1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 int log2_size, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 268 269 ret = tcg_temp_new_i64(); 270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 271 272 return ret; 273 } 274 return clean_data_tbi(s, addr); 275 } 276 277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 278 bool tag_checked, int log2_size) 279 { 280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 281 false, get_mem_index(s)); 282 } 283 284 /* 285 * For MTE, check multiple logical sequential accesses. 286 */ 287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int size) 289 { 290 if (tag_checked && s->mte_active[0]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 typedef struct DisasCompare64 { 309 TCGCond cond; 310 TCGv_i64 value; 311 } DisasCompare64; 312 313 static void a64_test_cc(DisasCompare64 *c64, int cc) 314 { 315 DisasCompare c32; 316 317 arm_test_cc(&c32, cc); 318 319 /* 320 * Sign-extend the 32-bit value so that the GE/LT comparisons work 321 * properly. The NE/EQ comparisons are also fine with this choice. 322 */ 323 c64->cond = c32.cond; 324 c64->value = tcg_temp_new_i64(); 325 tcg_gen_ext_i32_i64(c64->value, c32.value); 326 } 327 328 static void gen_rebuild_hflags(DisasContext *s) 329 { 330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 331 } 332 333 static void gen_exception_internal(int excp) 334 { 335 assert(excp_is_internal(excp)); 336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 337 } 338 339 static void gen_exception_internal_insn(DisasContext *s, int excp) 340 { 341 gen_a64_update_pc(s, 0); 342 gen_exception_internal(excp); 343 s->base.is_jmp = DISAS_NORETURN; 344 } 345 346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 347 { 348 gen_a64_update_pc(s, 0); 349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 350 s->base.is_jmp = DISAS_NORETURN; 351 } 352 353 static void gen_step_complete_exception(DisasContext *s) 354 { 355 /* We just completed step of an insn. Move from Active-not-pending 356 * to Active-pending, and then also take the swstep exception. 357 * This corresponds to making the (IMPDEF) choice to prioritize 358 * swstep exceptions over asynchronous exceptions taken to an exception 359 * level where debug is disabled. This choice has the advantage that 360 * we do not need to maintain internal state corresponding to the 361 * ISV/EX syndrome bits between completion of the step and generation 362 * of the exception, and our syndrome information is always correct. 363 */ 364 gen_ss_advance(s); 365 gen_swstep_exception(s, 1, s->is_ldex); 366 s->base.is_jmp = DISAS_NORETURN; 367 } 368 369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 370 { 371 if (s->ss_active) { 372 return false; 373 } 374 return translator_use_goto_tb(&s->base, dest); 375 } 376 377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 378 { 379 if (use_goto_tb(s, s->pc_curr + diff)) { 380 /* 381 * For pcrel, the pc must always be up-to-date on entry to 382 * the linked TB, so that it can use simple additions for all 383 * further adjustments. For !pcrel, the linked TB is compiled 384 * to know its full virtual address, so we can delay the 385 * update to pc to the unlinked path. A long chain of links 386 * can thus avoid many updates to the PC. 387 */ 388 if (tb_cflags(s->base.tb) & CF_PCREL) { 389 gen_a64_update_pc(s, diff); 390 tcg_gen_goto_tb(n); 391 } else { 392 tcg_gen_goto_tb(n); 393 gen_a64_update_pc(s, diff); 394 } 395 tcg_gen_exit_tb(s->base.tb, n); 396 s->base.is_jmp = DISAS_NORETURN; 397 } else { 398 gen_a64_update_pc(s, diff); 399 if (s->ss_active) { 400 gen_step_complete_exception(s); 401 } else { 402 tcg_gen_lookup_and_goto_ptr(); 403 s->base.is_jmp = DISAS_NORETURN; 404 } 405 } 406 } 407 408 /* 409 * Register access functions 410 * 411 * These functions are used for directly accessing a register in where 412 * changes to the final register value are likely to be made. If you 413 * need to use a register for temporary calculation (e.g. index type 414 * operations) use the read_* form. 415 * 416 * B1.2.1 Register mappings 417 * 418 * In instruction register encoding 31 can refer to ZR (zero register) or 419 * the SP (stack pointer) depending on context. In QEMU's case we map SP 420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 421 * This is the point of the _sp forms. 422 */ 423 TCGv_i64 cpu_reg(DisasContext *s, int reg) 424 { 425 if (reg == 31) { 426 TCGv_i64 t = tcg_temp_new_i64(); 427 tcg_gen_movi_i64(t, 0); 428 return t; 429 } else { 430 return cpu_X[reg]; 431 } 432 } 433 434 /* register access for when 31 == SP */ 435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 436 { 437 return cpu_X[reg]; 438 } 439 440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 441 * representing the register contents. This TCGv is an auto-freed 442 * temporary so it need not be explicitly freed, and may be modified. 