool src_unsigned, bool dst_unsigned, 8442 int immh, int immb, int rn, int rd) 8443 { 8444 int immhb = immh << 3 | immb; 8445 int size = 32 - clz32(immh) - 1; 8446 int shift = immhb - (8 << size); 8447 int pass; 8448 8449 assert(immh != 0); 8450 assert(!(scalar && is_q)); 8451 8452 if (!scalar) { 8453 if (!is_q && extract32(immh, 3, 1)) { 8454 unallocated_encoding(s); 8455 return; 8456 } 8457 8458 /* Since we use the variable-shift helpers we must 8459 * replicate the shift count into each element of 8460 * the tcg_shift value. 8461 */ 8462 switch (size) { 8463 case 0: 8464 shift |= shift << 8; 8465 /* fall through */ 8466 case 1: 8467 shift |= shift << 16; 8468 break; 8469 case 2: 8470 case 3: 8471 break; 8472 default: 8473 g_assert_not_reached(); 8474 } 8475 } 8476 8477 if (!fp_access_check(s)) { 8478 return; 8479 } 8480 8481 if (size == 3) { 8482 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8483 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8484 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8485 { NULL, gen_helper_neon_qshl_u64 }, 8486 }; 8487 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8488 int maxpass = is_q ? 2 : 1; 8489 8490 for (pass = 0; pass < maxpass; pass++) { 8491 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8492 8493 read_vec_element(s, tcg_op, rn, pass, MO_64); 8494 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8495 write_vec_element(s, tcg_op, rd, pass, MO_64); 8496 } 8497 clear_vec_high(s, is_q, rd); 8498 } else { 8499 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8500 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8501 { 8502 { gen_helper_neon_qshl_s8, 8503 gen_helper_neon_qshl_s16, 8504 gen_helper_neon_qshl_s32 }, 8505 { gen_helper_neon_qshlu_s8, 8506 gen_helper_neon_qshlu_s16, 8507 gen_helper_neon_qshlu_s32 } 8508 }, { 8509 { NULL, NULL, NULL }, 8510 { gen_helper_neon_qshl_u8, 8511 gen_helper_neon_qshl_u16, 8512 gen_helper_neon_qshl_u32 } 8513 } 8514 }; 8515 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8516 MemOp memop = scalar ? size : MO_32; 8517 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8518 8519 for (pass = 0; pass < maxpass; pass++) { 8520 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8521 8522 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8523 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8524 if (scalar) { 8525 switch (size) { 8526 case 0: 8527 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8528 break; 8529 case 1: 8530 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8531 break; 8532 case 2: 8533 break; 8534 default: 8535 g_assert_not_reached(); 8536 } 8537 write_fp_sreg(s, rd, tcg_op); 8538 } else { 8539 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8540 } 8541 } 8542 8543 if (!scalar) { 8544 clear_vec_high(s, is_q, rd); 8545 } 8546 } 8547 } 8548 8549 /* Common vector code for handling integer to FP conversion */ 8550 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8551 int elements, int is_signed, 8552 int fracbits, int size) 8553 { 8554 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8555 TCGv_i32 tcg_shift = NULL; 8556 8557 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8558 int pass; 8559 8560 if (fracbits || size == MO_64) { 8561 tcg_shift = tcg_constant_i32(fracbits); 8562 } 8563 8564 if (size == MO_64) { 8565 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8566 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8567 8568 for (pass = 0; pass < elements; pass++) { 8569 read_vec_element(s, tcg_int64, rn, pass, mop); 8570 8571 if (is_signed) { 8572 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8573 tcg_shift, tcg_fpst); 8574 } else { 8575 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8576 tcg_shift, tcg_fpst); 8577 } 8578 if (elements == 1) { 8579 write_fp_dreg(s, rd, tcg_double); 8580 } else { 8581 write_vec_element(s, tcg_double, rd, pass, MO_64); 8582 } 8583 } 8584 } else { 8585 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8586 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8587 8588 for (pass = 0; pass < elements; pass++) { 8589 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8590 8591 switch (size) { 8592 case MO_32: 8593 if (fracbits) { 8594 if (is_signed) { 8595 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8596 tcg_shift, tcg_fpst); 8597 } else { 8598 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8599 tcg_shift, tcg_fpst); 8600 } 8601 } else { 8602 if (is_signed) { 8603 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8604 } else { 8605 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8606 } 8607 } 8608 break; 8609 case MO_16: 8610 if (fracbits) { 8611 if (is_signed) { 8612 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8613 tcg_shift, tcg_fpst); 8614 } else { 8615 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8616 tcg_shift, tcg_fpst); 8617 } 8618 } else { 8619 if (is_signed) { 8620 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8621 } else { 8622 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8623 } 8624 } 8625 break; 8626 default: 8627 g_assert_not_reached(); 8628 } 8629 8630 if (elements == 1) { 8631 write_fp_sreg(s, rd, tcg_float); 8632 } else { 8633 write_vec_element_i32(s, tcg_float, rd, pass, size); 8634 } 8635 } 8636 } 8637 8638 clear_vec_high(s, elements << size == 16, rd); 8639 } 8640 8641 /* UCVTF/SCVTF - Integer to FP conversion */ 8642 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8643 bool is_q, bool is_u, 8644 int immh, int immb, int opcode, 8645 int rn, int rd) 8646 { 8647 int size, elements, fracbits; 8648 int immhb = immh << 3 | immb; 8649 8650 if (immh & 8) { 8651 size = MO_64; 8652 if (!is_scalar && !is_q) { 8653 unallocated_encoding(s); 8654 return; 8655 } 8656 } else if (immh & 4) { 8657 size = MO_32; 8658 } else if (immh & 2) { 8659 size = MO_16; 8660 if (!dc_isar_feature(aa64_fp16, s)) { 8661 unallocated_encoding(s); 8662 return; 8663 } 8664 } else { 8665 /* immh == 0 would be a failure of the decode logic */ 8666 g_assert(immh == 1); 8667 unallocated_encoding(s); 8668 return; 8669 } 8670 8671 if (is_scalar) { 8672 elements = 1; 8673 } else { 8674 elements = (8 << is_q) >> size; 8675 } 8676 fracbits = (16 << size) - immhb; 8677 8678 if (!fp_access_check(s)) { 8679 return; 8680 } 8681 8682 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8683 } 8684 8685 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8686 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8687 bool is_q, bool is_u, 8688 int immh, int immb, int rn, int rd) 8689 { 8690 int immhb = immh << 3 | immb; 8691 int pass, size, fracbits; 8692 TCGv_ptr tcg_fpstatus; 8693 TCGv_i32 tcg_rmode, tcg_shift; 8694 8695 if (immh & 0x8) { 8696 size = MO_64; 8697 if (!is_scalar && !is_q) { 8698 unallocated_encoding(s); 8699 return; 8700 } 8701 } else if (immh & 0x4) { 8702 size = MO_32; 8703 } else if (immh & 0x2) { 8704 size = MO_16; 8705 if (!dc_isar_feature(aa64_fp16, s)) { 8706 unallocated_encoding(s); 8707 return; 8708 } 8709 } else { 8710 /* Should have split out AdvSIMD modified immediate earlier. */ 8711 assert(immh == 1); 8712 unallocated_encoding(s); 8713 return; 8714 } 8715 8716 if (!fp_access_check(s)) { 8717 return; 8718 } 8719 8720 assert(!(is_scalar && is_q)); 8721 8722 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8723 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8724 fracbits = (16 << size) - immhb; 8725 tcg_shift = tcg_constant_i32(fracbits); 8726 8727 if (size == MO_64) { 8728 int maxpass = is_scalar ? 1 : 2; 8729 8730 for (pass = 0; pass < maxpass; pass++) { 8731 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8732 8733 read_vec_element(s, tcg_op, rn, pass, MO_64); 8734 if (is_u) { 8735 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8736 } else { 8737 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8738 } 8739 write_vec_element(s, tcg_op, rd, pass, MO_64); 8740 } 8741 clear_vec_high(s, is_q, rd); 8742 } else { 8743 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8744 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8745 8746 switch (size) { 8747 case MO_16: 8748 if (is_u) { 8749 fn = gen_helper_vfp_touhh; 8750 } else { 8751 fn = gen_helper_vfp_toshh; 8752 } 8753 break; 8754 case MO_32: 8755 if (is_u) { 8756 fn = gen_helper_vfp_touls; 8757 } else { 8758 fn = gen_helper_vfp_tosls; 8759 } 8760 break; 8761 default: 8762 g_assert_not_reached(); 8763 } 8764 8765 for (pass = 0; pass < maxpass; pass++) { 8766 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8767 8768 read_vec_element_i32(s, tcg_op, rn, pass, size); 8769 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8770 if (is_scalar) { 8771 write_fp_sreg(s, rd, tcg_op); 8772 } else { 8773 write_vec_element_i32(s, tcg_op, rd, pass, size); 8774 } 8775 } 8776 if (!is_scalar) { 8777 clear_vec_high(s, is_q, rd); 8778 } 8779 } 8780 8781 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8782 } 8783 8784 /* AdvSIMD scalar shift by immediate 8785 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8786 * +-----+---+-------------+------+------+--------+---+------+------+ 8787 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8788 * +-----+---+-------------+------+------+--------+---+------+------+ 8789 * 8790 * This is the scalar version so it works on a fixed sized registers 8791 */ 8792 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8793 { 8794 int rd = extract32(insn, 0, 5); 8795 int rn = extract32(insn, 5, 5); 8796 int opcode = extract32(insn, 11, 5); 8797 int immb = extract32(insn, 16, 3); 8798 int immh = extract32(insn, 19, 4); 8799 bool is_u = extract32(insn, 29, 1); 8800 8801 if (immh == 0) { 8802 unallocated_encoding(s); 8803 return; 8804 } 8805 8806 switch (opcode) { 8807 case 0x08: /* SRI */ 8808 if (!is_u) { 8809 unallocated_encoding(s); 8810 return; 8811 } 8812 /* fall through */ 8813 case 0x00: /* SSHR / USHR */ 8814 case 0x02: /* SSRA / USRA */ 8815 case 0x04: /* SRSHR / URSHR */ 8816 case 0x06: /* SRSRA / URSRA */ 8817 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8818 break; 8819 case 0x0a: /* SHL / SLI */ 8820 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8821 break; 8822 case 0x1c: /* SCVTF, UCVTF */ 8823 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8824 opcode, rn, rd); 8825 break; 8826 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8827 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8828 if (!is_u) { 8829 unallocated_encoding(s); 8830 return; 8831 } 8832 handle_vec_simd_sqshrn(s, true, false, false, true, 8833 immh, immb, opcode, rn, rd); 8834 break; 8835 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8836 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8837 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8838 immh, immb, opcode, rn, rd); 8839 break; 8840 case 0xc: /* SQSHLU */ 8841 if (!is_u) { 8842 unallocated_encoding(s); 8843 return; 8844 } 8845 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8846 break; 8847 case 0xe: /* SQSHL, UQSHL */ 8848 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8849 break; 8850 case 0x1f: /* FCVTZS, FCVTZU */ 8851 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8852 break; 8853 default: 8854 unallocated_encoding(s); 8855 break; 8856 } 8857 } 8858 8859 /* AdvSIMD scalar three different 8860 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8861 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8862 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8863 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8864 */ 8865 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8866 { 8867 bool is_u = extract32(insn, 29, 1); 8868 int size = extract32(insn, 22, 2); 8869 int opcode = extract32(insn, 12, 4); 8870 int rm = extract32(insn, 16, 5); 8871 int rn = extract32(insn, 5, 5); 8872 int rd = extract32(insn, 0, 5); 8873 8874 if (is_u) { 8875 unallocated_encoding(s); 8876 return; 8877 } 8878 8879 switch (opcode) { 8880 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8881 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8882 case 0xd: /* SQDMULL, SQDMULL2 */ 8883 if (size == 0 || size == 3) { 8884 unallocated_encoding(s); 8885 return; 8886 } 8887 break; 8888 default: 8889 unallocated_encoding(s); 8890 return; 8891 } 8892 8893 if (!fp_access_check(s)) { 8894 return; 8895 } 8896 8897 if (size == 2) { 8898 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8899 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8900 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8901 8902 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8903 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8904 8905 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8906 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8907 8908 switch (opcode) { 8909 case 0xd: /* SQDMULL, SQDMULL2 */ 8910 break; 8911 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8912 tcg_gen_neg_i64(tcg_res, tcg_res); 8913 /* fall through */ 8914 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8915 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8916 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8917 tcg_res, tcg_op1); 8918 break; 8919 default: 8920 g_assert_not_reached(); 8921 } 8922 8923 write_fp_dreg(s, rd, tcg_res); 8924 } else { 8925 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8926 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8927 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8928 8929 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8930 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8931 8932 switch (opcode) { 8933 case 0xd: /* SQDMULL, SQDMULL2 */ 8934 break; 8935 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8936 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8937 /* fall through */ 8938 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8939 { 8940 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8941 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8942 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8943 tcg_res, tcg_op3); 8944 break; 8945 } 8946 default: 8947 g_assert_not_reached(); 8948 } 8949 8950 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8951 write_fp_dreg(s, rd, tcg_res); 8952 } 8953 } 8954 8955 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8956 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8957 { 8958 /* Handle 64x64->64 opcodes which are shared between the scalar 8959 * and vector 3-same groups. We cover every opcode where size == 3 8960 * is valid in either the three-reg-same (integer, not pairwise) 8961 * or scalar-three-reg-same groups. 8962 */ 8963 TCGCond cond; 8964 8965 switch (opcode) { 8966 case 0x1: /* SQADD */ 8967 if (u) { 8968 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8969 } else { 8970 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8971 } 8972 break; 8973 case 0x5: /* SQSUB */ 8974 if (u) { 8975 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8976 } else { 8977 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8978 } 8979 break; 8980 case 0x6: /* CMGT, CMHI */ 8981 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8982 * We implement this using setcond (test) and then negating. 8983 */ 8984 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8985 do_cmop: 8986 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8987 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8988 break; 8989 case 0x7: /* CMGE, CMHS */ 8990 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8991 goto do_cmop; 8992 case 0x11: /* CMTST, CMEQ */ 8993 if (u) { 8994 cond = TCG_COND_EQ; 8995 goto do_cmop; 8996 } 8997 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8998 break; 8999 case 0x8: /* SSHL, USHL */ 9000 if (u) { 9001 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9002 } else { 9003 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9004 } 9005 break; 9006 case 0x9: /* SQSHL, UQSHL */ 9007 if (u) { 9008 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9009 } else { 9010 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9011 } 9012 break; 9013 case 0xa: /* SRSHL, URSHL */ 9014 if (u) { 9015 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9016 } else { 9017 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9018 } 9019 break; 9020 case 0xb: /* SQRSHL, UQRSHL */ 9021 if (u) { 9022 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9023 } else { 9024 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9025 } 9026 break; 9027 case 0x10: /* ADD, SUB */ 9028 if (u) { 9029 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9030 } else { 9031 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9032 } 9033 break; 9034 default: 9035 g_assert_not_reached(); 9036 } 9037 } 9038 9039 /* Handle the 3-same-operands float operations; shared by the scalar 9040 * and vector encodings. The caller must filter out any encodings 9041 * not allocated for the encoding it is dealing with. 9042 */ 9043 static void handle_3same_float(DisasContext *s, int size, int elements, 9044 int fpopcode, int rd, int rn, int rm) 9045 { 9046 int pass; 9047 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9048 9049 for (pass = 0; pass < elements; pass++) { 9050 if (size) { 9051 /* Double */ 9052 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9053 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9054 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9055 9056 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9057 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9058 9059 switch (fpopcode) { 9060 case 0x39: /* FMLS */ 9061 /* As usual for ARM, separate negation for fused multiply-add */ 9062 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9063 /* fall through */ 9064 case 0x19: /* FMLA */ 9065 read_vec_element(s, tcg_res, rd, pass, MO_64); 9066 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9067 tcg_res, fpst); 9068 break; 9069 case 0x18: /* FMAXNM */ 9070 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9071 break; 9072 case 0x1a: /* FADD */ 9073 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9074 break; 9075 case 0x1b: /* FMULX */ 9076 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9077 break; 9078 case 0x1c: /* FCMEQ */ 9079 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9080 break; 9081 case 0x1e: /* FMAX */ 9082 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9083 break; 9084 case 0x1f: /* FRECPS */ 9085 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9086 break; 9087 case 0x38: /* FMINNM */ 9088 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9089 break; 9090 case 0x3a: /* FSUB */ 9091 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9092 break; 9093 case 0x3e: /* FMIN */ 9094 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9095 break; 9096 case 0x3f: /* FRSQRTS */ 9097 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9098 break; 9099 case 0x5b: /* FMUL */ 9100 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9101 break; 9102 case 0x5c: /* FCMGE */ 9103 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9104 break; 9105 case 0x5d: /* FACGE */ 9106 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9107 break; 9108 case 0x5f: /* FDIV */ 9109 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9110 break; 9111 case 0x7a: /* FABD */ 9112 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9113 gen_helper_vfp_absd(tcg_res, tcg_res); 9114 break; 9115 case 0x7c: /* FCMGT */ 9116 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9117 break; 9118 case 0x7d: /* FACGT */ 9119 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9120 break; 9121 default: 9122 g_assert_not_reached(); 9123 } 9124 9125 write_vec_element(s, tcg_res, rd, pass, MO_64); 9126 } else { 9127 /* Single */ 9128 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9129 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9130 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9131 9132 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9133 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9134 9135 switch (fpopcode) { 9136 case 0x39: /* FMLS */ 9137 /* As usual for ARM, separate negation for fused multiply-add */ 9138 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9139 /* fall through */ 9140 case 0x19: /* FMLA */ 9141 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9142 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9143 tcg_res, fpst); 9144 break; 9145 case 0x1a: /* FADD */ 9146 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9147 break; 9148 case 0x1b: /* FMULX */ 9149 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9150 break; 9151 case 0x1c: /* FCMEQ */ 9152 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9153 break; 9154 case 0x1e: /* FMAX */ 9155 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9156 break; 9157 case 0x1f: /* FRECPS */ 9158 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9159 break; 9160 case 0x18: /* FMAXNM */ 9161 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9162 break; 9163 case 0x38: /* FMINNM */ 9164 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9165 break; 9166 case 0x3a: /* FSUB */ 9167 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9168 break; 9169 case 0x3e: /* FMIN */ 9170 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9171 break; 9172 case 0x3f: /* FRSQRTS */ 9173 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9174 break; 9175 case 0x5b: /* FMUL */ 9176 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9177 break; 9178 case 0x5c: /* FCMGE */ 9179 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9180 break; 9181 case 0x5d: /* FACGE */ 9182 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9183 break; 9184 case 0x5f: /* FDIV */ 9185 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9186 break; 9187 case 0x7a: /* FABD */ 9188 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9189 gen_helper_vfp_abss(tcg_res, tcg_res); 9190 break; 9191 case 0x7c: /* FCMGT */ 9192 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9193 break; 9194 case 0x7d: /* FACGT */ 9195 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9196 break; 9197 default: 9198 g_assert_not_reached(); 9199 } 9200 9201 if (elements == 1) { 9202 /* scalar single so clear high part */ 9203 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9204 9205 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9206 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9207 } else { 9208 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9209 } 9210 } 9211 } 9212 9213 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9214 } 9215 9216 /* AdvSIMD scalar three same 9217 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9218 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9219 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9220 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9221 */ 9222 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9223 { 9224 int rd = extract32(insn, 0, 5); 9225 int rn = extract32(insn, 5, 5); 9226 int opcode = extract32(insn, 11, 5); 9227 int rm = extract32(insn, 16, 5); 9228 int size = extract32(insn, 22, 2); 9229 bool u = extract32(insn, 29, 1); 9230 TCGv_i64 tcg_rd; 9231 9232 if (opcode >= 0x18) { 9233 /* Floating point: U, size[1] and opcode indicate operation */ 9234 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9235 switch (fpopcode) { 9236 case 0x1b: /* FMULX */ 9237 case 0x1f: /* FRECPS */ 9238 case 0x3f: /* FRSQRTS */ 9239 case 0x5d: /* FACGE */ 9240 case 0x7d: /* FACGT */ 9241 case 0x1c: /* FCMEQ */ 9242 case 0x5c: /* FCMGE */ 9243 case 0x7c: /* FCMGT */ 9244 case 0x7a: /* FABD */ 9245 break; 9246 default: 9247 unallocated_encoding(s); 9248 return; 9249 } 9250 9251 if (!fp_access_check(s)) { 9252 return; 9253 } 9254 9255 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9256 return; 9257 } 9258 9259 switch (opcode) { 9260 case 0x1: /* SQADD, UQADD */ 9261 case 0x5: /* SQSUB, UQSUB */ 9262 case 0x9: /* SQSHL, UQSHL */ 9263 case 0xb: /* SQRSHL, UQRSHL */ 9264 break; 9265 case 0x8: /* SSHL, USHL */ 9266 case 0xa: /* SRSHL, URSHL */ 9267 case 0x6: /* CMGT, CMHI */ 9268 case 0x7: /* CMGE, CMHS */ 9269 case 0x11: /* CMTST, CMEQ */ 9270 case 0x10: /* ADD, SUB (vector) */ 9271 if (size != 3) { 9272 unallocated_encoding(s); 9273 return; 9274 } 9275 break; 9276 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9277 if (size != 1 && size != 2) { 9278 unallocated_encoding(s); 9279 return; 9280 } 9281 break; 9282 default: 9283 unallocated_encoding(s); 9284 return; 9285 } 9286 9287 if (!fp_access_check(s)) { 9288 return; 9289 } 9290 9291 tcg_rd = tcg_temp_new_i64(); 9292 9293 if (size == 3) { 9294 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9295 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9296 9297 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9298 } else { 9299 /* Do a single operation on the lowest element in the vector. 