xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision a7e4eec6)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1356 {
1357     if (!a->q && a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 /*
1367  * This utility function is for doing register extension with an
1368  * optional shift. You will likely want to pass a temporary for the
1369  * destination register. See DecodeRegExtend() in the ARM ARM.
1370  */
1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1372                               int option, unsigned int shift)
1373 {
1374     int extsize = extract32(option, 0, 2);
1375     bool is_signed = extract32(option, 2, 1);
1376 
1377     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1378     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1379 }
1380 
1381 static inline void gen_check_sp_alignment(DisasContext *s)
1382 {
1383     /* The AArch64 architecture mandates that (if enabled via PSTATE
1384      * or SCTLR bits) there is a check that SP is 16-aligned on every
1385      * SP-relative load or store (with an exception generated if it is not).
1386      * In line with general QEMU practice regarding misaligned accesses,
1387      * we omit these checks for the sake of guest program performance.
1388      * This function is provided as a hook so we can more easily add these
1389      * checks in future (possibly as a "favour catching guest program bugs
1390      * over speed" user selectable option).
1391      */
1392 }
1393 
1394 /*
1395  * This provides a simple table based table lookup decoder. It is
1396  * intended to be used when the relevant bits for decode are too
1397  * awkwardly placed and switch/if based logic would be confusing and
1398  * deeply nested. Since it's a linear search through the table, tables
1399  * should be kept small.
1400  *
1401  * It returns the first handler where insn & mask == pattern, or
1402  * NULL if there is no match.
1403  * The table is terminated by an empty mask (i.e. 0)
1404  */
1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1406                                                uint32_t insn)
1407 {
1408     const AArch64DecodeTable *tptr = table;
1409 
1410     while (tptr->mask) {
1411         if ((insn & tptr->mask) == tptr->pattern) {
1412             return tptr->disas_fn;
1413         }
1414         tptr++;
1415     }
1416     return NULL;
1417 }
1418 
1419 /*
1420  * The instruction disassembly implemented here matches
1421  * the instruction encoding classifications in chapter C4
1422  * of the ARM Architecture Reference Manual (DDI0487B_a);
1423  * classification names and decode diagrams here should generally
1424  * match up with those in the manual.
1425  */
1426 
1427 static bool trans_B(DisasContext *s, arg_i *a)
1428 {
1429     reset_btype(s);
1430     gen_goto_tb(s, 0, a->imm);
1431     return true;
1432 }
1433 
1434 static bool trans_BL(DisasContext *s, arg_i *a)
1435 {
1436     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1437     reset_btype(s);
1438     gen_goto_tb(s, 0, a->imm);
1439     return true;
1440 }
1441 
1442 
1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1444 {
1445     DisasLabel match;
1446     TCGv_i64 tcg_cmp;
1447 
1448     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1449     reset_btype(s);
1450 
1451     match = gen_disas_label(s);
1452     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1453                         tcg_cmp, 0, match.label);
1454     gen_goto_tb(s, 0, 4);
1455     set_disas_label(s, match);
1456     gen_goto_tb(s, 1, a->imm);
1457     return true;
1458 }
1459 
1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1461 {
1462     DisasLabel match;
1463     TCGv_i64 tcg_cmp;
1464 
1465     tcg_cmp = tcg_temp_new_i64();
1466     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1467 
1468     reset_btype(s);
1469 
1470     match = gen_disas_label(s);
1471     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1472                         tcg_cmp, 0, match.label);
1473     gen_goto_tb(s, 0, 4);
1474     set_disas_label(s, match);
1475     gen_goto_tb(s, 1, a->imm);
1476     return true;
1477 }
1478 
1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1480 {
1481     /* BC.cond is only present with FEAT_HBC */
1482     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1483         return false;
1484     }
1485     reset_btype(s);
1486     if (a->cond < 0x0e) {
1487         /* genuinely conditional branches */
1488         DisasLabel match = gen_disas_label(s);
1489         arm_gen_test_cc(a->cond, match.label);
1490         gen_goto_tb(s, 0, 4);
1491         set_disas_label(s, match);
1492         gen_goto_tb(s, 1, a->imm);
1493     } else {
1494         /* 0xe and 0xf are both "always" conditions */
1495         gen_goto_tb(s, 0, a->imm);
1496     }
1497     return true;
1498 }
1499 
1500 static void set_btype_for_br(DisasContext *s, int rn)
1501 {
1502     if (dc_isar_feature(aa64_bti, s)) {
1503         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1504         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1505     }
1506 }
1507 
1508 static void set_btype_for_blr(DisasContext *s)
1509 {
1510     if (dc_isar_feature(aa64_bti, s)) {
1511         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1512         set_btype(s, 2);
1513     }
1514 }
1515 
1516 static bool trans_BR(DisasContext *s, arg_r *a)
1517 {
1518     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1519     set_btype_for_br(s, a->rn);
1520     s->base.is_jmp = DISAS_JUMP;
1521     return true;
1522 }
1523 
1524 static bool trans_BLR(DisasContext *s, arg_r *a)
1525 {
1526     TCGv_i64 dst = cpu_reg(s, a->rn);
1527     TCGv_i64 lr = cpu_reg(s, 30);
1528     if (dst == lr) {
1529         TCGv_i64 tmp = tcg_temp_new_i64();
1530         tcg_gen_mov_i64(tmp, dst);
1531         dst = tmp;
1532     }
1533     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1534     gen_a64_set_pc(s, dst);
1535     set_btype_for_blr(s);
1536     s->base.is_jmp = DISAS_JUMP;
1537     return true;
1538 }
1539 
1540 static bool trans_RET(DisasContext *s, arg_r *a)
1541 {
1542     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1543     s->base.is_jmp = DISAS_JUMP;
1544     return true;
1545 }
1546 
1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1548                                    TCGv_i64 modifier, bool use_key_a)
1549 {
1550     TCGv_i64 truedst;
1551     /*
1552      * Return the branch target for a BRAA/RETA/etc, which is either
1553      * just the destination dst, or that value with the pauth check
1554      * done and the code removed from the high bits.
1555      */
1556     if (!s->pauth_active) {
1557         return dst;
1558     }
1559 
1560     truedst = tcg_temp_new_i64();
1561     if (use_key_a) {
1562         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1563     } else {
1564         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1565     }
1566     return truedst;
1567 }
1568 
1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1570 {
1571     TCGv_i64 dst;
1572 
1573     if (!dc_isar_feature(aa64_pauth, s)) {
1574         return false;
1575     }
1576 
1577     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1578     gen_a64_set_pc(s, dst);
1579     set_btype_for_br(s, a->rn);
1580     s->base.is_jmp = DISAS_JUMP;
1581     return true;
1582 }
1583 
1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1585 {
1586     TCGv_i64 dst, lr;
1587 
1588     if (!dc_isar_feature(aa64_pauth, s)) {
1589         return false;
1590     }
1591 
1592     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1593     lr = cpu_reg(s, 30);
1594     if (dst == lr) {
1595         TCGv_i64 tmp = tcg_temp_new_i64();
1596         tcg_gen_mov_i64(tmp, dst);
1597         dst = tmp;
1598     }
1599     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1600     gen_a64_set_pc(s, dst);
1601     set_btype_for_blr(s);
1602     s->base.is_jmp = DISAS_JUMP;
1603     return true;
1604 }
1605 
1606 static bool trans_RETA(DisasContext *s, arg_reta *a)
1607 {
1608     TCGv_i64 dst;
1609 
1610     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1611     gen_a64_set_pc(s, dst);
1612     s->base.is_jmp = DISAS_JUMP;
1613     return true;
1614 }
1615 
1616 static bool trans_BRA(DisasContext *s, arg_bra *a)
1617 {
1618     TCGv_i64 dst;
1619 
1620     if (!dc_isar_feature(aa64_pauth, s)) {
1621         return false;
1622     }
1623     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1624     gen_a64_set_pc(s, dst);
1625     set_btype_for_br(s, a->rn);
1626     s->base.is_jmp = DISAS_JUMP;
1627     return true;
1628 }
1629 
1630 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1631 {
1632     TCGv_i64 dst, lr;
1633 
1634     if (!dc_isar_feature(aa64_pauth, s)) {
1635         return false;
1636     }
1637     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1638     lr = cpu_reg(s, 30);
1639     if (dst == lr) {
1640         TCGv_i64 tmp = tcg_temp_new_i64();
1641         tcg_gen_mov_i64(tmp, dst);
1642         dst = tmp;
1643     }
1644     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1645     gen_a64_set_pc(s, dst);
1646     set_btype_for_blr(s);
1647     s->base.is_jmp = DISAS_JUMP;
1648     return true;
1649 }
1650 
1651 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1652 {
1653     TCGv_i64 dst;
1654 
1655     if (s->current_el == 0) {
1656         return false;
1657     }
1658     if (s->trap_eret) {
1659         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1660         return true;
1661     }
1662     dst = tcg_temp_new_i64();
1663     tcg_gen_ld_i64(dst, tcg_env,
1664                    offsetof(CPUARMState, elr_el[s->current_el]));
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(tcg_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1675 {
1676     TCGv_i64 dst;
1677 
1678     if (!dc_isar_feature(aa64_pauth, s)) {
1679         return false;
1680     }
1681     if (s->current_el == 0) {
1682         return false;
1683     }
1684     /* The FGT trap takes precedence over an auth trap. */
1685     if (s->trap_eret) {
1686         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1687         return true;
1688     }
1689     dst = tcg_temp_new_i64();
1690     tcg_gen_ld_i64(dst, tcg_env,
1691                    offsetof(CPUARMState, elr_el[s->current_el]));
1692 
1693     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1694 
1695     translator_io_start(&s->base);
1696 
1697     gen_helper_exception_return(tcg_env, dst);
1698     /* Must exit loop to check un-masked IRQs */
1699     s->base.is_jmp = DISAS_EXIT;
1700     return true;
1701 }
1702 
1703 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1704 {
1705     return true;
1706 }
1707 
1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1709 {
1710     /*
1711      * When running in MTTCG we don't generate jumps to the yield and
1712      * WFE helpers as it won't affect the scheduling of other vCPUs.
1713      * If we wanted to more completely model WFE/SEV so we don't busy
1714      * spin unnecessarily we would need to do something more involved.
1715      */
1716     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1717         s->base.is_jmp = DISAS_YIELD;
1718     }
1719     return true;
1720 }
1721 
1722 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1723 {
1724     s->base.is_jmp = DISAS_WFI;
1725     return true;
1726 }
1727 
1728 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1729 {
1730     /*
1731      * When running in MTTCG we don't generate jumps to the yield and
1732      * WFE helpers as it won't affect the scheduling of other vCPUs.
1733      * If we wanted to more completely model WFE/SEV so we don't busy
1734      * spin unnecessarily we would need to do something more involved.
1735      */
1736     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1737         s->base.is_jmp = DISAS_WFE;
1738     }
1739     return true;
1740 }
1741 
1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1743 {
1744     if (s->pauth_active) {
1745         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1746     }
1747     return true;
1748 }
1749 
1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1751 {
1752     if (s->pauth_active) {
1753         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1754     }
1755     return true;
1756 }
1757 
1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1759 {
1760     if (s->pauth_active) {
1761         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1762     }
1763     return true;
1764 }
1765 
1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1767 {
1768     if (s->pauth_active) {
1769         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1770     }
1771     return true;
1772 }
1773 
1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1775 {
1776     if (s->pauth_active) {
1777         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1778     }
1779     return true;
1780 }
1781 
1782 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1783 {
1784     /* Without RAS, we must implement this as NOP. */
1785     if (dc_isar_feature(aa64_ras, s)) {
1786         /*
1787          * QEMU does not have a source of physical SErrors,
1788          * so we are only concerned with virtual SErrors.
1789          * The pseudocode in the ARM for this case is
1790          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1791          *      AArch64.vESBOperation();
1792          * Most of the condition can be evaluated at translation time.
1793          * Test for EL2 present, and defer test for SEL2 to runtime.
1794          */
1795         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1796             gen_helper_vesb(tcg_env);
1797         }
1798     }
1799     return true;
1800 }
1801 
1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1803 {
1804     if (s->pauth_active) {
1805         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1806     }
1807     return true;
1808 }
1809 
1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1811 {
1812     if (s->pauth_active) {
1813         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1814     }
1815     return true;
1816 }
1817 
1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1819 {
1820     if (s->pauth_active) {
1821         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1822     }
1823     return true;
1824 }
1825 
1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1827 {
1828     if (s->pauth_active) {
1829         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1830     }
1831     return true;
1832 }
1833 
1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1835 {
1836     if (s->pauth_active) {
1837         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1838     }
1839     return true;
1840 }
1841 
1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1843 {
1844     if (s->pauth_active) {
1845         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1846     }
1847     return true;
1848 }
1849 
1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1851 {
1852     if (s->pauth_active) {
1853         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854     }
1855     return true;
1856 }
1857 
1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1859 {
1860     if (s->pauth_active) {
1861         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862     }
1863     return true;
1864 }
1865 
1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1867 {
1868     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1869     return true;
1870 }
1871 
1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1873 {
1874     /* We handle DSB and DMB the same way */
1875     TCGBar bar;
1876 
1877     switch (a->types) {
1878     case 1: /* MBReqTypes_Reads */
1879         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1880         break;
1881     case 2: /* MBReqTypes_Writes */
1882         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1883         break;
1884     default: /* MBReqTypes_All */
1885         bar = TCG_BAR_SC | TCG_MO_ALL;
1886         break;
1887     }
1888     tcg_gen_mb(bar);
1889     return true;
1890 }
1891 
1892 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1893 {
1894     /*
1895      * We need to break the TB after this insn to execute
1896      * self-modifying code correctly and also to take
1897      * any pending interrupts immediately.
1898      */
1899     reset_btype(s);
1900     gen_goto_tb(s, 0, 4);
1901     return true;
1902 }
1903 
1904 static bool trans_SB(DisasContext *s, arg_SB *a)
1905 {
1906     if (!dc_isar_feature(aa64_sb, s)) {
1907         return false;
1908     }
1909     /*
1910      * TODO: There is no speculation barrier opcode for TCG;
1911      * MB and end the TB instead.
1912      */
1913     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1914     gen_goto_tb(s, 0, 4);
1915     return true;
1916 }
1917 
1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1919 {
1920     if (!dc_isar_feature(aa64_condm_4, s)) {
1921         return false;
1922     }
1923     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1924     return true;
1925 }
1926 
1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1928 {
1929     TCGv_i32 z;
1930 
1931     if (!dc_isar_feature(aa64_condm_5, s)) {
1932         return false;
1933     }
1934 
1935     z = tcg_temp_new_i32();
1936 
1937     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1938 
1939     /*
1940      * (!C & !Z) << 31
1941      * (!(C | Z)) << 31
1942      * ~((C | Z) << 31)
1943      * ~-(C | Z)
1944      * (C | Z) - 1
1945      */
1946     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1947     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1948 
1949     /* !(Z & C) */
1950     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1951     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1952 
1953     /* (!C & Z) << 31 -> -(Z & ~C) */
1954     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1955     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1956 
1957     /* C | Z */
1958     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1959 
1960     return true;
1961 }
1962 
1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1964 {
1965     if (!dc_isar_feature(aa64_condm_5, s)) {
1966         return false;
1967     }
1968 
1969     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1970     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1971 
1972     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1973     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1974 
1975     tcg_gen_movi_i32(cpu_NF, 0);
1976     tcg_gen_movi_i32(cpu_VF, 0);
1977 
1978     return true;
1979 }
1980 
1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1982 {
1983     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1984         return false;
1985     }
1986     if (a->imm & 1) {
1987         set_pstate_bits(PSTATE_UAO);
1988     } else {
1989         clear_pstate_bits(PSTATE_UAO);
1990     }
1991     gen_rebuild_hflags(s);
1992     s->base.is_jmp = DISAS_TOO_MANY;
1993     return true;
1994 }
1995 
1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1997 {
1998     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1999         return false;
2000     }
2001     if (a->imm & 1) {
2002         set_pstate_bits(PSTATE_PAN);
2003     } else {
2004         clear_pstate_bits(PSTATE_PAN);
2005     }
2006     gen_rebuild_hflags(s);
2007     s->base.is_jmp = DISAS_TOO_MANY;
2008     return true;
2009 }
2010 
2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2012 {
2013     if (s->current_el == 0) {
2014         return false;
2015     }
2016     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2017     s->base.is_jmp = DISAS_TOO_MANY;
2018     return true;
2019 }
2020 
2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2022 {
2023     if (!dc_isar_feature(aa64_ssbs, s)) {
2024         return false;
2025     }
2026     if (a->imm & 1) {
2027         set_pstate_bits(PSTATE_SSBS);
2028     } else {
2029         clear_pstate_bits(PSTATE_SSBS);
2030     }
2031     /* Don't need to rebuild hflags since SSBS is a nop */
2032     s->base.is_jmp = DISAS_TOO_MANY;
2033     return true;
2034 }
2035 
2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2037 {
2038     if (!dc_isar_feature(aa64_dit, s)) {
2039         return false;
2040     }
2041     if (a->imm & 1) {
2042         set_pstate_bits(PSTATE_DIT);
2043     } else {
2044         clear_pstate_bits(PSTATE_DIT);
2045     }
2046     /* There's no need to rebuild hflags because DIT is a nop */
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2052 {
2053     if (dc_isar_feature(aa64_mte, s)) {
2054         /* Full MTE is enabled -- set the TCO bit as directed. */
2055         if (a->imm & 1) {
2056             set_pstate_bits(PSTATE_TCO);
2057         } else {
2058             clear_pstate_bits(PSTATE_TCO);
2059         }
2060         gen_rebuild_hflags(s);
2061         /* Many factors, including TCO, go into MTE_ACTIVE. */
2062         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2063         return true;
2064     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2065         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2066         return true;
2067     } else {
2068         /* Insn not present */
2069         return false;
2070     }
2071 }
2072 
2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2074 {
2075     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2076     s->base.is_jmp = DISAS_TOO_MANY;
2077     return true;
2078 }
2079 
2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2081 {
2082     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2083     /* Exit the cpu loop to re-evaluate pending IRQs. */
2084     s->base.is_jmp = DISAS_UPDATE_EXIT;
2085     return true;
2086 }
2087 
2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2089 {
2090     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2091         return false;
2092     }
2093 
2094     if (a->imm == 0) {
2095         clear_pstate_bits(PSTATE_ALLINT);
2096     } else if (s->current_el > 1) {
2097         set_pstate_bits(PSTATE_ALLINT);
2098     } else {
2099         gen_helper_msr_set_allint_el1(tcg_env);
2100     }
2101 
2102     /* Exit the cpu loop to re-evaluate pending IRQs. */
2103     s->base.is_jmp = DISAS_UPDATE_EXIT;
2104     return true;
2105 }
2106 
2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2108 {
2109     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2110         return false;
2111     }
2112     if (sme_access_check(s)) {
2113         int old = s->pstate_sm | (s->pstate_za << 1);
2114         int new = a->imm * 3;
2115 
2116         if ((old ^ new) & a->mask) {
2117             /* At least one bit changes. */
2118             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2119                                 tcg_constant_i32(a->mask));
2120             s->base.is_jmp = DISAS_TOO_MANY;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2127 {
2128     TCGv_i32 tmp = tcg_temp_new_i32();
2129     TCGv_i32 nzcv = tcg_temp_new_i32();
2130 
2131     /* build bit 31, N */
2132     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2133     /* build bit 30, Z */
2134     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2135     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2136     /* build bit 29, C */
2137     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2138     /* build bit 28, V */
2139     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2140     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2141     /* generate result */
2142     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2143 }
2144 
2145 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2146 {
2147     TCGv_i32 nzcv = tcg_temp_new_i32();
2148 
2149     /* take NZCV from R[t] */
2150     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2151 
2152     /* bit 31, N */
2153     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2154     /* bit 30, Z */
2155     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2156     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2157     /* bit 29, C */
2158     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2159     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2160     /* bit 28, V */
2161     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2162     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2163 }
2164 
2165 static void gen_sysreg_undef(DisasContext *s, bool isread,
2166                              uint8_t op0, uint8_t op1, uint8_t op2,
2167                              uint8_t crn, uint8_t crm, uint8_t rt)
2168 {
2169     /*
2170      * Generate code to emit an UNDEF with correct syndrome
2171      * information for a failed system register access.
2172      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2173      * but if FEAT_IDST is implemented then read accesses to registers
2174      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2175      * syndrome.
2176      */
2177     uint32_t syndrome;
2178 
2179     if (isread && dc_isar_feature(aa64_ids, s) &&
2180         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182     } else {
2183         syndrome = syn_uncategorized();
2184     }
2185     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2186 }
2187 
2188 /* MRS - move from system register
2189  * MSR (register) - move to system register
2190  * SYS
2191  * SYSL
2192  * These are all essentially the same insn in 'read' and 'write'
2193  * versions, with varying op0 fields.
2194  */
2195 static void handle_sys(DisasContext *s, bool isread,
2196                        unsigned int op0, unsigned int op1, unsigned int op2,
2197                        unsigned int crn, unsigned int crm, unsigned int rt)
2198 {
2199     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2200                                       crn, crm, op0, op1, op2);
2201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2202     bool need_exit_tb = false;
2203     bool nv_trap_to_el2 = false;
2204     bool nv_redirect_reg = false;
2205     bool skip_fp_access_checks = false;
2206     bool nv2_mem_redirect = false;
2207     TCGv_ptr tcg_ri = NULL;
2208     TCGv_i64 tcg_rt;
2209     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2210 
2211     if (crn == 11 || crn == 15) {
2212         /*
2213          * Check for TIDCP trap, which must take precedence over
2214          * the UNDEF for "no such register" etc.
2215          */
2216         switch (s->current_el) {
2217         case 0:
2218             if (dc_isar_feature(aa64_tidcp1, s)) {
2219                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2220             }
2221             break;
2222         case 1:
2223             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2224             break;
2225         }
2226     }
2227 
2228     if (!ri) {
2229         /* Unknown register; this might be a guest error or a QEMU
2230          * unimplemented feature.
2231          */
2232         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2233                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2234                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2235         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2236         return;
2237     }
2238 
2239     if (s->nv2 && ri->nv2_redirect_offset) {
2240         /*
2241          * Some registers always redirect to memory; some only do so if
2242          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2243          * pairs which share an offset; see the table in R_CSRPQ).
2244          */
2245         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2246             nv2_mem_redirect = s->nv1;
2247         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2248             nv2_mem_redirect = !s->nv1;
2249         } else {
2250             nv2_mem_redirect = true;
2251         }
2252     }
2253 
2254     /* Check access permissions */
2255     if (!cp_access_ok(s->current_el, ri, isread)) {
2256         /*
2257          * FEAT_NV/NV2 handling does not do the usual FP access checks
2258          * for registers only accessible at EL2 (though it *does* do them
2259          * for registers accessible at EL1).
2260          */
2261         skip_fp_access_checks = true;
2262         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2263             /*
2264              * This is one of the few EL2 registers which should redirect
2265              * to the equivalent EL1 register. We do that after running
2266              * the EL2 register's accessfn.
2267              */
2268             nv_redirect_reg = true;
2269             assert(!nv2_mem_redirect);
2270         } else if (nv2_mem_redirect) {
2271             /*
2272              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2273              * UNDEF to EL1.
2274              */
2275         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2276             /*
2277              * This register / instruction exists and is an EL2 register, so
2278              * we must trap to EL2 if accessed in nested virtualization EL1
2279              * instead of UNDEFing. We'll do that after the usual access checks.
2280              * (This makes a difference only for a couple of registers like
2281              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2282              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2283              * an accessfn which does nothing when called from EL1, because
2284              * the trap-to-EL3 controls which would apply to that register
2285              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2286              */
2287             nv_trap_to_el2 = true;
2288         } else {
2289             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290             return;
2291         }
2292     }
2293 
2294     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2295         /* Emit code to perform further access permissions checks at
2296          * runtime; this may result in an exception.
2297          */
2298         gen_a64_update_pc(s, 0);
2299         tcg_ri = tcg_temp_new_ptr();
2300         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2301                                        tcg_constant_i32(key),
2302                                        tcg_constant_i32(syndrome),
2303                                        tcg_constant_i32(isread));
2304     } else if (ri->type & ARM_CP_RAISES_EXC) {
2305         /*
2306          * The readfn or writefn might raise an exception;
2307          * synchronize the CPU state in case it does.
2308          */
2309         gen_a64_update_pc(s, 0);
2310     }
2311 
2312     if (!skip_fp_access_checks) {
2313         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2314             return;
2315         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2316             return;
2317         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2318             return;
2319         }
2320     }
2321 
2322     if (nv_trap_to_el2) {
2323         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2324         return;
2325     }
2326 
2327     if (nv_redirect_reg) {
2328         /*
2329          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2330          * Conveniently in all cases the encoding of the EL1 register is
2331          * identical to the EL2 register except that opc1 is 0.
2332          * Get the reginfo for the EL1 register to use for the actual access.
2333          * We don't use the EL1 register's access function, and
2334          * fine-grained-traps on EL1 also do not apply here.
2335          */
2336         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2337                                  crn, crm, op0, 0, op2);
2338         ri = get_arm_cp_reginfo(s->cp_regs, key);
2339         assert(ri);
2340         assert(cp_access_ok(s->current_el, ri, isread));
2341         /*
2342          * We might not have done an update_pc earlier, so check we don't
2343          * need it. We could support this in future if necessary.
2344          */
2345         assert(!(ri->type & ARM_CP_RAISES_EXC));
2346     }
2347 
2348     if (nv2_mem_redirect) {
2349         /*
2350          * This system register is being redirected into an EL2 memory access.
2351          * This means it is not an IO operation, doesn't change hflags,
2352          * and need not end the TB, because it has no side effects.
2353          *
2354          * The access is 64-bit single copy atomic, guaranteed aligned because
2355          * of the definition of VCNR_EL2. Its endianness depends on
2356          * SCTLR_EL2.EE, not on the data endianness of EL1.
2357          * It is done under either the EL2 translation regime or the EL2&0
2358          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2359          * PSTATE.PAN is 0.
2360          */
2361         TCGv_i64 ptr = tcg_temp_new_i64();
2362         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2363         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2364         int memidx = arm_to_core_mmu_idx(armmemidx);
2365         uint32_t syn;
2366 
2367         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2368 
2369         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2370         tcg_gen_addi_i64(ptr, ptr,
2371                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2372         tcg_rt = cpu_reg(s, rt);
2373 
2374         syn = syn_data_abort_vncr(0, !isread, 0);
2375         disas_set_insn_syndrome(s, syn);
2376         if (isread) {
2377             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2378         } else {
2379             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2380         }
2381         return;
2382     }
2383 
2384     /* Handle special cases first */
2385     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2386     case 0:
2387         break;
2388     case ARM_CP_NOP:
2389         return;
2390     case ARM_CP_NZCV:
2391         tcg_rt = cpu_reg(s, rt);
2392         if (isread) {
2393             gen_get_nzcv(tcg_rt);
2394         } else {
2395             gen_set_nzcv(tcg_rt);
2396         }
2397         return;
2398     case ARM_CP_CURRENTEL:
2399     {
2400         /*
2401          * Reads as current EL value from pstate, which is
2402          * guaranteed to be constant by the tb flags.
2403          * For nested virt we should report EL2.
2404          */
2405         int el = s->nv ? 2 : s->current_el;
2406         tcg_rt = cpu_reg(s, rt);
2407         tcg_gen_movi_i64(tcg_rt, el << 2);
2408         return;
2409     }
2410     case ARM_CP_DC_ZVA:
2411         /* Writes clear the aligned block of memory which rt points into. */
2412         if (s->mte_active[0]) {
2413             int desc = 0;
2414 
2415             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2416             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2417             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2418 
2419             tcg_rt = tcg_temp_new_i64();
2420             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2421                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2422         } else {
2423             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2424         }
2425         gen_helper_dc_zva(tcg_env, tcg_rt);
2426         return;
2427     case ARM_CP_DC_GVA:
2428         {
2429             TCGv_i64 clean_addr, tag;
2430 
2431             /*
2432              * DC_GVA, like DC_ZVA, requires that we supply the original
2433              * pointer for an invalid page.  Probe that address first.
2434              */
2435             tcg_rt = cpu_reg(s, rt);
2436             clean_addr = clean_data_tbi(s, tcg_rt);
2437             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2438 
2439             if (s->ata[0]) {
2440                 /* Extract the tag from the register to match STZGM.  */
2441                 tag = tcg_temp_new_i64();
2442                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2443                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2444             }
2445         }
2446         return;
2447     case ARM_CP_DC_GZVA:
2448         {
2449             TCGv_i64 clean_addr, tag;
2450 
2451             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2452             tcg_rt = cpu_reg(s, rt);
2453             clean_addr = clean_data_tbi(s, tcg_rt);
2454             gen_helper_dc_zva(tcg_env, clean_addr);
2455 
2456             if (s->ata[0]) {
2457                 /* Extract the tag from the register to match STZGM.  */
2458                 tag = tcg_temp_new_i64();
2459                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2460                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2461             }
2462         }
2463         return;
2464     default:
2465         g_assert_not_reached();
2466     }
2467 
2468     if (ri->type & ARM_CP_IO) {
2469         /* I/O operations must end the TB here (whether read or write) */
2470         need_exit_tb = translator_io_start(&s->base);
2471     }
2472 
2473     tcg_rt = cpu_reg(s, rt);
2474 
2475     if (isread) {
2476         if (ri->type & ARM_CP_CONST) {
2477             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2478         } else if (ri->readfn) {
2479             if (!tcg_ri) {
2480                 tcg_ri = gen_lookup_cp_reg(key);
2481             }
2482             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2483         } else {
2484             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2485         }
2486     } else {
2487         if (ri->type & ARM_CP_CONST) {
2488             /* If not forbidden by access permissions, treat as WI */
2489             return;
2490         } else if (ri->writefn) {
2491             if (!tcg_ri) {
2492                 tcg_ri = gen_lookup_cp_reg(key);
2493             }
2494             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2495         } else {
2496             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497         }
2498     }
2499 
2500     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2501         /*
2502          * A write to any coprocessor register that ends a TB
2503          * must rebuild the hflags for the next TB.
2504          */
2505         gen_rebuild_hflags(s);
2506         /*
2507          * We default to ending the TB on a coprocessor register write,
2508          * but allow this to be suppressed by the register definition
2509          * (usually only necessary to work around guest bugs).
2510          */
2511         need_exit_tb = true;
2512     }
2513     if (need_exit_tb) {
2514         s->base.is_jmp = DISAS_UPDATE_EXIT;
2515     }
2516 }
2517 
2518 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2519 {
2520     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2521     return true;
2522 }
2523 
2524 static bool trans_SVC(DisasContext *s, arg_i *a)
2525 {
2526     /*
2527      * For SVC, HVC and SMC we advance the single-step state
2528      * machine before taking the exception. This is architecturally
2529      * mandated, to ensure that single-stepping a system call
2530      * instruction works properly.
2531      */
2532     uint32_t syndrome = syn_aa64_svc(a->imm);
2533     if (s->fgt_svc) {
2534         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2535         return true;
2536     }
2537     gen_ss_advance(s);
2538     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2539     return true;
2540 }
2541 
2542 static bool trans_HVC(DisasContext *s, arg_i *a)
2543 {
2544     int target_el = s->current_el == 3 ? 3 : 2;
2545 
2546     if (s->current_el == 0) {
2547         unallocated_encoding(s);
2548         return true;
2549     }
2550     /*
2551      * The pre HVC helper handles cases when HVC gets trapped
2552      * as an undefined insn by runtime configuration.
2553      */
2554     gen_a64_update_pc(s, 0);
2555     gen_helper_pre_hvc(tcg_env);
2556     /* Architecture requires ss advance before we do the actual work */
2557     gen_ss_advance(s);
2558     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2559     return true;
2560 }
2561 
2562 static bool trans_SMC(DisasContext *s, arg_i *a)
2563 {
2564     if (s->current_el == 0) {
2565         unallocated_encoding(s);
2566         return true;
2567     }
2568     gen_a64_update_pc(s, 0);
2569     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2570     /* Architecture requires ss advance before we do the actual work */
2571     gen_ss_advance(s);
2572     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2573     return true;
2574 }
2575 
2576 static bool trans_BRK(DisasContext *s, arg_i *a)
2577 {
2578     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2579     return true;
2580 }
2581 
2582 static bool trans_HLT(DisasContext *s, arg_i *a)
2583 {
2584     /*
2585      * HLT. This has two purposes.
2586      * Architecturally, it is an external halting debug instruction.
2587      * Since QEMU doesn't implement external debug, we treat this as
2588      * it is required for halting debug disabled: it will UNDEF.
2589      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2590      */
2591     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2592         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2593     } else {
2594         unallocated_encoding(s);
2595     }
2596     return true;
2597 }
2598 
2599 /*
2600  * Load/Store exclusive instructions are implemented by remembering
2601  * the value/address loaded, and seeing if these are the same
2602  * when the store is performed. This is not actually the architecturally
2603  * mandated semantics, but it works for typical guest code sequences
2604  * and avoids having to monitor regular stores.
2605  *
2606  * The store exclusive uses the atomic cmpxchg primitives to avoid
2607  * races in multi-threaded linux-user and when MTTCG softmmu is
2608  * enabled.
2609  */
2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2611                                int size, bool is_pair)
2612 {
2613     int idx = get_mem_index(s);
2614     TCGv_i64 dirty_addr, clean_addr;
2615     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2616 
2617     s->is_ldex = true;
2618     dirty_addr = cpu_reg_sp(s, rn);
2619     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2620 
2621     g_assert(size <= 3);
2622     if (is_pair) {
2623         g_assert(size >= 2);
2624         if (size == 2) {
2625             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2626             if (s->be_data == MO_LE) {
2627                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2628                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2629             } else {
2630                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2631                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2632             }
2633         } else {
2634             TCGv_i128 t16 = tcg_temp_new_i128();
2635 
2636             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2637 
2638             if (s->be_data == MO_LE) {
2639                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2640                                       cpu_exclusive_high, t16);
2641             } else {
2642                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2643                                       cpu_exclusive_val, t16);
2644             }
2645             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2646             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2647         }
2648     } else {
2649         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2650         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2651     }
2652     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2653 }
2654 
2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2656                                 int rn, int size, int is_pair)
2657 {
2658     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2659      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2660      *     [addr] = {Rt};
2661      *     if (is_pair) {
2662      *         [addr + datasize] = {Rt2};
2663      *     }
2664      *     {Rd} = 0;
2665      * } else {
2666      *     {Rd} = 1;
2667      * }
2668      * env->exclusive_addr = -1;
2669      */
2670     TCGLabel *fail_label = gen_new_label();
2671     TCGLabel *done_label = gen_new_label();
2672     TCGv_i64 tmp, clean_addr;
2673     MemOp memop;
2674 
2675     /*
2676      * FIXME: We are out of spec here.  We have recorded only the address
2677      * from load_exclusive, not the entire range, and we assume that the
2678      * size of the access on both sides match.  The architecture allows the
2679      * store to be smaller than the load, so long as the stored bytes are
2680      * within the range recorded by the load.
2681      */
2682 
2683     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2684     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2685     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2686 
2687     /*
2688      * The write, and any associated faults, only happen if the virtual
2689      * and physical addresses pass the exclusive monitor check.  These
2690      * faults are exceedingly unlikely, because normally the guest uses
2691      * the exact same address register for the load_exclusive, and we
2692      * would have recognized these faults there.
2693      *
2694      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2695      * unaligned 4-byte write within the range of an aligned 8-byte load.
2696      * With LSE2, the store would need to cross a 16-byte boundary when the
2697      * load did not, which would mean the store is outside the range
2698      * recorded for the monitor, which would have failed a corrected monitor
2699      * check above.  For now, we assume no size change and retain the
2700      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2701      *
2702      * It is possible to trigger an MTE fault, by performing the load with
2703      * a virtual address with a valid tag and performing the store with the
2704      * same virtual address and a different invalid tag.
2705      */
2706     memop = size + is_pair;
2707     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2708         memop |= MO_ALIGN;
2709     }
2710     memop = finalize_memop(s, memop);
2711     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2712 
2713     tmp = tcg_temp_new_i64();
2714     if (is_pair) {
2715         if (size == 2) {
2716             if (s->be_data == MO_LE) {
2717                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2718             } else {
2719                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2720             }
2721             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2722                                        cpu_exclusive_val, tmp,
2723                                        get_mem_index(s), memop);
2724             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2725         } else {
2726             TCGv_i128 t16 = tcg_temp_new_i128();
2727             TCGv_i128 c16 = tcg_temp_new_i128();
2728             TCGv_i64 a, b;
2729 
2730             if (s->be_data == MO_LE) {
2731                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2732                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2733                                         cpu_exclusive_high);
2734             } else {
2735                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2736                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2737                                         cpu_exclusive_val);
2738             }
2739 
2740             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2741                                         get_mem_index(s), memop);
2742 
2743             a = tcg_temp_new_i64();
2744             b = tcg_temp_new_i64();
2745             if (s->be_data == MO_LE) {
2746                 tcg_gen_extr_i128_i64(a, b, t16);
2747             } else {
2748                 tcg_gen_extr_i128_i64(b, a, t16);
2749             }
2750 
2751             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2752             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2753             tcg_gen_or_i64(tmp, a, b);
2754 
2755             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2756         }
2757     } else {
2758         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2759                                    cpu_reg(s, rt), get_mem_index(s), memop);
2760         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2761     }
2762     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2763     tcg_gen_br(done_label);
2764 
2765     gen_set_label(fail_label);
2766     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2767     gen_set_label(done_label);
2768     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2769 }
2770 
2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2772                                  int rn, int size)
2773 {
2774     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2775     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776     int memidx = get_mem_index(s);
2777     TCGv_i64 clean_addr;
2778     MemOp memop;
2779 
2780     if (rn == 31) {
2781         gen_check_sp_alignment(s);
2782     }
2783     memop = check_atomic_align(s, rn, size);
2784     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2785     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2786                                memidx, memop);
2787 }
2788 
2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2790                                       int rn, int size)
2791 {
2792     TCGv_i64 s1 = cpu_reg(s, rs);
2793     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2794     TCGv_i64 t1 = cpu_reg(s, rt);
2795     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2796     TCGv_i64 clean_addr;
2797     int memidx = get_mem_index(s);
2798     MemOp memop;
2799 
2800     if (rn == 31) {
2801         gen_check_sp_alignment(s);
2802     }
2803 
2804     /* This is a single atomic access, despite the "pair". */
2805     memop = check_atomic_align(s, rn, size + 1);
2806     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2807 
2808     if (size == 2) {
2809         TCGv_i64 cmp = tcg_temp_new_i64();
2810         TCGv_i64 val = tcg_temp_new_i64();
2811 
2812         if (s->be_data == MO_LE) {
2813             tcg_gen_concat32_i64(val, t1, t2);
2814             tcg_gen_concat32_i64(cmp, s1, s2);
2815         } else {
2816             tcg_gen_concat32_i64(val, t2, t1);
2817             tcg_gen_concat32_i64(cmp, s2, s1);
2818         }
2819 
2820         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2821 
2822         if (s->be_data == MO_LE) {
2823             tcg_gen_extr32_i64(s1, s2, cmp);
2824         } else {
2825             tcg_gen_extr32_i64(s2, s1, cmp);
2826         }
2827     } else {
2828         TCGv_i128 cmp = tcg_temp_new_i128();
2829         TCGv_i128 val = tcg_temp_new_i128();
2830 
2831         if (s->be_data == MO_LE) {
2832             tcg_gen_concat_i64_i128(val, t1, t2);
2833             tcg_gen_concat_i64_i128(cmp, s1, s2);
2834         } else {
2835             tcg_gen_concat_i64_i128(val, t2, t1);
2836             tcg_gen_concat_i64_i128(cmp, s2, s1);
2837         }
2838 
2839         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2840 
2841         if (s->be_data == MO_LE) {
2842             tcg_gen_extr_i128_i64(s1, s2, cmp);
2843         } else {
2844             tcg_gen_extr_i128_i64(s2, s1, cmp);
2845         }
2846     }
2847 }
2848 
2849 /*
2850  * Compute the ISS.SF bit for syndrome information if an exception
2851  * is taken on a load or store. This indicates whether the instruction
2852  * is accessing a 32-bit or 64-bit register. This logic is derived
2853  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2854  */
2855 static bool ldst_iss_sf(int size, bool sign, bool ext)
2856 {
2857 
2858     if (sign) {
2859         /*
2860          * Signed loads are 64 bit results if we are not going to
2861          * do a zero-extend from 32 to 64 after the load.
2862          * (For a store, sign and ext are always false.)
2863          */
2864         return !ext;
2865     } else {
2866         /* Unsigned loads/stores work at the specified size */
2867         return size == MO_64;
2868     }
2869 }
2870 
2871 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2872 {
2873     if (a->rn == 31) {
2874         gen_check_sp_alignment(s);
2875     }
2876     if (a->lasr) {
2877         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2878     }
2879     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2880     return true;
2881 }
2882 
2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2884 {
2885     if (a->rn == 31) {
2886         gen_check_sp_alignment(s);
2887     }
2888     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2889     if (a->lasr) {
2890         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2891     }
2892     return true;
2893 }
2894 
2895 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2896 {
2897     TCGv_i64 clean_addr;
2898     MemOp memop;
2899     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2900 
2901     /*
2902      * StoreLORelease is the same as Store-Release for QEMU, but
2903      * needs the feature-test.