443 */ 444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 445 { 446 TCGv_i64 v = tcg_temp_new_i64(); 447 if (reg != 31) { 448 if (sf) { 449 tcg_gen_mov_i64(v, cpu_X[reg]); 450 } else { 451 tcg_gen_ext32u_i64(v, cpu_X[reg]); 452 } 453 } else { 454 tcg_gen_movi_i64(v, 0); 455 } 456 return v; 457 } 458 459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 460 { 461 TCGv_i64 v = tcg_temp_new_i64(); 462 if (sf) { 463 tcg_gen_mov_i64(v, cpu_X[reg]); 464 } else { 465 tcg_gen_ext32u_i64(v, cpu_X[reg]); 466 } 467 return v; 468 } 469 470 /* Return the offset into CPUARMState of a slice (from 471 * the least significant end) of FP register Qn (ie 472 * Dn, Sn, Hn or Bn). 473 * (Note that this is not the same mapping as for A32; see cpu.h) 474 */ 475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 476 { 477 return vec_reg_offset(s, regno, 0, size); 478 } 479 480 /* Offset of the high half of the 128 bit vector Qn */ 481 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 482 { 483 return vec_reg_offset(s, regno, 1, MO_64); 484 } 485 486 /* Convenience accessors for reading and writing single and double 487 * FP registers. Writing clears the upper parts of the associated 488 * 128 bit vector register, as required by the architecture. 489 * Note that unlike the GP register accessors, the values returned 490 * by the read functions must be manually freed. 491 */ 492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 493 { 494 TCGv_i64 v = tcg_temp_new_i64(); 495 496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 497 return v; 498 } 499 500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 501 { 502 TCGv_i32 v = tcg_temp_new_i32(); 503 504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 505 return v; 506 } 507 508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 509 { 510 TCGv_i32 v = tcg_temp_new_i32(); 511 512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 513 return v; 514 } 515 516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 517 * If SVE is not enabled, then there are only 128 bits in the vector. 518 */ 519 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 520 { 521 unsigned ofs = fp_reg_offset(s, rd, MO_64); 522 unsigned vsz = vec_full_reg_size(s); 523 524 /* Nop move, with side effect of clearing the tail. */ 525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 526 } 527 528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 529 { 530 unsigned ofs = fp_reg_offset(s, reg, MO_64); 531 532 tcg_gen_st_i64(v, cpu_env, ofs); 533 clear_vec_high(s, false, reg); 534 } 535 536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 537 { 538 TCGv_i64 tmp = tcg_temp_new_i64(); 539 540 tcg_gen_extu_i32_i64(tmp, v); 541 write_fp_dreg(s, reg, tmp); 542 } 543 544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 546 GVecGen2Fn *gvec_fn, int vece) 547 { 548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 549 is_q ? 16 : 8, vec_full_reg_size(s)); 550 } 551 552 /* Expand a 2-operand + immediate AdvSIMD vector operation using 553 * an expander function. 554 */ 555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 556 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 564 GVecGen3Fn *gvec_fn, int vece) 565 { 566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 568 } 569 570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 572 int rx, GVecGen4Fn *gvec_fn, int vece) 573 { 574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 576 is_q ? 16 : 8, vec_full_reg_size(s)); 577 } 578 579 /* Expand a 2-operand operation using an out-of-line helper. */ 580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 581 int rn, int data, gen_helper_gvec_2 *fn) 582 { 583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 584 vec_full_reg_offset(s, rn), 585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 586 } 587 588 /* Expand a 3-operand operation using an out-of-line helper. */ 589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 590 int rn, int rm, int data, gen_helper_gvec_3 *fn) 591 { 592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 593 vec_full_reg_offset(s, rn), 594 vec_full_reg_offset(s, rm), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 599 * an out-of-line helper. 600 */ 601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 602 int rm, bool is_fp16, int data, 603 gen_helper_gvec_3_ptr *fn) 604 { 605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 607 vec_full_reg_offset(s, rn), 608 vec_full_reg_offset(s, rm), fpst, 609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 610 } 611 612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 614 int rm, gen_helper_gvec_3_ptr *fn) 615 { 616 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 617 618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 620 vec_full_reg_offset(s, rn), 621 vec_full_reg_offset(s, rm), qc_ptr, 622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 623 } 624 625 /* Expand a 4-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 627 int rm, int ra, int data, gen_helper_gvec_4 *fn) 628 { 629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 vec_full_reg_offset(s, ra), 633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 634 } 635 636 /* 637 * Expand a 4-operand + fpstatus pointer + simd data value operation using 638 * an out-of-line helper. 