9300 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9301 * no side effects for all these operations. 9302 * OPTME: special-purpose helpers would avoid doing some 9303 * unnecessary work in the helper for the 8 and 16 bit cases. 9304 */ 9305 NeonGenTwoOpEnvFn *genenvfn; 9306 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9307 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9308 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9309 9310 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9311 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9312 9313 switch (opcode) { 9314 case 0x1: /* SQADD, UQADD */ 9315 { 9316 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9317 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9318 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9319 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9320 }; 9321 genenvfn = fns[size][u]; 9322 break; 9323 } 9324 case 0x5: /* SQSUB, UQSUB */ 9325 { 9326 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9327 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9328 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9329 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9330 }; 9331 genenvfn = fns[size][u]; 9332 break; 9333 } 9334 case 0x9: /* SQSHL, UQSHL */ 9335 { 9336 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9337 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9338 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9339 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9340 }; 9341 genenvfn = fns[size][u]; 9342 break; 9343 } 9344 case 0xb: /* SQRSHL, UQRSHL */ 9345 { 9346 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9347 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9348 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9349 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9350 }; 9351 genenvfn = fns[size][u]; 9352 break; 9353 } 9354 case 0x16: /* SQDMULH, SQRDMULH */ 9355 { 9356 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9357 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9358 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9359 }; 9360 assert(size == 1 || size == 2); 9361 genenvfn = fns[size - 1][u]; 9362 break; 9363 } 9364 default: 9365 g_assert_not_reached(); 9366 } 9367 9368 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9369 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9370 } 9371 9372 write_fp_dreg(s, rd, tcg_rd); 9373 } 9374 9375 /* AdvSIMD scalar three same FP16 9376 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9377 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9378 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9379 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9380 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9381 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9382 */ 9383 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9384 uint32_t insn) 9385 { 9386 int rd = extract32(insn, 0, 5); 9387 int rn = extract32(insn, 5, 5); 9388 int opcode = extract32(insn, 11, 3); 9389 int rm = extract32(insn, 16, 5); 9390 bool u = extract32(insn, 29, 1); 9391 bool a = extract32(insn, 23, 1); 9392 int fpopcode = opcode | (a << 3) | (u << 4); 9393 TCGv_ptr fpst; 9394 TCGv_i32 tcg_op1; 9395 TCGv_i32 tcg_op2; 9396 TCGv_i32 tcg_res; 9397 9398 switch (fpopcode) { 9399 case 0x03: /* FMULX */ 9400 case 0x04: /* FCMEQ (reg) */ 9401 case 0x07: /* FRECPS */ 9402 case 0x0f: /* FRSQRTS */ 9403 case 0x14: /* FCMGE (reg) */ 9404 case 0x15: /* FACGE */ 9405 case 0x1a: /* FABD */ 9406 case 0x1c: /* FCMGT (reg) */ 9407 case 0x1d: /* FACGT */ 9408 break; 9409 default: 9410 unallocated_encoding(s); 9411 return; 9412 } 9413 9414 if (!dc_isar_feature(aa64_fp16, s)) { 9415 unallocated_encoding(s); 9416 } 9417 9418 if (!fp_access_check(s)) { 9419 return; 9420 } 9421 9422 fpst = fpstatus_ptr(FPST_FPCR_F16); 9423 9424 tcg_op1 = read_fp_hreg(s, rn); 9425 tcg_op2 = read_fp_hreg(s, rm); 9426 tcg_res = tcg_temp_new_i32(); 9427 9428 switch (fpopcode) { 9429 case 0x03: /* FMULX */ 9430 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9431 break; 9432 case 0x04: /* FCMEQ (reg) */ 9433 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9434 break; 9435 case 0x07: /* FRECPS */ 9436 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9437 break; 9438 case 0x0f: /* FRSQRTS */ 9439 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9440 break; 9441 case 0x14: /* FCMGE (reg) */ 9442 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9443 break; 9444 case 0x15: /* FACGE */ 9445 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9446 break; 9447 case 0x1a: /* FABD */ 9448 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9449 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9450 break; 9451 case 0x1c: /* FCMGT (reg) */ 9452 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9453 break; 9454 case 0x1d: /* FACGT */ 9455 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9456 break; 9457 default: 9458 g_assert_not_reached(); 9459 } 9460 9461 write_fp_sreg(s, rd, tcg_res); 9462 } 9463 9464 /* AdvSIMD scalar three same extra 9465 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9466 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9467 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9468 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9469 */ 9470 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9471 uint32_t insn) 9472 { 9473 int rd = extract32(insn, 0, 5); 9474 int rn = extract32(insn, 5, 5); 9475 int opcode = extract32(insn, 11, 4); 9476 int rm = extract32(insn, 16, 5); 9477 int size = extract32(insn, 22, 2); 9478 bool u = extract32(insn, 29, 1); 9479 TCGv_i32 ele1, ele2, ele3; 9480 TCGv_i64 res; 9481 bool feature; 9482 9483 switch (u * 16 + opcode) { 9484 case 0x10: /* SQRDMLAH (vector) */ 9485 case 0x11: /* SQRDMLSH (vector) */ 9486 if (size != 1 && size != 2) { 9487 unallocated_encoding(s); 9488 return; 9489 } 9490 feature = dc_isar_feature(aa64_rdm, s); 9491 break; 9492 default: 9493 unallocated_encoding(s); 9494 return; 9495 } 9496 if (!feature) { 9497 unallocated_encoding(s); 9498 return; 9499 } 9500 if (!fp_access_check(s)) { 9501 return; 9502 } 9503 9504 /* Do a single operation on the lowest element in the vector. 9505 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9506 * with no side effects for all these operations. 9507 * OPTME: special-purpose helpers would avoid doing some 9508 * unnecessary work in the helper for the 16 bit cases. 9509 */ 9510 ele1 = tcg_temp_new_i32(); 9511 ele2 = tcg_temp_new_i32(); 9512 ele3 = tcg_temp_new_i32(); 9513 9514 read_vec_element_i32(s, ele1, rn, 0, size); 9515 read_vec_element_i32(s, ele2, rm, 0, size); 9516 read_vec_element_i32(s, ele3, rd, 0, size); 9517 9518 switch (opcode) { 9519 case 0x0: /* SQRDMLAH */ 9520 if (size == 1) { 9521 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9522 } else { 9523 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9524 } 9525 break; 9526 case 0x1: /* SQRDMLSH */ 9527 if (size == 1) { 9528 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9529 } else { 9530 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9531 } 9532 break; 9533 default: 9534 g_assert_not_reached(); 9535 } 9536 9537 res = tcg_temp_new_i64(); 9538 tcg_gen_extu_i32_i64(res, ele3); 9539 write_fp_dreg(s, rd, res); 9540 } 9541 9542 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9543 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9544 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9545 { 9546 /* Handle 64->64 opcodes which are shared between the scalar and 9547 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9548 * is valid in either group and also the double-precision fp ops. 9549 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9550 * requires them. 9551 */ 9552 TCGCond cond; 9553 9554 switch (opcode) { 9555 case 0x4: /* CLS, CLZ */ 9556 if (u) { 9557 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9558 } else { 9559 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9560 } 9561 break; 9562 case 0x5: /* NOT */ 9563 /* This opcode is shared with CNT and RBIT but we have earlier 9564 * enforced that size == 3 if and only if this is the NOT insn. 9565 */ 9566 tcg_gen_not_i64(tcg_rd, tcg_rn); 9567 break; 9568 case 0x7: /* SQABS, SQNEG */ 9569 if (u) { 9570 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9571 } else { 9572 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9573 } 9574 break; 9575 case 0xa: /* CMLT */ 9576 /* 64 bit integer comparison against zero, result is 9577 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9578 * subtracting 1. 9579 */ 9580 cond = TCG_COND_LT; 9581 do_cmop: 9582 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9583 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9584 break; 9585 case 0x8: /* CMGT, CMGE */ 9586 cond = u ? TCG_COND_GE : TCG_COND_GT; 9587 goto do_cmop; 9588 case 0x9: /* CMEQ, CMLE */ 9589 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9590 goto do_cmop; 9591 case 0xb: /* ABS, NEG */ 9592 if (u) { 9593 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9594 } else { 9595 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9596 } 9597 break; 9598 case 0x2f: /* FABS */ 9599 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9600 break; 9601 case 0x6f: /* FNEG */ 9602 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9603 break; 9604 case 0x7f: /* FSQRT */ 9605 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9606 break; 9607 case 0x1a: /* FCVTNS */ 9608 case 0x1b: /* FCVTMS */ 9609 case 0x1c: /* FCVTAS */ 9610 case 0x3a: /* FCVTPS */ 9611 case 0x3b: /* FCVTZS */ 9612 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9613 break; 9614 case 0x5a: /* FCVTNU */ 9615 case 0x5b: /* FCVTMU */ 9616 case 0x5c: /* FCVTAU */ 9617 case 0x7a: /* FCVTPU */ 9618 case 0x7b: /* FCVTZU */ 9619 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9620 break; 9621 case 0x18: /* FRINTN */ 9622 case 0x19: /* FRINTM */ 9623 case 0x38: /* FRINTP */ 9624 case 0x39: /* FRINTZ */ 9625 case 0x58: /* FRINTA */ 9626 case 0x79: /* FRINTI */ 9627 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9628 break; 9629 case 0x59: /* FRINTX */ 9630 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9631 break; 9632 case 0x1e: /* FRINT32Z */ 9633 case 0x5e: /* FRINT32X */ 9634 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9635 break; 9636 case 0x1f: /* FRINT64Z */ 9637 case 0x5f: /* FRINT64X */ 9638 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9639 break; 9640 default: 9641 g_assert_not_reached(); 9642 } 9643 } 9644 9645 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9646 bool is_scalar, bool is_u, bool is_q, 9647 int size, int rn, int rd) 9648 { 9649 bool is_double = (size == MO_64); 9650 TCGv_ptr fpst; 9651 9652 if (!fp_access_check(s)) { 9653 return; 9654 } 9655 9656 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9657 9658 if (is_double) { 9659 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9660 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9661 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9662 NeonGenTwoDoubleOpFn *genfn; 9663 bool swap = false; 9664 int pass; 9665 9666 switch (opcode) { 9667 case 0x2e: /* FCMLT (zero) */ 9668 swap = true; 9669 /* fallthrough */ 9670 case 0x2c: /* FCMGT (zero) */ 9671 genfn = gen_helper_neon_cgt_f64; 9672 break; 9673 case 0x2d: /* FCMEQ (zero) */ 9674 genfn = gen_helper_neon_ceq_f64; 9675 break; 9676 case 0x6d: /* FCMLE (zero) */ 9677 swap = true; 9678 /* fall through */ 9679 case 0x6c: /* FCMGE (zero) */ 9680 genfn = gen_helper_neon_cge_f64; 9681 break; 9682 default: 9683 g_assert_not_reached(); 9684 } 9685 9686 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9687 read_vec_element(s, tcg_op, rn, pass, MO_64); 9688 if (swap) { 9689 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9690 } else { 9691 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9692 } 9693 write_vec_element(s, tcg_res, rd, pass, MO_64); 9694 } 9695 9696 clear_vec_high(s, !is_scalar, rd); 9697 } else { 9698 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9699 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9700 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9701 NeonGenTwoSingleOpFn *genfn; 9702 bool swap = false; 9703 int pass, maxpasses; 9704 9705 if (size == MO_16) { 9706 switch (opcode) { 9707 case 0x2e: /* FCMLT (zero) */ 9708 swap = true; 9709 /* fall through */ 9710 case 0x2c: /* FCMGT (zero) */ 9711 genfn = gen_helper_advsimd_cgt_f16; 9712 break; 9713 case 0x2d: /* FCMEQ (zero) */ 9714 genfn = gen_helper_advsimd_ceq_f16; 9715 break; 9716 case 0x6d: /* FCMLE (zero) */ 9717 swap = true; 9718 /* fall through */ 9719 case 0x6c: /* FCMGE (zero) */ 9720 genfn = gen_helper_advsimd_cge_f16; 9721 break; 9722 default: 9723 g_assert_not_reached(); 9724 } 9725 } else { 9726 switch (opcode) { 9727 case 0x2e: /* FCMLT (zero) */ 9728 swap = true; 9729 /* fall through */ 9730 case 0x2c: /* FCMGT (zero) */ 9731 genfn = gen_helper_neon_cgt_f32; 9732 break; 9733 case 0x2d: /* FCMEQ (zero) */ 9734 genfn = gen_helper_neon_ceq_f32; 9735 break; 9736 case 0x6d: /* FCMLE (zero) */ 9737 swap = true; 9738 /* fall through */ 9739 case 0x6c: /* FCMGE (zero) */ 9740 genfn = gen_helper_neon_cge_f32; 9741 break; 9742 default: 9743 g_assert_not_reached(); 9744 } 9745 } 9746 9747 if (is_scalar) { 9748 maxpasses = 1; 9749 } else { 9750 int vector_size = 8 << is_q; 9751 maxpasses = vector_size >> size; 9752 } 9753 9754 for (pass = 0; pass < maxpasses; pass++) { 9755 read_vec_element_i32(s, tcg_op, rn, pass, size); 9756 if (swap) { 9757 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9758 } else { 9759 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9760 } 9761 if (is_scalar) { 9762 write_fp_sreg(s, rd, tcg_res); 9763 } else { 9764 write_vec_element_i32(s, tcg_res, rd, pass, size); 9765 } 9766 } 9767 9768 if (!is_scalar) { 9769 clear_vec_high(s, is_q, rd); 9770 } 9771 } 9772 } 9773 9774 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9775 bool is_scalar, bool is_u, bool is_q, 9776 int size, int rn, int rd) 9777 { 9778 bool is_double = (size == 3); 9779 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9780 9781 if (is_double) { 9782 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9783 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9784 int pass; 9785 9786 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9787 read_vec_element(s, tcg_op, rn, pass, MO_64); 9788 switch (opcode) { 9789 case 0x3d: /* FRECPE */ 9790 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9791 break; 9792 case 0x3f: /* FRECPX */ 9793 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9794 break; 9795 case 0x7d: /* FRSQRTE */ 9796 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9797 break; 9798 default: 9799 g_assert_not_reached(); 9800 } 9801 write_vec_element(s, tcg_res, rd, pass, MO_64); 9802 } 9803 clear_vec_high(s, !is_scalar, rd); 9804 } else { 9805 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9806 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9807 int pass, maxpasses; 9808 9809 if (is_scalar) { 9810 maxpasses = 1; 9811 } else { 9812 maxpasses = is_q ? 4 : 2; 9813 } 9814 9815 for (pass = 0; pass < maxpasses; pass++) { 9816 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9817 9818 switch (opcode) { 9819 case 0x3c: /* URECPE */ 9820 gen_helper_recpe_u32(tcg_res, tcg_op); 9821 break; 9822 case 0x3d: /* FRECPE */ 9823 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9824 break; 9825 case 0x3f: /* FRECPX */ 9826 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9827 break; 9828 case 0x7d: /* FRSQRTE */ 9829 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9830 break; 9831 default: 9832 g_assert_not_reached(); 9833 } 9834 9835 if (is_scalar) { 9836 write_fp_sreg(s, rd, tcg_res); 9837 } else { 9838 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9839 } 9840 } 9841 if (!is_scalar) { 9842 clear_vec_high(s, is_q, rd); 9843 } 9844 } 9845 } 9846 9847 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9848 int opcode, bool u, bool is_q, 9849 int size, int rn, int rd) 9850 { 9851 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9852 * in the source becomes a size element in the destination). 9853 */ 9854 int pass; 9855 TCGv_i32 tcg_res[2]; 9856 int destelt = is_q ? 2 : 0; 9857 int passes = scalar ? 1 : 2; 9858 9859 if (scalar) { 9860 tcg_res[1] = tcg_constant_i32(0); 9861 } 9862 9863 for (pass = 0; pass < passes; pass++) { 9864 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9865 NeonGenNarrowFn *genfn = NULL; 9866 NeonGenNarrowEnvFn *genenvfn = NULL; 9867 9868 if (scalar) { 9869 read_vec_element(s, tcg_op, rn, pass, size + 1); 9870 } else { 9871 read_vec_element(s, tcg_op, rn, pass, MO_64); 9872 } 9873 tcg_res[pass] = tcg_temp_new_i32(); 9874 9875 switch (opcode) { 9876 case 0x12: /* XTN, SQXTUN */ 9877 { 9878 static NeonGenNarrowFn * const xtnfns[3] = { 9879 gen_helper_neon_narrow_u8, 9880 gen_helper_neon_narrow_u16, 9881 tcg_gen_extrl_i64_i32, 9882 }; 9883 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9884 gen_helper_neon_unarrow_sat8, 9885 gen_helper_neon_unarrow_sat16, 9886 gen_helper_neon_unarrow_sat32, 9887 }; 9888 if (u) { 9889 genenvfn = sqxtunfns[size]; 9890 } else { 9891 genfn = xtnfns[size]; 9892 } 9893 break; 9894 } 9895 case 0x14: /* SQXTN, UQXTN */ 9896 { 9897 static NeonGenNarrowEnvFn * const fns[3][2] = { 9898 { gen_helper_neon_narrow_sat_s8, 9899 gen_helper_neon_narrow_sat_u8 }, 9900 { gen_helper_neon_narrow_sat_s16, 9901 gen_helper_neon_narrow_sat_u16 }, 9902 { gen_helper_neon_narrow_sat_s32, 9903 gen_helper_neon_narrow_sat_u32 }, 9904 }; 9905 genenvfn = fns[size][u]; 9906 break; 9907 } 9908 case 0x16: /* FCVTN, FCVTN2 */ 9909 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9910 if (size == 2) { 9911 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9912 } else { 9913 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9914 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9915 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9916 TCGv_i32 ahp = get_ahp_flag(); 9917 9918 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9919 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9920 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9921 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9922 } 9923 break; 9924 case 0x36: /* BFCVTN, BFCVTN2 */ 9925 { 9926 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9927 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9928 } 9929 break; 9930 case 0x56: /* FCVTXN, FCVTXN2 */ 9931 /* 64 bit to 32 bit float conversion 9932 * with von Neumann rounding (round to odd) 9933 */ 9934 assert(size == 2); 9935 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9936 break; 9937 default: 9938 g_assert_not_reached(); 9939 } 9940 9941 if (genfn) { 9942 genfn(tcg_res[pass], tcg_op); 9943 } else if (genenvfn) { 9944 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9945 } 9946 } 9947 9948 for (pass = 0; pass < 2; pass++) { 9949 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9950 } 9951 clear_vec_high(s, is_q, rd); 9952 } 9953 9954 /* Remaining saturating accumulating ops */ 9955 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9956 bool is_q, int size, int rn, int rd) 9957 { 9958 bool is_double = (size == 3); 9959 9960 if (is_double) { 9961 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9962 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9963 int pass; 9964 9965 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9966 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9967 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9968 9969 if (is_u) { /* USQADD */ 9970 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9971 } else { /* SUQADD */ 9972 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9973 } 9974 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9975 } 9976 clear_vec_high(s, !is_scalar, rd); 9977 } else { 9978 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9979 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9980 int pass, maxpasses; 9981 9982 if (is_scalar) { 9983 maxpasses = 1; 9984 } else { 9985 maxpasses = is_q ? 