1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmax = { 4919 gen_helper_advsimd_maxh, 4920 gen_helper_vfp_maxs, 4921 gen_helper_vfp_maxd, 4922 }; 4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4924 4925 static const FPScalar f_scalar_fmin = { 4926 gen_helper_advsimd_minh, 4927 gen_helper_vfp_mins, 4928 gen_helper_vfp_mind, 4929 }; 4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4931 4932 static const FPScalar f_scalar_fmaxnm = { 4933 gen_helper_advsimd_maxnumh, 4934 gen_helper_vfp_maxnums, 4935 gen_helper_vfp_maxnumd, 4936 }; 4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4938 4939 static const FPScalar f_scalar_fminnm = { 4940 gen_helper_advsimd_minnumh, 4941 gen_helper_vfp_minnums, 4942 gen_helper_vfp_minnumd, 4943 }; 4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4945 4946 static const FPScalar f_scalar_fmulx = { 4947 gen_helper_advsimd_mulxh, 4948 gen_helper_vfp_mulxs, 4949 gen_helper_vfp_mulxd, 4950 }; 4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4952 4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4954 { 4955 gen_helper_vfp_mulh(d, n, m, s); 4956 gen_vfp_negh(d, d); 4957 } 4958 4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_muls(d, n, m, s); 4962 gen_vfp_negs(d, d); 4963 } 4964 4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muld(d, n, m, s); 4968 gen_vfp_negd(d, d); 4969 } 4970 4971 static const FPScalar f_scalar_fnmul = { 4972 gen_fnmul_h, 4973 gen_fnmul_s, 4974 gen_fnmul_d, 4975 }; 4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4977 4978 static const FPScalar f_scalar_fcmeq = { 4979 gen_helper_advsimd_ceq_f16, 4980 gen_helper_neon_ceq_f32, 4981 gen_helper_neon_ceq_f64, 4982 }; 4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4984 4985 static const FPScalar f_scalar_fcmge = { 4986 gen_helper_advsimd_cge_f16, 4987 gen_helper_neon_cge_f32, 4988 gen_helper_neon_cge_f64, 4989 }; 4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 4991 4992 static const FPScalar f_scalar_fcmgt = { 4993 gen_helper_advsimd_cgt_f16, 4994 gen_helper_neon_cgt_f32, 4995 gen_helper_neon_cgt_f64, 4996 }; 4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 4998 4999 static const FPScalar f_scalar_facge = { 5000 gen_helper_advsimd_acge_f16, 5001 gen_helper_neon_acge_f32, 5002 gen_helper_neon_acge_f64, 5003 }; 5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5005 5006 static const FPScalar f_scalar_facgt = { 5007 gen_helper_advsimd_acgt_f16, 5008 gen_helper_neon_acgt_f32, 5009 gen_helper_neon_acgt_f64, 5010 }; 5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5012 5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5014 { 5015 gen_helper_vfp_subh(d, n, m, s); 5016 gen_vfp_absh(d, d); 5017 } 5018 5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5020 { 5021 gen_helper_vfp_subs(d, n, m, s); 5022 gen_vfp_abss(d, d); 5023 } 5024 5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5026 { 5027 gen_helper_vfp_subd(d, n, m, s); 5028 gen_vfp_absd(d, d); 5029 } 5030 5031 static const FPScalar f_scalar_fabd = { 5032 gen_fabd_h, 5033 gen_fabd_s, 5034 gen_fabd_d, 5035 }; 5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5037 5038 static const FPScalar f_scalar_frecps = { 5039 gen_helper_recpsf_f16, 5040 gen_helper_recpsf_f32, 5041 gen_helper_recpsf_f64, 5042 }; 5043 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5044 5045 static const FPScalar f_scalar_frsqrts = { 5046 gen_helper_rsqrtsf_f16, 5047 gen_helper_rsqrtsf_f32, 5048 gen_helper_rsqrtsf_f64, 5049 }; 5050 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5051 5052 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5053 gen_helper_gvec_3_ptr * const fns[3]) 5054 { 5055 MemOp esz = a->esz; 5056 5057 switch (esz) { 5058 case MO_64: 5059 if (!a->q) { 5060 return false; 5061 } 5062 break; 5063 case MO_32: 5064 break; 5065 case MO_16: 5066 if (!dc_isar_feature(aa64_fp16, s)) { 5067 return false; 5068 } 5069 break; 5070 default: 5071 return false; 5072 } 5073 if (fp_access_check(s)) { 5074 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5075 esz == MO_16, 0, fns[esz - 1]); 5076 } 5077 return true; 5078 } 5079 5080 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5081 gen_helper_gvec_fadd_h, 5082 gen_helper_gvec_fadd_s, 5083 gen_helper_gvec_fadd_d, 5084 }; 5085 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5086 5087 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5088 gen_helper_gvec_fsub_h, 5089 gen_helper_gvec_fsub_s, 5090 gen_helper_gvec_fsub_d, 5091 }; 5092 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5093 5094 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5095 gen_helper_gvec_fdiv_h, 5096 gen_helper_gvec_fdiv_s, 5097 gen_helper_gvec_fdiv_d, 5098 }; 5099 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5100 5101 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5102 gen_helper_gvec_fmul_h, 5103 gen_helper_gvec_fmul_s, 5104 gen_helper_gvec_fmul_d, 5105 }; 5106 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5107 5108 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5109 gen_helper_gvec_fmax_h, 5110 gen_helper_gvec_fmax_s, 5111 gen_helper_gvec_fmax_d, 5112 }; 5113 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5114 5115 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5116 gen_helper_gvec_fmin_h, 5117 gen_helper_gvec_fmin_s, 5118 gen_helper_gvec_fmin_d, 5119 }; 5120 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5121 5122 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5123 gen_helper_gvec_fmaxnum_h, 5124 gen_helper_gvec_fmaxnum_s, 5125 gen_helper_gvec_fmaxnum_d, 5126 }; 5127 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5128 5129 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5130 gen_helper_gvec_fminnum_h, 5131 gen_helper_gvec_fminnum_s, 5132 gen_helper_gvec_fminnum_d, 5133 }; 5134 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5135 5136 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5137 gen_helper_gvec_fmulx_h, 5138 gen_helper_gvec_fmulx_s, 5139 gen_helper_gvec_fmulx_d, 5140 }; 5141 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5142 5143 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5144 gen_helper_gvec_vfma_h, 5145 gen_helper_gvec_vfma_s, 5146 gen_helper_gvec_vfma_d, 5147 }; 5148 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5149 5150 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5151 gen_helper_gvec_vfms_h, 5152 gen_helper_gvec_vfms_s, 5153 gen_helper_gvec_vfms_d, 5154 }; 5155 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5156 5157 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5158 gen_helper_gvec_fceq_h, 5159 gen_helper_gvec_fceq_s, 5160 gen_helper_gvec_fceq_d, 5161 }; 5162 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5163 5164 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5165 gen_helper_gvec_fcge_h, 5166 gen_helper_gvec_fcge_s, 5167 gen_helper_gvec_fcge_d, 5168 }; 5169 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5170 5171 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5172 gen_helper_gvec_fcgt_h, 5173 gen_helper_gvec_fcgt_s, 5174 gen_helper_gvec_fcgt_d, 5175 }; 5176 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5177 5178 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5179 gen_helper_gvec_facge_h, 5180 gen_helper_gvec_facge_s, 5181 gen_helper_gvec_facge_d, 5182 }; 5183 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5184 5185 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5186 gen_helper_gvec_facgt_h, 5187 gen_helper_gvec_facgt_s, 5188 gen_helper_gvec_facgt_d, 5189 }; 5190 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5191 5192 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5193 gen_helper_gvec_fabd_h, 5194 gen_helper_gvec_fabd_s, 5195 gen_helper_gvec_fabd_d, 5196 }; 5197 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5198 5199 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5200 gen_helper_gvec_recps_h, 5201 gen_helper_gvec_recps_s, 5202 gen_helper_gvec_recps_d, 5203 }; 5204 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) 5205 5206 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5207 gen_helper_gvec_rsqrts_h, 5208 gen_helper_gvec_rsqrts_s, 5209 gen_helper_gvec_rsqrts_d, 5210 }; 5211 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) 5212 5213 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5214 gen_helper_gvec_faddp_h, 5215 gen_helper_gvec_faddp_s, 5216 gen_helper_gvec_faddp_d, 5217 }; 5218 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp) 5219 5220 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5221 gen_helper_gvec_fmaxp_h, 5222 gen_helper_gvec_fmaxp_s, 5223 gen_helper_gvec_fmaxp_d, 5224 }; 5225 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp) 5226 5227 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5228 gen_helper_gvec_fminp_h, 5229 gen_helper_gvec_fminp_s, 5230 gen_helper_gvec_fminp_d, 5231 }; 5232 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp) 5233 5234 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5235 gen_helper_gvec_fmaxnump_h, 5236 gen_helper_gvec_fmaxnump_s, 5237 gen_helper_gvec_fmaxnump_d, 5238 }; 5239 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp) 5240 5241 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5242 gen_helper_gvec_fminnump_h, 5243 gen_helper_gvec_fminnump_s, 5244 gen_helper_gvec_fminnump_d, 5245 }; 5246 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp) 5247 5248 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5249 5250 /* 5251 * Advanced SIMD scalar/vector x indexed element 5252 */ 5253 5254 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5255 { 5256 switch (a->esz) { 5257 case MO_64: 5258 if (fp_access_check(s)) { 5259 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5260 TCGv_i64 t1 = tcg_temp_new_i64(); 5261 5262 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5263 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5264 write_fp_dreg(s, a->rd, t0); 5265 } 5266 break; 5267 case MO_32: 5268 if (fp_access_check(s)) { 5269 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5270 TCGv_i32 t1 = tcg_temp_new_i32(); 5271 5272 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5273 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5274 write_fp_sreg(s, a->rd, t0); 5275 } 5276 break; 5277 case MO_16: 5278 if (!dc_isar_feature(aa64_fp16, s)) { 5279 return false; 5280 } 5281 if (fp_access_check(s)) { 5282 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5283 TCGv_i32 t1 = tcg_temp_new_i32(); 5284 5285 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5286 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5287 write_fp_sreg(s, a->rd, t0); 5288 } 5289 break; 5290 default: 5291 g_assert_not_reached(); 5292 } 5293 return true; 5294 } 5295 5296 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5297 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5298 5299 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5300 { 5301 switch (a->esz) { 5302 case MO_64: 5303 if (fp_access_check(s)) { 5304 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5305 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5306 TCGv_i64 t2 = tcg_temp_new_i64(); 5307 5308 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5309 if (neg) { 5310 gen_vfp_negd(t1, t1); 5311 } 5312 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5313 write_fp_dreg(s, a->rd, t0); 5314 } 5315 break; 5316 case MO_32: 5317 if (fp_access_check(s)) { 5318 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5319 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5320 TCGv_i32 t2 = tcg_temp_new_i32(); 5321 5322 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5323 if (neg) { 5324 gen_vfp_negs(t1, t1); 5325 } 5326 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5327 write_fp_sreg(s, a->rd, t0); 5328 } 5329 break; 5330 case MO_16: 5331 if (!dc_isar_feature(aa64_fp16, s)) { 5332 return false; 5333 } 5334 if (fp_access_check(s)) { 5335 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5336 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5337 TCGv_i32 t2 = tcg_temp_new_i32(); 5338 5339 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5340 if (neg) { 5341 gen_vfp_negh(t1, t1); 5342 } 5343 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5344 fpstatus_ptr(FPST_FPCR_F16)); 5345 write_fp_sreg(s, a->rd, t0); 5346 } 5347 break; 5348 default: 5349 g_assert_not_reached(); 5350 } 5351 return true; 5352 } 5353 5354 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5355 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5356 5357 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5358 gen_helper_gvec_3_ptr * const fns[3]) 5359 { 5360 MemOp esz = a->esz; 5361 5362 switch (esz) { 5363 case MO_64: 5364 if (!a->q) { 5365 return false; 5366 } 5367 break; 5368 case MO_32: 5369 break; 5370 case MO_16: 5371 if (!dc_isar_feature(aa64_fp16, s)) { 5372 return false; 5373 } 5374 break; 5375 default: 5376 g_assert_not_reached(); 5377 } 5378 if (fp_access_check(s)) { 5379 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5380 esz == MO_16, a->idx, fns[esz - 1]); 5381 } 5382 return true; 5383 } 5384 5385 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5386 gen_helper_gvec_fmul_idx_h, 5387 gen_helper_gvec_fmul_idx_s, 5388 gen_helper_gvec_fmul_idx_d, 5389 }; 5390 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5391 5392 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5393 gen_helper_gvec_fmulx_idx_h, 5394 gen_helper_gvec_fmulx_idx_s, 5395 gen_helper_gvec_fmulx_idx_d, 5396 }; 5397 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5398 5399 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5400 { 5401 static gen_helper_gvec_4_ptr * const fns[3] = { 5402 gen_helper_gvec_fmla_idx_h, 5403 gen_helper_gvec_fmla_idx_s, 5404 gen_helper_gvec_fmla_idx_d, 5405 }; 5406 MemOp esz = a->esz; 5407 5408 switch (esz) { 5409 case MO_64: 5410 if (!a->q) { 5411 return false; 5412 } 5413 break; 5414 case MO_32: 5415 break; 5416 case MO_16: 5417 if (!dc_isar_feature(aa64_fp16, s)) { 5418 return false; 5419 } 5420 break; 5421 default: 5422 g_assert_not_reached(); 5423 } 5424 if (fp_access_check(s)) { 5425 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5426 esz == MO_16, (a->idx << 1) | neg, 5427 fns[esz - 1]); 5428 } 5429 return true; 5430 } 5431 5432 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5433 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5434 5435 /* 5436 * Advanced SIMD scalar pairwise 5437 */ 5438 5439 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 5440 { 5441 switch (a->esz) { 5442 case MO_64: 5443 if (fp_access_check(s)) { 5444 TCGv_i64 t0 = tcg_temp_new_i64(); 5445 TCGv_i64 t1 = tcg_temp_new_i64(); 5446 5447 read_vec_element(s, t0, a->rn, 0, MO_64); 5448 read_vec_element(s, t1, a->rn, 1, MO_64); 5449 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5450 write_fp_dreg(s, a->rd, t0); 5451 } 5452 break; 5453 case MO_32: 5454 if (fp_access_check(s)) { 5455 TCGv_i32 t0 = tcg_temp_new_i32(); 5456 TCGv_i32 t1 = tcg_temp_new_i32(); 5457 5458 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 5459 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 5460 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5461 write_fp_sreg(s, a->rd, t0); 5462 } 5463 break; 5464 case MO_16: 5465 if (!dc_isar_feature(aa64_fp16, s)) { 5466 return false; 5467 } 5468 if (fp_access_check(s)) { 5469 TCGv_i32 t0 = tcg_temp_new_i32(); 5470 TCGv_i32 t1 = tcg_temp_new_i32(); 5471 5472 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 5473 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 5474 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5475 write_fp_sreg(s, a->rd, t0); 5476 } 5477 break; 5478 default: 5479 g_assert_not_reached(); 5480 } 5481 return true; 5482 } 5483 5484 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 5485 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 5486 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 5487 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 5488 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 5489 5490 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 5491 { 5492 if (fp_access_check(s)) { 5493 TCGv_i64 t0 = tcg_temp_new_i64(); 5494 TCGv_i64 t1 = tcg_temp_new_i64(); 5495 5496 read_vec_element(s, t0, a->rn, 0, MO_64); 5497 read_vec_element(s, t1, a->rn, 1, MO_64); 5498 tcg_gen_add_i64(t0, t0, t1); 5499 write_fp_dreg(s, a->rd, t0); 5500 } 5501 return true; 5502 } 5503 5504 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5505 * Note that it is the caller's responsibility to ensure that the 5506 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5507 * mandated semantics for out of range shifts. 5508 */ 5509 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5510 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5511 { 5512 switch (shift_type) { 5513 case A64_SHIFT_TYPE_LSL: 5514 tcg_gen_shl_i64(dst, src, shift_amount); 5515 break; 5516 case A64_SHIFT_TYPE_LSR: 5517 tcg_gen_shr_i64(dst, src, shift_amount); 5518 break; 5519 case A64_SHIFT_TYPE_ASR: 5520 if (!sf) { 5521 tcg_gen_ext32s_i64(dst, src); 5522 } 5523 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5524 break; 5525 case A64_SHIFT_TYPE_ROR: 5526 if (sf) { 5527 tcg_gen_rotr_i64(dst, src, shift_amount); 5528 } else { 5529 TCGv_i32 t0, t1; 5530 t0 = tcg_temp_new_i32(); 5531 t1 = tcg_temp_new_i32(); 5532 tcg_gen_extrl_i64_i32(t0, src); 5533 tcg_gen_extrl_i64_i32(t1, shift_amount); 5534 tcg_gen_rotr_i32(t0, t0, t1); 5535 tcg_gen_extu_i32_i64(dst, t0); 5536 } 5537 break; 5538 default: 5539 assert(FALSE); /* all shift types should be handled */ 5540 break; 5541 } 5542 5543 if (!sf) { /* zero extend final result */ 5544 tcg_gen_ext32u_i64(dst, dst); 5545 } 5546 } 5547 5548 /* Shift a TCGv src by immediate, put result in dst. 5549 * The shift amount must be in range (this should always be true as the 5550 * relevant instructions will UNDEF on bad shift immediates). 5551 */ 5552 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5553 enum a64_shift_type shift_type, unsigned int shift_i) 5554 { 5555 assert(shift_i < (sf ? 64 : 32)); 5556 5557 if (shift_i == 0) { 5558 tcg_gen_mov_i64(dst, src); 5559 } else { 5560 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5561 } 5562 } 5563 5564 /* Logical (shifted register) 5565 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5566 * +----+-----+-----------+-------+---+------+--------+------+------+ 5567 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5568 * +----+-----+-----------+-------+---+------+--------+------+------+ 5569 */ 5570 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5571 { 5572 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5573 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5574 5575 sf = extract32(insn, 31, 1); 5576 opc = extract32(insn, 29, 2); 5577 shift_type = extract32(insn, 22, 2); 5578 invert = extract32(insn, 21, 1); 5579 rm = extract32(insn, 16, 5); 5580 shift_amount = extract32(insn, 10, 6); 5581 rn = extract32(insn, 5, 5); 5582 rd = extract32(insn, 0, 5); 5583 5584 if (!sf && (shift_amount & (1 << 5))) { 5585 unallocated_encoding(s); 5586 return; 5587 } 5588 5589 tcg_rd = cpu_reg(s, rd); 5590 5591 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5592 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5593 * register-register MOV and MVN, so it is worth special casing. 5594 */ 5595 tcg_rm = cpu_reg(s, rm); 5596 if (invert) { 5597 tcg_gen_not_i64(tcg_rd, tcg_rm); 5598 if (!sf) { 5599 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5600 } 5601 } else { 5602 if (sf) { 5603 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5604 } else { 5605 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5606 } 5607 } 5608 return; 5609 } 5610 5611 tcg_rm = read_cpu_reg(s, rm, sf); 5612 5613 if (shift_amount) { 5614 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5615 } 5616 5617 tcg_rn = cpu_reg(s, rn); 5618 5619 switch (opc | (invert << 2)) { 5620 case 0: /* AND */ 5621 case 3: /* ANDS */ 5622 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5623 break; 5624 case 1: /* ORR */ 5625 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5626 break; 5627 case 2: /* EOR */ 5628 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5629 break; 5630 case 4: /* BIC */ 5631 case 7: /* BICS */ 5632 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5633 break; 5634 case 5: /* ORN */ 5635 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5636 break; 5637 case 6: /* EON */ 5638 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5639 break; 5640 default: 5641 assert(FALSE); 5642 break; 5643 } 5644 5645 if (!sf) { 5646 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5647 } 5648 5649 if (opc == 3) { 5650 gen_logic_CC(sf, tcg_rd); 5651 } 5652 } 5653 5654 /* 5655 * Add/subtract (extended register) 5656 * 5657 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5658 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5659 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5660 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5661 * 5662 * sf: 0 -> 32bit, 1 -> 64bit 5663 * op: 0 -> add , 1 -> sub 5664 * S: 1 -> set flags 5665 * opt: 00 5666 * option: extension type (see DecodeRegExtend) 5667 * imm3: optional shift to Rm 5668 * 5669 * Rd = Rn + LSL(extend(Rm), amount) 5670 */ 5671 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5672 { 5673 int rd = extract32(insn, 0, 5); 5674 int rn = extract32(insn, 5, 5); 5675 int imm3 = extract32(insn, 10, 3); 5676 int option = extract32(insn, 13, 3); 5677 int rm = extract32(insn, 16, 5); 5678 int opt = extract32(insn, 22, 2); 5679 bool setflags = extract32(insn, 29, 1); 5680 bool sub_op = extract32(insn, 30, 1); 5681 bool sf = extract32(insn, 31, 1); 5682 5683 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5684 TCGv_i64 tcg_rd; 5685 TCGv_i64 tcg_result; 5686 5687 if (imm3 > 4 || opt != 0) { 5688 unallocated_encoding(s); 5689 return; 5690 } 5691 5692 /* non-flag setting ops may use SP */ 5693 if (!setflags) { 5694 tcg_rd = cpu_reg_sp(s, rd); 5695 } else { 5696 tcg_rd = cpu_reg(s, rd); 5697 } 5698 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5699 5700 tcg_rm = read_cpu_reg(s, rm, sf); 5701 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5702 5703 tcg_result = tcg_temp_new_i64(); 5704 5705 if (!setflags) { 5706 if (sub_op) { 5707 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5708 } else { 5709 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5710 } 5711 } else { 5712 if (sub_op) { 5713 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5714 } else { 5715 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5716 } 5717 } 5718 5719 if (sf) { 5720 tcg_gen_mov_i64(tcg_rd, tcg_result); 5721 } else { 5722 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5723 } 5724 } 5725 5726 /* 5727 * Add/subtract (shifted register) 5728 * 5729 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5730 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5731 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5732 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5733 * 5734 * sf: 0 -> 32bit, 1 -> 64bit 5735 * op: 0 -> add , 1 -> sub 5736 * S: 1 -> set flags 5737 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5738 * imm6: Shift amount to apply to Rm before the add/sub 5739 */ 5740 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5741 { 5742 int rd = extract32(insn, 0, 5); 5743 int rn = extract32(insn, 5, 5); 5744 int imm6 = extract32(insn, 10, 6); 5745 int rm = extract32(insn, 16, 5); 5746 int shift_type = extract32(insn, 22, 2); 5747 bool setflags = extract32(insn, 29, 1); 5748 bool sub_op = extract32(insn, 30, 1); 5749 bool sf = extract32(insn, 31, 1); 5750 5751 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5752 TCGv_i64 tcg_rn, tcg_rm; 5753 TCGv_i64 tcg_result; 5754 5755 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5756 unallocated_encoding(s); 5757 return; 5758 } 5759 5760 tcg_rn = read_cpu_reg(s, rn, sf); 5761 tcg_rm = read_cpu_reg(s, rm, sf); 5762 5763 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5764 5765 tcg_result = tcg_temp_new_i64(); 5766 5767 if (!setflags) { 5768 if (sub_op) { 5769 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5770 } else { 5771 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5772 } 5773 } else { 5774 if (sub_op) { 5775 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5776 } else { 5777 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5778 } 5779 } 5780 5781 if (sf) { 5782 tcg_gen_mov_i64(tcg_rd, tcg_result); 5783 } else { 5784 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5785 } 5786 } 5787 5788 /* Data-processing (3 source) 5789 * 5790 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5791 * +--+------+-----------+------+------+----+------+------+------+ 5792 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5793 * +--+------+-----------+------+------+----+------+------+------+ 5794 */ 5795 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5796 { 5797 int rd = extract32(insn, 0, 5); 5798 int rn = extract32(insn, 5, 5); 5799 int ra = extract32(insn, 10, 5); 5800 int rm = extract32(insn, 16, 5); 5801 int op_id = (extract32(insn, 29, 3) << 4) | 5802 (extract32(insn, 21, 3) << 1) | 5803 extract32(insn, 15, 1); 5804 bool sf = extract32(insn, 31, 1); 5805 bool is_sub = extract32(op_id, 0, 1); 5806 bool is_high = extract32(op_id, 2, 1); 5807 bool is_signed = false; 5808 TCGv_i64 tcg_op1; 5809 TCGv_i64 tcg_op2; 5810 TCGv_i64 tcg_tmp; 5811 5812 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5813 switch (op_id) { 5814 case 0x42: /* SMADDL */ 5815 case 0x43: /* SMSUBL */ 5816 case 0x44: /* SMULH */ 5817 is_signed = true; 5818 break; 5819 case 0x0: /* MADD (32bit) */ 5820 case 0x1: /* MSUB (32bit) */ 5821 case 0x40: /* MADD (64bit) */ 5822 case 0x41: /* MSUB (64bit) */ 5823 case 0x4a: /* UMADDL */ 5824 case 0x4b: /* UMSUBL */ 5825 case 0x4c: /* UMULH */ 5826 break; 5827 default: 5828 unallocated_encoding(s); 5829 return; 5830 } 5831 5832 if (is_high) { 5833 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5834 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5835 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5836 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5837 5838 if (is_signed) { 5839 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5840 } else { 5841 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5842 } 5843 return; 5844 } 5845 5846 tcg_op1 = tcg_temp_new_i64(); 5847 tcg_op2 = tcg_temp_new_i64(); 5848 tcg_tmp = tcg_temp_new_i64(); 5849 5850 if (op_id < 0x42) { 5851 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5852 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5853 } else { 5854 if (is_signed) { 5855 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5856 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5857 } else { 5858 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5859 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5860 } 5861 } 5862 5863 if (ra == 31 && !is_sub) { 5864 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5865 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5866 } else { 5867 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5868 if (is_sub) { 5869 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5870 } else { 5871 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5872 } 5873 } 5874 5875 if (!sf) { 5876 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5877 } 5878 } 5879 5880 /* Add/subtract (with carry) 5881 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5882 * +--+--+--+------------------------+------+-------------+------+-----+ 5883 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5884 * +--+--+--+------------------------+------+-------------+------+-----+ 5885 */ 5886 5887 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5888 { 5889 unsigned int sf, op, setflags, rm, rn, rd; 5890 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5891 5892 sf = extract32(insn, 31, 1); 5893 op = extract32(insn, 30, 1); 5894 setflags = extract32(insn, 29, 1); 5895 rm = extract32(insn, 16, 5); 5896 rn = extract32(insn, 5, 5); 5897 rd = extract32(insn, 0, 5); 5898 5899 tcg_rd = cpu_reg(s, rd); 5900 tcg_rn = cpu_reg(s, rn); 5901 5902 if (op) { 5903 tcg_y = tcg_temp_new_i64(); 5904 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5905 } else { 5906 tcg_y = cpu_reg(s, rm); 5907 } 5908 5909 if (setflags) { 5910 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5911 } else { 5912 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5913 } 5914 } 5915 5916 /* 5917 * Rotate right into flags 5918 * 31 30 29 21 15 10 5 4 0 5919 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5920 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5921 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5922 */ 5923 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5924 { 5925 int mask = extract32(insn, 0, 4); 5926 int o2 = extract32(insn, 4, 1); 5927 int rn = extract32(insn, 5, 5); 5928 int imm6 = extract32(insn, 15, 6); 5929 int sf_op_s = extract32(insn, 29, 3); 5930 TCGv_i64 tcg_rn; 5931 TCGv_i32 nzcv; 5932 5933 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5934 unallocated_encoding(s); 5935 return; 5936 } 5937 5938 tcg_rn = read_cpu_reg(s, rn, 1); 5939 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5940 5941 nzcv = tcg_temp_new_i32(); 5942 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5943 5944 if (mask & 8) { /* N */ 5945 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5946 } 5947 if (mask & 4) { /* Z */ 5948 tcg_gen_not_i32(cpu_ZF, nzcv); 5949 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5950 } 5951 if (mask & 2) { /* C */ 5952 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5953 } 5954 if (mask & 1) { /* V */ 5955 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5956 } 5957 } 5958 5959 /* 5960 * Evaluate into flags 5961 * 31 30 29 21 15 14 10 5 4 0 5962 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5963 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5964 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5965 */ 5966 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5967 { 5968 int o3_mask = extract32(insn, 0, 5); 5969 int rn = extract32(insn, 5, 5); 5970 int o2 = extract32(insn, 15, 6); 5971 int sz = extract32(insn, 14, 1); 5972 int sf_op_s = extract32(insn, 29, 3); 5973 TCGv_i32 tmp; 5974 int shift; 5975 5976 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5977 !dc_isar_feature(aa64_condm_4, s)) { 5978 unallocated_encoding(s); 5979 return; 5980 } 5981 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5982 5983 tmp = tcg_temp_new_i32(); 5984 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5985 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5986 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5987 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5988 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5989 } 5990 5991 /* Conditional compare (immediate / register) 5992 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5993 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5994 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5995 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5996 * [1] y [0] [0] 5997 */ 5998 static void disas_cc(DisasContext *s, uint32_t insn) 5999 { 6000 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 6001 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 6002 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 6003 DisasCompare c; 6004 6005 if (!extract32(insn, 29, 1)) { 6006 unallocated_encoding(s); 6007 return; 6008 } 6009 if (insn & (1 << 10 | 1 << 4)) { 6010 unallocated_encoding(s); 6011 return; 6012 } 6013 sf = extract32(insn, 31, 1); 6014 op = extract32(insn, 30, 1); 6015 is_imm = extract32(insn, 11, 1); 6016 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 6017 cond = extract32(insn, 12, 4); 6018 rn = extract32(insn, 5, 5); 6019 nzcv = extract32(insn, 0, 4); 6020 6021 /* Set T0 = !COND. */ 6022 tcg_t0 = tcg_temp_new_i32(); 6023 arm_test_cc(&c, cond); 6024 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 6025 6026 /* Load the arguments for the new comparison. */ 6027 if (is_imm) { 6028 tcg_y = tcg_temp_new_i64(); 6029 tcg_gen_movi_i64(tcg_y, y); 6030 } else { 6031 tcg_y = cpu_reg(s, y); 6032 } 6033 tcg_rn = cpu_reg(s, rn); 6034 6035 /* Set the flags for the new comparison. */ 6036 tcg_tmp = tcg_temp_new_i64(); 6037 if (op) { 6038 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6039 } else { 6040 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6041 } 6042 6043 /* If COND was false, force the flags to #nzcv. Compute two masks 6044 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 6045 * For tcg hosts that support ANDC, we can make do with just T1. 