639 */ 640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 641 int rm, int ra, bool is_fp16, int data, 642 gen_helper_gvec_4_ptr *fn) 643 { 644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 646 vec_full_reg_offset(s, rn), 647 vec_full_reg_offset(s, rm), 648 vec_full_reg_offset(s, ra), fpst, 649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 650 } 651 652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 653 * than the 32 bit equivalent. 654 */ 655 static inline void gen_set_NZ64(TCGv_i64 result) 656 { 657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 659 } 660 661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 662 static inline void gen_logic_CC(int sf, TCGv_i64 result) 663 { 664 if (sf) { 665 gen_set_NZ64(result); 666 } else { 667 tcg_gen_extrl_i64_i32(cpu_ZF, result); 668 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 669 } 670 tcg_gen_movi_i32(cpu_CF, 0); 671 tcg_gen_movi_i32(cpu_VF, 0); 672 } 673 674 /* dest = T0 + T1; compute C, N, V and Z flags */ 675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 676 { 677 TCGv_i64 result, flag, tmp; 678 result = tcg_temp_new_i64(); 679 flag = tcg_temp_new_i64(); 680 tmp = tcg_temp_new_i64(); 681 682 tcg_gen_movi_i64(tmp, 0); 683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 684 685 tcg_gen_extrl_i64_i32(cpu_CF, flag); 686 687 gen_set_NZ64(result); 688 689 tcg_gen_xor_i64(flag, result, t0); 690 tcg_gen_xor_i64(tmp, t0, t1); 691 tcg_gen_andc_i64(flag, flag, tmp); 692 tcg_gen_extrh_i64_i32(cpu_VF, flag); 693 694 tcg_gen_mov_i64(dest, result); 695 } 696 697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 698 { 699 TCGv_i32 t0_32 = tcg_temp_new_i32(); 700 TCGv_i32 t1_32 = tcg_temp_new_i32(); 701 TCGv_i32 tmp = tcg_temp_new_i32(); 702 703 tcg_gen_movi_i32(tmp, 0); 704 tcg_gen_extrl_i64_i32(t0_32, t0); 705 tcg_gen_extrl_i64_i32(t1_32, t1); 706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 707 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 709 tcg_gen_xor_i32(tmp, t0_32, t1_32); 710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 711 tcg_gen_extu_i32_i64(dest, cpu_NF); 712 } 713 714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 715 { 716 if (sf) { 717 gen_add64_CC(dest, t0, t1); 718 } else { 719 gen_add32_CC(dest, t0, t1); 720 } 721 } 722 723 /* dest = T0 - T1; compute C, N, V and Z flags */ 724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 /* 64 bit arithmetic */ 727 TCGv_i64 result, flag, tmp; 728 729 result = tcg_temp_new_i64(); 730 flag = tcg_temp_new_i64(); 731 tcg_gen_sub_i64(result, t0, t1); 732 733 gen_set_NZ64(result); 734 735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 736 tcg_gen_extrl_i64_i32(cpu_CF, flag); 737 738 tcg_gen_xor_i64(flag, result, t0); 739 tmp = tcg_temp_new_i64(); 740 tcg_gen_xor_i64(tmp, t0, t1); 741 tcg_gen_and_i64(flag, flag, tmp); 742 tcg_gen_extrh_i64_i32(cpu_VF, flag); 743 tcg_gen_mov_i64(dest, result); 744 } 745 746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 747 { 748 /* 32 bit arithmetic */ 749 TCGv_i32 t0_32 = tcg_temp_new_i32(); 750 TCGv_i32 t1_32 = tcg_temp_new_i32(); 751 TCGv_i32 tmp; 752 753 tcg_gen_extrl_i64_i32(t0_32, t0); 754 tcg_gen_extrl_i64_i32(t1_32, t1); 755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 756 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 759 tmp = tcg_temp_new_i32(); 760 tcg_gen_xor_i32(tmp, t0_32, t1_32); 761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 762 tcg_gen_extu_i32_i64(dest, cpu_NF); 763 } 764 765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 766 { 767 if (sf) { 768 gen_sub64_CC(dest, t0, t1); 769 } else { 770 gen_sub32_CC(dest, t0, t1); 771 } 772 } 773 774 /* dest = T0 + T1 + CF; do not compute flags. */ 775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 TCGv_i64 flag = tcg_temp_new_i64(); 778 tcg_gen_extu_i32_i64(flag, cpu_CF); 779 tcg_gen_add_i64(dest, t0, t1); 780 tcg_gen_add_i64(dest, dest, flag); 781 782 if (!sf) { 783 tcg_gen_ext32u_i64(dest, dest); 784 } 785 } 786 787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 789 { 790 if (sf) { 791 TCGv_i64 result = tcg_temp_new_i64(); 792 TCGv_i64 cf_64 = tcg_temp_new_i64(); 793 TCGv_i64 vf_64 = tcg_temp_new_i64(); 794 TCGv_i64 tmp = tcg_temp_new_i64(); 795 TCGv_i64 zero = tcg_constant_i64(0); 796 797 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 801 gen_set_NZ64(result); 802 803 tcg_gen_xor_i64(vf_64, result, t0); 804 tcg_gen_xor_i64(tmp, t0, t1); 805 tcg_gen_andc_i64(vf_64, vf_64, tmp); 806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 807 808 tcg_gen_mov_i64(dest, result); 809 } else { 810 TCGv_i32 t0_32 = tcg_temp_new_i32(); 811 TCGv_i32 t1_32 = tcg_temp_new_i32(); 812 TCGv_i32 tmp = tcg_temp_new_i32(); 813 TCGv_i32 zero = tcg_constant_i32(0); 814 815 tcg_gen_extrl_i64_i32(t0_32, t0); 816 tcg_gen_extrl_i64_i32(t1_32, t1); 817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 819 820 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 822 tcg_gen_xor_i32(tmp, t0_32, t1_32); 823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 824 tcg_gen_extu_i32_i64(dest, cpu_NF); 825 } 826 } 827 828 /* 829 * Load/Store generators 830 */ 831 832 /* 833 * Store from GPR register to memory. 