2904      */
2905     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2906         return false;
2907     }
2908     /* Generate ISS for non-exclusive accesses including LASR.  */
2909     if (a->rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2913     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2914     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2915                                 true, a->rn != 31, memop);
2916     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2917               iss_sf, a->lasr);
2918     return true;
2919 }
2920 
2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2922 {
2923     TCGv_i64 clean_addr;
2924     MemOp memop;
2925     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2926 
2927     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2928     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2929         return false;
2930     }
2931     /* Generate ISS for non-exclusive accesses including LASR.  */
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2936     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2937                                 false, a->rn != 31, memop);
2938     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2939               a->rt, iss_sf, a->lasr);
2940     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2941     return true;
2942 }
2943 
2944 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2945 {
2946     if (a->rn == 31) {
2947         gen_check_sp_alignment(s);
2948     }
2949     if (a->lasr) {
2950         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2951     }
2952     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2953     return true;
2954 }
2955 
2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2957 {
2958     if (a->rn == 31) {
2959         gen_check_sp_alignment(s);
2960     }
2961     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2962     if (a->lasr) {
2963         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2964     }
2965     return true;
2966 }
2967 
2968 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2969 {
2970     if (!dc_isar_feature(aa64_atomics, s)) {
2971         return false;
2972     }
2973     if (((a->rt | a->rs) & 1) != 0) {
2974         return false;
2975     }
2976 
2977     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2978     return true;
2979 }
2980 
2981 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2982 {
2983     if (!dc_isar_feature(aa64_atomics, s)) {
2984         return false;
2985     }
2986     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2987     return true;
2988 }
2989 
2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2991 {
2992     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2993     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2994     TCGv_i64 clean_addr = tcg_temp_new_i64();
2995     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2996 
2997     gen_pc_plus_diff(s, clean_addr, a->imm);
2998     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2999               false, true, a->rt, iss_sf, false);
3000     return true;
3001 }
3002 
3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3004 {
3005     /* Load register (literal), vector version */
3006     TCGv_i64 clean_addr;
3007     MemOp memop;
3008 
3009     if (!fp_access_check(s)) {
3010         return true;
3011     }
3012     memop = finalize_memop_asimd(s, a->sz);
3013     clean_addr = tcg_temp_new_i64();
3014     gen_pc_plus_diff(s, clean_addr, a->imm);
3015     do_fp_ld(s, a->rt, clean_addr, memop);
3016     return true;
3017 }
3018 
3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3020                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3021                                  uint64_t offset, bool is_store, MemOp mop)
3022 {
3023     if (a->rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3028     if (!a->p) {
3029         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3030     }
3031 
3032     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3033                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3034 }
3035 
3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3037                                   TCGv_i64 dirty_addr, uint64_t offset)
3038 {
3039     if (a->w) {
3040         if (a->p) {
3041             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3042         }
3043         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3044     }
3045 }
3046 
3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3048 {
3049     uint64_t offset = a->imm << a->sz;
3050     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3051     MemOp mop = finalize_memop(s, a->sz);
3052 
3053     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3054     tcg_rt = cpu_reg(s, a->rt);
3055     tcg_rt2 = cpu_reg(s, a->rt2);
3056     /*
3057      * We built mop above for the single logical access -- rebuild it
3058      * now for the paired operation.
3059      *
3060      * With LSE2, non-sign-extending pairs are treated atomically if
3061      * aligned, and if unaligned one of the pair will be completely
3062      * within a 16-byte block and that element will be atomic.
3063      * Otherwise each element is separately atomic.
3064      * In all cases, issue one operation with the correct atomicity.
3065      */
3066     mop = a->sz + 1;
3067     if (s->align_mem) {
3068         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3069     }
3070     mop = finalize_memop_pair(s, mop);
3071     if (a->sz == 2) {
3072         TCGv_i64 tmp = tcg_temp_new_i64();
3073 
3074         if (s->be_data == MO_LE) {
3075             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3076         } else {
3077             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3078         }
3079         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3080     } else {
3081         TCGv_i128 tmp = tcg_temp_new_i128();
3082 
3083         if (s->be_data == MO_LE) {
3084             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3085         } else {
3086             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3087         }
3088         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3089     }
3090     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3091     return true;
3092 }
3093 
3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103 
3104     /*
3105      * We built mop above for the single logical access -- rebuild it
3106      * now for the paired operation.
3107      *
3108      * With LSE2, non-sign-extending pairs are treated atomically if
3109      * aligned, and if unaligned one of the pair will be completely
3110      * within a 16-byte block and that element will be atomic.
3111      * Otherwise each element is separately atomic.
3112      * In all cases, issue one operation with the correct atomicity.
3113      *
3114      * This treats sign-extending loads like zero-extending loads,
3115      * since that reuses the most code below.
3116      */
3117     mop = a->sz + 1;
3118     if (s->align_mem) {
3119         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3120     }
3121     mop = finalize_memop_pair(s, mop);
3122     if (a->sz == 2) {
3123         int o2 = s->be_data == MO_LE ? 32 : 0;
3124         int o1 = o2 ^ 32;
3125 
3126         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3127         if (a->sign) {
3128             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3129             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3130         } else {
3131             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3132             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3133         }
3134     } else {
3135         TCGv_i128 tmp = tcg_temp_new_i128();
3136 
3137         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3138         if (s->be_data == MO_LE) {
3139             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3140         } else {
3141             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3142         }
3143     }
3144     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145     return true;
3146 }
3147 
3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3149 {
3150     uint64_t offset = a->imm << a->sz;
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157 
3158     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3159     mop = finalize_memop_asimd(s, a->sz);
3160     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3161     do_fp_st(s, a->rt, clean_addr, mop);
3162     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3163     do_fp_st(s, a->rt2, clean_addr, mop);
3164     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3165     return true;
3166 }
3167 
3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3169 {
3170     uint64_t offset = a->imm << a->sz;
3171     TCGv_i64 clean_addr, dirty_addr;
3172     MemOp mop;
3173 
3174     if (!fp_access_check(s)) {
3175         return true;
3176     }
3177 
3178     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3179     mop = finalize_memop_asimd(s, a->sz);
3180     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3181     do_fp_ld(s, a->rt, clean_addr, mop);
3182     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3183     do_fp_ld(s, a->rt2, clean_addr, mop);
3184     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3185     return true;
3186 }
3187 
3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3189 {
3190     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3191     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3192     MemOp mop;
3193     TCGv_i128 tmp;
3194 
3195     /* STGP only comes in one size. */
3196     tcg_debug_assert(a->sz == MO_64);
3197 
3198     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3199         return false;
3200     }
3201 
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205 
3206     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3207     if (!a->p) {
3208         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209     }
3210 
3211     clean_addr = clean_data_tbi(s, dirty_addr);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     tcg_rt2 = cpu_reg(s, a->rt2);
3214 
3215     /*
3216      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3217      * and one tag operation.  We implement it as one single aligned 16-byte
3218      * memory operation for convenience.  Note that the alignment ensures
3219      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3220      */
3221     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3222 
3223     tmp = tcg_temp_new_i128();
3224     if (s->be_data == MO_LE) {
3225         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3226     } else {
3227         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3228     }
3229     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3230 
3231     /* Perform the tag store, if tag access enabled. */
3232     if (s->ata[0]) {
3233         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3234             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3235         } else {
3236             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3237         }
3238     }
3239 
3240     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3241     return true;
3242 }
3243 
3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3245                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3246                                  uint64_t offset, bool is_store, MemOp mop)
3247 {
3248     int memidx;
3249 
3250     if (a->rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253 
3254     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3255     if (!a->p) {
3256         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3257     }
3258     memidx = get_a64_user_mem_index(s, a->unpriv);
3259     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3260                                         a->w || a->rn != 31,
3261                                         mop, a->unpriv, memidx);
3262 }
3263 
3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3265                                   TCGv_i64 dirty_addr, uint64_t offset)
3266 {
3267     if (a->w) {
3268         if (a->p) {
3269             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3270         }
3271         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3272     }
3273 }
3274 
3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3276 {
3277     bool iss_sf, iss_valid = !a->w;
3278     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3279     int memidx = get_a64_user_mem_index(s, a->unpriv);
3280     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3281 
3282     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3283 
3284     tcg_rt = cpu_reg(s, a->rt);
3285     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3286 
3287     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3288                      iss_valid, a->rt, iss_sf, false);
3289     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3290     return true;
3291 }
3292 
3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3294 {
3295     bool iss_sf, iss_valid = !a->w;
3296     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3297     int memidx = get_a64_user_mem_index(s, a->unpriv);
3298     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3299 
3300     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3301 
3302     tcg_rt = cpu_reg(s, a->rt);
3303     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3304 
3305     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3306                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3307     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3308     return true;
3309 }
3310 
3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3312 {
3313     TCGv_i64 clean_addr, dirty_addr;
3314     MemOp mop;
3315 
3316     if (!fp_access_check(s)) {
3317         return true;
3318     }
3319     mop = finalize_memop_asimd(s, a->sz);
3320     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3321     do_fp_st(s, a->rt, clean_addr, mop);
3322     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp mop;
3330 
3331     if (!fp_access_check(s)) {
3332         return true;
3333     }
3334     mop = finalize_memop_asimd(s, a->sz);
3335     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3336     do_fp_ld(s, a->rt, clean_addr, mop);
3337     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3338     return true;
3339 }
3340 
3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3342                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3343                              bool is_store, MemOp memop)
3344 {
3345     TCGv_i64 tcg_rm;
3346 
3347     if (a->rn == 31) {
3348         gen_check_sp_alignment(s);
3349     }
3350     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3351 
3352     tcg_rm = read_cpu_reg(s, a->rm, 1);
3353     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3354 
3355     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3356     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3357 }
3358 
3359 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3360 {
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3362     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3363     MemOp memop;
3364 
3365     if (extract32(a->opt, 1, 1) == 0) {
3366         return false;
3367     }
3368 
3369     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               a->ext, true, a->rt, iss_sf, false);
3374     return true;
3375 }
3376 
3377 static bool trans_STR(DisasContext *s, arg_ldst *a)
3378 {
3379     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3380     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3381     MemOp memop;
3382 
3383     if (extract32(a->opt, 1, 1) == 0) {
3384         return false;
3385     }
3386 
3387     memop = finalize_memop(s, a->sz);
3388     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3389     tcg_rt = cpu_reg(s, a->rt);
3390     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3391     return true;
3392 }
3393 
3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3395 {
3396     TCGv_i64 clean_addr, dirty_addr;
3397     MemOp memop;
3398 
3399     if (extract32(a->opt, 1, 1) == 0) {
3400         return false;
3401     }
3402 
3403     if (!fp_access_check(s)) {
3404         return true;
3405     }
3406 
3407     memop = finalize_memop_asimd(s, a->sz);
3408     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3409     do_fp_ld(s, a->rt, clean_addr, memop);
3410     return true;
3411 }
3412 
3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3414 {
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp memop;
3417 
3418     if (extract32(a->opt, 1, 1) == 0) {
3419         return false;
3420     }
3421 
3422     if (!fp_access_check(s)) {
3423         return true;
3424     }
3425 
3426     memop = finalize_memop_asimd(s, a->sz);
3427     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3428     do_fp_st(s, a->rt, clean_addr, memop);
3429     return true;
3430 }
3431 
3432 
3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3434                          int sign, bool invert)
3435 {
3436     MemOp mop = a->sz | sign;
3437     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3438 
3439     if (a->rn == 31) {
3440         gen_check_sp_alignment(s);
3441     }
3442     mop = check_atomic_align(s, a->rn, mop);
3443     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3444                                 a->rn != 31, mop);
3445     tcg_rs = read_cpu_reg(s, a->rs, true);
3446     tcg_rt = cpu_reg(s, a->rt);
3447     if (invert) {
3448         tcg_gen_not_i64(tcg_rs, tcg_rs);
3449     }
3450     /*
3451      * The tcg atomic primitives are all full barriers.  Therefore we
3452      * can ignore the Acquire and Release bits of this instruction.
3453      */
3454     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3455 
3456     if (mop & MO_SIGN) {
3457         switch (a->sz) {
3458         case MO_8:
3459             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3460             break;
3461         case MO_16:
3462             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3463             break;
3464         case MO_32:
3465             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3466             break;
3467         case MO_64:
3468             break;
3469         default:
3470             g_assert_not_reached();
3471         }
3472     }
3473     return true;
3474 }
3475 
3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3485 
3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3487 {
3488     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3489     TCGv_i64 clean_addr;
3490     MemOp mop;
3491 
3492     if (!dc_isar_feature(aa64_atomics, s) ||
3493         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3494         return false;
3495     }
3496     if (a->rn == 31) {
3497         gen_check_sp_alignment(s);
3498     }
3499     mop = check_atomic_align(s, a->rn, a->sz);
3500     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3501                                 a->rn != 31, mop);
3502     /*
3503      * LDAPR* are a special case because they are a simple load, not a
3504      * fetch-and-do-something op.
3505      * The architectural consistency requirements here are weaker than
3506      * full load-acquire (we only need "load-acquire processor consistent"),
3507      * but we choose to implement them as full LDAQ.
3508      */
3509     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3510               true, a->rt, iss_sf, true);
3511     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3512     return true;
3513 }
3514 
3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3516 {
3517     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3518     MemOp memop;
3519 
3520     /* Load with pointer authentication */
3521     if (!dc_isar_feature(aa64_pauth, s)) {
3522         return false;
3523     }
3524 
3525     if (a->rn == 31) {
3526         gen_check_sp_alignment(s);
3527     }
3528     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3529 
3530     if (s->pauth_active) {
3531         if (!a->m) {
3532             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3533                                       tcg_constant_i64(0));
3534         } else {
3535             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3536                                       tcg_constant_i64(0));
3537         }
3538     }
3539 
3540     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3541 
3542     memop = finalize_memop(s, MO_64);
3543 
3544     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3545     clean_addr = gen_mte_check1(s, dirty_addr, false,
3546                                 a->w || a->rn != 31, memop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3550               /* extend */ false, /* iss_valid */ !a->w,
3551               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3552 
3553     if (a->w) {
3554         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3555     }
3556     return true;
3557 }
3558 
3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3560 {
3561     TCGv_i64 clean_addr, dirty_addr;
3562     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3563     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3564 
3565     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3566         return false;
3567     }
3568 
3569     if (a->rn == 31) {
3570         gen_check_sp_alignment(s);
3571     }
3572 
3573     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3574     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3575     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3576     clean_addr = clean_data_tbi(s, dirty_addr);
3577 
3578     /*
3579      * Load-AcquirePC semantics; we implement as the slightly more
3580      * restrictive Load-Acquire.
3581      */
3582     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3583               a->rt, iss_sf, true);
3584     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3585     return true;
3586 }
3587 
3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3589 {
3590     TCGv_i64 clean_addr, dirty_addr;
3591     MemOp mop = a->sz;
3592     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3593 
3594     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3595         return false;
3596     }
3597 
3598     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3599 
3600     if (a->rn == 31) {
3601         gen_check_sp_alignment(s);
3602     }
3603 
3604     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3605     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3606     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3607     clean_addr = clean_data_tbi(s, dirty_addr);
3608 
3609     /* Store-Release semantics */
3610     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3611     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3612     return true;
3613 }
3614 
3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3616 {
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int r;
3623     int size = a->sz;
3624 
3625     if (!a->p && a->rm != 0) {
3626         /* For non-postindexed accesses the Rm field must be 0 */
3627         return false;
3628     }
3629     if (size == 3 && !a->q && a->selem != 1) {
3630         return false;
3631     }
3632     if (!fp_access_check(s)) {
3633         return true;
3634     }
3635 
3636     if (a->rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     /* For our purposes, bytes are always little-endian.  */
3641     endian = s->be_data;
3642     if (size == 0) {
3643         endian = MO_LE;
3644     }
3645 
3646     total = a->rpt * a->selem * (a->q ? 16 : 8);
3647     tcg_rn = cpu_reg_sp(s, a->rn);
3648 
3649     /*
3650      * Issue the MTE check vs the logical repeat count, before we
3651      * promote consecutive little-endian elements below.
3652      */
3653     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3654                                 finalize_memop_asimd(s, size));
3655 
3656     /*
3657      * Consecutive little-endian elements from a single register
3658      * can be promoted to a larger little-endian operation.
3659      */
3660     align = MO_ALIGN;
3661     if (a->selem == 1 && endian == MO_LE) {
3662         align = pow2_align(size);
3663         size = 3;
3664     }
3665     if (!s->align_mem) {
3666         align = 0;
3667     }
3668     mop = endian | size | align;
3669 
3670     elements = (a->q ? 16 : 8) >> size;
3671     tcg_ebytes = tcg_constant_i64(1 << size);
3672     for (r = 0; r < a->rpt; r++) {
3673         int e;
3674         for (e = 0; e < elements; e++) {
3675             int xs;
3676             for (xs = 0; xs < a->selem; xs++) {
3677                 int tt = (a->rt + r + xs) % 32;
3678                 do_vec_ld(s, tt, e, clean_addr, mop);
3679                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3680             }
3681         }
3682     }
3683 
3684     /*
3685      * For non-quad operations, setting a slice of the low 64 bits of
3686      * the register clears the high 64 bits (in the ARM ARM pseudocode
3687      * this is implicit in the fact that 'rval' is a 64 bit wide
3688      * variable).  For quad operations, we might still need to zero
3689      * the high bits of SVE.
3690      */
3691     for (r = 0; r < a->rpt * a->selem; r++) {
3692         int tt = (a->rt + r) % 32;
3693         clear_vec_high(s, a->q, tt);
3694     }
3695 
3696     if (a->p) {
3697         if (a->rm == 31) {
3698             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699         } else {
3700             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701         }
3702     }
3703     return true;
3704 }
3705 
3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3707 {
3708     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3709     MemOp endian, align, mop;
3710 
3711     int total;    /* total bytes */
3712     int elements; /* elements per vector */
3713     int r;
3714     int size = a->sz;
3715 
3716     if (!a->p && a->rm != 0) {
3717         /* For non-postindexed accesses the Rm field must be 0 */
3718         return false;
3719     }
3720     if (size == 3 && !a->q && a->selem != 1) {
3721         return false;
3722     }
3723     if (!fp_access_check(s)) {
3724         return true;
3725     }
3726 
3727     if (a->rn == 31) {
3728         gen_check_sp_alignment(s);
3729     }
3730 
3731     /* For our purposes, bytes are always little-endian.  */
3732     endian = s->be_data;
3733     if (size == 0) {
3734         endian = MO_LE;
3735     }
3736 
3737     total = a->rpt * a->selem * (a->q ? 16 : 8);
3738     tcg_rn = cpu_reg_sp(s, a->rn);
3739 
3740     /*
3741      * Issue the MTE check vs the logical repeat count, before we
3742      * promote consecutive little-endian elements below.
3743      */
3744     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3745                                 finalize_memop_asimd(s, size));
3746 
3747     /*
3748      * Consecutive little-endian elements from a single register
3749      * can be promoted to a larger little-endian operation.
3750      */
3751     align = MO_ALIGN;
3752     if (a->selem == 1 && endian == MO_LE) {
3753         align = pow2_align(size);
3754         size = 3;
3755     }
3756     if (!s->align_mem) {
3757         align = 0;
3758     }
3759     mop = endian | size | align;
3760 
3761     elements = (a->q ? 16 : 8) >> size;
3762     tcg_ebytes = tcg_constant_i64(1 << size);
3763     for (r = 0; r < a->rpt; r++) {
3764         int e;
3765         for (e = 0; e < elements; e++) {
3766             int xs;
3767             for (xs = 0; xs < a->selem; xs++) {
3768                 int tt = (a->rt + r + xs) % 32;
3769                 do_vec_st(s, tt, e, clean_addr, mop);
3770                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771             }
3772         }
3773     }
3774 
3775     if (a->p) {
3776         if (a->rm == 31) {
3777             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3778         } else {
3779             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3780         }
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3786 {
3787     int xs, total, rt;
3788     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3789     MemOp mop;
3790 
3791     if (!a->p && a->rm != 0) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     total = a->selem << a->scale;
3803     tcg_rn = cpu_reg_sp(s, a->rn);
3804 
3805     mop = finalize_memop_asimd(s, a->scale);
3806     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3807                                 total, mop);
3808 
3809     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3810     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3811         do_vec_st(s, rt, a->index, clean_addr, mop);
3812         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3813     }
3814 
3815     if (a->p) {
3816         if (a->rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3820         }
3821     }
3822     return true;
3823 }
3824 
3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3826 {
3827     int xs, total, rt;
3828     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3829     MemOp mop;
3830 
3831     if (!a->p && a->rm != 0) {
3832         return false;
3833     }
3834     if (!fp_access_check(s)) {
3835         return true;
3836     }
3837 
3838     if (a->rn == 31) {
3839         gen_check_sp_alignment(s);
3840     }
3841 
3842     total = a->selem << a->scale;
3843     tcg_rn = cpu_reg_sp(s, a->rn);
3844 
3845     mop = finalize_memop_asimd(s, a->scale);
3846     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3847                                 total, mop);
3848 
3849     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3850     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3851         do_vec_ld(s, rt, a->index, clean_addr, mop);
3852         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3853     }
3854 
3855     if (a->p) {
3856         if (a->rm == 31) {
3857             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3858         } else {
3859             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3860         }
3861     }
3862     return true;
3863 }
3864 
3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3866 {
3867     int xs, total, rt;
3868     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3869     MemOp mop;
3870 
3871     if (!a->p && a->rm != 0) {
3872         return false;
3873     }
3874     if (!fp_access_check(s)) {
3875         return true;
3876     }
3877 
3878     if (a->rn == 31) {
3879         gen_check_sp_alignment(s);
3880     }
3881 
3882     total = a->selem << a->scale;
3883     tcg_rn = cpu_reg_sp(s, a->rn);
3884 
3885     mop = finalize_memop_asimd(s, a->scale);
3886     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3887                                 total, mop);
3888 
3889     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3890     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3891         /* Load and replicate to all elements */
3892         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3893 
3894         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3895         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3896                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3897         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3898     }
3899 
3900     if (a->p) {
3901         if (a->rm == 31) {
3902             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3903         } else {
3904             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3905         }
3906     }
3907     return true;
3908 }
3909 
3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3911 {
3912     TCGv_i64 addr, clean_addr, tcg_rt;
3913     int size = 4 << s->dcz_blocksize;
3914 
3915     if (!dc_isar_feature(aa64_mte, s)) {
3916         return false;
3917     }
3918     if (s->current_el == 0) {
3919         return false;
3920     }
3921 
3922     if (a->rn == 31) {
3923         gen_check_sp_alignment(s);
3924     }
3925 
3926     addr = read_cpu_reg_sp(s, a->rn, true);
3927     tcg_gen_addi_i64(addr, addr, a->imm);
3928     tcg_rt = cpu_reg(s, a->rt);
3929 
3930     if (s->ata[0]) {
3931         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3932     }
3933     /*
3934      * The non-tags portion of STZGM is mostly like DC_ZVA,
3935      * except the alignment happens before the access.
3936      */
3937     clean_addr = clean_data_tbi(s, addr);
3938     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3939     gen_helper_dc_zva(tcg_env, clean_addr);
3940     return true;
3941 }
3942 
3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3944 {
3945     TCGv_i64 addr, clean_addr, tcg_rt;
3946 
3947     if (!dc_isar_feature(aa64_mte, s)) {
3948         return false;
3949     }
3950     if (s->current_el == 0) {
3951         return false;
3952     }
3953 
3954     if (a->rn == 31) {
3955         gen_check_sp_alignment(s);
3956     }
3957 
3958     addr = read_cpu_reg_sp(s, a->rn, true);
3959     tcg_gen_addi_i64(addr, addr, a->imm);
3960     tcg_rt = cpu_reg(s, a->rt);
3961 
3962     if (s->ata[0]) {
3963         gen_helper_stgm(tcg_env, addr, tcg_rt);
3964     } else {
3965         MMUAccessType acc = MMU_DATA_STORE;
3966         int size = 4 << s->gm_blocksize;
3967 
3968         clean_addr = clean_data_tbi(s, addr);
3969         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3970         gen_probe_access(s, clean_addr, acc, size);
3971     }
3972     return true;
3973 }
3974 
3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3976 {
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     if (!dc_isar_feature(aa64_mte, s)) {
3980         return false;
3981     }
3982     if (s->current_el == 0) {
3983         return false;
3984     }
3985 
3986     if (a->rn == 31) {
3987         gen_check_sp_alignment(s);
3988     }
3989 
3990     addr = read_cpu_reg_sp(s, a->rn, true);
3991     tcg_gen_addi_i64(addr, addr, a->imm);
3992     tcg_rt = cpu_reg(s, a->rt);
3993 
3994     if (s->ata[0]) {
3995         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3996     } else {
3997         MMUAccessType acc = MMU_DATA_LOAD;
3998         int size = 4 << s->gm_blocksize;
3999 
4000         clean_addr = clean_data_tbi(s, addr);
4001         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4002         gen_probe_access(s, clean_addr, acc, size);
4003         /* The result tags are zeros.  */
4004         tcg_gen_movi_i64(tcg_rt, 0);
4005     }
4006     return true;
4007 }
4008 
4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4010 {
4011     TCGv_i64 addr, clean_addr, tcg_rt;
4012 
4013     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4014         return false;
4015     }
4016 
4017     if (a->rn == 31) {
4018         gen_check_sp_alignment(s);
4019     }
4020 
4021     addr = read_cpu_reg_sp(s, a->rn, true);
4022     if (!a->p) {
4023         /* pre-index or signed offset */
4024         tcg_gen_addi_i64(addr, addr, a->imm);
4025     }
4026 
4027     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4028     tcg_rt = cpu_reg(s, a->rt);
4029     if (s->ata[0]) {
4030         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4031     } else {
4032         /*
4033          * Tag access disabled: we must check for aborts on the load
4034          * load from [rn+offset], and then insert a 0 tag into rt.
4035          */
4036         clean_addr = clean_data_tbi(s, addr);
4037         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4038         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4039     }
4040 
4041     if (a->w) {
4042         /* pre-index or post-index */
4043         if (a->p) {
4044             /* post-index */
4045             tcg_gen_addi_i64(addr, addr, a->imm);
4046         }
4047         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4048     }
4049     return true;
4050 }
4051 
4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4053 {
4054     TCGv_i64 addr, tcg_rt;
4055 
4056     if (a->rn == 31) {
4057         gen_check_sp_alignment(s);
4058     }
4059 
4060     addr = read_cpu_reg_sp(s, a->rn, true);
4061     if (!a->p) {
4062         /* pre-index or signed offset */
4063         tcg_gen_addi_i64(addr, addr, a->imm);
4064     }
4065     tcg_rt = cpu_reg_sp(s, a->rt);
4066     if (!s->ata[0]) {
4067         /*
4068          * For STG and ST2G, we need to check alignment and probe memory.
4069          * TODO: For STZG and STZ2G, we could rely on the stores below,
4070          * at least for system mode; user-only won't enforce alignment.
4071          */
4072         if (is_pair) {
4073             gen_helper_st2g_stub(tcg_env, addr);
4074         } else {
4075             gen_helper_stg_stub(tcg_env, addr);
4076         }
4077     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4078         if (is_pair) {
4079             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4080         } else {
4081             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4082         }
4083     } else {
4084         if (is_pair) {
4085             gen_helper_st2g(tcg_env, addr, tcg_rt);
4086         } else {
4087             gen_helper_stg(tcg_env, addr, tcg_rt);
4088         }
4089     }
4090 
4091     if (is_zero) {
4092         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4093         TCGv_i64 zero64 = tcg_constant_i64(0);
4094         TCGv_i128 zero128 = tcg_temp_new_i128();
4095         int mem_index = get_mem_index(s);
4096         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4097 
4098         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4099 
4100         /* This is 1 or 2 atomic 16-byte operations. */
4101         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4102         if (is_pair) {
4103             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4104             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4105         }
4106     }
4107 
4108     if (a->w) {
4109         /* pre-index or post-index */
4110         if (a->p) {
4111             /* post-index */
4112             tcg_gen_addi_i64(addr, addr, a->imm);
4113         }
4114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4115     }
4116     return true;
4117 }
4118 
4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4123 
4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4125 
4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4127                    bool is_setg, SetFn fn)
4128 {
4129     int memidx;
4130     uint32_t syndrome, desc = 0;
4131 
4132     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4133         return false;
4134     }
4135 
4136     /*
4137      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4138      * us to pull this check before the CheckMOPSEnabled() test
4139      * (which we do in the helper function)
4140      */
4141     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4142         a->rd == 31 || a->rn == 31) {
4143         return false;
4144     }
4145 
4146     memidx = get_a64_user_mem_index(s, a->unpriv);
4147 
4148     /*
4149      * We pass option_a == true, matching our implementation;
4150      * we pass wrong_option == false: helper function may set that bit.
4151      */
4152     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4153                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4154 
4155     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4156         /* We may need to do MTE tag checking, so assemble the descriptor */
4157         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4158         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4159         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4160         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4161     }
4162     /* The helper function always needs the memidx even with MTE disabled */
4163     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4164 
4165     /*
4166      * The helper needs the register numbers, but since they're in
4167      * the syndrome anyway, we let it extract them from there rather
4168      * than passing in an extra three integer arguments.
4169      */
4170     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4171     return true;
4172 }
4173 
4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4180 
4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4182 
4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4184 {
4185     int rmemidx, wmemidx;
4186     uint32_t syndrome, rdesc = 0, wdesc = 0;
4187     bool wunpriv = extract32(a->options, 0, 1);
4188     bool runpriv = extract32(a->options, 1, 1);
4189 
4190     /*
4191      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192      * us to pull this check before the CheckMOPSEnabled() test
4193      * (which we do in the helper function)
4194      */
4195     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4197         return false;
4198     }
4199 
4200     rmemidx = get_a64_user_mem_index(s, runpriv);
4201     wmemidx = get_a64_user_mem_index(s, wunpriv);
4202 
4203     /*
4204      * We pass option_a == true, matching our implementation;
4205      * we pass wrong_option == false: helper function may set that bit.
4206      */
4207     syndrome = syn_mop(false, false, a->options, is_epilogue,
4208                        false, true, a->rd, a->rs, a->rn);
4209 
4210     /* If we need to do MTE tag checking, assemble the descriptors */
4211     if (s->mte_active[runpriv]) {
4212         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4213         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4214     }
4215     if (s->mte_active[wunpriv]) {
4216         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4217         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4218         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4219     }
4220     /* The helper function needs these parts of the descriptor regardless */
4221     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4222     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4223 
4224     /*
4225      * The helper needs the register numbers, but since they're in
4226      * the syndrome anyway, we let it extract them from there rather
4227      * than passing in an extra three integer arguments.
4228      */
4229     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4230        tcg_constant_i32(rdesc));
4231     return true;
4232 }
4233 
4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4240 
4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4242 
4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4244                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4245 {
4246     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4247     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4248     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4249 
4250     fn(tcg_rd, tcg_rn, tcg_imm);
4251     if (!a->sf) {
4252         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4253     }
4254     return true;
4255 }
4256 
4257 /*
4258  * PC-rel. addressing
4259  */
4260 
4261 static bool trans_ADR(DisasContext *s, arg_ri *a)
4262 {
4263     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4264     return true;
4265 }
4266 
4267 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4268 {
4269     int64_t offset = (int64_t)a->imm << 12;
4270 
4271     /* The page offset is ok for CF_PCREL. */
4272     offset -= s->pc_curr & 0xfff;
4273     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4274     return true;
4275 }
4276 
4277 /*
4278  * Add/subtract (immediate)
4279  */
4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4284 
4285 /*
4286  * Add/subtract (immediate, with tags)
4287  */
4288 
4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4290                                       bool sub_op)
4291 {
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     imm = a->uimm6 << LOG2_TAG_GRANULE;
4296     if (sub_op) {
4297         imm = -imm;
4298     }
4299 
4300     tcg_rn = cpu_reg_sp(s, a->rn);
4301     tcg_rd = cpu_reg_sp(s, a->rd);
4302 
4303     if (s->ata[0]) {
4304         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4305                            tcg_constant_i32(imm),
4306                            tcg_constant_i32(a->uimm4));
4307     } else {
4308         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4309         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4310     }
4311     return true;
4312 }
4313 
4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4316 
4317 /* The input should be a value in the bottom e bits (with higher
4318  * bits zero); returns that value replicated into every element
4319  * of size e in a 64 bit integer.
4320  */
4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4322 {
4323     assert(e != 0);
4324     while (e < 64) {
4325         mask |= mask << e;
4326         e *= 2;
4327     }
4328     return mask;
4329 }
4330 
4331 /*
4332  * Logical (immediate)
4333  */
4334 
4335 /*
4336  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4337  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4338  * value (ie should cause a guest UNDEF exception), and true if they are
4339  * valid, in which case the decoded bit pattern is written to result.
4340  */
4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4342                             unsigned int imms, unsigned int immr)
4343 {
4344     uint64_t mask;
4345     unsigned e, levels, s, r;
4346     int len;
4347 
4348     assert(immn < 2 && imms < 64 && immr < 64);
4349 
4350     /* The bit patterns we create here are 64 bit patterns which
4351      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4352      * 64 bits each. Each element contains the same value: a run
4353      * of between 1 and e-1 non-zero bits, rotated within the
4354      * element by between 0 and e-1 bits.
4355      *
4356      * The element size and run length are encoded into immn (1 bit)
4357      * and imms (6 bits) as follows:
4358      * 64 bit elements: immn = 1, imms = <length of run - 1>
4359      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4360      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4361      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4362      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4363      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4364      * Notice that immn = 0, imms = 11111x is the only combination
4365      * not covered by one of the above options; this is reserved.
4366      * Further, <length of run - 1> all-ones is a reserved pattern.
4367      *
4368      * In all cases the rotation is by immr % e (and immr is 6 bits).
4369      */
4370 
4371     /* First determine the element size */
4372     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4373     if (len < 1) {
4374         /* This is the immn == 0, imms == 0x11111x case */
4375         return false;
4376     }
4377     e = 1 << len;
4378 
4379     levels = e - 1;
4380     s = imms & levels;
4381     r = immr & levels;
4382 
4383     if (s == levels) {
4384         /* <length of run - 1> mustn't be all-ones. */
4385         return false;
4386     }
4387 
4388     /* Create the value of one element: s+1 set bits rotated
4389      * by r within the element (which is e bits wide)...
4390      */
4391     mask = MAKE_64BIT_MASK(0, s + 1);
4392     if (r) {
4393         mask = (mask >> r) | (mask << (e - r));
4394         mask &= MAKE_64BIT_MASK(0, e);
4395     }
4396     /* ...then replicate the element over the whole 64 bit value */
4397     mask = bitfield_replicate(mask, e);
4398     *result = mask;
4399     return true;
4400 }
4401 
4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4403                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4404 {
4405     TCGv_i64 tcg_rd, tcg_rn;
4406     uint64_t imm;
4407 
4408     /* Some immediate field values are reserved. */
4409     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4410                                 extract32(a->dbm, 0, 6),
4411                                 extract32(a->dbm, 6, 6))) {
4412         return false;
4413     }
4414     if (!a->sf) {
4415         imm &= 0xffffffffull;
4416     }
4417 
4418     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4419     tcg_rn = cpu_reg(s, a->rn);
4420 
4421     fn(tcg_rd, tcg_rn, imm);
4422     if (set_cc) {
4423         gen_logic_CC(a->sf, tcg_rd);
4424     }
4425     if (!a->sf) {
4426         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4427     }
4428     return true;
4429 }
4430 
4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4435 
4436 /*
4437  * Move wide (immediate)
4438  */
4439 
4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4441 {
4442     int pos = a->hw << 4;
4443     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4444     return true;
4445 }
4446 
4447 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4448 {
4449     int pos = a->hw << 4;
4450     uint64_t imm = a->imm;
4451 
4452     imm = ~(imm << pos);
4453     if (!a->sf) {
4454         imm = (uint32_t)imm;
4455     }
4456     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4457     return true;
4458 }
4459 
4460 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4461 {
4462     int pos = a->hw << 4;
4463     TCGv_i64 tcg_rd, tcg_im;
4464 
4465     tcg_rd = cpu_reg(s, a->rd);
4466     tcg_im = tcg_constant_i64(a->imm);
4467     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4468     if (!a->sf) {
4469         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4470     }
4471     return true;
4472 }
4473 
4474 /*
4475  * Bitfield
4476  */
4477 
4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4479 {
4480     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4481     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482     unsigned int bitsize = a->sf ? 64 : 32;
4483     unsigned int ri = a->immr;
4484     unsigned int si = a->imms;
4485     unsigned int pos, len;
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         len = (si - ri) + 1;
4490         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4491         if (!a->sf) {
4492             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4493         }
4494     } else {
4495         /* Wd<32+s-r,32-r> = Wn<s:0> */
4496         len = si + 1;
4497         pos = (bitsize - ri) & (bitsize - 1);
4498 
4499         if (len < ri) {
4500             /*
4501              * Sign extend the destination field from len to fill the
4502              * balance of the word.  Let the deposit below insert all
4503              * of those sign bits.
4504              */
4505             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4506             len = ri;
4507         }
4508 
4509         /*
4510          * We start with zero, and we haven't modified any bits outside
4511          * bitsize, therefore no final zero-extension is unneeded for !sf.
4512          */
4513         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4514     }
4515     return true;
4516 }
4517 
4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4519 {
4520     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4521     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4522     unsigned int bitsize = a->sf ? 64 : 32;
4523     unsigned int ri = a->immr;
4524     unsigned int si = a->imms;
4525     unsigned int pos, len;
4526 
4527     tcg_rd = cpu_reg(s, a->rd);
4528     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 
4530     if (si >= ri) {
4531         /* Wd<s-r:0> = Wn<s:r> */
4532         len = (si - ri) + 1;
4533         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534     } else {
4535         /* Wd<32+s-r,32-r> = Wn<s:0> */
4536         len = si + 1;
4537         pos = (bitsize - ri) & (bitsize - 1);
4538         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4539     }
4540     return true;
4541 }
4542 
4543 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4544 {
4545     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4546     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4547     unsigned int bitsize = a->sf ? 64 : 32;
4548     unsigned int ri = a->immr;
4549     unsigned int si = a->imms;
4550     unsigned int pos, len;
4551 
4552     tcg_rd = cpu_reg(s, a->rd);
4553     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4554 
4555     if (si >= ri) {
4556         /* Wd<s-r:0> = Wn<s:r> */
4557         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4558         len = (si - ri) + 1;
4559         pos = 0;
4560     } else {
4561         /* Wd<32+s-r,32-r> = Wn<s:0> */
4562         len = si + 1;
4563         pos = (bitsize - ri) & (bitsize - 1);
4564     }
4565 
4566     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4567     if (!a->sf) {
4568         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4569     }
4570     return true;
4571 }
4572 
4573 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4574 {
4575     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4576 
4577     tcg_rd = cpu_reg(s, a->rd);
4578 
4579     if (unlikely(a->imm == 0)) {
4580         /*
4581          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4582          * so an extract from bit 0 is a special case.
4583          */
4584         if (a->sf) {
4585             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4586         } else {
4587             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4588         }
4589     } else {
4590         tcg_rm = cpu_reg(s, a->rm);
4591         tcg_rn = cpu_reg(s, a->rn);
4592 
4593         if (a->sf) {
4594             /* Specialization to ROR happens in EXTRACT2.  */
4595             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4596         } else {
4597             TCGv_i32 t0 = tcg_temp_new_i32();
4598 
4599             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4600             if (a->rm == a->rn) {
4601                 tcg_gen_rotri_i32(t0, t0, a->imm);
4602             } else {
4603                 TCGv_i32 t1 = tcg_temp_new_i32();
4604                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4605                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4606             }
4607             tcg_gen_extu_i32_i64(tcg_rd, t0);
4608         }
4609     }
4610     return true;
4611 }
4612 
4613 /*
4614  * Cryptographic AES, SHA, SHA512
4615  */
4616 
4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4621 
4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4626 
4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4630 
4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4634 
4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4642 
4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4645 
4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4648 
4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4650 {
4651     if (!dc_isar_feature(aa64_sm3, s)) {
4652         return false;
4653     }
4654     if (fp_access_check(s)) {
4655         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4656         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4657         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4658         TCGv_i32 tcg_res = tcg_temp_new_i32();
4659         unsigned vsz, dofs;
4660 
4661         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4662         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4663         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4664 
4665         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4666         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4667         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4668         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4669 
4670         /* Clear the whole register first, then store bits [127:96]. */
4671         vsz = vec_full_reg_size(s);
4672         dofs = vec_full_reg_offset(s, a->rd);
4673         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4674         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4675     }
4676     return true;
4677 }
4678 
4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4680 {
4681     if (fp_access_check(s)) {
4682         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4683     }
4684     return true;
4685 }
4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4690 
4691 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4692 {
4693     if (!dc_isar_feature(aa64_sha3, s)) {
4694         return false;
4695     }
4696     if (fp_access_check(s)) {
4697         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4698                      vec_full_reg_offset(s, a->rn),
4699                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4700                      vec_full_reg_size(s));
4701     }
4702     return true;
4703 }
4704 
4705 /*
4706  * Advanced SIMD copy
4707  */
4708 
4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4710 {
4711     unsigned esz = ctz32(imm);
4712     if (esz <= MO_64) {
4713         *pesz = esz;
4714         *pidx = imm >> (esz + 1);
4715         return true;
4716     }
4717     return false;
4718 }
4719 
4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4721 {
4722     MemOp esz;
4723     unsigned idx;
4724 
4725     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4726         return false;
4727     }
4728     if (fp_access_check(s)) {
4729         /*
4730          * This instruction just extracts the specified element and
4731          * zero-extends it into the bottom of the destination register.