4 : 2; 9986 } 9987 9988 for (pass = 0; pass < maxpasses; pass++) { 9989 if (is_scalar) { 9990 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9991 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9992 } else { 9993 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9994 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9995 } 9996 9997 if (is_u) { /* USQADD */ 9998 switch (size) { 9999 case 0: 10000 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10001 break; 10002 case 1: 10003 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10004 break; 10005 case 2: 10006 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10007 break; 10008 default: 10009 g_assert_not_reached(); 10010 } 10011 } else { /* SUQADD */ 10012 switch (size) { 10013 case 0: 10014 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10015 break; 10016 case 1: 10017 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10018 break; 10019 case 2: 10020 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10021 break; 10022 default: 10023 g_assert_not_reached(); 10024 } 10025 } 10026 10027 if (is_scalar) { 10028 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10029 } 10030 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10031 } 10032 clear_vec_high(s, is_q, rd); 10033 } 10034 } 10035 10036 /* AdvSIMD scalar two reg misc 10037 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10038 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10039 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10040 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10041 */ 10042 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10043 { 10044 int rd = extract32(insn, 0, 5); 10045 int rn = extract32(insn, 5, 5); 10046 int opcode = extract32(insn, 12, 5); 10047 int size = extract32(insn, 22, 2); 10048 bool u = extract32(insn, 29, 1); 10049 bool is_fcvt = false; 10050 int rmode; 10051 TCGv_i32 tcg_rmode; 10052 TCGv_ptr tcg_fpstatus; 10053 10054 switch (opcode) { 10055 case 0x3: /* USQADD / SUQADD*/ 10056 if (!fp_access_check(s)) { 10057 return; 10058 } 10059 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10060 return; 10061 case 0x7: /* SQABS / SQNEG */ 10062 break; 10063 case 0xa: /* CMLT */ 10064 if (u) { 10065 unallocated_encoding(s); 10066 return; 10067 } 10068 /* fall through */ 10069 case 0x8: /* CMGT, CMGE */ 10070 case 0x9: /* CMEQ, CMLE */ 10071 case 0xb: /* ABS, NEG */ 10072 if (size != 3) { 10073 unallocated_encoding(s); 10074 return; 10075 } 10076 break; 10077 case 0x12: /* SQXTUN */ 10078 if (!u) { 10079 unallocated_encoding(s); 10080 return; 10081 } 10082 /* fall through */ 10083 case 0x14: /* SQXTN, UQXTN */ 10084 if (size == 3) { 10085 unallocated_encoding(s); 10086 return; 10087 } 10088 if (!fp_access_check(s)) { 10089 return; 10090 } 10091 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10092 return; 10093 case 0xc ... 0xf: 10094 case 0x16 ... 0x1d: 10095 case 0x1f: 10096 /* Floating point: U, size[1] and opcode indicate operation; 10097 * size[0] indicates single or double precision. 10098 */ 10099 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10100 size = extract32(size, 0, 1) ? 3 : 2; 10101 switch (opcode) { 10102 case 0x2c: /* FCMGT (zero) */ 10103 case 0x2d: /* FCMEQ (zero) */ 10104 case 0x2e: /* FCMLT (zero) */ 10105 case 0x6c: /* FCMGE (zero) */ 10106 case 0x6d: /* FCMLE (zero) */ 10107 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10108 return; 10109 case 0x1d: /* SCVTF */ 10110 case 0x5d: /* UCVTF */ 10111 { 10112 bool is_signed = (opcode == 0x1d); 10113 if (!fp_access_check(s)) { 10114 return; 10115 } 10116 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10117 return; 10118 } 10119 case 0x3d: /* FRECPE */ 10120 case 0x3f: /* FRECPX */ 10121 case 0x7d: /* FRSQRTE */ 10122 if (!fp_access_check(s)) { 10123 return; 10124 } 10125 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10126 return; 10127 case 0x1a: /* FCVTNS */ 10128 case 0x1b: /* FCVTMS */ 10129 case 0x3a: /* FCVTPS */ 10130 case 0x3b: /* FCVTZS */ 10131 case 0x5a: /* FCVTNU */ 10132 case 0x5b: /* FCVTMU */ 10133 case 0x7a: /* FCVTPU */ 10134 case 0x7b: /* FCVTZU */ 10135 is_fcvt = true; 10136 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10137 break; 10138 case 0x1c: /* FCVTAS */ 10139 case 0x5c: /* FCVTAU */ 10140 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10141 is_fcvt = true; 10142 rmode = FPROUNDING_TIEAWAY; 10143 break; 10144 case 0x56: /* FCVTXN, FCVTXN2 */ 10145 if (size == 2) { 10146 unallocated_encoding(s); 10147 return; 10148 } 10149 if (!fp_access_check(s)) { 10150 return; 10151 } 10152 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10153 return; 10154 default: 10155 unallocated_encoding(s); 10156 return; 10157 } 10158 break; 10159 default: 10160 unallocated_encoding(s); 10161 return; 10162 } 10163 10164 if (!fp_access_check(s)) { 10165 return; 10166 } 10167 10168 if (is_fcvt) { 10169 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10170 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10171 } else { 10172 tcg_fpstatus = NULL; 10173 tcg_rmode = NULL; 10174 } 10175 10176 if (size == 3) { 10177 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10178 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10179 10180 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10181 write_fp_dreg(s, rd, tcg_rd); 10182 } else { 10183 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10184 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10185 10186 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10187 10188 switch (opcode) { 10189 case 0x7: /* SQABS, SQNEG */ 10190 { 10191 NeonGenOneOpEnvFn *genfn; 10192 static NeonGenOneOpEnvFn * const fns[3][2] = { 10193 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10194 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10195 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10196 }; 10197 genfn = fns[size][u]; 10198 genfn(tcg_rd, cpu_env, tcg_rn); 10199 break; 10200 } 10201 case 0x1a: /* FCVTNS */ 10202 case 0x1b: /* FCVTMS */ 10203 case 0x1c: /* FCVTAS */ 10204 case 0x3a: /* FCVTPS */ 10205 case 0x3b: /* FCVTZS */ 10206 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10207 tcg_fpstatus); 10208 break; 10209 case 0x5a: /* FCVTNU */ 10210 case 0x5b: /* FCVTMU */ 10211 case 0x5c: /* FCVTAU */ 10212 case 0x7a: /* FCVTPU */ 10213 case 0x7b: /* FCVTZU */ 10214 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10215 tcg_fpstatus); 10216 break; 10217 default: 10218 g_assert_not_reached(); 10219 } 10220 10221 write_fp_sreg(s, rd, tcg_rd); 10222 } 10223 10224 if (is_fcvt) { 10225 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10226 } 10227 } 10228 10229 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10230 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10231 int immh, int immb, int opcode, int rn, int rd) 10232 { 10233 int size = 32 - clz32(immh) - 1; 10234 int immhb = immh << 3 | immb; 10235 int shift = 2 * (8 << size) - immhb; 10236 GVecGen2iFn *gvec_fn; 10237 10238 if (extract32(immh, 3, 1) && !is_q) { 10239 unallocated_encoding(s); 10240 return; 10241 } 10242 tcg_debug_assert(size <= 3); 10243 10244 if (!fp_access_check(s)) { 10245 return; 10246 } 10247 10248 switch (opcode) { 10249 case 0x02: /* SSRA / USRA (accumulate) */ 10250 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10251 break; 10252 10253 case 0x08: /* SRI */ 10254 gvec_fn = gen_gvec_sri; 10255 break; 10256 10257 case 0x00: /* SSHR / USHR */ 10258 if (is_u) { 10259 if (shift == 8 << size) { 10260 /* Shift count the same size as element size produces zero. */ 10261 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10262 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10263 return; 10264 } 10265 gvec_fn = tcg_gen_gvec_shri; 10266 } else { 10267 /* Shift count the same size as element size produces all sign. */ 10268 if (shift == 8 << size) { 10269 shift -= 1; 10270 } 10271 gvec_fn = tcg_gen_gvec_sari; 10272 } 10273 break; 10274 10275 case 0x04: /* SRSHR / URSHR (rounding) */ 10276 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10277 break; 10278 10279 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10280 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10281 break; 10282 10283 default: 10284 g_assert_not_reached(); 10285 } 10286 10287 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10288 } 10289 10290 /* SHL/SLI - Vector shift left */ 10291 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10292 int immh, int immb, int opcode, int rn, int rd) 10293 { 10294 int size = 32 - clz32(immh) - 1; 10295 int immhb = immh << 3 | immb; 10296 int shift = immhb - (8 << size); 10297 10298 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10299 assert(size >= 0 && size <= 3); 10300 10301 if (extract32(immh, 3, 1) && !is_q) { 10302 unallocated_encoding(s); 10303 return; 10304 } 10305 10306 if (!fp_access_check(s)) { 10307 return; 10308 } 10309 10310 if (insert) { 10311 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10312 } else { 10313 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10314 } 10315 } 10316 10317 /* USHLL/SHLL - Vector shift left with widening */ 10318 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10319 int immh, int immb, int opcode, int rn, int rd) 10320 { 10321 int size = 32 - clz32(immh) - 1; 10322 int immhb = immh << 3 | immb; 10323 int shift = immhb - (8 << size); 10324 int dsize = 64; 10325 int esize = 8 << size; 10326 int elements = dsize/esize; 10327 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10328 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10329 int i; 10330 10331 if (size >= 3) { 10332 unallocated_encoding(s); 10333 return; 10334 } 10335 10336 if (!fp_access_check(s)) { 10337 return; 10338 } 10339 10340 /* For the LL variants the store is larger than the load, 10341 * so if rd == rn we would overwrite parts of our input. 10342 * So load everything right now and use shifts in the main loop. 10343 */ 10344 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10345 10346 for (i = 0; i < elements; i++) { 10347 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10348 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10349 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10350 write_vec_element(s, tcg_rd, rd, i, size + 1); 10351 } 10352 } 10353 10354 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10355 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10356 int immh, int immb, int opcode, int rn, int rd) 10357 { 10358 int immhb = immh << 3 | immb; 10359 int size = 32 - clz32(immh) - 1; 10360 int dsize = 64; 10361 int esize = 8 << size; 10362 int elements = dsize/esize; 10363 int shift = (2 * esize) - immhb; 10364 bool round = extract32(opcode, 0, 1); 10365 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10366 TCGv_i64 tcg_round; 10367 int i; 10368 10369 if (extract32(immh, 3, 1)) { 10370 unallocated_encoding(s); 10371 return; 10372 } 10373 10374 if (!fp_access_check(s)) { 10375 return; 10376 } 10377 10378 tcg_rn = tcg_temp_new_i64(); 10379 tcg_rd = tcg_temp_new_i64(); 10380 tcg_final = tcg_temp_new_i64(); 10381 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10382 10383 if (round) { 10384 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10385 } else { 10386 tcg_round = NULL; 10387 } 10388 10389 for (i = 0; i < elements; i++) { 10390 read_vec_element(s, tcg_rn, rn, i, size+1); 10391 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10392 false, true, size+1, shift); 10393 10394 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10395 } 10396 10397 if (!is_q) { 10398 write_vec_element(s, tcg_final, rd, 0, MO_64); 10399 } else { 10400 write_vec_element(s, tcg_final, rd, 1, MO_64); 10401 } 10402 10403 clear_vec_high(s, is_q, rd); 10404 } 10405 10406 10407 /* AdvSIMD shift by immediate 10408 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10409 * +---+---+---+-------------+------+------+--------+---+------+------+ 10410 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10411 * +---+---+---+-------------+------+------+--------+---+------+------+ 10412 */ 10413 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10414 { 10415 int rd = extract32(insn, 0, 5); 10416 int rn = extract32(insn, 5, 5); 10417 int opcode = extract32(insn, 11, 5); 10418 int immb = extract32(insn, 16, 3); 10419 int immh = extract32(insn, 19, 4); 10420 bool is_u = extract32(insn, 29, 1); 10421 bool is_q = extract32(insn, 30, 1); 10422 10423 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10424 assert(immh != 0); 10425 10426 switch (opcode) { 10427 case 0x08: /* SRI */ 10428 if (!is_u) { 10429 unallocated_encoding(s); 10430 return; 10431 } 10432 /* fall through */ 10433 case 0x00: /* SSHR / USHR */ 10434 case 0x02: /* SSRA / USRA (accumulate) */ 10435 case 0x04: /* SRSHR / URSHR (rounding) */ 10436 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10437 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10438 break; 10439 case 0x0a: /* SHL / SLI */ 10440 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10441 break; 10442 case 0x10: /* SHRN */ 10443 case 0x11: /* RSHRN / SQRSHRUN */ 10444 if (is_u) { 10445 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10446 opcode, rn, rd); 10447 } else { 10448 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10449 } 10450 break; 10451 case 0x12: /* SQSHRN / UQSHRN */ 10452 case 0x13: /* SQRSHRN / UQRSHRN */ 10453 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10454 opcode, rn, rd); 10455 break; 10456 case 0x14: /* SSHLL / USHLL */ 10457 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10458 break; 10459 case 0x1c: /* SCVTF / UCVTF */ 10460 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10461 opcode, rn, rd); 10462 break; 10463 case 0xc: /* SQSHLU */ 10464 if (!is_u) { 10465 unallocated_encoding(s); 10466 return; 10467 } 10468 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10469 break; 10470 case 0xe: /* SQSHL, UQSHL */ 10471 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10472 break; 10473 case 0x1f: /* FCVTZS/ FCVTZU */ 10474 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10475 return; 10476 default: 10477 unallocated_encoding(s); 10478 return; 10479 } 10480 } 10481 10482 /* Generate code to do a "long" addition or subtraction, ie one done in 10483 * TCGv_i64 on vector lanes twice the width specified by size. 10484 */ 10485 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10486 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10487 { 10488 static NeonGenTwo64OpFn * const fns[3][2] = { 10489 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10490 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10491 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10492 }; 10493 NeonGenTwo64OpFn *genfn; 10494 assert(size < 3); 10495 10496 genfn = fns[size][is_sub]; 10497 genfn(tcg_res, tcg_op1, tcg_op2); 10498 } 10499 10500 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10501 int opcode, int rd, int rn, int rm) 10502 { 10503 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10504 TCGv_i64 tcg_res[2]; 10505 int pass, accop; 10506 10507 tcg_res[0] = tcg_temp_new_i64(); 10508 tcg_res[1] = tcg_temp_new_i64(); 10509 10510 /* Does this op do an adding accumulate, a subtracting accumulate, 10511 * or no accumulate at all? 10512 */ 10513 switch (opcode) { 10514 case 5: 10515 case 8: 10516 case 9: 10517 accop = 1; 10518 break; 10519 case 10: 10520 case 11: 10521 accop = -1; 10522 break; 10523 default: 10524 accop = 0; 10525 break; 10526 } 10527 10528 if (accop != 0) { 10529 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10530 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10531 } 10532 10533 /* size == 2 means two 32x32->64 operations; this is worth special 10534 * casing because we can generally handle it inline. 10535 */ 10536 if (size == 2) { 10537 for (pass = 0; pass < 2; pass++) { 10538 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10539 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10540 TCGv_i64 tcg_passres; 10541 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10542 10543 int elt = pass + is_q * 2; 10544 10545 read_vec_element(s, tcg_op1, rn, elt, memop); 10546 read_vec_element(s, tcg_op2, rm, elt, memop); 10547 10548 if (accop == 0) { 10549 tcg_passres = tcg_res[pass]; 10550 } else { 10551 tcg_passres = tcg_temp_new_i64(); 10552 } 10553 10554 switch (opcode) { 10555 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10556 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10557 break; 10558 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10559 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10560 break; 10561 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10562 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10563 { 10564 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10565 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10566 10567 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10568 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10569 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10570 tcg_passres, 10571 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10572 break; 10573 } 10574 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10575 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10576 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10577 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10578 break; 10579 case 9: /* SQDMLAL, SQDMLAL2 */ 10580 case 11: /* SQDMLSL, SQDMLSL2 */ 10581 case 13: /* SQDMULL, SQDMULL2 */ 10582 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10583 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10584 tcg_passres, tcg_passres); 10585 break; 10586 default: 10587 g_assert_not_reached(); 10588 } 10589 10590 if (opcode == 9 || opcode == 11) { 10591 /* saturating accumulate ops */ 10592 if (accop < 0) { 10593 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10594 } 10595 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10596 tcg_res[pass], tcg_passres); 10597 } else if (accop > 0) { 10598 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10599 } else if (accop < 0) { 10600 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10601 } 10602 } 10603 } else { 10604 /* size 0 or 1, generally helper functions */ 10605 for (pass = 0; pass < 2; pass++) { 10606 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10607 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10608 TCGv_i64 tcg_passres; 10609 int elt = pass + is_q * 2; 10610 10611 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10612 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10613 10614 if (accop == 0) { 10615 tcg_passres = tcg_res[pass]; 10616 } else { 10617 tcg_passres = tcg_temp_new_i64(); 10618 } 10619 10620 switch (opcode) { 10621 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10622 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10623 { 10624 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10625 static NeonGenWidenFn * const widenfns[2][2] = { 10626 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10627 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10628 }; 10629 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10630 10631 widenfn(tcg_op2_64, tcg_op2); 10632 widenfn(tcg_passres, tcg_op1); 10633 gen_neon_addl(size, (opcode == 2), tcg_passres, 10634 tcg_passres, tcg_op2_64); 10635 break; 10636 } 10637 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10638 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10639 if (size == 0) { 10640 if (is_u) { 10641 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10642 } else { 10643 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10644 } 10645 } else { 10646 if (is_u) { 10647 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10648 } else { 10649 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10650 } 10651 } 10652 break; 10653 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10654 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10655 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10656 if (size == 0) { 10657 if (is_u) { 10658 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10659 } else { 10660 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10661 } 10662 } else { 10663 if (is_u) { 10664 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10665 } else { 10666 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10667 } 10668 } 10669 break; 10670 case 9: /* SQDMLAL, SQDMLAL2 */ 10671 case 11: /* SQDMLSL, SQDMLSL2 */ 10672 case 13: /* SQDMULL, SQDMULL2 */ 10673 assert(size == 1); 10674 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10675 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10676 tcg_passres, tcg_passres); 10677 break; 10678 default: 10679 g_assert_not_reached(); 10680 } 10681 10682 if (accop != 0) { 10683 if (opcode == 9 || opcode == 11) { 10684 /* saturating accumulate ops */ 10685 if (accop < 0) { 10686 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10687 } 10688 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10689 tcg_res[pass], 10690 tcg_passres); 10691 } else { 10692 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10693 tcg_res[pass], tcg_passres); 10694 } 10695 } 10696 } 10697 } 10698 10699 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10700 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10701 } 10702 10703 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10704 int opcode, int rd, int rn, int rm) 10705 { 10706 TCGv_i64 tcg_res[2]; 10707 int part = is_q ? 