834 */ 835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 836 TCGv_i64 tcg_addr, MemOp memop, int memidx, 837 bool iss_valid, 838 unsigned int iss_srt, 839 bool iss_sf, bool iss_ar) 840 { 841 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 842 843 if (iss_valid) { 844 uint32_t syn; 845 846 syn = syn_data_abort_with_iss(0, 847 (memop & MO_SIZE), 848 false, 849 iss_srt, 850 iss_sf, 851 iss_ar, 852 0, 0, 0, 0, 0, false); 853 disas_set_insn_syndrome(s, syn); 854 } 855 } 856 857 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 858 TCGv_i64 tcg_addr, MemOp memop, 859 bool iss_valid, 860 unsigned int iss_srt, 861 bool iss_sf, bool iss_ar) 862 { 863 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 864 iss_valid, iss_srt, iss_sf, iss_ar); 865 } 866 867 /* 868 * Load from memory to GPR register 869 */ 870 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 871 MemOp memop, bool extend, int memidx, 872 bool iss_valid, unsigned int iss_srt, 873 bool iss_sf, bool iss_ar) 874 { 875 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 876 877 if (extend && (memop & MO_SIGN)) { 878 g_assert((memop & MO_SIZE) <= MO_32); 879 tcg_gen_ext32u_i64(dest, dest); 880 } 881 882 if (iss_valid) { 883 uint32_t syn; 884 885 syn = syn_data_abort_with_iss(0, 886 (memop & MO_SIZE), 887 (memop & MO_SIGN) != 0, 888 iss_srt, 889 iss_sf, 890 iss_ar, 891 0, 0, 0, 0, 0, false); 892 disas_set_insn_syndrome(s, syn); 893 } 894 } 895 896 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 897 MemOp memop, bool extend, 898 bool iss_valid, unsigned int iss_srt, 899 bool iss_sf, bool iss_ar) 900 { 901 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 902 iss_valid, iss_srt, iss_sf, iss_ar); 903 } 904 905 /* 906 * Store from FP register to memory 907 */ 908 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 909 { 910 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 911 TCGv_i64 tmplo = tcg_temp_new_i64(); 912 MemOp mop = finalize_memop_asimd(s, size); 913 914 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 915 916 if (size < MO_128) { 917 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 918 } else { 919 TCGv_i64 tmphi = tcg_temp_new_i64(); 920 TCGv_i128 t16 = tcg_temp_new_i128(); 921 922 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 923 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 924 925 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 926 } 927 } 928 929 /* 930 * Load from memory to FP register 931 */ 932 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 933 { 934 /* This always zero-extends and writes to a full 128 bit wide vector */ 935 TCGv_i64 tmplo = tcg_temp_new_i64(); 936 TCGv_i64 tmphi = NULL; 937 MemOp mop = finalize_memop_asimd(s, size); 938 939 if (size < MO_128) { 940 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 941 } else { 942 TCGv_i128 t16 = tcg_temp_new_i128(); 943 944 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 945 946 tmphi = tcg_temp_new_i64(); 947 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 948 } 949 950 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 951 952 if (tmphi) { 953 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 954 } 955 clear_vec_high(s, tmphi != NULL, destidx); 956 } 957 958 /* 959 * Vector load/store helpers. 960 * 961 * The principal difference between this and a FP load is that we don't 962 * zero extend as we are filling a partial chunk of the vector register. 963 * These functions don't support 128 bit loads/stores, which would be 964 * normal load/store operations. 965 * 966 * The _i32 versions are useful when operating on 32 bit quantities 967 * (eg for floating point single or using Neon helper functions). 