4732          */
4733         TCGv_i64 tmp = tcg_temp_new_i64();
4734         read_vec_element(s, tmp, a->rn, idx, esz);
4735         write_fp_dreg(s, a->rd, tmp);
4736     }
4737     return true;
4738 }
4739 
4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4741 {
4742     MemOp esz;
4743     unsigned idx;
4744 
4745     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4746         return false;
4747     }
4748     if (esz == MO_64 && !a->q) {
4749         return false;
4750     }
4751     if (fp_access_check(s)) {
4752         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4753                              vec_reg_offset(s, a->rn, idx, esz),
4754                              a->q ? 16 : 8, vec_full_reg_size(s));
4755     }
4756     return true;
4757 }
4758 
4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4760 {
4761     MemOp esz;
4762     unsigned idx;
4763 
4764     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4765         return false;
4766     }
4767     if (esz == MO_64 && !a->q) {
4768         return false;
4769     }
4770     if (fp_access_check(s)) {
4771         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4772                              a->q ? 16 : 8, vec_full_reg_size(s),
4773                              cpu_reg(s, a->rn));
4774     }
4775     return true;
4776 }
4777 
4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4779 {
4780     MemOp esz;
4781     unsigned idx;
4782 
4783     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4784         return false;
4785     }
4786     if (is_signed) {
4787         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4788             return false;
4789         }
4790     } else {
4791         if (esz == MO_64 ? !a->q : a->q) {
4792             return false;
4793         }
4794     }
4795     if (fp_access_check(s)) {
4796         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4797         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4798         if (is_signed && !a->q) {
4799             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4800         }
4801     }
4802     return true;
4803 }
4804 
4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4806 TRANS(UMOV, do_smov_umov, a, 0)
4807 
4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4809 {
4810     MemOp esz;
4811     unsigned idx;
4812 
4813     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4814         return false;
4815     }
4816     if (fp_access_check(s)) {
4817         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4818         clear_vec_high(s, true, a->rd);
4819     }
4820     return true;
4821 }
4822 
4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4824 {
4825     MemOp esz;
4826     unsigned didx, sidx;
4827 
4828     if (!decode_esz_idx(a->di, &esz, &didx)) {
4829         return false;
4830     }
4831     sidx = a->si >> esz;
4832     if (fp_access_check(s)) {
4833         TCGv_i64 tmp = tcg_temp_new_i64();
4834 
4835         read_vec_element(s, tmp, a->rn, sidx, esz);
4836         write_vec_element(s, tmp, a->rd, didx, esz);
4837 
4838         /* INS is considered a 128-bit write for SVE. */
4839         clear_vec_high(s, true, a->rd);
4840     }
4841     return true;
4842 }
4843 
4844 /*
4845  * Advanced SIMD three same
4846  */
4847 
4848 typedef struct FPScalar {
4849     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4850     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4851     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4852 } FPScalar;
4853 
4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4855 {
4856     switch (a->esz) {
4857     case MO_64:
4858         if (fp_access_check(s)) {
4859             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4860             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4861             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4862             write_fp_dreg(s, a->rd, t0);
4863         }
4864         break;
4865     case MO_32:
4866         if (fp_access_check(s)) {
4867             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4868             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4869             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4870             write_fp_sreg(s, a->rd, t0);
4871         }
4872         break;
4873     case MO_16:
4874         if (!dc_isar_feature(aa64_fp16, s)) {
4875             return false;
4876         }
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     default:
4885         return false;
4886     }
4887     return true;
4888 }
4889 
4890 static const FPScalar f_scalar_fadd = {
4891     gen_helper_vfp_addh,
4892     gen_helper_vfp_adds,
4893     gen_helper_vfp_addd,
4894 };
4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4896 
4897 static const FPScalar f_scalar_fsub = {
4898     gen_helper_vfp_subh,
4899     gen_helper_vfp_subs,
4900     gen_helper_vfp_subd,
4901 };
4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4903 
4904 static const FPScalar f_scalar_fdiv = {
4905     gen_helper_vfp_divh,
4906     gen_helper_vfp_divs,
4907     gen_helper_vfp_divd,
4908 };
4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4910 
4911 static const FPScalar f_scalar_fmul = {
4912     gen_helper_vfp_mulh,
4913     gen_helper_vfp_muls,
4914     gen_helper_vfp_muld,
4915 };
4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4917 
4918 static const FPScalar f_scalar_fmax = {
4919     gen_helper_advsimd_maxh,
4920     gen_helper_vfp_maxs,
4921     gen_helper_vfp_maxd,
4922 };
4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4924 
4925 static const FPScalar f_scalar_fmin = {
4926     gen_helper_advsimd_minh,
4927     gen_helper_vfp_mins,
4928     gen_helper_vfp_mind,
4929 };
4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4931 
4932 static const FPScalar f_scalar_fmaxnm = {
4933     gen_helper_advsimd_maxnumh,
4934     gen_helper_vfp_maxnums,
4935     gen_helper_vfp_maxnumd,
4936 };
4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4938 
4939 static const FPScalar f_scalar_fminnm = {
4940     gen_helper_advsimd_minnumh,
4941     gen_helper_vfp_minnums,
4942     gen_helper_vfp_minnumd,
4943 };
4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4945 
4946 static const FPScalar f_scalar_fmulx = {
4947     gen_helper_advsimd_mulxh,
4948     gen_helper_vfp_mulxs,
4949     gen_helper_vfp_mulxd,
4950 };
4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4952 
4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4954 {
4955     gen_helper_vfp_mulh(d, n, m, s);
4956     gen_vfp_negh(d, d);
4957 }
4958 
4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4960 {
4961     gen_helper_vfp_muls(d, n, m, s);
4962     gen_vfp_negs(d, d);
4963 }
4964 
4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4966 {
4967     gen_helper_vfp_muld(d, n, m, s);
4968     gen_vfp_negd(d, d);
4969 }
4970 
4971 static const FPScalar f_scalar_fnmul = {
4972     gen_fnmul_h,
4973     gen_fnmul_s,
4974     gen_fnmul_d,
4975 };
4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4977 
4978 static const FPScalar f_scalar_fcmeq = {
4979     gen_helper_advsimd_ceq_f16,
4980     gen_helper_neon_ceq_f32,
4981     gen_helper_neon_ceq_f64,
4982 };
4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
4984 
4985 static const FPScalar f_scalar_fcmge = {
4986     gen_helper_advsimd_cge_f16,
4987     gen_helper_neon_cge_f32,
4988     gen_helper_neon_cge_f64,
4989 };
4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
4991 
4992 static const FPScalar f_scalar_fcmgt = {
4993     gen_helper_advsimd_cgt_f16,
4994     gen_helper_neon_cgt_f32,
4995     gen_helper_neon_cgt_f64,
4996 };
4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
4998 
4999 static const FPScalar f_scalar_facge = {
5000     gen_helper_advsimd_acge_f16,
5001     gen_helper_neon_acge_f32,
5002     gen_helper_neon_acge_f64,
5003 };
5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5005 
5006 static const FPScalar f_scalar_facgt = {
5007     gen_helper_advsimd_acgt_f16,
5008     gen_helper_neon_acgt_f32,
5009     gen_helper_neon_acgt_f64,
5010 };
5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5012 
5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5014 {
5015     gen_helper_vfp_subh(d, n, m, s);
5016     gen_vfp_absh(d, d);
5017 }
5018 
5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5020 {
5021     gen_helper_vfp_subs(d, n, m, s);
5022     gen_vfp_abss(d, d);
5023 }
5024 
5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5026 {
5027     gen_helper_vfp_subd(d, n, m, s);
5028     gen_vfp_absd(d, d);
5029 }
5030 
5031 static const FPScalar f_scalar_fabd = {
5032     gen_fabd_h,
5033     gen_fabd_s,
5034     gen_fabd_d,
5035 };
5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5037 
5038 static const FPScalar f_scalar_frecps = {
5039     gen_helper_recpsf_f16,
5040     gen_helper_recpsf_f32,
5041     gen_helper_recpsf_f64,
5042 };
5043 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5044 
5045 static const FPScalar f_scalar_frsqrts = {
5046     gen_helper_rsqrtsf_f16,
5047     gen_helper_rsqrtsf_f32,
5048     gen_helper_rsqrtsf_f64,
5049 };
5050 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5051 
5052 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5053                           gen_helper_gvec_3_ptr * const fns[3])
5054 {
5055     MemOp esz = a->esz;
5056 
5057     switch (esz) {
5058     case MO_64:
5059         if (!a->q) {
5060             return false;
5061         }
5062         break;
5063     case MO_32:
5064         break;
5065     case MO_16:
5066         if (!dc_isar_feature(aa64_fp16, s)) {
5067             return false;
5068         }
5069         break;
5070     default:
5071         return false;
5072     }
5073     if (fp_access_check(s)) {
5074         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5075                           esz == MO_16, 0, fns[esz - 1]);
5076     }
5077     return true;
5078 }
5079 
5080 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5081     gen_helper_gvec_fadd_h,
5082     gen_helper_gvec_fadd_s,
5083     gen_helper_gvec_fadd_d,
5084 };
5085 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5086 
5087 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5088     gen_helper_gvec_fsub_h,
5089     gen_helper_gvec_fsub_s,
5090     gen_helper_gvec_fsub_d,
5091 };
5092 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5093 
5094 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5095     gen_helper_gvec_fdiv_h,
5096     gen_helper_gvec_fdiv_s,
5097     gen_helper_gvec_fdiv_d,
5098 };
5099 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5100 
5101 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5102     gen_helper_gvec_fmul_h,
5103     gen_helper_gvec_fmul_s,
5104     gen_helper_gvec_fmul_d,
5105 };
5106 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5107 
5108 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5109     gen_helper_gvec_fmax_h,
5110     gen_helper_gvec_fmax_s,
5111     gen_helper_gvec_fmax_d,
5112 };
5113 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5114 
5115 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5116     gen_helper_gvec_fmin_h,
5117     gen_helper_gvec_fmin_s,
5118     gen_helper_gvec_fmin_d,
5119 };
5120 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5121 
5122 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5123     gen_helper_gvec_fmaxnum_h,
5124     gen_helper_gvec_fmaxnum_s,
5125     gen_helper_gvec_fmaxnum_d,
5126 };
5127 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5128 
5129 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5130     gen_helper_gvec_fminnum_h,
5131     gen_helper_gvec_fminnum_s,
5132     gen_helper_gvec_fminnum_d,
5133 };
5134 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5135 
5136 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5137     gen_helper_gvec_fmulx_h,
5138     gen_helper_gvec_fmulx_s,
5139     gen_helper_gvec_fmulx_d,
5140 };
5141 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5142 
5143 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5144     gen_helper_gvec_vfma_h,
5145     gen_helper_gvec_vfma_s,
5146     gen_helper_gvec_vfma_d,
5147 };
5148 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5149 
5150 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5151     gen_helper_gvec_vfms_h,
5152     gen_helper_gvec_vfms_s,
5153     gen_helper_gvec_vfms_d,
5154 };
5155 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5156 
5157 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5158     gen_helper_gvec_fceq_h,
5159     gen_helper_gvec_fceq_s,
5160     gen_helper_gvec_fceq_d,
5161 };
5162 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5163 
5164 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5165     gen_helper_gvec_fcge_h,
5166     gen_helper_gvec_fcge_s,
5167     gen_helper_gvec_fcge_d,
5168 };
5169 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5170 
5171 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5172     gen_helper_gvec_fcgt_h,
5173     gen_helper_gvec_fcgt_s,
5174     gen_helper_gvec_fcgt_d,
5175 };
5176 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5177 
5178 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5179     gen_helper_gvec_facge_h,
5180     gen_helper_gvec_facge_s,
5181     gen_helper_gvec_facge_d,
5182 };
5183 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5184 
5185 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5186     gen_helper_gvec_facgt_h,
5187     gen_helper_gvec_facgt_s,
5188     gen_helper_gvec_facgt_d,
5189 };
5190 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5191 
5192 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5193     gen_helper_gvec_fabd_h,
5194     gen_helper_gvec_fabd_s,
5195     gen_helper_gvec_fabd_d,
5196 };
5197 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5198 
5199 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5200     gen_helper_gvec_recps_h,
5201     gen_helper_gvec_recps_s,
5202     gen_helper_gvec_recps_d,
5203 };
5204 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5205 
5206 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5207     gen_helper_gvec_rsqrts_h,
5208     gen_helper_gvec_rsqrts_s,
5209     gen_helper_gvec_rsqrts_d,
5210 };
5211 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5212 
5213 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5214     gen_helper_gvec_faddp_h,
5215     gen_helper_gvec_faddp_s,
5216     gen_helper_gvec_faddp_d,
5217 };
5218 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5219 
5220 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5221     gen_helper_gvec_fmaxp_h,
5222     gen_helper_gvec_fmaxp_s,
5223     gen_helper_gvec_fmaxp_d,
5224 };
5225 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5226 
5227 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5228     gen_helper_gvec_fminp_h,
5229     gen_helper_gvec_fminp_s,
5230     gen_helper_gvec_fminp_d,
5231 };
5232 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5233 
5234 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5235     gen_helper_gvec_fmaxnump_h,
5236     gen_helper_gvec_fmaxnump_s,
5237     gen_helper_gvec_fmaxnump_d,
5238 };
5239 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5240 
5241 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5242     gen_helper_gvec_fminnump_h,
5243     gen_helper_gvec_fminnump_s,
5244     gen_helper_gvec_fminnump_d,
5245 };
5246 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5247 
5248 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5249 
5250 /*
5251  * Advanced SIMD scalar/vector x indexed element
5252  */
5253 
5254 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5255 {
5256     switch (a->esz) {
5257     case MO_64:
5258         if (fp_access_check(s)) {
5259             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5260             TCGv_i64 t1 = tcg_temp_new_i64();
5261 
5262             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5263             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5264             write_fp_dreg(s, a->rd, t0);
5265         }
5266         break;
5267     case MO_32:
5268         if (fp_access_check(s)) {
5269             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5270             TCGv_i32 t1 = tcg_temp_new_i32();
5271 
5272             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5273             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5274             write_fp_sreg(s, a->rd, t0);
5275         }
5276         break;
5277     case MO_16:
5278         if (!dc_isar_feature(aa64_fp16, s)) {
5279             return false;
5280         }
5281         if (fp_access_check(s)) {
5282             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5283             TCGv_i32 t1 = tcg_temp_new_i32();
5284 
5285             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5286             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5287             write_fp_sreg(s, a->rd, t0);
5288         }
5289         break;
5290     default:
5291         g_assert_not_reached();
5292     }
5293     return true;
5294 }
5295 
5296 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5297 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5298 
5299 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5300 {
5301     switch (a->esz) {
5302     case MO_64:
5303         if (fp_access_check(s)) {
5304             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5305             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5306             TCGv_i64 t2 = tcg_temp_new_i64();
5307 
5308             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5309             if (neg) {
5310                 gen_vfp_negd(t1, t1);
5311             }
5312             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5313             write_fp_dreg(s, a->rd, t0);
5314         }
5315         break;
5316     case MO_32:
5317         if (fp_access_check(s)) {
5318             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5319             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5320             TCGv_i32 t2 = tcg_temp_new_i32();
5321 
5322             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5323             if (neg) {
5324                 gen_vfp_negs(t1, t1);
5325             }
5326             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5327             write_fp_sreg(s, a->rd, t0);
5328         }
5329         break;
5330     case MO_16:
5331         if (!dc_isar_feature(aa64_fp16, s)) {
5332             return false;
5333         }
5334         if (fp_access_check(s)) {
5335             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5336             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5337             TCGv_i32 t2 = tcg_temp_new_i32();
5338 
5339             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5340             if (neg) {
5341                 gen_vfp_negh(t1, t1);
5342             }
5343             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5344                                        fpstatus_ptr(FPST_FPCR_F16));
5345             write_fp_sreg(s, a->rd, t0);
5346         }
5347         break;
5348     default:
5349         g_assert_not_reached();
5350     }
5351     return true;
5352 }
5353 
5354 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5355 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5356 
5357 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5358                               gen_helper_gvec_3_ptr * const fns[3])
5359 {
5360     MemOp esz = a->esz;
5361 
5362     switch (esz) {
5363     case MO_64:
5364         if (!a->q) {
5365             return false;
5366         }
5367         break;
5368     case MO_32:
5369         break;
5370     case MO_16:
5371         if (!dc_isar_feature(aa64_fp16, s)) {
5372             return false;
5373         }
5374         break;
5375     default:
5376         g_assert_not_reached();
5377     }
5378     if (fp_access_check(s)) {
5379         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5380                           esz == MO_16, a->idx, fns[esz - 1]);
5381     }
5382     return true;
5383 }
5384 
5385 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5386     gen_helper_gvec_fmul_idx_h,
5387     gen_helper_gvec_fmul_idx_s,
5388     gen_helper_gvec_fmul_idx_d,
5389 };
5390 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5391 
5392 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5393     gen_helper_gvec_fmulx_idx_h,
5394     gen_helper_gvec_fmulx_idx_s,
5395     gen_helper_gvec_fmulx_idx_d,
5396 };
5397 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5398 
5399 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5400 {
5401     static gen_helper_gvec_4_ptr * const fns[3] = {
5402         gen_helper_gvec_fmla_idx_h,
5403         gen_helper_gvec_fmla_idx_s,
5404         gen_helper_gvec_fmla_idx_d,
5405     };
5406     MemOp esz = a->esz;
5407 
5408     switch (esz) {
5409     case MO_64:
5410         if (!a->q) {
5411             return false;
5412         }
5413         break;
5414     case MO_32:
5415         break;
5416     case MO_16:
5417         if (!dc_isar_feature(aa64_fp16, s)) {
5418             return false;
5419         }
5420         break;
5421     default:
5422         g_assert_not_reached();
5423     }
5424     if (fp_access_check(s)) {
5425         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5426                           esz == MO_16, (a->idx << 1) | neg,
5427                           fns[esz - 1]);
5428     }
5429     return true;
5430 }
5431 
5432 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5433 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5434 
5435 /*
5436  * Advanced SIMD scalar pairwise
5437  */
5438 
5439 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5440 {
5441     switch (a->esz) {
5442     case MO_64:
5443         if (fp_access_check(s)) {
5444             TCGv_i64 t0 = tcg_temp_new_i64();
5445             TCGv_i64 t1 = tcg_temp_new_i64();
5446 
5447             read_vec_element(s, t0, a->rn, 0, MO_64);
5448             read_vec_element(s, t1, a->rn, 1, MO_64);
5449             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5450             write_fp_dreg(s, a->rd, t0);
5451         }
5452         break;
5453     case MO_32:
5454         if (fp_access_check(s)) {
5455             TCGv_i32 t0 = tcg_temp_new_i32();
5456             TCGv_i32 t1 = tcg_temp_new_i32();
5457 
5458             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5459             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5460             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5461             write_fp_sreg(s, a->rd, t0);
5462         }
5463         break;
5464     case MO_16:
5465         if (!dc_isar_feature(aa64_fp16, s)) {
5466             return false;
5467         }
5468         if (fp_access_check(s)) {
5469             TCGv_i32 t0 = tcg_temp_new_i32();
5470             TCGv_i32 t1 = tcg_temp_new_i32();
5471 
5472             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5473             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5474             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5475             write_fp_sreg(s, a->rd, t0);
5476         }
5477         break;
5478     default:
5479         g_assert_not_reached();
5480     }
5481     return true;
5482 }
5483 
5484 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5485 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
5486 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
5487 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
5488 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
5489 
5490 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
5491 {
5492     if (fp_access_check(s)) {
5493         TCGv_i64 t0 = tcg_temp_new_i64();
5494         TCGv_i64 t1 = tcg_temp_new_i64();
5495 
5496         read_vec_element(s, t0, a->rn, 0, MO_64);
5497         read_vec_element(s, t1, a->rn, 1, MO_64);
5498         tcg_gen_add_i64(t0, t0, t1);
5499         write_fp_dreg(s, a->rd, t0);
5500     }
5501     return true;
5502 }
5503 
5504 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5505  * Note that it is the caller's responsibility to ensure that the
5506  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5507  * mandated semantics for out of range shifts.
5508  */
5509 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5510                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5511 {
5512     switch (shift_type) {
5513     case A64_SHIFT_TYPE_LSL:
5514         tcg_gen_shl_i64(dst, src, shift_amount);
5515         break;
5516     case A64_SHIFT_TYPE_LSR:
5517         tcg_gen_shr_i64(dst, src, shift_amount);
5518         break;
5519     case A64_SHIFT_TYPE_ASR:
5520         if (!sf) {
5521             tcg_gen_ext32s_i64(dst, src);
5522         }
5523         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5524         break;
5525     case A64_SHIFT_TYPE_ROR:
5526         if (sf) {
5527             tcg_gen_rotr_i64(dst, src, shift_amount);
5528         } else {
5529             TCGv_i32 t0, t1;
5530             t0 = tcg_temp_new_i32();
5531             t1 = tcg_temp_new_i32();
5532             tcg_gen_extrl_i64_i32(t0, src);
5533             tcg_gen_extrl_i64_i32(t1, shift_amount);
5534             tcg_gen_rotr_i32(t0, t0, t1);
5535             tcg_gen_extu_i32_i64(dst, t0);
5536         }
5537         break;
5538     default:
5539         assert(FALSE); /* all shift types should be handled */
5540         break;
5541     }
5542 
5543     if (!sf) { /* zero extend final result */
5544         tcg_gen_ext32u_i64(dst, dst);
5545     }
5546 }
5547 
5548 /* Shift a TCGv src by immediate, put result in dst.
5549  * The shift amount must be in range (this should always be true as the
5550  * relevant instructions will UNDEF on bad shift immediates).
5551  */
5552 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5553                           enum a64_shift_type shift_type, unsigned int shift_i)
5554 {
5555     assert(shift_i < (sf ? 64 : 32));
5556 
5557     if (shift_i == 0) {
5558         tcg_gen_mov_i64(dst, src);
5559     } else {
5560         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5561     }
5562 }
5563 
5564 /* Logical (shifted register)
5565  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5566  * +----+-----+-----------+-------+---+------+--------+------+------+
5567  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5568  * +----+-----+-----------+-------+---+------+--------+------+------+
5569  */
5570 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5571 {
5572     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5573     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5574 
5575     sf = extract32(insn, 31, 1);
5576     opc = extract32(insn, 29, 2);
5577     shift_type = extract32(insn, 22, 2);
5578     invert = extract32(insn, 21, 1);
5579     rm = extract32(insn, 16, 5);
5580     shift_amount = extract32(insn, 10, 6);
5581     rn = extract32(insn, 5, 5);
5582     rd = extract32(insn, 0, 5);
5583 
5584     if (!sf && (shift_amount & (1 << 5))) {
5585         unallocated_encoding(s);
5586         return;
5587     }
5588 
5589     tcg_rd = cpu_reg(s, rd);
5590 
5591     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5592         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5593          * register-register MOV and MVN, so it is worth special casing.
5594          */
5595         tcg_rm = cpu_reg(s, rm);
5596         if (invert) {
5597             tcg_gen_not_i64(tcg_rd, tcg_rm);
5598             if (!sf) {
5599                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5600             }
5601         } else {
5602             if (sf) {
5603                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5604             } else {
5605                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5606             }
5607         }
5608         return;
5609     }
5610 
5611     tcg_rm = read_cpu_reg(s, rm, sf);
5612 
5613     if (shift_amount) {
5614         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5615     }
5616 
5617     tcg_rn = cpu_reg(s, rn);
5618 
5619     switch (opc | (invert << 2)) {
5620     case 0: /* AND */
5621     case 3: /* ANDS */
5622         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5623         break;
5624     case 1: /* ORR */
5625         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5626         break;
5627     case 2: /* EOR */
5628         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5629         break;
5630     case 4: /* BIC */
5631     case 7: /* BICS */
5632         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5633         break;
5634     case 5: /* ORN */
5635         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5636         break;
5637     case 6: /* EON */
5638         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5639         break;
5640     default:
5641         assert(FALSE);
5642         break;
5643     }
5644 
5645     if (!sf) {
5646         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5647     }
5648 
5649     if (opc == 3) {
5650         gen_logic_CC(sf, tcg_rd);
5651     }
5652 }
5653 
5654 /*
5655  * Add/subtract (extended register)
5656  *
5657  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5658  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5659  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5660  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5661  *
5662  *  sf: 0 -> 32bit, 1 -> 64bit
5663  *  op: 0 -> add  , 1 -> sub
5664  *   S: 1 -> set flags
5665  * opt: 00
5666  * option: extension type (see DecodeRegExtend)
5667  * imm3: optional shift to Rm
5668  *
5669  * Rd = Rn + LSL(extend(Rm), amount)
5670  */
5671 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5672 {
5673     int rd = extract32(insn, 0, 5);
5674     int rn = extract32(insn, 5, 5);
5675     int imm3 = extract32(insn, 10, 3);
5676     int option = extract32(insn, 13, 3);
5677     int rm = extract32(insn, 16, 5);
5678     int opt = extract32(insn, 22, 2);
5679     bool setflags = extract32(insn, 29, 1);
5680     bool sub_op = extract32(insn, 30, 1);
5681     bool sf = extract32(insn, 31, 1);
5682 
5683     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5684     TCGv_i64 tcg_rd;
5685     TCGv_i64 tcg_result;
5686 
5687     if (imm3 > 4 || opt != 0) {
5688         unallocated_encoding(s);
5689         return;
5690     }
5691 
5692     /* non-flag setting ops may use SP */
5693     if (!setflags) {
5694         tcg_rd = cpu_reg_sp(s, rd);
5695     } else {
5696         tcg_rd = cpu_reg(s, rd);
5697     }
5698     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5699 
5700     tcg_rm = read_cpu_reg(s, rm, sf);
5701     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5702 
5703     tcg_result = tcg_temp_new_i64();
5704 
5705     if (!setflags) {
5706         if (sub_op) {
5707             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5708         } else {
5709             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5710         }
5711     } else {
5712         if (sub_op) {
5713             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5714         } else {
5715             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5716         }
5717     }
5718 
5719     if (sf) {
5720         tcg_gen_mov_i64(tcg_rd, tcg_result);
5721     } else {
5722         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5723     }
5724 }
5725 
5726 /*
5727  * Add/subtract (shifted register)
5728  *
5729  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5730  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5731  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5732  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5733  *
5734  *    sf: 0 -> 32bit, 1 -> 64bit
5735  *    op: 0 -> add  , 1 -> sub
5736  *     S: 1 -> set flags
5737  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5738  *  imm6: Shift amount to apply to Rm before the add/sub
5739  */
5740 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5741 {
5742     int rd = extract32(insn, 0, 5);
5743     int rn = extract32(insn, 5, 5);
5744     int imm6 = extract32(insn, 10, 6);
5745     int rm = extract32(insn, 16, 5);
5746     int shift_type = extract32(insn, 22, 2);
5747     bool setflags = extract32(insn, 29, 1);
5748     bool sub_op = extract32(insn, 30, 1);
5749     bool sf = extract32(insn, 31, 1);
5750 
5751     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5752     TCGv_i64 tcg_rn, tcg_rm;
5753     TCGv_i64 tcg_result;
5754 
5755     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5756         unallocated_encoding(s);
5757         return;
5758     }
5759 
5760     tcg_rn = read_cpu_reg(s, rn, sf);
5761     tcg_rm = read_cpu_reg(s, rm, sf);
5762 
5763     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5764 
5765     tcg_result = tcg_temp_new_i64();
5766 
5767     if (!setflags) {
5768         if (sub_op) {
5769             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5770         } else {
5771             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5772         }
5773     } else {
5774         if (sub_op) {
5775             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5776         } else {
5777             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5778         }
5779     }
5780 
5781     if (sf) {
5782         tcg_gen_mov_i64(tcg_rd, tcg_result);
5783     } else {
5784         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5785     }
5786 }
5787 
5788 /* Data-processing (3 source)
5789  *
5790  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5791  *  +--+------+-----------+------+------+----+------+------+------+
5792  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5793  *  +--+------+-----------+------+------+----+------+------+------+
5794  */
5795 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5796 {
5797     int rd = extract32(insn, 0, 5);
5798     int rn = extract32(insn, 5, 5);
5799     int ra = extract32(insn, 10, 5);
5800     int rm = extract32(insn, 16, 5);
5801     int op_id = (extract32(insn, 29, 3) << 4) |
5802         (extract32(insn, 21, 3) << 1) |
5803         extract32(insn, 15, 1);
5804     bool sf = extract32(insn, 31, 1);
5805     bool is_sub = extract32(op_id, 0, 1);
5806     bool is_high = extract32(op_id, 2, 1);
5807     bool is_signed = false;
5808     TCGv_i64 tcg_op1;
5809     TCGv_i64 tcg_op2;
5810     TCGv_i64 tcg_tmp;
5811 
5812     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5813     switch (op_id) {
5814     case 0x42: /* SMADDL */
5815     case 0x43: /* SMSUBL */
5816     case 0x44: /* SMULH */
5817         is_signed = true;
5818         break;
5819     case 0x0: /* MADD (32bit) */
5820     case 0x1: /* MSUB (32bit) */
5821     case 0x40: /* MADD (64bit) */
5822     case 0x41: /* MSUB (64bit) */
5823     case 0x4a: /* UMADDL */
5824     case 0x4b: /* UMSUBL */
5825     case 0x4c: /* UMULH */
5826         break;
5827     default:
5828         unallocated_encoding(s);
5829         return;
5830     }
5831 
5832     if (is_high) {
5833         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5834         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5835         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5836         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5837 
5838         if (is_signed) {
5839             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5840         } else {
5841             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5842         }
5843         return;
5844     }
5845 
5846     tcg_op1 = tcg_temp_new_i64();
5847     tcg_op2 = tcg_temp_new_i64();
5848     tcg_tmp = tcg_temp_new_i64();
5849 
5850     if (op_id < 0x42) {
5851         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5852         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5853     } else {
5854         if (is_signed) {
5855             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5856             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5857         } else {
5858             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5859             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5860         }
5861     }
5862 
5863     if (ra == 31 && !is_sub) {
5864         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5865         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5866     } else {
5867         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5868         if (is_sub) {
5869             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5870         } else {
5871             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5872         }
5873     }
5874 
5875     if (!sf) {
5876         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5877     }
5878 }
5879 
5880 /* Add/subtract (with carry)
5881  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5882  * +--+--+--+------------------------+------+-------------+------+-----+
5883  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5884  * +--+--+--+------------------------+------+-------------+------+-----+
5885  */
5886 
5887 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5888 {
5889     unsigned int sf, op, setflags, rm, rn, rd;
5890     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5891 
5892     sf = extract32(insn, 31, 1);
5893     op = extract32(insn, 30, 1);
5894     setflags = extract32(insn, 29, 1);
5895     rm = extract32(insn, 16, 5);
5896     rn = extract32(insn, 5, 5);
5897     rd = extract32(insn, 0, 5);
5898 
5899     tcg_rd = cpu_reg(s, rd);
5900     tcg_rn = cpu_reg(s, rn);
5901 
5902     if (op) {
5903         tcg_y = tcg_temp_new_i64();
5904         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5905     } else {
5906         tcg_y = cpu_reg(s, rm);
5907     }
5908 
5909     if (setflags) {
5910         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5911     } else {
5912         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5913     }
5914 }
5915 
5916 /*
5917  * Rotate right into flags
5918  *  31 30 29                21       15          10      5  4      0
5919  * +--+--+--+-----------------+--------+-----------+------+--+------+
5920  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5921  * +--+--+--+-----------------+--------+-----------+------+--+------+
5922  */
5923 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5924 {
5925     int mask = extract32(insn, 0, 4);
5926     int o2 = extract32(insn, 4, 1);
5927     int rn = extract32(insn, 5, 5);
5928     int imm6 = extract32(insn, 15, 6);
5929     int sf_op_s = extract32(insn, 29, 3);
5930     TCGv_i64 tcg_rn;
5931     TCGv_i32 nzcv;
5932 
5933     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5934         unallocated_encoding(s);
5935         return;
5936     }
5937 
5938     tcg_rn = read_cpu_reg(s, rn, 1);
5939     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5940 
5941     nzcv = tcg_temp_new_i32();
5942     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5943 
5944     if (mask & 8) { /* N */
5945         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5946     }
5947     if (mask & 4) { /* Z */
5948         tcg_gen_not_i32(cpu_ZF, nzcv);
5949         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5950     }
5951     if (mask & 2) { /* C */
5952         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5953     }
5954     if (mask & 1) { /* V */
5955         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5956     }
5957 }
5958 
5959 /*
5960  * Evaluate into flags
5961  *  31 30 29                21        15   14        10      5  4      0
5962  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5963  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5964  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5965  */
5966 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5967 {
5968     int o3_mask = extract32(insn, 0, 5);
5969     int rn = extract32(insn, 5, 5);
5970     int o2 = extract32(insn, 15, 6);
5971     int sz = extract32(insn, 14, 1);
5972     int sf_op_s = extract32(insn, 29, 3);
5973     TCGv_i32 tmp;
5974     int shift;
5975 
5976     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5977         !dc_isar_feature(aa64_condm_4, s)) {
5978         unallocated_encoding(s);
5979         return;
5980     }
5981     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5982 
5983     tmp = tcg_temp_new_i32();
5984     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5985     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5986     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5987     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5988     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5989 }
5990 
5991 /* Conditional compare (immediate / register)
5992  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5993  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5994  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5995  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5996  *        [1]                             y                [0]       [0]
5997  */
5998 static void disas_cc(DisasContext *s, uint32_t insn)
5999 {
6000     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6001     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6002     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6003     DisasCompare c;
6004 
6005     if (!extract32(insn, 29, 1)) {
6006         unallocated_encoding(s);
6007         return;
6008     }
6009     if (insn & (1 << 10 | 1 << 4)) {
6010         unallocated_encoding(s);
6011         return;
6012     }
6013     sf = extract32(insn, 31, 1);
6014     op = extract32(insn, 30, 1);
6015     is_imm = extract32(insn, 11, 1);
6016     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6017     cond = extract32(insn, 12, 4);
6018     rn = extract32(insn, 5, 5);
6019     nzcv = extract32(insn, 0, 4);
6020 
6021     /* Set T0 = !COND.  */
6022     tcg_t0 = tcg_temp_new_i32();
6023     arm_test_cc(&c, cond);
6024     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6025 
6026     /* Load the arguments for the new comparison.  */
6027     if (is_imm) {
6028         tcg_y = tcg_temp_new_i64();
6029         tcg_gen_movi_i64(tcg_y, y);
6030     } else {
6031         tcg_y = cpu_reg(s, y);
6032     }
6033     tcg_rn = cpu_reg(s, rn);
6034 
6035     /* Set the flags for the new comparison.  */
6036     tcg_tmp = tcg_temp_new_i64();
6037     if (op) {
6038         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6039     } else {
6040         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6041     }
6042 
6043     /* If COND was false, force the flags to #nzcv.  Compute two masks
6044      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6045      * For tcg hosts that support ANDC, we can make do with just T1.
6046      * In either case, allow the tcg optimizer to delete any unused mask.