2 : 0; 10708 int pass; 10709 10710 for (pass = 0; pass < 2; pass++) { 10711 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10712 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10713 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10714 static NeonGenWidenFn * const widenfns[3][2] = { 10715 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10716 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10717 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10718 }; 10719 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10720 10721 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10722 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10723 widenfn(tcg_op2_wide, tcg_op2); 10724 tcg_res[pass] = tcg_temp_new_i64(); 10725 gen_neon_addl(size, (opcode == 3), 10726 tcg_res[pass], tcg_op1, tcg_op2_wide); 10727 } 10728 10729 for (pass = 0; pass < 2; pass++) { 10730 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10731 } 10732 } 10733 10734 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10735 { 10736 tcg_gen_addi_i64(in, in, 1U << 31); 10737 tcg_gen_extrh_i64_i32(res, in); 10738 } 10739 10740 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10741 int opcode, int rd, int rn, int rm) 10742 { 10743 TCGv_i32 tcg_res[2]; 10744 int part = is_q ? 2 : 0; 10745 int pass; 10746 10747 for (pass = 0; pass < 2; pass++) { 10748 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10749 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10750 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10751 static NeonGenNarrowFn * const narrowfns[3][2] = { 10752 { gen_helper_neon_narrow_high_u8, 10753 gen_helper_neon_narrow_round_high_u8 }, 10754 { gen_helper_neon_narrow_high_u16, 10755 gen_helper_neon_narrow_round_high_u16 }, 10756 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10757 }; 10758 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10759 10760 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10761 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10762 10763 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10764 10765 tcg_res[pass] = tcg_temp_new_i32(); 10766 gennarrow(tcg_res[pass], tcg_wideres); 10767 } 10768 10769 for (pass = 0; pass < 2; pass++) { 10770 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10771 } 10772 clear_vec_high(s, is_q, rd); 10773 } 10774 10775 /* AdvSIMD three different 10776 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10777 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10778 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10779 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10780 */ 10781 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10782 { 10783 /* Instructions in this group fall into three basic classes 10784 * (in each case with the operation working on each element in 10785 * the input vectors): 10786 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10787 * 128 bit input) 10788 * (2) wide 64 x 128 -> 128 10789 * (3) narrowing 128 x 128 -> 64 10790 * Here we do initial decode, catch unallocated cases and 10791 * dispatch to separate functions for each class. 10792 */ 10793 int is_q = extract32(insn, 30, 1); 10794 int is_u = extract32(insn, 29, 1); 10795 int size = extract32(insn, 22, 2); 10796 int opcode = extract32(insn, 12, 4); 10797 int rm = extract32(insn, 16, 5); 10798 int rn = extract32(insn, 5, 5); 10799 int rd = extract32(insn, 0, 5); 10800 10801 switch (opcode) { 10802 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10803 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10804 /* 64 x 128 -> 128 */ 10805 if (size == 3) { 10806 unallocated_encoding(s); 10807 return; 10808 } 10809 if (!fp_access_check(s)) { 10810 return; 10811 } 10812 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10813 break; 10814 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10815 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10816 /* 128 x 128 -> 64 */ 10817 if (size == 3) { 10818 unallocated_encoding(s); 10819 return; 10820 } 10821 if (!fp_access_check(s)) { 10822 return; 10823 } 10824 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10825 break; 10826 case 14: /* PMULL, PMULL2 */ 10827 if (is_u) { 10828 unallocated_encoding(s); 10829 return; 10830 } 10831 switch (size) { 10832 case 0: /* PMULL.P8 */ 10833 if (!fp_access_check(s)) { 10834 return; 10835 } 10836 /* The Q field specifies lo/hi half input for this insn. */ 10837 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10838 gen_helper_neon_pmull_h); 10839 break; 10840 10841 case 3: /* PMULL.P64 */ 10842 if (!dc_isar_feature(aa64_pmull, s)) { 10843 unallocated_encoding(s); 10844 return; 10845 } 10846 if (!fp_access_check(s)) { 10847 return; 10848 } 10849 /* The Q field specifies lo/hi half input for this insn. */ 10850 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10851 gen_helper_gvec_pmull_q); 10852 break; 10853 10854 default: 10855 unallocated_encoding(s); 10856 break; 10857 } 10858 return; 10859 case 9: /* SQDMLAL, SQDMLAL2 */ 10860 case 11: /* SQDMLSL, SQDMLSL2 */ 10861 case 13: /* SQDMULL, SQDMULL2 */ 10862 if (is_u || size == 0) { 10863 unallocated_encoding(s); 10864 return; 10865 } 10866 /* fall through */ 10867 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10868 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10869 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10870 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10871 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10872 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10873 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10874 /* 64 x 64 -> 128 */ 10875 if (size == 3) { 10876 unallocated_encoding(s); 10877 return; 10878 } 10879 if (!fp_access_check(s)) { 10880 return; 10881 } 10882 10883 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10884 break; 10885 default: 10886 /* opcode 15 not allocated */ 10887 unallocated_encoding(s); 10888 break; 10889 } 10890 } 10891 10892 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10893 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10894 { 10895 int rd = extract32(insn, 0, 5); 10896 int rn = extract32(insn, 5, 5); 10897 int rm = extract32(insn, 16, 5); 10898 int size = extract32(insn, 22, 2); 10899 bool is_u = extract32(insn, 29, 1); 10900 bool is_q = extract32(insn, 30, 1); 10901 10902 if (!fp_access_check(s)) { 10903 return; 10904 } 10905 10906 switch (size + 4 * is_u) { 10907 case 0: /* AND */ 10908 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10909 return; 10910 case 1: /* BIC */ 10911 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10912 return; 10913 case 2: /* ORR */ 10914 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10915 return; 10916 case 3: /* ORN */ 10917 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10918 return; 10919 case 4: /* EOR */ 10920 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10921 return; 10922 10923 case 5: /* BSL bitwise select */ 10924 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10925 return; 10926 case 6: /* BIT, bitwise insert if true */ 10927 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10928 return; 10929 case 7: /* BIF, bitwise insert if false */ 10930 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10931 return; 10932 10933 default: 10934 g_assert_not_reached(); 10935 } 10936 } 10937 10938 /* Pairwise op subgroup of C3.6.16. 10939 * 10940 * This is called directly or via the handle_3same_float for float pairwise 10941 * operations where the opcode and size are calculated differently. 10942 */ 10943 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10944 int size, int rn, int rm, int rd) 10945 { 10946 TCGv_ptr fpst; 10947 int pass; 10948 10949 /* Floating point operations need fpst */ 10950 if (opcode >= 0x58) { 10951 fpst = fpstatus_ptr(FPST_FPCR); 10952 } else { 10953 fpst = NULL; 10954 } 10955 10956 if (!fp_access_check(s)) { 10957 return; 10958 } 10959 10960 /* These operations work on the concatenated rm:rn, with each pair of 10961 * adjacent elements being operated on to produce an element in the result. 10962 */ 10963 if (size == 3) { 10964 TCGv_i64 tcg_res[2]; 10965 10966 for (pass = 0; pass < 2; pass++) { 10967 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10968 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10969 int passreg = (pass == 0) ? rn : rm; 10970 10971 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10972 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10973 tcg_res[pass] = tcg_temp_new_i64(); 10974 10975 switch (opcode) { 10976 case 0x17: /* ADDP */ 10977 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10978 break; 10979 case 0x58: /* FMAXNMP */ 10980 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10981 break; 10982 case 0x5a: /* FADDP */ 10983 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10984 break; 10985 case 0x5e: /* FMAXP */ 10986 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10987 break; 10988 case 0x78: /* FMINNMP */ 10989 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10990 break; 10991 case 0x7e: /* FMINP */ 10992 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10993 break; 10994 default: 10995 g_assert_not_reached(); 10996 } 10997 } 10998 10999 for (pass = 0; pass < 2; pass++) { 11000 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11001 } 11002 } else { 11003 int maxpass = is_q ? 4 : 2; 11004 TCGv_i32 tcg_res[4]; 11005 11006 for (pass = 0; pass < maxpass; pass++) { 11007 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11008 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11009 NeonGenTwoOpFn *genfn = NULL; 11010 int passreg = pass < (maxpass / 2) ? rn : rm; 11011 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11012 11013 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11014 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11015 tcg_res[pass] = tcg_temp_new_i32(); 11016 11017 switch (opcode) { 11018 case 0x17: /* ADDP */ 11019 { 11020 static NeonGenTwoOpFn * const fns[3] = { 11021 gen_helper_neon_padd_u8, 11022 gen_helper_neon_padd_u16, 11023 tcg_gen_add_i32, 11024 }; 11025 genfn = fns[size]; 11026 break; 11027 } 11028 case 0x14: /* SMAXP, UMAXP */ 11029 { 11030 static NeonGenTwoOpFn * const fns[3][2] = { 11031 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11032 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11033 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11034 }; 11035 genfn = fns[size][u]; 11036 break; 11037 } 11038 case 0x15: /* SMINP, UMINP */ 11039 { 11040 static NeonGenTwoOpFn * const fns[3][2] = { 11041 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11042 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11043 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11044 }; 11045 genfn = fns[size][u]; 11046 break; 11047 } 11048 /* The FP operations are all on single floats (32 bit) */ 11049 case 0x58: /* FMAXNMP */ 11050 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11051 break; 11052 case 0x5a: /* FADDP */ 11053 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11054 break; 11055 case 0x5e: /* FMAXP */ 11056 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11057 break; 11058 case 0x78: /* FMINNMP */ 11059 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11060 break; 11061 case 0x7e: /* FMINP */ 11062 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11063 break; 11064 default: 11065 g_assert_not_reached(); 11066 } 11067 11068 /* FP ops called directly, otherwise call now */ 11069 if (genfn) { 11070 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11071 } 11072 } 11073 11074 for (pass = 0; pass < maxpass; pass++) { 11075 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11076 } 11077 clear_vec_high(s, is_q, rd); 11078 } 11079 } 11080 11081 /* Floating point op subgroup of C3.6.16. */ 11082 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11083 { 11084 /* For floating point ops, the U, size[1] and opcode bits 11085 * together indicate the operation. size[0] indicates single 11086 * or double. 11087 */ 11088 int fpopcode = extract32(insn, 11, 5) 11089 | (extract32(insn, 23, 1) << 5) 11090 | (extract32(insn, 29, 1) << 6); 11091 int is_q = extract32(insn, 30, 1); 11092 int size = extract32(insn, 22, 1); 11093 int rm = extract32(insn, 16, 5); 11094 int rn = extract32(insn, 5, 5); 11095 int rd = extract32(insn, 0, 5); 11096 11097 int datasize = is_q ? 128 : 64; 11098 int esize = 32 << size; 11099 int elements = datasize / esize; 11100 11101 if (size == 1 && !is_q) { 11102 unallocated_encoding(s); 11103 return; 11104 } 11105 11106 switch (fpopcode) { 11107 case 0x58: /* FMAXNMP */ 11108 case 0x5a: /* FADDP */ 11109 case 0x5e: /* FMAXP */ 11110 case 0x78: /* FMINNMP */ 11111 case 0x7e: /* FMINP */ 11112 if (size && !is_q) { 11113 unallocated_encoding(s); 11114 return; 11115 } 11116 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11117 rn, rm, rd); 11118 return; 11119 case 0x1b: /* FMULX */ 11120 case 0x1f: /* FRECPS */ 11121 case 0x3f: /* FRSQRTS */ 11122 case 0x5d: /* FACGE */ 11123 case 0x7d: /* FACGT */ 11124 case 0x19: /* FMLA */ 11125 case 0x39: /* FMLS */ 11126 case 0x18: /* FMAXNM */ 11127 case 0x1a: /* FADD */ 11128 case 0x1c: /* FCMEQ */ 11129 case 0x1e: /* FMAX */ 11130 case 0x38: /* FMINNM */ 11131 case 0x3a: /* FSUB */ 11132 case 0x3e: /* FMIN */ 11133 case 0x5b: /* FMUL */ 11134 case 0x5c: /* FCMGE */ 11135 case 0x5f: /* FDIV */ 11136 case 0x7a: /* FABD */ 11137 case 0x7c: /* FCMGT */ 11138 if (!fp_access_check(s)) { 11139 return; 11140 } 11141 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11142 return; 11143 11144 case 0x1d: /* FMLAL */ 11145 case 0x3d: /* FMLSL */ 11146 case 0x59: /* FMLAL2 */ 11147 case 0x79: /* FMLSL2 */ 11148 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11149 unallocated_encoding(s); 11150 return; 11151 } 11152 if (fp_access_check(s)) { 11153 int is_s = extract32(insn, 23, 1); 11154 int is_2 = extract32(insn, 29, 1); 11155 int data = (is_2 << 1) | is_s; 11156 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11157 vec_full_reg_offset(s, rn), 11158 vec_full_reg_offset(s, rm), cpu_env, 11159 is_q ? 16 : 8, vec_full_reg_size(s), 11160 data, gen_helper_gvec_fmlal_a64); 11161 } 11162 return; 11163 11164 default: 11165 unallocated_encoding(s); 11166 return; 11167 } 11168 } 11169 11170 /* Integer op subgroup of C3.6.16. */ 11171 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11172 { 11173 int is_q = extract32(insn, 30, 1); 11174 int u = extract32(insn, 29, 1); 11175 int size = extract32(insn, 22, 2); 11176 int opcode = extract32(insn, 11, 5); 11177 int rm = extract32(insn, 16, 5); 11178 int rn = extract32(insn, 5, 5); 11179 int rd = extract32(insn, 0, 5); 11180 int pass; 11181 TCGCond cond; 11182 11183 switch (opcode) { 11184 case 0x13: /* MUL, PMUL */ 11185 if (u && size != 0) { 11186 unallocated_encoding(s); 11187 return; 11188 } 11189 /* fall through */ 11190 case 0x0: /* SHADD, UHADD */ 11191 case 0x2: /* SRHADD, URHADD */ 11192 case 0x4: /* SHSUB, UHSUB */ 11193 case 0xc: /* SMAX, UMAX */ 11194 case 0xd: /* SMIN, UMIN */ 11195 case 0xe: /* SABD, UABD */ 11196 case 0xf: /* SABA, UABA */ 11197 case 0x12: /* MLA, MLS */ 11198 if (size == 3) { 11199 unallocated_encoding(s); 11200 return; 11201 } 11202 break; 11203 case 0x16: /* SQDMULH, SQRDMULH */ 11204 if (size == 0 || size == 3) { 11205 unallocated_encoding(s); 11206 return; 11207 } 11208 break; 11209 default: 11210 if (size == 3 && !is_q) { 11211 unallocated_encoding(s); 11212 return; 11213 } 11214 break; 11215 } 11216 11217 if (!fp_access_check(s)) { 11218 return; 11219 } 11220 11221 switch (opcode) { 11222 case 0x01: /* SQADD, UQADD */ 11223 if (u) { 11224 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11225 } else { 11226 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11227 } 11228 return; 11229 case 0x05: /* SQSUB, UQSUB */ 11230 if (u) { 11231 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11232 } else { 11233 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11234 } 11235 return; 11236 case 0x08: /* SSHL, USHL */ 11237 if (u) { 11238 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11239 } else { 11240 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11241 } 11242 return; 11243 case 0x0c: /* SMAX, UMAX */ 11244 if (u) { 11245 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11246 } else { 11247 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11248 } 11249 return; 11250 case 0x0d: /* SMIN, UMIN */ 11251 if (u) { 11252 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11253 } else { 11254 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11255 } 11256 return; 11257 case 0xe: /* SABD, UABD */ 11258 if (u) { 11259 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11260 } else { 11261 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11262 } 11263 return; 11264 case 0xf: /* SABA, UABA */ 11265 if (u) { 11266 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11267 } else { 11268 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11269 } 11270 return; 11271 case 0x10: /* ADD, SUB */ 11272 if (u) { 11273 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11274 } else { 11275 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11276 } 11277 return; 11278 case 0x13: /* MUL, PMUL */ 11279 if (!u) { /* MUL */ 11280 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11281 } else { /* PMUL */ 11282 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11283 } 11284 return; 11285 case 0x12: /* MLA, MLS */ 11286 if (u) { 11287 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11288 } else { 11289 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11290 } 11291 return; 11292 case 0x16: /* SQDMULH, SQRDMULH */ 11293 { 11294 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11295 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11296 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11297 }; 11298 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11299 } 11300 return; 11301 case 0x11: 11302 if (!u) { /* CMTST */ 11303 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11304 return; 11305 } 11306 /* else CMEQ */ 11307 cond = TCG_COND_EQ; 11308 goto do_gvec_cmp; 11309 case 0x06: /* CMGT, CMHI */ 11310 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11311 goto do_gvec_cmp; 11312 case 0x07: /* CMGE, CMHS */ 11313 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11314 do_gvec_cmp: 11315 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11316 vec_full_reg_offset(s, rn), 11317 vec_full_reg_offset(s, rm), 11318 is_q ? 16 : 8, vec_full_reg_size(s)); 11319 return; 11320 } 11321 11322 if (size == 3) { 11323 assert(is_q); 11324 for (pass = 0; pass < 2; pass++) { 11325 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11326 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11327 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11328 11329 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11330 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11331 11332 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11333 11334 write_vec_element(s, tcg_res, rd, pass, MO_64); 11335 } 11336 } else { 11337 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11338 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11339 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11340 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11341 NeonGenTwoOpFn *genfn = NULL; 11342 NeonGenTwoOpEnvFn *genenvfn = NULL; 11343 11344 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11345 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11346 11347 switch (opcode) { 11348 case 0x0: /* SHADD, UHADD */ 11349 { 11350 static NeonGenTwoOpFn * const fns[3][2] = { 11351 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11352 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11353 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11354 }; 11355 genfn = fns[size][u]; 11356 break; 11357 } 11358 case 0x2: /* SRHADD, URHADD */ 11359 { 11360 static NeonGenTwoOpFn * const fns[3][2] = { 11361 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11362 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11363 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11364 }; 11365 genfn = fns[size][u]; 11366 break; 11367 } 11368 case 0x4: /* SHSUB, UHSUB */ 11369 { 11370 static NeonGenTwoOpFn * const fns[3][2] = { 11371 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11372 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11373 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11374 }; 11375 genfn = fns[size][u]; 11376 break; 11377 } 11378 case 0x9: /* SQSHL, UQSHL */ 11379 { 11380 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11381 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11382 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11383 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11384 }; 11385 genenvfn = fns[size][u]; 11386 break; 11387 } 11388 case 0xa: /* SRSHL, URSHL */ 11389 { 11390 static NeonGenTwoOpFn * const fns[3][2] = { 11391 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11392 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11393 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11394 }; 11395 genfn = fns[size][u]; 11396 break; 11397 } 11398 case 0xb: /* SQRSHL, UQRSHL */ 11399 { 11400 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11401 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11402 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11403 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11404 }; 11405 genenvfn = fns[size][u]; 11406 break; 11407 } 11408 default: 11409 g_assert_not_reached(); 11410 } 11411 11412 if (genenvfn) { 11413 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11414 } else { 11415 genfn(tcg_res, tcg_op1, tcg_op2); 11416 } 11417 11418 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11419 } 11420 } 11421 clear_vec_high(s, is_q, rd); 11422 } 11423 11424 /* AdvSIMD three same 11425 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11426 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11427 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11428 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11429 */ 11430 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11431 { 11432 int opcode = extract32(insn, 11, 5); 11433 11434 switch (opcode) { 11435 case 0x3: /* logic ops */ 11436 disas_simd_3same_logic(s, insn); 11437 break; 11438 case 0x17: /* ADDP */ 11439 case 0x14: /* SMAXP, UMAXP */ 11440 case 0x15: /* SMINP, UMINP */ 11441 { 11442 /* Pairwise operations */ 11443 int is_q = extract32(insn, 30, 1); 11444 int u = extract32(insn, 29, 1); 11445 int size = extract32(insn, 22, 2); 11446 int rm = extract32(insn, 16, 5); 11447 int rn = extract32(insn, 5, 5); 11448 int rd = extract32(insn, 0, 5); 11449 if (opcode == 0x17) { 11450 if (u || (size == 3 && !is_q)) { 11451 unallocated_encoding(s); 11452 return; 11453 } 11454 } else { 11455 if (size == 3) { 11456 unallocated_encoding(s); 11457 return; 11458 } 11459 } 11460 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11461 break; 11462 } 11463 case 0x18 ... 