968 */ 969 970 /* Get value of an element within a vector register */ 971 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 972 int element, MemOp memop) 973 { 974 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 975 switch ((unsigned)memop) { 976 case MO_8: 977 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 978 break; 979 case MO_16: 980 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 981 break; 982 case MO_32: 983 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 984 break; 985 case MO_8|MO_SIGN: 986 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 987 break; 988 case MO_16|MO_SIGN: 989 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 990 break; 991 case MO_32|MO_SIGN: 992 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 993 break; 994 case MO_64: 995 case MO_64|MO_SIGN: 996 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 997 break; 998 default: 999 g_assert_not_reached(); 1000 } 1001 } 1002 1003 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1004 int element, MemOp memop) 1005 { 1006 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1007 switch (memop) { 1008 case MO_8: 1009 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1010 break; 1011 case MO_16: 1012 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1013 break; 1014 case MO_8|MO_SIGN: 1015 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1016 break; 1017 case MO_16|MO_SIGN: 1018 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1019 break; 1020 case MO_32: 1021 case MO_32|MO_SIGN: 1022 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1023 break; 1024 default: 1025 g_assert_not_reached(); 1026 } 1027 } 1028 1029 /* Set value of an element within a vector register */ 1030 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1031 int element, MemOp memop) 1032 { 1033 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1034 switch (memop) { 1035 case MO_8: 1036 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1037 break; 1038 case MO_16: 1039 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1040 break; 1041 case MO_32: 1042 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1043 break; 1044 case MO_64: 1045 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1046 break; 1047 default: 1048 g_assert_not_reached(); 1049 } 1050 } 1051 1052 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1053 int destidx, int element, MemOp memop) 1054 { 1055 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1056 switch (memop) { 1057 case MO_8: 1058 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1059 break; 1060 case MO_16: 1061 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1062 break; 1063 case MO_32: 1064 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1065 break; 1066 default: 1067 g_assert_not_reached(); 1068 } 1069 } 1070 1071 /* Store from vector register to memory */ 1072 static void do_vec_st(DisasContext *s, int srcidx, int element, 1073 TCGv_i64 tcg_addr, MemOp mop) 1074 { 1075 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1076 1077 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1078 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1079 } 1080 1081 /* Load from memory to vector register */ 1082 static void do_vec_ld(DisasContext *s, int destidx, int element, 1083 TCGv_i64 tcg_addr, MemOp mop) 1084 { 1085 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1086 1087 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1088 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1089 } 1090 1091 /* Check that FP/Neon access is enabled. If it is, return 1092 * true. If not, emit code to generate an appropriate exception, 1093 * and return false; the caller should not emit any code for 1094 * the instruction. Note that this check must happen after all 1095 * unallocated-encoding checks (otherwise the syndrome information 1096 * for the resulting exception will be incorrect). 1097 */ 1098 static bool fp_access_check_only(DisasContext *s) 1099 { 1100 if (s->fp_excp_el) { 1101 assert(!s->fp_access_checked); 1102 s->fp_access_checked = true; 1103 1104 gen_exception_insn_el(s, 0, EXCP_UDEF, 1105 syn_fp_access_trap(1, 0xe, false, 0), 1106 s->fp_excp_el); 1107 return false; 1108 } 1109 s->fp_access_checked = true; 1110 return true; 1111 } 1112 1113 static bool fp_access_check(DisasContext *s) 1114 { 1115 if (!fp_access_check_only(s)) { 1116 return false; 1117 } 1118 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1119 gen_exception_insn(s, 0, EXCP_UDEF, 1120 syn_smetrap(SME_ET_Streaming, false)); 1121 return false; 1122 } 1123 return true; 1124 } 1125 1126 /* 1127 * Check that SVE access is enabled. If it is, return true. 1128 * If not, emit code to generate an appropriate exception and return false. 1129 * This function corresponds to CheckSVEEnabled(). 1130 */ 1131 bool sve_access_check(DisasContext *s) 1132 { 1133 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1134 assert(dc_isar_feature(aa64_sme, s)); 1135 if (!sme_sm_enabled_check(s)) { 1136 goto fail_exit; 1137 } 1138 } else if (s->sve_excp_el) { 1139 gen_exception_insn_el(s, 0, EXCP_UDEF, 1140 syn_sve_access_trap(), s->sve_excp_el); 1141 goto fail_exit; 1142 } 1143 s->sve_access_checked = true; 1144 return fp_access_check(s); 1145 1146 fail_exit: 1147 /* Assert that we only raise one exception per instruction. */ 1148 assert(!s->sve_access_checked); 1149 s->sve_access_checked = true; 1150 return false; 1151 } 1152 1153 /* 1154 * Check that SME access is enabled, raise an exception if not. 1155 * Note that this function corresponds to CheckSMEAccess and is 1156 * only used directly for cpregs. 