6047      */
6048     tcg_t1 = tcg_temp_new_i32();
6049     tcg_t2 = tcg_temp_new_i32();
6050     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6051     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6052 
6053     if (nzcv & 8) { /* N */
6054         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6055     } else {
6056         if (TCG_TARGET_HAS_andc_i32) {
6057             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6058         } else {
6059             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6060         }
6061     }
6062     if (nzcv & 4) { /* Z */
6063         if (TCG_TARGET_HAS_andc_i32) {
6064             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6065         } else {
6066             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6067         }
6068     } else {
6069         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6070     }
6071     if (nzcv & 2) { /* C */
6072         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6073     } else {
6074         if (TCG_TARGET_HAS_andc_i32) {
6075             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6076         } else {
6077             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6078         }
6079     }
6080     if (nzcv & 1) { /* V */
6081         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6082     } else {
6083         if (TCG_TARGET_HAS_andc_i32) {
6084             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6085         } else {
6086             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6087         }
6088     }
6089 }
6090 
6091 /* Conditional select
6092  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6093  * +----+----+---+-----------------+------+------+-----+------+------+
6094  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6095  * +----+----+---+-----------------+------+------+-----+------+------+
6096  */
6097 static void disas_cond_select(DisasContext *s, uint32_t insn)
6098 {
6099     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6100     TCGv_i64 tcg_rd, zero;
6101     DisasCompare64 c;
6102 
6103     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6104         /* S == 1 or op2<1> == 1 */
6105         unallocated_encoding(s);
6106         return;
6107     }
6108     sf = extract32(insn, 31, 1);
6109     else_inv = extract32(insn, 30, 1);
6110     rm = extract32(insn, 16, 5);
6111     cond = extract32(insn, 12, 4);
6112     else_inc = extract32(insn, 10, 1);
6113     rn = extract32(insn, 5, 5);
6114     rd = extract32(insn, 0, 5);
6115 
6116     tcg_rd = cpu_reg(s, rd);
6117 
6118     a64_test_cc(&c, cond);
6119     zero = tcg_constant_i64(0);
6120 
6121     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6122         /* CSET & CSETM.  */
6123         if (else_inv) {
6124             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6125                                    tcg_rd, c.value, zero);
6126         } else {
6127             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6128                                 tcg_rd, c.value, zero);
6129         }
6130     } else {
6131         TCGv_i64 t_true = cpu_reg(s, rn);
6132         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6133         if (else_inv && else_inc) {
6134             tcg_gen_neg_i64(t_false, t_false);
6135         } else if (else_inv) {
6136             tcg_gen_not_i64(t_false, t_false);
6137         } else if (else_inc) {
6138             tcg_gen_addi_i64(t_false, t_false, 1);
6139         }
6140         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6141     }
6142 
6143     if (!sf) {
6144         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6145     }
6146 }
6147 
6148 static void handle_clz(DisasContext *s, unsigned int sf,
6149                        unsigned int rn, unsigned int rd)
6150 {
6151     TCGv_i64 tcg_rd, tcg_rn;
6152     tcg_rd = cpu_reg(s, rd);
6153     tcg_rn = cpu_reg(s, rn);
6154 
6155     if (sf) {
6156         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6157     } else {
6158         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6159         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6160         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6161         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6162     }
6163 }
6164 
6165 static void handle_cls(DisasContext *s, unsigned int sf,
6166                        unsigned int rn, unsigned int rd)
6167 {
6168     TCGv_i64 tcg_rd, tcg_rn;
6169     tcg_rd = cpu_reg(s, rd);
6170     tcg_rn = cpu_reg(s, rn);
6171 
6172     if (sf) {
6173         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6174     } else {
6175         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6176         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6177         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6178         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6179     }
6180 }
6181 
6182 static void handle_rbit(DisasContext *s, unsigned int sf,
6183                         unsigned int rn, unsigned int rd)
6184 {
6185     TCGv_i64 tcg_rd, tcg_rn;
6186     tcg_rd = cpu_reg(s, rd);
6187     tcg_rn = cpu_reg(s, rn);
6188 
6189     if (sf) {
6190         gen_helper_rbit64(tcg_rd, tcg_rn);
6191     } else {
6192         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6193         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6194         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6195         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6196     }
6197 }
6198 
6199 /* REV with sf==1, opcode==3 ("REV64") */
6200 static void handle_rev64(DisasContext *s, unsigned int sf,
6201                          unsigned int rn, unsigned int rd)
6202 {
6203     if (!sf) {
6204         unallocated_encoding(s);
6205         return;
6206     }
6207     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6208 }
6209 
6210 /* REV with sf==0, opcode==2
6211  * REV32 (sf==1, opcode==2)
6212  */
6213 static void handle_rev32(DisasContext *s, unsigned int sf,
6214                          unsigned int rn, unsigned int rd)
6215 {
6216     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6217     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6218 
6219     if (sf) {
6220         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6221         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6222     } else {
6223         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6224     }
6225 }
6226 
6227 /* REV16 (opcode==1) */
6228 static void handle_rev16(DisasContext *s, unsigned int sf,
6229                          unsigned int rn, unsigned int rd)
6230 {
6231     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6232     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6233     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6234     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6235 
6236     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6237     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6238     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6239     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6240     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6241 }
6242 
6243 /* Data-processing (1 source)
6244  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6245  * +----+---+---+-----------------+---------+--------+------+------+
6246  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6247  * +----+---+---+-----------------+---------+--------+------+------+
6248  */
6249 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6250 {
6251     unsigned int sf, opcode, opcode2, rn, rd;
6252     TCGv_i64 tcg_rd;
6253 
6254     if (extract32(insn, 29, 1)) {
6255         unallocated_encoding(s);
6256         return;
6257     }
6258 
6259     sf = extract32(insn, 31, 1);
6260     opcode = extract32(insn, 10, 6);
6261     opcode2 = extract32(insn, 16, 5);
6262     rn = extract32(insn, 5, 5);
6263     rd = extract32(insn, 0, 5);
6264 
6265 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6266 
6267     switch (MAP(sf, opcode2, opcode)) {
6268     case MAP(0, 0x00, 0x00): /* RBIT */
6269     case MAP(1, 0x00, 0x00):
6270         handle_rbit(s, sf, rn, rd);
6271         break;
6272     case MAP(0, 0x00, 0x01): /* REV16 */
6273     case MAP(1, 0x00, 0x01):
6274         handle_rev16(s, sf, rn, rd);
6275         break;
6276     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6277     case MAP(1, 0x00, 0x02):
6278         handle_rev32(s, sf, rn, rd);
6279         break;
6280     case MAP(1, 0x00, 0x03): /* REV64 */
6281         handle_rev64(s, sf, rn, rd);
6282         break;
6283     case MAP(0, 0x00, 0x04): /* CLZ */
6284     case MAP(1, 0x00, 0x04):
6285         handle_clz(s, sf, rn, rd);
6286         break;
6287     case MAP(0, 0x00, 0x05): /* CLS */
6288     case MAP(1, 0x00, 0x05):
6289         handle_cls(s, sf, rn, rd);
6290         break;
6291     case MAP(1, 0x01, 0x00): /* PACIA */
6292         if (s->pauth_active) {
6293             tcg_rd = cpu_reg(s, rd);
6294             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6295         } else if (!dc_isar_feature(aa64_pauth, s)) {
6296             goto do_unallocated;
6297         }
6298         break;
6299     case MAP(1, 0x01, 0x01): /* PACIB */
6300         if (s->pauth_active) {
6301             tcg_rd = cpu_reg(s, rd);
6302             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6303         } else if (!dc_isar_feature(aa64_pauth, s)) {
6304             goto do_unallocated;
6305         }
6306         break;
6307     case MAP(1, 0x01, 0x02): /* PACDA */
6308         if (s->pauth_active) {
6309             tcg_rd = cpu_reg(s, rd);
6310             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6311         } else if (!dc_isar_feature(aa64_pauth, s)) {
6312             goto do_unallocated;
6313         }
6314         break;
6315     case MAP(1, 0x01, 0x03): /* PACDB */
6316         if (s->pauth_active) {
6317             tcg_rd = cpu_reg(s, rd);
6318             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6319         } else if (!dc_isar_feature(aa64_pauth, s)) {
6320             goto do_unallocated;
6321         }
6322         break;
6323     case MAP(1, 0x01, 0x04): /* AUTIA */
6324         if (s->pauth_active) {
6325             tcg_rd = cpu_reg(s, rd);
6326             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6327         } else if (!dc_isar_feature(aa64_pauth, s)) {
6328             goto do_unallocated;
6329         }
6330         break;
6331     case MAP(1, 0x01, 0x05): /* AUTIB */
6332         if (s->pauth_active) {
6333             tcg_rd = cpu_reg(s, rd);
6334             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6335         } else if (!dc_isar_feature(aa64_pauth, s)) {
6336             goto do_unallocated;
6337         }
6338         break;
6339     case MAP(1, 0x01, 0x06): /* AUTDA */
6340         if (s->pauth_active) {
6341             tcg_rd = cpu_reg(s, rd);
6342             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6343         } else if (!dc_isar_feature(aa64_pauth, s)) {
6344             goto do_unallocated;
6345         }
6346         break;
6347     case MAP(1, 0x01, 0x07): /* AUTDB */
6348         if (s->pauth_active) {
6349             tcg_rd = cpu_reg(s, rd);
6350             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6351         } else if (!dc_isar_feature(aa64_pauth, s)) {
6352             goto do_unallocated;
6353         }
6354         break;
6355     case MAP(1, 0x01, 0x08): /* PACIZA */
6356         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6357             goto do_unallocated;
6358         } else if (s->pauth_active) {
6359             tcg_rd = cpu_reg(s, rd);
6360             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6361         }
6362         break;
6363     case MAP(1, 0x01, 0x09): /* PACIZB */
6364         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6365             goto do_unallocated;
6366         } else if (s->pauth_active) {
6367             tcg_rd = cpu_reg(s, rd);
6368             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6369         }
6370         break;
6371     case MAP(1, 0x01, 0x0a): /* PACDZA */
6372         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6373             goto do_unallocated;
6374         } else if (s->pauth_active) {
6375             tcg_rd = cpu_reg(s, rd);
6376             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6377         }
6378         break;
6379     case MAP(1, 0x01, 0x0b): /* PACDZB */
6380         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6381             goto do_unallocated;
6382         } else if (s->pauth_active) {
6383             tcg_rd = cpu_reg(s, rd);
6384             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6385         }
6386         break;
6387     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6388         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6389             goto do_unallocated;
6390         } else if (s->pauth_active) {
6391             tcg_rd = cpu_reg(s, rd);
6392             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6393         }
6394         break;
6395     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6396         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6397             goto do_unallocated;
6398         } else if (s->pauth_active) {
6399             tcg_rd = cpu_reg(s, rd);
6400             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6401         }
6402         break;
6403     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6404         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6405             goto do_unallocated;
6406         } else if (s->pauth_active) {
6407             tcg_rd = cpu_reg(s, rd);
6408             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6409         }
6410         break;
6411     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6412         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6413             goto do_unallocated;
6414         } else if (s->pauth_active) {
6415             tcg_rd = cpu_reg(s, rd);
6416             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6417         }
6418         break;
6419     case MAP(1, 0x01, 0x10): /* XPACI */
6420         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6421             goto do_unallocated;
6422         } else if (s->pauth_active) {
6423             tcg_rd = cpu_reg(s, rd);
6424             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6425         }
6426         break;
6427     case MAP(1, 0x01, 0x11): /* XPACD */
6428         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6429             goto do_unallocated;
6430         } else if (s->pauth_active) {
6431             tcg_rd = cpu_reg(s, rd);
6432             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6433         }
6434         break;
6435     default:
6436     do_unallocated:
6437         unallocated_encoding(s);
6438         break;
6439     }
6440 
6441 #undef MAP
6442 }
6443 
6444 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6445                        unsigned int rm, unsigned int rn, unsigned int rd)
6446 {
6447     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6448     tcg_rd = cpu_reg(s, rd);
6449 
6450     if (!sf && is_signed) {
6451         tcg_n = tcg_temp_new_i64();
6452         tcg_m = tcg_temp_new_i64();
6453         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6454         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6455     } else {
6456         tcg_n = read_cpu_reg(s, rn, sf);
6457         tcg_m = read_cpu_reg(s, rm, sf);
6458     }
6459 
6460     if (is_signed) {
6461         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6462     } else {
6463         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6464     }
6465 
6466     if (!sf) { /* zero extend final result */
6467         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6468     }
6469 }
6470 
6471 /* LSLV, LSRV, ASRV, RORV */
6472 static void handle_shift_reg(DisasContext *s,
6473                              enum a64_shift_type shift_type, unsigned int sf,
6474                              unsigned int rm, unsigned int rn, unsigned int rd)
6475 {
6476     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6477     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6478     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6479 
6480     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6481     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6482 }
6483 
6484 /* CRC32[BHWX], CRC32C[BHWX] */
6485 static void handle_crc32(DisasContext *s,
6486                          unsigned int sf, unsigned int sz, bool crc32c,
6487                          unsigned int rm, unsigned int rn, unsigned int rd)
6488 {
6489     TCGv_i64 tcg_acc, tcg_val;
6490     TCGv_i32 tcg_bytes;
6491 
6492     if (!dc_isar_feature(aa64_crc32, s)
6493         || (sf == 1 && sz != 3)
6494         || (sf == 0 && sz == 3)) {
6495         unallocated_encoding(s);
6496         return;
6497     }
6498 
6499     if (sz == 3) {
6500         tcg_val = cpu_reg(s, rm);
6501     } else {
6502         uint64_t mask;
6503         switch (sz) {
6504         case 0:
6505             mask = 0xFF;
6506             break;
6507         case 1:
6508             mask = 0xFFFF;
6509             break;
6510         case 2:
6511             mask = 0xFFFFFFFF;
6512             break;
6513         default:
6514             g_assert_not_reached();
6515         }
6516         tcg_val = tcg_temp_new_i64();
6517         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6518     }
6519 
6520     tcg_acc = cpu_reg(s, rn);
6521     tcg_bytes = tcg_constant_i32(1 << sz);
6522 
6523     if (crc32c) {
6524         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6525     } else {
6526         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6527     }
6528 }
6529 
6530 /* Data-processing (2 source)
6531  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6532  * +----+---+---+-----------------+------+--------+------+------+
6533  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6534  * +----+---+---+-----------------+------+--------+------+------+
6535  */
6536 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6537 {
6538     unsigned int sf, rm, opcode, rn, rd, setflag;
6539     sf = extract32(insn, 31, 1);
6540     setflag = extract32(insn, 29, 1);
6541     rm = extract32(insn, 16, 5);
6542     opcode = extract32(insn, 10, 6);
6543     rn = extract32(insn, 5, 5);
6544     rd = extract32(insn, 0, 5);
6545 
6546     if (setflag && opcode != 0) {
6547         unallocated_encoding(s);
6548         return;
6549     }
6550 
6551     switch (opcode) {
6552     case 0: /* SUBP(S) */
6553         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6554             goto do_unallocated;
6555         } else {
6556             TCGv_i64 tcg_n, tcg_m, tcg_d;
6557 
6558             tcg_n = read_cpu_reg_sp(s, rn, true);
6559             tcg_m = read_cpu_reg_sp(s, rm, true);
6560             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6561             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6562             tcg_d = cpu_reg(s, rd);
6563 
6564             if (setflag) {
6565                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6566             } else {
6567                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6568             }
6569         }
6570         break;
6571     case 2: /* UDIV */
6572         handle_div(s, false, sf, rm, rn, rd);
6573         break;
6574     case 3: /* SDIV */
6575         handle_div(s, true, sf, rm, rn, rd);
6576         break;
6577     case 4: /* IRG */
6578         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6579             goto do_unallocated;
6580         }
6581         if (s->ata[0]) {
6582             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6583                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6584         } else {
6585             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6586                                              cpu_reg_sp(s, rn));
6587         }
6588         break;
6589     case 5: /* GMI */
6590         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6591             goto do_unallocated;
6592         } else {
6593             TCGv_i64 t = tcg_temp_new_i64();
6594 
6595             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6596             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6597             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6598         }
6599         break;
6600     case 8: /* LSLV */
6601         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6602         break;
6603     case 9: /* LSRV */
6604         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6605         break;
6606     case 10: /* ASRV */
6607         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6608         break;
6609     case 11: /* RORV */
6610         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6611         break;
6612     case 12: /* PACGA */
6613         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6614             goto do_unallocated;
6615         }
6616         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6617                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6618         break;
6619     case 16:
6620     case 17:
6621     case 18:
6622     case 19:
6623     case 20:
6624     case 21:
6625     case 22:
6626     case 23: /* CRC32 */
6627     {
6628         int sz = extract32(opcode, 0, 2);
6629         bool crc32c = extract32(opcode, 2, 1);
6630         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6631         break;
6632     }
6633     default:
6634     do_unallocated:
6635         unallocated_encoding(s);
6636         break;
6637     }
6638 }
6639 
6640 /*
6641  * Data processing - register
6642  *  31  30 29  28      25    21  20  16      10         0
6643  * +--+---+--+---+-------+-----+-------+-------+---------+
6644  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6645  * +--+---+--+---+-------+-----+-------+-------+---------+
6646  */
6647 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6648 {
6649     int op0 = extract32(insn, 30, 1);
6650     int op1 = extract32(insn, 28, 1);
6651     int op2 = extract32(insn, 21, 4);
6652     int op3 = extract32(insn, 10, 6);
6653 
6654     if (!op1) {
6655         if (op2 & 8) {
6656             if (op2 & 1) {
6657                 /* Add/sub (extended register) */
6658                 disas_add_sub_ext_reg(s, insn);
6659             } else {
6660                 /* Add/sub (shifted register) */
6661                 disas_add_sub_reg(s, insn);
6662             }
6663         } else {
6664             /* Logical (shifted register) */
6665             disas_logic_reg(s, insn);
6666         }
6667         return;
6668     }
6669 
6670     switch (op2) {
6671     case 0x0:
6672         switch (op3) {
6673         case 0x00: /* Add/subtract (with carry) */
6674             disas_adc_sbc(s, insn);
6675             break;
6676 
6677         case 0x01: /* Rotate right into flags */
6678         case 0x21:
6679             disas_rotate_right_into_flags(s, insn);
6680             break;
6681 
6682         case 0x02: /* Evaluate into flags */
6683         case 0x12:
6684         case 0x22:
6685         case 0x32:
6686             disas_evaluate_into_flags(s, insn);
6687             break;
6688 
6689         default:
6690             goto do_unallocated;
6691         }
6692         break;
6693 
6694     case 0x2: /* Conditional compare */
6695         disas_cc(s, insn); /* both imm and reg forms */
6696         break;
6697 
6698     case 0x4: /* Conditional select */
6699         disas_cond_select(s, insn);
6700         break;
6701 
6702     case 0x6: /* Data-processing */
6703         if (op0) {    /* (1 source) */
6704             disas_data_proc_1src(s, insn);
6705         } else {      /* (2 source) */
6706             disas_data_proc_2src(s, insn);
6707         }
6708         break;
6709     case 0x8 ... 0xf: /* (3 source) */
6710         disas_data_proc_3src(s, insn);
6711         break;
6712 
6713     default:
6714     do_unallocated:
6715         unallocated_encoding(s);
6716         break;
6717     }
6718 }
6719 
6720 static void handle_fp_compare(DisasContext *s, int size,
6721                               unsigned int rn, unsigned int rm,
6722                               bool cmp_with_zero, bool signal_all_nans)
6723 {
6724     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6725     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6726 
6727     if (size == MO_64) {
6728         TCGv_i64 tcg_vn, tcg_vm;
6729 
6730         tcg_vn = read_fp_dreg(s, rn);
6731         if (cmp_with_zero) {
6732             tcg_vm = tcg_constant_i64(0);
6733         } else {
6734             tcg_vm = read_fp_dreg(s, rm);
6735         }
6736         if (signal_all_nans) {
6737             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6738         } else {
6739             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6740         }
6741     } else {
6742         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6743         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6744 
6745         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6746         if (cmp_with_zero) {
6747             tcg_gen_movi_i32(tcg_vm, 0);
6748         } else {
6749             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6750         }
6751 
6752         switch (size) {
6753         case MO_32:
6754             if (signal_all_nans) {
6755                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6756             } else {
6757                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6758             }
6759             break;
6760         case MO_16:
6761             if (signal_all_nans) {
6762                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6763             } else {
6764                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6765             }
6766             break;
6767         default:
6768             g_assert_not_reached();
6769         }
6770     }
6771 
6772     gen_set_nzcv(tcg_flags);
6773 }
6774 
6775 /* Floating point compare
6776  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6777  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6778  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6779  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6780  */
6781 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6782 {
6783     unsigned int mos, type, rm, op, rn, opc, op2r;
6784     int size;
6785 
6786     mos = extract32(insn, 29, 3);
6787     type = extract32(insn, 22, 2);
6788     rm = extract32(insn, 16, 5);
6789     op = extract32(insn, 14, 2);
6790     rn = extract32(insn, 5, 5);
6791     opc = extract32(insn, 3, 2);
6792     op2r = extract32(insn, 0, 3);
6793 
6794     if (mos || op || op2r) {
6795         unallocated_encoding(s);
6796         return;
6797     }
6798 
6799     switch (type) {
6800     case 0:
6801         size = MO_32;
6802         break;
6803     case 1:
6804         size = MO_64;
6805         break;
6806     case 3:
6807         size = MO_16;
6808         if (dc_isar_feature(aa64_fp16, s)) {
6809             break;
6810         }
6811         /* fallthru */
6812     default:
6813         unallocated_encoding(s);
6814         return;
6815     }
6816 
6817     if (!fp_access_check(s)) {
6818         return;
6819     }
6820 
6821     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6822 }
6823 
6824 /* Floating point conditional compare
6825  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6826  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6827  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6828  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6829  */
6830 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6831 {
6832     unsigned int mos, type, rm, cond, rn, op, nzcv;
6833     TCGLabel *label_continue = NULL;
6834     int size;
6835 
6836     mos = extract32(insn, 29, 3);
6837     type = extract32(insn, 22, 2);
6838     rm = extract32(insn, 16, 5);
6839     cond = extract32(insn, 12, 4);
6840     rn = extract32(insn, 5, 5);
6841     op = extract32(insn, 4, 1);
6842     nzcv = extract32(insn, 0, 4);
6843 
6844     if (mos) {
6845         unallocated_encoding(s);
6846         return;
6847     }
6848 
6849     switch (type) {
6850     case 0:
6851         size = MO_32;
6852         break;
6853     case 1:
6854         size = MO_64;
6855         break;
6856     case 3:
6857         size = MO_16;
6858         if (dc_isar_feature(aa64_fp16, s)) {
6859             break;
6860         }
6861         /* fallthru */
6862     default:
6863         unallocated_encoding(s);
6864         return;
6865     }
6866 
6867     if (!fp_access_check(s)) {
6868         return;
6869     }
6870 
6871     if (cond < 0x0e) { /* not always */
6872         TCGLabel *label_match = gen_new_label();
6873         label_continue = gen_new_label();
6874         arm_gen_test_cc(cond, label_match);
6875         /* nomatch: */
6876         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6877         tcg_gen_br(label_continue);
6878         gen_set_label(label_match);
6879     }
6880 
6881     handle_fp_compare(s, size, rn, rm, false, op);
6882 
6883     if (cond < 0x0e) {
6884         gen_set_label(label_continue);
6885     }
6886 }
6887 
6888 /* Floating point conditional select
6889  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6890  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6891  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6892  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6893  */
6894 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6895 {
6896     unsigned int mos, type, rm, cond, rn, rd;
6897     TCGv_i64 t_true, t_false;
6898     DisasCompare64 c;
6899     MemOp sz;
6900 
6901     mos = extract32(insn, 29, 3);
6902     type = extract32(insn, 22, 2);
6903     rm = extract32(insn, 16, 5);
6904     cond = extract32(insn, 12, 4);
6905     rn = extract32(insn, 5, 5);
6906     rd = extract32(insn, 0, 5);
6907 
6908     if (mos) {
6909         unallocated_encoding(s);
6910         return;
6911     }
6912 
6913     switch (type) {
6914     case 0:
6915         sz = MO_32;
6916         break;
6917     case 1:
6918         sz = MO_64;
6919         break;
6920     case 3:
6921         sz = MO_16;
6922         if (dc_isar_feature(aa64_fp16, s)) {
6923             break;
6924         }
6925         /* fallthru */
6926     default:
6927         unallocated_encoding(s);
6928         return;
6929     }
6930 
6931     if (!fp_access_check(s)) {
6932         return;
6933     }
6934 
6935     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6936     t_true = tcg_temp_new_i64();
6937     t_false = tcg_temp_new_i64();
6938     read_vec_element(s, t_true, rn, 0, sz);
6939     read_vec_element(s, t_false, rm, 0, sz);
6940 
6941     a64_test_cc(&c, cond);
6942     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6943                         t_true, t_false);
6944 
6945     /* Note that sregs & hregs write back zeros to the high bits,
6946        and we've already done the zero-extension.  */
6947     write_fp_dreg(s, rd, t_true);
6948 }
6949 
6950 /* Floating-point data-processing (1 source) - half precision */
6951 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6952 {
6953     TCGv_ptr fpst = NULL;
6954     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6955     TCGv_i32 tcg_res = tcg_temp_new_i32();
6956 
6957     switch (opcode) {
6958     case 0x0: /* FMOV */
6959         tcg_gen_mov_i32(tcg_res, tcg_op);
6960         break;
6961     case 0x1: /* FABS */
6962         gen_vfp_absh(tcg_res, tcg_op);
6963         break;
6964     case 0x2: /* FNEG */
6965         gen_vfp_negh(tcg_res, tcg_op);
6966         break;
6967     case 0x3: /* FSQRT */
6968         fpst = fpstatus_ptr(FPST_FPCR_F16);
6969         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6970         break;
6971     case 0x8: /* FRINTN */
6972     case 0x9: /* FRINTP */
6973     case 0xa: /* FRINTM */
6974     case 0xb: /* FRINTZ */
6975     case 0xc: /* FRINTA */
6976     {
6977         TCGv_i32 tcg_rmode;
6978 
6979         fpst = fpstatus_ptr(FPST_FPCR_F16);
6980         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6981         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6982         gen_restore_rmode(tcg_rmode, fpst);
6983         break;
6984     }
6985     case 0xe: /* FRINTX */
6986         fpst = fpstatus_ptr(FPST_FPCR_F16);
6987         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6988         break;
6989     case 0xf: /* FRINTI */
6990         fpst = fpstatus_ptr(FPST_FPCR_F16);
6991         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6992         break;
6993     default:
6994         g_assert_not_reached();
6995     }
6996 
6997     write_fp_sreg(s, rd, tcg_res);
6998 }
6999 
7000 /* Floating-point data-processing (1 source) - single precision */
7001 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7002 {
7003     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7004     TCGv_i32 tcg_op, tcg_res;
7005     TCGv_ptr fpst;
7006     int rmode = -1;
7007 
7008     tcg_op = read_fp_sreg(s, rn);
7009     tcg_res = tcg_temp_new_i32();
7010 
7011     switch (opcode) {
7012     case 0x0: /* FMOV */
7013         tcg_gen_mov_i32(tcg_res, tcg_op);
7014         goto done;
7015     case 0x1: /* FABS */
7016         gen_vfp_abss(tcg_res, tcg_op);
7017         goto done;
7018     case 0x2: /* FNEG */
7019         gen_vfp_negs(tcg_res, tcg_op);
7020         goto done;
7021     case 0x3: /* FSQRT */
7022         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7023         goto done;
7024     case 0x6: /* BFCVT */
7025         gen_fpst = gen_helper_bfcvt;
7026         break;
7027     case 0x8: /* FRINTN */
7028     case 0x9: /* FRINTP */
7029     case 0xa: /* FRINTM */
7030     case 0xb: /* FRINTZ */
7031     case 0xc: /* FRINTA */
7032         rmode = opcode & 7;
7033         gen_fpst = gen_helper_rints;
7034         break;
7035     case 0xe: /* FRINTX */
7036         gen_fpst = gen_helper_rints_exact;
7037         break;
7038     case 0xf: /* FRINTI */
7039         gen_fpst = gen_helper_rints;
7040         break;
7041     case 0x10: /* FRINT32Z */
7042         rmode = FPROUNDING_ZERO;
7043         gen_fpst = gen_helper_frint32_s;
7044         break;
7045     case 0x11: /* FRINT32X */
7046         gen_fpst = gen_helper_frint32_s;
7047         break;
7048     case 0x12: /* FRINT64Z */
7049         rmode = FPROUNDING_ZERO;
7050         gen_fpst = gen_helper_frint64_s;
7051         break;
7052     case 0x13: /* FRINT64X */
7053         gen_fpst = gen_helper_frint64_s;
7054         break;
7055     default:
7056         g_assert_not_reached();
7057     }
7058 
7059     fpst = fpstatus_ptr(FPST_FPCR);
7060     if (rmode >= 0) {
7061         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7062         gen_fpst(tcg_res, tcg_op, fpst);
7063         gen_restore_rmode(tcg_rmode, fpst);
7064     } else {
7065         gen_fpst(tcg_res, tcg_op, fpst);
7066     }
7067 
7068  done:
7069     write_fp_sreg(s, rd, tcg_res);
7070 }
7071 
7072 /* Floating-point data-processing (1 source) - double precision */
7073 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7074 {
7075     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7076     TCGv_i64 tcg_op, tcg_res;
7077     TCGv_ptr fpst;
7078     int rmode = -1;
7079 
7080     switch (opcode) {
7081     case 0x0: /* FMOV */
7082         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7083         return;
7084     }
7085 
7086     tcg_op = read_fp_dreg(s, rn);
7087     tcg_res = tcg_temp_new_i64();
7088 
7089     switch (opcode) {
7090     case 0x1: /* FABS */
7091         gen_vfp_absd(tcg_res, tcg_op);
7092         goto done;
7093     case 0x2: /* FNEG */
7094         gen_vfp_negd(tcg_res, tcg_op);
7095         goto done;
7096     case 0x3: /* FSQRT */
7097         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7098         goto done;
7099     case 0x8: /* FRINTN */
7100     case 0x9: /* FRINTP */
7101     case 0xa: /* FRINTM */
7102     case 0xb: /* FRINTZ */
7103     case 0xc: /* FRINTA */
7104         rmode = opcode & 7;
7105         gen_fpst = gen_helper_rintd;
7106         break;
7107     case 0xe: /* FRINTX */
7108         gen_fpst = gen_helper_rintd_exact;
7109         break;
7110     case 0xf: /* FRINTI */
7111         gen_fpst = gen_helper_rintd;
7112         break;
7113     case 0x10: /* FRINT32Z */
7114         rmode = FPROUNDING_ZERO;
7115         gen_fpst = gen_helper_frint32_d;
7116         break;
7117     case 0x11: /* FRINT32X */
7118         gen_fpst = gen_helper_frint32_d;
7119         break;
7120     case 0x12: /* FRINT64Z */
7121         rmode = FPROUNDING_ZERO;
7122         gen_fpst = gen_helper_frint64_d;
7123         break;
7124     case 0x13: /* FRINT64X */
7125         gen_fpst = gen_helper_frint64_d;
7126         break;
7127     default:
7128         g_assert_not_reached();
7129     }
7130 
7131     fpst = fpstatus_ptr(FPST_FPCR);
7132     if (rmode >= 0) {
7133         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7134         gen_fpst(tcg_res, tcg_op, fpst);
7135         gen_restore_rmode(tcg_rmode, fpst);
7136     } else {
7137         gen_fpst(tcg_res, tcg_op, fpst);
7138     }
7139 
7140  done:
7141     write_fp_dreg(s, rd, tcg_res);
7142 }
7143 
7144 static void handle_fp_fcvt(DisasContext *s, int opcode,
7145                            int rd, int rn, int dtype, int ntype)
7146 {
7147     switch (ntype) {
7148     case 0x0:
7149     {
7150         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7151         if (dtype == 1) {
7152             /* Single to double */
7153             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7154             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7155             write_fp_dreg(s, rd, tcg_rd);
7156         } else {
7157             /* Single to half */
7158             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7159             TCGv_i32 ahp = get_ahp_flag();
7160             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7161 
7162             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7163             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7164             write_fp_sreg(s, rd, tcg_rd);
7165         }
7166         break;
7167     }
7168     case 0x1:
7169     {
7170         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7171         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7172         if (dtype == 0) {
7173             /* Double to single */
7174             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7175         } else {
7176             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7177             TCGv_i32 ahp = get_ahp_flag();
7178             /* Double to half */
7179             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7180             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7181         }
7182         write_fp_sreg(s, rd, tcg_rd);
7183         break;
7184     }
7185     case 0x3:
7186     {
7187         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7188         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7189         TCGv_i32 tcg_ahp = get_ahp_flag();
7190         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7191         if (dtype == 0) {
7192             /* Half to single */
7193             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7194             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7195             write_fp_sreg(s, rd, tcg_rd);
7196         } else {
7197             /* Half to double */
7198             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7199             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7200             write_fp_dreg(s, rd, tcg_rd);
7201         }
7202         break;
7203     }
7204     default:
7205         g_assert_not_reached();
7206     }
7207 }
7208 
7209 /* Floating point data-processing (1 source)
7210  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7211  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7212  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7213  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7214  */
7215 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7216 {
7217     int mos = extract32(insn, 29, 3);
7218     int type = extract32(insn, 22, 2);
7219     int opcode = extract32(insn, 15, 6);
7220     int rn = extract32(insn, 5, 5);
7221     int rd = extract32(insn, 0, 5);
7222 
7223     if (mos) {
7224         goto do_unallocated;
7225     }
7226 
7227     switch (opcode) {
7228     case 0x4: case 0x5: case 0x7:
7229     {
7230         /* FCVT between half, single and double precision */
7231         int dtype = extract32(opcode, 0, 2);
7232         if (type == 2 || dtype == type) {
7233             goto do_unallocated;
7234         }
7235         if (!fp_access_check(s)) {
7236             return;
7237         }
7238 
7239         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7240         break;
7241     }
7242 
7243     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7244         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7245             goto do_unallocated;
7246         }
7247         /* fall through */
7248     case 0x0 ... 0x3:
7249     case 0x8 ... 0xc:
7250     case 0xe ... 0xf:
7251         /* 32-to-32 and 64-to-64 ops */
7252         switch (type) {
7253         case 0:
7254             if (!fp_access_check(s)) {
7255                 return;
7256             }
7257             handle_fp_1src_single(s, opcode, rd, rn);
7258             break;
7259         case 1:
7260             if (!fp_access_check(s)) {
7261                 return;
7262             }
7263             handle_fp_1src_double(s, opcode, rd, rn);
7264             break;
7265         case 3:
7266             if (!dc_isar_feature(aa64_fp16, s)) {
7267                 goto do_unallocated;
7268             }
7269 
7270             if (!fp_access_check(s)) {
7271                 return;
7272             }
7273             handle_fp_1src_half(s, opcode, rd, rn);
7274             break;
7275         default:
7276             goto do_unallocated;
7277         }
7278         break;
7279 
7280     case 0x6:
7281         switch (type) {
7282         case 1: /* BFCVT */
7283             if (!dc_isar_feature(aa64_bf16, s)) {
7284                 goto do_unallocated;
7285             }
7286             if (!fp_access_check(s)) {
7287                 return;
7288             }
7289             handle_fp_1src_single(s, opcode, rd, rn);
7290             break;
7291         default:
7292             goto do_unallocated;
7293         }
7294         break;
7295 
7296     default:
7297     do_unallocated:
7298         unallocated_encoding(s);
7299         break;
7300     }
7301 }
7302 
7303 /* Floating-point data-processing (3 source) - single precision */
7304 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7305                                   int rd, int rn, int rm, int ra)
7306 {
7307     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7308     TCGv_i32 tcg_res = tcg_temp_new_i32();
7309     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7310 
7311     tcg_op1 = read_fp_sreg(s, rn);
7312     tcg_op2 = read_fp_sreg(s, rm);
7313     tcg_op3 = read_fp_sreg(s, ra);
7314 
7315     /* These are fused multiply-add, and must be done as one
7316      * floating point operation with no rounding between the
7317      * multiplication and addition steps.
7318      * NB that doing the negations here as separate steps is
7319      * correct : an input NaN should come out with its sign bit
7320      * flipped if it is a negated-input.
7321      */
7322     if (o1 == true) {
7323         gen_vfp_negs(tcg_op3, tcg_op3);
7324     }
7325 
7326     if (o0 != o1) {
7327         gen_vfp_negs(tcg_op1, tcg_op1);
7328     }
7329 
7330     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7331 
7332     write_fp_sreg(s, rd, tcg_res);
7333 }
7334 
7335 /* Floating-point data-processing (3 source) - double precision */
7336 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7337                                   int rd, int rn, int rm, int ra)
7338 {
7339     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7340     TCGv_i64 tcg_res = tcg_temp_new_i64();
7341     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7342 
7343     tcg_op1 = read_fp_dreg(s, rn);
7344     tcg_op2 = read_fp_dreg(s, rm);
7345     tcg_op3 = read_fp_dreg(s, ra);
7346 
7347     /* These are fused multiply-add, and must be done as one
7348      * floating point operation with no rounding between the
7349      * multiplication and addition steps.
7350      * NB that doing the negations here as separate steps is
7351      * correct : an input NaN should come out with its sign bit
7352      * flipped if it is a negated-input.
7353      */
7354     if (o1 == true) {
7355         gen_vfp_negd(tcg_op3, tcg_op3);
7356     }
7357 
7358     if (o0 != o1) {
7359         gen_vfp_negd(tcg_op1, tcg_op1);
7360     }
7361 
7362     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7363 
7364     write_fp_dreg(s, rd, tcg_res);
7365 }
7366 
7367 /* Floating-point data-processing (3 source) - half precision */
7368 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7369                                 int rd, int rn, int rm, int ra)
7370 {
7371     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7372     TCGv_i32 tcg_res = tcg_temp_new_i32();
7373     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7374 
7375     tcg_op1 = read_fp_hreg(s, rn);
7376     tcg_op2 = read_fp_hreg(s, rm);
7377     tcg_op3 = read_fp_hreg(s, ra);
7378 
7379     /* These are fused multiply-add, and must be done as one
7380      * floating point operation with no rounding between the
7381      * multiplication and addition steps.
7382      * NB that doing the negations here as separate steps is
7383      * correct : an input NaN should come out with its sign bit
7384      * flipped if it is a negated-input.
7385      */
7386     if (o1 == true) {
7387         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7388     }
7389 
7390     if (o0 != o1) {
7391         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7392     }
7393 
7394     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7395 
7396     write_fp_sreg(s, rd, tcg_res);
7397 }
7398 
7399 /* Floating point data-processing (3 source)
7400  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7401  * +---+---+---+-----------+------+----+------+----+------+------+------+
7402  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7403  * +---+---+---+-----------+------+----+------+----+------+------+------+
7404  */
7405 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7406 {
7407     int mos = extract32(insn, 29, 3);
7408     int type = extract32(insn, 22, 2);
7409     int rd = extract32(insn, 0, 5);
7410     int rn = extract32(insn, 5, 5);
7411     int ra = extract32(insn, 10, 5);
7412     int rm = extract32(insn, 16, 5);
7413     bool o0 = extract32(insn, 15, 1);
7414     bool o1 = extract32(insn, 21, 1);
7415 
7416     if (mos) {
7417         unallocated_encoding(s);
7418         return;
7419     }
7420 
7421     switch (type) {
7422     case 0:
7423         if (!fp_access_check(s)) {
7424             return;
7425         }
7426         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7427         break;
7428     case 1:
7429         if (!fp_access_check(s)) {
7430             return;
7431         }
7432         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7433         break;
7434     case 3:
7435         if (!dc_isar_feature(aa64_fp16, s)) {
7436             unallocated_encoding(s);
7437             return;
7438         }
7439         if (!fp_access_check(s)) {
7440             return;
7441         }
7442         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7443         break;
7444     default:
7445         unallocated_encoding(s);
7446     }
7447 }
7448 
7449 /* Floating point immediate
7450  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7451  * +---+---+---+-----------+------+---+------------+-------+------+------+
7452  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7453  * +---+---+---+-----------+------+---+------------+-------+------+------+
7454  */
7455 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7456 {
7457     int rd = extract32(insn, 0, 5);
7458     int imm5 = extract32(insn, 5, 5);
7459     int imm8 = extract32(insn, 13, 8);
7460     int type = extract32(insn, 22, 2);
7461     int mos = extract32(insn, 29, 3);
7462     uint64_t imm;
7463     MemOp sz;
7464 
7465     if (mos || imm5) {
7466         unallocated_encoding(s);
7467         return;
7468     }
7469 
7470     switch (type) {
7471     case 0:
7472         sz = MO_32;
7473         break;
7474     case 1:
7475         sz = MO_64;
7476         break;
7477     case 3:
7478         sz = MO_16;
7479         if (dc_isar_feature(aa64_fp16, s)) {
7480             break;
7481         }
7482         /* fallthru */
7483     default:
7484         unallocated_encoding(s);
7485         return;
7486     }
7487 
7488     if (!fp_access_check(s)) {
7489         return;
7490     }
7491 
7492     imm = vfp_expand_imm(sz, imm8);
7493     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7494 }
7495 
7496 /* Handle floating point <=> fixed point conversions. Note that we can
7497  * also deal with fp <=> integer conversions as a special case (scale == 64)
7498  * OPTME: consider handling that special case specially or at least skipping
7499  * the call to scalbn in the helpers for zero shifts.
7500  */
7501 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7502                            bool itof, int rmode, int scale, int sf, int type)
7503 {
7504     bool is_signed = !(opcode & 1);
7505     TCGv_ptr tcg_fpstatus;
7506     TCGv_i32 tcg_shift, tcg_single;
7507     TCGv_i64 tcg_double;
7508 
7509     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7510 
7511     tcg_shift = tcg_constant_i32(64 - scale);
7512 
7513     if (itof) {
7514         TCGv_i64 tcg_int = cpu_reg(s, rn);
7515         if (!sf) {
7516             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7517 
7518             if (is_signed) {
7519                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7520             } else {
7521                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7522             }
7523 
7524             tcg_int = tcg_extend;
7525         }
7526 
7527         switch (type) {
7528         case 1: /* float64 */
7529             tcg_double = tcg_temp_new_i64();
7530             if (is_signed) {
7531                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7532                                      tcg_shift, tcg_fpstatus);
7533             } else {
7534                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7535                                      tcg_shift, tcg_fpstatus);
7536             }
7537             write_fp_dreg(s, rd, tcg_double);
7538             break;
7539 
7540         case 0: /* float32 */
7541             tcg_single = tcg_temp_new_i32();
7542             if (is_signed) {
7543                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7544                                      tcg_shift, tcg_fpstatus);
7545             } else {
7546                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7547                                      tcg_shift, tcg_fpstatus);
7548             }
7549             write_fp_sreg(s, rd, tcg_single);
7550             break;
7551 
7552         case 3: /* float16 */
7553             tcg_single = tcg_temp_new_i32();
7554             if (is_signed) {
7555                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7556                                      tcg_shift, tcg_fpstatus);
7557             } else {
7558                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7559                                      tcg_shift, tcg_fpstatus);
7560             }
7561             write_fp_sreg(s, rd, tcg_single);
7562             break;
7563 
7564         default:
7565             g_assert_not_reached();
7566         }
7567     } else {
7568         TCGv_i64 tcg_int = cpu_reg(s, rd);
7569         TCGv_i32 tcg_rmode;
7570 
7571         if (extract32(opcode, 2, 1)) {
7572             /* There are too many rounding modes to all fit into rmode,
7573              * so FCVTA[US] is a special case.
7574              */
7575             rmode = FPROUNDING_TIEAWAY;
7576         }
7577 
7578         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7579 
7580         switch (type) {
7581         case 1: /* float64 */
7582             tcg_double = read_fp_dreg(s, rn);
7583             if (is_signed) {
7584                 if (!sf) {
7585                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7586                                          tcg_shift, tcg_fpstatus);
7587                 } else {
7588                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7589                                          tcg_shift, tcg_fpstatus);
7590                 }
7591             } else {
7592                 if (!sf) {
7593                     gen_helper_vfp_tould(tcg_int, tcg_double,
7594                                          tcg_shift, tcg_fpstatus);
7595                 } else {
7596                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7597                                          tcg_shift, tcg_fpstatus);
7598                 }
7599             }
7600             if (!sf) {
7601                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7602             }
7603             break;
7604 
7605         case 0: /* float32 */
7606             tcg_single = read_fp_sreg(s, rn);
7607             if (sf) {
7608                 if (is_signed) {
7609                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7610                                          tcg_shift, tcg_fpstatus);
7611                 } else {
7612                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7613                                          tcg_shift, tcg_fpstatus);
7614                 }
7615             } else {
7616                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7617                 if (is_signed) {
7618                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7619                                          tcg_shift, tcg_fpstatus);
7620                 } else {
7621                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7622                                          tcg_shift, tcg_fpstatus);
7623                 }
7624                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7625             }
7626             break;
7627 
7628         case 3: /* float16 */
7629             tcg_single = read_fp_sreg(s, rn);
7630             if (sf) {
7631                 if (is_signed) {
7632                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7633                                          tcg_shift, tcg_fpstatus);
7634                 } else {
7635                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7636                                          tcg_shift, tcg_fpstatus);
7637                 }
7638             } else {
7639                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7640                 if (is_signed) {
7641                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7642                                          tcg_shift, tcg_fpstatus);
7643                 } else {
7644                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7645                                          tcg_shift, tcg_fpstatus);
7646                 }
7647                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7648             }
7649             break;
7650 
7651         default:
7652             g_assert_not_reached();
7653         }
7654 
7655         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7656     }
7657 }
7658 
7659 /* Floating point <-> fixed point conversions
7660  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7661  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7662  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7663  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7664  */
7665 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7666 {
7667     int rd = extract32(insn, 0, 5);
7668     int rn = extract32(insn, 5, 5);
7669     int scale = extract32(insn, 10, 6);
7670     int opcode = extract32(insn, 16, 3);
7671     int rmode = extract32(insn, 19, 2);
7672     int type = extract32(insn, 22, 2);
7673     bool sbit = extract32(insn, 29, 1);
7674     bool sf = extract32(insn, 31, 1);
7675     bool itof;
7676 
7677     if (sbit || (!sf && scale < 32)) {
7678         unallocated_encoding(s);
7679         return;
7680     }
7681 
7682     switch (type) {
7683     case 0: /* float32 */
7684     case 1: /* float64 */
7685         break;
7686     case 3: /* float16 */
7687         if (dc_isar_feature(aa64_fp16, s)) {
7688             break;
7689         }
7690         /* fallthru */
7691     default:
7692         unallocated_encoding(s);
7693         return;
7694     }
7695 
7696     switch ((rmode << 3) | opcode) {
7697     case 0x2: /* SCVTF */
7698     case 0x3: /* UCVTF */
7699         itof = true;
7700         break;
7701     case 0x18: /* FCVTZS */
7702     case 0x19: /* FCVTZU */
7703         itof = false;
7704         break;
7705     default:
7706         unallocated_encoding(s);
7707         return;
7708     }
7709 
7710     if (!fp_access_check(s)) {
7711         return;
7712     }
7713 
7714     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7715 }
7716 
7717 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7718 {
7719     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7720      * without conversion.