6046 * In either case, allow the tcg optimizer to delete any unused mask. 6047 */ 6048 tcg_t1 = tcg_temp_new_i32(); 6049 tcg_t2 = tcg_temp_new_i32(); 6050 tcg_gen_neg_i32(tcg_t1, tcg_t0); 6051 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 6052 6053 if (nzcv & 8) { /* N */ 6054 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 6055 } else { 6056 if (TCG_TARGET_HAS_andc_i32) { 6057 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 6058 } else { 6059 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 6060 } 6061 } 6062 if (nzcv & 4) { /* Z */ 6063 if (TCG_TARGET_HAS_andc_i32) { 6064 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 6065 } else { 6066 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 6067 } 6068 } else { 6069 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 6070 } 6071 if (nzcv & 2) { /* C */ 6072 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 6073 } else { 6074 if (TCG_TARGET_HAS_andc_i32) { 6075 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 6076 } else { 6077 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 6078 } 6079 } 6080 if (nzcv & 1) { /* V */ 6081 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 6082 } else { 6083 if (TCG_TARGET_HAS_andc_i32) { 6084 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 6085 } else { 6086 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 6087 } 6088 } 6089 } 6090 6091 /* Conditional select 6092 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 6093 * +----+----+---+-----------------+------+------+-----+------+------+ 6094 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 6095 * +----+----+---+-----------------+------+------+-----+------+------+ 6096 */ 6097 static void disas_cond_select(DisasContext *s, uint32_t insn) 6098 { 6099 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 6100 TCGv_i64 tcg_rd, zero; 6101 DisasCompare64 c; 6102 6103 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 6104 /* S == 1 or op2<1> == 1 */ 6105 unallocated_encoding(s); 6106 return; 6107 } 6108 sf = extract32(insn, 31, 1); 6109 else_inv = extract32(insn, 30, 1); 6110 rm = extract32(insn, 16, 5); 6111 cond = extract32(insn, 12, 4); 6112 else_inc = extract32(insn, 10, 1); 6113 rn = extract32(insn, 5, 5); 6114 rd = extract32(insn, 0, 5); 6115 6116 tcg_rd = cpu_reg(s, rd); 6117 6118 a64_test_cc(&c, cond); 6119 zero = tcg_constant_i64(0); 6120 6121 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6122 /* CSET & CSETM. */ 6123 if (else_inv) { 6124 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6125 tcg_rd, c.value, zero); 6126 } else { 6127 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6128 tcg_rd, c.value, zero); 6129 } 6130 } else { 6131 TCGv_i64 t_true = cpu_reg(s, rn); 6132 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6133 if (else_inv && else_inc) { 6134 tcg_gen_neg_i64(t_false, t_false); 6135 } else if (else_inv) { 6136 tcg_gen_not_i64(t_false, t_false); 6137 } else if (else_inc) { 6138 tcg_gen_addi_i64(t_false, t_false, 1); 6139 } 6140 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6141 } 6142 6143 if (!sf) { 6144 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6145 } 6146 } 6147 6148 static void handle_clz(DisasContext *s, unsigned int sf, 6149 unsigned int rn, unsigned int rd) 6150 { 6151 TCGv_i64 tcg_rd, tcg_rn; 6152 tcg_rd = cpu_reg(s, rd); 6153 tcg_rn = cpu_reg(s, rn); 6154 6155 if (sf) { 6156 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6157 } else { 6158 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6159 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6160 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6161 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6162 } 6163 } 6164 6165 static void handle_cls(DisasContext *s, unsigned int sf, 6166 unsigned int rn, unsigned int rd) 6167 { 6168 TCGv_i64 tcg_rd, tcg_rn; 6169 tcg_rd = cpu_reg(s, rd); 6170 tcg_rn = cpu_reg(s, rn); 6171 6172 if (sf) { 6173 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6174 } else { 6175 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6176 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6177 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6178 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6179 } 6180 } 6181 6182 static void handle_rbit(DisasContext *s, unsigned int sf, 6183 unsigned int rn, unsigned int rd) 6184 { 6185 TCGv_i64 tcg_rd, tcg_rn; 6186 tcg_rd = cpu_reg(s, rd); 6187 tcg_rn = cpu_reg(s, rn); 6188 6189 if (sf) { 6190 gen_helper_rbit64(tcg_rd, tcg_rn); 6191 } else { 6192 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6193 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6194 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6195 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6196 } 6197 } 6198 6199 /* REV with sf==1, opcode==3 ("REV64") */ 6200 static void handle_rev64(DisasContext *s, unsigned int sf, 6201 unsigned int rn, unsigned int rd) 6202 { 6203 if (!sf) { 6204 unallocated_encoding(s); 6205 return; 6206 } 6207 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6208 } 6209 6210 /* REV with sf==0, opcode==2 6211 * REV32 (sf==1, opcode==2) 6212 */ 6213 static void handle_rev32(DisasContext *s, unsigned int sf, 6214 unsigned int rn, unsigned int rd) 6215 { 6216 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6217 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6218 6219 if (sf) { 6220 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6221 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6222 } else { 6223 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6224 } 6225 } 6226 6227 /* REV16 (opcode==1) */ 6228 static void handle_rev16(DisasContext *s, unsigned int sf, 6229 unsigned int rn, unsigned int rd) 6230 { 6231 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6232 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6233 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6234 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6235 6236 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6237 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6238 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6239 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6240 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6241 } 6242 6243 /* Data-processing (1 source) 6244 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6245 * +----+---+---+-----------------+---------+--------+------+------+ 6246 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6247 * +----+---+---+-----------------+---------+--------+------+------+ 6248 */ 6249 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6250 { 6251 unsigned int sf, opcode, opcode2, rn, rd; 6252 TCGv_i64 tcg_rd; 6253 6254 if (extract32(insn, 29, 1)) { 6255 unallocated_encoding(s); 6256 return; 6257 } 6258 6259 sf = extract32(insn, 31, 1); 6260 opcode = extract32(insn, 10, 6); 6261 opcode2 = extract32(insn, 16, 5); 6262 rn = extract32(insn, 5, 5); 6263 rd = extract32(insn, 0, 5); 6264 6265 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6266 6267 switch (MAP(sf, opcode2, opcode)) { 6268 case MAP(0, 0x00, 0x00): /* RBIT */ 6269 case MAP(1, 0x00, 0x00): 6270 handle_rbit(s, sf, rn, rd); 6271 break; 6272 case MAP(0, 0x00, 0x01): /* REV16 */ 6273 case MAP(1, 0x00, 0x01): 6274 handle_rev16(s, sf, rn, rd); 6275 break; 6276 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6277 case MAP(1, 0x00, 0x02): 6278 handle_rev32(s, sf, rn, rd); 6279 break; 6280 case MAP(1, 0x00, 0x03): /* REV64 */ 6281 handle_rev64(s, sf, rn, rd); 6282 break; 6283 case MAP(0, 0x00, 0x04): /* CLZ */ 6284 case MAP(1, 0x00, 0x04): 6285 handle_clz(s, sf, rn, rd); 6286 break; 6287 case MAP(0, 0x00, 0x05): /* CLS */ 6288 case MAP(1, 0x00, 0x05): 6289 handle_cls(s, sf, rn, rd); 6290 break; 6291 case MAP(1, 0x01, 0x00): /* PACIA */ 6292 if (s->pauth_active) { 6293 tcg_rd = cpu_reg(s, rd); 6294 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6295 } else if (!dc_isar_feature(aa64_pauth, s)) { 6296 goto do_unallocated; 6297 } 6298 break; 6299 case MAP(1, 0x01, 0x01): /* PACIB */ 6300 if (s->pauth_active) { 6301 tcg_rd = cpu_reg(s, rd); 6302 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6303 } else if (!dc_isar_feature(aa64_pauth, s)) { 6304 goto do_unallocated; 6305 } 6306 break; 6307 case MAP(1, 0x01, 0x02): /* PACDA */ 6308 if (s->pauth_active) { 6309 tcg_rd = cpu_reg(s, rd); 6310 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6311 } else if (!dc_isar_feature(aa64_pauth, s)) { 6312 goto do_unallocated; 6313 } 6314 break; 6315 case MAP(1, 0x01, 0x03): /* PACDB */ 6316 if (s->pauth_active) { 6317 tcg_rd = cpu_reg(s, rd); 6318 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6319 } else if (!dc_isar_feature(aa64_pauth, s)) { 6320 goto do_unallocated; 6321 } 6322 break; 6323 case MAP(1, 0x01, 0x04): /* AUTIA */ 6324 if (s->pauth_active) { 6325 tcg_rd = cpu_reg(s, rd); 6326 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6327 } else if (!dc_isar_feature(aa64_pauth, s)) { 6328 goto do_unallocated; 6329 } 6330 break; 6331 case MAP(1, 0x01, 0x05): /* AUTIB */ 6332 if (s->pauth_active) { 6333 tcg_rd = cpu_reg(s, rd); 6334 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6335 } else if (!dc_isar_feature(aa64_pauth, s)) { 6336 goto do_unallocated; 6337 } 6338 break; 6339 case MAP(1, 0x01, 0x06): /* AUTDA */ 6340 if (s->pauth_active) { 6341 tcg_rd = cpu_reg(s, rd); 6342 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6343 } else if (!dc_isar_feature(aa64_pauth, s)) { 6344 goto do_unallocated; 6345 } 6346 break; 6347 case MAP(1, 0x01, 0x07): /* AUTDB */ 6348 if (s->pauth_active) { 6349 tcg_rd = cpu_reg(s, rd); 6350 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6351 } else if (!dc_isar_feature(aa64_pauth, s)) { 6352 goto do_unallocated; 6353 } 6354 break; 6355 case MAP(1, 0x01, 0x08): /* PACIZA */ 6356 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6357 goto do_unallocated; 6358 } else if (s->pauth_active) { 6359 tcg_rd = cpu_reg(s, rd); 6360 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6361 } 6362 break; 6363 case MAP(1, 0x01, 0x09): /* PACIZB */ 6364 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6365 goto do_unallocated; 6366 } else if (s->pauth_active) { 6367 tcg_rd = cpu_reg(s, rd); 6368 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6369 } 6370 break; 6371 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6372 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6373 goto do_unallocated; 6374 } else if (s->pauth_active) { 6375 tcg_rd = cpu_reg(s, rd); 6376 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6377 } 6378 break; 6379 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6380 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6381 goto do_unallocated; 6382 } else if (s->pauth_active) { 6383 tcg_rd = cpu_reg(s, rd); 6384 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6385 } 6386 break; 6387 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6388 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6389 goto do_unallocated; 6390 } else if (s->pauth_active) { 6391 tcg_rd = cpu_reg(s, rd); 6392 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6393 } 6394 break; 6395 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6396 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6397 goto do_unallocated; 6398 } else if (s->pauth_active) { 6399 tcg_rd = cpu_reg(s, rd); 6400 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6401 } 6402 break; 6403 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6404 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6405 goto do_unallocated; 6406 } else if (s->pauth_active) { 6407 tcg_rd = cpu_reg(s, rd); 6408 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6409 } 6410 break; 6411 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6412 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6413 goto do_unallocated; 6414 } else if (s->pauth_active) { 6415 tcg_rd = cpu_reg(s, rd); 6416 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6417 } 6418 break; 6419 case MAP(1, 0x01, 0x10): /* XPACI */ 6420 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6421 goto do_unallocated; 6422 } else if (s->pauth_active) { 6423 tcg_rd = cpu_reg(s, rd); 6424 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6425 } 6426 break; 6427 case MAP(1, 0x01, 0x11): /* XPACD */ 6428 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6429 goto do_unallocated; 6430 } else if (s->pauth_active) { 6431 tcg_rd = cpu_reg(s, rd); 6432 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6433 } 6434 break; 6435 default: 6436 do_unallocated: 6437 unallocated_encoding(s); 6438 break; 6439 } 6440 6441 #undef MAP 6442 } 6443 6444 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6445 unsigned int rm, unsigned int rn, unsigned int rd) 6446 { 6447 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6448 tcg_rd = cpu_reg(s, rd); 6449 6450 if (!sf && is_signed) { 6451 tcg_n = tcg_temp_new_i64(); 6452 tcg_m = tcg_temp_new_i64(); 6453 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6454 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6455 } else { 6456 tcg_n = read_cpu_reg(s, rn, sf); 6457 tcg_m = read_cpu_reg(s, rm, sf); 6458 } 6459 6460 if (is_signed) { 6461 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6462 } else { 6463 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6464 } 6465 6466 if (!sf) { /* zero extend final result */ 6467 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6468 } 6469 } 6470 6471 /* LSLV, LSRV, ASRV, RORV */ 6472 static void handle_shift_reg(DisasContext *s, 6473 enum a64_shift_type shift_type, unsigned int sf, 6474 unsigned int rm, unsigned int rn, unsigned int rd) 6475 { 6476 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6477 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6478 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6479 6480 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6481 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6482 } 6483 6484 /* CRC32[BHWX], CRC32C[BHWX] */ 6485 static void handle_crc32(DisasContext *s, 6486 unsigned int sf, unsigned int sz, bool crc32c, 6487 unsigned int rm, unsigned int rn, unsigned int rd) 6488 { 6489 TCGv_i64 tcg_acc, tcg_val; 6490 TCGv_i32 tcg_bytes; 6491 6492 if (!dc_isar_feature(aa64_crc32, s) 6493 || (sf == 1 && sz != 3) 6494 || (sf == 0 && sz == 3)) { 6495 unallocated_encoding(s); 6496 return; 6497 } 6498 6499 if (sz == 3) { 6500 tcg_val = cpu_reg(s, rm); 6501 } else { 6502 uint64_t mask; 6503 switch (sz) { 6504 case 0: 6505 mask = 0xFF; 6506 break; 6507 case 1: 6508 mask = 0xFFFF; 6509 break; 6510 case 2: 6511 mask = 0xFFFFFFFF; 6512 break; 6513 default: 6514 g_assert_not_reached(); 6515 } 6516 tcg_val = tcg_temp_new_i64(); 6517 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6518 } 6519 6520 tcg_acc = cpu_reg(s, rn); 6521 tcg_bytes = tcg_constant_i32(1 << sz); 6522 6523 if (crc32c) { 6524 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6525 } else { 6526 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6527 } 6528 } 6529 6530 /* Data-processing (2 source) 6531 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6532 * +----+---+---+-----------------+------+--------+------+------+ 6533 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6534 * +----+---+---+-----------------+------+--------+------+------+ 6535 */ 6536 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6537 { 6538 unsigned int sf, rm, opcode, rn, rd, setflag; 6539 sf = extract32(insn, 31, 1); 6540 setflag = extract32(insn, 29, 1); 6541 rm = extract32(insn, 16, 5); 6542 opcode = extract32(insn, 10, 6); 6543 rn = extract32(insn, 5, 5); 6544 rd = extract32(insn, 0, 5); 6545 6546 if (setflag && opcode != 0) { 6547 unallocated_encoding(s); 6548 return; 6549 } 6550 6551 switch (opcode) { 6552 case 0: /* SUBP(S) */ 6553 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6554 goto do_unallocated; 6555 } else { 6556 TCGv_i64 tcg_n, tcg_m, tcg_d; 6557 6558 tcg_n = read_cpu_reg_sp(s, rn, true); 6559 tcg_m = read_cpu_reg_sp(s, rm, true); 6560 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6561 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6562 tcg_d = cpu_reg(s, rd); 6563 6564 if (setflag) { 6565 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6566 } else { 6567 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6568 } 6569 } 6570 break; 6571 case 2: /* UDIV */ 6572 handle_div(s, false, sf, rm, rn, rd); 6573 break; 6574 case 3: /* SDIV */ 6575 handle_div(s, true, sf, rm, rn, rd); 6576 break; 6577 case 4: /* IRG */ 6578 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6579 goto do_unallocated; 6580 } 6581 if (s->ata[0]) { 6582 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6583 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6584 } else { 6585 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6586 cpu_reg_sp(s, rn)); 6587 } 6588 break; 6589 case 5: /* GMI */ 6590 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6591 goto do_unallocated; 6592 } else { 6593 TCGv_i64 t = tcg_temp_new_i64(); 6594 6595 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6596 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6597 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6598 } 6599 break; 6600 case 8: /* LSLV */ 6601 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6602 break; 6603 case 9: /* LSRV */ 6604 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6605 break; 6606 case 10: /* ASRV */ 6607 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6608 break; 6609 case 11: /* RORV */ 6610 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6611 break; 6612 case 12: /* PACGA */ 6613 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6614 goto do_unallocated; 6615 } 6616 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6617 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6618 break; 6619 case 16: 6620 case 17: 6621 case 18: 6622 case 19: 6623 case 20: 6624 case 21: 6625 case 22: 6626 case 23: /* CRC32 */ 6627 { 6628 int sz = extract32(opcode, 0, 2); 6629 bool crc32c = extract32(opcode, 2, 1); 6630 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6631 break; 6632 } 6633 default: 6634 do_unallocated: 6635 unallocated_encoding(s); 6636 break; 6637 } 6638 } 6639 6640 /* 6641 * Data processing - register 6642 * 31 30 29 28 25 21 20 16 10 0 6643 * +--+---+--+---+-------+-----+-------+-------+---------+ 6644 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6645 * +--+---+--+---+-------+-----+-------+-------+---------+ 6646 */ 6647 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6648 { 6649 int op0 = extract32(insn, 30, 1); 6650 int op1 = extract32(insn, 28, 1); 6651 int op2 = extract32(insn, 21, 4); 6652 int op3 = extract32(insn, 10, 6); 6653 6654 if (!op1) { 6655 if (op2 & 8) { 6656 if (op2 & 1) { 6657 /* Add/sub (extended register) */ 6658 disas_add_sub_ext_reg(s, insn); 6659 } else { 6660 /* Add/sub (shifted register) */ 6661 disas_add_sub_reg(s, insn); 6662 } 6663 } else { 6664 /* Logical (shifted register) */ 6665 disas_logic_reg(s, insn); 6666 } 6667 return; 6668 } 6669 6670 switch (op2) { 6671 case 0x0: 6672 switch (op3) { 6673 case 0x00: /* Add/subtract (with carry) */ 6674 disas_adc_sbc(s, insn); 6675 break; 6676 6677 case 0x01: /* Rotate right into flags */ 6678 case 0x21: 6679 disas_rotate_right_into_flags(s, insn); 6680 break; 6681 6682 case 0x02: /* Evaluate into flags */ 6683 case 0x12: 6684 case 0x22: 6685 case 0x32: 6686 disas_evaluate_into_flags(s, insn); 6687 break; 6688 6689 default: 6690 goto do_unallocated; 6691 } 6692 break; 6693 6694 case 0x2: /* Conditional compare */ 6695 disas_cc(s, insn); /* both imm and reg forms */ 6696 break; 6697 6698 case 0x4: /* Conditional select */ 6699 disas_cond_select(s, insn); 6700 break; 6701 6702 case 0x6: /* Data-processing */ 6703 if (op0) { /* (1 source) */ 6704 disas_data_proc_1src(s, insn); 6705 } else { /* (2 source) */ 6706 disas_data_proc_2src(s, insn); 6707 } 6708 break; 6709 case 0x8 ... 0xf: /* (3 source) */ 6710 disas_data_proc_3src(s, insn); 6711 break; 6712 6713 default: 6714 do_unallocated: 6715 unallocated_encoding(s); 6716 break; 6717 } 6718 } 6719 6720 static void handle_fp_compare(DisasContext *s, int size, 6721 unsigned int rn, unsigned int rm, 6722 bool cmp_with_zero, bool signal_all_nans) 6723 { 6724 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6725 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6726 6727 if (size == MO_64) { 6728 TCGv_i64 tcg_vn, tcg_vm; 6729 6730 tcg_vn = read_fp_dreg(s, rn); 6731 if (cmp_with_zero) { 6732 tcg_vm = tcg_constant_i64(0); 6733 } else { 6734 tcg_vm = read_fp_dreg(s, rm); 6735 } 6736 if (signal_all_nans) { 6737 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6738 } else { 6739 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6740 } 6741 } else { 6742 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6743 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6744 6745 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6746 if (cmp_with_zero) { 6747 tcg_gen_movi_i32(tcg_vm, 0); 6748 } else { 6749 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6750 } 6751 6752 switch (size) { 6753 case MO_32: 6754 if (signal_all_nans) { 6755 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6756 } else { 6757 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6758 } 6759 break; 6760 case MO_16: 6761 if (signal_all_nans) { 6762 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6763 } else { 6764 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6765 } 6766 break; 6767 default: 6768 g_assert_not_reached(); 6769 } 6770 } 6771 6772 gen_set_nzcv(tcg_flags); 6773 } 6774 6775 /* Floating point compare 6776 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6777 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6778 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6779 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6780 */ 6781 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6782 { 6783 unsigned int mos, type, rm, op, rn, opc, op2r; 6784 int size; 6785 6786 mos = extract32(insn, 29, 3); 6787 type = extract32(insn, 22, 2); 6788 rm = extract32(insn, 16, 5); 6789 op = extract32(insn, 14, 2); 6790 rn = extract32(insn, 5, 5); 6791 opc = extract32(insn, 3, 2); 6792 op2r = extract32(insn, 0, 3); 6793 6794 if (mos || op || op2r) { 6795 unallocated_encoding(s); 6796 return; 6797 } 6798 6799 switch (type) { 6800 case 0: 6801 size = MO_32; 6802 break; 6803 case 1: 6804 size = MO_64; 6805 break; 6806 case 3: 6807 size = MO_16; 6808 if (dc_isar_feature(aa64_fp16, s)) { 6809 break; 6810 } 6811 /* fallthru */ 6812 default: 6813 unallocated_encoding(s); 6814 return; 6815 } 6816 6817 if (!fp_access_check(s)) { 6818 return; 6819 } 6820 6821 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6822 } 6823 6824 /* Floating point conditional compare 6825 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6826 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6827 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6828 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6829 */ 6830 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6831 { 6832 unsigned int mos, type, rm, cond, rn, op, nzcv; 6833 TCGLabel *label_continue = NULL; 6834 int size; 6835 6836 mos = extract32(insn, 29, 3); 6837 type = extract32(insn, 22, 2); 6838 rm = extract32(insn, 16, 5); 6839 cond = extract32(insn, 12, 4); 6840 rn = extract32(insn, 5, 5); 6841 op = extract32(insn, 4, 1); 6842 nzcv = extract32(insn, 0, 4); 6843 6844 if (mos) { 6845 unallocated_encoding(s); 6846 return; 6847 } 6848 6849 switch (type) { 6850 case 0: 6851 size = MO_32; 6852 break; 6853 case 1: 6854 size = MO_64; 6855 break; 6856 case 3: 6857 size = MO_16; 6858 if (dc_isar_feature(aa64_fp16, s)) { 6859 break; 6860 } 6861 /* fallthru */ 6862 default: 6863 unallocated_encoding(s); 6864 return; 6865 } 6866 6867 if (!fp_access_check(s)) { 6868 return; 6869 } 6870 6871 if (cond < 0x0e) { /* not always */ 6872 TCGLabel *label_match = gen_new_label(); 6873 label_continue = gen_new_label(); 6874 arm_gen_test_cc(cond, label_match); 6875 /* nomatch: */ 6876 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6877 tcg_gen_br(label_continue); 6878 gen_set_label(label_match); 6879 } 6880 6881 handle_fp_compare(s, size, rn, rm, false, op); 6882 6883 if (cond < 0x0e) { 6884 gen_set_label(label_continue); 6885 } 6886 } 6887 6888 /* Floating point conditional select 6889 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6890 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6891 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6892 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6893 */ 6894 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6895 { 6896 unsigned int mos, type, rm, cond, rn, rd; 6897 TCGv_i64 t_true, t_false; 6898 DisasCompare64 c; 6899 MemOp sz; 6900 6901 mos = extract32(insn, 29, 3); 6902 type = extract32(insn, 22, 2); 6903 rm = extract32(insn, 16, 5); 6904 cond = extract32(insn, 12, 4); 6905 rn = extract32(insn, 5, 5); 6906 rd = extract32(insn, 0, 5); 6907 6908 if (mos) { 6909 unallocated_encoding(s); 6910 return; 6911 } 6912 6913 switch (type) { 6914 case 0: 6915 sz = MO_32; 6916 break; 6917 case 1: 6918 sz = MO_64; 6919 break; 6920 case 3: 6921 sz = MO_16; 6922 if (dc_isar_feature(aa64_fp16, s)) { 6923 break; 6924 } 6925 /* fallthru */ 6926 default: 6927 unallocated_encoding(s); 6928 return; 6929 } 6930 6931 if (!fp_access_check(s)) { 6932 return; 6933 } 6934 6935 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6936 t_true = tcg_temp_new_i64(); 6937 t_false = tcg_temp_new_i64(); 6938 read_vec_element(s, t_true, rn, 0, sz); 6939 read_vec_element(s, t_false, rm, 0, sz); 6940 6941 a64_test_cc(&c, cond); 6942 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6943 t_true, t_false); 6944 6945 /* Note that sregs & hregs write back zeros to the high bits, 6946 and we've already done the zero-extension. */ 6947 write_fp_dreg(s, rd, t_true); 6948 } 6949 6950 /* Floating-point data-processing (1 source) - half precision */ 6951 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6952 { 6953 TCGv_ptr fpst = NULL; 6954 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6955 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6956 6957 switch (opcode) { 6958 case 0x0: /* FMOV */ 6959 tcg_gen_mov_i32(tcg_res, tcg_op); 6960 break; 6961 case 0x1: /* FABS */ 6962 gen_vfp_absh(tcg_res, tcg_op); 6963 break; 6964 case 0x2: /* FNEG */ 6965 gen_vfp_negh(tcg_res, tcg_op); 6966 break; 6967 case 0x3: /* FSQRT */ 6968 fpst = fpstatus_ptr(FPST_FPCR_F16); 6969 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6970 break; 6971 case 0x8: /* FRINTN */ 6972 case 0x9: /* FRINTP */ 6973 case 0xa: /* FRINTM */ 6974 case 0xb: /* FRINTZ */ 6975 case 0xc: /* FRINTA */ 6976 { 6977 TCGv_i32 tcg_rmode; 6978 6979 fpst = fpstatus_ptr(FPST_FPCR_F16); 6980 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6981 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6982 gen_restore_rmode(tcg_rmode, fpst); 6983 break; 6984 } 6985 case 0xe: /* FRINTX */ 6986 fpst = fpstatus_ptr(FPST_FPCR_F16); 6987 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6988 break; 6989 case 0xf: /* FRINTI */ 6990 fpst = fpstatus_ptr(FPST_FPCR_F16); 6991 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6992 break; 6993 default: 6994 g_assert_not_reached(); 6995 } 6996 6997 write_fp_sreg(s, rd, tcg_res); 6998 } 6999 7000 /* Floating-point data-processing (1 source) - single precision */ 7001 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 7002 { 7003 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 7004 TCGv_i32 tcg_op, tcg_res; 7005 TCGv_ptr fpst; 7006 int rmode = -1; 7007 7008 tcg_op = read_fp_sreg(s, rn); 7009 tcg_res = tcg_temp_new_i32(); 7010 7011 switch (opcode) { 7012 case 0x0: /* FMOV */ 7013 tcg_gen_mov_i32(tcg_res, tcg_op); 7014 goto done; 7015 case 0x1: /* FABS */ 7016 gen_vfp_abss(tcg_res, tcg_op); 7017 goto done; 7018 case 0x2: /* FNEG */ 7019 gen_vfp_negs(tcg_res, tcg_op); 7020 goto done; 7021 case 0x3: /* FSQRT */ 7022 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 7023 goto done; 7024 case 0x6: /* BFCVT */ 7025 gen_fpst = gen_helper_bfcvt; 7026 break; 7027 case 0x8: /* FRINTN */ 7028 case 0x9: /* FRINTP */ 7029 case 0xa: /* FRINTM */ 7030 case 0xb: /* FRINTZ */ 7031 case 0xc: /* FRINTA */ 7032 rmode = opcode & 7; 7033 gen_fpst = gen_helper_rints; 7034 break; 7035 case 0xe: /* FRINTX */ 7036 gen_fpst = gen_helper_rints_exact; 7037 break; 7038 case 0xf: /* FRINTI */ 7039 gen_fpst = gen_helper_rints; 7040 break; 7041 case 0x10: /* FRINT32Z */ 7042 rmode = FPROUNDING_ZERO; 7043 gen_fpst = gen_helper_frint32_s; 7044 break; 7045 case 0x11: /* FRINT32X */ 7046 gen_fpst = gen_helper_frint32_s; 7047 break; 7048 case 0x12: /* FRINT64Z */ 7049 rmode = FPROUNDING_ZERO; 7050 gen_fpst = gen_helper_frint64_s; 7051 break; 7052 case 0x13: /* FRINT64X */ 7053 gen_fpst = gen_helper_frint64_s; 7054 break; 7055 default: 7056 g_assert_not_reached(); 7057 } 7058 7059 fpst = fpstatus_ptr(FPST_FPCR); 7060 if (rmode >= 0) { 7061 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7062 gen_fpst(tcg_res, tcg_op, fpst); 7063 gen_restore_rmode(tcg_rmode, fpst); 7064 } else { 7065 gen_fpst(tcg_res, tcg_op, fpst); 7066 } 7067 7068 done: 7069 write_fp_sreg(s, rd, tcg_res); 7070 } 7071 7072 /* Floating-point data-processing (1 source) - double precision */ 7073 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 7074 { 7075 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 7076 TCGv_i64 tcg_op, tcg_res; 7077 TCGv_ptr fpst; 7078 int rmode = -1; 7079 7080 switch (opcode) { 7081 case 0x0: /* FMOV */ 7082 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 7083 return; 7084 } 7085 7086 tcg_op = read_fp_dreg(s, rn); 7087 tcg_res = tcg_temp_new_i64(); 7088 7089 switch (opcode) { 7090 case 0x1: /* FABS */ 7091 gen_vfp_absd(tcg_res, tcg_op); 7092 goto done; 7093 case 0x2: /* FNEG */ 7094 gen_vfp_negd(tcg_res, tcg_op); 7095 goto done; 7096 case 0x3: /* FSQRT */ 7097 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 7098 goto done; 7099 case 0x8: /* FRINTN */ 7100 case 0x9: /* FRINTP */ 7101 case 0xa: /* FRINTM */ 7102 case 0xb: /* FRINTZ */ 7103 case 0xc: /* FRINTA */ 7104 rmode = opcode & 7; 7105 gen_fpst = gen_helper_rintd; 7106 break; 7107 case 0xe: /* FRINTX */ 7108 gen_fpst = gen_helper_rintd_exact; 7109 break; 7110 case 0xf: /* FRINTI */ 7111 gen_fpst = gen_helper_rintd; 7112 break; 7113 case 0x10: /* FRINT32Z */ 7114 rmode = FPROUNDING_ZERO; 7115 gen_fpst = gen_helper_frint32_d; 7116 break; 7117 case 0x11: /* FRINT32X */ 7118 gen_fpst = gen_helper_frint32_d; 7119 break; 7120 case 0x12: /* FRINT64Z */ 7121 rmode = FPROUNDING_ZERO; 7122 gen_fpst = gen_helper_frint64_d; 7123 break; 7124 case 0x13: /* FRINT64X */ 7125 gen_fpst = gen_helper_frint64_d; 7126 break; 7127 default: 7128 g_assert_not_reached(); 7129 } 7130 7131 fpst = fpstatus_ptr(FPST_FPCR); 7132 if (rmode >= 0) { 7133 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7134 gen_fpst(tcg_res, tcg_op, fpst); 7135 gen_restore_rmode(tcg_rmode, fpst); 7136 } else { 7137 gen_fpst(tcg_res, tcg_op, fpst); 7138 } 7139 7140 done: 7141 write_fp_dreg(s, rd, tcg_res); 7142 } 7143 7144 static void handle_fp_fcvt(DisasContext *s, int opcode, 7145 int rd, int rn, int dtype, int ntype) 7146 { 7147 switch (ntype) { 7148 case 0x0: 7149 { 7150 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7151 if (dtype == 1) { 7152 /* Single to double */ 7153 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7154 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7155 write_fp_dreg(s, rd, tcg_rd); 7156 } else { 7157 /* Single to half */ 7158 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7159 TCGv_i32 ahp = get_ahp_flag(); 7160 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7161 7162 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7163 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7164 write_fp_sreg(s, rd, tcg_rd); 7165 } 7166 break; 7167 } 7168 case 0x1: 7169 { 7170 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7171 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7172 if (dtype == 0) { 7173 /* Double to single */ 7174 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7175 } else { 7176 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7177 TCGv_i32 ahp = get_ahp_flag(); 7178 /* Double to half */ 7179 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7180 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7181 } 7182 write_fp_sreg(s, rd, tcg_rd); 7183 break; 7184 } 7185 case 0x3: 7186 { 7187 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7188 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7189 TCGv_i32 tcg_ahp = get_ahp_flag(); 7190 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7191 if (dtype == 0) { 7192 /* Half to single */ 7193 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7194 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7195 write_fp_sreg(s, rd, tcg_rd); 7196 } else { 7197 /* Half to double */ 7198 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7199 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7200 write_fp_dreg(s, rd, tcg_rd); 7201 } 7202 break; 7203 } 7204 default: 7205 g_assert_not_reached(); 7206 } 7207 } 7208 7209 /* Floating point data-processing (1 source) 7210 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7211 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7212 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7213 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7214 */ 7215 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7216 { 7217 int mos = extract32(insn, 29, 3); 7218 int type = extract32(insn, 22, 2); 7219 int opcode = extract32(insn, 15, 6); 7220 int rn = extract32(insn, 5, 5); 7221 int rd = extract32(insn, 0, 5); 7222 7223 if (mos) { 7224 goto do_unallocated; 7225 } 7226 7227 switch (opcode) { 7228 case 0x4: case 0x5: case 0x7: 7229 { 7230 /* FCVT between half, single and double precision */ 7231 int dtype = extract32(opcode, 0, 2); 7232 if (type == 2 || dtype == type) { 7233 goto do_unallocated; 7234 } 7235 if (!fp_access_check(s)) { 7236 return; 7237 } 7238 7239 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7240 break; 7241 } 7242 7243 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7244 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7245 goto do_unallocated; 7246 } 7247 /* fall through */ 7248 case 0x0 ... 