0x31: 11464 /* floating point ops, sz[1] and U are part of opcode */ 11465 disas_simd_3same_float(s, insn); 11466 break; 11467 default: 11468 disas_simd_3same_int(s, insn); 11469 break; 11470 } 11471 } 11472 11473 /* 11474 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11475 * 11476 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11477 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11478 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11479 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11480 * 11481 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11482 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11483 * 11484 */ 11485 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11486 { 11487 int opcode = extract32(insn, 11, 3); 11488 int u = extract32(insn, 29, 1); 11489 int a = extract32(insn, 23, 1); 11490 int is_q = extract32(insn, 30, 1); 11491 int rm = extract32(insn, 16, 5); 11492 int rn = extract32(insn, 5, 5); 11493 int rd = extract32(insn, 0, 5); 11494 /* 11495 * For these floating point ops, the U, a and opcode bits 11496 * together indicate the operation. 11497 */ 11498 int fpopcode = opcode | (a << 3) | (u << 4); 11499 int datasize = is_q ? 128 : 64; 11500 int elements = datasize / 16; 11501 bool pairwise; 11502 TCGv_ptr fpst; 11503 int pass; 11504 11505 switch (fpopcode) { 11506 case 0x0: /* FMAXNM */ 11507 case 0x1: /* FMLA */ 11508 case 0x2: /* FADD */ 11509 case 0x3: /* FMULX */ 11510 case 0x4: /* FCMEQ */ 11511 case 0x6: /* FMAX */ 11512 case 0x7: /* FRECPS */ 11513 case 0x8: /* FMINNM */ 11514 case 0x9: /* FMLS */ 11515 case 0xa: /* FSUB */ 11516 case 0xe: /* FMIN */ 11517 case 0xf: /* FRSQRTS */ 11518 case 0x13: /* FMUL */ 11519 case 0x14: /* FCMGE */ 11520 case 0x15: /* FACGE */ 11521 case 0x17: /* FDIV */ 11522 case 0x1a: /* FABD */ 11523 case 0x1c: /* FCMGT */ 11524 case 0x1d: /* FACGT */ 11525 pairwise = false; 11526 break; 11527 case 0x10: /* FMAXNMP */ 11528 case 0x12: /* FADDP */ 11529 case 0x16: /* FMAXP */ 11530 case 0x18: /* FMINNMP */ 11531 case 0x1e: /* FMINP */ 11532 pairwise = true; 11533 break; 11534 default: 11535 unallocated_encoding(s); 11536 return; 11537 } 11538 11539 if (!dc_isar_feature(aa64_fp16, s)) { 11540 unallocated_encoding(s); 11541 return; 11542 } 11543 11544 if (!fp_access_check(s)) { 11545 return; 11546 } 11547 11548 fpst = fpstatus_ptr(FPST_FPCR_F16); 11549 11550 if (pairwise) { 11551 int maxpass = is_q ? 8 : 4; 11552 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11553 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11554 TCGv_i32 tcg_res[8]; 11555 11556 for (pass = 0; pass < maxpass; pass++) { 11557 int passreg = pass < (maxpass / 2) ? rn : rm; 11558 int passelt = (pass << 1) & (maxpass - 1); 11559 11560 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11561 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11562 tcg_res[pass] = tcg_temp_new_i32(); 11563 11564 switch (fpopcode) { 11565 case 0x10: /* FMAXNMP */ 11566 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11567 fpst); 11568 break; 11569 case 0x12: /* FADDP */ 11570 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11571 break; 11572 case 0x16: /* FMAXP */ 11573 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11574 break; 11575 case 0x18: /* FMINNMP */ 11576 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11577 fpst); 11578 break; 11579 case 0x1e: /* FMINP */ 11580 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11581 break; 11582 default: 11583 g_assert_not_reached(); 11584 } 11585 } 11586 11587 for (pass = 0; pass < maxpass; pass++) { 11588 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11589 } 11590 } else { 11591 for (pass = 0; pass < elements; pass++) { 11592 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11593 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11594 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11595 11596 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11597 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11598 11599 switch (fpopcode) { 11600 case 0x0: /* FMAXNM */ 11601 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11602 break; 11603 case 0x1: /* FMLA */ 11604 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11605 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11606 fpst); 11607 break; 11608 case 0x2: /* FADD */ 11609 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11610 break; 11611 case 0x3: /* FMULX */ 11612 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11613 break; 11614 case 0x4: /* FCMEQ */ 11615 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11616 break; 11617 case 0x6: /* FMAX */ 11618 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11619 break; 11620 case 0x7: /* FRECPS */ 11621 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11622 break; 11623 case 0x8: /* FMINNM */ 11624 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11625 break; 11626 case 0x9: /* FMLS */ 11627 /* As usual for ARM, separate negation for fused multiply-add */ 11628 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11629 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11630 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11631 fpst); 11632 break; 11633 case 0xa: /* FSUB */ 11634 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11635 break; 11636 case 0xe: /* FMIN */ 11637 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11638 break; 11639 case 0xf: /* FRSQRTS */ 11640 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11641 break; 11642 case 0x13: /* FMUL */ 11643 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11644 break; 11645 case 0x14: /* FCMGE */ 11646 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11647 break; 11648 case 0x15: /* FACGE */ 11649 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11650 break; 11651 case 0x17: /* FDIV */ 11652 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11653 break; 11654 case 0x1a: /* FABD */ 11655 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11656 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11657 break; 11658 case 0x1c: /* FCMGT */ 11659 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11660 break; 11661 case 0x1d: /* FACGT */ 11662 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11663 break; 11664 default: 11665 g_assert_not_reached(); 11666 } 11667 11668 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11669 } 11670 } 11671 11672 clear_vec_high(s, is_q, rd); 11673 } 11674 11675 /* AdvSIMD three same extra 11676 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11677 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11678 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11679 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11680 */ 11681 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11682 { 11683 int rd = extract32(insn, 0, 5); 11684 int rn = extract32(insn, 5, 5); 11685 int opcode = extract32(insn, 11, 4); 11686 int rm = extract32(insn, 16, 5); 11687 int size = extract32(insn, 22, 2); 11688 bool u = extract32(insn, 29, 1); 11689 bool is_q = extract32(insn, 30, 1); 11690 bool feature; 11691 int rot; 11692 11693 switch (u * 16 + opcode) { 11694 case 0x10: /* SQRDMLAH (vector) */ 11695 case 0x11: /* SQRDMLSH (vector) */ 11696 if (size != 1 && size != 2) { 11697 unallocated_encoding(s); 11698 return; 11699 } 11700 feature = dc_isar_feature(aa64_rdm, s); 11701 break; 11702 case 0x02: /* SDOT (vector) */ 11703 case 0x12: /* UDOT (vector) */ 11704 if (size != MO_32) { 11705 unallocated_encoding(s); 11706 return; 11707 } 11708 feature = dc_isar_feature(aa64_dp, s); 11709 break; 11710 case 0x03: /* USDOT */ 11711 if (size != MO_32) { 11712 unallocated_encoding(s); 11713 return; 11714 } 11715 feature = dc_isar_feature(aa64_i8mm, s); 11716 break; 11717 case 0x04: /* SMMLA */ 11718 case 0x14: /* UMMLA */ 11719 case 0x05: /* USMMLA */ 11720 if (!is_q || size != MO_32) { 11721 unallocated_encoding(s); 11722 return; 11723 } 11724 feature = dc_isar_feature(aa64_i8mm, s); 11725 break; 11726 case 0x18: /* FCMLA, #0 */ 11727 case 0x19: /* FCMLA, #90 */ 11728 case 0x1a: /* FCMLA, #180 */ 11729 case 0x1b: /* FCMLA, #270 */ 11730 case 0x1c: /* FCADD, #90 */ 11731 case 0x1e: /* FCADD, #270 */ 11732 if (size == 0 11733 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11734 || (size == 3 && !is_q)) { 11735 unallocated_encoding(s); 11736 return; 11737 } 11738 feature = dc_isar_feature(aa64_fcma, s); 11739 break; 11740 case 0x1d: /* BFMMLA */ 11741 if (size != MO_16 || !is_q) { 11742 unallocated_encoding(s); 11743 return; 11744 } 11745 feature = dc_isar_feature(aa64_bf16, s); 11746 break; 11747 case 0x1f: 11748 switch (size) { 11749 case 1: /* BFDOT */ 11750 case 3: /* BFMLAL{B,T} */ 11751 feature = dc_isar_feature(aa64_bf16, s); 11752 break; 11753 default: 11754 unallocated_encoding(s); 11755 return; 11756 } 11757 break; 11758 default: 11759 unallocated_encoding(s); 11760 return; 11761 } 11762 if (!feature) { 11763 unallocated_encoding(s); 11764 return; 11765 } 11766 if (!fp_access_check(s)) { 11767 return; 11768 } 11769 11770 switch (opcode) { 11771 case 0x0: /* SQRDMLAH (vector) */ 11772 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11773 return; 11774 11775 case 0x1: /* SQRDMLSH (vector) */ 11776 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11777 return; 11778 11779 case 0x2: /* SDOT / UDOT */ 11780 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11781 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11782 return; 11783 11784 case 0x3: /* USDOT */ 11785 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11786 return; 11787 11788 case 0x04: /* SMMLA, UMMLA */ 11789 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11790 u ? gen_helper_gvec_ummla_b 11791 : gen_helper_gvec_smmla_b); 11792 return; 11793 case 0x05: /* USMMLA */ 11794 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11795 return; 11796 11797 case 0x8: /* FCMLA, #0 */ 11798 case 0x9: /* FCMLA, #90 */ 11799 case 0xa: /* FCMLA, #180 */ 11800 case 0xb: /* FCMLA, #270 */ 11801 rot = extract32(opcode, 0, 2); 11802 switch (size) { 11803 case 1: 11804 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11805 gen_helper_gvec_fcmlah); 11806 break; 11807 case 2: 11808 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11809 gen_helper_gvec_fcmlas); 11810 break; 11811 case 3: 11812 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11813 gen_helper_gvec_fcmlad); 11814 break; 11815 default: 11816 g_assert_not_reached(); 11817 } 11818 return; 11819 11820 case 0xc: /* FCADD, #90 */ 11821 case 0xe: /* FCADD, #270 */ 11822 rot = extract32(opcode, 1, 1); 11823 switch (size) { 11824 case 1: 11825 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11826 gen_helper_gvec_fcaddh); 11827 break; 11828 case 2: 11829 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11830 gen_helper_gvec_fcadds); 11831 break; 11832 case 3: 11833 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11834 gen_helper_gvec_fcaddd); 11835 break; 11836 default: 11837 g_assert_not_reached(); 11838 } 11839 return; 11840 11841 case 0xd: /* BFMMLA */ 11842 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11843 return; 11844 case 0xf: 11845 switch (size) { 11846 case 1: /* BFDOT */ 11847 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11848 break; 11849 case 3: /* BFMLAL{B,T} */ 11850 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11851 gen_helper_gvec_bfmlal); 11852 break; 11853 default: 11854 g_assert_not_reached(); 11855 } 11856 return; 11857 11858 default: 11859 g_assert_not_reached(); 11860 } 11861 } 11862 11863 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11864 int size, int rn, int rd) 11865 { 11866 /* Handle 2-reg-misc ops which are widening (so each size element 11867 * in the source becomes a 2*size element in the destination. 11868 * The only instruction like this is FCVTL. 11869 */ 11870 int pass; 11871 11872 if (size == 3) { 11873 /* 32 -> 64 bit fp conversion */ 11874 TCGv_i64 tcg_res[2]; 11875 int srcelt = is_q ? 2 : 0; 11876 11877 for (pass = 0; pass < 2; pass++) { 11878 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11879 tcg_res[pass] = tcg_temp_new_i64(); 11880 11881 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11882 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11883 } 11884 for (pass = 0; pass < 2; pass++) { 11885 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11886 } 11887 } else { 11888 /* 16 -> 32 bit fp conversion */ 11889 int srcelt = is_q ? 4 : 0; 11890 TCGv_i32 tcg_res[4]; 11891 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11892 TCGv_i32 ahp = get_ahp_flag(); 11893 11894 for (pass = 0; pass < 4; pass++) { 11895 tcg_res[pass] = tcg_temp_new_i32(); 11896 11897 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11898 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11899 fpst, ahp); 11900 } 11901 for (pass = 0; pass < 4; pass++) { 11902 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11903 } 11904 } 11905 } 11906 11907 static void handle_rev(DisasContext *s, int opcode, bool u, 11908 bool is_q, int size, int rn, int rd) 11909 { 11910 int op = (opcode << 1) | u; 11911 int opsz = op + size; 11912 int grp_size = 3 - opsz; 11913 int dsize = is_q ? 128 : 64; 11914 int i; 11915 11916 if (opsz >= 3) { 11917 unallocated_encoding(s); 11918 return; 11919 } 11920 11921 if (!fp_access_check(s)) { 11922 return; 11923 } 11924 11925 if (size == 0) { 11926 /* Special case bytes, use bswap op on each group of elements */ 11927 int groups = dsize / (8 << grp_size); 11928 11929 for (i = 0; i < groups; i++) { 11930 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11931 11932 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11933 switch (grp_size) { 11934 case MO_16: 11935 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11936 break; 11937 case MO_32: 11938 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11939 break; 11940 case MO_64: 11941 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11942 break; 11943 default: 11944 g_assert_not_reached(); 11945 } 11946 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11947 } 11948 clear_vec_high(s, is_q, rd); 11949 } else { 11950 int revmask = (1 << grp_size) - 1; 11951 int esize = 8 << size; 11952 int elements = dsize / esize; 11953 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11954 TCGv_i64 tcg_rd[2]; 11955 11956 for (i = 0; i < 2; i++) { 11957 tcg_rd[i] = tcg_temp_new_i64(); 11958 tcg_gen_movi_i64(tcg_rd[i], 0); 11959 } 11960 11961 for (i = 0; i < elements; i++) { 11962 int e_rev = (i & 0xf) ^ revmask; 11963 int w = (e_rev * esize) / 64; 11964 int o = (e_rev * esize) % 64; 11965 11966 read_vec_element(s, tcg_rn, rn, i, size); 11967 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11968 } 11969 11970 for (i = 0; i < 2; i++) { 11971 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11972 } 11973 clear_vec_high(s, true, rd); 11974 } 11975 } 11976 11977 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11978 bool is_q, int size, int rn, int rd) 11979 { 11980 /* Implement the pairwise operations from 2-misc: 11981 * SADDLP, UADDLP, SADALP, UADALP. 11982 * These all add pairs of elements in the input to produce a 11983 * double-width result element in the output (possibly accumulating). 11984 */ 11985 bool accum = (opcode == 0x6); 11986 int maxpass = is_q ? 2 : 1; 11987 int pass; 11988 TCGv_i64 tcg_res[2]; 11989 11990 if (size == 2) { 11991 /* 32 + 32 -> 64 op */ 11992 MemOp memop = size + (u ? 0 : MO_SIGN); 11993 11994 for (pass = 0; pass < maxpass; pass++) { 11995 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11996 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11997 11998 tcg_res[pass] = tcg_temp_new_i64(); 11999 12000 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12001 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12002 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12003 if (accum) { 12004 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12005 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12006 } 12007 } 12008 } else { 12009 for (pass = 0; pass < maxpass; pass++) { 12010 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12011 NeonGenOne64OpFn *genfn; 12012 static NeonGenOne64OpFn * const fns[2][2] = { 12013 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12014 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12015 }; 12016 12017 genfn = fns[size][u]; 12018 12019 tcg_res[pass] = tcg_temp_new_i64(); 12020 12021 read_vec_element(s, tcg_op, rn, pass, MO_64); 12022 genfn(tcg_res[pass], tcg_op); 12023 12024 if (accum) { 12025 read_vec_element(s, tcg_op, rd, pass, MO_64); 12026 if (size == 0) { 12027 gen_helper_neon_addl_u16(tcg_res[pass], 12028 tcg_res[pass], tcg_op); 12029 } else { 12030 gen_helper_neon_addl_u32(tcg_res[pass], 12031 tcg_res[pass], tcg_op); 12032 } 12033 } 12034 } 12035 } 12036 if (!is_q) { 12037 tcg_res[1] = tcg_constant_i64(0); 12038 } 12039 for (pass = 0; pass < 2; pass++) { 12040 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12041 } 12042 } 12043 12044 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12045 { 12046 /* Implement SHLL and SHLL2 */ 12047 int pass; 12048 int part = is_q ? 2 : 0; 12049 TCGv_i64 tcg_res[2]; 12050 12051 for (pass = 0; pass < 2; pass++) { 12052 static NeonGenWidenFn * const widenfns[3] = { 12053 gen_helper_neon_widen_u8, 12054 gen_helper_neon_widen_u16, 12055 tcg_gen_extu_i32_i64, 12056 }; 12057 NeonGenWidenFn *widenfn = widenfns[size]; 12058 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12059 12060 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12061 tcg_res[pass] = tcg_temp_new_i64(); 12062 widenfn(tcg_res[pass], tcg_op); 12063 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12064 } 12065 12066 for (pass = 0; pass < 2; pass++) { 12067 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12068 } 12069 } 12070 12071 /* AdvSIMD two reg misc 12072 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12073 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12074 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12075 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12076 */ 12077 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12078 { 12079 int size = extract32(insn, 22, 2); 12080 int opcode = extract32(insn, 12, 5); 12081 bool u = extract32(insn, 29, 1); 12082 bool is_q = extract32(insn, 30, 1); 12083 int rn = extract32(insn, 5, 5); 12084 int rd = extract32(insn, 0, 5); 12085 bool need_fpstatus = false; 12086 int rmode = -1; 12087 TCGv_i32 tcg_rmode; 12088 TCGv_ptr tcg_fpstatus; 12089 12090 switch (opcode) { 12091 case 0x0: /* REV64, REV32 */ 12092 case 0x1: /* REV16 */ 12093 handle_rev(s, opcode, u, is_q, size, rn, rd); 12094 return; 12095 case 0x5: /* CNT, NOT, RBIT */ 12096 if (u && size == 0) { 12097 /* NOT */ 12098 break; 12099 } else if (u && size == 1) { 12100 /* RBIT */ 12101 break; 12102 } else if (!u && size == 0) { 12103 /* CNT */ 12104 break; 12105 } 12106 unallocated_encoding(s); 12107 return; 12108 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12109 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12110 if (size == 3) { 12111 unallocated_encoding(s); 12112 return; 12113 } 12114 if (!fp_access_check(s)) { 12115 return; 12116 } 12117 12118 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12119 return; 12120 case 0x4: /* CLS, CLZ */ 12121 if (size == 3) { 12122 unallocated_encoding(s); 12123 return; 12124 } 12125 break; 12126 case 0x2: /* SADDLP, UADDLP */ 12127 case 0x6: /* SADALP, UADALP */ 12128 if (size == 3) { 12129 unallocated_encoding(s); 12130 return; 12131 } 12132 if (!fp_access_check(s)) { 12133 return; 12134 } 12135 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12136 return; 12137 case 0x13: /* SHLL, SHLL2 */ 12138 if (u == 0 || size == 3) { 12139 unallocated_encoding(s); 12140 return; 12141 } 12142 if (!fp_access_check(s)) { 12143 return; 12144 } 12145 handle_shll(s, is_q, size, rn, rd); 12146 return; 12147 case 0xa: /* CMLT */ 12148 if (u == 1) { 12149 unallocated_encoding(s); 12150 return; 12151 } 12152 /* fall through */ 12153 case 0x8: /* CMGT, CMGE */ 12154 case 0x9: /* CMEQ, CMLE */ 12155 case 0xb: /* ABS, NEG */ 12156 if (size == 3 && !is_q) { 12157 unallocated_encoding(s); 12158 return; 12159 } 12160 break; 12161 case 0x3: /* SUQADD, USQADD */ 12162 if (size == 3 && !is_q) { 12163 unallocated_encoding(s); 12164 return; 12165 } 12166 if (!fp_access_check(s)) { 12167 return; 12168 } 12169 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12170 return; 12171 case 0x7: /* SQABS, SQNEG */ 12172 if (size == 3 && !is_q) { 12173 unallocated_encoding(s); 12174 return; 12175 } 12176 break; 12177 case 0xc ... 0xf: 12178 case 0x16 ... 0x1f: 12179 { 12180 /* Floating point: U, size[1] and opcode indicate operation; 12181 * size[0] indicates single or double precision. 12182 */ 12183 int is_double = extract32(size, 0, 1); 12184 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12185 size = is_double ? 3 : 2; 12186 switch (opcode) { 12187 case 0x2f: /* FABS */ 12188 case 0x6f: /* FNEG */ 12189 if (size == 3 && !is_q) { 12190 unallocated_encoding(s); 12191 return; 12192 } 12193 break; 12194 case 0x1d: /* SCVTF */ 12195 case 0x5d: /* UCVTF */ 12196 { 12197 bool is_signed = (opcode == 0x1d) ? true : false; 12198 int elements = is_double ? 2 : is_q ? 