1157 */ 1158 static bool sme_access_check(DisasContext *s) 1159 { 1160 if (s->sme_excp_el) { 1161 gen_exception_insn_el(s, 0, EXCP_UDEF, 1162 syn_smetrap(SME_ET_AccessTrap, false), 1163 s->sme_excp_el); 1164 return false; 1165 } 1166 return true; 1167 } 1168 1169 /* This function corresponds to CheckSMEEnabled. */ 1170 bool sme_enabled_check(DisasContext *s) 1171 { 1172 /* 1173 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1174 * to be zero when fp_excp_el has priority. This is because we need 1175 * sme_excp_el by itself for cpregs access checks. 1176 */ 1177 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1178 s->fp_access_checked = true; 1179 return sme_access_check(s); 1180 } 1181 return fp_access_check_only(s); 1182 } 1183 1184 /* Common subroutine for CheckSMEAnd*Enabled. */ 1185 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1186 { 1187 if (!sme_enabled_check(s)) { 1188 return false; 1189 } 1190 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1191 gen_exception_insn(s, 0, EXCP_UDEF, 1192 syn_smetrap(SME_ET_NotStreaming, false)); 1193 return false; 1194 } 1195 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1196 gen_exception_insn(s, 0, EXCP_UDEF, 1197 syn_smetrap(SME_ET_InactiveZA, false)); 1198 return false; 1199 } 1200 return true; 1201 } 1202 1203 /* 1204 * This utility function is for doing register extension with an 1205 * optional shift. You will likely want to pass a temporary for the 1206 * destination register. See DecodeRegExtend() in the ARM ARM. 1207 */ 1208 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1209 int option, unsigned int shift) 1210 { 1211 int extsize = extract32(option, 0, 2); 1212 bool is_signed = extract32(option, 2, 1); 1213 1214 if (is_signed) { 1215 switch (extsize) { 1216 case 0: 1217 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1218 break; 1219 case 1: 1220 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1221 break; 1222 case 2: 1223 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1224 break; 1225 case 3: 1226 tcg_gen_mov_i64(tcg_out, tcg_in); 1227 break; 1228 } 1229 } else { 1230 switch (extsize) { 1231 case 0: 1232 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1233 break; 1234 case 1: 1235 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1236 break; 1237 case 2: 1238 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1239 break; 1240 case 3: 1241 tcg_gen_mov_i64(tcg_out, tcg_in); 1242 break; 1243 } 1244 } 1245 1246 if (shift) { 1247 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1248 } 1249 } 1250 1251 static inline void gen_check_sp_alignment(DisasContext *s) 1252 { 1253 /* The AArch64 architecture mandates that (if enabled via PSTATE 1254 * or SCTLR bits) there is a check that SP is 16-aligned on every 1255 * SP-relative load or store (with an exception generated if it is not). 1256 * In line with general QEMU practice regarding misaligned accesses, 1257 * we omit these checks for the sake of guest program performance. 1258 * This function is provided as a hook so we can more easily add these 1259 * checks in future (possibly as a "favour catching guest program bugs 1260 * over speed" user selectable option). 1261 */ 1262 } 1263 1264 /* 1265 * This provides a simple table based table lookup decoder. It is 1266 * intended to be used when the relevant bits for decode are too 1267 * awkwardly placed and switch/if based logic would be confusing and 1268 * deeply nested. Since it's a linear search through the table, tables 1269 * should be kept small. 1270 * 1271 * It returns the first handler where insn & mask == pattern, or 1272 * NULL if there is no match. 1273 * The table is terminated by an empty mask (i.e. 0) 1274 */ 1275 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1276 uint32_t insn) 1277 { 1278 const AArch64DecodeTable *tptr = table; 1279 1280 while (tptr->mask) { 1281 if ((insn & tptr->mask) == tptr->pattern) { 1282 return tptr->disas_fn; 1283 } 1284 tptr++; 1285 } 1286 return NULL; 1287 } 1288 1289 /* 1290 * The instruction disassembly implemented here matches 1291 * the instruction encoding classifications in chapter C4 1292 * of the ARM Architecture Reference Manual (DDI0487B_a); 1293 * classification names and decode diagrams here should generally 1294 * match up with those in the manual. 