0x3: 7249 case 0x8 ... 0xc: 7250 case 0xe ... 0xf: 7251 /* 32-to-32 and 64-to-64 ops */ 7252 switch (type) { 7253 case 0: 7254 if (!fp_access_check(s)) { 7255 return; 7256 } 7257 handle_fp_1src_single(s, opcode, rd, rn); 7258 break; 7259 case 1: 7260 if (!fp_access_check(s)) { 7261 return; 7262 } 7263 handle_fp_1src_double(s, opcode, rd, rn); 7264 break; 7265 case 3: 7266 if (!dc_isar_feature(aa64_fp16, s)) { 7267 goto do_unallocated; 7268 } 7269 7270 if (!fp_access_check(s)) { 7271 return; 7272 } 7273 handle_fp_1src_half(s, opcode, rd, rn); 7274 break; 7275 default: 7276 goto do_unallocated; 7277 } 7278 break; 7279 7280 case 0x6: 7281 switch (type) { 7282 case 1: /* BFCVT */ 7283 if (!dc_isar_feature(aa64_bf16, s)) { 7284 goto do_unallocated; 7285 } 7286 if (!fp_access_check(s)) { 7287 return; 7288 } 7289 handle_fp_1src_single(s, opcode, rd, rn); 7290 break; 7291 default: 7292 goto do_unallocated; 7293 } 7294 break; 7295 7296 default: 7297 do_unallocated: 7298 unallocated_encoding(s); 7299 break; 7300 } 7301 } 7302 7303 /* Floating-point data-processing (3 source) - single precision */ 7304 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7305 int rd, int rn, int rm, int ra) 7306 { 7307 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7308 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7309 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7310 7311 tcg_op1 = read_fp_sreg(s, rn); 7312 tcg_op2 = read_fp_sreg(s, rm); 7313 tcg_op3 = read_fp_sreg(s, ra); 7314 7315 /* These are fused multiply-add, and must be done as one 7316 * floating point operation with no rounding between the 7317 * multiplication and addition steps. 7318 * NB that doing the negations here as separate steps is 7319 * correct : an input NaN should come out with its sign bit 7320 * flipped if it is a negated-input. 7321 */ 7322 if (o1 == true) { 7323 gen_vfp_negs(tcg_op3, tcg_op3); 7324 } 7325 7326 if (o0 != o1) { 7327 gen_vfp_negs(tcg_op1, tcg_op1); 7328 } 7329 7330 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7331 7332 write_fp_sreg(s, rd, tcg_res); 7333 } 7334 7335 /* Floating-point data-processing (3 source) - double precision */ 7336 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7337 int rd, int rn, int rm, int ra) 7338 { 7339 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7340 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7341 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7342 7343 tcg_op1 = read_fp_dreg(s, rn); 7344 tcg_op2 = read_fp_dreg(s, rm); 7345 tcg_op3 = read_fp_dreg(s, ra); 7346 7347 /* These are fused multiply-add, and must be done as one 7348 * floating point operation with no rounding between the 7349 * multiplication and addition steps. 7350 * NB that doing the negations here as separate steps is 7351 * correct : an input NaN should come out with its sign bit 7352 * flipped if it is a negated-input. 7353 */ 7354 if (o1 == true) { 7355 gen_vfp_negd(tcg_op3, tcg_op3); 7356 } 7357 7358 if (o0 != o1) { 7359 gen_vfp_negd(tcg_op1, tcg_op1); 7360 } 7361 7362 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7363 7364 write_fp_dreg(s, rd, tcg_res); 7365 } 7366 7367 /* Floating-point data-processing (3 source) - half precision */ 7368 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7369 int rd, int rn, int rm, int ra) 7370 { 7371 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7372 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7373 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7374 7375 tcg_op1 = read_fp_hreg(s, rn); 7376 tcg_op2 = read_fp_hreg(s, rm); 7377 tcg_op3 = read_fp_hreg(s, ra); 7378 7379 /* These are fused multiply-add, and must be done as one 7380 * floating point operation with no rounding between the 7381 * multiplication and addition steps. 7382 * NB that doing the negations here as separate steps is 7383 * correct : an input NaN should come out with its sign bit 7384 * flipped if it is a negated-input. 7385 */ 7386 if (o1 == true) { 7387 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7388 } 7389 7390 if (o0 != o1) { 7391 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7392 } 7393 7394 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7395 7396 write_fp_sreg(s, rd, tcg_res); 7397 } 7398 7399 /* Floating point data-processing (3 source) 7400 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7401 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7402 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7403 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7404 */ 7405 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7406 { 7407 int mos = extract32(insn, 29, 3); 7408 int type = extract32(insn, 22, 2); 7409 int rd = extract32(insn, 0, 5); 7410 int rn = extract32(insn, 5, 5); 7411 int ra = extract32(insn, 10, 5); 7412 int rm = extract32(insn, 16, 5); 7413 bool o0 = extract32(insn, 15, 1); 7414 bool o1 = extract32(insn, 21, 1); 7415 7416 if (mos) { 7417 unallocated_encoding(s); 7418 return; 7419 } 7420 7421 switch (type) { 7422 case 0: 7423 if (!fp_access_check(s)) { 7424 return; 7425 } 7426 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7427 break; 7428 case 1: 7429 if (!fp_access_check(s)) { 7430 return; 7431 } 7432 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7433 break; 7434 case 3: 7435 if (!dc_isar_feature(aa64_fp16, s)) { 7436 unallocated_encoding(s); 7437 return; 7438 } 7439 if (!fp_access_check(s)) { 7440 return; 7441 } 7442 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7443 break; 7444 default: 7445 unallocated_encoding(s); 7446 } 7447 } 7448 7449 /* Floating point immediate 7450 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7451 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7452 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7453 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7454 */ 7455 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7456 { 7457 int rd = extract32(insn, 0, 5); 7458 int imm5 = extract32(insn, 5, 5); 7459 int imm8 = extract32(insn, 13, 8); 7460 int type = extract32(insn, 22, 2); 7461 int mos = extract32(insn, 29, 3); 7462 uint64_t imm; 7463 MemOp sz; 7464 7465 if (mos || imm5) { 7466 unallocated_encoding(s); 7467 return; 7468 } 7469 7470 switch (type) { 7471 case 0: 7472 sz = MO_32; 7473 break; 7474 case 1: 7475 sz = MO_64; 7476 break; 7477 case 3: 7478 sz = MO_16; 7479 if (dc_isar_feature(aa64_fp16, s)) { 7480 break; 7481 } 7482 /* fallthru */ 7483 default: 7484 unallocated_encoding(s); 7485 return; 7486 } 7487 7488 if (!fp_access_check(s)) { 7489 return; 7490 } 7491 7492 imm = vfp_expand_imm(sz, imm8); 7493 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7494 } 7495 7496 /* Handle floating point <=> fixed point conversions. Note that we can 7497 * also deal with fp <=> integer conversions as a special case (scale == 64) 7498 * OPTME: consider handling that special case specially or at least skipping 7499 * the call to scalbn in the helpers for zero shifts. 7500 */ 7501 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7502 bool itof, int rmode, int scale, int sf, int type) 7503 { 7504 bool is_signed = !(opcode & 1); 7505 TCGv_ptr tcg_fpstatus; 7506 TCGv_i32 tcg_shift, tcg_single; 7507 TCGv_i64 tcg_double; 7508 7509 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7510 7511 tcg_shift = tcg_constant_i32(64 - scale); 7512 7513 if (itof) { 7514 TCGv_i64 tcg_int = cpu_reg(s, rn); 7515 if (!sf) { 7516 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7517 7518 if (is_signed) { 7519 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7520 } else { 7521 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7522 } 7523 7524 tcg_int = tcg_extend; 7525 } 7526 7527 switch (type) { 7528 case 1: /* float64 */ 7529 tcg_double = tcg_temp_new_i64(); 7530 if (is_signed) { 7531 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7532 tcg_shift, tcg_fpstatus); 7533 } else { 7534 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7535 tcg_shift, tcg_fpstatus); 7536 } 7537 write_fp_dreg(s, rd, tcg_double); 7538 break; 7539 7540 case 0: /* float32 */ 7541 tcg_single = tcg_temp_new_i32(); 7542 if (is_signed) { 7543 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7544 tcg_shift, tcg_fpstatus); 7545 } else { 7546 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7547 tcg_shift, tcg_fpstatus); 7548 } 7549 write_fp_sreg(s, rd, tcg_single); 7550 break; 7551 7552 case 3: /* float16 */ 7553 tcg_single = tcg_temp_new_i32(); 7554 if (is_signed) { 7555 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7556 tcg_shift, tcg_fpstatus); 7557 } else { 7558 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7559 tcg_shift, tcg_fpstatus); 7560 } 7561 write_fp_sreg(s, rd, tcg_single); 7562 break; 7563 7564 default: 7565 g_assert_not_reached(); 7566 } 7567 } else { 7568 TCGv_i64 tcg_int = cpu_reg(s, rd); 7569 TCGv_i32 tcg_rmode; 7570 7571 if (extract32(opcode, 2, 1)) { 7572 /* There are too many rounding modes to all fit into rmode, 7573 * so FCVTA[US] is a special case. 7574 */ 7575 rmode = FPROUNDING_TIEAWAY; 7576 } 7577 7578 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7579 7580 switch (type) { 7581 case 1: /* float64 */ 7582 tcg_double = read_fp_dreg(s, rn); 7583 if (is_signed) { 7584 if (!sf) { 7585 gen_helper_vfp_tosld(tcg_int, tcg_double, 7586 tcg_shift, tcg_fpstatus); 7587 } else { 7588 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7589 tcg_shift, tcg_fpstatus); 7590 } 7591 } else { 7592 if (!sf) { 7593 gen_helper_vfp_tould(tcg_int, tcg_double, 7594 tcg_shift, tcg_fpstatus); 7595 } else { 7596 gen_helper_vfp_touqd(tcg_int, tcg_double, 7597 tcg_shift, tcg_fpstatus); 7598 } 7599 } 7600 if (!sf) { 7601 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7602 } 7603 break; 7604 7605 case 0: /* float32 */ 7606 tcg_single = read_fp_sreg(s, rn); 7607 if (sf) { 7608 if (is_signed) { 7609 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7610 tcg_shift, tcg_fpstatus); 7611 } else { 7612 gen_helper_vfp_touqs(tcg_int, tcg_single, 7613 tcg_shift, tcg_fpstatus); 7614 } 7615 } else { 7616 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7617 if (is_signed) { 7618 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7619 tcg_shift, tcg_fpstatus); 7620 } else { 7621 gen_helper_vfp_touls(tcg_dest, tcg_single, 7622 tcg_shift, tcg_fpstatus); 7623 } 7624 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7625 } 7626 break; 7627 7628 case 3: /* float16 */ 7629 tcg_single = read_fp_sreg(s, rn); 7630 if (sf) { 7631 if (is_signed) { 7632 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7633 tcg_shift, tcg_fpstatus); 7634 } else { 7635 gen_helper_vfp_touqh(tcg_int, tcg_single, 7636 tcg_shift, tcg_fpstatus); 7637 } 7638 } else { 7639 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7640 if (is_signed) { 7641 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7642 tcg_shift, tcg_fpstatus); 7643 } else { 7644 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7645 tcg_shift, tcg_fpstatus); 7646 } 7647 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7648 } 7649 break; 7650 7651 default: 7652 g_assert_not_reached(); 7653 } 7654 7655 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7656 } 7657 } 7658 7659 /* Floating point <-> fixed point conversions 7660 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7661 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7662 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7663 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7664 */ 7665 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7666 { 7667 int rd = extract32(insn, 0, 5); 7668 int rn = extract32(insn, 5, 5); 7669 int scale = extract32(insn, 10, 6); 7670 int opcode = extract32(insn, 16, 3); 7671 int rmode = extract32(insn, 19, 2); 7672 int type = extract32(insn, 22, 2); 7673 bool sbit = extract32(insn, 29, 1); 7674 bool sf = extract32(insn, 31, 1); 7675 bool itof; 7676 7677 if (sbit || (!sf && scale < 32)) { 7678 unallocated_encoding(s); 7679 return; 7680 } 7681 7682 switch (type) { 7683 case 0: /* float32 */ 7684 case 1: /* float64 */ 7685 break; 7686 case 3: /* float16 */ 7687 if (dc_isar_feature(aa64_fp16, s)) { 7688 break; 7689 } 7690 /* fallthru */ 7691 default: 7692 unallocated_encoding(s); 7693 return; 7694 } 7695 7696 switch ((rmode << 3) | opcode) { 7697 case 0x2: /* SCVTF */ 7698 case 0x3: /* UCVTF */ 7699 itof = true; 7700 break; 7701 case 0x18: /* FCVTZS */ 7702 case 0x19: /* FCVTZU */ 7703 itof = false; 7704 break; 7705 default: 7706 unallocated_encoding(s); 7707 return; 7708 } 7709 7710 if (!fp_access_check(s)) { 7711 return; 7712 } 7713 7714 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7715 } 7716 7717 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7718 { 7719 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7720 * without conversion. 7721 */ 7722 7723 if (itof) { 7724 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7725 TCGv_i64 tmp; 7726 7727 switch (type) { 7728 case 0: 7729 /* 32 bit */ 7730 tmp = tcg_temp_new_i64(); 7731 tcg_gen_ext32u_i64(tmp, tcg_rn); 7732 write_fp_dreg(s, rd, tmp); 7733 break; 7734 case 1: 7735 /* 64 bit */ 7736 write_fp_dreg(s, rd, tcg_rn); 7737 break; 7738 case 2: 7739 /* 64 bit to top half. */ 7740 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7741 clear_vec_high(s, true, rd); 7742 break; 7743 case 3: 7744 /* 16 bit */ 7745 tmp = tcg_temp_new_i64(); 7746 tcg_gen_ext16u_i64(tmp, tcg_rn); 7747 write_fp_dreg(s, rd, tmp); 7748 break; 7749 default: 7750 g_assert_not_reached(); 7751 } 7752 } else { 7753 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7754 7755 switch (type) { 7756 case 0: 7757 /* 32 bit */ 7758 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7759 break; 7760 case 1: 7761 /* 64 bit */ 7762 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7763 break; 7764 case 2: 7765 /* 64 bits from top half */ 7766 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7767 break; 7768 case 3: 7769 /* 16 bit */ 7770 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7771 break; 7772 default: 7773 g_assert_not_reached(); 7774 } 7775 } 7776 } 7777 7778 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7779 { 7780 TCGv_i64 t = read_fp_dreg(s, rn); 7781 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7782 7783 gen_helper_fjcvtzs(t, t, fpstatus); 7784 7785 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7786 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7787 tcg_gen_movi_i32(cpu_CF, 0); 7788 tcg_gen_movi_i32(cpu_NF, 0); 7789 tcg_gen_movi_i32(cpu_VF, 0); 7790 } 7791 7792 /* Floating point <-> integer conversions 7793 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7794 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7795 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7796 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7797 */ 7798 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7799 { 7800 int rd = extract32(insn, 0, 5); 7801 int rn = extract32(insn, 5, 5); 7802 int opcode = extract32(insn, 16, 3); 7803 int rmode = extract32(insn, 19, 2); 7804 int type = extract32(insn, 22, 2); 7805 bool sbit = extract32(insn, 29, 1); 7806 bool sf = extract32(insn, 31, 1); 7807 bool itof = false; 7808 7809 if (sbit) { 7810 goto do_unallocated; 7811 } 7812 7813 switch (opcode) { 7814 case 2: /* SCVTF */ 7815 case 3: /* UCVTF */ 7816 itof = true; 7817 /* fallthru */ 7818 case 4: /* FCVTAS */ 7819 case 5: /* FCVTAU */ 7820 if (rmode != 0) { 7821 goto do_unallocated; 7822 } 7823 /* fallthru */ 7824 case 0: /* FCVT[NPMZ]S */ 7825 case 1: /* FCVT[NPMZ]U */ 7826 switch (type) { 7827 case 0: /* float32 */ 7828 case 1: /* float64 */ 7829 break; 7830 case 3: /* float16 */ 7831 if (!dc_isar_feature(aa64_fp16, s)) { 7832 goto do_unallocated; 7833 } 7834 break; 7835 default: 7836 goto do_unallocated; 7837 } 7838 if (!fp_access_check(s)) { 7839 return; 7840 } 7841 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7842 break; 7843 7844 default: 7845 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7846 case 0b01100110: /* FMOV half <-> 32-bit int */ 7847 case 0b01100111: 7848 case 0b11100110: /* FMOV half <-> 64-bit int */ 7849 case 0b11100111: 7850 if (!dc_isar_feature(aa64_fp16, s)) { 7851 goto do_unallocated; 7852 } 7853 /* fallthru */ 7854 case 0b00000110: /* FMOV 32-bit */ 7855 case 0b00000111: 7856 case 0b10100110: /* FMOV 64-bit */ 7857 case 0b10100111: 7858 case 0b11001110: /* FMOV top half of 128-bit */ 7859 case 0b11001111: 7860 if (!fp_access_check(s)) { 7861 return; 7862 } 7863 itof = opcode & 1; 7864 handle_fmov(s, rd, rn, type, itof); 7865 break; 7866 7867 case 0b00111110: /* FJCVTZS */ 7868 if (!dc_isar_feature(aa64_jscvt, s)) { 7869 goto do_unallocated; 7870 } else if (fp_access_check(s)) { 7871 handle_fjcvtzs(s, rd, rn); 7872 } 7873 break; 7874 7875 default: 7876 do_unallocated: 7877 unallocated_encoding(s); 7878 return; 7879 } 7880 break; 7881 } 7882 } 7883 7884 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7885 * 31 30 29 28 25 24 0 7886 * +---+---+---+---------+-----------------------------+ 7887 * | | 0 | | 1 1 1 1 | | 7888 * +---+---+---+---------+-----------------------------+ 7889 */ 7890 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7891 { 7892 if (extract32(insn, 24, 1)) { 7893 /* Floating point data-processing (3 source) */ 7894 disas_fp_3src(s, insn); 7895 } else if (extract32(insn, 21, 1) == 0) { 7896 /* Floating point to fixed point conversions */ 7897 disas_fp_fixed_conv(s, insn); 7898 } else { 7899 switch (extract32(insn, 10, 2)) { 7900 case 1: 7901 /* Floating point conditional compare */ 7902 disas_fp_ccomp(s, insn); 7903 break; 7904 case 2: 7905 /* Floating point data-processing (2 source) */ 7906 unallocated_encoding(s); /* in decodetree */ 7907 break; 7908 case 3: 7909 /* Floating point conditional select */ 7910 disas_fp_csel(s, insn); 7911 break; 7912 case 0: 7913 switch (ctz32(extract32(insn, 12, 4))) { 7914 case 0: /* [15:12] == xxx1 */ 7915 /* Floating point immediate */ 7916 disas_fp_imm(s, insn); 7917 break; 7918 case 1: /* [15:12] == xx10 */ 7919 /* Floating point compare */ 7920 disas_fp_compare(s, insn); 7921 break; 7922 case 2: /* [15:12] == x100 */ 7923 /* Floating point data-processing (1 source) */ 7924 disas_fp_1src(s, insn); 7925 break; 7926 case 3: /* [15:12] == 1000 */ 7927 unallocated_encoding(s); 7928 break; 7929 default: /* [15:12] == 0000 */ 7930 /* Floating point <-> integer conversions */ 7931 disas_fp_int_conv(s, insn); 7932 break; 7933 } 7934 break; 7935 } 7936 } 7937 } 7938 7939 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7940 int pos) 7941 { 7942 /* Extract 64 bits from the middle of two concatenated 64 bit 7943 * vector register slices left:right. The extracted bits start 7944 * at 'pos' bits into the right (least significant) side. 7945 * We return the result in tcg_right, and guarantee not to 7946 * trash tcg_left. 7947 */ 7948 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7949 assert(pos > 0 && pos < 64); 7950 7951 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7952 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7953 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7954 } 7955 7956 /* EXT 7957 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7958 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7959 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7960 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7961 */ 7962 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7963 { 7964 int is_q = extract32(insn, 30, 1); 7965 int op2 = extract32(insn, 22, 2); 7966 int imm4 = extract32(insn, 11, 4); 7967 int rm = extract32(insn, 16, 5); 7968 int rn = extract32(insn, 5, 5); 7969 int rd = extract32(insn, 0, 5); 7970 int pos = imm4 << 3; 7971 TCGv_i64 tcg_resl, tcg_resh; 7972 7973 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7974 unallocated_encoding(s); 7975 return; 7976 } 7977 7978 if (!fp_access_check(s)) { 7979 return; 7980 } 7981 7982 tcg_resh = tcg_temp_new_i64(); 7983 tcg_resl = tcg_temp_new_i64(); 7984 7985 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7986 * either extracting 128 bits from a 128:128 concatenation, or 7987 * extracting 64 bits from a 64:64 concatenation. 7988 */ 7989 if (!is_q) { 7990 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7991 if (pos != 0) { 7992 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7993 do_ext64(s, tcg_resh, tcg_resl, pos); 7994 } 7995 } else { 7996 TCGv_i64 tcg_hh; 7997 typedef struct { 7998 int reg; 7999 int elt; 8000 } EltPosns; 8001 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 8002 EltPosns *elt = eltposns; 8003 8004 if (pos >= 64) { 8005 elt++; 8006 pos -= 64; 8007 } 8008 8009 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 8010 elt++; 8011 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 8012 elt++; 8013 if (pos != 0) { 8014 do_ext64(s, tcg_resh, tcg_resl, pos); 8015 tcg_hh = tcg_temp_new_i64(); 8016 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8017 do_ext64(s, tcg_hh, tcg_resh, pos); 8018 } 8019 } 8020 8021 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8022 if (is_q) { 8023 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8024 } 8025 clear_vec_high(s, is_q, rd); 8026 } 8027 8028 /* TBL/TBX 8029 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8030 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8031 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8032 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8033 */ 8034 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8035 { 8036 int op2 = extract32(insn, 22, 2); 8037 int is_q = extract32(insn, 30, 1); 8038 int rm = extract32(insn, 16, 5); 8039 int rn = extract32(insn, 5, 5); 8040 int rd = extract32(insn, 0, 5); 8041 int is_tbx = extract32(insn, 12, 1); 8042 int len = (extract32(insn, 13, 2) + 1) * 16; 8043 8044 if (op2 != 0) { 8045 unallocated_encoding(s); 8046 return; 8047 } 8048 8049 if (!fp_access_check(s)) { 8050 return; 8051 } 8052 8053 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8054 vec_full_reg_offset(s, rm), tcg_env, 8055 is_q ? 16 : 8, vec_full_reg_size(s), 8056 (len << 6) | (is_tbx << 5) | rn, 8057 gen_helper_simd_tblx); 8058 } 8059 8060 /* ZIP/UZP/TRN 8061 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8062 * +---+---+-------------+------+---+------+---+------------------+------+ 8063 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8064 * +---+---+-------------+------+---+------+---+------------------+------+ 8065 */ 8066 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8067 { 8068 int rd = extract32(insn, 0, 5); 8069 int rn = extract32(insn, 5, 5); 8070 int rm = extract32(insn, 16, 5); 8071 int size = extract32(insn, 22, 2); 8072 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8073 * bit 2 indicates 1 vs 2 variant of the insn. 8074 */ 8075 int opcode = extract32(insn, 12, 2); 8076 bool part = extract32(insn, 14, 1); 8077 bool is_q = extract32(insn, 30, 1); 8078 int esize = 8 << size; 8079 int i; 8080 int datasize = is_q ? 128 : 64; 8081 int elements = datasize / esize; 8082 TCGv_i64 tcg_res[2], tcg_ele; 8083 8084 if (opcode == 0 || (size == 3 && !is_q)) { 8085 unallocated_encoding(s); 8086 return; 8087 } 8088 8089 if (!fp_access_check(s)) { 8090 return; 8091 } 8092 8093 tcg_res[0] = tcg_temp_new_i64(); 8094 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 8095 tcg_ele = tcg_temp_new_i64(); 8096 8097 for (i = 0; i < elements; i++) { 8098 int o, w; 8099 8100 switch (opcode) { 8101 case 1: /* UZP1/2 */ 8102 { 8103 int midpoint = elements / 2; 8104 if (i < midpoint) { 8105 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8106 } else { 8107 read_vec_element(s, tcg_ele, rm, 8108 2 * (i - midpoint) + part, size); 8109 } 8110 break; 8111 } 8112 case 2: /* TRN1/2 */ 8113 if (i & 1) { 8114 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8115 } else { 8116 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8117 } 8118 break; 8119 case 3: /* ZIP1/2 */ 8120 { 8121 int base = part * elements / 2; 8122 if (i & 1) { 8123 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8124 } else { 8125 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8126 } 8127 break; 8128 } 8129 default: 8130 g_assert_not_reached(); 8131 } 8132 8133 w = (i * esize) / 64; 8134 o = (i * esize) % 64; 8135 if (o == 0) { 8136 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8137 } else { 8138 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8139 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8140 } 8141 } 8142 8143 for (i = 0; i <= is_q; ++i) { 8144 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8145 } 8146 clear_vec_high(s, is_q, rd); 8147 } 8148 8149 /* 8150 * do_reduction_op helper 8151 * 8152 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8153 * important for correct NaN propagation that we do these 8154 * operations in exactly the order specified by the pseudocode. 8155 * 8156 * This is a recursive function, TCG temps should be freed by the 8157 * calling function once it is done with the values. 8158 */ 8159 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8160 int esize, int size, int vmap, TCGv_ptr fpst) 8161 { 8162 if (esize == size) { 8163 int element; 8164 MemOp msize = esize == 16 ? MO_16 : MO_32; 8165 TCGv_i32 tcg_elem; 8166 8167 /* We should have one register left here */ 8168 assert(ctpop8(vmap) == 1); 8169 element = ctz32(vmap); 8170 assert(element < 8); 8171 8172 tcg_elem = tcg_temp_new_i32(); 8173 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8174 return tcg_elem; 8175 } else { 8176 int bits = size / 2; 8177 int shift = ctpop8(vmap) / 2; 8178 int vmap_lo = (vmap >> shift) & vmap; 8179 int vmap_hi = (vmap & ~vmap_lo); 8180 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8181 8182 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8183 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8184 tcg_res = tcg_temp_new_i32(); 8185 8186 switch (fpopcode) { 8187 case 0x0c: /* fmaxnmv half-precision */ 8188 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8189 break; 8190 case 0x0f: /* fmaxv half-precision */ 8191 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8192 break; 8193 case 0x1c: /* fminnmv half-precision */ 8194 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8195 break; 8196 case 0x1f: /* fminv half-precision */ 8197 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8198 break; 8199 case 0x2c: /* fmaxnmv */ 8200 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8201 break; 8202 case 0x2f: /* fmaxv */ 8203 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8204 break; 8205 case 0x3c: /* fminnmv */ 8206 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8207 break; 8208 case 0x3f: /* fminv */ 8209 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8210 break; 8211 default: 8212 g_assert_not_reached(); 8213 } 8214 return tcg_res; 8215 } 8216 } 8217 8218 /* AdvSIMD across lanes 8219 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8220 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8221 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8222 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8223 */ 8224 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8225 { 8226 int rd = extract32(insn, 0, 5); 8227 int rn = extract32(insn, 5, 5); 8228 int size = extract32(insn, 22, 2); 8229 int opcode = extract32(insn, 12, 5); 8230 bool is_q = extract32(insn, 30, 1); 8231 bool is_u = extract32(insn, 29, 1); 8232 bool is_fp = false; 8233 bool is_min = false; 8234 int esize; 8235 int elements; 8236 int i; 8237 TCGv_i64 tcg_res, tcg_elt; 8238 8239 switch (opcode) { 8240 case 0x1b: /* ADDV */ 8241 if (is_u) { 8242 unallocated_encoding(s); 8243 return; 8244 } 8245 /* fall through */ 8246 case 0x3: /* SADDLV, UADDLV */ 8247 case 0xa: /* SMAXV, UMAXV */ 8248 case 0x1a: /* SMINV, UMINV */ 8249 if (size == 3 || (size == 2 && !is_q)) { 8250 unallocated_encoding(s); 8251 return; 8252 } 8253 break; 8254 case 0xc: /* FMAXNMV, FMINNMV */ 8255 case 0xf: /* FMAXV, FMINV */ 8256 /* Bit 1 of size field encodes min vs max and the actual size 8257 * depends on the encoding of the U bit. If not set (and FP16 8258 * enabled) then we do half-precision float instead of single 8259 * precision. 