4 : 2; 12199 if (is_double && !is_q) { 12200 unallocated_encoding(s); 12201 return; 12202 } 12203 if (!fp_access_check(s)) { 12204 return; 12205 } 12206 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12207 return; 12208 } 12209 case 0x2c: /* FCMGT (zero) */ 12210 case 0x2d: /* FCMEQ (zero) */ 12211 case 0x2e: /* FCMLT (zero) */ 12212 case 0x6c: /* FCMGE (zero) */ 12213 case 0x6d: /* FCMLE (zero) */ 12214 if (size == 3 && !is_q) { 12215 unallocated_encoding(s); 12216 return; 12217 } 12218 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12219 return; 12220 case 0x7f: /* FSQRT */ 12221 if (size == 3 && !is_q) { 12222 unallocated_encoding(s); 12223 return; 12224 } 12225 break; 12226 case 0x1a: /* FCVTNS */ 12227 case 0x1b: /* FCVTMS */ 12228 case 0x3a: /* FCVTPS */ 12229 case 0x3b: /* FCVTZS */ 12230 case 0x5a: /* FCVTNU */ 12231 case 0x5b: /* FCVTMU */ 12232 case 0x7a: /* FCVTPU */ 12233 case 0x7b: /* FCVTZU */ 12234 need_fpstatus = true; 12235 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12236 if (size == 3 && !is_q) { 12237 unallocated_encoding(s); 12238 return; 12239 } 12240 break; 12241 case 0x5c: /* FCVTAU */ 12242 case 0x1c: /* FCVTAS */ 12243 need_fpstatus = true; 12244 rmode = FPROUNDING_TIEAWAY; 12245 if (size == 3 && !is_q) { 12246 unallocated_encoding(s); 12247 return; 12248 } 12249 break; 12250 case 0x3c: /* URECPE */ 12251 if (size == 3) { 12252 unallocated_encoding(s); 12253 return; 12254 } 12255 /* fall through */ 12256 case 0x3d: /* FRECPE */ 12257 case 0x7d: /* FRSQRTE */ 12258 if (size == 3 && !is_q) { 12259 unallocated_encoding(s); 12260 return; 12261 } 12262 if (!fp_access_check(s)) { 12263 return; 12264 } 12265 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12266 return; 12267 case 0x56: /* FCVTXN, FCVTXN2 */ 12268 if (size == 2) { 12269 unallocated_encoding(s); 12270 return; 12271 } 12272 /* fall through */ 12273 case 0x16: /* FCVTN, FCVTN2 */ 12274 /* handle_2misc_narrow does a 2*size -> size operation, but these 12275 * instructions encode the source size rather than dest size. 12276 */ 12277 if (!fp_access_check(s)) { 12278 return; 12279 } 12280 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12281 return; 12282 case 0x36: /* BFCVTN, BFCVTN2 */ 12283 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12284 unallocated_encoding(s); 12285 return; 12286 } 12287 if (!fp_access_check(s)) { 12288 return; 12289 } 12290 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12291 return; 12292 case 0x17: /* FCVTL, FCVTL2 */ 12293 if (!fp_access_check(s)) { 12294 return; 12295 } 12296 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12297 return; 12298 case 0x18: /* FRINTN */ 12299 case 0x19: /* FRINTM */ 12300 case 0x38: /* FRINTP */ 12301 case 0x39: /* FRINTZ */ 12302 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12303 /* fall through */ 12304 case 0x59: /* FRINTX */ 12305 case 0x79: /* FRINTI */ 12306 need_fpstatus = true; 12307 if (size == 3 && !is_q) { 12308 unallocated_encoding(s); 12309 return; 12310 } 12311 break; 12312 case 0x58: /* FRINTA */ 12313 rmode = FPROUNDING_TIEAWAY; 12314 need_fpstatus = true; 12315 if (size == 3 && !is_q) { 12316 unallocated_encoding(s); 12317 return; 12318 } 12319 break; 12320 case 0x7c: /* URSQRTE */ 12321 if (size == 3) { 12322 unallocated_encoding(s); 12323 return; 12324 } 12325 break; 12326 case 0x1e: /* FRINT32Z */ 12327 case 0x1f: /* FRINT64Z */ 12328 rmode = FPROUNDING_ZERO; 12329 /* fall through */ 12330 case 0x5e: /* FRINT32X */ 12331 case 0x5f: /* FRINT64X */ 12332 need_fpstatus = true; 12333 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12334 unallocated_encoding(s); 12335 return; 12336 } 12337 break; 12338 default: 12339 unallocated_encoding(s); 12340 return; 12341 } 12342 break; 12343 } 12344 default: 12345 unallocated_encoding(s); 12346 return; 12347 } 12348 12349 if (!fp_access_check(s)) { 12350 return; 12351 } 12352 12353 if (need_fpstatus || rmode >= 0) { 12354 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12355 } else { 12356 tcg_fpstatus = NULL; 12357 } 12358 if (rmode >= 0) { 12359 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12360 } else { 12361 tcg_rmode = NULL; 12362 } 12363 12364 switch (opcode) { 12365 case 0x5: 12366 if (u && size == 0) { /* NOT */ 12367 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12368 return; 12369 } 12370 break; 12371 case 0x8: /* CMGT, CMGE */ 12372 if (u) { 12373 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12374 } else { 12375 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12376 } 12377 return; 12378 case 0x9: /* CMEQ, CMLE */ 12379 if (u) { 12380 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12381 } else { 12382 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12383 } 12384 return; 12385 case 0xa: /* CMLT */ 12386 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12387 return; 12388 case 0xb: 12389 if (u) { /* ABS, NEG */ 12390 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12391 } else { 12392 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12393 } 12394 return; 12395 } 12396 12397 if (size == 3) { 12398 /* All 64-bit element operations can be shared with scalar 2misc */ 12399 int pass; 12400 12401 /* Coverity claims (size == 3 && !is_q) has been eliminated 12402 * from all paths leading to here. 12403 */ 12404 tcg_debug_assert(is_q); 12405 for (pass = 0; pass < 2; pass++) { 12406 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12407 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12408 12409 read_vec_element(s, tcg_op, rn, pass, MO_64); 12410 12411 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12412 tcg_rmode, tcg_fpstatus); 12413 12414 write_vec_element(s, tcg_res, rd, pass, MO_64); 12415 } 12416 } else { 12417 int pass; 12418 12419 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12420 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12421 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12422 12423 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12424 12425 if (size == 2) { 12426 /* Special cases for 32 bit elements */ 12427 switch (opcode) { 12428 case 0x4: /* CLS */ 12429 if (u) { 12430 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12431 } else { 12432 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12433 } 12434 break; 12435 case 0x7: /* SQABS, SQNEG */ 12436 if (u) { 12437 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12438 } else { 12439 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12440 } 12441 break; 12442 case 0x2f: /* FABS */ 12443 gen_helper_vfp_abss(tcg_res, tcg_op); 12444 break; 12445 case 0x6f: /* FNEG */ 12446 gen_helper_vfp_negs(tcg_res, tcg_op); 12447 break; 12448 case 0x7f: /* FSQRT */ 12449 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12450 break; 12451 case 0x1a: /* FCVTNS */ 12452 case 0x1b: /* FCVTMS */ 12453 case 0x1c: /* FCVTAS */ 12454 case 0x3a: /* FCVTPS */ 12455 case 0x3b: /* FCVTZS */ 12456 gen_helper_vfp_tosls(tcg_res, tcg_op, 12457 tcg_constant_i32(0), tcg_fpstatus); 12458 break; 12459 case 0x5a: /* FCVTNU */ 12460 case 0x5b: /* FCVTMU */ 12461 case 0x5c: /* FCVTAU */ 12462 case 0x7a: /* FCVTPU */ 12463 case 0x7b: /* FCVTZU */ 12464 gen_helper_vfp_touls(tcg_res, tcg_op, 12465 tcg_constant_i32(0), tcg_fpstatus); 12466 break; 12467 case 0x18: /* FRINTN */ 12468 case 0x19: /* FRINTM */ 12469 case 0x38: /* FRINTP */ 12470 case 0x39: /* FRINTZ */ 12471 case 0x58: /* FRINTA */ 12472 case 0x79: /* FRINTI */ 12473 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12474 break; 12475 case 0x59: /* FRINTX */ 12476 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12477 break; 12478 case 0x7c: /* URSQRTE */ 12479 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12480 break; 12481 case 0x1e: /* FRINT32Z */ 12482 case 0x5e: /* FRINT32X */ 12483 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12484 break; 12485 case 0x1f: /* FRINT64Z */ 12486 case 0x5f: /* FRINT64X */ 12487 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12488 break; 12489 default: 12490 g_assert_not_reached(); 12491 } 12492 } else { 12493 /* Use helpers for 8 and 16 bit elements */ 12494 switch (opcode) { 12495 case 0x5: /* CNT, RBIT */ 12496 /* For these two insns size is part of the opcode specifier 12497 * (handled earlier); they always operate on byte elements. 12498 */ 12499 if (u) { 12500 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12501 } else { 12502 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12503 } 12504 break; 12505 case 0x7: /* SQABS, SQNEG */ 12506 { 12507 NeonGenOneOpEnvFn *genfn; 12508 static NeonGenOneOpEnvFn * const fns[2][2] = { 12509 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12510 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12511 }; 12512 genfn = fns[size][u]; 12513 genfn(tcg_res, cpu_env, tcg_op); 12514 break; 12515 } 12516 case 0x4: /* CLS, CLZ */ 12517 if (u) { 12518 if (size == 0) { 12519 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12520 } else { 12521 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12522 } 12523 } else { 12524 if (size == 0) { 12525 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12526 } else { 12527 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12528 } 12529 } 12530 break; 12531 default: 12532 g_assert_not_reached(); 12533 } 12534 } 12535 12536 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12537 } 12538 } 12539 clear_vec_high(s, is_q, rd); 12540 12541 if (tcg_rmode) { 12542 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12543 } 12544 } 12545 12546 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12547 * 12548 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12549 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12550 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12551 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12552 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12553 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12554 * 12555 * This actually covers two groups where scalar access is governed by 12556 * bit 28. A bunch of the instructions (float to integral) only exist 12557 * in the vector form and are un-allocated for the scalar decode. Also 12558 * in the scalar decode Q is always 1. 12559 */ 12560 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12561 { 12562 int fpop, opcode, a, u; 12563 int rn, rd; 12564 bool is_q; 12565 bool is_scalar; 12566 bool only_in_vector = false; 12567 12568 int pass; 12569 TCGv_i32 tcg_rmode = NULL; 12570 TCGv_ptr tcg_fpstatus = NULL; 12571 bool need_fpst = true; 12572 int rmode = -1; 12573 12574 if (!dc_isar_feature(aa64_fp16, s)) { 12575 unallocated_encoding(s); 12576 return; 12577 } 12578 12579 rd = extract32(insn, 0, 5); 12580 rn = extract32(insn, 5, 5); 12581 12582 a = extract32(insn, 23, 1); 12583 u = extract32(insn, 29, 1); 12584 is_scalar = extract32(insn, 28, 1); 12585 is_q = extract32(insn, 30, 1); 12586 12587 opcode = extract32(insn, 12, 5); 12588 fpop = deposit32(opcode, 5, 1, a); 12589 fpop = deposit32(fpop, 6, 1, u); 12590 12591 switch (fpop) { 12592 case 0x1d: /* SCVTF */ 12593 case 0x5d: /* UCVTF */ 12594 { 12595 int elements; 12596 12597 if (is_scalar) { 12598 elements = 1; 12599 } else { 12600 elements = (is_q ? 8 : 4); 12601 } 12602 12603 if (!fp_access_check(s)) { 12604 return; 12605 } 12606 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12607 return; 12608 } 12609 break; 12610 case 0x2c: /* FCMGT (zero) */ 12611 case 0x2d: /* FCMEQ (zero) */ 12612 case 0x2e: /* FCMLT (zero) */ 12613 case 0x6c: /* FCMGE (zero) */ 12614 case 0x6d: /* FCMLE (zero) */ 12615 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12616 return; 12617 case 0x3d: /* FRECPE */ 12618 case 0x3f: /* FRECPX */ 12619 break; 12620 case 0x18: /* FRINTN */ 12621 only_in_vector = true; 12622 rmode = FPROUNDING_TIEEVEN; 12623 break; 12624 case 0x19: /* FRINTM */ 12625 only_in_vector = true; 12626 rmode = FPROUNDING_NEGINF; 12627 break; 12628 case 0x38: /* FRINTP */ 12629 only_in_vector = true; 12630 rmode = FPROUNDING_POSINF; 12631 break; 12632 case 0x39: /* FRINTZ */ 12633 only_in_vector = true; 12634 rmode = FPROUNDING_ZERO; 12635 break; 12636 case 0x58: /* FRINTA */ 12637 only_in_vector = true; 12638 rmode = FPROUNDING_TIEAWAY; 12639 break; 12640 case 0x59: /* FRINTX */ 12641 case 0x79: /* FRINTI */ 12642 only_in_vector = true; 12643 /* current rounding mode */ 12644 break; 12645 case 0x1a: /* FCVTNS */ 12646 rmode = FPROUNDING_TIEEVEN; 12647 break; 12648 case 0x1b: /* FCVTMS */ 12649 rmode = FPROUNDING_NEGINF; 12650 break; 12651 case 0x1c: /* FCVTAS */ 12652 rmode = FPROUNDING_TIEAWAY; 12653 break; 12654 case 0x3a: /* FCVTPS */ 12655 rmode = FPROUNDING_POSINF; 12656 break; 12657 case 0x3b: /* FCVTZS */ 12658 rmode = FPROUNDING_ZERO; 12659 break; 12660 case 0x5a: /* FCVTNU */ 12661 rmode = FPROUNDING_TIEEVEN; 12662 break; 12663 case 0x5b: /* FCVTMU */ 12664 rmode = FPROUNDING_NEGINF; 12665 break; 12666 case 0x5c: /* FCVTAU */ 12667 rmode = FPROUNDING_TIEAWAY; 12668 break; 12669 case 0x7a: /* FCVTPU */ 12670 rmode = FPROUNDING_POSINF; 12671 break; 12672 case 0x7b: /* FCVTZU */ 12673 rmode = FPROUNDING_ZERO; 12674 break; 12675 case 0x2f: /* FABS */ 12676 case 0x6f: /* FNEG */ 12677 need_fpst = false; 12678 break; 12679 case 0x7d: /* FRSQRTE */ 12680 case 0x7f: /* FSQRT (vector) */ 12681 break; 12682 default: 12683 unallocated_encoding(s); 12684 return; 12685 } 12686 12687 12688 /* Check additional constraints for the scalar encoding */ 12689 if (is_scalar) { 12690 if (!is_q) { 12691 unallocated_encoding(s); 12692 return; 12693 } 12694 /* FRINTxx is only in the vector form */ 12695 if (only_in_vector) { 12696 unallocated_encoding(s); 12697 return; 12698 } 12699 } 12700 12701 if (!fp_access_check(s)) { 12702 return; 12703 } 12704 12705 if (rmode >= 0 || need_fpst) { 12706 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12707 } 12708 12709 if (rmode >= 0) { 12710 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12711 } 12712 12713 if (is_scalar) { 12714 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12715 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12716 12717 switch (fpop) { 12718 case 0x1a: /* FCVTNS */ 12719 case 0x1b: /* FCVTMS */ 12720 case 0x1c: /* FCVTAS */ 12721 case 0x3a: /* FCVTPS */ 12722 case 0x3b: /* FCVTZS */ 12723 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12724 break; 12725 case 0x3d: /* FRECPE */ 12726 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12727 break; 12728 case 0x3f: /* FRECPX */ 12729 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12730 break; 12731 case 0x5a: /* FCVTNU */ 12732 case 0x5b: /* FCVTMU */ 12733 case 0x5c: /* FCVTAU */ 12734 case 0x7a: /* FCVTPU */ 12735 case 0x7b: /* FCVTZU */ 12736 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12737 break; 12738 case 0x6f: /* FNEG */ 12739 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12740 break; 12741 case 0x7d: /* FRSQRTE */ 12742 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12743 break; 12744 default: 12745 g_assert_not_reached(); 12746 } 12747 12748 /* limit any sign extension going on */ 12749 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12750 write_fp_sreg(s, rd, tcg_res); 12751 } else { 12752 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12753 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12754 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12755 12756 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12757 12758 switch (fpop) { 12759 case 0x1a: /* FCVTNS */ 12760 case 0x1b: /* FCVTMS */ 12761 case 0x1c: /* FCVTAS */ 12762 case 0x3a: /* FCVTPS */ 12763 case 0x3b: /* FCVTZS */ 12764 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12765 break; 12766 case 0x3d: /* FRECPE */ 12767 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12768 break; 12769 case 0x5a: /* FCVTNU */ 12770 case 0x5b: /* FCVTMU */ 12771 case 0x5c: /* FCVTAU */ 12772 case 0x7a: /* FCVTPU */ 12773 case 0x7b: /* FCVTZU */ 12774 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12775 break; 12776 case 0x18: /* FRINTN */ 12777 case 0x19: /* FRINTM */ 12778 case 0x38: /* FRINTP */ 12779 case 0x39: /* FRINTZ */ 12780 case 0x58: /* FRINTA */ 12781 case 0x79: /* FRINTI */ 12782 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12783 break; 12784 case 0x59: /* FRINTX */ 12785 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12786 break; 12787 case 0x2f: /* FABS */ 12788 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12789 break; 12790 case 0x6f: /* FNEG */ 12791 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12792 break; 12793 case 0x7d: /* FRSQRTE */ 12794 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12795 break; 12796 case 0x7f: /* FSQRT */ 12797 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12798 break; 12799 default: 12800 g_assert_not_reached(); 12801 } 12802 12803 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12804 } 12805 12806 clear_vec_high(s, is_q, rd); 12807 } 12808 12809 if (tcg_rmode) { 12810 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12811 } 12812 } 12813 12814 /* AdvSIMD scalar x indexed element 12815 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12816 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12817 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12818 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12819 * AdvSIMD vector x indexed element 12820 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12821 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12822 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12823 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12824 */ 12825 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12826 { 12827 /* This encoding has two kinds of instruction: 12828 * normal, where we perform elt x idxelt => elt for each 12829 * element in the vector 12830 * long, where we perform elt x idxelt and generate a result of 12831 * double the width of the input element 12832 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12833 */ 12834 bool is_scalar = extract32(insn, 28, 1); 12835 bool is_q = extract32(insn, 30, 1); 12836 bool u = extract32(insn, 29, 1); 12837 int size = extract32(insn, 22, 2); 12838 int l = extract32(insn, 21, 1); 12839 int m = extract32(insn, 20, 1); 12840 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12841 int rm = extract32(insn, 16, 4); 12842 int opcode = extract32(insn, 12, 4); 12843 int h = extract32(insn, 11, 1); 12844 int rn = extract32(insn, 5, 5); 12845 int rd = extract32(insn, 0, 5); 12846 bool is_long = false; 12847 int is_fp = 0; 12848 bool is_fp16 = false; 12849 int index; 12850 TCGv_ptr fpst; 12851 12852 switch (16 * u + opcode) { 12853 case 0x08: /* MUL */ 12854 case 0x10: /* MLA */ 12855 case 0x14: /* MLS */ 12856 if (is_scalar) { 12857 unallocated_encoding(s); 12858 return; 12859 } 12860 break; 12861 case 0x02: /* SMLAL, SMLAL2 */ 12862 case 0x12: /* UMLAL, UMLAL2 */ 12863 case 0x06: /* SMLSL, SMLSL2 */ 12864 case 0x16: /* UMLSL, UMLSL2 */ 12865 case 0x0a: /* SMULL, SMULL2 */ 12866 case 0x1a: /* UMULL, UMULL2 */ 12867 if (is_scalar) { 12868 unallocated_encoding(s); 12869 return; 12870 } 12871 is_long = true; 12872 break; 12873 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12874 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12875 case 0x0b: /* SQDMULL, SQDMULL2 */ 12876 is_long = true; 12877 break; 12878 case 0x0c: /* SQDMULH */ 12879 case 0x0d: /* SQRDMULH */ 12880 break; 12881 case 0x01: /* FMLA */ 12882 case 0x05: /* FMLS */ 12883 case 0x09: /* FMUL */ 12884 case 0x19: /* FMULX */ 12885 is_fp = 1; 12886 break; 12887 case 0x1d: /* SQRDMLAH */ 12888 case 0x1f: /* SQRDMLSH */ 12889 if (!dc_isar_feature(aa64_rdm, s)) { 12890 unallocated_encoding(s); 12891 return; 12892 } 12893 break; 12894 case 0x0e: /* SDOT */ 12895 case 0x1e: /* UDOT */ 12896 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12897 unallocated_encoding(s); 12898 return; 12899 } 12900 break; 12901 case 0x0f: 12902 switch (size) { 12903 case 0: /* SUDOT */ 12904 case 2: /* USDOT */ 12905 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12906 unallocated_encoding(s); 12907 return; 12908 } 12909 size = MO_32; 12910 break; 12911 case 1: /* BFDOT */ 12912 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12913 unallocated_encoding(s); 12914 return; 12915 } 12916 size = MO_32; 12917 break; 12918 case 3: /* BFMLAL{B,T} */ 12919 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12920 unallocated_encoding(s); 12921 return; 12922 } 12923 /* can't set is_fp without other incorrect size checks */ 12924 size = MO_16; 12925 break; 12926 default: 12927 unallocated_encoding(s); 12928 return; 12929 } 12930 break; 12931 case 0x11: /* FCMLA #0 */ 12932 case 0x13: /* FCMLA #90 */ 12933 case 0x15: /* FCMLA #180 */ 12934 case 0x17: /* FCMLA #270 */ 12935 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12936 unallocated_encoding(s); 12937 return; 12938 } 12939 is_fp = 2; 12940 break; 12941 case 0x00: /* FMLAL */ 12942 case 0x04: /* FMLSL */ 12943 case 0x18: /* FMLAL2 */ 12944 case 0x1c: /* FMLSL2 */ 12945 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12946 unallocated_encoding(s); 12947 return; 12948 } 12949 size = MO_16; 12950 /* is_fp, but we pass cpu_env not fp_status. */ 12951 break; 12952 default: 12953 unallocated_encoding(s); 12954 return; 12955 } 12956 12957 switch (is_fp) { 12958 case 1: /* normal fp */ 12959 /* convert insn encoded size to MemOp size */ 12960 switch (size) { 12961 case 0: /* half-precision */ 12962 size = MO_16; 12963 is_fp16 = true; 12964 break; 12965 case MO_32: /* single precision */ 12966 case MO_64: /* double precision */ 12967 break; 12968 default: 12969 unallocated_encoding(s); 12970 return; 12971 } 12972 break; 12973 12974 case 2: /* complex fp */ 12975 /* Each indexable element is a complex pair. */ 12976 size += 1; 12977 switch (size) { 12978 case MO_32: 12979 if (h && !is_q) { 12980 unallocated_encoding(s); 12981 return; 12982 } 12983 is_fp16 = true; 12984 break; 12985 case MO_64: 12986 break; 12987 default: 12988 unallocated_encoding(s); 12989 return; 12990 } 12991 break; 12992 12993 default: /* integer */ 12994 switch (size) { 12995 case MO_8: 12996 case MO_64: 12997 unallocated_encoding(s); 12998 return; 12999 } 13000 break; 13001 } 13002 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13003 unallocated_encoding(s); 13004 return; 13005 } 13006 13007 /* Given MemOp size, adjust register and indexing. */ 13008 switch (size) { 13009 case MO_16: 13010 index = h << 2 | l << 1 | m; 13011 break; 13012 case MO_32: 13013 index = h << 1 | l; 13014 rm |= m << 4; 13015 break; 13016 case MO_64: 13017 if (l || !is_q) { 13018 unallocated_encoding(s); 13019 return; 13020 } 13021 index = h; 13022 rm |= m << 4; 13023 break; 13024 default: 13025 g_assert_not_reached(); 13026 } 13027 13028 if (!fp_access_check(s)) { 13029 return; 13030 } 13031 13032 if (is_fp) { 13033 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13034 } else { 13035 fpst = NULL; 13036 } 13037 13038 switch (16 * u + opcode) { 13039 case 0x0e: /* SDOT */ 13040 case 0x1e: /* UDOT */ 13041 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13042 u ? gen_helper_gvec_udot_idx_b 13043 : gen_helper_gvec_sdot_idx_b); 13044 return; 13045 case 0x0f: 13046 switch (extract32(insn, 22, 2)) { 13047 case 0: /* SUDOT */ 13048 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13049 gen_helper_gvec_sudot_idx_b); 13050 return; 13051 case 1: /* BFDOT */ 13052 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13053 gen_helper_gvec_bfdot_idx); 13054 return; 13055 case 2: /* USDOT */ 13056 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13057 gen_helper_gvec_usdot_idx_b); 13058 return; 13059 case 3: /* BFMLAL{B,T} */ 13060 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13061 gen_helper_gvec_bfmlal_idx); 13062 return; 13063 } 13064 g_assert_not_reached(); 13065 case 0x11: /* FCMLA #0 */ 13066 case 0x13: /* FCMLA #90 */ 13067 case 0x15: /* FCMLA #180 */ 13068 case 0x17: /* FCMLA #270 */ 13069 { 13070 int rot = extract32(insn, 13, 2); 13071 int data = (index << 2) | rot; 13072 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13073 vec_full_reg_offset(s, rn), 13074 vec_full_reg_offset(s, rm), 13075 vec_full_reg_offset(s, rd), fpst, 13076 is_q ? 