7721      */
7722 
7723     if (itof) {
7724         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7725         TCGv_i64 tmp;
7726 
7727         switch (type) {
7728         case 0:
7729             /* 32 bit */
7730             tmp = tcg_temp_new_i64();
7731             tcg_gen_ext32u_i64(tmp, tcg_rn);
7732             write_fp_dreg(s, rd, tmp);
7733             break;
7734         case 1:
7735             /* 64 bit */
7736             write_fp_dreg(s, rd, tcg_rn);
7737             break;
7738         case 2:
7739             /* 64 bit to top half. */
7740             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7741             clear_vec_high(s, true, rd);
7742             break;
7743         case 3:
7744             /* 16 bit */
7745             tmp = tcg_temp_new_i64();
7746             tcg_gen_ext16u_i64(tmp, tcg_rn);
7747             write_fp_dreg(s, rd, tmp);
7748             break;
7749         default:
7750             g_assert_not_reached();
7751         }
7752     } else {
7753         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7754 
7755         switch (type) {
7756         case 0:
7757             /* 32 bit */
7758             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7759             break;
7760         case 1:
7761             /* 64 bit */
7762             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7763             break;
7764         case 2:
7765             /* 64 bits from top half */
7766             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7767             break;
7768         case 3:
7769             /* 16 bit */
7770             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7771             break;
7772         default:
7773             g_assert_not_reached();
7774         }
7775     }
7776 }
7777 
7778 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7779 {
7780     TCGv_i64 t = read_fp_dreg(s, rn);
7781     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7782 
7783     gen_helper_fjcvtzs(t, t, fpstatus);
7784 
7785     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7786     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7787     tcg_gen_movi_i32(cpu_CF, 0);
7788     tcg_gen_movi_i32(cpu_NF, 0);
7789     tcg_gen_movi_i32(cpu_VF, 0);
7790 }
7791 
7792 /* Floating point <-> integer conversions
7793  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7794  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7795  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7796  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7797  */
7798 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7799 {
7800     int rd = extract32(insn, 0, 5);
7801     int rn = extract32(insn, 5, 5);
7802     int opcode = extract32(insn, 16, 3);
7803     int rmode = extract32(insn, 19, 2);
7804     int type = extract32(insn, 22, 2);
7805     bool sbit = extract32(insn, 29, 1);
7806     bool sf = extract32(insn, 31, 1);
7807     bool itof = false;
7808 
7809     if (sbit) {
7810         goto do_unallocated;
7811     }
7812 
7813     switch (opcode) {
7814     case 2: /* SCVTF */
7815     case 3: /* UCVTF */
7816         itof = true;
7817         /* fallthru */
7818     case 4: /* FCVTAS */
7819     case 5: /* FCVTAU */
7820         if (rmode != 0) {
7821             goto do_unallocated;
7822         }
7823         /* fallthru */
7824     case 0: /* FCVT[NPMZ]S */
7825     case 1: /* FCVT[NPMZ]U */
7826         switch (type) {
7827         case 0: /* float32 */
7828         case 1: /* float64 */
7829             break;
7830         case 3: /* float16 */
7831             if (!dc_isar_feature(aa64_fp16, s)) {
7832                 goto do_unallocated;
7833             }
7834             break;
7835         default:
7836             goto do_unallocated;
7837         }
7838         if (!fp_access_check(s)) {
7839             return;
7840         }
7841         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7842         break;
7843 
7844     default:
7845         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7846         case 0b01100110: /* FMOV half <-> 32-bit int */
7847         case 0b01100111:
7848         case 0b11100110: /* FMOV half <-> 64-bit int */
7849         case 0b11100111:
7850             if (!dc_isar_feature(aa64_fp16, s)) {
7851                 goto do_unallocated;
7852             }
7853             /* fallthru */
7854         case 0b00000110: /* FMOV 32-bit */
7855         case 0b00000111:
7856         case 0b10100110: /* FMOV 64-bit */
7857         case 0b10100111:
7858         case 0b11001110: /* FMOV top half of 128-bit */
7859         case 0b11001111:
7860             if (!fp_access_check(s)) {
7861                 return;
7862             }
7863             itof = opcode & 1;
7864             handle_fmov(s, rd, rn, type, itof);
7865             break;
7866 
7867         case 0b00111110: /* FJCVTZS */
7868             if (!dc_isar_feature(aa64_jscvt, s)) {
7869                 goto do_unallocated;
7870             } else if (fp_access_check(s)) {
7871                 handle_fjcvtzs(s, rd, rn);
7872             }
7873             break;
7874 
7875         default:
7876         do_unallocated:
7877             unallocated_encoding(s);
7878             return;
7879         }
7880         break;
7881     }
7882 }
7883 
7884 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7885  *   31  30  29 28     25 24                          0
7886  * +---+---+---+---------+-----------------------------+
7887  * |   | 0 |   | 1 1 1 1 |                             |
7888  * +---+---+---+---------+-----------------------------+
7889  */
7890 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7891 {
7892     if (extract32(insn, 24, 1)) {
7893         /* Floating point data-processing (3 source) */
7894         disas_fp_3src(s, insn);
7895     } else if (extract32(insn, 21, 1) == 0) {
7896         /* Floating point to fixed point conversions */
7897         disas_fp_fixed_conv(s, insn);
7898     } else {
7899         switch (extract32(insn, 10, 2)) {
7900         case 1:
7901             /* Floating point conditional compare */
7902             disas_fp_ccomp(s, insn);
7903             break;
7904         case 2:
7905             /* Floating point data-processing (2 source) */
7906             unallocated_encoding(s); /* in decodetree */
7907             break;
7908         case 3:
7909             /* Floating point conditional select */
7910             disas_fp_csel(s, insn);
7911             break;
7912         case 0:
7913             switch (ctz32(extract32(insn, 12, 4))) {
7914             case 0: /* [15:12] == xxx1 */
7915                 /* Floating point immediate */
7916                 disas_fp_imm(s, insn);
7917                 break;
7918             case 1: /* [15:12] == xx10 */
7919                 /* Floating point compare */
7920                 disas_fp_compare(s, insn);
7921                 break;
7922             case 2: /* [15:12] == x100 */
7923                 /* Floating point data-processing (1 source) */
7924                 disas_fp_1src(s, insn);
7925                 break;
7926             case 3: /* [15:12] == 1000 */
7927                 unallocated_encoding(s);
7928                 break;
7929             default: /* [15:12] == 0000 */
7930                 /* Floating point <-> integer conversions */
7931                 disas_fp_int_conv(s, insn);
7932                 break;
7933             }
7934             break;
7935         }
7936     }
7937 }
7938 
7939 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7940                      int pos)
7941 {
7942     /* Extract 64 bits from the middle of two concatenated 64 bit
7943      * vector register slices left:right. The extracted bits start
7944      * at 'pos' bits into the right (least significant) side.
7945      * We return the result in tcg_right, and guarantee not to
7946      * trash tcg_left.
7947      */
7948     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7949     assert(pos > 0 && pos < 64);
7950 
7951     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7952     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7953     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7954 }
7955 
7956 /* EXT
7957  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7958  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7959  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7960  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7961  */
7962 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7963 {
7964     int is_q = extract32(insn, 30, 1);
7965     int op2 = extract32(insn, 22, 2);
7966     int imm4 = extract32(insn, 11, 4);
7967     int rm = extract32(insn, 16, 5);
7968     int rn = extract32(insn, 5, 5);
7969     int rd = extract32(insn, 0, 5);
7970     int pos = imm4 << 3;
7971     TCGv_i64 tcg_resl, tcg_resh;
7972 
7973     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7974         unallocated_encoding(s);
7975         return;
7976     }
7977 
7978     if (!fp_access_check(s)) {
7979         return;
7980     }
7981 
7982     tcg_resh = tcg_temp_new_i64();
7983     tcg_resl = tcg_temp_new_i64();
7984 
7985     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7986      * either extracting 128 bits from a 128:128 concatenation, or
7987      * extracting 64 bits from a 64:64 concatenation.
7988      */
7989     if (!is_q) {
7990         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7991         if (pos != 0) {
7992             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7993             do_ext64(s, tcg_resh, tcg_resl, pos);
7994         }
7995     } else {
7996         TCGv_i64 tcg_hh;
7997         typedef struct {
7998             int reg;
7999             int elt;
8000         } EltPosns;
8001         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8002         EltPosns *elt = eltposns;
8003 
8004         if (pos >= 64) {
8005             elt++;
8006             pos -= 64;
8007         }
8008 
8009         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8010         elt++;
8011         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8012         elt++;
8013         if (pos != 0) {
8014             do_ext64(s, tcg_resh, tcg_resl, pos);
8015             tcg_hh = tcg_temp_new_i64();
8016             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8017             do_ext64(s, tcg_hh, tcg_resh, pos);
8018         }
8019     }
8020 
8021     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8022     if (is_q) {
8023         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8024     }
8025     clear_vec_high(s, is_q, rd);
8026 }
8027 
8028 /* TBL/TBX
8029  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8030  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8031  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8032  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8033  */
8034 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8035 {
8036     int op2 = extract32(insn, 22, 2);
8037     int is_q = extract32(insn, 30, 1);
8038     int rm = extract32(insn, 16, 5);
8039     int rn = extract32(insn, 5, 5);
8040     int rd = extract32(insn, 0, 5);
8041     int is_tbx = extract32(insn, 12, 1);
8042     int len = (extract32(insn, 13, 2) + 1) * 16;
8043 
8044     if (op2 != 0) {
8045         unallocated_encoding(s);
8046         return;
8047     }
8048 
8049     if (!fp_access_check(s)) {
8050         return;
8051     }
8052 
8053     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8054                        vec_full_reg_offset(s, rm), tcg_env,
8055                        is_q ? 16 : 8, vec_full_reg_size(s),
8056                        (len << 6) | (is_tbx << 5) | rn,
8057                        gen_helper_simd_tblx);
8058 }
8059 
8060 /* ZIP/UZP/TRN
8061  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8062  * +---+---+-------------+------+---+------+---+------------------+------+
8063  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8064  * +---+---+-------------+------+---+------+---+------------------+------+
8065  */
8066 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8067 {
8068     int rd = extract32(insn, 0, 5);
8069     int rn = extract32(insn, 5, 5);
8070     int rm = extract32(insn, 16, 5);
8071     int size = extract32(insn, 22, 2);
8072     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8073      * bit 2 indicates 1 vs 2 variant of the insn.
8074      */
8075     int opcode = extract32(insn, 12, 2);
8076     bool part = extract32(insn, 14, 1);
8077     bool is_q = extract32(insn, 30, 1);
8078     int esize = 8 << size;
8079     int i;
8080     int datasize = is_q ? 128 : 64;
8081     int elements = datasize / esize;
8082     TCGv_i64 tcg_res[2], tcg_ele;
8083 
8084     if (opcode == 0 || (size == 3 && !is_q)) {
8085         unallocated_encoding(s);
8086         return;
8087     }
8088 
8089     if (!fp_access_check(s)) {
8090         return;
8091     }
8092 
8093     tcg_res[0] = tcg_temp_new_i64();
8094     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8095     tcg_ele = tcg_temp_new_i64();
8096 
8097     for (i = 0; i < elements; i++) {
8098         int o, w;
8099 
8100         switch (opcode) {
8101         case 1: /* UZP1/2 */
8102         {
8103             int midpoint = elements / 2;
8104             if (i < midpoint) {
8105                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8106             } else {
8107                 read_vec_element(s, tcg_ele, rm,
8108                                  2 * (i - midpoint) + part, size);
8109             }
8110             break;
8111         }
8112         case 2: /* TRN1/2 */
8113             if (i & 1) {
8114                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8115             } else {
8116                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8117             }
8118             break;
8119         case 3: /* ZIP1/2 */
8120         {
8121             int base = part * elements / 2;
8122             if (i & 1) {
8123                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8124             } else {
8125                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8126             }
8127             break;
8128         }
8129         default:
8130             g_assert_not_reached();
8131         }
8132 
8133         w = (i * esize) / 64;
8134         o = (i * esize) % 64;
8135         if (o == 0) {
8136             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8137         } else {
8138             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8139             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8140         }
8141     }
8142 
8143     for (i = 0; i <= is_q; ++i) {
8144         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8145     }
8146     clear_vec_high(s, is_q, rd);
8147 }
8148 
8149 /*
8150  * do_reduction_op helper
8151  *
8152  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8153  * important for correct NaN propagation that we do these
8154  * operations in exactly the order specified by the pseudocode.
8155  *
8156  * This is a recursive function, TCG temps should be freed by the
8157  * calling function once it is done with the values.
8158  */
8159 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8160                                 int esize, int size, int vmap, TCGv_ptr fpst)
8161 {
8162     if (esize == size) {
8163         int element;
8164         MemOp msize = esize == 16 ? MO_16 : MO_32;
8165         TCGv_i32 tcg_elem;
8166 
8167         /* We should have one register left here */
8168         assert(ctpop8(vmap) == 1);
8169         element = ctz32(vmap);
8170         assert(element < 8);
8171 
8172         tcg_elem = tcg_temp_new_i32();
8173         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8174         return tcg_elem;
8175     } else {
8176         int bits = size / 2;
8177         int shift = ctpop8(vmap) / 2;
8178         int vmap_lo = (vmap >> shift) & vmap;
8179         int vmap_hi = (vmap & ~vmap_lo);
8180         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8181 
8182         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8183         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8184         tcg_res = tcg_temp_new_i32();
8185 
8186         switch (fpopcode) {
8187         case 0x0c: /* fmaxnmv half-precision */
8188             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8189             break;
8190         case 0x0f: /* fmaxv half-precision */
8191             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8192             break;
8193         case 0x1c: /* fminnmv half-precision */
8194             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8195             break;
8196         case 0x1f: /* fminv half-precision */
8197             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8198             break;
8199         case 0x2c: /* fmaxnmv */
8200             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8201             break;
8202         case 0x2f: /* fmaxv */
8203             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8204             break;
8205         case 0x3c: /* fminnmv */
8206             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8207             break;
8208         case 0x3f: /* fminv */
8209             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8210             break;
8211         default:
8212             g_assert_not_reached();
8213         }
8214         return tcg_res;
8215     }
8216 }
8217 
8218 /* AdvSIMD across lanes
8219  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8220  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8221  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8222  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8223  */
8224 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8225 {
8226     int rd = extract32(insn, 0, 5);
8227     int rn = extract32(insn, 5, 5);
8228     int size = extract32(insn, 22, 2);
8229     int opcode = extract32(insn, 12, 5);
8230     bool is_q = extract32(insn, 30, 1);
8231     bool is_u = extract32(insn, 29, 1);
8232     bool is_fp = false;
8233     bool is_min = false;
8234     int esize;
8235     int elements;
8236     int i;
8237     TCGv_i64 tcg_res, tcg_elt;
8238 
8239     switch (opcode) {
8240     case 0x1b: /* ADDV */
8241         if (is_u) {
8242             unallocated_encoding(s);
8243             return;
8244         }
8245         /* fall through */
8246     case 0x3: /* SADDLV, UADDLV */
8247     case 0xa: /* SMAXV, UMAXV */
8248     case 0x1a: /* SMINV, UMINV */
8249         if (size == 3 || (size == 2 && !is_q)) {
8250             unallocated_encoding(s);
8251             return;
8252         }
8253         break;
8254     case 0xc: /* FMAXNMV, FMINNMV */
8255     case 0xf: /* FMAXV, FMINV */
8256         /* Bit 1 of size field encodes min vs max and the actual size
8257          * depends on the encoding of the U bit. If not set (and FP16
8258          * enabled) then we do half-precision float instead of single
8259          * precision.
8260          */
8261         is_min = extract32(size, 1, 1);
8262         is_fp = true;
8263         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8264             size = 1;
8265         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8266             unallocated_encoding(s);
8267             return;
8268         } else {
8269             size = 2;
8270         }
8271         break;
8272     default:
8273         unallocated_encoding(s);
8274         return;
8275     }
8276 
8277     if (!fp_access_check(s)) {
8278         return;
8279     }
8280 
8281     esize = 8 << size;
8282     elements = (is_q ? 128 : 64) / esize;
8283 
8284     tcg_res = tcg_temp_new_i64();
8285     tcg_elt = tcg_temp_new_i64();
8286 
8287     /* These instructions operate across all lanes of a vector
8288      * to produce a single result. We can guarantee that a 64
8289      * bit intermediate is sufficient:
8290      *  + for [US]ADDLV the maximum element size is 32 bits, and
8291      *    the result type is 64 bits
8292      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8293      *    same as the element size, which is 32 bits at most
8294      * For the integer operations we can choose to work at 64
8295      * or 32 bits and truncate at the end; for simplicity
8296      * we use 64 bits always. The floating point
8297      * ops do require 32 bit intermediates, though.
8298      */
8299     if (!is_fp) {
8300         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8301 
8302         for (i = 1; i < elements; i++) {
8303             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8304 
8305             switch (opcode) {
8306             case 0x03: /* SADDLV / UADDLV */
8307             case 0x1b: /* ADDV */
8308                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8309                 break;
8310             case 0x0a: /* SMAXV / UMAXV */
8311                 if (is_u) {
8312                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8313                 } else {
8314                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8315                 }
8316                 break;
8317             case 0x1a: /* SMINV / UMINV */
8318                 if (is_u) {
8319                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8320                 } else {
8321                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8322                 }
8323                 break;
8324             default:
8325                 g_assert_not_reached();
8326             }
8327 
8328         }
8329     } else {
8330         /* Floating point vector reduction ops which work across 32
8331          * bit (single) or 16 bit (half-precision) intermediates.
8332          * Note that correct NaN propagation requires that we do these
8333          * operations in exactly the order specified by the pseudocode.
8334          */
8335         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8336         int fpopcode = opcode | is_min << 4 | is_u << 5;
8337         int vmap = (1 << elements) - 1;
8338         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8339                                              (is_q ? 128 : 64), vmap, fpst);
8340         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8341     }
8342 
8343     /* Now truncate the result to the width required for the final output */
8344     if (opcode == 0x03) {
8345         /* SADDLV, UADDLV: result is 2*esize */
8346         size++;
8347     }
8348 
8349     switch (size) {
8350     case 0:
8351         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8352         break;
8353     case 1:
8354         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8355         break;
8356     case 2:
8357         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8358         break;
8359     case 3:
8360         break;
8361     default:
8362         g_assert_not_reached();
8363     }
8364 
8365     write_fp_dreg(s, rd, tcg_res);
8366 }
8367 
8368 /* AdvSIMD modified immediate
8369  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8370  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8371  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8372  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8373  *
8374  * There are a number of operations that can be carried out here:
8375  *   MOVI - move (shifted) imm into register
8376  *   MVNI - move inverted (shifted) imm into register
8377  *   ORR  - bitwise OR of (shifted) imm with register
8378  *   BIC  - bitwise clear of (shifted) imm with register
8379  * With ARMv8.2 we also have:
8380  *   FMOV half-precision
8381  */
8382 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8383 {
8384     int rd = extract32(insn, 0, 5);
8385     int cmode = extract32(insn, 12, 4);
8386     int o2 = extract32(insn, 11, 1);
8387     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8388     bool is_neg = extract32(insn, 29, 1);
8389     bool is_q = extract32(insn, 30, 1);
8390     uint64_t imm = 0;
8391 
8392     if (o2) {
8393         if (cmode != 0xf || is_neg) {
8394             unallocated_encoding(s);
8395             return;
8396         }
8397         /* FMOV (vector, immediate) - half-precision */
8398         if (!dc_isar_feature(aa64_fp16, s)) {
8399             unallocated_encoding(s);
8400             return;
8401         }
8402         imm = vfp_expand_imm(MO_16, abcdefgh);
8403         /* now duplicate across the lanes */
8404         imm = dup_const(MO_16, imm);
8405     } else {
8406         if (cmode == 0xf && is_neg && !is_q) {
8407             unallocated_encoding(s);
8408             return;
8409         }
8410         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8411     }
8412 
8413     if (!fp_access_check(s)) {
8414         return;
8415     }
8416 
8417     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8418         /* MOVI or MVNI, with MVNI negation handled above.  */
8419         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8420                              vec_full_reg_size(s), imm);
8421     } else {
8422         /* ORR or BIC, with BIC negation to AND handled above.  */
8423         if (is_neg) {
8424             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8425         } else {
8426             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8427         }
8428     }
8429 }
8430 
8431 /*
8432  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8433  *
8434  * This code is handles the common shifting code and is used by both
8435  * the vector and scalar code.
8436  */
8437 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8438                                     TCGv_i64 tcg_rnd, bool accumulate,
8439                                     bool is_u, int size, int shift)
8440 {
8441     bool extended_result = false;
8442     bool round = tcg_rnd != NULL;
8443     int ext_lshift = 0;
8444     TCGv_i64 tcg_src_hi;
8445 
8446     if (round && size == 3) {
8447         extended_result = true;
8448         ext_lshift = 64 - shift;
8449         tcg_src_hi = tcg_temp_new_i64();
8450     } else if (shift == 64) {
8451         if (!accumulate && is_u) {
8452             /* result is zero */
8453             tcg_gen_movi_i64(tcg_res, 0);
8454             return;
8455         }
8456     }
8457 
8458     /* Deal with the rounding step */
8459     if (round) {
8460         if (extended_result) {
8461             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8462             if (!is_u) {
8463                 /* take care of sign extending tcg_res */
8464                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8465                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8466                                  tcg_src, tcg_src_hi,
8467                                  tcg_rnd, tcg_zero);
8468             } else {
8469                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8470                                  tcg_src, tcg_zero,
8471                                  tcg_rnd, tcg_zero);
8472             }
8473         } else {
8474             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8475         }
8476     }
8477 
8478     /* Now do the shift right */
8479     if (round && extended_result) {
8480         /* extended case, >64 bit precision required */
8481         if (ext_lshift == 0) {
8482             /* special case, only high bits matter */
8483             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8484         } else {
8485             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8486             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8487             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8488         }
8489     } else {
8490         if (is_u) {
8491             if (shift == 64) {
8492                 /* essentially shifting in 64 zeros */
8493                 tcg_gen_movi_i64(tcg_src, 0);
8494             } else {
8495                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8496             }
8497         } else {
8498             if (shift == 64) {
8499                 /* effectively extending the sign-bit */
8500                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8501             } else {
8502                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8503             }
8504         }
8505     }
8506 
8507     if (accumulate) {
8508         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8509     } else {
8510         tcg_gen_mov_i64(tcg_res, tcg_src);
8511     }
8512 }
8513 
8514 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8515 static void handle_scalar_simd_shri(DisasContext *s,
8516                                     bool is_u, int immh, int immb,
8517                                     int opcode, int rn, int rd)
8518 {
8519     const int size = 3;
8520     int immhb = immh << 3 | immb;
8521     int shift = 2 * (8 << size) - immhb;
8522     bool accumulate = false;
8523     bool round = false;
8524     bool insert = false;
8525     TCGv_i64 tcg_rn;
8526     TCGv_i64 tcg_rd;
8527     TCGv_i64 tcg_round;
8528 
8529     if (!extract32(immh, 3, 1)) {
8530         unallocated_encoding(s);
8531         return;
8532     }
8533 
8534     if (!fp_access_check(s)) {
8535         return;
8536     }
8537 
8538     switch (opcode) {
8539     case 0x02: /* SSRA / USRA (accumulate) */
8540         accumulate = true;
8541         break;
8542     case 0x04: /* SRSHR / URSHR (rounding) */
8543         round = true;
8544         break;
8545     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8546         accumulate = round = true;
8547         break;
8548     case 0x08: /* SRI */
8549         insert = true;
8550         break;
8551     }
8552 
8553     if (round) {
8554         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8555     } else {
8556         tcg_round = NULL;
8557     }
8558 
8559     tcg_rn = read_fp_dreg(s, rn);
8560     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8561 
8562     if (insert) {
8563         /* shift count same as element size is valid but does nothing;
8564          * special case to avoid potential shift by 64.
8565          */
8566         int esize = 8 << size;
8567         if (shift != esize) {
8568             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8569             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8570         }
8571     } else {
8572         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8573                                 accumulate, is_u, size, shift);
8574     }
8575 
8576     write_fp_dreg(s, rd, tcg_rd);
8577 }
8578 
8579 /* SHL/SLI - Scalar shift left */
8580 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8581                                     int immh, int immb, int opcode,
8582                                     int rn, int rd)
8583 {
8584     int size = 32 - clz32(immh) - 1;
8585     int immhb = immh << 3 | immb;
8586     int shift = immhb - (8 << size);
8587     TCGv_i64 tcg_rn;
8588     TCGv_i64 tcg_rd;
8589 
8590     if (!extract32(immh, 3, 1)) {
8591         unallocated_encoding(s);
8592         return;
8593     }
8594 
8595     if (!fp_access_check(s)) {
8596         return;
8597     }
8598 
8599     tcg_rn = read_fp_dreg(s, rn);
8600     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8601 
8602     if (insert) {
8603         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8604     } else {
8605         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8606     }
8607 
8608     write_fp_dreg(s, rd, tcg_rd);
8609 }
8610 
8611 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8612  * (signed/unsigned) narrowing */
8613 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8614                                    bool is_u_shift, bool is_u_narrow,
8615                                    int immh, int immb, int opcode,
8616                                    int rn, int rd)
8617 {
8618     int immhb = immh << 3 | immb;
8619     int size = 32 - clz32(immh) - 1;
8620     int esize = 8 << size;
8621     int shift = (2 * esize) - immhb;
8622     int elements = is_scalar ? 1 : (64 / esize);
8623     bool round = extract32(opcode, 0, 1);
8624     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8625     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8626     TCGv_i32 tcg_rd_narrowed;
8627     TCGv_i64 tcg_final;
8628 
8629     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8630         { gen_helper_neon_narrow_sat_s8,
8631           gen_helper_neon_unarrow_sat8 },
8632         { gen_helper_neon_narrow_sat_s16,
8633           gen_helper_neon_unarrow_sat16 },
8634         { gen_helper_neon_narrow_sat_s32,
8635           gen_helper_neon_unarrow_sat32 },
8636         { NULL, NULL },
8637     };
8638     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8639         gen_helper_neon_narrow_sat_u8,
8640         gen_helper_neon_narrow_sat_u16,
8641         gen_helper_neon_narrow_sat_u32,
8642         NULL
8643     };
8644     NeonGenNarrowEnvFn *narrowfn;
8645 
8646     int i;
8647 
8648     assert(size < 4);
8649 
8650     if (extract32(immh, 3, 1)) {
8651         unallocated_encoding(s);
8652         return;
8653     }
8654 
8655     if (!fp_access_check(s)) {
8656         return;
8657     }
8658 
8659     if (is_u_shift) {
8660         narrowfn = unsigned_narrow_fns[size];
8661     } else {
8662         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8663     }
8664 
8665     tcg_rn = tcg_temp_new_i64();
8666     tcg_rd = tcg_temp_new_i64();
8667     tcg_rd_narrowed = tcg_temp_new_i32();
8668     tcg_final = tcg_temp_new_i64();
8669 
8670     if (round) {
8671         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8672     } else {
8673         tcg_round = NULL;
8674     }
8675 
8676     for (i = 0; i < elements; i++) {
8677         read_vec_element(s, tcg_rn, rn, i, ldop);
8678         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8679                                 false, is_u_shift, size+1, shift);
8680         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8681         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8682         if (i == 0) {
8683             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8684         } else {
8685             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8686         }
8687     }
8688 
8689     if (!is_q) {
8690         write_vec_element(s, tcg_final, rd, 0, MO_64);
8691     } else {
8692         write_vec_element(s, tcg_final, rd, 1, MO_64);
8693     }
8694     clear_vec_high(s, is_q, rd);
8695 }
8696 
8697 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8698 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8699                              bool src_unsigned, bool dst_unsigned,
8700                              int immh, int immb, int rn, int rd)
8701 {
8702     int immhb = immh << 3 | immb;
8703     int size = 32 - clz32(immh) - 1;
8704     int shift = immhb - (8 << size);
8705     int pass;
8706 
8707     assert(immh != 0);
8708     assert(!(scalar && is_q));
8709 
8710     if (!scalar) {
8711         if (!is_q && extract32(immh, 3, 1)) {
8712             unallocated_encoding(s);
8713             return;
8714         }
8715 
8716         /* Since we use the variable-shift helpers we must
8717          * replicate the shift count into each element of
8718          * the tcg_shift value.
8719          */
8720         switch (size) {
8721         case 0:
8722             shift |= shift << 8;
8723             /* fall through */
8724         case 1:
8725             shift |= shift << 16;
8726             break;
8727         case 2:
8728         case 3:
8729             break;
8730         default:
8731             g_assert_not_reached();
8732         }
8733     }
8734 
8735     if (!fp_access_check(s)) {
8736         return;
8737     }
8738 
8739     if (size == 3) {
8740         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8741         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8742             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8743             { NULL, gen_helper_neon_qshl_u64 },
8744         };
8745         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8746         int maxpass = is_q ? 2 : 1;
8747 
8748         for (pass = 0; pass < maxpass; pass++) {
8749             TCGv_i64 tcg_op = tcg_temp_new_i64();
8750 
8751             read_vec_element(s, tcg_op, rn, pass, MO_64);
8752             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8753             write_vec_element(s, tcg_op, rd, pass, MO_64);
8754         }
8755         clear_vec_high(s, is_q, rd);
8756     } else {
8757         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8758         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8759             {
8760                 { gen_helper_neon_qshl_s8,
8761                   gen_helper_neon_qshl_s16,
8762                   gen_helper_neon_qshl_s32 },
8763                 { gen_helper_neon_qshlu_s8,
8764                   gen_helper_neon_qshlu_s16,
8765                   gen_helper_neon_qshlu_s32 }
8766             }, {
8767                 { NULL, NULL, NULL },
8768                 { gen_helper_neon_qshl_u8,
8769                   gen_helper_neon_qshl_u16,
8770                   gen_helper_neon_qshl_u32 }
8771             }
8772         };
8773         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8774         MemOp memop = scalar ? size : MO_32;
8775         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8776 
8777         for (pass = 0; pass < maxpass; pass++) {
8778             TCGv_i32 tcg_op = tcg_temp_new_i32();
8779 
8780             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8781             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8782             if (scalar) {
8783                 switch (size) {
8784                 case 0:
8785                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8786                     break;
8787                 case 1:
8788                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8789                     break;
8790                 case 2:
8791                     break;
8792                 default:
8793                     g_assert_not_reached();
8794                 }
8795                 write_fp_sreg(s, rd, tcg_op);
8796             } else {
8797                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8798             }
8799         }
8800 
8801         if (!scalar) {
8802             clear_vec_high(s, is_q, rd);
8803         }
8804     }
8805 }
8806 
8807 /* Common vector code for handling integer to FP conversion */
8808 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8809                                    int elements, int is_signed,
8810                                    int fracbits, int size)
8811 {
8812     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8813     TCGv_i32 tcg_shift = NULL;
8814 
8815     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8816     int pass;
8817 
8818     if (fracbits || size == MO_64) {
8819         tcg_shift = tcg_constant_i32(fracbits);
8820     }
8821 
8822     if (size == MO_64) {
8823         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8824         TCGv_i64 tcg_double = tcg_temp_new_i64();
8825 
8826         for (pass = 0; pass < elements; pass++) {
8827             read_vec_element(s, tcg_int64, rn, pass, mop);
8828 
8829             if (is_signed) {
8830                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8831                                      tcg_shift, tcg_fpst);
8832             } else {
8833                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8834                                      tcg_shift, tcg_fpst);
8835             }
8836             if (elements == 1) {
8837                 write_fp_dreg(s, rd, tcg_double);
8838             } else {
8839                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8840             }
8841         }
8842     } else {
8843         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8844         TCGv_i32 tcg_float = tcg_temp_new_i32();
8845 
8846         for (pass = 0; pass < elements; pass++) {
8847             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8848 
8849             switch (size) {
8850             case MO_32:
8851                 if (fracbits) {
8852                     if (is_signed) {
8853                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8854                                              tcg_shift, tcg_fpst);
8855                     } else {
8856                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8857                                              tcg_shift, tcg_fpst);
8858                     }
8859                 } else {
8860                     if (is_signed) {
8861                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8862                     } else {
8863                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8864                     }
8865                 }
8866                 break;
8867             case MO_16:
8868                 if (fracbits) {
8869                     if (is_signed) {
8870                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8871                                              tcg_shift, tcg_fpst);
8872                     } else {
8873                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8874                                              tcg_shift, tcg_fpst);
8875                     }
8876                 } else {
8877                     if (is_signed) {
8878                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8879                     } else {
8880                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8881                     }
8882                 }
8883                 break;
8884             default:
8885                 g_assert_not_reached();
8886             }
8887 
8888             if (elements == 1) {
8889                 write_fp_sreg(s, rd, tcg_float);
8890             } else {
8891                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8892             }
8893         }
8894     }
8895 
8896     clear_vec_high(s, elements << size == 16, rd);
8897 }
8898 
8899 /* UCVTF/SCVTF - Integer to FP conversion */
8900 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8901                                          bool is_q, bool is_u,
8902                                          int immh, int immb, int opcode,
8903                                          int rn, int rd)
8904 {
8905     int size, elements, fracbits;
8906     int immhb = immh << 3 | immb;
8907 
8908     if (immh & 8) {
8909         size = MO_64;
8910         if (!is_scalar && !is_q) {
8911             unallocated_encoding(s);
8912             return;
8913         }
8914     } else if (immh & 4) {
8915         size = MO_32;
8916     } else if (immh & 2) {
8917         size = MO_16;
8918         if (!dc_isar_feature(aa64_fp16, s)) {
8919             unallocated_encoding(s);
8920             return;
8921         }
8922     } else {
8923         /* immh == 0 would be a failure of the decode logic */
8924         g_assert(immh == 1);
8925         unallocated_encoding(s);
8926         return;
8927     }
8928 
8929     if (is_scalar) {
8930         elements = 1;
8931     } else {
8932         elements = (8 << is_q) >> size;
8933     }
8934     fracbits = (16 << size) - immhb;
8935 
8936     if (!fp_access_check(s)) {
8937         return;
8938     }
8939 
8940     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8941 }
8942 
8943 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8944 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8945                                          bool is_q, bool is_u,
8946                                          int immh, int immb, int rn, int rd)
8947 {
8948     int immhb = immh << 3 | immb;
8949     int pass, size, fracbits;
8950     TCGv_ptr tcg_fpstatus;
8951     TCGv_i32 tcg_rmode, tcg_shift;
8952 
8953     if (immh & 0x8) {
8954         size = MO_64;
8955         if (!is_scalar && !is_q) {
8956             unallocated_encoding(s);
8957             return;
8958         }
8959     } else if (immh & 0x4) {
8960         size = MO_32;
8961     } else if (immh & 0x2) {
8962         size = MO_16;
8963         if (!dc_isar_feature(aa64_fp16, s)) {
8964             unallocated_encoding(s);
8965             return;
8966         }
8967     } else {
8968         /* Should have split out AdvSIMD modified immediate earlier.  */
8969         assert(immh == 1);
8970         unallocated_encoding(s);
8971         return;
8972     }
8973 
8974     if (!fp_access_check(s)) {
8975         return;
8976     }
8977 
8978     assert(!(is_scalar && is_q));
8979 
8980     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8981     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8982     fracbits = (16 << size) - immhb;
8983     tcg_shift = tcg_constant_i32(fracbits);
8984 
8985     if (size == MO_64) {
8986         int maxpass = is_scalar ? 1 : 2;
8987 
8988         for (pass = 0; pass < maxpass; pass++) {
8989             TCGv_i64 tcg_op = tcg_temp_new_i64();
8990 
8991             read_vec_element(s, tcg_op, rn, pass, MO_64);
8992             if (is_u) {
8993                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8994             } else {
8995                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8996             }
8997             write_vec_element(s, tcg_op, rd, pass, MO_64);
8998         }
8999         clear_vec_high(s, is_q, rd);
9000     } else {
9001         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9002         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9003 
9004         switch (size) {
9005         case MO_16:
9006             if (is_u) {
9007                 fn = gen_helper_vfp_touhh;
9008             } else {
9009                 fn = gen_helper_vfp_toshh;
9010             }
9011             break;
9012         case MO_32:
9013             if (is_u) {
9014                 fn = gen_helper_vfp_touls;
9015             } else {
9016                 fn = gen_helper_vfp_tosls;
9017             }
9018             break;
9019         default:
9020             g_assert_not_reached();
9021         }
9022 
9023         for (pass = 0; pass < maxpass; pass++) {
9024             TCGv_i32 tcg_op = tcg_temp_new_i32();
9025 
9026             read_vec_element_i32(s, tcg_op, rn, pass, size);
9027             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9028             if (is_scalar) {
9029                 if (size == MO_16 && !is_u) {
9030                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9031                 }
9032                 write_fp_sreg(s, rd, tcg_op);
9033             } else {
9034                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9035             }
9036         }
9037         if (!is_scalar) {
9038             clear_vec_high(s, is_q, rd);
9039         }
9040     }
9041 
9042     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9043 }
9044 
9045 /* AdvSIMD scalar shift by immediate
9046  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9047  * +-----+---+-------------+------+------+--------+---+------+------+
9048  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9049  * +-----+---+-------------+------+------+--------+---+------+------+
9050  *
9051  * This is the scalar version so it works on a fixed sized registers
9052  */
9053 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9054 {
9055     int rd = extract32(insn, 0, 5);
9056     int rn = extract32(insn, 5, 5);
9057     int opcode = extract32(insn, 11, 5);
9058     int immb = extract32(insn, 16, 3);
9059     int immh = extract32(insn, 19, 4);
9060     bool is_u = extract32(insn, 29, 1);
9061 
9062     if (immh == 0) {
9063         unallocated_encoding(s);
9064         return;
9065     }
9066 
9067     switch (opcode) {
9068     case 0x08: /* SRI */
9069         if (!is_u) {
9070             unallocated_encoding(s);
9071             return;
9072         }
9073         /* fall through */
9074     case 0x00: /* SSHR / USHR */
9075     case 0x02: /* SSRA / USRA */
9076     case 0x04: /* SRSHR / URSHR */
9077     case 0x06: /* SRSRA / URSRA */
9078         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9079         break;
9080     case 0x0a: /* SHL / SLI */
9081         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9082         break;
9083     case 0x1c: /* SCVTF, UCVTF */
9084         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9085                                      opcode, rn, rd);
9086         break;
9087     case 0x10: /* SQSHRUN, SQSHRUN2 */
9088     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9089         if (!is_u) {
9090             unallocated_encoding(s);
9091             return;
9092         }
9093         handle_vec_simd_sqshrn(s, true, false, false, true,
9094                                immh, immb, opcode, rn, rd);
9095         break;
9096     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9097     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9098         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9099                                immh, immb, opcode, rn, rd);
9100         break;
9101     case 0xc: /* SQSHLU */
9102         if (!is_u) {
9103             unallocated_encoding(s);
9104             return;
9105         }
9106         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9107         break;
9108     case 0xe: /* SQSHL, UQSHL */
9109         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9110         break;
9111     case 0x1f: /* FCVTZS, FCVTZU */
9112         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9113         break;
9114     default:
9115         unallocated_encoding(s);
9116         break;
9117     }
9118 }
9119 
9120 /* AdvSIMD scalar three different
9121  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9122  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9123  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9124  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9125  */
9126 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9127 {
9128     bool is_u = extract32(insn, 29, 1);
9129     int size = extract32(insn, 22, 2);
9130     int opcode = extract32(insn, 12, 4);
9131     int rm = extract32(insn, 16, 5);
9132     int rn = extract32(insn, 5, 5);
9133     int rd = extract32(insn, 0, 5);
9134 
9135     if (is_u) {
9136         unallocated_encoding(s);
9137         return;
9138     }
9139 
9140     switch (opcode) {
9141     case 0x9: /* SQDMLAL, SQDMLAL2 */
9142     case 0xb: /* SQDMLSL, SQDMLSL2 */
9143     case 0xd: /* SQDMULL, SQDMULL2 */
9144         if (size == 0 || size == 3) {
9145             unallocated_encoding(s);
9146             return;
9147         }
9148         break;
9149     default:
9150         unallocated_encoding(s);
9151         return;
9152     }
9153 
9154     if (!fp_access_check(s)) {
9155         return;
9156     }
9157 
9158     if (size == 2) {
9159         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9160         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9161         TCGv_i64 tcg_res = tcg_temp_new_i64();
9162 
9163         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9164         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9165 
9166         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9167         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9168 
9169         switch (opcode) {
9170         case 0xd: /* SQDMULL, SQDMULL2 */
9171             break;
9172         case 0xb: /* SQDMLSL, SQDMLSL2 */
9173             tcg_gen_neg_i64(tcg_res, tcg_res);
9174             /* fall through */
9175         case 0x9: /* SQDMLAL, SQDMLAL2 */
9176             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9177             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9178                                               tcg_res, tcg_op1);
9179             break;
9180         default:
9181             g_assert_not_reached();
9182         }
9183 
9184         write_fp_dreg(s, rd, tcg_res);
9185     } else {
9186         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9187         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9188         TCGv_i64 tcg_res = tcg_temp_new_i64();
9189 
9190         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9191         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9192 
9193         switch (opcode) {
9194         case 0xd: /* SQDMULL, SQDMULL2 */
9195             break;
9196         case 0xb: /* SQDMLSL, SQDMLSL2 */
9197             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9198             /* fall through */
9199         case 0x9: /* SQDMLAL, SQDMLAL2 */
9200         {
9201             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9202             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9203             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9204                                               tcg_res, tcg_op3);
9205             break;
9206         }
9207         default:
9208             g_assert_not_reached();
9209         }
9210 
9211         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9212         write_fp_dreg(s, rd, tcg_res);
9213     }
9214 }
9215 
9216 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9217                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9218 {
9219     /* Handle 64x64->64 opcodes which are shared between the scalar
9220      * and vector 3-same groups. We cover every opcode where size == 3
9221      * is valid in either the three-reg-same (integer, not pairwise)
9222      * or scalar-three-reg-same groups.