8260 */ 8261 is_min = extract32(size, 1, 1); 8262 is_fp = true; 8263 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8264 size = 1; 8265 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8266 unallocated_encoding(s); 8267 return; 8268 } else { 8269 size = 2; 8270 } 8271 break; 8272 default: 8273 unallocated_encoding(s); 8274 return; 8275 } 8276 8277 if (!fp_access_check(s)) { 8278 return; 8279 } 8280 8281 esize = 8 << size; 8282 elements = (is_q ? 128 : 64) / esize; 8283 8284 tcg_res = tcg_temp_new_i64(); 8285 tcg_elt = tcg_temp_new_i64(); 8286 8287 /* These instructions operate across all lanes of a vector 8288 * to produce a single result. We can guarantee that a 64 8289 * bit intermediate is sufficient: 8290 * + for [US]ADDLV the maximum element size is 32 bits, and 8291 * the result type is 64 bits 8292 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8293 * same as the element size, which is 32 bits at most 8294 * For the integer operations we can choose to work at 64 8295 * or 32 bits and truncate at the end; for simplicity 8296 * we use 64 bits always. The floating point 8297 * ops do require 32 bit intermediates, though. 8298 */ 8299 if (!is_fp) { 8300 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8301 8302 for (i = 1; i < elements; i++) { 8303 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8304 8305 switch (opcode) { 8306 case 0x03: /* SADDLV / UADDLV */ 8307 case 0x1b: /* ADDV */ 8308 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8309 break; 8310 case 0x0a: /* SMAXV / UMAXV */ 8311 if (is_u) { 8312 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8313 } else { 8314 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8315 } 8316 break; 8317 case 0x1a: /* SMINV / UMINV */ 8318 if (is_u) { 8319 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8320 } else { 8321 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8322 } 8323 break; 8324 default: 8325 g_assert_not_reached(); 8326 } 8327 8328 } 8329 } else { 8330 /* Floating point vector reduction ops which work across 32 8331 * bit (single) or 16 bit (half-precision) intermediates. 8332 * Note that correct NaN propagation requires that we do these 8333 * operations in exactly the order specified by the pseudocode. 8334 */ 8335 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8336 int fpopcode = opcode | is_min << 4 | is_u << 5; 8337 int vmap = (1 << elements) - 1; 8338 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8339 (is_q ? 128 : 64), vmap, fpst); 8340 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8341 } 8342 8343 /* Now truncate the result to the width required for the final output */ 8344 if (opcode == 0x03) { 8345 /* SADDLV, UADDLV: result is 2*esize */ 8346 size++; 8347 } 8348 8349 switch (size) { 8350 case 0: 8351 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8352 break; 8353 case 1: 8354 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8355 break; 8356 case 2: 8357 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8358 break; 8359 case 3: 8360 break; 8361 default: 8362 g_assert_not_reached(); 8363 } 8364 8365 write_fp_dreg(s, rd, tcg_res); 8366 } 8367 8368 /* AdvSIMD modified immediate 8369 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8370 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8371 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8372 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8373 * 8374 * There are a number of operations that can be carried out here: 8375 * MOVI - move (shifted) imm into register 8376 * MVNI - move inverted (shifted) imm into register 8377 * ORR - bitwise OR of (shifted) imm with register 8378 * BIC - bitwise clear of (shifted) imm with register 8379 * With ARMv8.2 we also have: 8380 * FMOV half-precision 8381 */ 8382 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8383 { 8384 int rd = extract32(insn, 0, 5); 8385 int cmode = extract32(insn, 12, 4); 8386 int o2 = extract32(insn, 11, 1); 8387 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8388 bool is_neg = extract32(insn, 29, 1); 8389 bool is_q = extract32(insn, 30, 1); 8390 uint64_t imm = 0; 8391 8392 if (o2) { 8393 if (cmode != 0xf || is_neg) { 8394 unallocated_encoding(s); 8395 return; 8396 } 8397 /* FMOV (vector, immediate) - half-precision */ 8398 if (!dc_isar_feature(aa64_fp16, s)) { 8399 unallocated_encoding(s); 8400 return; 8401 } 8402 imm = vfp_expand_imm(MO_16, abcdefgh); 8403 /* now duplicate across the lanes */ 8404 imm = dup_const(MO_16, imm); 8405 } else { 8406 if (cmode == 0xf && is_neg && !is_q) { 8407 unallocated_encoding(s); 8408 return; 8409 } 8410 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8411 } 8412 8413 if (!fp_access_check(s)) { 8414 return; 8415 } 8416 8417 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8418 /* MOVI or MVNI, with MVNI negation handled above. */ 8419 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8420 vec_full_reg_size(s), imm); 8421 } else { 8422 /* ORR or BIC, with BIC negation to AND handled above. */ 8423 if (is_neg) { 8424 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8425 } else { 8426 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8427 } 8428 } 8429 } 8430 8431 /* 8432 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8433 * 8434 * This code is handles the common shifting code and is used by both 8435 * the vector and scalar code. 8436 */ 8437 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8438 TCGv_i64 tcg_rnd, bool accumulate, 8439 bool is_u, int size, int shift) 8440 { 8441 bool extended_result = false; 8442 bool round = tcg_rnd != NULL; 8443 int ext_lshift = 0; 8444 TCGv_i64 tcg_src_hi; 8445 8446 if (round && size == 3) { 8447 extended_result = true; 8448 ext_lshift = 64 - shift; 8449 tcg_src_hi = tcg_temp_new_i64(); 8450 } else if (shift == 64) { 8451 if (!accumulate && is_u) { 8452 /* result is zero */ 8453 tcg_gen_movi_i64(tcg_res, 0); 8454 return; 8455 } 8456 } 8457 8458 /* Deal with the rounding step */ 8459 if (round) { 8460 if (extended_result) { 8461 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8462 if (!is_u) { 8463 /* take care of sign extending tcg_res */ 8464 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8465 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8466 tcg_src, tcg_src_hi, 8467 tcg_rnd, tcg_zero); 8468 } else { 8469 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8470 tcg_src, tcg_zero, 8471 tcg_rnd, tcg_zero); 8472 } 8473 } else { 8474 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8475 } 8476 } 8477 8478 /* Now do the shift right */ 8479 if (round && extended_result) { 8480 /* extended case, >64 bit precision required */ 8481 if (ext_lshift == 0) { 8482 /* special case, only high bits matter */ 8483 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8484 } else { 8485 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8486 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8487 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8488 } 8489 } else { 8490 if (is_u) { 8491 if (shift == 64) { 8492 /* essentially shifting in 64 zeros */ 8493 tcg_gen_movi_i64(tcg_src, 0); 8494 } else { 8495 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8496 } 8497 } else { 8498 if (shift == 64) { 8499 /* effectively extending the sign-bit */ 8500 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8501 } else { 8502 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8503 } 8504 } 8505 } 8506 8507 if (accumulate) { 8508 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8509 } else { 8510 tcg_gen_mov_i64(tcg_res, tcg_src); 8511 } 8512 } 8513 8514 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8515 static void handle_scalar_simd_shri(DisasContext *s, 8516 bool is_u, int immh, int immb, 8517 int opcode, int rn, int rd) 8518 { 8519 const int size = 3; 8520 int immhb = immh << 3 | immb; 8521 int shift = 2 * (8 << size) - immhb; 8522 bool accumulate = false; 8523 bool round = false; 8524 bool insert = false; 8525 TCGv_i64 tcg_rn; 8526 TCGv_i64 tcg_rd; 8527 TCGv_i64 tcg_round; 8528 8529 if (!extract32(immh, 3, 1)) { 8530 unallocated_encoding(s); 8531 return; 8532 } 8533 8534 if (!fp_access_check(s)) { 8535 return; 8536 } 8537 8538 switch (opcode) { 8539 case 0x02: /* SSRA / USRA (accumulate) */ 8540 accumulate = true; 8541 break; 8542 case 0x04: /* SRSHR / URSHR (rounding) */ 8543 round = true; 8544 break; 8545 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8546 accumulate = round = true; 8547 break; 8548 case 0x08: /* SRI */ 8549 insert = true; 8550 break; 8551 } 8552 8553 if (round) { 8554 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8555 } else { 8556 tcg_round = NULL; 8557 } 8558 8559 tcg_rn = read_fp_dreg(s, rn); 8560 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8561 8562 if (insert) { 8563 /* shift count same as element size is valid but does nothing; 8564 * special case to avoid potential shift by 64. 8565 */ 8566 int esize = 8 << size; 8567 if (shift != esize) { 8568 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8569 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8570 } 8571 } else { 8572 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8573 accumulate, is_u, size, shift); 8574 } 8575 8576 write_fp_dreg(s, rd, tcg_rd); 8577 } 8578 8579 /* SHL/SLI - Scalar shift left */ 8580 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8581 int immh, int immb, int opcode, 8582 int rn, int rd) 8583 { 8584 int size = 32 - clz32(immh) - 1; 8585 int immhb = immh << 3 | immb; 8586 int shift = immhb - (8 << size); 8587 TCGv_i64 tcg_rn; 8588 TCGv_i64 tcg_rd; 8589 8590 if (!extract32(immh, 3, 1)) { 8591 unallocated_encoding(s); 8592 return; 8593 } 8594 8595 if (!fp_access_check(s)) { 8596 return; 8597 } 8598 8599 tcg_rn = read_fp_dreg(s, rn); 8600 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8601 8602 if (insert) { 8603 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8604 } else { 8605 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8606 } 8607 8608 write_fp_dreg(s, rd, tcg_rd); 8609 } 8610 8611 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8612 * (signed/unsigned) narrowing */ 8613 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8614 bool is_u_shift, bool is_u_narrow, 8615 int immh, int immb, int opcode, 8616 int rn, int rd) 8617 { 8618 int immhb = immh << 3 | immb; 8619 int size = 32 - clz32(immh) - 1; 8620 int esize = 8 << size; 8621 int shift = (2 * esize) - immhb; 8622 int elements = is_scalar ? 1 : (64 / esize); 8623 bool round = extract32(opcode, 0, 1); 8624 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8625 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8626 TCGv_i32 tcg_rd_narrowed; 8627 TCGv_i64 tcg_final; 8628 8629 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8630 { gen_helper_neon_narrow_sat_s8, 8631 gen_helper_neon_unarrow_sat8 }, 8632 { gen_helper_neon_narrow_sat_s16, 8633 gen_helper_neon_unarrow_sat16 }, 8634 { gen_helper_neon_narrow_sat_s32, 8635 gen_helper_neon_unarrow_sat32 }, 8636 { NULL, NULL }, 8637 }; 8638 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8639 gen_helper_neon_narrow_sat_u8, 8640 gen_helper_neon_narrow_sat_u16, 8641 gen_helper_neon_narrow_sat_u32, 8642 NULL 8643 }; 8644 NeonGenNarrowEnvFn *narrowfn; 8645 8646 int i; 8647 8648 assert(size < 4); 8649 8650 if (extract32(immh, 3, 1)) { 8651 unallocated_encoding(s); 8652 return; 8653 } 8654 8655 if (!fp_access_check(s)) { 8656 return; 8657 } 8658 8659 if (is_u_shift) { 8660 narrowfn = unsigned_narrow_fns[size]; 8661 } else { 8662 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8663 } 8664 8665 tcg_rn = tcg_temp_new_i64(); 8666 tcg_rd = tcg_temp_new_i64(); 8667 tcg_rd_narrowed = tcg_temp_new_i32(); 8668 tcg_final = tcg_temp_new_i64(); 8669 8670 if (round) { 8671 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8672 } else { 8673 tcg_round = NULL; 8674 } 8675 8676 for (i = 0; i < elements; i++) { 8677 read_vec_element(s, tcg_rn, rn, i, ldop); 8678 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8679 false, is_u_shift, size+1, shift); 8680 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8681 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8682 if (i == 0) { 8683 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8684 } else { 8685 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8686 } 8687 } 8688 8689 if (!is_q) { 8690 write_vec_element(s, tcg_final, rd, 0, MO_64); 8691 } else { 8692 write_vec_element(s, tcg_final, rd, 1, MO_64); 8693 } 8694 clear_vec_high(s, is_q, rd); 8695 } 8696 8697 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8698 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8699 bool src_unsigned, bool dst_unsigned, 8700 int immh, int immb, int rn, int rd) 8701 { 8702 int immhb = immh << 3 | immb; 8703 int size = 32 - clz32(immh) - 1; 8704 int shift = immhb - (8 << size); 8705 int pass; 8706 8707 assert(immh != 0); 8708 assert(!(scalar && is_q)); 8709 8710 if (!scalar) { 8711 if (!is_q && extract32(immh, 3, 1)) { 8712 unallocated_encoding(s); 8713 return; 8714 } 8715 8716 /* Since we use the variable-shift helpers we must 8717 * replicate the shift count into each element of 8718 * the tcg_shift value. 8719 */ 8720 switch (size) { 8721 case 0: 8722 shift |= shift << 8; 8723 /* fall through */ 8724 case 1: 8725 shift |= shift << 16; 8726 break; 8727 case 2: 8728 case 3: 8729 break; 8730 default: 8731 g_assert_not_reached(); 8732 } 8733 } 8734 8735 if (!fp_access_check(s)) { 8736 return; 8737 } 8738 8739 if (size == 3) { 8740 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8741 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8742 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8743 { NULL, gen_helper_neon_qshl_u64 }, 8744 }; 8745 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8746 int maxpass = is_q ? 2 : 1; 8747 8748 for (pass = 0; pass < maxpass; pass++) { 8749 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8750 8751 read_vec_element(s, tcg_op, rn, pass, MO_64); 8752 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8753 write_vec_element(s, tcg_op, rd, pass, MO_64); 8754 } 8755 clear_vec_high(s, is_q, rd); 8756 } else { 8757 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8758 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8759 { 8760 { gen_helper_neon_qshl_s8, 8761 gen_helper_neon_qshl_s16, 8762 gen_helper_neon_qshl_s32 }, 8763 { gen_helper_neon_qshlu_s8, 8764 gen_helper_neon_qshlu_s16, 8765 gen_helper_neon_qshlu_s32 } 8766 }, { 8767 { NULL, NULL, NULL }, 8768 { gen_helper_neon_qshl_u8, 8769 gen_helper_neon_qshl_u16, 8770 gen_helper_neon_qshl_u32 } 8771 } 8772 }; 8773 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8774 MemOp memop = scalar ? size : MO_32; 8775 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8776 8777 for (pass = 0; pass < maxpass; pass++) { 8778 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8779 8780 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8781 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8782 if (scalar) { 8783 switch (size) { 8784 case 0: 8785 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8786 break; 8787 case 1: 8788 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8789 break; 8790 case 2: 8791 break; 8792 default: 8793 g_assert_not_reached(); 8794 } 8795 write_fp_sreg(s, rd, tcg_op); 8796 } else { 8797 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8798 } 8799 } 8800 8801 if (!scalar) { 8802 clear_vec_high(s, is_q, rd); 8803 } 8804 } 8805 } 8806 8807 /* Common vector code for handling integer to FP conversion */ 8808 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8809 int elements, int is_signed, 8810 int fracbits, int size) 8811 { 8812 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8813 TCGv_i32 tcg_shift = NULL; 8814 8815 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8816 int pass; 8817 8818 if (fracbits || size == MO_64) { 8819 tcg_shift = tcg_constant_i32(fracbits); 8820 } 8821 8822 if (size == MO_64) { 8823 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8824 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8825 8826 for (pass = 0; pass < elements; pass++) { 8827 read_vec_element(s, tcg_int64, rn, pass, mop); 8828 8829 if (is_signed) { 8830 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8831 tcg_shift, tcg_fpst); 8832 } else { 8833 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8834 tcg_shift, tcg_fpst); 8835 } 8836 if (elements == 1) { 8837 write_fp_dreg(s, rd, tcg_double); 8838 } else { 8839 write_vec_element(s, tcg_double, rd, pass, MO_64); 8840 } 8841 } 8842 } else { 8843 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8844 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8845 8846 for (pass = 0; pass < elements; pass++) { 8847 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8848 8849 switch (size) { 8850 case MO_32: 8851 if (fracbits) { 8852 if (is_signed) { 8853 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8854 tcg_shift, tcg_fpst); 8855 } else { 8856 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8857 tcg_shift, tcg_fpst); 8858 } 8859 } else { 8860 if (is_signed) { 8861 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8862 } else { 8863 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8864 } 8865 } 8866 break; 8867 case MO_16: 8868 if (fracbits) { 8869 if (is_signed) { 8870 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8871 tcg_shift, tcg_fpst); 8872 } else { 8873 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8874 tcg_shift, tcg_fpst); 8875 } 8876 } else { 8877 if (is_signed) { 8878 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8879 } else { 8880 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8881 } 8882 } 8883 break; 8884 default: 8885 g_assert_not_reached(); 8886 } 8887 8888 if (elements == 1) { 8889 write_fp_sreg(s, rd, tcg_float); 8890 } else { 8891 write_vec_element_i32(s, tcg_float, rd, pass, size); 8892 } 8893 } 8894 } 8895 8896 clear_vec_high(s, elements << size == 16, rd); 8897 } 8898 8899 /* UCVTF/SCVTF - Integer to FP conversion */ 8900 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8901 bool is_q, bool is_u, 8902 int immh, int immb, int opcode, 8903 int rn, int rd) 8904 { 8905 int size, elements, fracbits; 8906 int immhb = immh << 3 | immb; 8907 8908 if (immh & 8) { 8909 size = MO_64; 8910 if (!is_scalar && !is_q) { 8911 unallocated_encoding(s); 8912 return; 8913 } 8914 } else if (immh & 4) { 8915 size = MO_32; 8916 } else if (immh & 2) { 8917 size = MO_16; 8918 if (!dc_isar_feature(aa64_fp16, s)) { 8919 unallocated_encoding(s); 8920 return; 8921 } 8922 } else { 8923 /* immh == 0 would be a failure of the decode logic */ 8924 g_assert(immh == 1); 8925 unallocated_encoding(s); 8926 return; 8927 } 8928 8929 if (is_scalar) { 8930 elements = 1; 8931 } else { 8932 elements = (8 << is_q) >> size; 8933 } 8934 fracbits = (16 << size) - immhb; 8935 8936 if (!fp_access_check(s)) { 8937 return; 8938 } 8939 8940 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8941 } 8942 8943 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8944 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8945 bool is_q, bool is_u, 8946 int immh, int immb, int rn, int rd) 8947 { 8948 int immhb = immh << 3 | immb; 8949 int pass, size, fracbits; 8950 TCGv_ptr tcg_fpstatus; 8951 TCGv_i32 tcg_rmode, tcg_shift; 8952 8953 if (immh & 0x8) { 8954 size = MO_64; 8955 if (!is_scalar && !is_q) { 8956 unallocated_encoding(s); 8957 return; 8958 } 8959 } else if (immh & 0x4) { 8960 size = MO_32; 8961 } else if (immh & 0x2) { 8962 size = MO_16; 8963 if (!dc_isar_feature(aa64_fp16, s)) { 8964 unallocated_encoding(s); 8965 return; 8966 } 8967 } else { 8968 /* Should have split out AdvSIMD modified immediate earlier. */ 8969 assert(immh == 1); 8970 unallocated_encoding(s); 8971 return; 8972 } 8973 8974 if (!fp_access_check(s)) { 8975 return; 8976 } 8977 8978 assert(!(is_scalar && is_q)); 8979 8980 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8981 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8982 fracbits = (16 << size) - immhb; 8983 tcg_shift = tcg_constant_i32(fracbits); 8984 8985 if (size == MO_64) { 8986 int maxpass = is_scalar ? 1 : 2; 8987 8988 for (pass = 0; pass < maxpass; pass++) { 8989 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8990 8991 read_vec_element(s, tcg_op, rn, pass, MO_64); 8992 if (is_u) { 8993 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8994 } else { 8995 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8996 } 8997 write_vec_element(s, tcg_op, rd, pass, MO_64); 8998 } 8999 clear_vec_high(s, is_q, rd); 9000 } else { 9001 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9002 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9003 9004 switch (size) { 9005 case MO_16: 9006 if (is_u) { 9007 fn = gen_helper_vfp_touhh; 9008 } else { 9009 fn = gen_helper_vfp_toshh; 9010 } 9011 break; 9012 case MO_32: 9013 if (is_u) { 9014 fn = gen_helper_vfp_touls; 9015 } else { 9016 fn = gen_helper_vfp_tosls; 9017 } 9018 break; 9019 default: 9020 g_assert_not_reached(); 9021 } 9022 9023 for (pass = 0; pass < maxpass; pass++) { 9024 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9025 9026 read_vec_element_i32(s, tcg_op, rn, pass, size); 9027 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9028 if (is_scalar) { 9029 if (size == MO_16 && !is_u) { 9030 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9031 } 9032 write_fp_sreg(s, rd, tcg_op); 9033 } else { 9034 write_vec_element_i32(s, tcg_op, rd, pass, size); 9035 } 9036 } 9037 if (!is_scalar) { 9038 clear_vec_high(s, is_q, rd); 9039 } 9040 } 9041 9042 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9043 } 9044 9045 /* AdvSIMD scalar shift by immediate 9046 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9047 * +-----+---+-------------+------+------+--------+---+------+------+ 9048 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9049 * +-----+---+-------------+------+------+--------+---+------+------+ 9050 * 9051 * This is the scalar version so it works on a fixed sized registers 9052 */ 9053 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9054 { 9055 int rd = extract32(insn, 0, 5); 9056 int rn = extract32(insn, 5, 5); 9057 int opcode = extract32(insn, 11, 5); 9058 int immb = extract32(insn, 16, 3); 9059 int immh = extract32(insn, 19, 4); 9060 bool is_u = extract32(insn, 29, 1); 9061 9062 if (immh == 0) { 9063 unallocated_encoding(s); 9064 return; 9065 } 9066 9067 switch (opcode) { 9068 case 0x08: /* SRI */ 9069 if (!is_u) { 9070 unallocated_encoding(s); 9071 return; 9072 } 9073 /* fall through */ 9074 case 0x00: /* SSHR / USHR */ 9075 case 0x02: /* SSRA / USRA */ 9076 case 0x04: /* SRSHR / URSHR */ 9077 case 0x06: /* SRSRA / URSRA */ 9078 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9079 break; 9080 case 0x0a: /* SHL / SLI */ 9081 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9082 break; 9083 case 0x1c: /* SCVTF, UCVTF */ 9084 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9085 opcode, rn, rd); 9086 break; 9087 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9088 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9089 if (!is_u) { 9090 unallocated_encoding(s); 9091 return; 9092 } 9093 handle_vec_simd_sqshrn(s, true, false, false, true, 9094 immh, immb, opcode, rn, rd); 9095 break; 9096 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9097 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9098 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9099 immh, immb, opcode, rn, rd); 9100 break; 9101 case 0xc: /* SQSHLU */ 9102 if (!is_u) { 9103 unallocated_encoding(s); 9104 return; 9105 } 9106 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9107 break; 9108 case 0xe: /* SQSHL, UQSHL */ 9109 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9110 break; 9111 case 0x1f: /* FCVTZS, FCVTZU */ 9112 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9113 break; 9114 default: 9115 unallocated_encoding(s); 9116 break; 9117 } 9118 } 9119 9120 /* AdvSIMD scalar three different 9121 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9122 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9123 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9124 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9125 */ 9126 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9127 { 9128 bool is_u = extract32(insn, 29, 1); 9129 int size = extract32(insn, 22, 2); 9130 int opcode = extract32(insn, 12, 4); 9131 int rm = extract32(insn, 16, 5); 9132 int rn = extract32(insn, 5, 5); 9133 int rd = extract32(insn, 0, 5); 9134 9135 if (is_u) { 9136 unallocated_encoding(s); 9137 return; 9138 } 9139 9140 switch (opcode) { 9141 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9142 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9143 case 0xd: /* SQDMULL, SQDMULL2 */ 9144 if (size == 0 || size == 3) { 9145 unallocated_encoding(s); 9146 return; 9147 } 9148 break; 9149 default: 9150 unallocated_encoding(s); 9151 return; 9152 } 9153 9154 if (!fp_access_check(s)) { 9155 return; 9156 } 9157 9158 if (size == 2) { 9159 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9160 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9161 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9162 9163 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9164 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9165 9166 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9167 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9168 9169 switch (opcode) { 9170 case 0xd: /* SQDMULL, SQDMULL2 */ 9171 break; 9172 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9173 tcg_gen_neg_i64(tcg_res, tcg_res); 9174 /* fall through */ 9175 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9176 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9177 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9178 tcg_res, tcg_op1); 9179 break; 9180 default: 9181 g_assert_not_reached(); 9182 } 9183 9184 write_fp_dreg(s, rd, tcg_res); 9185 } else { 9186 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9187 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9188 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9189 9190 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9191 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9192 9193 switch (opcode) { 9194 case 0xd: /* SQDMULL, SQDMULL2 */ 9195 break; 9196 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9197 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9198 /* fall through */ 9199 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9200 { 9201 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9202 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9203 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9204 tcg_res, tcg_op3); 9205 break; 9206 } 9207 default: 9208 g_assert_not_reached(); 9209 } 9210 9211 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9212 write_fp_dreg(s, rd, tcg_res); 9213 } 9214 } 9215 9216 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9217 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9218 { 9219 /* Handle 64x64->64 opcodes which are shared between the scalar 9220 * and vector 3-same groups. We cover every opcode where size == 3 9221 * is valid in either the three-reg-same (integer, not pairwise) 9222 * or scalar-three-reg-same groups. 9223 */ 9224 TCGCond cond; 9225 9226 switch (opcode) { 9227 case 0x1: /* SQADD */ 9228 if (u) { 9229 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9230 } else { 9231 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9232 } 9233 break; 9234 case 0x5: /* SQSUB */ 9235 if (u) { 9236 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9237 } else { 9238 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9239 } 9240 break; 9241 case 0x6: /* CMGT, CMHI */ 9242 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9243 do_cmop: 9244 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9245 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9246 break; 9247 case 0x7: /* CMGE, CMHS */ 9248 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9249 goto do_cmop; 9250 case 0x11: /* CMTST, CMEQ */ 9251 if (u) { 9252 cond = TCG_COND_EQ; 9253 goto do_cmop; 9254 } 9255 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9256 break; 9257 case 0x8: /* SSHL, USHL */ 9258 if (u) { 9259 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9260 } else { 9261 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9262 } 9263 break; 9264 case 0x9: /* SQSHL, UQSHL */ 9265 if (u) { 9266 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9267 } else { 9268 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9269 } 9270 break; 9271 case 0xa: /* SRSHL, URSHL */ 9272 if (u) { 9273 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9274 } else { 9275 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9276 } 9277 break; 9278 case 0xb: /* SQRSHL, UQRSHL */ 9279 if (u) { 9280 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9281 } else { 9282 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9283 } 9284 break; 9285 case 0x10: /* ADD, SUB */ 9286 if (u) { 9287 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9288 } else { 9289 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9290 } 9291 break; 9292 default: 9293 g_assert_not_reached(); 9294 } 9295 } 9296 9297 /* AdvSIMD scalar three same 9298 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9299 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9300 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9301 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9302 */ 9303 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9304 { 9305 int rd = extract32(insn, 0, 5); 9306 int rn = extract32(insn, 5, 5); 9307 int opcode = extract32(insn, 11, 5); 9308 int rm = extract32(insn, 16, 5); 9309 int size = extract32(insn, 22, 2); 9310 bool u = extract32(insn, 29, 1); 9311 TCGv_i64 tcg_rd; 9312 9313 switch (opcode) { 9314 case 0x1: /* SQADD, UQADD */ 9315 case 0x5: /* SQSUB, UQSUB */ 9316 case 0x9: /* SQSHL, UQSHL */ 9317 case 0xb: /* SQRSHL, UQRSHL */ 9318 break; 9319 case 0x8: /* SSHL, USHL */ 9320 case 0xa: /* SRSHL, URSHL */ 9321 case 0x6: /* CMGT, CMHI */ 9322 case 0x7: /* CMGE, CMHS */ 9323 case 0x11: /* CMTST, CMEQ */ 9324 case 0x10: /* ADD, SUB (vector) */ 9325 if (size != 3) { 9326 unallocated_encoding(s); 9327 return; 9328 } 9329 break; 9330 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9331 if (size != 1 && size != 2) { 9332 unallocated_encoding(s); 9333 return; 9334 } 9335 break; 9336 default: 9337 unallocated_encoding(s); 9338 return; 9339 } 9340 9341 if (!fp_access_check(s)) { 9342 return; 9343 } 9344 9345 tcg_rd = tcg_temp_new_i64(); 9346 9347 if (size == 3) { 9348 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9349 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9350 9351 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9352 } else { 9353 /* Do a single operation on the lowest element in the vector. 