16 : 8, vec_full_reg_size(s), data, 13077 size == MO_64 13078 ? gen_helper_gvec_fcmlas_idx 13079 : gen_helper_gvec_fcmlah_idx); 13080 } 13081 return; 13082 13083 case 0x00: /* FMLAL */ 13084 case 0x04: /* FMLSL */ 13085 case 0x18: /* FMLAL2 */ 13086 case 0x1c: /* FMLSL2 */ 13087 { 13088 int is_s = extract32(opcode, 2, 1); 13089 int is_2 = u; 13090 int data = (index << 2) | (is_2 << 1) | is_s; 13091 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13092 vec_full_reg_offset(s, rn), 13093 vec_full_reg_offset(s, rm), cpu_env, 13094 is_q ? 16 : 8, vec_full_reg_size(s), 13095 data, gen_helper_gvec_fmlal_idx_a64); 13096 } 13097 return; 13098 13099 case 0x08: /* MUL */ 13100 if (!is_long && !is_scalar) { 13101 static gen_helper_gvec_3 * const fns[3] = { 13102 gen_helper_gvec_mul_idx_h, 13103 gen_helper_gvec_mul_idx_s, 13104 gen_helper_gvec_mul_idx_d, 13105 }; 13106 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13107 vec_full_reg_offset(s, rn), 13108 vec_full_reg_offset(s, rm), 13109 is_q ? 16 : 8, vec_full_reg_size(s), 13110 index, fns[size - 1]); 13111 return; 13112 } 13113 break; 13114 13115 case 0x10: /* MLA */ 13116 if (!is_long && !is_scalar) { 13117 static gen_helper_gvec_4 * const fns[3] = { 13118 gen_helper_gvec_mla_idx_h, 13119 gen_helper_gvec_mla_idx_s, 13120 gen_helper_gvec_mla_idx_d, 13121 }; 13122 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13123 vec_full_reg_offset(s, rn), 13124 vec_full_reg_offset(s, rm), 13125 vec_full_reg_offset(s, rd), 13126 is_q ? 16 : 8, vec_full_reg_size(s), 13127 index, fns[size - 1]); 13128 return; 13129 } 13130 break; 13131 13132 case 0x14: /* MLS */ 13133 if (!is_long && !is_scalar) { 13134 static gen_helper_gvec_4 * const fns[3] = { 13135 gen_helper_gvec_mls_idx_h, 13136 gen_helper_gvec_mls_idx_s, 13137 gen_helper_gvec_mls_idx_d, 13138 }; 13139 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13140 vec_full_reg_offset(s, rn), 13141 vec_full_reg_offset(s, rm), 13142 vec_full_reg_offset(s, rd), 13143 is_q ? 16 : 8, vec_full_reg_size(s), 13144 index, fns[size - 1]); 13145 return; 13146 } 13147 break; 13148 } 13149 13150 if (size == 3) { 13151 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13152 int pass; 13153 13154 assert(is_fp && is_q && !is_long); 13155 13156 read_vec_element(s, tcg_idx, rm, index, MO_64); 13157 13158 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13159 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13160 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13161 13162 read_vec_element(s, tcg_op, rn, pass, MO_64); 13163 13164 switch (16 * u + opcode) { 13165 case 0x05: /* FMLS */ 13166 /* As usual for ARM, separate negation for fused multiply-add */ 13167 gen_helper_vfp_negd(tcg_op, tcg_op); 13168 /* fall through */ 13169 case 0x01: /* FMLA */ 13170 read_vec_element(s, tcg_res, rd, pass, MO_64); 13171 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13172 break; 13173 case 0x09: /* FMUL */ 13174 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13175 break; 13176 case 0x19: /* FMULX */ 13177 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13178 break; 13179 default: 13180 g_assert_not_reached(); 13181 } 13182 13183 write_vec_element(s, tcg_res, rd, pass, MO_64); 13184 } 13185 13186 clear_vec_high(s, !is_scalar, rd); 13187 } else if (!is_long) { 13188 /* 32 bit floating point, or 16 or 32 bit integer. 13189 * For the 16 bit scalar case we use the usual Neon helpers and 13190 * rely on the fact that 0 op 0 == 0 with no side effects. 13191 */ 13192 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13193 int pass, maxpasses; 13194 13195 if (is_scalar) { 13196 maxpasses = 1; 13197 } else { 13198 maxpasses = is_q ? 4 : 2; 13199 } 13200 13201 read_vec_element_i32(s, tcg_idx, rm, index, size); 13202 13203 if (size == 1 && !is_scalar) { 13204 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13205 * the index into both halves of the 32 bit tcg_idx and then use 13206 * the usual Neon helpers. 13207 */ 13208 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13209 } 13210 13211 for (pass = 0; pass < maxpasses; pass++) { 13212 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13213 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13214 13215 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13216 13217 switch (16 * u + opcode) { 13218 case 0x08: /* MUL */ 13219 case 0x10: /* MLA */ 13220 case 0x14: /* MLS */ 13221 { 13222 static NeonGenTwoOpFn * const fns[2][2] = { 13223 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13224 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13225 }; 13226 NeonGenTwoOpFn *genfn; 13227 bool is_sub = opcode == 0x4; 13228 13229 if (size == 1) { 13230 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13231 } else { 13232 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13233 } 13234 if (opcode == 0x8) { 13235 break; 13236 } 13237 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13238 genfn = fns[size - 1][is_sub]; 13239 genfn(tcg_res, tcg_op, tcg_res); 13240 break; 13241 } 13242 case 0x05: /* FMLS */ 13243 case 0x01: /* FMLA */ 13244 read_vec_element_i32(s, tcg_res, rd, pass, 13245 is_scalar ? size : MO_32); 13246 switch (size) { 13247 case 1: 13248 if (opcode == 0x5) { 13249 /* As usual for ARM, separate negation for fused 13250 * multiply-add */ 13251 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13252 } 13253 if (is_scalar) { 13254 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13255 tcg_res, fpst); 13256 } else { 13257 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13258 tcg_res, fpst); 13259 } 13260 break; 13261 case 2: 13262 if (opcode == 0x5) { 13263 /* As usual for ARM, separate negation for 13264 * fused multiply-add */ 13265 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13266 } 13267 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13268 tcg_res, fpst); 13269 break; 13270 default: 13271 g_assert_not_reached(); 13272 } 13273 break; 13274 case 0x09: /* FMUL */ 13275 switch (size) { 13276 case 1: 13277 if (is_scalar) { 13278 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13279 tcg_idx, fpst); 13280 } else { 13281 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13282 tcg_idx, fpst); 13283 } 13284 break; 13285 case 2: 13286 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13287 break; 13288 default: 13289 g_assert_not_reached(); 13290 } 13291 break; 13292 case 0x19: /* FMULX */ 13293 switch (size) { 13294 case 1: 13295 if (is_scalar) { 13296 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13297 tcg_idx, fpst); 13298 } else { 13299 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13300 tcg_idx, fpst); 13301 } 13302 break; 13303 case 2: 13304 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13305 break; 13306 default: 13307 g_assert_not_reached(); 13308 } 13309 break; 13310 case 0x0c: /* SQDMULH */ 13311 if (size == 1) { 13312 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13313 tcg_op, tcg_idx); 13314 } else { 13315 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13316 tcg_op, tcg_idx); 13317 } 13318 break; 13319 case 0x0d: /* SQRDMULH */ 13320 if (size == 1) { 13321 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13322 tcg_op, tcg_idx); 13323 } else { 13324 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13325 tcg_op, tcg_idx); 13326 } 13327 break; 13328 case 0x1d: /* SQRDMLAH */ 13329 read_vec_element_i32(s, tcg_res, rd, pass, 13330 is_scalar ? size : MO_32); 13331 if (size == 1) { 13332 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13333 tcg_op, tcg_idx, tcg_res); 13334 } else { 13335 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13336 tcg_op, tcg_idx, tcg_res); 13337 } 13338 break; 13339 case 0x1f: /* SQRDMLSH */ 13340 read_vec_element_i32(s, tcg_res, rd, pass, 13341 is_scalar ? size : MO_32); 13342 if (size == 1) { 13343 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13344 tcg_op, tcg_idx, tcg_res); 13345 } else { 13346 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13347 tcg_op, tcg_idx, tcg_res); 13348 } 13349 break; 13350 default: 13351 g_assert_not_reached(); 13352 } 13353 13354 if (is_scalar) { 13355 write_fp_sreg(s, rd, tcg_res); 13356 } else { 13357 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13358 } 13359 } 13360 13361 clear_vec_high(s, is_q, rd); 13362 } else { 13363 /* long ops: 16x16->32 or 32x32->64 */ 13364 TCGv_i64 tcg_res[2]; 13365 int pass; 13366 bool satop = extract32(opcode, 0, 1); 13367 MemOp memop = MO_32; 13368 13369 if (satop || !u) { 13370 memop |= MO_SIGN; 13371 } 13372 13373 if (size == 2) { 13374 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13375 13376 read_vec_element(s, tcg_idx, rm, index, memop); 13377 13378 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13379 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13380 TCGv_i64 tcg_passres; 13381 int passelt; 13382 13383 if (is_scalar) { 13384 passelt = 0; 13385 } else { 13386 passelt = pass + (is_q * 2); 13387 } 13388 13389 read_vec_element(s, tcg_op, rn, passelt, memop); 13390 13391 tcg_res[pass] = tcg_temp_new_i64(); 13392 13393 if (opcode == 0xa || opcode == 0xb) { 13394 /* Non-accumulating ops */ 13395 tcg_passres = tcg_res[pass]; 13396 } else { 13397 tcg_passres = tcg_temp_new_i64(); 13398 } 13399 13400 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13401 13402 if (satop) { 13403 /* saturating, doubling */ 13404 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13405 tcg_passres, tcg_passres); 13406 } 13407 13408 if (opcode == 0xa || opcode == 0xb) { 13409 continue; 13410 } 13411 13412 /* Accumulating op: handle accumulate step */ 13413 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13414 13415 switch (opcode) { 13416 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13417 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13418 break; 13419 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13420 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13421 break; 13422 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13423 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13424 /* fall through */ 13425 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13426 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13427 tcg_res[pass], 13428 tcg_passres); 13429 break; 13430 default: 13431 g_assert_not_reached(); 13432 } 13433 } 13434 13435 clear_vec_high(s, !is_scalar, rd); 13436 } else { 13437 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13438 13439 assert(size == 1); 13440 read_vec_element_i32(s, tcg_idx, rm, index, size); 13441 13442 if (!is_scalar) { 13443 /* The simplest way to handle the 16x16 indexed ops is to 13444 * duplicate the index into both halves of the 32 bit tcg_idx 13445 * and then use the usual Neon helpers. 13446 */ 13447 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13448 } 13449 13450 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13451 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13452 TCGv_i64 tcg_passres; 13453 13454 if (is_scalar) { 13455 read_vec_element_i32(s, tcg_op, rn, pass, size); 13456 } else { 13457 read_vec_element_i32(s, tcg_op, rn, 13458 pass + (is_q * 2), MO_32); 13459 } 13460 13461 tcg_res[pass] = tcg_temp_new_i64(); 13462 13463 if (opcode == 0xa || opcode == 0xb) { 13464 /* Non-accumulating ops */ 13465 tcg_passres = tcg_res[pass]; 13466 } else { 13467 tcg_passres = tcg_temp_new_i64(); 13468 } 13469 13470 if (memop & MO_SIGN) { 13471 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13472 } else { 13473 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13474 } 13475 if (satop) { 13476 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13477 tcg_passres, tcg_passres); 13478 } 13479 13480 if (opcode == 0xa || opcode == 0xb) { 13481 continue; 13482 } 13483 13484 /* Accumulating op: handle accumulate step */ 13485 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13486 13487 switch (opcode) { 13488 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13489 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13490 tcg_passres); 13491 break; 13492 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13493 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13494 tcg_passres); 13495 break; 13496 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13497 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13498 /* fall through */ 13499 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13500 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13501 tcg_res[pass], 13502 tcg_passres); 13503 break; 13504 default: 13505 g_assert_not_reached(); 13506 } 13507 } 13508 13509 if (is_scalar) { 13510 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13511 } 13512 } 13513 13514 if (is_scalar) { 13515 tcg_res[1] = tcg_constant_i64(0); 13516 } 13517 13518 for (pass = 0; pass < 2; pass++) { 13519 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13520 } 13521 } 13522 } 13523 13524 /* Crypto AES 13525 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13526 * +-----------------+------+-----------+--------+-----+------+------+ 13527 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13528 * +-----------------+------+-----------+--------+-----+------+------+ 13529 */ 13530 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13531 { 13532 int size = extract32(insn, 22, 2); 13533 int opcode = extract32(insn, 12, 5); 13534 int rn = extract32(insn, 5, 5); 13535 int rd = extract32(insn, 0, 5); 13536 int decrypt; 13537 gen_helper_gvec_2 *genfn2 = NULL; 13538 gen_helper_gvec_3 *genfn3 = NULL; 13539 13540 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13541 unallocated_encoding(s); 13542 return; 13543 } 13544 13545 switch (opcode) { 13546 case 0x4: /* AESE */ 13547 decrypt = 0; 13548 genfn3 = gen_helper_crypto_aese; 13549 break; 13550 case 0x6: /* AESMC */ 13551 decrypt = 0; 13552 genfn2 = gen_helper_crypto_aesmc; 13553 break; 13554 case 0x5: /* AESD */ 13555 decrypt = 1; 13556 genfn3 = gen_helper_crypto_aese; 13557 break; 13558 case 0x7: /* AESIMC */ 13559 decrypt = 1; 13560 genfn2 = gen_helper_crypto_aesmc; 13561 break; 13562 default: 13563 unallocated_encoding(s); 13564 return; 13565 } 13566 13567 if (!fp_access_check(s)) { 13568 return; 13569 } 13570 if (genfn2) { 13571 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13572 } else { 13573 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13574 } 13575 } 13576 13577 /* Crypto three-reg SHA 13578 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13579 * +-----------------+------+---+------+---+--------+-----+------+------+ 13580 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13581 * +-----------------+------+---+------+---+--------+-----+------+------+ 13582 */ 13583 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13584 { 13585 int size = extract32(insn, 22, 2); 13586 int opcode = extract32(insn, 12, 3); 13587 int rm = extract32(insn, 16, 5); 13588 int rn = extract32(insn, 5, 5); 13589 int rd = extract32(insn, 0, 5); 13590 gen_helper_gvec_3 *genfn; 13591 bool feature; 13592 13593 if (size != 0) { 13594 unallocated_encoding(s); 13595 return; 13596 } 13597 13598 switch (opcode) { 13599 case 0: /* SHA1C */ 13600 genfn = gen_helper_crypto_sha1c; 13601 feature = dc_isar_feature(aa64_sha1, s); 13602 break; 13603 case 1: /* SHA1P */ 13604 genfn = gen_helper_crypto_sha1p; 13605 feature = dc_isar_feature(aa64_sha1, s); 13606 break; 13607 case 2: /* SHA1M */ 13608 genfn = gen_helper_crypto_sha1m; 13609 feature = dc_isar_feature(aa64_sha1, s); 13610 break; 13611 case 3: /* SHA1SU0 */ 13612 genfn = gen_helper_crypto_sha1su0; 13613 feature = dc_isar_feature(aa64_sha1, s); 13614 break; 13615 case 4: /* SHA256H */ 13616 genfn = gen_helper_crypto_sha256h; 13617 feature = dc_isar_feature(aa64_sha256, s); 13618 break; 13619 case 5: /* SHA256H2 */ 13620 genfn = gen_helper_crypto_sha256h2; 13621 feature = dc_isar_feature(aa64_sha256, s); 13622 break; 13623 case 6: /* SHA256SU1 */ 13624 genfn = gen_helper_crypto_sha256su1; 13625 feature = dc_isar_feature(aa64_sha256, s); 13626 break; 13627 default: 13628 unallocated_encoding(s); 13629 return; 13630 } 13631 13632 if (!feature) { 13633 unallocated_encoding(s); 13634 return; 13635 } 13636 13637 if (!fp_access_check(s)) { 13638 return; 13639 } 13640 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13641 } 13642 13643 /* Crypto two-reg SHA 13644 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13645 * +-----------------+------+-----------+--------+-----+------+------+ 13646 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13647 * +-----------------+------+-----------+--------+-----+------+------+ 13648 */ 13649 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13650 { 13651 int size = extract32(insn, 22, 2); 13652 int opcode = extract32(insn, 12, 5); 13653 int rn = extract32(insn, 5, 5); 13654 int rd = extract32(insn, 0, 5); 13655 gen_helper_gvec_2 *genfn; 13656 bool feature; 13657 13658 if (size != 0) { 13659 unallocated_encoding(s); 13660 return; 13661 } 13662 13663 switch (opcode) { 13664 case 0: /* SHA1H */ 13665 feature = dc_isar_feature(aa64_sha1, s); 13666 genfn = gen_helper_crypto_sha1h; 13667 break; 13668 case 1: /* SHA1SU1 */ 13669 feature = dc_isar_feature(aa64_sha1, s); 13670 genfn = gen_helper_crypto_sha1su1; 13671 break; 13672 case 2: /* SHA256SU0 */ 13673 feature = dc_isar_feature(aa64_sha256, s); 13674 genfn = gen_helper_crypto_sha256su0; 13675 break; 13676 default: 13677 unallocated_encoding(s); 13678 return; 13679 } 13680 13681 if (!feature) { 13682 unallocated_encoding(s); 13683 return; 13684 } 13685 13686 if (!fp_access_check(s)) { 13687 return; 13688 } 13689 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13690 } 13691 13692 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13693 { 13694 tcg_gen_rotli_i64(d, m, 1); 13695 tcg_gen_xor_i64(d, d, n); 13696 } 13697 13698 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13699 { 13700 tcg_gen_rotli_vec(vece, d, m, 1); 13701 tcg_gen_xor_vec(vece, d, d, n); 13702 } 13703 13704 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13705 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13706 { 13707 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13708 static const GVecGen3 op = { 13709 .fni8 = gen_rax1_i64, 13710 .fniv = gen_rax1_vec, 13711 .opt_opc = vecop_list, 13712 .fno = gen_helper_crypto_rax1, 13713 .vece = MO_64, 13714 }; 13715 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13716 } 13717 13718 /* Crypto three-reg SHA512 13719 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13720 * +-----------------------+------+---+---+-----+--------+------+------+ 13721 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13722 * +-----------------------+------+---+---+-----+--------+------+------+ 13723 */ 13724 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13725 { 13726 int opcode = extract32(insn, 10, 2); 13727 int o = extract32(insn, 14, 1); 13728 int rm = extract32(insn, 16, 5); 13729 int rn = extract32(insn, 5, 5); 13730 int rd = extract32(insn, 0, 5); 13731 bool feature; 13732 gen_helper_gvec_3 *oolfn = NULL; 13733 GVecGen3Fn *gvecfn = NULL; 13734 13735 if (o == 0) { 13736 switch (opcode) { 13737 case 0: /* SHA512H */ 13738 feature = dc_isar_feature(aa64_sha512, s); 13739 oolfn = gen_helper_crypto_sha512h; 13740 break; 13741 case 1: /* SHA512H2 */ 13742 feature = dc_isar_feature(aa64_sha512, s); 13743 oolfn = gen_helper_crypto_sha512h2; 13744 break; 13745 case 2: /* SHA512SU1 */ 13746 feature = dc_isar_feature(aa64_sha512, s); 13747 oolfn = gen_helper_crypto_sha512su1; 13748 break; 13749 case 3: /* RAX1 */ 13750 feature = dc_isar_feature(aa64_sha3, s); 13751 gvecfn = gen_gvec_rax1; 13752 break; 13753 default: 13754 g_assert_not_reached(); 13755 } 13756 } else { 13757 switch (opcode) { 13758 case 0: /* SM3PARTW1 */ 13759 feature = dc_isar_feature(aa64_sm3, s); 13760 oolfn = gen_helper_crypto_sm3partw1; 13761 break; 13762 case 1: /* SM3PARTW2 */ 13763 feature = dc_isar_feature(aa64_sm3, s); 13764 oolfn = gen_helper_crypto_sm3partw2; 13765 break; 13766 case 2: /* SM4EKEY */ 13767 feature = dc_isar_feature(aa64_sm4, s); 13768 oolfn = gen_helper_crypto_sm4ekey; 13769 break; 13770 default: 13771 unallocated_encoding(s); 13772 return; 13773 } 13774 } 13775 13776 if (!feature) { 13777 unallocated_encoding(s); 13778 return; 13779 } 13780 13781 if (!fp_access_check(s)) { 13782 return; 13783 } 13784 13785 if (oolfn) { 13786 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13787 } else { 13788 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13789 } 13790 } 13791 13792 /* Crypto two-reg SHA512 13793 * 31 12 11 10 9 5 4 0 13794 * +-----------------------------------------+--------+------+------+ 13795 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13796 * +-----------------------------------------+--------+------+------+ 13797 */ 13798 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13799 { 13800 int opcode = extract32(insn, 10, 2); 13801 int rn = extract32(insn, 5, 5); 13802 int rd = extract32(insn, 0, 5); 13803 bool feature; 13804 13805 switch (opcode) { 13806 case 0: /* SHA512SU0 */ 13807 