9223      */
9224     TCGCond cond;
9225 
9226     switch (opcode) {
9227     case 0x1: /* SQADD */
9228         if (u) {
9229             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9230         } else {
9231             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9232         }
9233         break;
9234     case 0x5: /* SQSUB */
9235         if (u) {
9236             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9237         } else {
9238             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9239         }
9240         break;
9241     case 0x6: /* CMGT, CMHI */
9242         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9243     do_cmop:
9244         /* 64 bit integer comparison, result = test ? -1 : 0. */
9245         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9246         break;
9247     case 0x7: /* CMGE, CMHS */
9248         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9249         goto do_cmop;
9250     case 0x11: /* CMTST, CMEQ */
9251         if (u) {
9252             cond = TCG_COND_EQ;
9253             goto do_cmop;
9254         }
9255         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9256         break;
9257     case 0x8: /* SSHL, USHL */
9258         if (u) {
9259             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9260         } else {
9261             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9262         }
9263         break;
9264     case 0x9: /* SQSHL, UQSHL */
9265         if (u) {
9266             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9267         } else {
9268             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9269         }
9270         break;
9271     case 0xa: /* SRSHL, URSHL */
9272         if (u) {
9273             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9274         } else {
9275             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9276         }
9277         break;
9278     case 0xb: /* SQRSHL, UQRSHL */
9279         if (u) {
9280             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9281         } else {
9282             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9283         }
9284         break;
9285     case 0x10: /* ADD, SUB */
9286         if (u) {
9287             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9288         } else {
9289             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9290         }
9291         break;
9292     default:
9293         g_assert_not_reached();
9294     }
9295 }
9296 
9297 /* AdvSIMD scalar three same
9298  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9299  * +-----+---+-----------+------+---+------+--------+---+------+------+
9300  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9301  * +-----+---+-----------+------+---+------+--------+---+------+------+
9302  */
9303 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9304 {
9305     int rd = extract32(insn, 0, 5);
9306     int rn = extract32(insn, 5, 5);
9307     int opcode = extract32(insn, 11, 5);
9308     int rm = extract32(insn, 16, 5);
9309     int size = extract32(insn, 22, 2);
9310     bool u = extract32(insn, 29, 1);
9311     TCGv_i64 tcg_rd;
9312 
9313     switch (opcode) {
9314     case 0x1: /* SQADD, UQADD */
9315     case 0x5: /* SQSUB, UQSUB */
9316     case 0x9: /* SQSHL, UQSHL */
9317     case 0xb: /* SQRSHL, UQRSHL */
9318         break;
9319     case 0x8: /* SSHL, USHL */
9320     case 0xa: /* SRSHL, URSHL */
9321     case 0x6: /* CMGT, CMHI */
9322     case 0x7: /* CMGE, CMHS */
9323     case 0x11: /* CMTST, CMEQ */
9324     case 0x10: /* ADD, SUB (vector) */
9325         if (size != 3) {
9326             unallocated_encoding(s);
9327             return;
9328         }
9329         break;
9330     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9331         if (size != 1 && size != 2) {
9332             unallocated_encoding(s);
9333             return;
9334         }
9335         break;
9336     default:
9337         unallocated_encoding(s);
9338         return;
9339     }
9340 
9341     if (!fp_access_check(s)) {
9342         return;
9343     }
9344 
9345     tcg_rd = tcg_temp_new_i64();
9346 
9347     if (size == 3) {
9348         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9349         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9350 
9351         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9352     } else {
9353         /* Do a single operation on the lowest element in the vector.
9354          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9355          * no side effects for all these operations.
9356          * OPTME: special-purpose helpers would avoid doing some
9357          * unnecessary work in the helper for the 8 and 16 bit cases.
9358          */
9359         NeonGenTwoOpEnvFn *genenvfn;
9360         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9361         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9362         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9363 
9364         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9365         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9366 
9367         switch (opcode) {
9368         case 0x1: /* SQADD, UQADD */
9369         {
9370             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9371                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9372                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9373                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9374             };
9375             genenvfn = fns[size][u];
9376             break;
9377         }
9378         case 0x5: /* SQSUB, UQSUB */
9379         {
9380             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9381                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9382                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9383                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9384             };
9385             genenvfn = fns[size][u];
9386             break;
9387         }
9388         case 0x9: /* SQSHL, UQSHL */
9389         {
9390             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9391                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9392                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9393                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9394             };
9395             genenvfn = fns[size][u];
9396             break;
9397         }
9398         case 0xb: /* SQRSHL, UQRSHL */
9399         {
9400             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9401                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9402                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9403                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9404             };
9405             genenvfn = fns[size][u];
9406             break;
9407         }
9408         case 0x16: /* SQDMULH, SQRDMULH */
9409         {
9410             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9411                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9412                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9413             };
9414             assert(size == 1 || size == 2);
9415             genenvfn = fns[size - 1][u];
9416             break;
9417         }
9418         default:
9419             g_assert_not_reached();
9420         }
9421 
9422         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9423         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9424     }
9425 
9426     write_fp_dreg(s, rd, tcg_rd);
9427 }
9428 
9429 /* AdvSIMD scalar three same extra
9430  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9431  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9432  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9433  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9434  */
9435 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9436                                                    uint32_t insn)
9437 {
9438     int rd = extract32(insn, 0, 5);
9439     int rn = extract32(insn, 5, 5);
9440     int opcode = extract32(insn, 11, 4);
9441     int rm = extract32(insn, 16, 5);
9442     int size = extract32(insn, 22, 2);
9443     bool u = extract32(insn, 29, 1);
9444     TCGv_i32 ele1, ele2, ele3;
9445     TCGv_i64 res;
9446     bool feature;
9447 
9448     switch (u * 16 + opcode) {
9449     case 0x10: /* SQRDMLAH (vector) */
9450     case 0x11: /* SQRDMLSH (vector) */
9451         if (size != 1 && size != 2) {
9452             unallocated_encoding(s);
9453             return;
9454         }
9455         feature = dc_isar_feature(aa64_rdm, s);
9456         break;
9457     default:
9458         unallocated_encoding(s);
9459         return;
9460     }
9461     if (!feature) {
9462         unallocated_encoding(s);
9463         return;
9464     }
9465     if (!fp_access_check(s)) {
9466         return;
9467     }
9468 
9469     /* Do a single operation on the lowest element in the vector.
9470      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9471      * with no side effects for all these operations.
9472      * OPTME: special-purpose helpers would avoid doing some
9473      * unnecessary work in the helper for the 16 bit cases.
9474      */
9475     ele1 = tcg_temp_new_i32();
9476     ele2 = tcg_temp_new_i32();
9477     ele3 = tcg_temp_new_i32();
9478 
9479     read_vec_element_i32(s, ele1, rn, 0, size);
9480     read_vec_element_i32(s, ele2, rm, 0, size);
9481     read_vec_element_i32(s, ele3, rd, 0, size);
9482 
9483     switch (opcode) {
9484     case 0x0: /* SQRDMLAH */
9485         if (size == 1) {
9486             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9487         } else {
9488             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9489         }
9490         break;
9491     case 0x1: /* SQRDMLSH */
9492         if (size == 1) {
9493             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9494         } else {
9495             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9496         }
9497         break;
9498     default:
9499         g_assert_not_reached();
9500     }
9501 
9502     res = tcg_temp_new_i64();
9503     tcg_gen_extu_i32_i64(res, ele3);
9504     write_fp_dreg(s, rd, res);
9505 }
9506 
9507 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9508                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9509                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9510 {
9511     /* Handle 64->64 opcodes which are shared between the scalar and
9512      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9513      * is valid in either group and also the double-precision fp ops.
9514      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9515      * requires them.
9516      */
9517     TCGCond cond;
9518 
9519     switch (opcode) {
9520     case 0x4: /* CLS, CLZ */
9521         if (u) {
9522             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9523         } else {
9524             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9525         }
9526         break;
9527     case 0x5: /* NOT */
9528         /* This opcode is shared with CNT and RBIT but we have earlier
9529          * enforced that size == 3 if and only if this is the NOT insn.
9530          */
9531         tcg_gen_not_i64(tcg_rd, tcg_rn);
9532         break;
9533     case 0x7: /* SQABS, SQNEG */
9534         if (u) {
9535             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9536         } else {
9537             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9538         }
9539         break;
9540     case 0xa: /* CMLT */
9541         cond = TCG_COND_LT;
9542     do_cmop:
9543         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9544         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9545         break;
9546     case 0x8: /* CMGT, CMGE */
9547         cond = u ? TCG_COND_GE : TCG_COND_GT;
9548         goto do_cmop;
9549     case 0x9: /* CMEQ, CMLE */
9550         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9551         goto do_cmop;
9552     case 0xb: /* ABS, NEG */
9553         if (u) {
9554             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9555         } else {
9556             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9557         }
9558         break;
9559     case 0x2f: /* FABS */
9560         gen_vfp_absd(tcg_rd, tcg_rn);
9561         break;
9562     case 0x6f: /* FNEG */
9563         gen_vfp_negd(tcg_rd, tcg_rn);
9564         break;
9565     case 0x7f: /* FSQRT */
9566         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9567         break;
9568     case 0x1a: /* FCVTNS */
9569     case 0x1b: /* FCVTMS */
9570     case 0x1c: /* FCVTAS */
9571     case 0x3a: /* FCVTPS */
9572     case 0x3b: /* FCVTZS */
9573         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9574         break;
9575     case 0x5a: /* FCVTNU */
9576     case 0x5b: /* FCVTMU */
9577     case 0x5c: /* FCVTAU */
9578     case 0x7a: /* FCVTPU */
9579     case 0x7b: /* FCVTZU */
9580         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9581         break;
9582     case 0x18: /* FRINTN */
9583     case 0x19: /* FRINTM */
9584     case 0x38: /* FRINTP */
9585     case 0x39: /* FRINTZ */
9586     case 0x58: /* FRINTA */
9587     case 0x79: /* FRINTI */
9588         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9589         break;
9590     case 0x59: /* FRINTX */
9591         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9592         break;
9593     case 0x1e: /* FRINT32Z */
9594     case 0x5e: /* FRINT32X */
9595         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9596         break;
9597     case 0x1f: /* FRINT64Z */
9598     case 0x5f: /* FRINT64X */
9599         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9600         break;
9601     default:
9602         g_assert_not_reached();
9603     }
9604 }
9605 
9606 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9607                                    bool is_scalar, bool is_u, bool is_q,
9608                                    int size, int rn, int rd)
9609 {
9610     bool is_double = (size == MO_64);
9611     TCGv_ptr fpst;
9612 
9613     if (!fp_access_check(s)) {
9614         return;
9615     }
9616 
9617     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9618 
9619     if (is_double) {
9620         TCGv_i64 tcg_op = tcg_temp_new_i64();
9621         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9622         TCGv_i64 tcg_res = tcg_temp_new_i64();
9623         NeonGenTwoDoubleOpFn *genfn;
9624         bool swap = false;
9625         int pass;
9626 
9627         switch (opcode) {
9628         case 0x2e: /* FCMLT (zero) */
9629             swap = true;
9630             /* fallthrough */
9631         case 0x2c: /* FCMGT (zero) */
9632             genfn = gen_helper_neon_cgt_f64;
9633             break;
9634         case 0x2d: /* FCMEQ (zero) */
9635             genfn = gen_helper_neon_ceq_f64;
9636             break;
9637         case 0x6d: /* FCMLE (zero) */
9638             swap = true;
9639             /* fall through */
9640         case 0x6c: /* FCMGE (zero) */
9641             genfn = gen_helper_neon_cge_f64;
9642             break;
9643         default:
9644             g_assert_not_reached();
9645         }
9646 
9647         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9648             read_vec_element(s, tcg_op, rn, pass, MO_64);
9649             if (swap) {
9650                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9651             } else {
9652                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9653             }
9654             write_vec_element(s, tcg_res, rd, pass, MO_64);
9655         }
9656 
9657         clear_vec_high(s, !is_scalar, rd);
9658     } else {
9659         TCGv_i32 tcg_op = tcg_temp_new_i32();
9660         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9661         TCGv_i32 tcg_res = tcg_temp_new_i32();
9662         NeonGenTwoSingleOpFn *genfn;
9663         bool swap = false;
9664         int pass, maxpasses;
9665 
9666         if (size == MO_16) {
9667             switch (opcode) {
9668             case 0x2e: /* FCMLT (zero) */
9669                 swap = true;
9670                 /* fall through */
9671             case 0x2c: /* FCMGT (zero) */
9672                 genfn = gen_helper_advsimd_cgt_f16;
9673                 break;
9674             case 0x2d: /* FCMEQ (zero) */
9675                 genfn = gen_helper_advsimd_ceq_f16;
9676                 break;
9677             case 0x6d: /* FCMLE (zero) */
9678                 swap = true;
9679                 /* fall through */
9680             case 0x6c: /* FCMGE (zero) */
9681                 genfn = gen_helper_advsimd_cge_f16;
9682                 break;
9683             default:
9684                 g_assert_not_reached();
9685             }
9686         } else {
9687             switch (opcode) {
9688             case 0x2e: /* FCMLT (zero) */
9689                 swap = true;
9690                 /* fall through */
9691             case 0x2c: /* FCMGT (zero) */
9692                 genfn = gen_helper_neon_cgt_f32;
9693                 break;
9694             case 0x2d: /* FCMEQ (zero) */
9695                 genfn = gen_helper_neon_ceq_f32;
9696                 break;
9697             case 0x6d: /* FCMLE (zero) */
9698                 swap = true;
9699                 /* fall through */
9700             case 0x6c: /* FCMGE (zero) */
9701                 genfn = gen_helper_neon_cge_f32;
9702                 break;
9703             default:
9704                 g_assert_not_reached();
9705             }
9706         }
9707 
9708         if (is_scalar) {
9709             maxpasses = 1;
9710         } else {
9711             int vector_size = 8 << is_q;
9712             maxpasses = vector_size >> size;
9713         }
9714 
9715         for (pass = 0; pass < maxpasses; pass++) {
9716             read_vec_element_i32(s, tcg_op, rn, pass, size);
9717             if (swap) {
9718                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9719             } else {
9720                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9721             }
9722             if (is_scalar) {
9723                 write_fp_sreg(s, rd, tcg_res);
9724             } else {
9725                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9726             }
9727         }
9728 
9729         if (!is_scalar) {
9730             clear_vec_high(s, is_q, rd);
9731         }
9732     }
9733 }
9734 
9735 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9736                                     bool is_scalar, bool is_u, bool is_q,
9737                                     int size, int rn, int rd)
9738 {
9739     bool is_double = (size == 3);
9740     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9741 
9742     if (is_double) {
9743         TCGv_i64 tcg_op = tcg_temp_new_i64();
9744         TCGv_i64 tcg_res = tcg_temp_new_i64();
9745         int pass;
9746 
9747         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9748             read_vec_element(s, tcg_op, rn, pass, MO_64);
9749             switch (opcode) {
9750             case 0x3d: /* FRECPE */
9751                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9752                 break;
9753             case 0x3f: /* FRECPX */
9754                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9755                 break;
9756             case 0x7d: /* FRSQRTE */
9757                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9758                 break;
9759             default:
9760                 g_assert_not_reached();
9761             }
9762             write_vec_element(s, tcg_res, rd, pass, MO_64);
9763         }
9764         clear_vec_high(s, !is_scalar, rd);
9765     } else {
9766         TCGv_i32 tcg_op = tcg_temp_new_i32();
9767         TCGv_i32 tcg_res = tcg_temp_new_i32();
9768         int pass, maxpasses;
9769 
9770         if (is_scalar) {
9771             maxpasses = 1;
9772         } else {
9773             maxpasses = is_q ? 4 : 2;
9774         }
9775 
9776         for (pass = 0; pass < maxpasses; pass++) {
9777             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9778 
9779             switch (opcode) {
9780             case 0x3c: /* URECPE */
9781                 gen_helper_recpe_u32(tcg_res, tcg_op);
9782                 break;
9783             case 0x3d: /* FRECPE */
9784                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9785                 break;
9786             case 0x3f: /* FRECPX */
9787                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9788                 break;
9789             case 0x7d: /* FRSQRTE */
9790                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9791                 break;
9792             default:
9793                 g_assert_not_reached();
9794             }
9795 
9796             if (is_scalar) {
9797                 write_fp_sreg(s, rd, tcg_res);
9798             } else {
9799                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9800             }
9801         }
9802         if (!is_scalar) {
9803             clear_vec_high(s, is_q, rd);
9804         }
9805     }
9806 }
9807 
9808 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9809                                 int opcode, bool u, bool is_q,
9810                                 int size, int rn, int rd)
9811 {
9812     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9813      * in the source becomes a size element in the destination).
9814      */
9815     int pass;
9816     TCGv_i32 tcg_res[2];
9817     int destelt = is_q ? 2 : 0;
9818     int passes = scalar ? 1 : 2;
9819 
9820     if (scalar) {
9821         tcg_res[1] = tcg_constant_i32(0);
9822     }
9823 
9824     for (pass = 0; pass < passes; pass++) {
9825         TCGv_i64 tcg_op = tcg_temp_new_i64();
9826         NeonGenNarrowFn *genfn = NULL;
9827         NeonGenNarrowEnvFn *genenvfn = NULL;
9828 
9829         if (scalar) {
9830             read_vec_element(s, tcg_op, rn, pass, size + 1);
9831         } else {
9832             read_vec_element(s, tcg_op, rn, pass, MO_64);
9833         }
9834         tcg_res[pass] = tcg_temp_new_i32();
9835 
9836         switch (opcode) {
9837         case 0x12: /* XTN, SQXTUN */
9838         {
9839             static NeonGenNarrowFn * const xtnfns[3] = {
9840                 gen_helper_neon_narrow_u8,
9841                 gen_helper_neon_narrow_u16,
9842                 tcg_gen_extrl_i64_i32,
9843             };
9844             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9845                 gen_helper_neon_unarrow_sat8,
9846                 gen_helper_neon_unarrow_sat16,
9847                 gen_helper_neon_unarrow_sat32,
9848             };
9849             if (u) {
9850                 genenvfn = sqxtunfns[size];
9851             } else {
9852                 genfn = xtnfns[size];
9853             }
9854             break;
9855         }
9856         case 0x14: /* SQXTN, UQXTN */
9857         {
9858             static NeonGenNarrowEnvFn * const fns[3][2] = {
9859                 { gen_helper_neon_narrow_sat_s8,
9860                   gen_helper_neon_narrow_sat_u8 },
9861                 { gen_helper_neon_narrow_sat_s16,
9862                   gen_helper_neon_narrow_sat_u16 },
9863                 { gen_helper_neon_narrow_sat_s32,
9864                   gen_helper_neon_narrow_sat_u32 },
9865             };
9866             genenvfn = fns[size][u];
9867             break;
9868         }
9869         case 0x16: /* FCVTN, FCVTN2 */
9870             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9871             if (size == 2) {
9872                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9873             } else {
9874                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9875                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9876                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9877                 TCGv_i32 ahp = get_ahp_flag();
9878 
9879                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9880                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9881                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9882                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9883             }
9884             break;
9885         case 0x36: /* BFCVTN, BFCVTN2 */
9886             {
9887                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9888                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9889             }
9890             break;
9891         case 0x56:  /* FCVTXN, FCVTXN2 */
9892             /* 64 bit to 32 bit float conversion
9893              * with von Neumann rounding (round to odd)
9894              */
9895             assert(size == 2);
9896             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9897             break;
9898         default:
9899             g_assert_not_reached();
9900         }
9901 
9902         if (genfn) {
9903             genfn(tcg_res[pass], tcg_op);
9904         } else if (genenvfn) {
9905             genenvfn(tcg_res[pass], tcg_env, tcg_op);
9906         }
9907     }
9908 
9909     for (pass = 0; pass < 2; pass++) {
9910         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9911     }
9912     clear_vec_high(s, is_q, rd);
9913 }
9914 
9915 /* Remaining saturating accumulating ops */
9916 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9917                                 bool is_q, int size, int rn, int rd)
9918 {
9919     bool is_double = (size == 3);
9920 
9921     if (is_double) {
9922         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9923         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9924         int pass;
9925 
9926         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9927             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9928             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9929 
9930             if (is_u) { /* USQADD */
9931                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9932             } else { /* SUQADD */
9933                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9934             }
9935             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9936         }
9937         clear_vec_high(s, !is_scalar, rd);
9938     } else {
9939         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9940         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9941         int pass, maxpasses;
9942 
9943         if (is_scalar) {
9944             maxpasses = 1;
9945         } else {
9946             maxpasses = is_q ? 4 : 2;
9947         }
9948 
9949         for (pass = 0; pass < maxpasses; pass++) {
9950             if (is_scalar) {
9951                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9952                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9953             } else {
9954                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9955                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9956             }
9957 
9958             if (is_u) { /* USQADD */
9959                 switch (size) {
9960                 case 0:
9961                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9962                     break;
9963                 case 1:
9964                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9965                     break;
9966                 case 2:
9967                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9968                     break;
9969                 default:
9970                     g_assert_not_reached();
9971                 }
9972             } else { /* SUQADD */
9973                 switch (size) {
9974                 case 0:
9975                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9976                     break;
9977                 case 1:
9978                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9979                     break;
9980                 case 2:
9981                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9982                     break;
9983                 default:
9984                     g_assert_not_reached();
9985                 }
9986             }
9987 
9988             if (is_scalar) {
9989                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9990             }
9991             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9992         }
9993         clear_vec_high(s, is_q, rd);
9994     }
9995 }
9996 
9997 /* AdvSIMD scalar two reg misc
9998  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9999  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10000  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10001  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10002  */
10003 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10004 {
10005     int rd = extract32(insn, 0, 5);
10006     int rn = extract32(insn, 5, 5);
10007     int opcode = extract32(insn, 12, 5);
10008     int size = extract32(insn, 22, 2);
10009     bool u = extract32(insn, 29, 1);
10010     bool is_fcvt = false;
10011     int rmode;
10012     TCGv_i32 tcg_rmode;
10013     TCGv_ptr tcg_fpstatus;
10014 
10015     switch (opcode) {
10016     case 0x3: /* USQADD / SUQADD*/
10017         if (!fp_access_check(s)) {
10018             return;
10019         }
10020         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10021         return;
10022     case 0x7: /* SQABS / SQNEG */
10023         break;
10024     case 0xa: /* CMLT */
10025         if (u) {
10026             unallocated_encoding(s);
10027             return;
10028         }
10029         /* fall through */
10030     case 0x8: /* CMGT, CMGE */
10031     case 0x9: /* CMEQ, CMLE */
10032     case 0xb: /* ABS, NEG */
10033         if (size != 3) {
10034             unallocated_encoding(s);
10035             return;
10036         }
10037         break;
10038     case 0x12: /* SQXTUN */
10039         if (!u) {
10040             unallocated_encoding(s);
10041             return;
10042         }
10043         /* fall through */
10044     case 0x14: /* SQXTN, UQXTN */
10045         if (size == 3) {
10046             unallocated_encoding(s);
10047             return;
10048         }
10049         if (!fp_access_check(s)) {
10050             return;
10051         }
10052         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10053         return;
10054     case 0xc ... 0xf:
10055     case 0x16 ... 0x1d:
10056     case 0x1f:
10057         /* Floating point: U, size[1] and opcode indicate operation;
10058          * size[0] indicates single or double precision.
10059          */
10060         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10061         size = extract32(size, 0, 1) ? 3 : 2;
10062         switch (opcode) {
10063         case 0x2c: /* FCMGT (zero) */
10064         case 0x2d: /* FCMEQ (zero) */
10065         case 0x2e: /* FCMLT (zero) */
10066         case 0x6c: /* FCMGE (zero) */
10067         case 0x6d: /* FCMLE (zero) */
10068             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10069             return;
10070         case 0x1d: /* SCVTF */
10071         case 0x5d: /* UCVTF */
10072         {
10073             bool is_signed = (opcode == 0x1d);
10074             if (!fp_access_check(s)) {
10075                 return;
10076             }
10077             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10078             return;
10079         }
10080         case 0x3d: /* FRECPE */
10081         case 0x3f: /* FRECPX */
10082         case 0x7d: /* FRSQRTE */
10083             if (!fp_access_check(s)) {
10084                 return;
10085             }
10086             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10087             return;
10088         case 0x1a: /* FCVTNS */
10089         case 0x1b: /* FCVTMS */
10090         case 0x3a: /* FCVTPS */
10091         case 0x3b: /* FCVTZS */
10092         case 0x5a: /* FCVTNU */
10093         case 0x5b: /* FCVTMU */
10094         case 0x7a: /* FCVTPU */
10095         case 0x7b: /* FCVTZU */
10096             is_fcvt = true;
10097             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10098             break;
10099         case 0x1c: /* FCVTAS */
10100         case 0x5c: /* FCVTAU */
10101             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10102             is_fcvt = true;
10103             rmode = FPROUNDING_TIEAWAY;
10104             break;
10105         case 0x56: /* FCVTXN, FCVTXN2 */
10106             if (size == 2) {
10107                 unallocated_encoding(s);
10108                 return;
10109             }
10110             if (!fp_access_check(s)) {
10111                 return;
10112             }
10113             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10114             return;
10115         default:
10116             unallocated_encoding(s);
10117             return;
10118         }
10119         break;
10120     default:
10121         unallocated_encoding(s);
10122         return;
10123     }
10124 
10125     if (!fp_access_check(s)) {
10126         return;
10127     }
10128 
10129     if (is_fcvt) {
10130         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10131         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10132     } else {
10133         tcg_fpstatus = NULL;
10134         tcg_rmode = NULL;
10135     }
10136 
10137     if (size == 3) {
10138         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10139         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10140 
10141         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10142         write_fp_dreg(s, rd, tcg_rd);
10143     } else {
10144         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10145         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10146 
10147         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10148 
10149         switch (opcode) {
10150         case 0x7: /* SQABS, SQNEG */
10151         {
10152             NeonGenOneOpEnvFn *genfn;
10153             static NeonGenOneOpEnvFn * const fns[3][2] = {
10154                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10155                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10156                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10157             };
10158             genfn = fns[size][u];
10159             genfn(tcg_rd, tcg_env, tcg_rn);
10160             break;
10161         }
10162         case 0x1a: /* FCVTNS */
10163         case 0x1b: /* FCVTMS */
10164         case 0x1c: /* FCVTAS */
10165         case 0x3a: /* FCVTPS */
10166         case 0x3b: /* FCVTZS */
10167             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10168                                  tcg_fpstatus);
10169             break;
10170         case 0x5a: /* FCVTNU */
10171         case 0x5b: /* FCVTMU */
10172         case 0x5c: /* FCVTAU */
10173         case 0x7a: /* FCVTPU */
10174         case 0x7b: /* FCVTZU */
10175             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10176                                  tcg_fpstatus);
10177             break;
10178         default:
10179             g_assert_not_reached();
10180         }
10181 
10182         write_fp_sreg(s, rd, tcg_rd);
10183     }
10184 
10185     if (is_fcvt) {
10186         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10187     }
10188 }
10189 
10190 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10191 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10192                                  int immh, int immb, int opcode, int rn, int rd)
10193 {
10194     int size = 32 - clz32(immh) - 1;
10195     int immhb = immh << 3 | immb;
10196     int shift = 2 * (8 << size) - immhb;
10197     GVecGen2iFn *gvec_fn;
10198 
10199     if (extract32(immh, 3, 1) && !is_q) {
10200         unallocated_encoding(s);
10201         return;
10202     }
10203     tcg_debug_assert(size <= 3);
10204 
10205     if (!fp_access_check(s)) {
10206         return;
10207     }
10208 
10209     switch (opcode) {
10210     case 0x02: /* SSRA / USRA (accumulate) */
10211         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10212         break;
10213 
10214     case 0x08: /* SRI */
10215         gvec_fn = gen_gvec_sri;
10216         break;
10217 
10218     case 0x00: /* SSHR / USHR */
10219         if (is_u) {
10220             if (shift == 8 << size) {
10221                 /* Shift count the same size as element size produces zero.  */
10222                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10223                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10224                 return;
10225             }
10226             gvec_fn = tcg_gen_gvec_shri;
10227         } else {
10228             /* Shift count the same size as element size produces all sign.  */
10229             if (shift == 8 << size) {
10230                 shift -= 1;
10231             }
10232             gvec_fn = tcg_gen_gvec_sari;
10233         }
10234         break;
10235 
10236     case 0x04: /* SRSHR / URSHR (rounding) */
10237         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10238         break;
10239 
10240     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10241         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10242         break;
10243 
10244     default:
10245         g_assert_not_reached();
10246     }
10247 
10248     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10249 }
10250 
10251 /* SHL/SLI - Vector shift left */
10252 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10253                                  int immh, int immb, int opcode, int rn, int rd)
10254 {
10255     int size = 32 - clz32(immh) - 1;
10256     int immhb = immh << 3 | immb;
10257     int shift = immhb - (8 << size);
10258 
10259     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10260     assert(size >= 0 && size <= 3);
10261 
10262     if (extract32(immh, 3, 1) && !is_q) {
10263         unallocated_encoding(s);
10264         return;
10265     }
10266 
10267     if (!fp_access_check(s)) {
10268         return;
10269     }
10270 
10271     if (insert) {
10272         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10273     } else {
10274         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10275     }
10276 }
10277 
10278 /* USHLL/SHLL - Vector shift left with widening */
10279 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10280                                  int immh, int immb, int opcode, int rn, int rd)
10281 {
10282     int size = 32 - clz32(immh) - 1;
10283     int immhb = immh << 3 | immb;
10284     int shift = immhb - (8 << size);
10285     int dsize = 64;
10286     int esize = 8 << size;
10287     int elements = dsize/esize;
10288     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10289     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10290     int i;
10291 
10292     if (size >= 3) {
10293         unallocated_encoding(s);
10294         return;
10295     }
10296 
10297     if (!fp_access_check(s)) {
10298         return;
10299     }
10300 
10301     /* For the LL variants the store is larger than the load,
10302      * so if rd == rn we would overwrite parts of our input.
10303      * So load everything right now and use shifts in the main loop.
10304      */
10305     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10306 
10307     for (i = 0; i < elements; i++) {
10308         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10309         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10310         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10311         write_vec_element(s, tcg_rd, rd, i, size + 1);
10312     }
10313 }
10314 
10315 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10316 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10317                                  int immh, int immb, int opcode, int rn, int rd)
10318 {
10319     int immhb = immh << 3 | immb;
10320     int size = 32 - clz32(immh) - 1;
10321     int dsize = 64;
10322     int esize = 8 << size;
10323     int elements = dsize/esize;
10324     int shift = (2 * esize) - immhb;
10325     bool round = extract32(opcode, 0, 1);
10326     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10327     TCGv_i64 tcg_round;
10328     int i;
10329 
10330     if (extract32(immh, 3, 1)) {
10331         unallocated_encoding(s);
10332         return;
10333     }
10334 
10335     if (!fp_access_check(s)) {
10336         return;
10337     }
10338 
10339     tcg_rn = tcg_temp_new_i64();
10340     tcg_rd = tcg_temp_new_i64();
10341     tcg_final = tcg_temp_new_i64();
10342     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10343 
10344     if (round) {
10345         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10346     } else {
10347         tcg_round = NULL;
10348     }
10349 
10350     for (i = 0; i < elements; i++) {
10351         read_vec_element(s, tcg_rn, rn, i, size+1);
10352         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10353                                 false, true, size+1, shift);
10354 
10355         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10356     }
10357 
10358     if (!is_q) {
10359         write_vec_element(s, tcg_final, rd, 0, MO_64);
10360     } else {
10361         write_vec_element(s, tcg_final, rd, 1, MO_64);
10362     }
10363 
10364     clear_vec_high(s, is_q, rd);
10365 }
10366 
10367 
10368 /* AdvSIMD shift by immediate
10369  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10370  * +---+---+---+-------------+------+------+--------+---+------+------+
10371  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10372  * +---+---+---+-------------+------+------+--------+---+------+------+
10373  */
10374 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10375 {
10376     int rd = extract32(insn, 0, 5);
10377     int rn = extract32(insn, 5, 5);
10378     int opcode = extract32(insn, 11, 5);
10379     int immb = extract32(insn, 16, 3);
10380     int immh = extract32(insn, 19, 4);
10381     bool is_u = extract32(insn, 29, 1);
10382     bool is_q = extract32(insn, 30, 1);
10383 
10384     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10385     assert(immh != 0);
10386 
10387     switch (opcode) {
10388     case 0x08: /* SRI */
10389         if (!is_u) {
10390             unallocated_encoding(s);
10391             return;
10392         }
10393         /* fall through */
10394     case 0x00: /* SSHR / USHR */
10395     case 0x02: /* SSRA / USRA (accumulate) */
10396     case 0x04: /* SRSHR / URSHR (rounding) */
10397     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10398         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10399         break;
10400     case 0x0a: /* SHL / SLI */
10401         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10402         break;
10403     case 0x10: /* SHRN */
10404     case 0x11: /* RSHRN / SQRSHRUN */
10405         if (is_u) {
10406             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10407                                    opcode, rn, rd);
10408         } else {
10409             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10410         }
10411         break;
10412     case 0x12: /* SQSHRN / UQSHRN */
10413     case 0x13: /* SQRSHRN / UQRSHRN */
10414         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10415                                opcode, rn, rd);
10416         break;
10417     case 0x14: /* SSHLL / USHLL */
10418         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10419         break;
10420     case 0x1c: /* SCVTF / UCVTF */
10421         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10422                                      opcode, rn, rd);
10423         break;
10424     case 0xc: /* SQSHLU */
10425         if (!is_u) {
10426             unallocated_encoding(s);
10427             return;
10428         }
10429         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10430         break;
10431     case 0xe: /* SQSHL, UQSHL */
10432         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10433         break;
10434     case 0x1f: /* FCVTZS/ FCVTZU */
10435         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10436         return;
10437     default:
10438         unallocated_encoding(s);
10439         return;
10440     }
10441 }
10442 
10443 /* Generate code to do a "long" addition or subtraction, ie one done in
10444  * TCGv_i64 on vector lanes twice the width specified by size.
10445  */
10446 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10447                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10448 {
10449     static NeonGenTwo64OpFn * const fns[3][2] = {
10450         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10451         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10452         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10453     };
10454     NeonGenTwo64OpFn *genfn;
10455     assert(size < 3);
10456 
10457     genfn = fns[size][is_sub];
10458     genfn(tcg_res, tcg_op1, tcg_op2);
10459 }
10460 
10461 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10462                                 int opcode, int rd, int rn, int rm)
10463 {
10464     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10465     TCGv_i64 tcg_res[2];
10466     int pass, accop;
10467 
10468     tcg_res[0] = tcg_temp_new_i64();
10469     tcg_res[1] = tcg_temp_new_i64();
10470 
10471     /* Does this op do an adding accumulate, a subtracting accumulate,
10472      * or no accumulate at all?
10473      */
10474     switch (opcode) {
10475     case 5:
10476     case 8:
10477     case 9:
10478         accop = 1;
10479         break;
10480     case 10:
10481     case 11:
10482         accop = -1;
10483         break;
10484     default:
10485         accop = 0;
10486         break;
10487     }
10488 
10489     if (accop != 0) {
10490         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10491         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10492     }
10493 
10494     /* size == 2 means two 32x32->64 operations; this is worth special
10495      * casing because we can generally handle it inline.
10496      */
10497     if (size == 2) {
10498         for (pass = 0; pass < 2; pass++) {
10499             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10500             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10501             TCGv_i64 tcg_passres;
10502             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10503 
10504             int elt = pass + is_q * 2;
10505 
10506             read_vec_element(s, tcg_op1, rn, elt, memop);
10507             read_vec_element(s, tcg_op2, rm, elt, memop);
10508 
10509             if (accop == 0) {
10510                 tcg_passres = tcg_res[pass];
10511             } else {
10512                 tcg_passres = tcg_temp_new_i64();
10513             }
10514 
10515             switch (opcode) {
10516             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10517                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10518                 break;
10519             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10520                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10521                 break;
10522             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10523             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10524             {
10525                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10526                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10527 
10528                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10529                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10530                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10531                                     tcg_passres,
10532                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10533                 break;
10534             }
10535             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10536             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10537             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10538                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10539                 break;
10540             case 9: /* SQDMLAL, SQDMLAL2 */
10541             case 11: /* SQDMLSL, SQDMLSL2 */
10542             case 13: /* SQDMULL, SQDMULL2 */
10543                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10544                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10545                                                   tcg_passres, tcg_passres);
10546                 break;
10547             default:
10548                 g_assert_not_reached();
10549             }
10550 
10551             if (opcode == 9 || opcode == 11) {
10552                 /* saturating accumulate ops */
10553                 if (accop < 0) {
10554                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10555                 }
10556                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10557                                                   tcg_res[pass], tcg_passres);
10558             } else if (accop > 0) {
10559                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10560             } else if (accop < 0) {
10561                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10562             }
10563         }
10564     } else {
10565         /* size 0 or 1, generally helper functions */
10566         for (pass = 0; pass < 2; pass++) {
10567             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10568             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10569             TCGv_i64 tcg_passres;
10570             int elt = pass + is_q * 2;
10571 
10572             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10573             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10574 
10575             if (accop == 0) {
10576                 tcg_passres = tcg_res[pass];
10577             } else {
10578                 tcg_passres = tcg_temp_new_i64();
10579             }
10580 
10581             switch (opcode) {
10582             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10583             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10584             {
10585                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10586                 static NeonGenWidenFn * const widenfns[2][2] = {
10587                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10588                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10589                 };
10590                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10591 
10592                 widenfn(tcg_op2_64, tcg_op2);
10593                 widenfn(tcg_passres, tcg_op1);
10594                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10595                               tcg_passres, tcg_op2_64);
10596                 break;
10597             }
10598             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10599             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10600                 if (size == 0) {
10601                     if (is_u) {
10602                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10603                     } else {
10604                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10605                     }
10606                 } else {
10607                     if (is_u) {
10608                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10609                     } else {
10610                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10611                     }
10612                 }
10613                 break;
10614             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10615             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10616             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10617                 if (size == 0) {
10618                     if (is_u) {
10619                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10620                     } else {
10621                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10622                     }
10623                 } else {
10624                     if (is_u) {
10625                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10626                     } else {
10627                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10628                     }
10629                 }
10630                 break;
10631             case 9: /* SQDMLAL, SQDMLAL2 */
10632             case 11: /* SQDMLSL, SQDMLSL2 */
10633             case 13: /* SQDMULL, SQDMULL2 */
10634                 assert(size == 1);
10635                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10636                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10637                                                   tcg_passres, tcg_passres);
10638                 break;
10639             default:
10640                 g_assert_not_reached();
10641             }
10642 
10643             if (accop != 0) {
10644                 if (opcode == 9 || opcode == 11) {
10645                     /* saturating accumulate ops */
10646                     if (accop < 0) {
10647                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10648                     }
10649                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10650                                                       tcg_res[pass],
10651                                                       tcg_passres);
10652                 } else {
10653                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10654                                   tcg_res[pass], tcg_passres);
10655                 }
10656             }
10657         }
10658     }
10659 
10660     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10661     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10662 }
10663 
10664 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10665                             int opcode, int rd, int rn, int rm)
10666 {
10667     TCGv_i64 tcg_res[2];
10668     int part = is_q ? 2 : 0;
10669     int pass;
10670 
10671     for (pass = 0; pass < 2; pass++) {
10672         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10673         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10674         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10675         static NeonGenWidenFn * const widenfns[3][2] = {
10676             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10677             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10678             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10679         };
10680         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10681 
10682         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10683         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10684         widenfn(tcg_op2_wide, tcg_op2);
10685         tcg_res[pass] = tcg_temp_new_i64();
10686         gen_neon_addl(size, (opcode == 3),
10687                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10688     }
10689 
10690     for (pass = 0; pass < 2; pass++) {
10691         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10692     }
10693 }
10694 
10695 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10696 {
10697     tcg_gen_addi_i64(in, in, 1U << 31);
10698     tcg_gen_extrh_i64_i32(res, in);
10699 }
10700 
10701 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10702                                  int opcode, int rd, int rn, int rm)
10703 {
10704     TCGv_i32 tcg_res[2];
10705     int part = is_q ? 2 : 0;
10706     int pass;
10707 
10708     for (pass = 0; pass < 2; pass++) {
10709         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10710         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10711         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10712         static NeonGenNarrowFn * const narrowfns[3][2] = {
10713             { gen_helper_neon_narrow_high_u8,
10714               gen_helper_neon_narrow_round_high_u8 },
10715             { gen_helper_neon_narrow_high_u16,
10716               gen_helper_neon_narrow_round_high_u16 },
10717             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10718         };
10719         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10720 
10721         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10722         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10723 
10724         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10725 
10726         tcg_res[pass] = tcg_temp_new_i32();
10727         gennarrow(tcg_res[pass], tcg_wideres);
10728     }
10729 
10730     for (pass = 0; pass < 2; pass++) {
10731         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10732     }
10733     clear_vec_high(s, is_q, rd);
10734 }
10735 
10736 /* AdvSIMD three different
10737  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10738  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10739  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10740  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10741  */
10742 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10743 {
10744     /* Instructions in this group fall into three basic classes
10745      * (in each case with the operation working on each element in
10746      * the input vectors):
10747      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10748      *     128 bit input)
10749      * (2) wide 64 x 128 -> 128
10750      * (3) narrowing 128 x 128 -> 64
10751      * Here we do initial decode, catch unallocated cases and
10752      * dispatch to separate functions for each class.