9354 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9355 * no side effects for all these operations. 9356 * OPTME: special-purpose helpers would avoid doing some 9357 * unnecessary work in the helper for the 8 and 16 bit cases. 9358 */ 9359 NeonGenTwoOpEnvFn *genenvfn; 9360 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9361 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9362 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9363 9364 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9365 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9366 9367 switch (opcode) { 9368 case 0x1: /* SQADD, UQADD */ 9369 { 9370 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9371 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9372 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9373 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9374 }; 9375 genenvfn = fns[size][u]; 9376 break; 9377 } 9378 case 0x5: /* SQSUB, UQSUB */ 9379 { 9380 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9381 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9382 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9383 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9384 }; 9385 genenvfn = fns[size][u]; 9386 break; 9387 } 9388 case 0x9: /* SQSHL, UQSHL */ 9389 { 9390 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9391 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9392 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9393 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9394 }; 9395 genenvfn = fns[size][u]; 9396 break; 9397 } 9398 case 0xb: /* SQRSHL, UQRSHL */ 9399 { 9400 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9401 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9402 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9403 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9404 }; 9405 genenvfn = fns[size][u]; 9406 break; 9407 } 9408 case 0x16: /* SQDMULH, SQRDMULH */ 9409 { 9410 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9411 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9412 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9413 }; 9414 assert(size == 1 || size == 2); 9415 genenvfn = fns[size - 1][u]; 9416 break; 9417 } 9418 default: 9419 g_assert_not_reached(); 9420 } 9421 9422 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9423 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9424 } 9425 9426 write_fp_dreg(s, rd, tcg_rd); 9427 } 9428 9429 /* AdvSIMD scalar three same extra 9430 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9431 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9432 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9433 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9434 */ 9435 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9436 uint32_t insn) 9437 { 9438 int rd = extract32(insn, 0, 5); 9439 int rn = extract32(insn, 5, 5); 9440 int opcode = extract32(insn, 11, 4); 9441 int rm = extract32(insn, 16, 5); 9442 int size = extract32(insn, 22, 2); 9443 bool u = extract32(insn, 29, 1); 9444 TCGv_i32 ele1, ele2, ele3; 9445 TCGv_i64 res; 9446 bool feature; 9447 9448 switch (u * 16 + opcode) { 9449 case 0x10: /* SQRDMLAH (vector) */ 9450 case 0x11: /* SQRDMLSH (vector) */ 9451 if (size != 1 && size != 2) { 9452 unallocated_encoding(s); 9453 return; 9454 } 9455 feature = dc_isar_feature(aa64_rdm, s); 9456 break; 9457 default: 9458 unallocated_encoding(s); 9459 return; 9460 } 9461 if (!feature) { 9462 unallocated_encoding(s); 9463 return; 9464 } 9465 if (!fp_access_check(s)) { 9466 return; 9467 } 9468 9469 /* Do a single operation on the lowest element in the vector. 9470 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9471 * with no side effects for all these operations. 9472 * OPTME: special-purpose helpers would avoid doing some 9473 * unnecessary work in the helper for the 16 bit cases. 9474 */ 9475 ele1 = tcg_temp_new_i32(); 9476 ele2 = tcg_temp_new_i32(); 9477 ele3 = tcg_temp_new_i32(); 9478 9479 read_vec_element_i32(s, ele1, rn, 0, size); 9480 read_vec_element_i32(s, ele2, rm, 0, size); 9481 read_vec_element_i32(s, ele3, rd, 0, size); 9482 9483 switch (opcode) { 9484 case 0x0: /* SQRDMLAH */ 9485 if (size == 1) { 9486 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9487 } else { 9488 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9489 } 9490 break; 9491 case 0x1: /* SQRDMLSH */ 9492 if (size == 1) { 9493 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9494 } else { 9495 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9496 } 9497 break; 9498 default: 9499 g_assert_not_reached(); 9500 } 9501 9502 res = tcg_temp_new_i64(); 9503 tcg_gen_extu_i32_i64(res, ele3); 9504 write_fp_dreg(s, rd, res); 9505 } 9506 9507 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9508 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9509 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9510 { 9511 /* Handle 64->64 opcodes which are shared between the scalar and 9512 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9513 * is valid in either group and also the double-precision fp ops. 9514 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9515 * requires them. 9516 */ 9517 TCGCond cond; 9518 9519 switch (opcode) { 9520 case 0x4: /* CLS, CLZ */ 9521 if (u) { 9522 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9523 } else { 9524 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9525 } 9526 break; 9527 case 0x5: /* NOT */ 9528 /* This opcode is shared with CNT and RBIT but we have earlier 9529 * enforced that size == 3 if and only if this is the NOT insn. 9530 */ 9531 tcg_gen_not_i64(tcg_rd, tcg_rn); 9532 break; 9533 case 0x7: /* SQABS, SQNEG */ 9534 if (u) { 9535 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9536 } else { 9537 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9538 } 9539 break; 9540 case 0xa: /* CMLT */ 9541 cond = TCG_COND_LT; 9542 do_cmop: 9543 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9544 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9545 break; 9546 case 0x8: /* CMGT, CMGE */ 9547 cond = u ? TCG_COND_GE : TCG_COND_GT; 9548 goto do_cmop; 9549 case 0x9: /* CMEQ, CMLE */ 9550 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9551 goto do_cmop; 9552 case 0xb: /* ABS, NEG */ 9553 if (u) { 9554 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9555 } else { 9556 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9557 } 9558 break; 9559 case 0x2f: /* FABS */ 9560 gen_vfp_absd(tcg_rd, tcg_rn); 9561 break; 9562 case 0x6f: /* FNEG */ 9563 gen_vfp_negd(tcg_rd, tcg_rn); 9564 break; 9565 case 0x7f: /* FSQRT */ 9566 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9567 break; 9568 case 0x1a: /* FCVTNS */ 9569 case 0x1b: /* FCVTMS */ 9570 case 0x1c: /* FCVTAS */ 9571 case 0x3a: /* FCVTPS */ 9572 case 0x3b: /* FCVTZS */ 9573 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9574 break; 9575 case 0x5a: /* FCVTNU */ 9576 case 0x5b: /* FCVTMU */ 9577 case 0x5c: /* FCVTAU */ 9578 case 0x7a: /* FCVTPU */ 9579 case 0x7b: /* FCVTZU */ 9580 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9581 break; 9582 case 0x18: /* FRINTN */ 9583 case 0x19: /* FRINTM */ 9584 case 0x38: /* FRINTP */ 9585 case 0x39: /* FRINTZ */ 9586 case 0x58: /* FRINTA */ 9587 case 0x79: /* FRINTI */ 9588 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9589 break; 9590 case 0x59: /* FRINTX */ 9591 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9592 break; 9593 case 0x1e: /* FRINT32Z */ 9594 case 0x5e: /* FRINT32X */ 9595 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9596 break; 9597 case 0x1f: /* FRINT64Z */ 9598 case 0x5f: /* FRINT64X */ 9599 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9600 break; 9601 default: 9602 g_assert_not_reached(); 9603 } 9604 } 9605 9606 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9607 bool is_scalar, bool is_u, bool is_q, 9608 int size, int rn, int rd) 9609 { 9610 bool is_double = (size == MO_64); 9611 TCGv_ptr fpst; 9612 9613 if (!fp_access_check(s)) { 9614 return; 9615 } 9616 9617 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9618 9619 if (is_double) { 9620 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9621 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9622 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9623 NeonGenTwoDoubleOpFn *genfn; 9624 bool swap = false; 9625 int pass; 9626 9627 switch (opcode) { 9628 case 0x2e: /* FCMLT (zero) */ 9629 swap = true; 9630 /* fallthrough */ 9631 case 0x2c: /* FCMGT (zero) */ 9632 genfn = gen_helper_neon_cgt_f64; 9633 break; 9634 case 0x2d: /* FCMEQ (zero) */ 9635 genfn = gen_helper_neon_ceq_f64; 9636 break; 9637 case 0x6d: /* FCMLE (zero) */ 9638 swap = true; 9639 /* fall through */ 9640 case 0x6c: /* FCMGE (zero) */ 9641 genfn = gen_helper_neon_cge_f64; 9642 break; 9643 default: 9644 g_assert_not_reached(); 9645 } 9646 9647 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9648 read_vec_element(s, tcg_op, rn, pass, MO_64); 9649 if (swap) { 9650 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9651 } else { 9652 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9653 } 9654 write_vec_element(s, tcg_res, rd, pass, MO_64); 9655 } 9656 9657 clear_vec_high(s, !is_scalar, rd); 9658 } else { 9659 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9660 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9661 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9662 NeonGenTwoSingleOpFn *genfn; 9663 bool swap = false; 9664 int pass, maxpasses; 9665 9666 if (size == MO_16) { 9667 switch (opcode) { 9668 case 0x2e: /* FCMLT (zero) */ 9669 swap = true; 9670 /* fall through */ 9671 case 0x2c: /* FCMGT (zero) */ 9672 genfn = gen_helper_advsimd_cgt_f16; 9673 break; 9674 case 0x2d: /* FCMEQ (zero) */ 9675 genfn = gen_helper_advsimd_ceq_f16; 9676 break; 9677 case 0x6d: /* FCMLE (zero) */ 9678 swap = true; 9679 /* fall through */ 9680 case 0x6c: /* FCMGE (zero) */ 9681 genfn = gen_helper_advsimd_cge_f16; 9682 break; 9683 default: 9684 g_assert_not_reached(); 9685 } 9686 } else { 9687 switch (opcode) { 9688 case 0x2e: /* FCMLT (zero) */ 9689 swap = true; 9690 /* fall through */ 9691 case 0x2c: /* FCMGT (zero) */ 9692 genfn = gen_helper_neon_cgt_f32; 9693 break; 9694 case 0x2d: /* FCMEQ (zero) */ 9695 genfn = gen_helper_neon_ceq_f32; 9696 break; 9697 case 0x6d: /* FCMLE (zero) */ 9698 swap = true; 9699 /* fall through */ 9700 case 0x6c: /* FCMGE (zero) */ 9701 genfn = gen_helper_neon_cge_f32; 9702 break; 9703 default: 9704 g_assert_not_reached(); 9705 } 9706 } 9707 9708 if (is_scalar) { 9709 maxpasses = 1; 9710 } else { 9711 int vector_size = 8 << is_q; 9712 maxpasses = vector_size >> size; 9713 } 9714 9715 for (pass = 0; pass < maxpasses; pass++) { 9716 read_vec_element_i32(s, tcg_op, rn, pass, size); 9717 if (swap) { 9718 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9719 } else { 9720 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9721 } 9722 if (is_scalar) { 9723 write_fp_sreg(s, rd, tcg_res); 9724 } else { 9725 write_vec_element_i32(s, tcg_res, rd, pass, size); 9726 } 9727 } 9728 9729 if (!is_scalar) { 9730 clear_vec_high(s, is_q, rd); 9731 } 9732 } 9733 } 9734 9735 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9736 bool is_scalar, bool is_u, bool is_q, 9737 int size, int rn, int rd) 9738 { 9739 bool is_double = (size == 3); 9740 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9741 9742 if (is_double) { 9743 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9744 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9745 int pass; 9746 9747 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9748 read_vec_element(s, tcg_op, rn, pass, MO_64); 9749 switch (opcode) { 9750 case 0x3d: /* FRECPE */ 9751 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9752 break; 9753 case 0x3f: /* FRECPX */ 9754 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9755 break; 9756 case 0x7d: /* FRSQRTE */ 9757 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9758 break; 9759 default: 9760 g_assert_not_reached(); 9761 } 9762 write_vec_element(s, tcg_res, rd, pass, MO_64); 9763 } 9764 clear_vec_high(s, !is_scalar, rd); 9765 } else { 9766 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9767 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9768 int pass, maxpasses; 9769 9770 if (is_scalar) { 9771 maxpasses = 1; 9772 } else { 9773 maxpasses = is_q ? 4 : 2; 9774 } 9775 9776 for (pass = 0; pass < maxpasses; pass++) { 9777 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9778 9779 switch (opcode) { 9780 case 0x3c: /* URECPE */ 9781 gen_helper_recpe_u32(tcg_res, tcg_op); 9782 break; 9783 case 0x3d: /* FRECPE */ 9784 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9785 break; 9786 case 0x3f: /* FRECPX */ 9787 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9788 break; 9789 case 0x7d: /* FRSQRTE */ 9790 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9791 break; 9792 default: 9793 g_assert_not_reached(); 9794 } 9795 9796 if (is_scalar) { 9797 write_fp_sreg(s, rd, tcg_res); 9798 } else { 9799 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9800 } 9801 } 9802 if (!is_scalar) { 9803 clear_vec_high(s, is_q, rd); 9804 } 9805 } 9806 } 9807 9808 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9809 int opcode, bool u, bool is_q, 9810 int size, int rn, int rd) 9811 { 9812 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9813 * in the source becomes a size element in the destination). 9814 */ 9815 int pass; 9816 TCGv_i32 tcg_res[2]; 9817 int destelt = is_q ? 2 : 0; 9818 int passes = scalar ? 1 : 2; 9819 9820 if (scalar) { 9821 tcg_res[1] = tcg_constant_i32(0); 9822 } 9823 9824 for (pass = 0; pass < passes; pass++) { 9825 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9826 NeonGenNarrowFn *genfn = NULL; 9827 NeonGenNarrowEnvFn *genenvfn = NULL; 9828 9829 if (scalar) { 9830 read_vec_element(s, tcg_op, rn, pass, size + 1); 9831 } else { 9832 read_vec_element(s, tcg_op, rn, pass, MO_64); 9833 } 9834 tcg_res[pass] = tcg_temp_new_i32(); 9835 9836 switch (opcode) { 9837 case 0x12: /* XTN, SQXTUN */ 9838 { 9839 static NeonGenNarrowFn * const xtnfns[3] = { 9840 gen_helper_neon_narrow_u8, 9841 gen_helper_neon_narrow_u16, 9842 tcg_gen_extrl_i64_i32, 9843 }; 9844 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9845 gen_helper_neon_unarrow_sat8, 9846 gen_helper_neon_unarrow_sat16, 9847 gen_helper_neon_unarrow_sat32, 9848 }; 9849 if (u) { 9850 genenvfn = sqxtunfns[size]; 9851 } else { 9852 genfn = xtnfns[size]; 9853 } 9854 break; 9855 } 9856 case 0x14: /* SQXTN, UQXTN */ 9857 { 9858 static NeonGenNarrowEnvFn * const fns[3][2] = { 9859 { gen_helper_neon_narrow_sat_s8, 9860 gen_helper_neon_narrow_sat_u8 }, 9861 { gen_helper_neon_narrow_sat_s16, 9862 gen_helper_neon_narrow_sat_u16 }, 9863 { gen_helper_neon_narrow_sat_s32, 9864 gen_helper_neon_narrow_sat_u32 }, 9865 }; 9866 genenvfn = fns[size][u]; 9867 break; 9868 } 9869 case 0x16: /* FCVTN, FCVTN2 */ 9870 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9871 if (size == 2) { 9872 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9873 } else { 9874 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9875 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9876 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9877 TCGv_i32 ahp = get_ahp_flag(); 9878 9879 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9880 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9881 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9882 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9883 } 9884 break; 9885 case 0x36: /* BFCVTN, BFCVTN2 */ 9886 { 9887 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9888 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9889 } 9890 break; 9891 case 0x56: /* FCVTXN, FCVTXN2 */ 9892 /* 64 bit to 32 bit float conversion 9893 * with von Neumann rounding (round to odd) 9894 */ 9895 assert(size == 2); 9896 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9897 break; 9898 default: 9899 g_assert_not_reached(); 9900 } 9901 9902 if (genfn) { 9903 genfn(tcg_res[pass], tcg_op); 9904 } else if (genenvfn) { 9905 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9906 } 9907 } 9908 9909 for (pass = 0; pass < 2; pass++) { 9910 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9911 } 9912 clear_vec_high(s, is_q, rd); 9913 } 9914 9915 /* Remaining saturating accumulating ops */ 9916 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9917 bool is_q, int size, int rn, int rd) 9918 { 9919 bool is_double = (size == 3); 9920 9921 if (is_double) { 9922 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9923 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9924 int pass; 9925 9926 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9927 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9928 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9929 9930 if (is_u) { /* USQADD */ 9931 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9932 } else { /* SUQADD */ 9933 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9934 } 9935 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9936 } 9937 clear_vec_high(s, !is_scalar, rd); 9938 } else { 9939 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9940 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9941 int pass, maxpasses; 9942 9943 if (is_scalar) { 9944 maxpasses = 1; 9945 } else { 9946 maxpasses = is_q ? 4 : 2; 9947 } 9948 9949 for (pass = 0; pass < maxpasses; pass++) { 9950 if (is_scalar) { 9951 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9952 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9953 } else { 9954 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9955 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9956 } 9957 9958 if (is_u) { /* USQADD */ 9959 switch (size) { 9960 case 0: 9961 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9962 break; 9963 case 1: 9964 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9965 break; 9966 case 2: 9967 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9968 break; 9969 default: 9970 g_assert_not_reached(); 9971 } 9972 } else { /* SUQADD */ 9973 switch (size) { 9974 case 0: 9975 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9976 break; 9977 case 1: 9978 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9979 break; 9980 case 2: 9981 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9982 break; 9983 default: 9984 g_assert_not_reached(); 9985 } 9986 } 9987 9988 if (is_scalar) { 9989 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9990 } 9991 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9992 } 9993 clear_vec_high(s, is_q, rd); 9994 } 9995 } 9996 9997 /* AdvSIMD scalar two reg misc 9998 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9999 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10000 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10001 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10002 */ 10003 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10004 { 10005 int rd = extract32(insn, 0, 5); 10006 int rn = extract32(insn, 5, 5); 10007 int opcode = extract32(insn, 12, 5); 10008 int size = extract32(insn, 22, 2); 10009 bool u = extract32(insn, 29, 1); 10010 bool is_fcvt = false; 10011 int rmode; 10012 TCGv_i32 tcg_rmode; 10013 TCGv_ptr tcg_fpstatus; 10014 10015 switch (opcode) { 10016 case 0x3: /* USQADD / SUQADD*/ 10017 if (!fp_access_check(s)) { 10018 return; 10019 } 10020 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10021 return; 10022 case 0x7: /* SQABS / SQNEG */ 10023 break; 10024 case 0xa: /* CMLT */ 10025 if (u) { 10026 unallocated_encoding(s); 10027 return; 10028 } 10029 /* fall through */ 10030 case 0x8: /* CMGT, CMGE */ 10031 case 0x9: /* CMEQ, CMLE */ 10032 case 0xb: /* ABS, NEG */ 10033 if (size != 3) { 10034 unallocated_encoding(s); 10035 return; 10036 } 10037 break; 10038 case 0x12: /* SQXTUN */ 10039 if (!u) { 10040 unallocated_encoding(s); 10041 return; 10042 } 10043 /* fall through */ 10044 case 0x14: /* SQXTN, UQXTN */ 10045 if (size == 3) { 10046 unallocated_encoding(s); 10047 return; 10048 } 10049 if (!fp_access_check(s)) { 10050 return; 10051 } 10052 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10053 return; 10054 case 0xc ... 0xf: 10055 case 0x16 ... 0x1d: 10056 case 0x1f: 10057 /* Floating point: U, size[1] and opcode indicate operation; 10058 * size[0] indicates single or double precision. 10059 */ 10060 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10061 size = extract32(size, 0, 1) ? 3 : 2; 10062 switch (opcode) { 10063 case 0x2c: /* FCMGT (zero) */ 10064 case 0x2d: /* FCMEQ (zero) */ 10065 case 0x2e: /* FCMLT (zero) */ 10066 case 0x6c: /* FCMGE (zero) */ 10067 case 0x6d: /* FCMLE (zero) */ 10068 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10069 return; 10070 case 0x1d: /* SCVTF */ 10071 case 0x5d: /* UCVTF */ 10072 { 10073 bool is_signed = (opcode == 0x1d); 10074 if (!fp_access_check(s)) { 10075 return; 10076 } 10077 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10078 return; 10079 } 10080 case 0x3d: /* FRECPE */ 10081 case 0x3f: /* FRECPX */ 10082 case 0x7d: /* FRSQRTE */ 10083 if (!fp_access_check(s)) { 10084 return; 10085 } 10086 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10087 return; 10088 case 0x1a: /* FCVTNS */ 10089 case 0x1b: /* FCVTMS */ 10090 case 0x3a: /* FCVTPS */ 10091 case 0x3b: /* FCVTZS */ 10092 case 0x5a: /* FCVTNU */ 10093 case 0x5b: /* FCVTMU */ 10094 case 0x7a: /* FCVTPU */ 10095 case 0x7b: /* FCVTZU */ 10096 is_fcvt = true; 10097 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10098 break; 10099 case 0x1c: /* FCVTAS */ 10100 case 0x5c: /* FCVTAU */ 10101 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10102 is_fcvt = true; 10103 rmode = FPROUNDING_TIEAWAY; 10104 break; 10105 case 0x56: /* FCVTXN, FCVTXN2 */ 10106 if (size == 2) { 10107 unallocated_encoding(s); 10108 return; 10109 } 10110 if (!fp_access_check(s)) { 10111 return; 10112 } 10113 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10114 return; 10115 default: 10116 unallocated_encoding(s); 10117 return; 10118 } 10119 break; 10120 default: 10121 unallocated_encoding(s); 10122 return; 10123 } 10124 10125 if (!fp_access_check(s)) { 10126 return; 10127 } 10128 10129 if (is_fcvt) { 10130 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10131 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10132 } else { 10133 tcg_fpstatus = NULL; 10134 tcg_rmode = NULL; 10135 } 10136 10137 if (size == 3) { 10138 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10139 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10140 10141 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10142 write_fp_dreg(s, rd, tcg_rd); 10143 } else { 10144 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10145 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10146 10147 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10148 10149 switch (opcode) { 10150 case 0x7: /* SQABS, SQNEG */ 10151 { 10152 NeonGenOneOpEnvFn *genfn; 10153 static NeonGenOneOpEnvFn * const fns[3][2] = { 10154 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10155 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10156 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10157 }; 10158 genfn = fns[size][u]; 10159 genfn(tcg_rd, tcg_env, tcg_rn); 10160 break; 10161 } 10162 case 0x1a: /* FCVTNS */ 10163 case 0x1b: /* FCVTMS */ 10164 case 0x1c: /* FCVTAS */ 10165 case 0x3a: /* FCVTPS */ 10166 case 0x3b: /* FCVTZS */ 10167 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10168 tcg_fpstatus); 10169 break; 10170 case 0x5a: /* FCVTNU */ 10171 case 0x5b: /* FCVTMU */ 10172 case 0x5c: /* FCVTAU */ 10173 case 0x7a: /* FCVTPU */ 10174 case 0x7b: /* FCVTZU */ 10175 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10176 tcg_fpstatus); 10177 break; 10178 default: 10179 g_assert_not_reached(); 10180 } 10181 10182 write_fp_sreg(s, rd, tcg_rd); 10183 } 10184 10185 if (is_fcvt) { 10186 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10187 } 10188 } 10189 10190 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10191 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10192 int immh, int immb, int opcode, int rn, int rd) 10193 { 10194 int size = 32 - clz32(immh) - 1; 10195 int immhb = immh << 3 | immb; 10196 int shift = 2 * (8 << size) - immhb; 10197 GVecGen2iFn *gvec_fn; 10198 10199 if (extract32(immh, 3, 1) && !is_q) { 10200 unallocated_encoding(s); 10201 return; 10202 } 10203 tcg_debug_assert(size <= 3); 10204 10205 if (!fp_access_check(s)) { 10206 return; 10207 } 10208 10209 switch (opcode) { 10210 case 0x02: /* SSRA / USRA (accumulate) */ 10211 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10212 break; 10213 10214 case 0x08: /* SRI */ 10215 gvec_fn = gen_gvec_sri; 10216 break; 10217 10218 case 0x00: /* SSHR / USHR */ 10219 if (is_u) { 10220 if (shift == 8 << size) { 10221 /* Shift count the same size as element size produces zero. */ 10222 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10223 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10224 return; 10225 } 10226 gvec_fn = tcg_gen_gvec_shri; 10227 } else { 10228 /* Shift count the same size as element size produces all sign. */ 10229 if (shift == 8 << size) { 10230 shift -= 1; 10231 } 10232 gvec_fn = tcg_gen_gvec_sari; 10233 } 10234 break; 10235 10236 case 0x04: /* SRSHR / URSHR (rounding) */ 10237 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10238 break; 10239 10240 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10241 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10242 break; 10243 10244 default: 10245 g_assert_not_reached(); 10246 } 10247 10248 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10249 } 10250 10251 /* SHL/SLI - Vector shift left */ 10252 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10253 int immh, int immb, int opcode, int rn, int rd) 10254 { 10255 int size = 32 - clz32(immh) - 1; 10256 int immhb = immh << 3 | immb; 10257 int shift = immhb - (8 << size); 10258 10259 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10260 assert(size >= 0 && size <= 3); 10261 10262 if (extract32(immh, 3, 1) && !is_q) { 10263 unallocated_encoding(s); 10264 return; 10265 } 10266 10267 if (!fp_access_check(s)) { 10268 return; 10269 } 10270 10271 if (insert) { 10272 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10273 } else { 10274 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10275 } 10276 } 10277 10278 /* USHLL/SHLL - Vector shift left with widening */ 10279 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10280 int immh, int immb, int opcode, int rn, int rd) 10281 { 10282 int size = 32 - clz32(immh) - 1; 10283 int immhb = immh << 3 | immb; 10284 int shift = immhb - (8 << size); 10285 int dsize = 64; 10286 int esize = 8 << size; 10287 int elements = dsize/esize; 10288 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10289 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10290 int i; 10291 10292 if (size >= 3) { 10293 unallocated_encoding(s); 10294 return; 10295 } 10296 10297 if (!fp_access_check(s)) { 10298 return; 10299 } 10300 10301 /* For the LL variants the store is larger than the load, 10302 * so if rd == rn we would overwrite parts of our input. 10303 * So load everything right now and use shifts in the main loop. 10304 */ 10305 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10306 10307 for (i = 0; i < elements; i++) { 10308 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10309 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10310 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10311 write_vec_element(s, tcg_rd, rd, i, size + 1); 10312 } 10313 } 10314 10315 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10316 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10317 int immh, int immb, int opcode, int rn, int rd) 10318 { 10319 int immhb = immh << 3 | immb; 10320 int size = 32 - clz32(immh) - 1; 10321 int dsize = 64; 10322 int esize = 8 << size; 10323 int elements = dsize/esize; 10324 int shift = (2 * esize) - immhb; 10325 bool round = extract32(opcode, 0, 1); 10326 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10327 TCGv_i64 tcg_round; 10328 int i; 10329 10330 if (extract32(immh, 3, 1)) { 10331 unallocated_encoding(s); 10332 return; 10333 } 10334 10335 if (!fp_access_check(s)) { 10336 return; 10337 } 10338 10339 tcg_rn = tcg_temp_new_i64(); 10340 tcg_rd = tcg_temp_new_i64(); 10341 tcg_final = tcg_temp_new_i64(); 10342 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10343 10344 if (round) { 10345 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10346 } else { 10347 tcg_round = NULL; 10348 } 10349 10350 for (i = 0; i < elements; i++) { 10351 read_vec_element(s, tcg_rn, rn, i, size+1); 10352 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10353 false, true, size+1, shift); 10354 10355 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10356 } 10357 10358 if (!is_q) { 10359 write_vec_element(s, tcg_final, rd, 0, MO_64); 10360 } else { 10361 write_vec_element(s, tcg_final, rd, 1, MO_64); 10362 } 10363 10364 clear_vec_high(s, is_q, rd); 10365 } 10366 10367 10368 /* AdvSIMD shift by immediate 10369 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10370 * +---+---+---+-------------+------+------+--------+---+------+------+ 10371 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10372 * +---+---+---+-------------+------+------+--------+---+------+------+ 10373 */ 10374 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10375 { 10376 int rd = extract32(insn, 0, 5); 10377 int rn = extract32(insn, 5, 5); 10378 int opcode = extract32(insn, 11, 5); 10379 int immb = extract32(insn, 16, 3); 10380 int immh = extract32(insn, 19, 4); 10381 bool is_u = extract32(insn, 29, 1); 10382 bool is_q = extract32(insn, 30, 1); 10383 10384 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10385 assert(immh != 0); 10386 10387 switch (opcode) { 10388 case 0x08: /* SRI */ 10389 if (!is_u) { 10390 unallocated_encoding(s); 10391 return; 10392 } 10393 /* fall through */ 10394 case 0x00: /* SSHR / USHR */ 10395 case 0x02: /* SSRA / USRA (accumulate) */ 10396 case 0x04: /* SRSHR / URSHR (rounding) */ 10397 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10398 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10399 break; 10400 case 0x0a: /* SHL / SLI */ 10401 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10402 break; 10403 case 0x10: /* SHRN */ 10404 case 0x11: /* RSHRN / SQRSHRUN */ 10405 if (is_u) { 10406 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10407 opcode, rn, rd); 10408 } else { 10409 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10410 } 10411 break; 10412 case 0x12: /* SQSHRN / UQSHRN */ 10413 case 0x13: /* SQRSHRN / UQRSHRN */ 10414 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10415 opcode, rn, rd); 10416 break; 10417 case 0x14: /* SSHLL / USHLL */ 10418 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10419 break; 10420 case 0x1c: /* SCVTF / UCVTF */ 10421 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10422 opcode, rn, rd); 10423 break; 10424 case 0xc: /* SQSHLU */ 10425 if (!is_u) { 10426 unallocated_encoding(s); 10427 return; 10428 } 10429 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10430 break; 10431 case 0xe: /* SQSHL, UQSHL */ 10432 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10433 break; 10434 case 0x1f: /* FCVTZS/ FCVTZU */ 10435 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10436 return; 10437 default: 10438 unallocated_encoding(s); 10439 return; 10440 } 10441 } 10442 10443 /* Generate code to do a "long" addition or subtraction, ie one done in 10444 * TCGv_i64 on vector lanes twice the width specified by size. 10445 */ 10446 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10447 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10448 { 10449 static NeonGenTwo64OpFn * const fns[3][2] = { 10450 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10451 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10452 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10453 }; 10454 NeonGenTwo64OpFn *genfn; 10455 assert(size < 3); 10456 10457 genfn = fns[size][is_sub]; 10458 genfn(tcg_res, tcg_op1, tcg_op2); 10459 } 10460 10461 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10462 int opcode, int rd, int rn, int rm) 10463 { 10464 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10465 TCGv_i64 tcg_res[2]; 10466 int pass, accop; 10467 10468 tcg_res[0] = tcg_temp_new_i64(); 10469 tcg_res[1] = tcg_temp_new_i64(); 10470 10471 /* Does this op do an adding accumulate, a subtracting accumulate, 10472 * or no accumulate at all? 10473 */ 10474 switch (opcode) { 10475 case 5: 10476 case 8: 10477 case 9: 10478 accop = 1; 10479 break; 10480 case 10: 10481 case 11: 10482 accop = -1; 10483 break; 10484 default: 10485 accop = 0; 10486 break; 10487 } 10488 10489 if (accop != 0) { 10490 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10491 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10492 } 10493 10494 /* size == 2 means two 32x32->64 operations; this is worth special 10495 * casing because we can generally handle it inline. 