1295 */ 1296 1297 static bool trans_B(DisasContext *s, arg_i *a) 1298 { 1299 reset_btype(s); 1300 gen_goto_tb(s, 0, a->imm); 1301 return true; 1302 } 1303 1304 static bool trans_BL(DisasContext *s, arg_i *a) 1305 { 1306 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1307 reset_btype(s); 1308 gen_goto_tb(s, 0, a->imm); 1309 return true; 1310 } 1311 1312 1313 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1314 { 1315 DisasLabel match; 1316 TCGv_i64 tcg_cmp; 1317 1318 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1319 reset_btype(s); 1320 1321 match = gen_disas_label(s); 1322 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1323 tcg_cmp, 0, match.label); 1324 gen_goto_tb(s, 0, 4); 1325 set_disas_label(s, match); 1326 gen_goto_tb(s, 1, a->imm); 1327 return true; 1328 } 1329 1330 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1331 { 1332 DisasLabel match; 1333 TCGv_i64 tcg_cmp; 1334 1335 tcg_cmp = tcg_temp_new_i64(); 1336 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1337 1338 reset_btype(s); 1339 1340 match = gen_disas_label(s); 1341 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1342 tcg_cmp, 0, match.label); 1343 gen_goto_tb(s, 0, 4); 1344 set_disas_label(s, match); 1345 gen_goto_tb(s, 1, a->imm); 1346 return true; 1347 } 1348 1349 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1350 { 1351 reset_btype(s); 1352 if (a->cond < 0x0e) { 1353 /* genuinely conditional branches */ 1354 DisasLabel match = gen_disas_label(s); 1355 arm_gen_test_cc(a->cond, match.label); 1356 gen_goto_tb(s, 0, 4); 1357 set_disas_label(s, match); 1358 gen_goto_tb(s, 1, a->imm); 1359 } else { 1360 /* 0xe and 0xf are both "always" conditions */ 1361 gen_goto_tb(s, 0, a->imm); 1362 } 1363 return true; 1364 } 1365 1366 static void set_btype_for_br(DisasContext *s, int rn) 1367 { 1368 if (dc_isar_feature(aa64_bti, s)) { 1369 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1370 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1371 } 1372 } 1373 1374 static void set_btype_for_blr(DisasContext *s) 1375 { 1376 if (dc_isar_feature(aa64_bti, s)) { 1377 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1378 set_btype(s, 2); 1379 } 1380 } 1381 1382 static bool trans_BR(DisasContext *s, arg_r *a) 1383 { 1384 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1385 set_btype_for_br(s, a->rn); 1386 s->base.is_jmp = DISAS_JUMP; 1387 return true; 1388 } 1389 1390 static bool trans_BLR(DisasContext *s, arg_r *a) 1391 { 1392 TCGv_i64 dst = cpu_reg(s, a->rn); 1393 TCGv_i64 lr = cpu_reg(s, 30); 1394 if (dst == lr) { 1395 TCGv_i64 tmp = tcg_temp_new_i64(); 1396 tcg_gen_mov_i64(tmp, dst); 1397 dst = tmp; 1398 } 1399 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1400 gen_a64_set_pc(s, dst); 1401 set_btype_for_blr(s); 1402 s->base.is_jmp = DISAS_JUMP; 1403 return true; 1404 } 1405 1406 static bool trans_RET(DisasContext *s, arg_r *a) 1407 { 1408 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1409 s->base.is_jmp = DISAS_JUMP; 1410 return true; 1411 } 1412 1413 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1414 TCGv_i64 modifier, bool use_key_a) 1415 { 1416 TCGv_i64 truedst; 1417 /* 1418 * Return the branch target for a BRAA/RETA/etc, which is either 1419 * just the destination dst, or that value with the pauth check 1420 * done and the code removed from the high bits. 1421 */ 1422 if (!s->pauth_active) { 1423 return dst; 1424 } 1425 1426 truedst = tcg_temp_new_i64(); 1427 if (use_key_a) { 1428 gen_helper_autia(truedst, cpu_env, dst, modifier); 1429 } else { 1430 gen_helper_autib(truedst, cpu_env, dst, modifier); 1431 } 1432 return truedst; 1433 } 1434 1435 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1436 { 1437 TCGv_i64 dst; 1438 1439 if (!dc_isar_feature(aa64_pauth, s)) { 1440 return false; 1441 } 1442 1443 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1444 gen_a64_set_pc(s, dst); 1445 set_btype_for_br(s, a->rn); 1446 s->base.is_jmp = DISAS_JUMP; 1447 return true; 1448 } 1449 1450 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1451 { 1452 TCGv_i64 dst, lr; 1453 1454 if (!dc_isar_feature(aa64_pauth, s)) { 1455 return false; 1456 } 1457 1458 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1459 lr = cpu_reg(s, 30); 1460 if (dst == lr) { 1461 TCGv_i64 tmp = tcg_temp_new_i64(); 1462 tcg_gen_mov_i64(tmp, dst); 1463 dst = tmp; 1464 } 1465 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1466 gen_a64_set_pc(s, dst); 1467 set_btype_for_blr(s); 1468 s->base.is_jmp = DISAS_JUMP; 1469 return true; 1470 } 1471 1472 static bool trans_RETA(DisasContext *s, arg_reta *a) 1473 { 1474 TCGv_i64 dst; 1475 1476 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1477 gen_a64_set_pc(s, dst); 1478 s->base.is_jmp = DISAS_JUMP; 1479 return true; 1480 } 1481 1482 static bool trans_BRA(DisasContext *s, arg_bra *a) 1483 { 1484 TCGv_i64 dst; 1485 1486 if (!dc_isar_feature(aa64_pauth, s)) { 1487 return false; 1488 } 1489 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1490 gen_a64_set_pc(s, dst); 1491 set_btype_for_br(s, a->rn); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1497 { 1498 TCGv_i64 dst, lr; 1499 1500 if (!dc_isar_feature(aa64_pauth, s)) { 1501 return false; 1502 } 1503 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1504 lr = cpu_reg(s, 30); 1505 if (dst == lr) { 1506 TCGv_i64 tmp = tcg_temp_new_i64(); 1507 tcg_gen_mov_i64(tmp, dst); 1508 dst = tmp; 1509 } 1510 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1511 gen_a64_set_pc(s, dst); 1512 set_btype_for_blr(s); 1513 s->base.is_jmp = DISAS_JUMP; 1514 return true; 1515 } 1516 1517 