feature = dc_isar_feature(aa64_sha512, s); 13808 break; 13809 case 1: /* SM4E */ 13810 feature = dc_isar_feature(aa64_sm4, s); 13811 break; 13812 default: 13813 unallocated_encoding(s); 13814 return; 13815 } 13816 13817 if (!feature) { 13818 unallocated_encoding(s); 13819 return; 13820 } 13821 13822 if (!fp_access_check(s)) { 13823 return; 13824 } 13825 13826 switch (opcode) { 13827 case 0: /* SHA512SU0 */ 13828 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13829 break; 13830 case 1: /* SM4E */ 13831 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13832 break; 13833 default: 13834 g_assert_not_reached(); 13835 } 13836 } 13837 13838 /* Crypto four-register 13839 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13840 * +-------------------+-----+------+---+------+------+------+ 13841 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13842 * +-------------------+-----+------+---+------+------+------+ 13843 */ 13844 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13845 { 13846 int op0 = extract32(insn, 21, 2); 13847 int rm = extract32(insn, 16, 5); 13848 int ra = extract32(insn, 10, 5); 13849 int rn = extract32(insn, 5, 5); 13850 int rd = extract32(insn, 0, 5); 13851 bool feature; 13852 13853 switch (op0) { 13854 case 0: /* EOR3 */ 13855 case 1: /* BCAX */ 13856 feature = dc_isar_feature(aa64_sha3, s); 13857 break; 13858 case 2: /* SM3SS1 */ 13859 feature = dc_isar_feature(aa64_sm3, s); 13860 break; 13861 default: 13862 unallocated_encoding(s); 13863 return; 13864 } 13865 13866 if (!feature) { 13867 unallocated_encoding(s); 13868 return; 13869 } 13870 13871 if (!fp_access_check(s)) { 13872 return; 13873 } 13874 13875 if (op0 < 2) { 13876 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13877 int pass; 13878 13879 tcg_op1 = tcg_temp_new_i64(); 13880 tcg_op2 = tcg_temp_new_i64(); 13881 tcg_op3 = tcg_temp_new_i64(); 13882 tcg_res[0] = tcg_temp_new_i64(); 13883 tcg_res[1] = tcg_temp_new_i64(); 13884 13885 for (pass = 0; pass < 2; pass++) { 13886 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13887 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13888 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13889 13890 if (op0 == 0) { 13891 /* EOR3 */ 13892 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13893 } else { 13894 /* BCAX */ 13895 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13896 } 13897 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13898 } 13899 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13900 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13901 } else { 13902 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13903 13904 tcg_op1 = tcg_temp_new_i32(); 13905 tcg_op2 = tcg_temp_new_i32(); 13906 tcg_op3 = tcg_temp_new_i32(); 13907 tcg_res = tcg_temp_new_i32(); 13908 tcg_zero = tcg_constant_i32(0); 13909 13910 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13911 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13912 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13913 13914 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13915 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13916 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13917 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13918 13919 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13920 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13921 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13922 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13923 } 13924 } 13925 13926 /* Crypto XAR 13927 * 31 21 20 16 15 10 9 5 4 0 13928 * +-----------------------+------+--------+------+------+ 13929 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13930 * +-----------------------+------+--------+------+------+ 13931 */ 13932 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13933 { 13934 int rm = extract32(insn, 16, 5); 13935 int imm6 = extract32(insn, 10, 6); 13936 int rn = extract32(insn, 5, 5); 13937 int rd = extract32(insn, 0, 5); 13938 13939 if (!dc_isar_feature(aa64_sha3, s)) { 13940 unallocated_encoding(s); 13941 return; 13942 } 13943 13944 if (!fp_access_check(s)) { 13945 return; 13946 } 13947 13948 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13949 vec_full_reg_offset(s, rn), 13950 vec_full_reg_offset(s, rm), imm6, 16, 13951 vec_full_reg_size(s)); 13952 } 13953 13954 /* Crypto three-reg imm2 13955 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13956 * +-----------------------+------+-----+------+--------+------+------+ 13957 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13958 * +-----------------------+------+-----+------+--------+------+------+ 13959 */ 13960 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13961 { 13962 static gen_helper_gvec_3 * const fns[4] = { 13963 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13964 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13965 }; 13966 int opcode = extract32(insn, 10, 2); 13967 int imm2 = extract32(insn, 12, 2); 13968 int rm = extract32(insn, 16, 5); 13969 int rn = extract32(insn, 5, 5); 13970 int rd = extract32(insn, 0, 5); 13971 13972 if (!dc_isar_feature(aa64_sm3, s)) { 13973 unallocated_encoding(s); 13974 return; 13975 } 13976 13977 if (!fp_access_check(s)) { 13978 return; 13979 } 13980 13981 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13982 } 13983 13984 /* C3.6 Data processing - SIMD, inc Crypto 13985 * 13986 * As the decode gets a little complex we are using a table based 13987 * approach for this part of the decode. 13988 */ 13989 static const AArch64DecodeTable data_proc_simd[] = { 13990 /* pattern , mask , fn */ 13991 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13992 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13993 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13994 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13995 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13996 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13997 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13998 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13999 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14000 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14001 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14002 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14003 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14004 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14005 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14006 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14007 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14008 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14009 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14010 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14011 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14012 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14013 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14014 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14015 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14016 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14017 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14018 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14019 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14020 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14021 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14022 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14023 { 0x00000000, 0x00000000, NULL } 14024 }; 14025 14026 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14027 { 14028 /* Note that this is called with all non-FP cases from 14029 * table C3-6 so it must UNDEF for entries not specifically 14030 * allocated to instructions in that table. 14031 */ 14032 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14033 if (fn) { 14034 fn(s, insn); 14035 } else { 14036 unallocated_encoding(s); 14037 } 14038 } 14039 14040 /* C3.6 Data processing - SIMD and floating point */ 14041 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14042 { 14043 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14044 disas_data_proc_fp(s, insn); 14045 } else { 14046 /* SIMD, including crypto */ 14047 disas_data_proc_simd(s, insn); 14048 } 14049 } 14050 14051 static bool trans_OK(DisasContext *s, arg_OK *a) 14052 { 14053 return true; 14054 } 14055 14056 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14057 { 14058 s->is_nonstreaming = true; 14059 return true; 14060 } 14061 14062 /** 14063 * is_guarded_page: 14064 * @env: The cpu environment 14065 * @s: The DisasContext 14066 * 14067 * Return true if the page is guarded. 14068 */ 14069 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14070 { 14071 uint64_t addr = s->base.pc_first; 14072 #ifdef CONFIG_USER_ONLY 14073 return page_get_flags(addr) & PAGE_BTI; 14074 #else 14075 CPUTLBEntryFull *full; 14076 void *host; 14077 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14078 int flags; 14079 14080 /* 14081 * We test this immediately after reading an insn, which means 14082 * that the TLB entry must be present and valid, and thus this 14083 * access will never raise an exception. 14084 */ 14085 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14086 false, &host, &full, 0); 14087 assert(!(flags & TLB_INVALID_MASK)); 14088 14089 return full->guarded; 14090 #endif 14091 } 14092 14093 /** 14094 * btype_destination_ok: 14095 * @insn: The instruction at the branch destination 14096 * @bt: SCTLR_ELx.BT 14097 * @btype: PSTATE.BTYPE, and is non-zero 14098 * 14099 * On a guarded page, there are a limited number of insns 14100 * that may be present at the branch target: 14101 * - branch target identifiers, 14102 * - paciasp, pacibsp, 14103 * - BRK insn 14104 * - HLT insn 14105 * Anything else causes a Branch Target Exception. 14106 * 14107 * Return true if the branch is compatible, false to raise BTITRAP. 14108 */ 14109 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14110 { 14111 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14112 /* HINT space */ 14113 switch (extract32(insn, 5, 7)) { 14114 case 0b011001: /* PACIASP */ 14115 case 0b011011: /* PACIBSP */ 14116 /* 14117 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14118 * with btype == 3. Otherwise all btype are ok. 14119 */ 14120 return !bt || btype != 3; 14121 case 0b100000: /* BTI */ 14122 /* Not compatible with any btype. */ 14123 return false; 14124 case 0b100010: /* BTI c */ 14125 /* Not compatible with btype == 3 */ 14126 return btype != 3; 14127 case 0b100100: /* BTI j */ 14128 /* Not compatible with btype == 2 */ 14129 return btype != 2; 14130 case 0b100110: /* BTI jc */ 14131 /* Compatible with any btype. */ 14132 return true; 14133 } 14134 } else { 14135 switch (insn & 0xffe0001fu) { 14136 case 0xd4200000u: /* BRK */ 14137 case 0xd4400000u: /* HLT */ 14138 /* Give priority to the breakpoint exception. */ 14139 return true; 14140 } 14141 } 14142 return false; 14143 } 14144 14145 /* C3.1 A64 instruction index by encoding */ 14146 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14147 { 14148 switch (extract32(insn, 25, 4)) { 14149 case 0x4: 14150 case 0x6: 14151 case 0xc: 14152 case 0xe: /* Loads and stores */ 14153 disas_ldst(s, insn); 14154 break; 14155 case 0x5: 14156 case 0xd: /* Data processing - register */ 14157 disas_data_proc_reg(s, insn); 14158 break; 14159 case 0x7: 14160 case 0xf: /* Data processing - SIMD and floating point */ 14161 disas_data_proc_simd_fp(s, insn); 14162 break; 14163 default: 14164 unallocated_encoding(s); 14165 break; 14166 } 14167 } 14168 14169 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14170 CPUState *cpu) 14171 { 14172 DisasContext *dc = container_of(dcbase, DisasContext, base); 14173 CPUARMState *env = cpu->env_ptr; 14174 ARMCPU *arm_cpu = env_archcpu(env); 14175 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14176 int bound, core_mmu_idx; 14177 14178 dc->isar = &arm_cpu->isar; 14179 dc->condjmp = 0; 14180 dc->pc_save = dc->base.pc_first; 14181 dc->aarch64 = true; 14182 dc->thumb = false; 14183 dc->sctlr_b = 0; 14184 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14185 dc->condexec_mask = 0; 14186 dc->condexec_cond = 0; 14187 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14188 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14189 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14190 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14191 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14192 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14193 #if !defined(CONFIG_USER_ONLY) 14194 dc->user = (dc->current_el == 0); 14195 #endif 14196 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14197 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14198 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14199 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14200 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14201 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14202 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14203 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14204 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14205 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14206 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14207 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14208 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14209 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14210 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14211 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14212 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14213 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14214 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14215 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14216 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14217 dc->vec_len = 0; 14218 dc->vec_stride = 0; 14219 dc->cp_regs = arm_cpu->cp_regs; 14220 dc->features = env->features; 14221 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14222 14223 #ifdef CONFIG_USER_ONLY 14224 /* In sve_probe_page, we assume TBI is enabled. */ 14225 tcg_debug_assert(dc->tbid & 1); 14226 #endif 14227 14228 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14229 14230 /* Single step state. The code-generation logic here is: 14231 * SS_ACTIVE == 0: 14232 * generate code with no special handling for single-stepping (except 14233 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14234 * this happens anyway because those changes are all system register or 14235 * PSTATE writes). 14236 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14237 * emit code for one insn 14238 * emit code to clear PSTATE.SS 14239 * emit code to generate software step exception for completed step 14240 * end TB (as usual for having generated an exception) 14241 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14242 * emit code to generate a software step exception 14243 * end the TB 14244 */ 14245 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14246 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14247 dc->is_ldex = false; 14248 14249 /* Bound the number of insns to execute to those left on the page. */ 14250 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14251 14252 /* If architectural single step active, limit to 1. */ 14253 if (dc->ss_active) { 14254 bound = 1; 14255 } 14256 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14257 } 14258 14259 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14260 { 14261 } 14262 14263 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14264 { 14265 DisasContext *dc = container_of(dcbase, DisasContext, base); 14266 target_ulong pc_arg = dc->base.pc_next; 14267 14268 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14269 pc_arg &= ~TARGET_PAGE_MASK; 14270 } 14271 tcg_gen_insn_start(pc_arg, 0, 0); 14272 dc->insn_start = tcg_last_op(); 14273 } 14274 14275 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14276 { 14277 DisasContext *s = container_of(dcbase, DisasContext, base); 14278 CPUARMState *env = cpu->env_ptr; 14279 uint64_t pc = s->base.pc_next; 14280 uint32_t insn; 14281 14282 /* Singlestep exceptions have the highest priority. */ 14283 if (s->ss_active && !s->pstate_ss) { 14284 /* Singlestep state is Active-pending. 14285 * If we're in this state at the start of a TB then either 14286 * a) we just took an exception to an EL which is being debugged 14287 * and this is the first insn in the exception handler 14288 * b) debug exceptions were masked and we just unmasked them 14289 * without changing EL (eg by clearing PSTATE.D) 14290 * In either case we're going to take a swstep exception in the 14291 * "did not step an insn" case, and so the syndrome ISV and EX 14292 * bits should be zero. 14293 */ 14294 assert(s->base.num_insns == 1); 14295 gen_swstep_exception(s, 0, 0); 14296 s->base.is_jmp = DISAS_NORETURN; 14297 s->base.pc_next = pc + 4; 14298 return; 14299 } 14300 14301 if (pc & 3) { 14302 /* 14303 * PC alignment fault. This has priority over the instruction abort 14304 * that we would receive from a translation fault via arm_ldl_code. 14305 * This should only be possible after an indirect branch, at the 14306 * start of the TB. 14307 */ 14308 assert(s->base.num_insns == 1); 14309 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14310 s->base.is_jmp = DISAS_NORETURN; 14311 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14312 return; 14313 } 14314 14315 s->pc_curr = pc; 14316 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14317 s->insn = insn; 14318 s->base.pc_next = pc + 4; 14319 14320 s->fp_access_checked = false; 14321 s->sve_access_checked = false; 14322 14323 if (s->pstate_il) { 14324 /* 14325 * Illegal execution state. This has priority over BTI 14326 * exceptions, but comes after instruction abort exceptions. 14327 */ 14328 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14329 return; 14330 } 14331 14332 if (dc_isar_feature(aa64_bti, s)) { 14333 if (s->base.num_insns == 1) { 14334 /* 14335 * At the first insn of the TB, compute s->guarded_page. 14336 * We delayed computing this until successfully reading 14337 * the first insn of the TB, above. This (mostly) ensures 14338 * that the softmmu tlb entry has been populated, and the 14339 * page table GP bit is available. 14340 * 14341 * Note that we need to compute this even if btype == 0, 14342 * because this value is used for BR instructions later 14343 * where ENV is not available. 14344 */ 14345 s->guarded_page = is_guarded_page(env, s); 14346 14347 /* First insn can have btype set to non-zero. */ 14348 tcg_debug_assert(s->btype >= 0); 14349 14350 /* 14351 * Note that the Branch Target Exception has fairly high 14352 * priority -- below debugging exceptions but above most 14353 * everything else. This allows us to handle this now 14354 * instead of waiting until the insn is otherwise decoded. 14355 */ 14356 if (s->btype != 0 14357 && s->guarded_page 14358 && !btype_destination_ok(insn, s->bt, s->btype)) { 14359 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14360 return; 14361 } 14362 } else { 14363 /* Not the first insn: btype must be 0. */ 14364 tcg_debug_assert(s->btype == 0); 14365 } 14366 } 14367 14368 s->is_nonstreaming = false; 14369 if (s->sme_trap_nonstreaming) { 14370 disas_sme_fa64(s, insn); 14371 } 14372 14373 if (!disas_a64(s, insn) && 14374 !disas_sme(s, insn) && 14375 !disas_sve(s, insn)) { 14376 disas_a64_legacy(s, insn); 14377 } 14378 14379 /* 14380 * After execution of most insns, btype is reset to 0. 14381 * Note that we set btype == -1 when the insn sets btype. 14382 */ 14383 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14384 reset_btype(s); 14385 } 14386 } 14387 14388 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14389 { 14390 DisasContext *dc = container_of(dcbase, DisasContext, base); 14391 14392 if (unlikely(dc->ss_active)) { 14393 /* Note that this means single stepping WFI doesn't halt the CPU. 14394 * For conditional branch insns this is harmless unreachable code as 14395 * gen_goto_tb() has already handled emitting the debug exception 14396 * (and thus a tb-jump is not possible when singlestepping). 14397 */ 14398 switch (dc->base.is_jmp) { 14399 default: 14400 gen_a64_update_pc(dc, 4); 14401 /* fall through */ 14402 case DISAS_EXIT: 14403 case DISAS_JUMP: 14404 gen_step_complete_exception(dc); 14405 break; 14406 case DISAS_NORETURN: 14407 break; 14408 } 14409 } else { 14410 switch (dc->base.is_jmp) { 14411 case DISAS_NEXT: 14412 case DISAS_TOO_MANY: 14413 gen_goto_tb(dc, 1, 4); 14414 break; 14415 default: 14416 case DISAS_UPDATE_EXIT: 14417 gen_a64_update_pc(dc, 4); 14418 /* fall through */ 14419 case DISAS_EXIT: 14420 tcg_gen_exit_tb(NULL, 0); 14421 break; 14422 case DISAS_UPDATE_NOCHAIN: 14423 gen_a64_update_pc(dc, 4); 14424 /* fall through */ 14425 case DISAS_JUMP: 14426 tcg_gen_lookup_and_goto_ptr(); 14427 break; 14428 case DISAS_NORETURN: 14429 case DISAS_SWI: 14430 break; 14431 case DISAS_WFE: 14432 gen_a64_update_pc(dc, 4); 14433 gen_helper_wfe(cpu_env); 14434 break; 14435 case DISAS_YIELD: 14436 gen_a64_update_pc(dc, 4); 14437 gen_helper_yield(cpu_env); 14438 break; 14439 case DISAS_WFI: 14440 /* 14441 * This is a special case because we don't want to just halt 14442 * the CPU if trying to debug across a WFI. 14443 */ 14444 gen_a64_update_pc(dc, 4); 14445 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14446 /* 14447 * The helper doesn't necessarily throw an exception, but we 14448 * must go back to the main loop to check for interrupts anyway. 14449 */ 14450 tcg_gen_exit_tb(NULL, 0); 14451 break; 14452 } 14453 } 14454 } 14455 14456 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14457 CPUState *cpu, FILE *logfile) 14458 { 14459 DisasContext *dc = container_of(dcbase, DisasContext, base); 14460 14461 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14462 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14463 } 14464 14465 const TranslatorOps aarch64_translator_ops = { 14466 .init_disas_context = aarch64_tr_init_disas_context, 14467 .tb_start = aarch64_tr_tb_start, 14468 .insn_start = aarch64_tr_insn_start, 14469 .translate_insn = aarch64_tr_translate_insn, 14470 .tb_stop = aarch64_tr_tb_stop, 14471 .disas_log = aarch64_tr_disas_log, 14472 }; 14473