10496 */ 10497 if (size == 2) { 10498 for (pass = 0; pass < 2; pass++) { 10499 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10500 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10501 TCGv_i64 tcg_passres; 10502 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10503 10504 int elt = pass + is_q * 2; 10505 10506 read_vec_element(s, tcg_op1, rn, elt, memop); 10507 read_vec_element(s, tcg_op2, rm, elt, memop); 10508 10509 if (accop == 0) { 10510 tcg_passres = tcg_res[pass]; 10511 } else { 10512 tcg_passres = tcg_temp_new_i64(); 10513 } 10514 10515 switch (opcode) { 10516 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10517 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10518 break; 10519 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10520 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10521 break; 10522 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10523 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10524 { 10525 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10526 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10527 10528 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10529 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10530 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10531 tcg_passres, 10532 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10533 break; 10534 } 10535 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10536 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10537 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10538 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10539 break; 10540 case 9: /* SQDMLAL, SQDMLAL2 */ 10541 case 11: /* SQDMLSL, SQDMLSL2 */ 10542 case 13: /* SQDMULL, SQDMULL2 */ 10543 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10544 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10545 tcg_passres, tcg_passres); 10546 break; 10547 default: 10548 g_assert_not_reached(); 10549 } 10550 10551 if (opcode == 9 || opcode == 11) { 10552 /* saturating accumulate ops */ 10553 if (accop < 0) { 10554 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10555 } 10556 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10557 tcg_res[pass], tcg_passres); 10558 } else if (accop > 0) { 10559 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10560 } else if (accop < 0) { 10561 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10562 } 10563 } 10564 } else { 10565 /* size 0 or 1, generally helper functions */ 10566 for (pass = 0; pass < 2; pass++) { 10567 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10568 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10569 TCGv_i64 tcg_passres; 10570 int elt = pass + is_q * 2; 10571 10572 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10573 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10574 10575 if (accop == 0) { 10576 tcg_passres = tcg_res[pass]; 10577 } else { 10578 tcg_passres = tcg_temp_new_i64(); 10579 } 10580 10581 switch (opcode) { 10582 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10583 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10584 { 10585 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10586 static NeonGenWidenFn * const widenfns[2][2] = { 10587 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10588 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10589 }; 10590 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10591 10592 widenfn(tcg_op2_64, tcg_op2); 10593 widenfn(tcg_passres, tcg_op1); 10594 gen_neon_addl(size, (opcode == 2), tcg_passres, 10595 tcg_passres, tcg_op2_64); 10596 break; 10597 } 10598 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10599 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10600 if (size == 0) { 10601 if (is_u) { 10602 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10603 } else { 10604 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10605 } 10606 } else { 10607 if (is_u) { 10608 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10609 } else { 10610 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10611 } 10612 } 10613 break; 10614 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10615 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10616 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10617 if (size == 0) { 10618 if (is_u) { 10619 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10620 } else { 10621 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10622 } 10623 } else { 10624 if (is_u) { 10625 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10626 } else { 10627 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10628 } 10629 } 10630 break; 10631 case 9: /* SQDMLAL, SQDMLAL2 */ 10632 case 11: /* SQDMLSL, SQDMLSL2 */ 10633 case 13: /* SQDMULL, SQDMULL2 */ 10634 assert(size == 1); 10635 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10636 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10637 tcg_passres, tcg_passres); 10638 break; 10639 default: 10640 g_assert_not_reached(); 10641 } 10642 10643 if (accop != 0) { 10644 if (opcode == 9 || opcode == 11) { 10645 /* saturating accumulate ops */ 10646 if (accop < 0) { 10647 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10648 } 10649 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10650 tcg_res[pass], 10651 tcg_passres); 10652 } else { 10653 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10654 tcg_res[pass], tcg_passres); 10655 } 10656 } 10657 } 10658 } 10659 10660 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10661 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10662 } 10663 10664 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10665 int opcode, int rd, int rn, int rm) 10666 { 10667 TCGv_i64 tcg_res[2]; 10668 int part = is_q ? 2 : 0; 10669 int pass; 10670 10671 for (pass = 0; pass < 2; pass++) { 10672 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10673 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10674 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10675 static NeonGenWidenFn * const widenfns[3][2] = { 10676 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10677 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10678 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10679 }; 10680 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10681 10682 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10683 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10684 widenfn(tcg_op2_wide, tcg_op2); 10685 tcg_res[pass] = tcg_temp_new_i64(); 10686 gen_neon_addl(size, (opcode == 3), 10687 tcg_res[pass], tcg_op1, tcg_op2_wide); 10688 } 10689 10690 for (pass = 0; pass < 2; pass++) { 10691 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10692 } 10693 } 10694 10695 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10696 { 10697 tcg_gen_addi_i64(in, in, 1U << 31); 10698 tcg_gen_extrh_i64_i32(res, in); 10699 } 10700 10701 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10702 int opcode, int rd, int rn, int rm) 10703 { 10704 TCGv_i32 tcg_res[2]; 10705 int part = is_q ? 2 : 0; 10706 int pass; 10707 10708 for (pass = 0; pass < 2; pass++) { 10709 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10710 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10711 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10712 static NeonGenNarrowFn * const narrowfns[3][2] = { 10713 { gen_helper_neon_narrow_high_u8, 10714 gen_helper_neon_narrow_round_high_u8 }, 10715 { gen_helper_neon_narrow_high_u16, 10716 gen_helper_neon_narrow_round_high_u16 }, 10717 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10718 }; 10719 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10720 10721 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10722 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10723 10724 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10725 10726 tcg_res[pass] = tcg_temp_new_i32(); 10727 gennarrow(tcg_res[pass], tcg_wideres); 10728 } 10729 10730 for (pass = 0; pass < 2; pass++) { 10731 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10732 } 10733 clear_vec_high(s, is_q, rd); 10734 } 10735 10736 /* AdvSIMD three different 10737 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10738 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10739 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10740 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10741 */ 10742 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10743 { 10744 /* Instructions in this group fall into three basic classes 10745 * (in each case with the operation working on each element in 10746 * the input vectors): 10747 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10748 * 128 bit input) 10749 * (2) wide 64 x 128 -> 128 10750 * (3) narrowing 128 x 128 -> 64 10751 * Here we do initial decode, catch unallocated cases and 10752 * dispatch to separate functions for each class. 10753 */ 10754 int is_q = extract32(insn, 30, 1); 10755 int is_u = extract32(insn, 29, 1); 10756 int size = extract32(insn, 22, 2); 10757 int opcode = extract32(insn, 12, 4); 10758 int rm = extract32(insn, 16, 5); 10759 int rn = extract32(insn, 5, 5); 10760 int rd = extract32(insn, 0, 5); 10761 10762 switch (opcode) { 10763 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10764 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10765 /* 64 x 128 -> 128 */ 10766 if (size == 3) { 10767 unallocated_encoding(s); 10768 return; 10769 } 10770 if (!fp_access_check(s)) { 10771 return; 10772 } 10773 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10774 break; 10775 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10776 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10777 /* 128 x 128 -> 64 */ 10778 if (size == 3) { 10779 unallocated_encoding(s); 10780 return; 10781 } 10782 if (!fp_access_check(s)) { 10783 return; 10784 } 10785 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10786 break; 10787 case 14: /* PMULL, PMULL2 */ 10788 if (is_u) { 10789 unallocated_encoding(s); 10790 return; 10791 } 10792 switch (size) { 10793 case 0: /* PMULL.P8 */ 10794 if (!fp_access_check(s)) { 10795 return; 10796 } 10797 /* The Q field specifies lo/hi half input for this insn. */ 10798 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10799 gen_helper_neon_pmull_h); 10800 break; 10801 10802 case 3: /* PMULL.P64 */ 10803 if (!dc_isar_feature(aa64_pmull, s)) { 10804 unallocated_encoding(s); 10805 return; 10806 } 10807 if (!fp_access_check(s)) { 10808 return; 10809 } 10810 /* The Q field specifies lo/hi half input for this insn. */ 10811 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10812 gen_helper_gvec_pmull_q); 10813 break; 10814 10815 default: 10816 unallocated_encoding(s); 10817 break; 10818 } 10819 return; 10820 case 9: /* SQDMLAL, SQDMLAL2 */ 10821 case 11: /* SQDMLSL, SQDMLSL2 */ 10822 case 13: /* SQDMULL, SQDMULL2 */ 10823 if (is_u || size == 0) { 10824 unallocated_encoding(s); 10825 return; 10826 } 10827 /* fall through */ 10828 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10829 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10830 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10831 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10832 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10833 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10834 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10835 /* 64 x 64 -> 128 */ 10836 if (size == 3) { 10837 unallocated_encoding(s); 10838 return; 10839 } 10840 if (!fp_access_check(s)) { 10841 return; 10842 } 10843 10844 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10845 break; 10846 default: 10847 /* opcode 15 not allocated */ 10848 unallocated_encoding(s); 10849 break; 10850 } 10851 } 10852 10853 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10854 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10855 { 10856 int rd = extract32(insn, 0, 5); 10857 int rn = extract32(insn, 5, 5); 10858 int rm = extract32(insn, 16, 5); 10859 int size = extract32(insn, 22, 2); 10860 bool is_u = extract32(insn, 29, 1); 10861 bool is_q = extract32(insn, 30, 1); 10862 10863 if (!fp_access_check(s)) { 10864 return; 10865 } 10866 10867 switch (size + 4 * is_u) { 10868 case 0: /* AND */ 10869 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10870 return; 10871 case 1: /* BIC */ 10872 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10873 return; 10874 case 2: /* ORR */ 10875 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10876 return; 10877 case 3: /* ORN */ 10878 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10879 return; 10880 case 4: /* EOR */ 10881 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10882 return; 10883 10884 case 5: /* BSL bitwise select */ 10885 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10886 return; 10887 case 6: /* BIT, bitwise insert if true */ 10888 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10889 return; 10890 case 7: /* BIF, bitwise insert if false */ 10891 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10892 return; 10893 10894 default: 10895 g_assert_not_reached(); 10896 } 10897 } 10898 10899 /* Pairwise op subgroup of C3.6.16. 10900 * 10901 * This is called directly for float pairwise 10902 * operations where the opcode and size are calculated differently. 10903 */ 10904 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10905 int size, int rn, int rm, int rd) 10906 { 10907 int pass; 10908 10909 if (!fp_access_check(s)) { 10910 return; 10911 } 10912 10913 /* These operations work on the concatenated rm:rn, with each pair of 10914 * adjacent elements being operated on to produce an element in the result. 10915 */ 10916 if (size == 3) { 10917 g_assert_not_reached(); 10918 } else { 10919 int maxpass = is_q ? 4 : 2; 10920 TCGv_i32 tcg_res[4]; 10921 10922 for (pass = 0; pass < maxpass; pass++) { 10923 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10924 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10925 NeonGenTwoOpFn *genfn = NULL; 10926 int passreg = pass < (maxpass / 2) ? rn : rm; 10927 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10928 10929 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10930 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10931 tcg_res[pass] = tcg_temp_new_i32(); 10932 10933 switch (opcode) { 10934 case 0x14: /* SMAXP, UMAXP */ 10935 { 10936 static NeonGenTwoOpFn * const fns[3][2] = { 10937 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10938 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10939 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10940 }; 10941 genfn = fns[size][u]; 10942 break; 10943 } 10944 case 0x15: /* SMINP, UMINP */ 10945 { 10946 static NeonGenTwoOpFn * const fns[3][2] = { 10947 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10948 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10949 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10950 }; 10951 genfn = fns[size][u]; 10952 break; 10953 } 10954 default: 10955 case 0x17: /* ADDP */ 10956 case 0x58: /* FMAXNMP */ 10957 case 0x5a: /* FADDP */ 10958 case 0x5e: /* FMAXP */ 10959 case 0x78: /* FMINNMP */ 10960 case 0x7e: /* FMINP */ 10961 g_assert_not_reached(); 10962 } 10963 10964 /* FP ops called directly, otherwise call now */ 10965 if (genfn) { 10966 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10967 } 10968 } 10969 10970 for (pass = 0; pass < maxpass; pass++) { 10971 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10972 } 10973 clear_vec_high(s, is_q, rd); 10974 } 10975 } 10976 10977 /* Floating point op subgroup of C3.6.16. */ 10978 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10979 { 10980 /* For floating point ops, the U, size[1] and opcode bits 10981 * together indicate the operation. size[0] indicates single 10982 * or double. 10983 */ 10984 int fpopcode = extract32(insn, 11, 5) 10985 | (extract32(insn, 23, 1) << 5) 10986 | (extract32(insn, 29, 1) << 6); 10987 int is_q = extract32(insn, 30, 1); 10988 int size = extract32(insn, 22, 1); 10989 int rm = extract32(insn, 16, 5); 10990 int rn = extract32(insn, 5, 5); 10991 int rd = extract32(insn, 0, 5); 10992 10993 if (size == 1 && !is_q) { 10994 unallocated_encoding(s); 10995 return; 10996 } 10997 10998 switch (fpopcode) { 10999 case 0x1d: /* FMLAL */ 11000 case 0x3d: /* FMLSL */ 11001 case 0x59: /* FMLAL2 */ 11002 case 0x79: /* FMLSL2 */ 11003 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11004 unallocated_encoding(s); 11005 return; 11006 } 11007 if (fp_access_check(s)) { 11008 int is_s = extract32(insn, 23, 1); 11009 int is_2 = extract32(insn, 29, 1); 11010 int data = (is_2 << 1) | is_s; 11011 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11012 vec_full_reg_offset(s, rn), 11013 vec_full_reg_offset(s, rm), tcg_env, 11014 is_q ? 16 : 8, vec_full_reg_size(s), 11015 data, gen_helper_gvec_fmlal_a64); 11016 } 11017 return; 11018 11019 default: 11020 case 0x18: /* FMAXNM */ 11021 case 0x19: /* FMLA */ 11022 case 0x1a: /* FADD */ 11023 case 0x1b: /* FMULX */ 11024 case 0x1c: /* FCMEQ */ 11025 case 0x1e: /* FMAX */ 11026 case 0x1f: /* FRECPS */ 11027 case 0x38: /* FMINNM */ 11028 case 0x39: /* FMLS */ 11029 case 0x3a: /* FSUB */ 11030 case 0x3e: /* FMIN */ 11031 case 0x3f: /* FRSQRTS */ 11032 case 0x58: /* FMAXNMP */ 11033 case 0x5a: /* FADDP */ 11034 case 0x5b: /* FMUL */ 11035 case 0x5c: /* FCMGE */ 11036 case 0x5d: /* FACGE */ 11037 case 0x5e: /* FMAXP */ 11038 case 0x5f: /* FDIV */ 11039 case 0x78: /* FMINNMP */ 11040 case 0x7a: /* FABD */ 11041 case 0x7d: /* FACGT */ 11042 case 0x7c: /* FCMGT */ 11043 case 0x7e: /* FMINP */ 11044 unallocated_encoding(s); 11045 return; 11046 } 11047 } 11048 11049 /* Integer op subgroup of C3.6.16. */ 11050 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11051 { 11052 int is_q = extract32(insn, 30, 1); 11053 int u = extract32(insn, 29, 1); 11054 int size = extract32(insn, 22, 2); 11055 int opcode = extract32(insn, 11, 5); 11056 int rm = extract32(insn, 16, 5); 11057 int rn = extract32(insn, 5, 5); 11058 int rd = extract32(insn, 0, 5); 11059 int pass; 11060 TCGCond cond; 11061 11062 switch (opcode) { 11063 case 0x13: /* MUL, PMUL */ 11064 if (u && size != 0) { 11065 unallocated_encoding(s); 11066 return; 11067 } 11068 /* fall through */ 11069 case 0x0: /* SHADD, UHADD */ 11070 case 0x2: /* SRHADD, URHADD */ 11071 case 0x4: /* SHSUB, UHSUB */ 11072 case 0xc: /* SMAX, UMAX */ 11073 case 0xd: /* SMIN, UMIN */ 11074 case 0xe: /* SABD, UABD */ 11075 case 0xf: /* SABA, UABA */ 11076 case 0x12: /* MLA, MLS */ 11077 if (size == 3) { 11078 unallocated_encoding(s); 11079 return; 11080 } 11081 break; 11082 case 0x16: /* SQDMULH, SQRDMULH */ 11083 if (size == 0 || size == 3) { 11084 unallocated_encoding(s); 11085 return; 11086 } 11087 break; 11088 default: 11089 if (size == 3 && !is_q) { 11090 unallocated_encoding(s); 11091 return; 11092 } 11093 break; 11094 } 11095 11096 if (!fp_access_check(s)) { 11097 return; 11098 } 11099 11100 switch (opcode) { 11101 case 0x01: /* SQADD, UQADD */ 11102 if (u) { 11103 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11104 } else { 11105 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11106 } 11107 return; 11108 case 0x05: /* SQSUB, UQSUB */ 11109 if (u) { 11110 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11111 } else { 11112 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11113 } 11114 return; 11115 case 0x08: /* SSHL, USHL */ 11116 if (u) { 11117 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11118 } else { 11119 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11120 } 11121 return; 11122 case 0x0c: /* SMAX, UMAX */ 11123 if (u) { 11124 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11125 } else { 11126 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11127 } 11128 return; 11129 case 0x0d: /* SMIN, UMIN */ 11130 if (u) { 11131 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11132 } else { 11133 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11134 } 11135 return; 11136 case 0xe: /* SABD, UABD */ 11137 if (u) { 11138 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11139 } else { 11140 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11141 } 11142 return; 11143 case 0xf: /* SABA, UABA */ 11144 if (u) { 11145 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11146 } else { 11147 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11148 } 11149 return; 11150 case 0x10: /* ADD, SUB */ 11151 if (u) { 11152 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11153 } else { 11154 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11155 } 11156 return; 11157 case 0x13: /* MUL, PMUL */ 11158 if (!u) { /* MUL */ 11159 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11160 } else { /* PMUL */ 11161 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11162 } 11163 return; 11164 case 0x12: /* MLA, MLS */ 11165 if (u) { 11166 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11167 } else { 11168 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11169 } 11170 return; 11171 case 0x16: /* SQDMULH, SQRDMULH */ 11172 { 11173 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11174 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11175 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11176 }; 11177 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11178 } 11179 return; 11180 case 0x11: 11181 if (!u) { /* CMTST */ 11182 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11183 return; 11184 } 11185 /* else CMEQ */ 11186 cond = TCG_COND_EQ; 11187 goto do_gvec_cmp; 11188 case 0x06: /* CMGT, CMHI */ 11189 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11190 goto do_gvec_cmp; 11191 case 0x07: /* CMGE, CMHS */ 11192 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11193 do_gvec_cmp: 11194 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11195 vec_full_reg_offset(s, rn), 11196 vec_full_reg_offset(s, rm), 11197 is_q ? 16 : 8, vec_full_reg_size(s)); 11198 return; 11199 } 11200 11201 if (size == 3) { 11202 assert(is_q); 11203 for (pass = 0; pass < 2; pass++) { 11204 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11205 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11206 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11207 11208 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11209 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11210 11211 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11212 11213 write_vec_element(s, tcg_res, rd, pass, MO_64); 11214 } 11215 } else { 11216 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11217 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11218 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11219 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11220 NeonGenTwoOpFn *genfn = NULL; 11221 NeonGenTwoOpEnvFn *genenvfn = NULL; 11222 11223 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11224 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11225 11226 switch (opcode) { 11227 case 0x0: /* SHADD, UHADD */ 11228 { 11229 static NeonGenTwoOpFn * const fns[3][2] = { 11230 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11231 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11232 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11233 }; 11234 genfn = fns[size][u]; 11235 break; 11236 } 11237 case 0x2: /* SRHADD, URHADD */ 11238 { 11239 static NeonGenTwoOpFn * const fns[3][2] = { 11240 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11241 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11242 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11243 }; 11244 genfn = fns[size][u]; 11245 break; 11246 } 11247 case 0x4: /* SHSUB, UHSUB */ 11248 { 11249 static NeonGenTwoOpFn * const fns[3][2] = { 11250 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11251 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11252 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11253 }; 11254 genfn = fns[size][u]; 11255 break; 11256 } 11257 case 0x9: /* SQSHL, UQSHL */ 11258 { 11259 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11260 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11261 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11262 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11263 }; 11264 genenvfn = fns[size][u]; 11265 break; 11266 } 11267 case 0xa: /* SRSHL, URSHL */ 11268 { 11269 static NeonGenTwoOpFn * const fns[3][2] = { 11270 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11271 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11272 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11273 }; 11274 genfn = fns[size][u]; 11275 break; 11276 } 11277 case 0xb: /* SQRSHL, UQRSHL */ 11278 { 11279 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11280 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11281 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11282 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11283 }; 11284 genenvfn = fns[size][u]; 11285 break; 11286 } 11287 default: 11288 g_assert_not_reached(); 11289 } 11290 11291 if (genenvfn) { 11292 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11293 } else { 11294 genfn(tcg_res, tcg_op1, tcg_op2); 11295 } 11296 11297 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11298 } 11299 } 11300 clear_vec_high(s, is_q, rd); 11301 } 11302 11303 /* AdvSIMD three same 11304 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11305 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11306 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11307 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11308 */ 11309 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11310 { 11311 int opcode = extract32(insn, 11, 5); 11312 11313 switch (opcode) { 11314 case 0x3: /* logic ops */ 11315 disas_simd_3same_logic(s, insn); 11316 break; 11317 case 0x14: /* SMAXP, UMAXP */ 11318 case 0x15: /* SMINP, UMINP */ 11319 { 11320 /* Pairwise operations */ 11321 int is_q = extract32(insn, 30, 1); 11322 int u = extract32(insn, 29, 1); 11323 int size = extract32(insn, 22, 2); 11324 int rm = extract32(insn, 16, 5); 11325 int rn = extract32(insn, 5, 5); 11326 int rd = extract32(insn, 0, 5); 11327 if (opcode == 0x17) { 11328 if (u || (size == 3 && !is_q)) { 11329 unallocated_encoding(s); 11330 return; 11331 } 11332 } else { 11333 if (size == 3) { 11334 unallocated_encoding(s); 11335 return; 11336 } 11337 } 11338 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11339 break; 11340 } 11341 case 0x18 ... 