10753      */
10754     int is_q = extract32(insn, 30, 1);
10755     int is_u = extract32(insn, 29, 1);
10756     int size = extract32(insn, 22, 2);
10757     int opcode = extract32(insn, 12, 4);
10758     int rm = extract32(insn, 16, 5);
10759     int rn = extract32(insn, 5, 5);
10760     int rd = extract32(insn, 0, 5);
10761 
10762     switch (opcode) {
10763     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10764     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10765         /* 64 x 128 -> 128 */
10766         if (size == 3) {
10767             unallocated_encoding(s);
10768             return;
10769         }
10770         if (!fp_access_check(s)) {
10771             return;
10772         }
10773         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10774         break;
10775     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10776     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10777         /* 128 x 128 -> 64 */
10778         if (size == 3) {
10779             unallocated_encoding(s);
10780             return;
10781         }
10782         if (!fp_access_check(s)) {
10783             return;
10784         }
10785         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10786         break;
10787     case 14: /* PMULL, PMULL2 */
10788         if (is_u) {
10789             unallocated_encoding(s);
10790             return;
10791         }
10792         switch (size) {
10793         case 0: /* PMULL.P8 */
10794             if (!fp_access_check(s)) {
10795                 return;
10796             }
10797             /* The Q field specifies lo/hi half input for this insn.  */
10798             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10799                              gen_helper_neon_pmull_h);
10800             break;
10801 
10802         case 3: /* PMULL.P64 */
10803             if (!dc_isar_feature(aa64_pmull, s)) {
10804                 unallocated_encoding(s);
10805                 return;
10806             }
10807             if (!fp_access_check(s)) {
10808                 return;
10809             }
10810             /* The Q field specifies lo/hi half input for this insn.  */
10811             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10812                              gen_helper_gvec_pmull_q);
10813             break;
10814 
10815         default:
10816             unallocated_encoding(s);
10817             break;
10818         }
10819         return;
10820     case 9: /* SQDMLAL, SQDMLAL2 */
10821     case 11: /* SQDMLSL, SQDMLSL2 */
10822     case 13: /* SQDMULL, SQDMULL2 */
10823         if (is_u || size == 0) {
10824             unallocated_encoding(s);
10825             return;
10826         }
10827         /* fall through */
10828     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10829     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10830     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10831     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10832     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10833     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10834     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10835         /* 64 x 64 -> 128 */
10836         if (size == 3) {
10837             unallocated_encoding(s);
10838             return;
10839         }
10840         if (!fp_access_check(s)) {
10841             return;
10842         }
10843 
10844         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10845         break;
10846     default:
10847         /* opcode 15 not allocated */
10848         unallocated_encoding(s);
10849         break;
10850     }
10851 }
10852 
10853 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10854 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10855 {
10856     int rd = extract32(insn, 0, 5);
10857     int rn = extract32(insn, 5, 5);
10858     int rm = extract32(insn, 16, 5);
10859     int size = extract32(insn, 22, 2);
10860     bool is_u = extract32(insn, 29, 1);
10861     bool is_q = extract32(insn, 30, 1);
10862 
10863     if (!fp_access_check(s)) {
10864         return;
10865     }
10866 
10867     switch (size + 4 * is_u) {
10868     case 0: /* AND */
10869         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10870         return;
10871     case 1: /* BIC */
10872         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10873         return;
10874     case 2: /* ORR */
10875         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10876         return;
10877     case 3: /* ORN */
10878         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10879         return;
10880     case 4: /* EOR */
10881         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10882         return;
10883 
10884     case 5: /* BSL bitwise select */
10885         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10886         return;
10887     case 6: /* BIT, bitwise insert if true */
10888         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10889         return;
10890     case 7: /* BIF, bitwise insert if false */
10891         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10892         return;
10893 
10894     default:
10895         g_assert_not_reached();
10896     }
10897 }
10898 
10899 /* Pairwise op subgroup of C3.6.16.
10900  *
10901  * This is called directly for float pairwise
10902  * operations where the opcode and size are calculated differently.
10903  */
10904 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10905                                    int size, int rn, int rm, int rd)
10906 {
10907     int pass;
10908 
10909     if (!fp_access_check(s)) {
10910         return;
10911     }
10912 
10913     /* These operations work on the concatenated rm:rn, with each pair of
10914      * adjacent elements being operated on to produce an element in the result.
10915      */
10916     if (size == 3) {
10917         g_assert_not_reached();
10918     } else {
10919         int maxpass = is_q ? 4 : 2;
10920         TCGv_i32 tcg_res[4];
10921 
10922         for (pass = 0; pass < maxpass; pass++) {
10923             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10924             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10925             NeonGenTwoOpFn *genfn = NULL;
10926             int passreg = pass < (maxpass / 2) ? rn : rm;
10927             int passelt = (is_q && (pass & 1)) ? 2 : 0;
10928 
10929             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10930             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10931             tcg_res[pass] = tcg_temp_new_i32();
10932 
10933             switch (opcode) {
10934             case 0x14: /* SMAXP, UMAXP */
10935             {
10936                 static NeonGenTwoOpFn * const fns[3][2] = {
10937                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10938                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10939                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10940                 };
10941                 genfn = fns[size][u];
10942                 break;
10943             }
10944             case 0x15: /* SMINP, UMINP */
10945             {
10946                 static NeonGenTwoOpFn * const fns[3][2] = {
10947                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10948                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10949                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10950                 };
10951                 genfn = fns[size][u];
10952                 break;
10953             }
10954             default:
10955             case 0x17: /* ADDP */
10956             case 0x58: /* FMAXNMP */
10957             case 0x5a: /* FADDP */
10958             case 0x5e: /* FMAXP */
10959             case 0x78: /* FMINNMP */
10960             case 0x7e: /* FMINP */
10961                 g_assert_not_reached();
10962             }
10963 
10964             /* FP ops called directly, otherwise call now */
10965             if (genfn) {
10966                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10967             }
10968         }
10969 
10970         for (pass = 0; pass < maxpass; pass++) {
10971             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10972         }
10973         clear_vec_high(s, is_q, rd);
10974     }
10975 }
10976 
10977 /* Floating point op subgroup of C3.6.16. */
10978 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10979 {
10980     /* For floating point ops, the U, size[1] and opcode bits
10981      * together indicate the operation. size[0] indicates single
10982      * or double.
10983      */
10984     int fpopcode = extract32(insn, 11, 5)
10985         | (extract32(insn, 23, 1) << 5)
10986         | (extract32(insn, 29, 1) << 6);
10987     int is_q = extract32(insn, 30, 1);
10988     int size = extract32(insn, 22, 1);
10989     int rm = extract32(insn, 16, 5);
10990     int rn = extract32(insn, 5, 5);
10991     int rd = extract32(insn, 0, 5);
10992 
10993     if (size == 1 && !is_q) {
10994         unallocated_encoding(s);
10995         return;
10996     }
10997 
10998     switch (fpopcode) {
10999     case 0x1d: /* FMLAL  */
11000     case 0x3d: /* FMLSL  */
11001     case 0x59: /* FMLAL2 */
11002     case 0x79: /* FMLSL2 */
11003         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11004             unallocated_encoding(s);
11005             return;
11006         }
11007         if (fp_access_check(s)) {
11008             int is_s = extract32(insn, 23, 1);
11009             int is_2 = extract32(insn, 29, 1);
11010             int data = (is_2 << 1) | is_s;
11011             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11012                                vec_full_reg_offset(s, rn),
11013                                vec_full_reg_offset(s, rm), tcg_env,
11014                                is_q ? 16 : 8, vec_full_reg_size(s),
11015                                data, gen_helper_gvec_fmlal_a64);
11016         }
11017         return;
11018 
11019     default:
11020     case 0x18: /* FMAXNM */
11021     case 0x19: /* FMLA */
11022     case 0x1a: /* FADD */
11023     case 0x1b: /* FMULX */
11024     case 0x1c: /* FCMEQ */
11025     case 0x1e: /* FMAX */
11026     case 0x1f: /* FRECPS */
11027     case 0x38: /* FMINNM */
11028     case 0x39: /* FMLS */
11029     case 0x3a: /* FSUB */
11030     case 0x3e: /* FMIN */
11031     case 0x3f: /* FRSQRTS */
11032     case 0x58: /* FMAXNMP */
11033     case 0x5a: /* FADDP */
11034     case 0x5b: /* FMUL */
11035     case 0x5c: /* FCMGE */
11036     case 0x5d: /* FACGE */
11037     case 0x5e: /* FMAXP */
11038     case 0x5f: /* FDIV */
11039     case 0x78: /* FMINNMP */
11040     case 0x7a: /* FABD */
11041     case 0x7d: /* FACGT */
11042     case 0x7c: /* FCMGT */
11043     case 0x7e: /* FMINP */
11044         unallocated_encoding(s);
11045         return;
11046     }
11047 }
11048 
11049 /* Integer op subgroup of C3.6.16. */
11050 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11051 {
11052     int is_q = extract32(insn, 30, 1);
11053     int u = extract32(insn, 29, 1);
11054     int size = extract32(insn, 22, 2);
11055     int opcode = extract32(insn, 11, 5);
11056     int rm = extract32(insn, 16, 5);
11057     int rn = extract32(insn, 5, 5);
11058     int rd = extract32(insn, 0, 5);
11059     int pass;
11060     TCGCond cond;
11061 
11062     switch (opcode) {
11063     case 0x13: /* MUL, PMUL */
11064         if (u && size != 0) {
11065             unallocated_encoding(s);
11066             return;
11067         }
11068         /* fall through */
11069     case 0x0: /* SHADD, UHADD */
11070     case 0x2: /* SRHADD, URHADD */
11071     case 0x4: /* SHSUB, UHSUB */
11072     case 0xc: /* SMAX, UMAX */
11073     case 0xd: /* SMIN, UMIN */
11074     case 0xe: /* SABD, UABD */
11075     case 0xf: /* SABA, UABA */
11076     case 0x12: /* MLA, MLS */
11077         if (size == 3) {
11078             unallocated_encoding(s);
11079             return;
11080         }
11081         break;
11082     case 0x16: /* SQDMULH, SQRDMULH */
11083         if (size == 0 || size == 3) {
11084             unallocated_encoding(s);
11085             return;
11086         }
11087         break;
11088     default:
11089         if (size == 3 && !is_q) {
11090             unallocated_encoding(s);
11091             return;
11092         }
11093         break;
11094     }
11095 
11096     if (!fp_access_check(s)) {
11097         return;
11098     }
11099 
11100     switch (opcode) {
11101     case 0x01: /* SQADD, UQADD */
11102         if (u) {
11103             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11104         } else {
11105             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11106         }
11107         return;
11108     case 0x05: /* SQSUB, UQSUB */
11109         if (u) {
11110             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11111         } else {
11112             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11113         }
11114         return;
11115     case 0x08: /* SSHL, USHL */
11116         if (u) {
11117             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11118         } else {
11119             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11120         }
11121         return;
11122     case 0x0c: /* SMAX, UMAX */
11123         if (u) {
11124             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11125         } else {
11126             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11127         }
11128         return;
11129     case 0x0d: /* SMIN, UMIN */
11130         if (u) {
11131             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11132         } else {
11133             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11134         }
11135         return;
11136     case 0xe: /* SABD, UABD */
11137         if (u) {
11138             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11139         } else {
11140             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11141         }
11142         return;
11143     case 0xf: /* SABA, UABA */
11144         if (u) {
11145             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11146         } else {
11147             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11148         }
11149         return;
11150     case 0x10: /* ADD, SUB */
11151         if (u) {
11152             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11153         } else {
11154             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11155         }
11156         return;
11157     case 0x13: /* MUL, PMUL */
11158         if (!u) { /* MUL */
11159             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11160         } else {  /* PMUL */
11161             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11162         }
11163         return;
11164     case 0x12: /* MLA, MLS */
11165         if (u) {
11166             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11167         } else {
11168             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11169         }
11170         return;
11171     case 0x16: /* SQDMULH, SQRDMULH */
11172         {
11173             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11174                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11175                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11176             };
11177             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11178         }
11179         return;
11180     case 0x11:
11181         if (!u) { /* CMTST */
11182             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11183             return;
11184         }
11185         /* else CMEQ */
11186         cond = TCG_COND_EQ;
11187         goto do_gvec_cmp;
11188     case 0x06: /* CMGT, CMHI */
11189         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11190         goto do_gvec_cmp;
11191     case 0x07: /* CMGE, CMHS */
11192         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11193     do_gvec_cmp:
11194         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11195                          vec_full_reg_offset(s, rn),
11196                          vec_full_reg_offset(s, rm),
11197                          is_q ? 16 : 8, vec_full_reg_size(s));
11198         return;
11199     }
11200 
11201     if (size == 3) {
11202         assert(is_q);
11203         for (pass = 0; pass < 2; pass++) {
11204             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11205             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11206             TCGv_i64 tcg_res = tcg_temp_new_i64();
11207 
11208             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11209             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11210 
11211             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11212 
11213             write_vec_element(s, tcg_res, rd, pass, MO_64);
11214         }
11215     } else {
11216         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11217             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11218             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11219             TCGv_i32 tcg_res = tcg_temp_new_i32();
11220             NeonGenTwoOpFn *genfn = NULL;
11221             NeonGenTwoOpEnvFn *genenvfn = NULL;
11222 
11223             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11224             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11225 
11226             switch (opcode) {
11227             case 0x0: /* SHADD, UHADD */
11228             {
11229                 static NeonGenTwoOpFn * const fns[3][2] = {
11230                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11231                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11232                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11233                 };
11234                 genfn = fns[size][u];
11235                 break;
11236             }
11237             case 0x2: /* SRHADD, URHADD */
11238             {
11239                 static NeonGenTwoOpFn * const fns[3][2] = {
11240                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11241                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11242                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11243                 };
11244                 genfn = fns[size][u];
11245                 break;
11246             }
11247             case 0x4: /* SHSUB, UHSUB */
11248             {
11249                 static NeonGenTwoOpFn * const fns[3][2] = {
11250                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11251                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11252                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11253                 };
11254                 genfn = fns[size][u];
11255                 break;
11256             }
11257             case 0x9: /* SQSHL, UQSHL */
11258             {
11259                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11260                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11261                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11262                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11263                 };
11264                 genenvfn = fns[size][u];
11265                 break;
11266             }
11267             case 0xa: /* SRSHL, URSHL */
11268             {
11269                 static NeonGenTwoOpFn * const fns[3][2] = {
11270                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11271                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11272                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11273                 };
11274                 genfn = fns[size][u];
11275                 break;
11276             }
11277             case 0xb: /* SQRSHL, UQRSHL */
11278             {
11279                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11280                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11281                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11282                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11283                 };
11284                 genenvfn = fns[size][u];
11285                 break;
11286             }
11287             default:
11288                 g_assert_not_reached();
11289             }
11290 
11291             if (genenvfn) {
11292                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11293             } else {
11294                 genfn(tcg_res, tcg_op1, tcg_op2);
11295             }
11296 
11297             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11298         }
11299     }
11300     clear_vec_high(s, is_q, rd);
11301 }
11302 
11303 /* AdvSIMD three same
11304  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11305  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11306  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11307  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11308  */
11309 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11310 {
11311     int opcode = extract32(insn, 11, 5);
11312 
11313     switch (opcode) {
11314     case 0x3: /* logic ops */
11315         disas_simd_3same_logic(s, insn);
11316         break;
11317     case 0x14: /* SMAXP, UMAXP */
11318     case 0x15: /* SMINP, UMINP */
11319     {
11320         /* Pairwise operations */
11321         int is_q = extract32(insn, 30, 1);
11322         int u = extract32(insn, 29, 1);
11323         int size = extract32(insn, 22, 2);
11324         int rm = extract32(insn, 16, 5);
11325         int rn = extract32(insn, 5, 5);
11326         int rd = extract32(insn, 0, 5);
11327         if (opcode == 0x17) {
11328             if (u || (size == 3 && !is_q)) {
11329                 unallocated_encoding(s);
11330                 return;
11331             }
11332         } else {
11333             if (size == 3) {
11334                 unallocated_encoding(s);
11335                 return;
11336             }
11337         }
11338         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11339         break;
11340     }
11341     case 0x18 ... 0x31:
11342         /* floating point ops, sz[1] and U are part of opcode */
11343         disas_simd_3same_float(s, insn);
11344         break;
11345     default:
11346         disas_simd_3same_int(s, insn);
11347         break;
11348     case 0x17: /* ADDP */
11349         unallocated_encoding(s);
11350         break;
11351     }
11352 }
11353 
11354 /* AdvSIMD three same extra
11355  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11356  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11357  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11358  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11359  */
11360 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11361 {
11362     int rd = extract32(insn, 0, 5);
11363     int rn = extract32(insn, 5, 5);
11364     int opcode = extract32(insn, 11, 4);
11365     int rm = extract32(insn, 16, 5);
11366     int size = extract32(insn, 22, 2);
11367     bool u = extract32(insn, 29, 1);
11368     bool is_q = extract32(insn, 30, 1);
11369     bool feature;
11370     int rot;
11371 
11372     switch (u * 16 + opcode) {
11373     case 0x10: /* SQRDMLAH (vector) */
11374     case 0x11: /* SQRDMLSH (vector) */
11375         if (size != 1 && size != 2) {
11376             unallocated_encoding(s);
11377             return;
11378         }
11379         feature = dc_isar_feature(aa64_rdm, s);
11380         break;
11381     case 0x02: /* SDOT (vector) */
11382     case 0x12: /* UDOT (vector) */
11383         if (size != MO_32) {
11384             unallocated_encoding(s);
11385             return;
11386         }
11387         feature = dc_isar_feature(aa64_dp, s);
11388         break;
11389     case 0x03: /* USDOT */
11390         if (size != MO_32) {
11391             unallocated_encoding(s);
11392             return;
11393         }
11394         feature = dc_isar_feature(aa64_i8mm, s);
11395         break;
11396     case 0x04: /* SMMLA */
11397     case 0x14: /* UMMLA */
11398     case 0x05: /* USMMLA */
11399         if (!is_q || size != MO_32) {
11400             unallocated_encoding(s);
11401             return;
11402         }
11403         feature = dc_isar_feature(aa64_i8mm, s);
11404         break;
11405     case 0x18: /* FCMLA, #0 */
11406     case 0x19: /* FCMLA, #90 */
11407     case 0x1a: /* FCMLA, #180 */
11408     case 0x1b: /* FCMLA, #270 */
11409     case 0x1c: /* FCADD, #90 */
11410     case 0x1e: /* FCADD, #270 */
11411         if (size == 0
11412             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11413             || (size == 3 && !is_q)) {
11414             unallocated_encoding(s);
11415             return;
11416         }
11417         feature = dc_isar_feature(aa64_fcma, s);
11418         break;
11419     case 0x1d: /* BFMMLA */
11420         if (size != MO_16 || !is_q) {
11421             unallocated_encoding(s);
11422             return;
11423         }
11424         feature = dc_isar_feature(aa64_bf16, s);
11425         break;
11426     case 0x1f:
11427         switch (size) {
11428         case 1: /* BFDOT */
11429         case 3: /* BFMLAL{B,T} */
11430             feature = dc_isar_feature(aa64_bf16, s);
11431             break;
11432         default:
11433             unallocated_encoding(s);
11434             return;
11435         }
11436         break;
11437     default:
11438         unallocated_encoding(s);
11439         return;
11440     }
11441     if (!feature) {
11442         unallocated_encoding(s);
11443         return;
11444     }
11445     if (!fp_access_check(s)) {
11446         return;
11447     }
11448 
11449     switch (opcode) {
11450     case 0x0: /* SQRDMLAH (vector) */
11451         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11452         return;
11453 
11454     case 0x1: /* SQRDMLSH (vector) */
11455         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11456         return;
11457 
11458     case 0x2: /* SDOT / UDOT */
11459         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11460                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11461         return;
11462 
11463     case 0x3: /* USDOT */
11464         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11465         return;
11466 
11467     case 0x04: /* SMMLA, UMMLA */
11468         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11469                          u ? gen_helper_gvec_ummla_b
11470                          : gen_helper_gvec_smmla_b);
11471         return;
11472     case 0x05: /* USMMLA */
11473         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11474         return;
11475 
11476     case 0x8: /* FCMLA, #0 */
11477     case 0x9: /* FCMLA, #90 */
11478     case 0xa: /* FCMLA, #180 */
11479     case 0xb: /* FCMLA, #270 */
11480         rot = extract32(opcode, 0, 2);
11481         switch (size) {
11482         case 1:
11483             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11484                               gen_helper_gvec_fcmlah);
11485             break;
11486         case 2:
11487             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11488                               gen_helper_gvec_fcmlas);
11489             break;
11490         case 3:
11491             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11492                               gen_helper_gvec_fcmlad);
11493             break;
11494         default:
11495             g_assert_not_reached();
11496         }
11497         return;
11498 
11499     case 0xc: /* FCADD, #90 */
11500     case 0xe: /* FCADD, #270 */
11501         rot = extract32(opcode, 1, 1);
11502         switch (size) {
11503         case 1:
11504             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11505                               gen_helper_gvec_fcaddh);
11506             break;
11507         case 2:
11508             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11509                               gen_helper_gvec_fcadds);
11510             break;
11511         case 3:
11512             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11513                               gen_helper_gvec_fcaddd);
11514             break;
11515         default:
11516             g_assert_not_reached();
11517         }
11518         return;
11519 
11520     case 0xd: /* BFMMLA */
11521         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11522         return;
11523     case 0xf:
11524         switch (size) {
11525         case 1: /* BFDOT */
11526             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11527             break;
11528         case 3: /* BFMLAL{B,T} */
11529             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11530                               gen_helper_gvec_bfmlal);
11531             break;
11532         default:
11533             g_assert_not_reached();
11534         }
11535         return;
11536 
11537     default:
11538         g_assert_not_reached();
11539     }
11540 }
11541 
11542 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11543                                   int size, int rn, int rd)
11544 {
11545     /* Handle 2-reg-misc ops which are widening (so each size element
11546      * in the source becomes a 2*size element in the destination.
11547      * The only instruction like this is FCVTL.
11548      */
11549     int pass;
11550 
11551     if (size == 3) {
11552         /* 32 -> 64 bit fp conversion */
11553         TCGv_i64 tcg_res[2];
11554         int srcelt = is_q ? 2 : 0;
11555 
11556         for (pass = 0; pass < 2; pass++) {
11557             TCGv_i32 tcg_op = tcg_temp_new_i32();
11558             tcg_res[pass] = tcg_temp_new_i64();
11559 
11560             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11561             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11562         }
11563         for (pass = 0; pass < 2; pass++) {
11564             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11565         }
11566     } else {
11567         /* 16 -> 32 bit fp conversion */
11568         int srcelt = is_q ? 4 : 0;
11569         TCGv_i32 tcg_res[4];
11570         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11571         TCGv_i32 ahp = get_ahp_flag();
11572 
11573         for (pass = 0; pass < 4; pass++) {
11574             tcg_res[pass] = tcg_temp_new_i32();
11575 
11576             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11577             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11578                                            fpst, ahp);
11579         }
11580         for (pass = 0; pass < 4; pass++) {
11581             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11582         }
11583     }
11584 }
11585 
11586 static void handle_rev(DisasContext *s, int opcode, bool u,
11587                        bool is_q, int size, int rn, int rd)
11588 {
11589     int op = (opcode << 1) | u;
11590     int opsz = op + size;
11591     int grp_size = 3 - opsz;
11592     int dsize = is_q ? 128 : 64;
11593     int i;
11594 
11595     if (opsz >= 3) {
11596         unallocated_encoding(s);
11597         return;
11598     }
11599 
11600     if (!fp_access_check(s)) {
11601         return;
11602     }
11603 
11604     if (size == 0) {
11605         /* Special case bytes, use bswap op on each group of elements */
11606         int groups = dsize / (8 << grp_size);
11607 
11608         for (i = 0; i < groups; i++) {
11609             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11610 
11611             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11612             switch (grp_size) {
11613             case MO_16:
11614                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11615                 break;
11616             case MO_32:
11617                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11618                 break;
11619             case MO_64:
11620                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11621                 break;
11622             default:
11623                 g_assert_not_reached();
11624             }
11625             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11626         }
11627         clear_vec_high(s, is_q, rd);
11628     } else {
11629         int revmask = (1 << grp_size) - 1;
11630         int esize = 8 << size;
11631         int elements = dsize / esize;
11632         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11633         TCGv_i64 tcg_rd[2];
11634 
11635         for (i = 0; i < 2; i++) {
11636             tcg_rd[i] = tcg_temp_new_i64();
11637             tcg_gen_movi_i64(tcg_rd[i], 0);
11638         }
11639 
11640         for (i = 0; i < elements; i++) {
11641             int e_rev = (i & 0xf) ^ revmask;
11642             int w = (e_rev * esize) / 64;
11643             int o = (e_rev * esize) % 64;
11644 
11645             read_vec_element(s, tcg_rn, rn, i, size);
11646             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11647         }
11648 
11649         for (i = 0; i < 2; i++) {
11650             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11651         }
11652         clear_vec_high(s, true, rd);
11653     }
11654 }
11655 
11656 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11657                                   bool is_q, int size, int rn, int rd)
11658 {
11659     /* Implement the pairwise operations from 2-misc:
11660      * SADDLP, UADDLP, SADALP, UADALP.
11661      * These all add pairs of elements in the input to produce a
11662      * double-width result element in the output (possibly accumulating).
11663      */
11664     bool accum = (opcode == 0x6);
11665     int maxpass = is_q ? 2 : 1;
11666     int pass;
11667     TCGv_i64 tcg_res[2];
11668 
11669     if (size == 2) {
11670         /* 32 + 32 -> 64 op */
11671         MemOp memop = size + (u ? 0 : MO_SIGN);
11672 
11673         for (pass = 0; pass < maxpass; pass++) {
11674             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11675             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11676 
11677             tcg_res[pass] = tcg_temp_new_i64();
11678 
11679             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11680             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11681             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11682             if (accum) {
11683                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11684                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11685             }
11686         }
11687     } else {
11688         for (pass = 0; pass < maxpass; pass++) {
11689             TCGv_i64 tcg_op = tcg_temp_new_i64();
11690             NeonGenOne64OpFn *genfn;
11691             static NeonGenOne64OpFn * const fns[2][2] = {
11692                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11693                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11694             };
11695 
11696             genfn = fns[size][u];
11697 
11698             tcg_res[pass] = tcg_temp_new_i64();
11699 
11700             read_vec_element(s, tcg_op, rn, pass, MO_64);
11701             genfn(tcg_res[pass], tcg_op);
11702 
11703             if (accum) {
11704                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11705                 if (size == 0) {
11706                     gen_helper_neon_addl_u16(tcg_res[pass],
11707                                              tcg_res[pass], tcg_op);
11708                 } else {
11709                     gen_helper_neon_addl_u32(tcg_res[pass],
11710                                              tcg_res[pass], tcg_op);
11711                 }
11712             }
11713         }
11714     }
11715     if (!is_q) {
11716         tcg_res[1] = tcg_constant_i64(0);
11717     }
11718     for (pass = 0; pass < 2; pass++) {
11719         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11720     }
11721 }
11722 
11723 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11724 {
11725     /* Implement SHLL and SHLL2 */
11726     int pass;
11727     int part = is_q ? 2 : 0;
11728     TCGv_i64 tcg_res[2];
11729 
11730     for (pass = 0; pass < 2; pass++) {
11731         static NeonGenWidenFn * const widenfns[3] = {
11732             gen_helper_neon_widen_u8,
11733             gen_helper_neon_widen_u16,
11734             tcg_gen_extu_i32_i64,
11735         };
11736         NeonGenWidenFn *widenfn = widenfns[size];
11737         TCGv_i32 tcg_op = tcg_temp_new_i32();
11738 
11739         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11740         tcg_res[pass] = tcg_temp_new_i64();
11741         widenfn(tcg_res[pass], tcg_op);
11742         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11743     }
11744 
11745     for (pass = 0; pass < 2; pass++) {
11746         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11747     }
11748 }
11749 
11750 /* AdvSIMD two reg misc
11751  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11752  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11753  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11754  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11755  */
11756 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11757 {
11758     int size = extract32(insn, 22, 2);
11759     int opcode = extract32(insn, 12, 5);
11760     bool u = extract32(insn, 29, 1);
11761     bool is_q = extract32(insn, 30, 1);
11762     int rn = extract32(insn, 5, 5);
11763     int rd = extract32(insn, 0, 5);
11764     bool need_fpstatus = false;
11765     int rmode = -1;
11766     TCGv_i32 tcg_rmode;
11767     TCGv_ptr tcg_fpstatus;
11768 
11769     switch (opcode) {
11770     case 0x0: /* REV64, REV32 */
11771     case 0x1: /* REV16 */
11772         handle_rev(s, opcode, u, is_q, size, rn, rd);
11773         return;
11774     case 0x5: /* CNT, NOT, RBIT */
11775         if (u && size == 0) {
11776             /* NOT */
11777             break;
11778         } else if (u && size == 1) {
11779             /* RBIT */
11780             break;
11781         } else if (!u && size == 0) {
11782             /* CNT */
11783             break;
11784         }
11785         unallocated_encoding(s);
11786         return;
11787     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11788     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11789         if (size == 3) {
11790             unallocated_encoding(s);
11791             return;
11792         }
11793         if (!fp_access_check(s)) {
11794             return;
11795         }
11796 
11797         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11798         return;
11799     case 0x4: /* CLS, CLZ */
11800         if (size == 3) {
11801             unallocated_encoding(s);
11802             return;
11803         }
11804         break;
11805     case 0x2: /* SADDLP, UADDLP */
11806     case 0x6: /* SADALP, UADALP */
11807         if (size == 3) {
11808             unallocated_encoding(s);
11809             return;
11810         }
11811         if (!fp_access_check(s)) {
11812             return;
11813         }
11814         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11815         return;
11816     case 0x13: /* SHLL, SHLL2 */
11817         if (u == 0 || size == 3) {
11818             unallocated_encoding(s);
11819             return;
11820         }
11821         if (!fp_access_check(s)) {
11822             return;
11823         }
11824         handle_shll(s, is_q, size, rn, rd);
11825         return;
11826     case 0xa: /* CMLT */
11827         if (u == 1) {
11828             unallocated_encoding(s);
11829             return;
11830         }
11831         /* fall through */
11832     case 0x8: /* CMGT, CMGE */
11833     case 0x9: /* CMEQ, CMLE */
11834     case 0xb: /* ABS, NEG */
11835         if (size == 3 && !is_q) {
11836             unallocated_encoding(s);
11837             return;
11838         }
11839         break;
11840     case 0x3: /* SUQADD, USQADD */
11841         if (size == 3 && !is_q) {
11842             unallocated_encoding(s);
11843             return;
11844         }
11845         if (!fp_access_check(s)) {
11846             return;
11847         }
11848         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11849         return;
11850     case 0x7: /* SQABS, SQNEG */
11851         if (size == 3 && !is_q) {
11852             unallocated_encoding(s);
11853             return;
11854         }
11855         break;
11856     case 0xc ... 0xf:
11857     case 0x16 ... 0x1f:
11858     {
11859         /* Floating point: U, size[1] and opcode indicate operation;
11860          * size[0] indicates single or double precision.
11861          */
11862         int is_double = extract32(size, 0, 1);
11863         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11864         size = is_double ? 3 : 2;
11865         switch (opcode) {
11866         case 0x2f: /* FABS */
11867         case 0x6f: /* FNEG */
11868             if (size == 3 && !is_q) {
11869                 unallocated_encoding(s);
11870                 return;
11871             }
11872             break;
11873         case 0x1d: /* SCVTF */
11874         case 0x5d: /* UCVTF */
11875         {
11876             bool is_signed = (opcode == 0x1d) ? true : false;
11877             int elements = is_double ? 2 : is_q ? 4 : 2;
11878             if (is_double && !is_q) {
11879                 unallocated_encoding(s);
11880                 return;
11881             }
11882             if (!fp_access_check(s)) {
11883                 return;
11884             }
11885             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11886             return;
11887         }
11888         case 0x2c: /* FCMGT (zero) */
11889         case 0x2d: /* FCMEQ (zero) */
11890         case 0x2e: /* FCMLT (zero) */
11891         case 0x6c: /* FCMGE (zero) */
11892         case 0x6d: /* FCMLE (zero) */
11893             if (size == 3 && !is_q) {
11894                 unallocated_encoding(s);
11895                 return;
11896             }
11897             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11898             return;
11899         case 0x7f: /* FSQRT */
11900             if (size == 3 && !is_q) {
11901                 unallocated_encoding(s);
11902                 return;
11903             }
11904             break;
11905         case 0x1a: /* FCVTNS */
11906         case 0x1b: /* FCVTMS */
11907         case 0x3a: /* FCVTPS */
11908         case 0x3b: /* FCVTZS */
11909         case 0x5a: /* FCVTNU */
11910         case 0x5b: /* FCVTMU */
11911         case 0x7a: /* FCVTPU */
11912         case 0x7b: /* FCVTZU */
11913             need_fpstatus = true;
11914             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11915             if (size == 3 && !is_q) {
11916                 unallocated_encoding(s);
11917                 return;
11918             }
11919             break;
11920         case 0x5c: /* FCVTAU */
11921         case 0x1c: /* FCVTAS */
11922             need_fpstatus = true;
11923             rmode = FPROUNDING_TIEAWAY;
11924             if (size == 3 && !is_q) {
11925                 unallocated_encoding(s);
11926                 return;
11927             }
11928             break;
11929         case 0x3c: /* URECPE */
11930             if (size == 3) {
11931                 unallocated_encoding(s);
11932                 return;
11933             }
11934             /* fall through */
11935         case 0x3d: /* FRECPE */
11936         case 0x7d: /* FRSQRTE */
11937             if (size == 3 && !is_q) {
11938                 unallocated_encoding(s);
11939                 return;
11940             }
11941             if (!fp_access_check(s)) {
11942                 return;
11943             }
11944             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11945             return;
11946         case 0x56: /* FCVTXN, FCVTXN2 */
11947             if (size == 2) {
11948                 unallocated_encoding(s);
11949                 return;
11950             }
11951             /* fall through */
11952         case 0x16: /* FCVTN, FCVTN2 */
11953             /* handle_2misc_narrow does a 2*size -> size operation, but these
11954              * instructions encode the source size rather than dest size.
11955              */
11956             if (!fp_access_check(s)) {
11957                 return;
11958             }
11959             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11960             return;
11961         case 0x36: /* BFCVTN, BFCVTN2 */
11962             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11963                 unallocated_encoding(s);
11964                 return;
11965             }
11966             if (!fp_access_check(s)) {
11967                 return;
11968             }
11969             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11970             return;
11971         case 0x17: /* FCVTL, FCVTL2 */
11972             if (!fp_access_check(s)) {
11973                 return;
11974             }
11975             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11976             return;
11977         case 0x18: /* FRINTN */
11978         case 0x19: /* FRINTM */
11979         case 0x38: /* FRINTP */
11980         case 0x39: /* FRINTZ */
11981             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11982             /* fall through */
11983         case 0x59: /* FRINTX */
11984         case 0x79: /* FRINTI */
11985             need_fpstatus = true;
11986             if (size == 3 && !is_q) {
11987                 unallocated_encoding(s);
11988                 return;
11989             }
11990             break;
11991         case 0x58: /* FRINTA */
11992             rmode = FPROUNDING_TIEAWAY;
11993             need_fpstatus = true;
11994             if (size == 3 && !is_q) {
11995                 unallocated_encoding(s);
11996                 return;
11997             }
11998             break;
11999         case 0x7c: /* URSQRTE */
12000             if (size == 3) {
12001                 unallocated_encoding(s);
12002                 return;
12003             }
12004             break;
12005         case 0x1e: /* FRINT32Z */
12006         case 0x1f: /* FRINT64Z */
12007             rmode = FPROUNDING_ZERO;
12008             /* fall through */
12009         case 0x5e: /* FRINT32X */
12010         case 0x5f: /* FRINT64X */
12011             need_fpstatus = true;
12012             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12013                 unallocated_encoding(s);
12014                 return;
12015             }
12016             break;
12017         default:
12018             unallocated_encoding(s);
12019             return;
12020         }
12021         break;
12022     }
12023     default:
12024         unallocated_encoding(s);
12025         return;
12026     }
12027 
12028     if (!fp_access_check(s)) {
12029         return;
12030     }
12031 
12032     if (need_fpstatus || rmode >= 0) {
12033         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12034     } else {
12035         tcg_fpstatus = NULL;
12036     }
12037     if (rmode >= 0) {
12038         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12039     } else {
12040         tcg_rmode = NULL;
12041     }
12042 
12043     switch (opcode) {
12044     case 0x5:
12045         if (u && size == 0) { /* NOT */
12046             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12047             return;
12048         }
12049         break;
12050     case 0x8: /* CMGT, CMGE */
12051         if (u) {
12052             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12053         } else {
12054             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12055         }
12056         return;
12057     case 0x9: /* CMEQ, CMLE */
12058         if (u) {
12059             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12060         } else {
12061             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12062         }
12063         return;
12064     case 0xa: /* CMLT */
12065         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12066         return;
12067     case 0xb:
12068         if (u) { /* ABS, NEG */
12069             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12070         } else {
12071             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12072         }
12073         return;
12074     }
12075 
12076     if (size == 3) {
12077         /* All 64-bit element operations can be shared with scalar 2misc */
12078         int pass;
12079 
12080         /* Coverity claims (size == 3 && !is_q) has been eliminated
12081          * from all paths leading to here.
12082          */
12083         tcg_debug_assert(is_q);
12084         for (pass = 0; pass < 2; pass++) {
12085             TCGv_i64 tcg_op = tcg_temp_new_i64();
12086             TCGv_i64 tcg_res = tcg_temp_new_i64();
12087 
12088             read_vec_element(s, tcg_op, rn, pass, MO_64);
12089 
12090             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12091                             tcg_rmode, tcg_fpstatus);
12092 
12093             write_vec_element(s, tcg_res, rd, pass, MO_64);
12094         }
12095     } else {
12096         int pass;
12097 
12098         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12099             TCGv_i32 tcg_op = tcg_temp_new_i32();
12100             TCGv_i32 tcg_res = tcg_temp_new_i32();
12101 
12102             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12103 
12104             if (size == 2) {
12105                 /* Special cases for 32 bit elements */
12106                 switch (opcode) {
12107                 case 0x4: /* CLS */
12108                     if (u) {
12109                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12110                     } else {
12111                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12112                     }
12113                     break;
12114                 case 0x7: /* SQABS, SQNEG */
12115                     if (u) {
12116                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12117                     } else {
12118                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12119                     }
12120                     break;
12121                 case 0x2f: /* FABS */
12122                     gen_vfp_abss(tcg_res, tcg_op);
12123                     break;
12124                 case 0x6f: /* FNEG */
12125                     gen_vfp_negs(tcg_res, tcg_op);
12126                     break;
12127                 case 0x7f: /* FSQRT */
12128                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12129                     break;
12130                 case 0x1a: /* FCVTNS */
12131                 case 0x1b: /* FCVTMS */
12132                 case 0x1c: /* FCVTAS */
12133                 case 0x3a: /* FCVTPS */
12134                 case 0x3b: /* FCVTZS */
12135                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12136                                          tcg_constant_i32(0), tcg_fpstatus);
12137                     break;
12138                 case 0x5a: /* FCVTNU */
12139                 case 0x5b: /* FCVTMU */
12140                 case 0x5c: /* FCVTAU */
12141                 case 0x7a: /* FCVTPU */
12142                 case 0x7b: /* FCVTZU */
12143                     gen_helper_vfp_touls(tcg_res, tcg_op,
12144                                          tcg_constant_i32(0), tcg_fpstatus);
12145                     break;
12146                 case 0x18: /* FRINTN */
12147                 case 0x19: /* FRINTM */
12148                 case 0x38: /* FRINTP */
12149                 case 0x39: /* FRINTZ */
12150                 case 0x58: /* FRINTA */
12151                 case 0x79: /* FRINTI */
12152                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12153                     break;
12154                 case 0x59: /* FRINTX */
12155                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12156                     break;
12157                 case 0x7c: /* URSQRTE */
12158                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12159                     break;
12160                 case 0x1e: /* FRINT32Z */
12161                 case 0x5e: /* FRINT32X */
12162                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12163                     break;
12164                 case 0x1f: /* FRINT64Z */
12165                 case 0x5f: /* FRINT64X */
12166                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12167                     break;
12168                 default:
12169                     g_assert_not_reached();
12170                 }
12171             } else {
12172                 /* Use helpers for 8 and 16 bit elements */
12173                 switch (opcode) {
12174                 case 0x5: /* CNT, RBIT */
12175                     /* For these two insns size is part of the opcode specifier
12176                      * (handled earlier); they always operate on byte elements.