0x31: 11342 /* floating point ops, sz[1] and U are part of opcode */ 11343 disas_simd_3same_float(s, insn); 11344 break; 11345 default: 11346 disas_simd_3same_int(s, insn); 11347 break; 11348 case 0x17: /* ADDP */ 11349 unallocated_encoding(s); 11350 break; 11351 } 11352 } 11353 11354 /* AdvSIMD three same extra 11355 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11356 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11357 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11358 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11359 */ 11360 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11361 { 11362 int rd = extract32(insn, 0, 5); 11363 int rn = extract32(insn, 5, 5); 11364 int opcode = extract32(insn, 11, 4); 11365 int rm = extract32(insn, 16, 5); 11366 int size = extract32(insn, 22, 2); 11367 bool u = extract32(insn, 29, 1); 11368 bool is_q = extract32(insn, 30, 1); 11369 bool feature; 11370 int rot; 11371 11372 switch (u * 16 + opcode) { 11373 case 0x10: /* SQRDMLAH (vector) */ 11374 case 0x11: /* SQRDMLSH (vector) */ 11375 if (size != 1 && size != 2) { 11376 unallocated_encoding(s); 11377 return; 11378 } 11379 feature = dc_isar_feature(aa64_rdm, s); 11380 break; 11381 case 0x02: /* SDOT (vector) */ 11382 case 0x12: /* UDOT (vector) */ 11383 if (size != MO_32) { 11384 unallocated_encoding(s); 11385 return; 11386 } 11387 feature = dc_isar_feature(aa64_dp, s); 11388 break; 11389 case 0x03: /* USDOT */ 11390 if (size != MO_32) { 11391 unallocated_encoding(s); 11392 return; 11393 } 11394 feature = dc_isar_feature(aa64_i8mm, s); 11395 break; 11396 case 0x04: /* SMMLA */ 11397 case 0x14: /* UMMLA */ 11398 case 0x05: /* USMMLA */ 11399 if (!is_q || size != MO_32) { 11400 unallocated_encoding(s); 11401 return; 11402 } 11403 feature = dc_isar_feature(aa64_i8mm, s); 11404 break; 11405 case 0x18: /* FCMLA, #0 */ 11406 case 0x19: /* FCMLA, #90 */ 11407 case 0x1a: /* FCMLA, #180 */ 11408 case 0x1b: /* FCMLA, #270 */ 11409 case 0x1c: /* FCADD, #90 */ 11410 case 0x1e: /* FCADD, #270 */ 11411 if (size == 0 11412 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11413 || (size == 3 && !is_q)) { 11414 unallocated_encoding(s); 11415 return; 11416 } 11417 feature = dc_isar_feature(aa64_fcma, s); 11418 break; 11419 case 0x1d: /* BFMMLA */ 11420 if (size != MO_16 || !is_q) { 11421 unallocated_encoding(s); 11422 return; 11423 } 11424 feature = dc_isar_feature(aa64_bf16, s); 11425 break; 11426 case 0x1f: 11427 switch (size) { 11428 case 1: /* BFDOT */ 11429 case 3: /* BFMLAL{B,T} */ 11430 feature = dc_isar_feature(aa64_bf16, s); 11431 break; 11432 default: 11433 unallocated_encoding(s); 11434 return; 11435 } 11436 break; 11437 default: 11438 unallocated_encoding(s); 11439 return; 11440 } 11441 if (!feature) { 11442 unallocated_encoding(s); 11443 return; 11444 } 11445 if (!fp_access_check(s)) { 11446 return; 11447 } 11448 11449 switch (opcode) { 11450 case 0x0: /* SQRDMLAH (vector) */ 11451 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11452 return; 11453 11454 case 0x1: /* SQRDMLSH (vector) */ 11455 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11456 return; 11457 11458 case 0x2: /* SDOT / UDOT */ 11459 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11460 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11461 return; 11462 11463 case 0x3: /* USDOT */ 11464 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11465 return; 11466 11467 case 0x04: /* SMMLA, UMMLA */ 11468 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11469 u ? gen_helper_gvec_ummla_b 11470 : gen_helper_gvec_smmla_b); 11471 return; 11472 case 0x05: /* USMMLA */ 11473 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11474 return; 11475 11476 case 0x8: /* FCMLA, #0 */ 11477 case 0x9: /* FCMLA, #90 */ 11478 case 0xa: /* FCMLA, #180 */ 11479 case 0xb: /* FCMLA, #270 */ 11480 rot = extract32(opcode, 0, 2); 11481 switch (size) { 11482 case 1: 11483 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11484 gen_helper_gvec_fcmlah); 11485 break; 11486 case 2: 11487 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11488 gen_helper_gvec_fcmlas); 11489 break; 11490 case 3: 11491 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11492 gen_helper_gvec_fcmlad); 11493 break; 11494 default: 11495 g_assert_not_reached(); 11496 } 11497 return; 11498 11499 case 0xc: /* FCADD, #90 */ 11500 case 0xe: /* FCADD, #270 */ 11501 rot = extract32(opcode, 1, 1); 11502 switch (size) { 11503 case 1: 11504 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11505 gen_helper_gvec_fcaddh); 11506 break; 11507 case 2: 11508 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11509 gen_helper_gvec_fcadds); 11510 break; 11511 case 3: 11512 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11513 gen_helper_gvec_fcaddd); 11514 break; 11515 default: 11516 g_assert_not_reached(); 11517 } 11518 return; 11519 11520 case 0xd: /* BFMMLA */ 11521 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11522 return; 11523 case 0xf: 11524 switch (size) { 11525 case 1: /* BFDOT */ 11526 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11527 break; 11528 case 3: /* BFMLAL{B,T} */ 11529 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11530 gen_helper_gvec_bfmlal); 11531 break; 11532 default: 11533 g_assert_not_reached(); 11534 } 11535 return; 11536 11537 default: 11538 g_assert_not_reached(); 11539 } 11540 } 11541 11542 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11543 int size, int rn, int rd) 11544 { 11545 /* Handle 2-reg-misc ops which are widening (so each size element 11546 * in the source becomes a 2*size element in the destination. 11547 * The only instruction like this is FCVTL. 11548 */ 11549 int pass; 11550 11551 if (size == 3) { 11552 /* 32 -> 64 bit fp conversion */ 11553 TCGv_i64 tcg_res[2]; 11554 int srcelt = is_q ? 2 : 0; 11555 11556 for (pass = 0; pass < 2; pass++) { 11557 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11558 tcg_res[pass] = tcg_temp_new_i64(); 11559 11560 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11561 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11562 } 11563 for (pass = 0; pass < 2; pass++) { 11564 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11565 } 11566 } else { 11567 /* 16 -> 32 bit fp conversion */ 11568 int srcelt = is_q ? 4 : 0; 11569 TCGv_i32 tcg_res[4]; 11570 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11571 TCGv_i32 ahp = get_ahp_flag(); 11572 11573 for (pass = 0; pass < 4; pass++) { 11574 tcg_res[pass] = tcg_temp_new_i32(); 11575 11576 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11577 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11578 fpst, ahp); 11579 } 11580 for (pass = 0; pass < 4; pass++) { 11581 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11582 } 11583 } 11584 } 11585 11586 static void handle_rev(DisasContext *s, int opcode, bool u, 11587 bool is_q, int size, int rn, int rd) 11588 { 11589 int op = (opcode << 1) | u; 11590 int opsz = op + size; 11591 int grp_size = 3 - opsz; 11592 int dsize = is_q ? 128 : 64; 11593 int i; 11594 11595 if (opsz >= 3) { 11596 unallocated_encoding(s); 11597 return; 11598 } 11599 11600 if (!fp_access_check(s)) { 11601 return; 11602 } 11603 11604 if (size == 0) { 11605 /* Special case bytes, use bswap op on each group of elements */ 11606 int groups = dsize / (8 << grp_size); 11607 11608 for (i = 0; i < groups; i++) { 11609 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11610 11611 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11612 switch (grp_size) { 11613 case MO_16: 11614 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11615 break; 11616 case MO_32: 11617 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11618 break; 11619 case MO_64: 11620 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11621 break; 11622 default: 11623 g_assert_not_reached(); 11624 } 11625 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11626 } 11627 clear_vec_high(s, is_q, rd); 11628 } else { 11629 int revmask = (1 << grp_size) - 1; 11630 int esize = 8 << size; 11631 int elements = dsize / esize; 11632 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11633 TCGv_i64 tcg_rd[2]; 11634 11635 for (i = 0; i < 2; i++) { 11636 tcg_rd[i] = tcg_temp_new_i64(); 11637 tcg_gen_movi_i64(tcg_rd[i], 0); 11638 } 11639 11640 for (i = 0; i < elements; i++) { 11641 int e_rev = (i & 0xf) ^ revmask; 11642 int w = (e_rev * esize) / 64; 11643 int o = (e_rev * esize) % 64; 11644 11645 read_vec_element(s, tcg_rn, rn, i, size); 11646 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11647 } 11648 11649 for (i = 0; i < 2; i++) { 11650 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11651 } 11652 clear_vec_high(s, true, rd); 11653 } 11654 } 11655 11656 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11657 bool is_q, int size, int rn, int rd) 11658 { 11659 /* Implement the pairwise operations from 2-misc: 11660 * SADDLP, UADDLP, SADALP, UADALP. 11661 * These all add pairs of elements in the input to produce a 11662 * double-width result element in the output (possibly accumulating). 11663 */ 11664 bool accum = (opcode == 0x6); 11665 int maxpass = is_q ? 2 : 1; 11666 int pass; 11667 TCGv_i64 tcg_res[2]; 11668 11669 if (size == 2) { 11670 /* 32 + 32 -> 64 op */ 11671 MemOp memop = size + (u ? 0 : MO_SIGN); 11672 11673 for (pass = 0; pass < maxpass; pass++) { 11674 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11675 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11676 11677 tcg_res[pass] = tcg_temp_new_i64(); 11678 11679 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11680 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11681 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11682 if (accum) { 11683 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11684 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11685 } 11686 } 11687 } else { 11688 for (pass = 0; pass < maxpass; pass++) { 11689 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11690 NeonGenOne64OpFn *genfn; 11691 static NeonGenOne64OpFn * const fns[2][2] = { 11692 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11693 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11694 }; 11695 11696 genfn = fns[size][u]; 11697 11698 tcg_res[pass] = tcg_temp_new_i64(); 11699 11700 read_vec_element(s, tcg_op, rn, pass, MO_64); 11701 genfn(tcg_res[pass], tcg_op); 11702 11703 if (accum) { 11704 read_vec_element(s, tcg_op, rd, pass, MO_64); 11705 if (size == 0) { 11706 gen_helper_neon_addl_u16(tcg_res[pass], 11707 tcg_res[pass], tcg_op); 11708 } else { 11709 gen_helper_neon_addl_u32(tcg_res[pass], 11710 tcg_res[pass], tcg_op); 11711 } 11712 } 11713 } 11714 } 11715 if (!is_q) { 11716 tcg_res[1] = tcg_constant_i64(0); 11717 } 11718 for (pass = 0; pass < 2; pass++) { 11719 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11720 } 11721 } 11722 11723 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11724 { 11725 /* Implement SHLL and SHLL2 */ 11726 int pass; 11727 int part = is_q ? 2 : 0; 11728 TCGv_i64 tcg_res[2]; 11729 11730 for (pass = 0; pass < 2; pass++) { 11731 static NeonGenWidenFn * const widenfns[3] = { 11732 gen_helper_neon_widen_u8, 11733 gen_helper_neon_widen_u16, 11734 tcg_gen_extu_i32_i64, 11735 }; 11736 NeonGenWidenFn *widenfn = widenfns[size]; 11737 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11738 11739 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11740 tcg_res[pass] = tcg_temp_new_i64(); 11741 widenfn(tcg_res[pass], tcg_op); 11742 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11743 } 11744 11745 for (pass = 0; pass < 2; pass++) { 11746 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11747 } 11748 } 11749 11750 /* AdvSIMD two reg misc 11751 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11752 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11753 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11754 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11755 */ 11756 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11757 { 11758 int size = extract32(insn, 22, 2); 11759 int opcode = extract32(insn, 12, 5); 11760 bool u = extract32(insn, 29, 1); 11761 bool is_q = extract32(insn, 30, 1); 11762 int rn = extract32(insn, 5, 5); 11763 int rd = extract32(insn, 0, 5); 11764 bool need_fpstatus = false; 11765 int rmode = -1; 11766 TCGv_i32 tcg_rmode; 11767 TCGv_ptr tcg_fpstatus; 11768 11769 switch (opcode) { 11770 case 0x0: /* REV64, REV32 */ 11771 case 0x1: /* REV16 */ 11772 handle_rev(s, opcode, u, is_q, size, rn, rd); 11773 return; 11774 case 0x5: /* CNT, NOT, RBIT */ 11775 if (u && size == 0) { 11776 /* NOT */ 11777 break; 11778 } else if (u && size == 1) { 11779 /* RBIT */ 11780 break; 11781 } else if (!u && size == 0) { 11782 /* CNT */ 11783 break; 11784 } 11785 unallocated_encoding(s); 11786 return; 11787 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11788 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11789 if (size == 3) { 11790 unallocated_encoding(s); 11791 return; 11792 } 11793 if (!fp_access_check(s)) { 11794 return; 11795 } 11796 11797 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11798 return; 11799 case 0x4: /* CLS, CLZ */ 11800 if (size == 3) { 11801 unallocated_encoding(s); 11802 return; 11803 } 11804 break; 11805 case 0x2: /* SADDLP, UADDLP */ 11806 case 0x6: /* SADALP, UADALP */ 11807 if (size == 3) { 11808 unallocated_encoding(s); 11809 return; 11810 } 11811 if (!fp_access_check(s)) { 11812 return; 11813 } 11814 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11815 return; 11816 case 0x13: /* SHLL, SHLL2 */ 11817 if (u == 0 || size == 3) { 11818 unallocated_encoding(s); 11819 return; 11820 } 11821 if (!fp_access_check(s)) { 11822 return; 11823 } 11824 handle_shll(s, is_q, size, rn, rd); 11825 return; 11826 case 0xa: /* CMLT */ 11827 if (u == 1) { 11828 unallocated_encoding(s); 11829 return; 11830 } 11831 /* fall through */ 11832 case 0x8: /* CMGT, CMGE */ 11833 case 0x9: /* CMEQ, CMLE */ 11834 case 0xb: /* ABS, NEG */ 11835 if (size == 3 && !is_q) { 11836 unallocated_encoding(s); 11837 return; 11838 } 11839 break; 11840 case 0x3: /* SUQADD, USQADD */ 11841 if (size == 3 && !is_q) { 11842 unallocated_encoding(s); 11843 return; 11844 } 11845 if (!fp_access_check(s)) { 11846 return; 11847 } 11848 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11849 return; 11850 case 0x7: /* SQABS, SQNEG */ 11851 if (size == 3 && !is_q) { 11852 unallocated_encoding(s); 11853 return; 11854 } 11855 break; 11856 case 0xc ... 0xf: 11857 case 0x16 ... 0x1f: 11858 { 11859 /* Floating point: U, size[1] and opcode indicate operation; 11860 * size[0] indicates single or double precision. 11861 */ 11862 int is_double = extract32(size, 0, 1); 11863 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11864 size = is_double ? 3 : 2; 11865 switch (opcode) { 11866 case 0x2f: /* FABS */ 11867 case 0x6f: /* FNEG */ 11868 if (size == 3 && !is_q) { 11869 unallocated_encoding(s); 11870 return; 11871 } 11872 break; 11873 case 0x1d: /* SCVTF */ 11874 case 0x5d: /* UCVTF */ 11875 { 11876 bool is_signed = (opcode == 0x1d) ? true : false; 11877 int elements = is_double ? 2 : is_q ? 4 : 2; 11878 if (is_double && !is_q) { 11879 unallocated_encoding(s); 11880 return; 11881 } 11882 if (!fp_access_check(s)) { 11883 return; 11884 } 11885 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11886 return; 11887 } 11888 case 0x2c: /* FCMGT (zero) */ 11889 case 0x2d: /* FCMEQ (zero) */ 11890 case 0x2e: /* FCMLT (zero) */ 11891 case 0x6c: /* FCMGE (zero) */ 11892 case 0x6d: /* FCMLE (zero) */ 11893 if (size == 3 && !is_q) { 11894 unallocated_encoding(s); 11895 return; 11896 } 11897 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11898 return; 11899 case 0x7f: /* FSQRT */ 11900 if (size == 3 && !is_q) { 11901 unallocated_encoding(s); 11902 return; 11903 } 11904 break; 11905 case 0x1a: /* FCVTNS */ 11906 case 0x1b: /* FCVTMS */ 11907 case 0x3a: /* FCVTPS */ 11908 case 0x3b: /* FCVTZS */ 11909 case 0x5a: /* FCVTNU */ 11910 case 0x5b: /* FCVTMU */ 11911 case 0x7a: /* FCVTPU */ 11912 case 0x7b: /* FCVTZU */ 11913 need_fpstatus = true; 11914 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11915 if (size == 3 && !is_q) { 11916 unallocated_encoding(s); 11917 return; 11918 } 11919 break; 11920 case 0x5c: /* FCVTAU */ 11921 case 0x1c: /* FCVTAS */ 11922 need_fpstatus = true; 11923 rmode = FPROUNDING_TIEAWAY; 11924 if (size == 3 && !is_q) { 11925 unallocated_encoding(s); 11926 return; 11927 } 11928 break; 11929 case 0x3c: /* URECPE */ 11930 if (size == 3) { 11931 unallocated_encoding(s); 11932 return; 11933 } 11934 /* fall through */ 11935 case 0x3d: /* FRECPE */ 11936 case 0x7d: /* FRSQRTE */ 11937 if (size == 3 && !is_q) { 11938 unallocated_encoding(s); 11939 return; 11940 } 11941 if (!fp_access_check(s)) { 11942 return; 11943 } 11944 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11945 return; 11946 case 0x56: /* FCVTXN, FCVTXN2 */ 11947 if (size == 2) { 11948 unallocated_encoding(s); 11949 return; 11950 } 11951 /* fall through */ 11952 case 0x16: /* FCVTN, FCVTN2 */ 11953 /* handle_2misc_narrow does a 2*size -> size operation, but these 11954 * instructions encode the source size rather than dest size. 11955 */ 11956 if (!fp_access_check(s)) { 11957 return; 11958 } 11959 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11960 return; 11961 case 0x36: /* BFCVTN, BFCVTN2 */ 11962 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11963 unallocated_encoding(s); 11964 return; 11965 } 11966 if (!fp_access_check(s)) { 11967 return; 11968 } 11969 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11970 return; 11971 case 0x17: /* FCVTL, FCVTL2 */ 11972 if (!fp_access_check(s)) { 11973 return; 11974 } 11975 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11976 return; 11977 case 0x18: /* FRINTN */ 11978 case 0x19: /* FRINTM */ 11979 case 0x38: /* FRINTP */ 11980 case 0x39: /* FRINTZ */ 11981 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11982 /* fall through */ 11983 case 0x59: /* FRINTX */ 11984 case 0x79: /* FRINTI */ 11985 need_fpstatus = true; 11986 if (size == 3 && !is_q) { 11987 unallocated_encoding(s); 11988 return; 11989 } 11990 break; 11991 case 0x58: /* FRINTA */ 11992 rmode = FPROUNDING_TIEAWAY; 11993 need_fpstatus = true; 11994 if (size == 3 && !is_q) { 11995 unallocated_encoding(s); 11996 return; 11997 } 11998 break; 11999 case 0x7c: /* URSQRTE */ 12000 if (size == 3) { 12001 unallocated_encoding(s); 12002 return; 12003 } 12004 break; 12005 case 0x1e: /* FRINT32Z */ 12006 case 0x1f: /* FRINT64Z */ 12007 rmode = FPROUNDING_ZERO; 12008 /* fall through */ 12009 case 0x5e: /* FRINT32X */ 12010 case 0x5f: /* FRINT64X */ 12011 need_fpstatus = true; 12012 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12013 unallocated_encoding(s); 12014 return; 12015 } 12016 break; 12017 default: 12018 unallocated_encoding(s); 12019 return; 12020 } 12021 break; 12022 } 12023 default: 12024 unallocated_encoding(s); 12025 return; 12026 } 12027 12028 if (!fp_access_check(s)) { 12029 return; 12030 } 12031 12032 if (need_fpstatus || rmode >= 0) { 12033 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12034 } else { 12035 tcg_fpstatus = NULL; 12036 } 12037 if (rmode >= 0) { 12038 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12039 } else { 12040 tcg_rmode = NULL; 12041 } 12042 12043 switch (opcode) { 12044 case 0x5: 12045 if (u && size == 0) { /* NOT */ 12046 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12047 return; 12048 } 12049 break; 12050 case 0x8: /* CMGT, CMGE */ 12051 if (u) { 12052 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12053 } else { 12054 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12055 } 12056 return; 12057 case 0x9: /* CMEQ, CMLE */ 12058 if (u) { 12059 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12060 } else { 12061 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12062 } 12063 return; 12064 case 0xa: /* CMLT */ 12065 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12066 return; 12067 case 0xb: 12068 if (u) { /* ABS, NEG */ 12069 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12070 } else { 12071 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12072 } 12073 return; 12074 } 12075 12076 if (size == 3) { 12077 /* All 64-bit element operations can be shared with scalar 2misc */ 12078 int pass; 12079 12080 /* Coverity claims (size == 3 && !is_q) has been eliminated 12081 * from all paths leading to here. 12082 */ 12083 tcg_debug_assert(is_q); 12084 for (pass = 0; pass < 2; pass++) { 12085 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12086 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12087 12088 read_vec_element(s, tcg_op, rn, pass, MO_64); 12089 12090 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12091 tcg_rmode, tcg_fpstatus); 12092 12093 write_vec_element(s, tcg_res, rd, pass, MO_64); 12094 } 12095 } else { 12096 int pass; 12097 12098 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12099 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12100 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12101 12102 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12103 12104 if (size == 2) { 12105 /* Special cases for 32 bit elements */ 12106 switch (opcode) { 12107 case 0x4: /* CLS */ 12108 if (u) { 12109 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12110 } else { 12111 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12112 } 12113 break; 12114 case 0x7: /* SQABS, SQNEG */ 12115 if (u) { 12116 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12117 } else { 12118 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12119 } 12120 break; 12121 case 0x2f: /* FABS */ 12122 gen_vfp_abss(tcg_res, tcg_op); 12123 break; 12124 case 0x6f: /* FNEG */ 12125 gen_vfp_negs(tcg_res, tcg_op); 12126 break; 12127 case 0x7f: /* FSQRT */ 12128 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12129 break; 12130 case 0x1a: /* FCVTNS */ 12131 case 0x1b: /* FCVTMS */ 12132 case 0x1c: /* FCVTAS */ 12133 case 0x3a: /* FCVTPS */ 12134 case 0x3b: /* FCVTZS */ 12135 gen_helper_vfp_tosls(tcg_res, tcg_op, 12136 tcg_constant_i32(0), tcg_fpstatus); 12137 break; 12138 case 0x5a: /* FCVTNU */ 12139 case 0x5b: /* FCVTMU */ 12140 case 0x5c: /* FCVTAU */ 12141 case 0x7a: /* FCVTPU */ 12142 case 0x7b: /* FCVTZU */ 12143 gen_helper_vfp_touls(tcg_res, tcg_op, 12144 tcg_constant_i32(0), tcg_fpstatus); 12145 break; 12146 case 0x18: /* FRINTN */ 12147 case 0x19: /* FRINTM */ 12148 case 0x38: /* FRINTP */ 12149 case 0x39: /* FRINTZ */ 12150 case 0x58: /* FRINTA */ 12151 case 0x79: /* FRINTI */ 12152 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12153 break; 12154 case 0x59: /* FRINTX */ 12155 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12156 break; 12157 case 0x7c: /* URSQRTE */ 12158 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12159 break; 12160 case 0x1e: /* FRINT32Z */ 12161 case 0x5e: /* FRINT32X */ 12162 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12163 break; 12164 case 0x1f: /* FRINT64Z */ 12165 case 0x5f: /* FRINT64X */ 12166 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12167 break; 12168 default: 12169 g_assert_not_reached(); 12170 } 12171 } else { 12172 /* Use helpers for 8 and 16 bit elements */ 12173 switch (opcode) { 12174 case 0x5: /* CNT, RBIT */ 12175 /* For these two insns size is part of the opcode specifier 12176 * (handled earlier); they always operate on byte elements. 12177 */ 12178 if (u) { 12179 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12180 } else { 12181 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12182 } 12183 break; 12184 case 0x7: /* SQABS, SQNEG */ 12185 { 12186 NeonGenOneOpEnvFn *genfn; 12187 static NeonGenOneOpEnvFn * const fns[2][2] = { 12188 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12189 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12190 }; 12191 genfn = fns[size][u]; 12192 genfn(tcg_res, tcg_env, tcg_op); 12193 break; 12194 } 12195 case 0x4: /* CLS, CLZ */ 12196 if (u) { 12197 if (size == 0) { 12198 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12199 } else { 12200 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12201 } 12202 } else { 12203 if (size == 0) { 12204 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12205 } else { 12206 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12207 } 12208 } 12209 break; 12210 default: 12211 g_assert_not_reached(); 12212 } 12213 } 12214 12215 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12216 } 12217 } 12218 clear_vec_high(s, is_q, rd); 12219 12220 if (tcg_rmode) { 12221 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12222 } 12223 } 12224 12225 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12226 * 12227 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12228 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12229 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12230 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12231 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12232 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12233 * 12234 * This actually covers two groups where scalar access is governed by 12235 * bit 28. A bunch of the instructions (float to integral) only exist 12236 * in the vector form and are un-allocated for the scalar decode. Also 12237 * in the scalar decode Q is always 1. 12238 */ 12239 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12240 { 12241 int fpop, opcode, a, u; 12242 int rn, rd; 12243 bool is_q; 12244 bool is_scalar; 12245 bool only_in_vector = false; 12246 12247 int pass; 12248 TCGv_i32 tcg_rmode = NULL; 12249 TCGv_ptr tcg_fpstatus = NULL; 12250 bool need_fpst = true; 12251 int rmode = -1; 12252 12253 if (!dc_isar_feature(aa64_fp16, s)) { 12254 unallocated_encoding(s); 12255 return; 12256 } 12257 12258 rd = extract32(insn, 0, 5); 12259 rn = extract32(insn, 5, 5); 12260 12261 a = extract32(insn, 23, 1); 12262 u = extract32(insn, 29, 1); 12263 is_scalar = extract32(insn, 28, 1); 12264 is_q = extract32(insn, 30, 1); 12265 12266 opcode = extract32(insn, 12, 5); 12267 fpop = deposit32(opcode, 5, 1, a); 12268 fpop = deposit32(fpop, 6, 1, u); 12269 12270 switch (fpop) { 12271 case 0x1d: /* SCVTF */ 12272 case 0x5d: /* UCVTF */ 12273 { 12274 int elements; 12275 12276 if (is_scalar) { 12277 elements = 1; 12278 } else { 12279 elements = (is_q ? 8 : 4); 12280 } 12281 12282 if (!fp_access_check(s)) { 12283 return; 12284 } 12285 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12286 return; 12287 } 12288 break; 12289 case 0x2c: /* FCMGT (zero) */ 12290 case 0x2d: /* FCMEQ (zero) */ 12291 case 0x2e: /* FCMLT (zero) */ 12292 case 0x6c: /* FCMGE (zero) */ 12293 case 0x6d: /* FCMLE (zero) */ 12294 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12295 return; 12296 case 0x3d: /* FRECPE */ 12297 case 0x3f: /* FRECPX */ 12298 break; 12299 case 0x18: /* FRINTN */ 12300 only_in_vector = true; 12301 rmode = FPROUNDING_TIEEVEN; 12302 break; 12303 case 0x19: /* FRINTM */ 12304 only_in_vector = true; 12305 rmode = FPROUNDING_NEGINF; 12306 break; 12307 case 0x38: /* FRINTP */ 12308 only_in_vector = true; 12309 rmode = FPROUNDING_POSINF; 12310 break; 12311 case 0x39: /* FRINTZ */ 12312 only_in_vector = true; 12313 rmode = FPROUNDING_ZERO; 12314 break; 12315 case 0x58: /* FRINTA */ 12316 only_in_vector = true; 12317 rmode = FPROUNDING_TIEAWAY; 12318 break; 12319 case 0x59: /* FRINTX */ 12320 case 0x79: /* FRINTI */ 12321 only_in_vector = true; 12322 /* current rounding mode */ 12323 break; 12324 case 0x1a: /* FCVTNS */ 12325 rmode = FPROUNDING_TIEEVEN; 12326 break; 12327 case 0x1b: /* FCVTMS */ 12328 rmode = FPROUNDING_NEGINF; 12329 break; 12330 case 0x1c: /* FCVTAS */ 12331 rmode = FPROUNDING_TIEAWAY; 12332 break; 12333 case 0x3a: /* FCVTPS */ 12334 rmode = FPROUNDING_POSINF; 12335 break; 12336 case 0x3b: /* FCVTZS */ 12337 rmode = FPROUNDING_ZERO; 12338 break; 12339 case 0x5a: /* FCVTNU */ 12340 rmode = FPROUNDING_TIEEVEN; 12341 break; 12342 case 0x5b: /* FCVTMU */ 12343 rmode = FPROUNDING_NEGINF; 12344 break; 12345 case 0x5c: /* FCVTAU */ 12346 rmode = FPROUNDING_TIEAWAY; 12347 break; 12348 case 0x7a: /* FCVTPU */ 12349 rmode = FPROUNDING_POSINF; 12350 break; 12351 case 0x7b: /* FCVTZU */ 12352 rmode = FPROUNDING_ZERO; 12353 break; 12354 case 0x2f: /* FABS */ 12355 case 0x6f: /* FNEG */ 12356 need_fpst = false; 12357 break; 12358 case 0x7d: /* FRSQRTE */ 12359 case 0x7f: /* FSQRT (vector) */ 12360 break; 12361 default: 12362 unallocated_encoding(s); 12363 return; 12364 } 12365 12366 12367 /* Check additional constraints for the scalar encoding */ 12368 if (is_scalar) { 12369 if (!is_q) { 12370 unallocated_encoding(s); 12371 return; 12372 } 12373 /* FRINTxx is only in the vector form */ 12374 if (only_in_vector) { 12375 unallocated_encoding(s); 12376 return; 12377 } 12378 } 12379 12380 if (!fp_access_check(s)) { 12381 return; 12382 } 12383 12384 if (rmode >= 0 || need_fpst) { 12385 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12386 } 12387 12388 if (rmode >= 0) { 12389 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12390 } 12391 12392 if (is_scalar) { 12393 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12394 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12395 12396 switch (fpop) { 12397 case 0x1a: /* FCVTNS */ 12398 case 0x1b: /* FCVTMS */ 12399 case 0x1c: /* FCVTAS */ 12400 case 0x3a: /* FCVTPS */ 12401 case 0x3b: /* FCVTZS */ 12402 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12403 break; 12404 case 0x3d: /* FRECPE */ 12405 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12406 break; 12407 case 0x3f: /* FRECPX */ 12408 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12409 break; 12410 case 0x5a: /* FCVTNU */ 12411 case 0x5b: /* FCVTMU */ 12412 case 0x5c: /* FCVTAU */ 12413 case 0x7a: /* FCVTPU */ 12414 case 0x7b: /* FCVTZU */ 12415 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12416 break; 12417 case 0x6f: /* FNEG */ 12418 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12419 break; 12420 case 0x7d: /* FRSQRTE */ 12421 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12422 break; 12423 default: 12424 g_assert_not_reached(); 12425 } 12426 12427 /* limit any sign extension going on */ 12428 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12429 write_fp_sreg(s, rd, tcg_res); 12430 } else { 12431 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12432 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12433 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12434 12435 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12436 12437 switch (fpop) { 12438 case 0x1a: /* FCVTNS */ 12439 case 0x1b: /* FCVTMS */ 12440 case 0x1c: /* FCVTAS */ 12441 case 0x3a: /* FCVTPS */ 12442 case 0x3b: /* FCVTZS */ 12443 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12444 break; 12445 case 0x3d: /* FRECPE */ 12446 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12447 break; 12448 case 0x5a: /* FCVTNU */ 12449 case 0x5b: /* FCVTMU */ 12450 case 0x5c: /* FCVTAU */ 12451 case 0x7a: /* FCVTPU */ 12452 case 0x7b: /* FCVTZU */ 12453 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12454 break; 12455 case 0x18: /* FRINTN */ 12456 case 0x19: /* FRINTM */ 12457 case 0x38: /* FRINTP */ 12458 case 0x39: /* FRINTZ */ 12459 case 0x58: /* FRINTA */ 12460 case 0x79: /* FRINTI */ 12461 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12462 break; 12463 case 0x59: /* FRINTX */ 12464 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12465 break; 12466 case 0x2f: /* FABS */ 12467 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12468 break; 12469 case 0x6f: /* FNEG */ 12470 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12471 break; 12472 case 0x7d: /* FRSQRTE */ 12473 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12474 break; 12475 case 0x7f: /* FSQRT */ 12476 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12477 break; 12478 default: 12479 g_assert_not_reached(); 12480 } 12481 12482 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12483 } 12484 12485 clear_vec_high(s, is_q, rd); 12486 } 12487 12488 if (tcg_rmode) { 12489 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12490 } 12491 } 12492 12493 /* AdvSIMD scalar x indexed element 12494 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12495 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12496 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12497 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12498 * AdvSIMD vector x indexed element 12499 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12500 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12501 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12502 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12503 */ 12504 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12505 { 12506 /* This encoding has two kinds of instruction: 12507 * normal, where we perform elt x idxelt => elt for each 12508 * element in the vector 12509 * long, where we perform elt x idxelt and generate a result of 12510 * double the width of the input element 12511 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12512 */ 12513 bool is_scalar = extract32(insn, 28, 1); 12514 bool is_q = extract32(insn, 30, 1); 12515 bool u = extract32(insn, 29, 1); 12516 int size = extract32(insn, 22, 2); 12517 int l = extract32(insn, 21, 1); 12518 int m = extract32(insn, 20, 1); 12519 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12520 int rm = extract32(insn, 16, 4); 12521 int opcode = extract32(insn, 12, 4); 12522 int h = extract32(insn, 11, 1); 12523 int rn = extract32(insn, 5, 5); 12524 int rd = extract32(insn, 0, 5); 12525 bool is_long = false; 12526 int is_fp = 0; 12527 bool is_fp16 = false; 12528 int index; 12529 TCGv_ptr fpst; 12530 12531 switch (16 * u + opcode) { 12532 case 0x08: /* MUL */ 12533 case 0x10: /* MLA */ 12534 case 0x14: /* MLS */ 12535 if (is_scalar) { 12536 unallocated_encoding(s); 12537 return; 12538 } 12539 break; 12540 case 0x02: /* SMLAL, SMLAL2 */ 12541 case 0x12: /* UMLAL, UMLAL2 */ 12542 case 0x06: /* SMLSL, SMLSL2 */ 12543 case 0x16: /* UMLSL, UMLSL2 */ 12544 case 0x0a: /* SMULL, SMULL2 */ 12545 case 0x1a: /* UMULL, UMULL2 */ 12546 if (is_scalar) { 12547 unallocated_encoding(s); 12548 return; 12549 } 12550 is_long = true; 12551 break; 12552 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12553 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12554 case 0x0b: /* SQDMULL, SQDMULL2 */ 12555 is_long = true; 12556 break; 12557 case 0x0c: /* SQDMULH */ 12558 case 0x0d: /* SQRDMULH */ 12559 break; 12560 case 0x1d: /* SQRDMLAH */ 12561 case 0x1f: /* SQRDMLSH */ 12562 if (!dc_isar_feature(aa64_rdm, s)) { 12563 unallocated_encoding(s); 12564 return; 12565 } 12566 break; 12567 case 0x0e: /* SDOT */ 12568 case 0x1e: /* UDOT */ 12569 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12570 unallocated_encoding(s); 12571 return; 12572 } 12573 break; 12574 case 0x0f: 12575 switch (size) { 12576 case 0: /* SUDOT */ 12577 case 2: /* USDOT */ 12578 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12579 unallocated_encoding(s); 12580 return; 12581 } 12582 size = MO_32; 12583 break; 12584 case 1: /* BFDOT */ 12585 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12586 unallocated_encoding(s); 12587 return; 12588 } 12589 size = MO_32; 12590 break; 12591 case 3: /* BFMLAL{B,T} */ 12592 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12593 unallocated_encoding(s); 12594 return; 12595 } 12596 /* can't set is_fp without other incorrect size checks */ 12597 size = MO_16; 12598 break; 12599 default: 12600 unallocated_encoding(s); 12601 return; 12602 } 12603 break; 12604 case 0x11: /* FCMLA #0 */ 12605 case 0x13: /* FCMLA #90 */ 12606 case 0x15: /* FCMLA #180 */ 12607 case 0x17: /* FCMLA #270 */ 12608 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12609 unallocated_encoding(s); 12610 return; 12611 } 12612 is_fp = 2; 12613 break; 12614 case 0x00: /* FMLAL */ 12615 case 0x04: /* FMLSL */ 12616 case 0x18: /* FMLAL2 */ 12617 case 0x1c: /* FMLSL2 */ 12618 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12619 unallocated_encoding(s); 12620 return; 12621 } 12622 size = MO_16; 12623 /* is_fp, but we pass tcg_env not fp_status. */ 12624 break; 12625 default: 12626 case 0x01: /* FMLA */ 12627 case 0x05: /* FMLS */ 12628 case 0x09: /* FMUL */ 12629 case 0x19: /* FMULX */ 12630 unallocated_encoding(s); 12631 return; 12632 } 12633 12634 switch (is_fp) { 12635 case 1: /* normal fp */ 12636 unallocated_encoding(s); /* in decodetree */ 12637 return; 12638 12639 case 2: /* complex fp */ 12640 /* Each indexable element is a complex pair. */ 12641 size += 1; 12642 switch (size) { 12643 case MO_32: 12644 if (h && !is_q) { 12645 unallocated_encoding(s); 12646 return; 12647 } 12648 is_fp16 = true; 12649 break; 12650 case MO_64: 12651 break; 12652 default: 12653 unallocated_encoding(s); 12654 return; 12655 } 12656 break; 12657 12658 default: /* integer */ 12659 switch (size) { 12660 case MO_8: 12661 case MO_64: 12662 unallocated_encoding(s); 12663 return; 12664 } 12665 break; 12666 } 12667 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12668 unallocated_encoding(s); 12669 return; 12670 } 12671 12672 /* Given MemOp size, adjust register and indexing. */ 12673 switch (size) { 12674 case MO_16: 12675 index = h << 2 | l << 1 | m; 12676 break; 12677 case MO_32: 12678 index = h << 1 | l; 12679 rm |= m << 4; 12680 break; 12681 case MO_64: 12682 if (l || !is_q) { 12683 unallocated_encoding(s); 12684 return; 12685 } 12686 index = h; 12687 rm |= m << 4; 12688 break; 12689 default: 12690 g_assert_not_reached(); 12691 } 12692 12693 if (!fp_access_check(s)) { 12694 return; 12695 } 12696 12697 if (is_fp) { 12698 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12699 } else { 12700 fpst = NULL; 12701 } 12702 12703 switch (16 * u + opcode) { 12704 case 0x0e: /* SDOT */ 12705 case 0x1e: /* UDOT */ 12706 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12707 u ? gen_helper_gvec_udot_idx_b 12708 : gen_helper_gvec_sdot_idx_b); 12709 return; 12710 case 0x0f: 12711 switch (extract32(insn, 22, 2)) { 12712 case 0: /* SUDOT */ 12713 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12714 gen_helper_gvec_sudot_idx_b); 12715 return; 12716 case 1: /* BFDOT */ 12717 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12718 gen_helper_gvec_bfdot_idx); 12719 return; 12720 case 2: /* USDOT */ 12721 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12722 gen_helper_gvec_usdot_idx_b); 12723 return; 12724 case 3: /* BFMLAL{B,T} */ 12725 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12726 gen_helper_gvec_bfmlal_idx); 12727 return; 12728 } 12729 g_assert_not_reached(); 12730 case 0x11: /* FCMLA #0 */ 12731 case 0x13: /* FCMLA #90 */ 12732 case 0x15: /* FCMLA #180 */ 12733 case 0x17: /* FCMLA #270 */ 12734 { 12735 int rot = extract32(insn, 13, 2); 12736 int data = (index << 2) | rot; 12737 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12738 vec_full_reg_offset(s, rn), 12739 vec_full_reg_offset(s, rm), 12740 vec_full_reg_offset(s, rd), fpst, 12741 is_q ? 16 : 8, vec_full_reg_size(s), data, 12742 size == MO_64 12743 ? gen_helper_gvec_fcmlas_idx 12744 : gen_helper_gvec_fcmlah_idx); 12745 } 12746 return; 12747 12748 case 0x00: /* FMLAL */ 12749 case 0x04: /* FMLSL */ 12750 case 0x18: /* FMLAL2 */ 12751 case 0x1c: /* FMLSL2 */ 12752 { 12753 int is_s = extract32(opcode, 2, 1); 12754 int is_2 = u; 12755 int data = (index << 2) | (is_2 << 1) | is_s; 12756 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12757 vec_full_reg_offset(s, rn), 12758 vec_full_reg_offset(s, rm), tcg_env, 12759 is_q ? 16 : 8, vec_full_reg_size(s), 12760 data, gen_helper_gvec_fmlal_idx_a64); 12761 } 12762 return; 12763 12764 case 0x08: /* MUL */ 12765 if (!is_long && !is_scalar) { 12766 static gen_helper_gvec_3 * const fns[3] = { 12767 gen_helper_gvec_mul_idx_h, 12768 gen_helper_gvec_mul_idx_s, 12769 gen_helper_gvec_mul_idx_d, 12770 }; 12771 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12772 vec_full_reg_offset(s, rn), 12773 vec_full_reg_offset(s, rm), 12774 is_q ? 16 : 8, vec_full_reg_size(s), 12775 index, fns[size - 1]); 12776 return; 12777 } 12778 break; 12779 12780 case 0x10: /* MLA */ 12781 if (!is_long && !is_scalar) { 12782 static gen_helper_gvec_4 * const fns[3] = { 12783 gen_helper_gvec_mla_idx_h, 12784 gen_helper_gvec_mla_idx_s, 12785 gen_helper_gvec_mla_idx_d, 12786 }; 12787 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12788 vec_full_reg_offset(s, rn), 12789 vec_full_reg_offset(s, rm), 12790 vec_full_reg_offset(s, rd), 12791 is_q ? 16 : 8, vec_full_reg_size(s), 12792 index, fns[size - 1]); 12793 return; 12794 } 12795 break; 12796 12797 case 0x14: /* MLS */ 12798 if (!is_long && !is_scalar) { 12799 static gen_helper_gvec_4 * const fns[3] = { 12800 gen_helper_gvec_mls_idx_h, 12801 gen_helper_gvec_mls_idx_s, 12802 gen_helper_gvec_mls_idx_d, 12803 }; 12804 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12805 vec_full_reg_offset(s, rn), 12806 vec_full_reg_offset(s, rm), 12807 vec_full_reg_offset(s, rd), 12808 is_q ? 16 : 8, vec_full_reg_size(s), 12809 index, fns[size - 1]); 12810 return; 12811 } 12812 break; 12813 } 12814 12815 if (size == 3) { 12816 g_assert_not_reached(); 12817 } else if (!is_long) { 12818 /* 32 bit floating point, or 16 or 32 bit integer. 12819 * For the 16 bit scalar case we use the usual Neon helpers and 12820 * rely on the fact that 0 op 0 == 0 with no side effects. 12821 */ 12822 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12823 int pass, maxpasses; 12824 12825 if (is_scalar) { 12826 maxpasses = 1; 12827 } else { 12828 maxpasses = is_q ? 4 : 2; 12829 } 12830 12831 read_vec_element_i32(s, tcg_idx, rm, index, size); 12832 12833 if (size == 1 && !is_scalar) { 12834 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12835 * the index into both halves of the 32 bit tcg_idx and then use 12836 * the usual Neon helpers. 12837 */ 12838 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12839 } 12840 12841 for (pass = 0; pass < maxpasses; pass++) { 12842 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12843 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12844 12845 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12846 12847 switch (16 * u + opcode) { 12848 case 0x08: /* MUL */ 12849 case 0x10: /* MLA */ 12850 case 0x14: /* MLS */ 12851 { 12852 static NeonGenTwoOpFn * const fns[2][2] = { 12853 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12854 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12855 }; 12856 NeonGenTwoOpFn *genfn; 12857 bool is_sub = opcode == 0x4; 12858 12859 if (size == 1) { 12860 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12861 } else { 12862 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12863 } 12864 if (opcode == 0x8) { 12865 break; 12866 } 12867 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12868 genfn = fns[size - 1][is_sub]; 12869 genfn(tcg_res, tcg_op, tcg_res); 12870 break; 12871 } 12872 case 0x0c: /* SQDMULH */ 12873 if (size == 1) { 12874 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 12875 tcg_op, tcg_idx); 12876 } else { 12877 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 12878 tcg_op, tcg_idx); 12879 } 12880 break; 12881 case 0x0d: /* SQRDMULH */ 12882 if (size == 1) { 12883 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 12884 tcg_op, tcg_idx); 12885 } else { 12886 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 12887 tcg_op, tcg_idx); 12888 } 12889 break; 12890 case 0x1d: /* SQRDMLAH */ 12891 read_vec_element_i32(s, tcg_res, rd, pass, 12892 is_scalar ? size : MO_32); 12893 if (size == 1) { 12894 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 12895 tcg_op, tcg_idx, tcg_res); 12896 } else { 12897 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 12898 tcg_op, tcg_idx, tcg_res); 12899 } 12900 break; 12901 case 0x1f: /* SQRDMLSH */ 12902 read_vec_element_i32(s, tcg_res, rd, pass, 12903 is_scalar ? size : MO_32); 12904 if (size == 1) { 12905 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 12906 tcg_op, tcg_idx, tcg_res); 12907 } else { 12908 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 12909 tcg_op, tcg_idx, tcg_res); 12910 } 12911 break; 12912 default: 12913 case 0x01: /* FMLA */ 12914 case 0x05: /* FMLS */ 12915 case 0x09: /* FMUL */ 12916 case 0x19: /* FMULX */ 12917 g_assert_not_reached(); 12918 } 12919 12920 if (is_scalar) { 12921 write_fp_sreg(s, rd, tcg_res); 12922 } else { 12923 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12924 } 12925 } 12926 12927 clear_vec_high(s, is_q, rd); 12928 } else { 12929 /* long ops: 16x16->32 or 32x32->64 */ 12930 TCGv_i64 tcg_res[2]; 12931 int pass; 12932 bool satop = extract32(opcode, 0, 1); 12933 MemOp memop = MO_32; 12934 12935 if (satop || !u) { 12936 memop |= MO_SIGN; 12937 } 12938 12939 if (size == 2) { 12940 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12941 12942 read_vec_element(s, tcg_idx, rm, index, memop); 12943 12944 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12945 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12946 TCGv_i64 tcg_passres; 12947 int passelt; 12948 12949 if (is_scalar) { 12950 passelt = 0; 12951 } else { 12952 passelt = pass + (is_q * 2); 12953 } 12954 12955 read_vec_element(s, tcg_op, rn, passelt, memop); 12956 12957 tcg_res[pass] = tcg_temp_new_i64(); 12958 12959 if (opcode == 0xa || opcode == 0xb) { 12960 /* Non-accumulating ops */ 12961 tcg_passres = tcg_res[pass]; 12962 } else { 12963 tcg_passres = tcg_temp_new_i64(); 12964 } 12965 12966 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 12967 12968 if (satop) { 12969 /* saturating, doubling */ 12970 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 12971 tcg_passres, tcg_passres); 12972 } 12973 12974 if (opcode == 0xa || opcode == 0xb) { 12975 continue; 12976 } 12977 12978 /* Accumulating op: handle accumulate step */ 12979 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12980 12981 switch (opcode) { 12982 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12983 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12984 break; 12985 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12986 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12987 break; 12988 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12989 tcg_gen_neg_i64(tcg_passres, tcg_passres); 12990 /* fall through */ 12991 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12992 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 12993 tcg_res[pass], 12994 tcg_passres); 12995 break; 12996 default: 12997 g_assert_not_reached(); 12998 } 12999 } 13000 13001 clear_vec_high(s, !is_scalar, rd); 13002 } else { 13003 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13004 13005 assert(size == 1); 13006 read_vec_element_i32(s, tcg_idx, rm, index, size); 13007 13008 if (!is_scalar) { 13009 /* The simplest way to handle the 16x16 indexed ops is to 13010 * duplicate the index into both halves of the 32 bit tcg_idx 13011 * and then use the usual Neon helpers. 13012 */ 13013 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13014 } 13015 13016 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13017 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13018 TCGv_i64 tcg_passres; 13019 13020 if (is_scalar) { 13021 read_vec_element_i32(s, tcg_op, rn, pass, size); 13022 } else { 13023 read_vec_element_i32(s, tcg_op, rn, 13024 pass + (is_q * 2), MO_32); 13025 } 13026 13027 tcg_res[pass] = tcg_temp_new_i64(); 13028 13029 if (opcode == 0xa || opcode == 0xb) { 13030 /* Non-accumulating ops */ 13031 tcg_passres = tcg_res[pass]; 13032 } else { 13033 tcg_passres = tcg_temp_new_i64(); 13034 } 13035 13036 if (memop & MO_SIGN) { 13037 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13038 } else { 13039 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13040 } 13041 if (satop) { 13042 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13043 tcg_passres, tcg_passres); 13044 } 13045 13046 if (opcode == 0xa || opcode == 0xb) { 13047 continue; 13048 } 13049 13050 /* Accumulating op: handle accumulate step */ 13051 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13052 13053 switch (opcode) { 13054 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13055 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13056 tcg_passres); 13057 break; 13058 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13059 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13060 tcg_passres); 13061 break; 13062 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13063 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13064 /* fall through */ 13065 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13066 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13067 tcg_res[pass], 13068 tcg_passres); 13069 break; 13070 default: 13071 g_assert_not_reached(); 13072 } 13073 } 13074 13075 if (is_scalar) { 13076 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13077 } 13078 } 13079 13080 if (is_scalar) { 13081 tcg_res[1] = tcg_constant_i64(0); 13082 } 13083 13084 for (pass = 0; pass < 2; pass++) { 13085 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13086 } 13087 } 13088 } 13089 13090 /* C3.6 Data processing - SIMD, inc Crypto 13091 * 13092 * As the decode gets a little complex we are using a table based 13093 * approach for this part of the decode. 13094 */ 13095 static const AArch64DecodeTable data_proc_simd[] = { 13096 /* pattern , mask , fn */ 13097 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13098 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13099 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13100 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13101 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13102 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13103 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13104 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13105 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13106 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13107 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13108 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13109 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13110 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13111 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13112 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13113 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13114 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13115 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13116 { 0x00000000, 0x00000000, NULL } 13117 }; 13118 13119 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13120 { 13121 /* Note that this is called with all non-FP cases from 13122 * table C3-6 so it must UNDEF for entries not specifically 13123 * allocated to instructions in that table. 13124 */ 13125 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13126 if (fn) { 13127 fn(s, insn); 13128 } else { 13129 unallocated_encoding(s); 13130 } 13131 } 13132 13133 /* C3.6 Data processing - SIMD and floating point */ 13134 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13135 { 13136 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13137 disas_data_proc_fp(s, insn); 13138 } else { 13139 /* SIMD, including crypto */ 13140 disas_data_proc_simd(s, insn); 13141 } 13142 } 13143 13144 static bool trans_OK(DisasContext *s, arg_OK *a) 13145 { 13146 return true; 13147 } 13148 13149 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13150 { 13151 s->is_nonstreaming = true; 13152 return true; 13153 } 13154 13155 /** 13156 * is_guarded_page: 13157 * @env: The cpu environment 13158 * @s: The DisasContext 13159 * 13160 * Return true if the page is guarded. 13161 */ 13162 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13163 { 13164 uint64_t addr = s->base.pc_first; 13165 #ifdef CONFIG_USER_ONLY 13166 return page_get_flags(addr) & PAGE_BTI; 13167 #else 13168 CPUTLBEntryFull *full; 13169 void *host; 13170 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13171 int flags; 13172 13173 /* 13174 * We test this immediately after reading an insn, which means 13175 * that the TLB entry must be present and valid, and thus this 13176 * access will never raise an exception. 13177 */ 13178 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13179 false, &host, &full, 0); 13180 assert(!(flags & TLB_INVALID_MASK)); 13181 13182 return full->extra.arm.guarded; 13183 #endif 13184 } 13185 13186 /** 13187 * btype_destination_ok: 13188 * @insn: The instruction at the branch destination 13189 * @bt: SCTLR_ELx.BT 13190 * @btype: PSTATE.BTYPE, and is non-zero 13191 * 13192 * On a guarded page, there are a limited number of insns 13193 * that may be present at the branch target: 13194 * - branch target identifiers, 13195 * - paciasp, pacibsp, 13196 * - BRK insn 13197 * - HLT insn 13198 * Anything else causes a Branch Target Exception. 13199 * 13200 * Return true if the branch is compatible, false to raise BTITRAP. 13201 */ 13202 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13203 { 13204 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13205 /* HINT space */ 13206 switch (extract32(insn, 5, 7)) { 13207 case 0b011001: /* PACIASP */ 13208 case 0b011011: /* PACIBSP */ 13209 /* 13210 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13211 * with btype == 3. Otherwise all btype are ok. 13212 */ 13213 return !bt || btype != 3; 13214 case 0b100000: /* BTI */ 13215 /* Not compatible with any btype. */ 13216 return false; 13217 case 0b100010: /* BTI c */ 13218 /* Not compatible with btype == 3 */ 13219 return btype != 3; 13220 case 0b100100: /* BTI j */ 13221 /* Not compatible with btype == 2 */ 13222 return btype != 2; 13223 case 0b100110: /* BTI jc */ 13224 /* Compatible with any btype. */ 13225 return true; 13226 } 13227 } else { 13228 switch (insn & 0xffe0001fu) { 13229 case 0xd4200000u: /* BRK */ 13230 case 0xd4400000u: /* HLT */ 13231 /* Give priority to the breakpoint exception. */ 13232 return true; 13233 } 13234 } 13235 return false; 13236 } 13237 13238 /* C3.1 A64 instruction index by encoding */ 13239 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13240 { 13241 switch (extract32(insn, 25, 4)) { 13242 case 0x5: 13243 case 0xd: /* Data processing - register */ 13244 disas_data_proc_reg(s, insn); 13245 break; 13246 case 0x7: 13247 case 0xf: /* Data processing - SIMD and floating point */ 13248 disas_data_proc_simd_fp(s, insn); 13249 break; 13250 default: 13251 unallocated_encoding(s); 13252 break; 13253 } 13254 } 13255 13256 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13257 CPUState *cpu) 13258 { 13259 DisasContext *dc = container_of(dcbase, DisasContext, base); 13260 CPUARMState *env = cpu_env(cpu); 13261 ARMCPU *arm_cpu = env_archcpu(env); 13262 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13263 int bound, core_mmu_idx; 13264 13265 dc->isar = &arm_cpu->isar; 13266 dc->condjmp = 0; 13267 dc->pc_save = dc->base.pc_first; 13268 dc->aarch64 = true; 13269 dc->thumb = false; 13270 dc->sctlr_b = 0; 13271 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13272 dc->condexec_mask = 0; 13273 dc->condexec_cond = 0; 13274 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13275 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13276 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13277 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13278 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13279 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13280 #if !defined(CONFIG_USER_ONLY) 13281 dc->user = (dc->current_el == 0); 13282 #endif 13283 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13284 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13285 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13286 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13287 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13288 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13289 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13290 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13291 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13292 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13293 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13294 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13295 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13296 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13297 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13298 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13299 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13300 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13301 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13302 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13303 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13304 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13305 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13306 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13307 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13308 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13309 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13310 dc->vec_len = 0; 13311 dc->vec_stride = 0; 13312 dc->cp_regs = arm_cpu->cp_regs; 13313 dc->features = env->features; 13314 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13315 dc->gm_blocksize = arm_cpu->gm_blocksize; 13316 13317 #ifdef CONFIG_USER_ONLY 13318 /* In sve_probe_page, we assume TBI is enabled. */ 13319 tcg_debug_assert(dc->tbid & 1); 13320 #endif 13321 13322 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13323 13324 /* Single step state. The code-generation logic here is: 13325 * SS_ACTIVE == 0: 13326 * generate code with no special handling for single-stepping (except 13327 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13328 * this happens anyway because those changes are all system register or 13329 * PSTATE writes). 13330 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13331 * emit code for one insn 13332 * emit code to clear PSTATE.SS 13333 * emit code to generate software step exception for completed step 13334 * end TB (as usual for having generated an exception) 13335 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13336 * emit code to generate a software step exception 13337 * end the TB 13338 */ 13339 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13340 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13341 dc->is_ldex = false; 13342 13343 /* Bound the number of insns to execute to those left on the page. */ 13344 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13345 13346 /* If architectural single step active, limit to 1. */ 13347 if (dc->ss_active) { 13348 bound = 1; 13349 } 13350 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13351 } 13352 13353 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13354 { 13355 } 13356 13357 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13358 { 13359 DisasContext *dc = container_of(dcbase, DisasContext, base); 13360 target_ulong pc_arg = dc->base.pc_next; 13361 13362 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13363 pc_arg &= ~TARGET_PAGE_MASK; 13364 } 13365 tcg_gen_insn_start(pc_arg, 0, 0); 13366 dc->insn_start_updated = false; 13367 } 13368 13369 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13370 { 13371 DisasContext *s = container_of(dcbase, DisasContext, base); 13372 CPUARMState *env = cpu_env(cpu); 13373 uint64_t pc = s->base.pc_next; 13374 uint32_t insn; 13375 13376 /* Singlestep exceptions have the highest priority. */ 13377 if (s->ss_active && !s->pstate_ss) { 13378 /* Singlestep state is Active-pending. 13379 * If we're in this state at the start of a TB then either 13380 * a) we just took an exception to an EL which is being debugged 13381 * and this is the first insn in the exception handler 13382 * b) debug exceptions were masked and we just unmasked them 13383 * without changing EL (eg by clearing PSTATE.D) 13384 * In either case we're going to take a swstep exception in the 13385 * "did not step an insn" case, and so the syndrome ISV and EX 13386 * bits should be zero. 13387 */ 13388 assert(s->base.num_insns == 1); 13389 gen_swstep_exception(s, 0, 0); 13390 s->base.is_jmp = DISAS_NORETURN; 13391 s->base.pc_next = pc + 4; 13392 return; 13393 } 13394 13395 if (pc & 3) { 13396 /* 13397 * PC alignment fault. This has priority over the instruction abort 13398 * that we would receive from a translation fault via arm_ldl_code. 13399 * This should only be possible after an indirect branch, at the 13400 * start of the TB. 13401 */ 13402 assert(s->base.num_insns == 1); 13403 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13404 s->base.is_jmp = DISAS_NORETURN; 13405 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13406 return; 13407 } 13408 13409 s->pc_curr = pc; 13410 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13411 s->insn = insn; 13412 s->base.pc_next = pc + 4; 13413 13414 s->fp_access_checked = false; 13415 s->sve_access_checked = false; 13416 13417 if (s->pstate_il) { 13418 /* 13419 * Illegal execution state. This has priority over BTI 13420 * exceptions, but comes after instruction abort exceptions. 13421 */ 13422 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13423 return; 13424 } 13425 13426 if (dc_isar_feature(aa64_bti, s)) { 13427 if (s->base.num_insns == 1) { 13428 /* 13429 * At the first insn of the TB, compute s->guarded_page. 13430 * We delayed computing this until successfully reading 13431 * the first insn of the TB, above. This (mostly) ensures 13432 * that the softmmu tlb entry has been populated, and the 13433 * page table GP bit is available. 13434 * 13435 * Note that we need to compute this even if btype == 0, 13436 * because this value is used for BR instructions later 13437 * where ENV is not available. 13438 */ 13439 s->guarded_page = is_guarded_page(env, s); 13440 13441 /* First insn can have btype set to non-zero. */ 13442 tcg_debug_assert(s->btype >= 0); 13443 13444 /* 13445 * Note that the Branch Target Exception has fairly high 13446 * priority -- below debugging exceptions but above most 13447 * everything else. This allows us to handle this now 13448 * instead of waiting until the insn is otherwise decoded. 13449 */ 13450 if (s->btype != 0 13451 && s->guarded_page 13452 && !btype_destination_ok(insn, s->bt, s->btype)) { 13453 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13454 return; 13455 } 13456 } else { 13457 /* Not the first insn: btype must be 0. */ 13458 tcg_debug_assert(s->btype == 0); 13459 } 13460 } 13461 13462 s->is_nonstreaming = false; 13463 if (s->sme_trap_nonstreaming) { 13464 disas_sme_fa64(s, insn); 13465 } 13466 13467 if (!disas_a64(s, insn) && 13468 !disas_sme(s, insn) && 13469 !disas_sve(s, insn)) { 13470 disas_a64_legacy(s, insn); 13471 } 13472 13473 /* 13474 * After execution of most insns, btype is reset to 0. 13475 * Note that we set btype == -1 when the insn sets btype. 13476 */ 13477 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13478 reset_btype(s); 13479 } 13480 } 13481 13482 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13483 { 13484 DisasContext *dc = container_of(dcbase, DisasContext, base); 13485 13486 if (unlikely(dc->ss_active)) { 13487 /* Note that this means single stepping WFI doesn't halt the CPU. 13488 * For conditional branch insns this is harmless unreachable code as 13489 * gen_goto_tb() has already handled emitting the debug exception 13490 * (and thus a tb-jump is not possible when singlestepping). 13491 */ 13492 switch (dc->base.is_jmp) { 13493 default: 13494 gen_a64_update_pc(dc, 4); 13495 /* fall through */ 13496 case DISAS_EXIT: 13497 case DISAS_JUMP: 13498 gen_step_complete_exception(dc); 13499 break; 13500 case DISAS_NORETURN: 13501 break; 13502 } 13503 } else { 13504 switch (dc->base.is_jmp) { 13505 case DISAS_NEXT: 13506 case DISAS_TOO_MANY: 13507 gen_goto_tb(dc, 1, 4); 13508 break; 13509 default: 13510 case DISAS_UPDATE_EXIT: 13511 gen_a64_update_pc(dc, 4); 13512 /* fall through */ 13513 case DISAS_EXIT: 13514 tcg_gen_exit_tb(NULL, 0); 13515 break; 13516 case DISAS_UPDATE_NOCHAIN: 13517 gen_a64_update_pc(dc, 4); 13518 /* fall through */ 13519 case DISAS_JUMP: 13520 tcg_gen_lookup_and_goto_ptr(); 13521 break; 13522 case DISAS_NORETURN: 13523 case DISAS_SWI: 13524 break; 13525 case DISAS_WFE: 13526 gen_a64_update_pc(dc, 4); 13527 gen_helper_wfe(tcg_env); 13528 break; 13529 case DISAS_YIELD: 13530 gen_a64_update_pc(dc, 4); 13531 gen_helper_yield(tcg_env); 13532 break; 13533 case DISAS_WFI: 13534 /* 13535 * This is a special case because we don't want to just halt 13536 * the CPU if trying to debug across a WFI. 13537 */ 13538 gen_a64_update_pc(dc, 4); 13539 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13540 /* 13541 * The helper doesn't necessarily throw an exception, but we 13542 * must go back to the main loop to check for interrupts anyway. 13543 */ 13544 tcg_gen_exit_tb(NULL, 0); 13545 break; 13546 } 13547 } 13548 } 13549 13550 const TranslatorOps aarch64_translator_ops = { 13551 .init_disas_context = aarch64_tr_init_disas_context, 13552 .tb_start = aarch64_tr_tb_start, 13553 .insn_start = aarch64_tr_insn_start, 13554 .translate_insn = aarch64_tr_translate_insn, 13555 .tb_stop = aarch64_tr_tb_stop, 13556 }; 13557