12177                      */
12178                     if (u) {
12179                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12180                     } else {
12181                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12182                     }
12183                     break;
12184                 case 0x7: /* SQABS, SQNEG */
12185                 {
12186                     NeonGenOneOpEnvFn *genfn;
12187                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12188                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12189                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12190                     };
12191                     genfn = fns[size][u];
12192                     genfn(tcg_res, tcg_env, tcg_op);
12193                     break;
12194                 }
12195                 case 0x4: /* CLS, CLZ */
12196                     if (u) {
12197                         if (size == 0) {
12198                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12199                         } else {
12200                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12201                         }
12202                     } else {
12203                         if (size == 0) {
12204                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12205                         } else {
12206                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12207                         }
12208                     }
12209                     break;
12210                 default:
12211                     g_assert_not_reached();
12212                 }
12213             }
12214 
12215             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12216         }
12217     }
12218     clear_vec_high(s, is_q, rd);
12219 
12220     if (tcg_rmode) {
12221         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12222     }
12223 }
12224 
12225 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12226  *
12227  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12228  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12229  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12230  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12231  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12232  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12233  *
12234  * This actually covers two groups where scalar access is governed by
12235  * bit 28. A bunch of the instructions (float to integral) only exist
12236  * in the vector form and are un-allocated for the scalar decode. Also
12237  * in the scalar decode Q is always 1.
12238  */
12239 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12240 {
12241     int fpop, opcode, a, u;
12242     int rn, rd;
12243     bool is_q;
12244     bool is_scalar;
12245     bool only_in_vector = false;
12246 
12247     int pass;
12248     TCGv_i32 tcg_rmode = NULL;
12249     TCGv_ptr tcg_fpstatus = NULL;
12250     bool need_fpst = true;
12251     int rmode = -1;
12252 
12253     if (!dc_isar_feature(aa64_fp16, s)) {
12254         unallocated_encoding(s);
12255         return;
12256     }
12257 
12258     rd = extract32(insn, 0, 5);
12259     rn = extract32(insn, 5, 5);
12260 
12261     a = extract32(insn, 23, 1);
12262     u = extract32(insn, 29, 1);
12263     is_scalar = extract32(insn, 28, 1);
12264     is_q = extract32(insn, 30, 1);
12265 
12266     opcode = extract32(insn, 12, 5);
12267     fpop = deposit32(opcode, 5, 1, a);
12268     fpop = deposit32(fpop, 6, 1, u);
12269 
12270     switch (fpop) {
12271     case 0x1d: /* SCVTF */
12272     case 0x5d: /* UCVTF */
12273     {
12274         int elements;
12275 
12276         if (is_scalar) {
12277             elements = 1;
12278         } else {
12279             elements = (is_q ? 8 : 4);
12280         }
12281 
12282         if (!fp_access_check(s)) {
12283             return;
12284         }
12285         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12286         return;
12287     }
12288     break;
12289     case 0x2c: /* FCMGT (zero) */
12290     case 0x2d: /* FCMEQ (zero) */
12291     case 0x2e: /* FCMLT (zero) */
12292     case 0x6c: /* FCMGE (zero) */
12293     case 0x6d: /* FCMLE (zero) */
12294         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12295         return;
12296     case 0x3d: /* FRECPE */
12297     case 0x3f: /* FRECPX */
12298         break;
12299     case 0x18: /* FRINTN */
12300         only_in_vector = true;
12301         rmode = FPROUNDING_TIEEVEN;
12302         break;
12303     case 0x19: /* FRINTM */
12304         only_in_vector = true;
12305         rmode = FPROUNDING_NEGINF;
12306         break;
12307     case 0x38: /* FRINTP */
12308         only_in_vector = true;
12309         rmode = FPROUNDING_POSINF;
12310         break;
12311     case 0x39: /* FRINTZ */
12312         only_in_vector = true;
12313         rmode = FPROUNDING_ZERO;
12314         break;
12315     case 0x58: /* FRINTA */
12316         only_in_vector = true;
12317         rmode = FPROUNDING_TIEAWAY;
12318         break;
12319     case 0x59: /* FRINTX */
12320     case 0x79: /* FRINTI */
12321         only_in_vector = true;
12322         /* current rounding mode */
12323         break;
12324     case 0x1a: /* FCVTNS */
12325         rmode = FPROUNDING_TIEEVEN;
12326         break;
12327     case 0x1b: /* FCVTMS */
12328         rmode = FPROUNDING_NEGINF;
12329         break;
12330     case 0x1c: /* FCVTAS */
12331         rmode = FPROUNDING_TIEAWAY;
12332         break;
12333     case 0x3a: /* FCVTPS */
12334         rmode = FPROUNDING_POSINF;
12335         break;
12336     case 0x3b: /* FCVTZS */
12337         rmode = FPROUNDING_ZERO;
12338         break;
12339     case 0x5a: /* FCVTNU */
12340         rmode = FPROUNDING_TIEEVEN;
12341         break;
12342     case 0x5b: /* FCVTMU */
12343         rmode = FPROUNDING_NEGINF;
12344         break;
12345     case 0x5c: /* FCVTAU */
12346         rmode = FPROUNDING_TIEAWAY;
12347         break;
12348     case 0x7a: /* FCVTPU */
12349         rmode = FPROUNDING_POSINF;
12350         break;
12351     case 0x7b: /* FCVTZU */
12352         rmode = FPROUNDING_ZERO;
12353         break;
12354     case 0x2f: /* FABS */
12355     case 0x6f: /* FNEG */
12356         need_fpst = false;
12357         break;
12358     case 0x7d: /* FRSQRTE */
12359     case 0x7f: /* FSQRT (vector) */
12360         break;
12361     default:
12362         unallocated_encoding(s);
12363         return;
12364     }
12365 
12366 
12367     /* Check additional constraints for the scalar encoding */
12368     if (is_scalar) {
12369         if (!is_q) {
12370             unallocated_encoding(s);
12371             return;
12372         }
12373         /* FRINTxx is only in the vector form */
12374         if (only_in_vector) {
12375             unallocated_encoding(s);
12376             return;
12377         }
12378     }
12379 
12380     if (!fp_access_check(s)) {
12381         return;
12382     }
12383 
12384     if (rmode >= 0 || need_fpst) {
12385         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12386     }
12387 
12388     if (rmode >= 0) {
12389         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12390     }
12391 
12392     if (is_scalar) {
12393         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12394         TCGv_i32 tcg_res = tcg_temp_new_i32();
12395 
12396         switch (fpop) {
12397         case 0x1a: /* FCVTNS */
12398         case 0x1b: /* FCVTMS */
12399         case 0x1c: /* FCVTAS */
12400         case 0x3a: /* FCVTPS */
12401         case 0x3b: /* FCVTZS */
12402             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12403             break;
12404         case 0x3d: /* FRECPE */
12405             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12406             break;
12407         case 0x3f: /* FRECPX */
12408             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12409             break;
12410         case 0x5a: /* FCVTNU */
12411         case 0x5b: /* FCVTMU */
12412         case 0x5c: /* FCVTAU */
12413         case 0x7a: /* FCVTPU */
12414         case 0x7b: /* FCVTZU */
12415             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12416             break;
12417         case 0x6f: /* FNEG */
12418             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12419             break;
12420         case 0x7d: /* FRSQRTE */
12421             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12422             break;
12423         default:
12424             g_assert_not_reached();
12425         }
12426 
12427         /* limit any sign extension going on */
12428         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12429         write_fp_sreg(s, rd, tcg_res);
12430     } else {
12431         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12432             TCGv_i32 tcg_op = tcg_temp_new_i32();
12433             TCGv_i32 tcg_res = tcg_temp_new_i32();
12434 
12435             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12436 
12437             switch (fpop) {
12438             case 0x1a: /* FCVTNS */
12439             case 0x1b: /* FCVTMS */
12440             case 0x1c: /* FCVTAS */
12441             case 0x3a: /* FCVTPS */
12442             case 0x3b: /* FCVTZS */
12443                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12444                 break;
12445             case 0x3d: /* FRECPE */
12446                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12447                 break;
12448             case 0x5a: /* FCVTNU */
12449             case 0x5b: /* FCVTMU */
12450             case 0x5c: /* FCVTAU */
12451             case 0x7a: /* FCVTPU */
12452             case 0x7b: /* FCVTZU */
12453                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12454                 break;
12455             case 0x18: /* FRINTN */
12456             case 0x19: /* FRINTM */
12457             case 0x38: /* FRINTP */
12458             case 0x39: /* FRINTZ */
12459             case 0x58: /* FRINTA */
12460             case 0x79: /* FRINTI */
12461                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12462                 break;
12463             case 0x59: /* FRINTX */
12464                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12465                 break;
12466             case 0x2f: /* FABS */
12467                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12468                 break;
12469             case 0x6f: /* FNEG */
12470                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12471                 break;
12472             case 0x7d: /* FRSQRTE */
12473                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12474                 break;
12475             case 0x7f: /* FSQRT */
12476                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12477                 break;
12478             default:
12479                 g_assert_not_reached();
12480             }
12481 
12482             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12483         }
12484 
12485         clear_vec_high(s, is_q, rd);
12486     }
12487 
12488     if (tcg_rmode) {
12489         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12490     }
12491 }
12492 
12493 /* AdvSIMD scalar x indexed element
12494  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12495  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12496  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12497  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12498  * AdvSIMD vector x indexed element
12499  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12500  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12501  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12502  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12503  */
12504 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12505 {
12506     /* This encoding has two kinds of instruction:
12507      *  normal, where we perform elt x idxelt => elt for each
12508      *     element in the vector
12509      *  long, where we perform elt x idxelt and generate a result of
12510      *     double the width of the input element
12511      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12512      */
12513     bool is_scalar = extract32(insn, 28, 1);
12514     bool is_q = extract32(insn, 30, 1);
12515     bool u = extract32(insn, 29, 1);
12516     int size = extract32(insn, 22, 2);
12517     int l = extract32(insn, 21, 1);
12518     int m = extract32(insn, 20, 1);
12519     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12520     int rm = extract32(insn, 16, 4);
12521     int opcode = extract32(insn, 12, 4);
12522     int h = extract32(insn, 11, 1);
12523     int rn = extract32(insn, 5, 5);
12524     int rd = extract32(insn, 0, 5);
12525     bool is_long = false;
12526     int is_fp = 0;
12527     bool is_fp16 = false;
12528     int index;
12529     TCGv_ptr fpst;
12530 
12531     switch (16 * u + opcode) {
12532     case 0x08: /* MUL */
12533     case 0x10: /* MLA */
12534     case 0x14: /* MLS */
12535         if (is_scalar) {
12536             unallocated_encoding(s);
12537             return;
12538         }
12539         break;
12540     case 0x02: /* SMLAL, SMLAL2 */
12541     case 0x12: /* UMLAL, UMLAL2 */
12542     case 0x06: /* SMLSL, SMLSL2 */
12543     case 0x16: /* UMLSL, UMLSL2 */
12544     case 0x0a: /* SMULL, SMULL2 */
12545     case 0x1a: /* UMULL, UMULL2 */
12546         if (is_scalar) {
12547             unallocated_encoding(s);
12548             return;
12549         }
12550         is_long = true;
12551         break;
12552     case 0x03: /* SQDMLAL, SQDMLAL2 */
12553     case 0x07: /* SQDMLSL, SQDMLSL2 */
12554     case 0x0b: /* SQDMULL, SQDMULL2 */
12555         is_long = true;
12556         break;
12557     case 0x0c: /* SQDMULH */
12558     case 0x0d: /* SQRDMULH */
12559         break;
12560     case 0x1d: /* SQRDMLAH */
12561     case 0x1f: /* SQRDMLSH */
12562         if (!dc_isar_feature(aa64_rdm, s)) {
12563             unallocated_encoding(s);
12564             return;
12565         }
12566         break;
12567     case 0x0e: /* SDOT */
12568     case 0x1e: /* UDOT */
12569         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12570             unallocated_encoding(s);
12571             return;
12572         }
12573         break;
12574     case 0x0f:
12575         switch (size) {
12576         case 0: /* SUDOT */
12577         case 2: /* USDOT */
12578             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12579                 unallocated_encoding(s);
12580                 return;
12581             }
12582             size = MO_32;
12583             break;
12584         case 1: /* BFDOT */
12585             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12586                 unallocated_encoding(s);
12587                 return;
12588             }
12589             size = MO_32;
12590             break;
12591         case 3: /* BFMLAL{B,T} */
12592             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12593                 unallocated_encoding(s);
12594                 return;
12595             }
12596             /* can't set is_fp without other incorrect size checks */
12597             size = MO_16;
12598             break;
12599         default:
12600             unallocated_encoding(s);
12601             return;
12602         }
12603         break;
12604     case 0x11: /* FCMLA #0 */
12605     case 0x13: /* FCMLA #90 */
12606     case 0x15: /* FCMLA #180 */
12607     case 0x17: /* FCMLA #270 */
12608         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12609             unallocated_encoding(s);
12610             return;
12611         }
12612         is_fp = 2;
12613         break;
12614     case 0x00: /* FMLAL */
12615     case 0x04: /* FMLSL */
12616     case 0x18: /* FMLAL2 */
12617     case 0x1c: /* FMLSL2 */
12618         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12619             unallocated_encoding(s);
12620             return;
12621         }
12622         size = MO_16;
12623         /* is_fp, but we pass tcg_env not fp_status.  */
12624         break;
12625     default:
12626     case 0x01: /* FMLA */
12627     case 0x05: /* FMLS */
12628     case 0x09: /* FMUL */
12629     case 0x19: /* FMULX */
12630         unallocated_encoding(s);
12631         return;
12632     }
12633 
12634     switch (is_fp) {
12635     case 1: /* normal fp */
12636         unallocated_encoding(s); /* in decodetree */
12637         return;
12638 
12639     case 2: /* complex fp */
12640         /* Each indexable element is a complex pair.  */
12641         size += 1;
12642         switch (size) {
12643         case MO_32:
12644             if (h && !is_q) {
12645                 unallocated_encoding(s);
12646                 return;
12647             }
12648             is_fp16 = true;
12649             break;
12650         case MO_64:
12651             break;
12652         default:
12653             unallocated_encoding(s);
12654             return;
12655         }
12656         break;
12657 
12658     default: /* integer */
12659         switch (size) {
12660         case MO_8:
12661         case MO_64:
12662             unallocated_encoding(s);
12663             return;
12664         }
12665         break;
12666     }
12667     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12668         unallocated_encoding(s);
12669         return;
12670     }
12671 
12672     /* Given MemOp size, adjust register and indexing.  */
12673     switch (size) {
12674     case MO_16:
12675         index = h << 2 | l << 1 | m;
12676         break;
12677     case MO_32:
12678         index = h << 1 | l;
12679         rm |= m << 4;
12680         break;
12681     case MO_64:
12682         if (l || !is_q) {
12683             unallocated_encoding(s);
12684             return;
12685         }
12686         index = h;
12687         rm |= m << 4;
12688         break;
12689     default:
12690         g_assert_not_reached();
12691     }
12692 
12693     if (!fp_access_check(s)) {
12694         return;
12695     }
12696 
12697     if (is_fp) {
12698         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12699     } else {
12700         fpst = NULL;
12701     }
12702 
12703     switch (16 * u + opcode) {
12704     case 0x0e: /* SDOT */
12705     case 0x1e: /* UDOT */
12706         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12707                          u ? gen_helper_gvec_udot_idx_b
12708                          : gen_helper_gvec_sdot_idx_b);
12709         return;
12710     case 0x0f:
12711         switch (extract32(insn, 22, 2)) {
12712         case 0: /* SUDOT */
12713             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12714                              gen_helper_gvec_sudot_idx_b);
12715             return;
12716         case 1: /* BFDOT */
12717             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12718                              gen_helper_gvec_bfdot_idx);
12719             return;
12720         case 2: /* USDOT */
12721             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12722                              gen_helper_gvec_usdot_idx_b);
12723             return;
12724         case 3: /* BFMLAL{B,T} */
12725             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12726                               gen_helper_gvec_bfmlal_idx);
12727             return;
12728         }
12729         g_assert_not_reached();
12730     case 0x11: /* FCMLA #0 */
12731     case 0x13: /* FCMLA #90 */
12732     case 0x15: /* FCMLA #180 */
12733     case 0x17: /* FCMLA #270 */
12734         {
12735             int rot = extract32(insn, 13, 2);
12736             int data = (index << 2) | rot;
12737             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12738                                vec_full_reg_offset(s, rn),
12739                                vec_full_reg_offset(s, rm),
12740                                vec_full_reg_offset(s, rd), fpst,
12741                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12742                                size == MO_64
12743                                ? gen_helper_gvec_fcmlas_idx
12744                                : gen_helper_gvec_fcmlah_idx);
12745         }
12746         return;
12747 
12748     case 0x00: /* FMLAL */
12749     case 0x04: /* FMLSL */
12750     case 0x18: /* FMLAL2 */
12751     case 0x1c: /* FMLSL2 */
12752         {
12753             int is_s = extract32(opcode, 2, 1);
12754             int is_2 = u;
12755             int data = (index << 2) | (is_2 << 1) | is_s;
12756             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12757                                vec_full_reg_offset(s, rn),
12758                                vec_full_reg_offset(s, rm), tcg_env,
12759                                is_q ? 16 : 8, vec_full_reg_size(s),
12760                                data, gen_helper_gvec_fmlal_idx_a64);
12761         }
12762         return;
12763 
12764     case 0x08: /* MUL */
12765         if (!is_long && !is_scalar) {
12766             static gen_helper_gvec_3 * const fns[3] = {
12767                 gen_helper_gvec_mul_idx_h,
12768                 gen_helper_gvec_mul_idx_s,
12769                 gen_helper_gvec_mul_idx_d,
12770             };
12771             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12772                                vec_full_reg_offset(s, rn),
12773                                vec_full_reg_offset(s, rm),
12774                                is_q ? 16 : 8, vec_full_reg_size(s),
12775                                index, fns[size - 1]);
12776             return;
12777         }
12778         break;
12779 
12780     case 0x10: /* MLA */
12781         if (!is_long && !is_scalar) {
12782             static gen_helper_gvec_4 * const fns[3] = {
12783                 gen_helper_gvec_mla_idx_h,
12784                 gen_helper_gvec_mla_idx_s,
12785                 gen_helper_gvec_mla_idx_d,
12786             };
12787             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12788                                vec_full_reg_offset(s, rn),
12789                                vec_full_reg_offset(s, rm),
12790                                vec_full_reg_offset(s, rd),
12791                                is_q ? 16 : 8, vec_full_reg_size(s),
12792                                index, fns[size - 1]);
12793             return;
12794         }
12795         break;
12796 
12797     case 0x14: /* MLS */
12798         if (!is_long && !is_scalar) {
12799             static gen_helper_gvec_4 * const fns[3] = {
12800                 gen_helper_gvec_mls_idx_h,
12801                 gen_helper_gvec_mls_idx_s,
12802                 gen_helper_gvec_mls_idx_d,
12803             };
12804             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12805                                vec_full_reg_offset(s, rn),
12806                                vec_full_reg_offset(s, rm),
12807                                vec_full_reg_offset(s, rd),
12808                                is_q ? 16 : 8, vec_full_reg_size(s),
12809                                index, fns[size - 1]);
12810             return;
12811         }
12812         break;
12813     }
12814 
12815     if (size == 3) {
12816         g_assert_not_reached();
12817     } else if (!is_long) {
12818         /* 32 bit floating point, or 16 or 32 bit integer.
12819          * For the 16 bit scalar case we use the usual Neon helpers and
12820          * rely on the fact that 0 op 0 == 0 with no side effects.
12821          */
12822         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12823         int pass, maxpasses;
12824 
12825         if (is_scalar) {
12826             maxpasses = 1;
12827         } else {
12828             maxpasses = is_q ? 4 : 2;
12829         }
12830 
12831         read_vec_element_i32(s, tcg_idx, rm, index, size);
12832 
12833         if (size == 1 && !is_scalar) {
12834             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12835              * the index into both halves of the 32 bit tcg_idx and then use
12836              * the usual Neon helpers.
12837              */
12838             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12839         }
12840 
12841         for (pass = 0; pass < maxpasses; pass++) {
12842             TCGv_i32 tcg_op = tcg_temp_new_i32();
12843             TCGv_i32 tcg_res = tcg_temp_new_i32();
12844 
12845             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12846 
12847             switch (16 * u + opcode) {
12848             case 0x08: /* MUL */
12849             case 0x10: /* MLA */
12850             case 0x14: /* MLS */
12851             {
12852                 static NeonGenTwoOpFn * const fns[2][2] = {
12853                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12854                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12855                 };
12856                 NeonGenTwoOpFn *genfn;
12857                 bool is_sub = opcode == 0x4;
12858 
12859                 if (size == 1) {
12860                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12861                 } else {
12862                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12863                 }
12864                 if (opcode == 0x8) {
12865                     break;
12866                 }
12867                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12868                 genfn = fns[size - 1][is_sub];
12869                 genfn(tcg_res, tcg_op, tcg_res);
12870                 break;
12871             }
12872             case 0x0c: /* SQDMULH */
12873                 if (size == 1) {
12874                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12875                                                tcg_op, tcg_idx);
12876                 } else {
12877                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12878                                                tcg_op, tcg_idx);
12879                 }
12880                 break;
12881             case 0x0d: /* SQRDMULH */
12882                 if (size == 1) {
12883                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12884                                                 tcg_op, tcg_idx);
12885                 } else {
12886                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12887                                                 tcg_op, tcg_idx);
12888                 }
12889                 break;
12890             case 0x1d: /* SQRDMLAH */
12891                 read_vec_element_i32(s, tcg_res, rd, pass,
12892                                      is_scalar ? size : MO_32);
12893                 if (size == 1) {
12894                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
12895                                                 tcg_op, tcg_idx, tcg_res);
12896                 } else {
12897                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
12898                                                 tcg_op, tcg_idx, tcg_res);
12899                 }
12900                 break;
12901             case 0x1f: /* SQRDMLSH */
12902                 read_vec_element_i32(s, tcg_res, rd, pass,
12903                                      is_scalar ? size : MO_32);
12904                 if (size == 1) {
12905                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
12906                                                 tcg_op, tcg_idx, tcg_res);
12907                 } else {
12908                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
12909                                                 tcg_op, tcg_idx, tcg_res);
12910                 }
12911                 break;
12912             default:
12913             case 0x01: /* FMLA */
12914             case 0x05: /* FMLS */
12915             case 0x09: /* FMUL */
12916             case 0x19: /* FMULX */
12917                 g_assert_not_reached();
12918             }
12919 
12920             if (is_scalar) {
12921                 write_fp_sreg(s, rd, tcg_res);
12922             } else {
12923                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12924             }
12925         }
12926 
12927         clear_vec_high(s, is_q, rd);
12928     } else {
12929         /* long ops: 16x16->32 or 32x32->64 */
12930         TCGv_i64 tcg_res[2];
12931         int pass;
12932         bool satop = extract32(opcode, 0, 1);
12933         MemOp memop = MO_32;
12934 
12935         if (satop || !u) {
12936             memop |= MO_SIGN;
12937         }
12938 
12939         if (size == 2) {
12940             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12941 
12942             read_vec_element(s, tcg_idx, rm, index, memop);
12943 
12944             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12945                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12946                 TCGv_i64 tcg_passres;
12947                 int passelt;
12948 
12949                 if (is_scalar) {
12950                     passelt = 0;
12951                 } else {
12952                     passelt = pass + (is_q * 2);
12953                 }
12954 
12955                 read_vec_element(s, tcg_op, rn, passelt, memop);
12956 
12957                 tcg_res[pass] = tcg_temp_new_i64();
12958 
12959                 if (opcode == 0xa || opcode == 0xb) {
12960                     /* Non-accumulating ops */
12961                     tcg_passres = tcg_res[pass];
12962                 } else {
12963                     tcg_passres = tcg_temp_new_i64();
12964                 }
12965 
12966                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12967 
12968                 if (satop) {
12969                     /* saturating, doubling */
12970                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12971                                                       tcg_passres, tcg_passres);
12972                 }
12973 
12974                 if (opcode == 0xa || opcode == 0xb) {
12975                     continue;
12976                 }
12977 
12978                 /* Accumulating op: handle accumulate step */
12979                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12980 
12981                 switch (opcode) {
12982                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12983                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12984                     break;
12985                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12986                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12987                     break;
12988                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12989                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12990                     /* fall through */
12991                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12992                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12993                                                       tcg_res[pass],
12994                                                       tcg_passres);
12995                     break;
12996                 default:
12997                     g_assert_not_reached();
12998                 }
12999             }
13000 
13001             clear_vec_high(s, !is_scalar, rd);
13002         } else {
13003             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13004 
13005             assert(size == 1);
13006             read_vec_element_i32(s, tcg_idx, rm, index, size);
13007 
13008             if (!is_scalar) {
13009                 /* The simplest way to handle the 16x16 indexed ops is to
13010                  * duplicate the index into both halves of the 32 bit tcg_idx
13011                  * and then use the usual Neon helpers.
13012                  */
13013                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13014             }
13015 
13016             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13017                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13018                 TCGv_i64 tcg_passres;
13019 
13020                 if (is_scalar) {
13021                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13022                 } else {
13023                     read_vec_element_i32(s, tcg_op, rn,
13024                                          pass + (is_q * 2), MO_32);
13025                 }
13026 
13027                 tcg_res[pass] = tcg_temp_new_i64();
13028 
13029                 if (opcode == 0xa || opcode == 0xb) {
13030                     /* Non-accumulating ops */
13031                     tcg_passres = tcg_res[pass];
13032                 } else {
13033                     tcg_passres = tcg_temp_new_i64();
13034                 }
13035 
13036                 if (memop & MO_SIGN) {
13037                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13038                 } else {
13039                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13040                 }
13041                 if (satop) {
13042                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13043                                                       tcg_passres, tcg_passres);
13044                 }
13045 
13046                 if (opcode == 0xa || opcode == 0xb) {
13047                     continue;
13048                 }
13049 
13050                 /* Accumulating op: handle accumulate step */
13051                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13052 
13053                 switch (opcode) {
13054                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13055                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13056                                              tcg_passres);
13057                     break;
13058                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13059                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13060                                              tcg_passres);
13061                     break;
13062                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13063                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13064                     /* fall through */
13065                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13066                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13067                                                       tcg_res[pass],
13068                                                       tcg_passres);
13069                     break;
13070                 default:
13071                     g_assert_not_reached();
13072                 }
13073             }
13074 
13075             if (is_scalar) {
13076                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13077             }
13078         }
13079 
13080         if (is_scalar) {
13081             tcg_res[1] = tcg_constant_i64(0);
13082         }
13083 
13084         for (pass = 0; pass < 2; pass++) {
13085             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13086         }
13087     }
13088 }
13089 
13090 /* C3.6 Data processing - SIMD, inc Crypto
13091  *
13092  * As the decode gets a little complex we are using a table based
13093  * approach for this part of the decode.
13094  */
13095 static const AArch64DecodeTable data_proc_simd[] = {
13096     /* pattern  ,  mask     ,  fn                        */
13097     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13098     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13099     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13100     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13101     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13102     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13103     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13104     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13105     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13106     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13107     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13108     { 0x2e000000, 0xbf208400, disas_simd_ext },
13109     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13110     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13111     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13112     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13113     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13114     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13115     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13116     { 0x00000000, 0x00000000, NULL }
13117 };
13118 
13119 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13120 {
13121     /* Note that this is called with all non-FP cases from
13122      * table C3-6 so it must UNDEF for entries not specifically
13123      * allocated to instructions in that table.
13124      */
13125     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13126     if (fn) {
13127         fn(s, insn);
13128     } else {
13129         unallocated_encoding(s);
13130     }
13131 }
13132 
13133 /* C3.6 Data processing - SIMD and floating point */
13134 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13135 {
13136     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13137         disas_data_proc_fp(s, insn);
13138     } else {
13139         /* SIMD, including crypto */
13140         disas_data_proc_simd(s, insn);
13141     }
13142 }
13143 
13144 static bool trans_OK(DisasContext *s, arg_OK *a)
13145 {
13146     return true;
13147 }
13148 
13149 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13150 {
13151     s->is_nonstreaming = true;
13152     return true;
13153 }
13154 
13155 /**
13156  * is_guarded_page:
13157  * @env: The cpu environment
13158  * @s: The DisasContext
13159  *
13160  * Return true if the page is guarded.
13161  */
13162 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13163 {
13164     uint64_t addr = s->base.pc_first;
13165 #ifdef CONFIG_USER_ONLY
13166     return page_get_flags(addr) & PAGE_BTI;
13167 #else
13168     CPUTLBEntryFull *full;
13169     void *host;
13170     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13171     int flags;
13172 
13173     /*
13174      * We test this immediately after reading an insn, which means
13175      * that the TLB entry must be present and valid, and thus this
13176      * access will never raise an exception.
13177      */
13178     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13179                               false, &host, &full, 0);
13180     assert(!(flags & TLB_INVALID_MASK));
13181 
13182     return full->extra.arm.guarded;
13183 #endif
13184 }
13185 
13186 /**
13187  * btype_destination_ok:
13188  * @insn: The instruction at the branch destination
13189  * @bt: SCTLR_ELx.BT
13190  * @btype: PSTATE.BTYPE, and is non-zero
13191  *
13192  * On a guarded page, there are a limited number of insns
13193  * that may be present at the branch target:
13194  *   - branch target identifiers,
13195  *   - paciasp, pacibsp,
13196  *   - BRK insn
13197  *   - HLT insn
13198  * Anything else causes a Branch Target Exception.
13199  *
13200  * Return true if the branch is compatible, false to raise BTITRAP.
13201  */
13202 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13203 {
13204     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13205         /* HINT space */
13206         switch (extract32(insn, 5, 7)) {
13207         case 0b011001: /* PACIASP */
13208         case 0b011011: /* PACIBSP */
13209             /*
13210              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13211              * with btype == 3.  Otherwise all btype are ok.
13212              */
13213             return !bt || btype != 3;
13214         case 0b100000: /* BTI */
13215             /* Not compatible with any btype.  */
13216             return false;
13217         case 0b100010: /* BTI c */
13218             /* Not compatible with btype == 3 */
13219             return btype != 3;
13220         case 0b100100: /* BTI j */
13221             /* Not compatible with btype == 2 */
13222             return btype != 2;
13223         case 0b100110: /* BTI jc */
13224             /* Compatible with any btype.  */
13225             return true;
13226         }
13227     } else {
13228         switch (insn & 0xffe0001fu) {
13229         case 0xd4200000u: /* BRK */
13230         case 0xd4400000u: /* HLT */
13231             /* Give priority to the breakpoint exception.  */
13232             return true;
13233         }
13234     }
13235     return false;
13236 }
13237 
13238 /* C3.1 A64 instruction index by encoding */
13239 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13240 {
13241     switch (extract32(insn, 25, 4)) {
13242     case 0x5:
13243     case 0xd:      /* Data processing - register */
13244         disas_data_proc_reg(s, insn);
13245         break;
13246     case 0x7:
13247     case 0xf:      /* Data processing - SIMD and floating point */
13248         disas_data_proc_simd_fp(s, insn);
13249         break;
13250     default:
13251         unallocated_encoding(s);
13252         break;
13253     }
13254 }
13255 
13256 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13257                                           CPUState *cpu)
13258 {
13259     DisasContext *dc = container_of(dcbase, DisasContext, base);
13260     CPUARMState *env = cpu_env(cpu);
13261     ARMCPU *arm_cpu = env_archcpu(env);
13262     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13263     int bound, core_mmu_idx;
13264 
13265     dc->isar = &arm_cpu->isar;
13266     dc->condjmp = 0;
13267     dc->pc_save = dc->base.pc_first;
13268     dc->aarch64 = true;
13269     dc->thumb = false;
13270     dc->sctlr_b = 0;
13271     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13272     dc->condexec_mask = 0;
13273     dc->condexec_cond = 0;
13274     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13275     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13276     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13277     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13278     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13279     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13280 #if !defined(CONFIG_USER_ONLY)
13281     dc->user = (dc->current_el == 0);
13282 #endif
13283     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13284     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13285     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13286     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13287     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13288     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13289     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13290     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13291     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13292     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13293     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13294     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13295     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13296     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13297     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13298     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13299     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13300     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13301     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13302     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13303     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13304     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13305     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13306     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13307     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13308     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13309     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13310     dc->vec_len = 0;
13311     dc->vec_stride = 0;
13312     dc->cp_regs = arm_cpu->cp_regs;
13313     dc->features = env->features;
13314     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13315     dc->gm_blocksize = arm_cpu->gm_blocksize;
13316 
13317 #ifdef CONFIG_USER_ONLY
13318     /* In sve_probe_page, we assume TBI is enabled. */
13319     tcg_debug_assert(dc->tbid & 1);
13320 #endif
13321 
13322     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13323 
13324     /* Single step state. The code-generation logic here is:
13325      *  SS_ACTIVE == 0:
13326      *   generate code with no special handling for single-stepping (except
13327      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13328      *   this happens anyway because those changes are all system register or
13329      *   PSTATE writes).
13330      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13331      *   emit code for one insn
13332      *   emit code to clear PSTATE.SS
13333      *   emit code to generate software step exception for completed step
13334      *   end TB (as usual for having generated an exception)
13335      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13336      *   emit code to generate a software step exception
13337      *   end the TB
13338      */
13339     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13340     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13341     dc->is_ldex = false;
13342 
13343     /* Bound the number of insns to execute to those left on the page.  */
13344     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13345 
13346     /* If architectural single step active, limit to 1.  */
13347     if (dc->ss_active) {
13348         bound = 1;
13349     }
13350     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13351 }
13352 
13353 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13354 {
13355 }
13356 
13357 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13358 {
13359     DisasContext *dc = container_of(dcbase, DisasContext, base);
13360     target_ulong pc_arg = dc->base.pc_next;
13361 
13362     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13363         pc_arg &= ~TARGET_PAGE_MASK;
13364     }
13365     tcg_gen_insn_start(pc_arg, 0, 0);
13366     dc->insn_start_updated = false;
13367 }
13368 
13369 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13370 {
13371     DisasContext *s = container_of(dcbase, DisasContext, base);
13372     CPUARMState *env = cpu_env(cpu);
13373     uint64_t pc = s->base.pc_next;
13374     uint32_t insn;
13375 
13376     /* Singlestep exceptions have the highest priority. */
13377     if (s->ss_active && !s->pstate_ss) {
13378         /* Singlestep state is Active-pending.
13379          * If we're in this state at the start of a TB then either
13380          *  a) we just took an exception to an EL which is being debugged
13381          *     and this is the first insn in the exception handler
13382          *  b) debug exceptions were masked and we just unmasked them
13383          *     without changing EL (eg by clearing PSTATE.D)
13384          * In either case we're going to take a swstep exception in the
13385          * "did not step an insn" case, and so the syndrome ISV and EX
13386          * bits should be zero.
13387          */
13388         assert(s->base.num_insns == 1);
13389         gen_swstep_exception(s, 0, 0);
13390         s->base.is_jmp = DISAS_NORETURN;
13391         s->base.pc_next = pc + 4;
13392         return;
13393     }
13394 
13395     if (pc & 3) {
13396         /*
13397          * PC alignment fault.  This has priority over the instruction abort
13398          * that we would receive from a translation fault via arm_ldl_code.
13399          * This should only be possible after an indirect branch, at the
13400          * start of the TB.
13401          */
13402         assert(s->base.num_insns == 1);
13403         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13404         s->base.is_jmp = DISAS_NORETURN;
13405         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13406         return;
13407     }
13408 
13409     s->pc_curr = pc;
13410     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13411     s->insn = insn;
13412     s->base.pc_next = pc + 4;
13413 
13414     s->fp_access_checked = false;
13415     s->sve_access_checked = false;
13416 
13417     if (s->pstate_il) {
13418         /*
13419          * Illegal execution state. This has priority over BTI
13420          * exceptions, but comes after instruction abort exceptions.
13421          */
13422         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13423         return;
13424     }
13425 
13426     if (dc_isar_feature(aa64_bti, s)) {
13427         if (s->base.num_insns == 1) {
13428             /*
13429              * At the first insn of the TB, compute s->guarded_page.
13430              * We delayed computing this until successfully reading
13431              * the first insn of the TB, above.  This (mostly) ensures
13432              * that the softmmu tlb entry has been populated, and the
13433              * page table GP bit is available.
13434              *
13435              * Note that we need to compute this even if btype == 0,
13436              * because this value is used for BR instructions later
13437              * where ENV is not available.
13438              */
13439             s->guarded_page = is_guarded_page(env, s);
13440 
13441             /* First insn can have btype set to non-zero.  */
13442             tcg_debug_assert(s->btype >= 0);
13443 
13444             /*
13445              * Note that the Branch Target Exception has fairly high
13446              * priority -- below debugging exceptions but above most
13447              * everything else.  This allows us to handle this now
13448              * instead of waiting until the insn is otherwise decoded.
13449              */
13450             if (s->btype != 0
13451                 && s->guarded_page
13452                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13453                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13454                 return;
13455             }
13456         } else {
13457             /* Not the first insn: btype must be 0.  */
13458             tcg_debug_assert(s->btype == 0);
13459         }
13460     }
13461 
13462     s->is_nonstreaming = false;
13463     if (s->sme_trap_nonstreaming) {
13464         disas_sme_fa64(s, insn);
13465     }
13466 
13467     if (!disas_a64(s, insn) &&
13468         !disas_sme(s, insn) &&
13469         !disas_sve(s, insn)) {
13470         disas_a64_legacy(s, insn);
13471     }
13472 
13473     /*
13474      * After execution of most insns, btype is reset to 0.
13475      * Note that we set btype == -1 when the insn sets btype.
13476      */
13477     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13478         reset_btype(s);
13479     }
13480 }
13481 
13482 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13483 {
13484     DisasContext *dc = container_of(dcbase, DisasContext, base);
13485 
13486     if (unlikely(dc->ss_active)) {
13487         /* Note that this means single stepping WFI doesn't halt the CPU.
13488          * For conditional branch insns this is harmless unreachable code as
13489          * gen_goto_tb() has already handled emitting the debug exception
13490          * (and thus a tb-jump is not possible when singlestepping).
13491          */
13492         switch (dc->base.is_jmp) {
13493         default:
13494             gen_a64_update_pc(dc, 4);
13495             /* fall through */
13496         case DISAS_EXIT:
13497         case DISAS_JUMP:
13498             gen_step_complete_exception(dc);
13499             break;
13500         case DISAS_NORETURN:
13501             break;
13502         }
13503     } else {
13504         switch (dc->base.is_jmp) {
13505         case DISAS_NEXT:
13506         case DISAS_TOO_MANY:
13507             gen_goto_tb(dc, 1, 4);
13508             break;
13509         default:
13510         case DISAS_UPDATE_EXIT:
13511             gen_a64_update_pc(dc, 4);
13512             /* fall through */
13513         case DISAS_EXIT:
13514             tcg_gen_exit_tb(NULL, 0);
13515             break;
13516         case DISAS_UPDATE_NOCHAIN:
13517             gen_a64_update_pc(dc, 4);
13518             /* fall through */
13519         case DISAS_JUMP:
13520             tcg_gen_lookup_and_goto_ptr();
13521             break;
13522         case DISAS_NORETURN:
13523         case DISAS_SWI:
13524             break;
13525         case DISAS_WFE:
13526             gen_a64_update_pc(dc, 4);
13527             gen_helper_wfe(tcg_env);
13528             break;
13529         case DISAS_YIELD:
13530             gen_a64_update_pc(dc, 4);
13531             gen_helper_yield(tcg_env);
13532             break;
13533         case DISAS_WFI:
13534             /*
13535              * This is a special case because we don't want to just halt
13536              * the CPU if trying to debug across a WFI.
13537              */
13538             gen_a64_update_pc(dc, 4);
13539             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
13540             /*
13541              * The helper doesn't necessarily throw an exception, but we
13542              * must go back to the main loop to check for interrupts anyway.
13543              */
13544             tcg_gen_exit_tb(NULL, 0);
13545             break;
13546         }
13547     }
13548 }
13549 
13550 const TranslatorOps aarch64_translator_ops = {
13551     .init_disas_context = aarch64_tr_init_disas_context,
13552     .tb_start           = aarch64_tr_tb_start,
13553     .insn_start         = aarch64_tr_insn_start,
13554     .translate_insn     = aarch64_tr_translate_insn,
13555     .tb_stop            = aarch64_tr_tb_stop,
13556 };
13557