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1518 { 1519 TCGv_i64 dst; 1520 1521 if (s->current_el == 0) { 1522 return false; 1523 } 1524 if (s->fgt_eret) { 1525 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1526 return true; 1527 } 1528 dst = tcg_temp_new_i64(); 1529 tcg_gen_ld_i64(dst, cpu_env, 1530 offsetof(CPUARMState, elr_el[s->current_el])); 1531 1532 translator_io_start(&s->base); 1533 1534 gen_helper_exception_return(cpu_env, dst); 1535 /* Must exit loop to check un-masked IRQs */ 1536 s->base.is_jmp = DISAS_EXIT; 1537 return true; 1538 } 1539 1540 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1541 { 1542 TCGv_i64 dst; 1543 1544 if (!dc_isar_feature(aa64_pauth, s)) { 1545 return false; 1546 } 1547 if (s->current_el == 0) { 1548 return false; 1549 } 1550 /* The FGT trap takes precedence over an auth trap. */ 1551 if (s->fgt_eret) { 1552 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1553 return true; 1554 } 1555 dst = tcg_temp_new_i64(); 1556 tcg_gen_ld_i64(dst, cpu_env, 1557 offsetof(CPUARMState, elr_el[s->current_el])); 1558 1559 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1560 1561 translator_io_start(&s->base); 1562 1563 gen_helper_exception_return(cpu_env, dst); 1564 /* Must exit loop to check un-masked IRQs */ 1565 s->base.is_jmp = DISAS_EXIT; 1566 return true; 1567 } 1568 1569 /* HINT instruction group, including various allocated HINTs */ 1570 static void handle_hint(DisasContext *s, uint32_t insn, 1571 unsigned int op1, unsigned int op2, unsigned int crm) 1572 { 1573 unsigned int selector = crm << 3 | op2; 1574 1575 if (op1 != 3) { 1576 unallocated_encoding(s); 1577 return; 1578 } 1579 1580 switch (selector) { 1581 case 0b00000: /* NOP */ 1582 break; 1583 case 0b00011: /* WFI */ 1584 s->base.is_jmp = DISAS_WFI; 1585 break; 1586 case 0b00001: /* YIELD */ 1587 /* When running in MTTCG we don't generate jumps to the yield and 1588 * WFE helpers as it won't affect the scheduling of other vCPUs. 1589 * If we wanted to more completely model WFE/SEV so we don't busy 1590 * spin unnecessarily we would need to do something more involved. 1591 */ 1592 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1593 s->base.is_jmp = DISAS_YIELD; 1594 } 1595 break; 1596 case 0b00010: /* WFE */ 1597 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1598 s->base.is_jmp = DISAS_WFE; 1599 } 1600 break; 1601 case 0b00100: /* SEV */ 1602 case 0b00101: /* SEVL */ 1603 case 0b00110: /* DGH */ 1604 /* we treat all as NOP at least for now */ 1605 break; 1606 case 0b00111: /* XPACLRI */ 1607 if (s->pauth_active) { 1608 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1609 } 1610 break; 1611 case 0b01000: /* PACIA1716 */ 1612 if (s->pauth_active) { 1613 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1614 } 1615 break; 1616 case 0b01010: /* PACIB1716 */ 1617 if (s->pauth_active) { 1618 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1619 } 1620 break; 1621 case 0b01100: /* AUTIA1716 */ 1622 if (s->pauth_active) { 1623 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1624 } 1625 break; 1626 case 0b01110: /* AUTIB1716 */ 1627 if (s->pauth_active) { 1628 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1629 } 1630 break; 1631 case 0b10000: /* ESB */ 1632 /* Without RAS, we must implement this as NOP. */ 1633 if (dc_isar_feature(aa64_ras, s)) { 1634 /* 1635 * QEMU does not have a source of physical SErrors, 1636 * so we are only concerned with virtual SErrors. 1637 * The pseudocode in the ARM for this case is 1638 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1639 * AArch64.vESBOperation(); 1640 * Most of the condition can be evaluated at translation time. 1641 * Test for EL2 present, and defer test for SEL2 to runtime. 1642 */ 1643 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1644 gen_helper_vesb(cpu_env); 1645 } 1646 } 1647 break; 1648 case 0b11000: /* PACIAZ */ 1649 if (s->pauth_active) { 1650 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1651 tcg_constant_i64(0)); 1652 } 1653 break; 1654 case 0b11001: /* PACIASP */ 1655 if (s->pauth_active) { 1656 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1657 } 1658 break; 1659 case 0b11010: /* PACIBZ */ 1660 if (s->pauth_active) { 1661 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1662 tcg_constant_i64(0)); 1663 } 1664 break; 1665 case 0b11011: /* PACIBSP */ 1666 if (s->pauth_active) { 1667 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1668 } 1669 break; 1670 case 0b11100: /* AUTIAZ */ 1671 if (s->pauth_active) { 1672 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1673 tcg_constant_i64(0)); 1674 } 1675 break; 1676 case 0b11101: /* AUTIASP */ 1677 if (s->pauth_active) { 1678 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1679 } 1680 break; 1681 case 0b11110: /* AUTIBZ */ 1682 if (s->pauth_active) { 1683 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1684 tcg_constant_i64(0)); 1685 } 1686 break; 1687 case 0b11111: /* AUTIBSP */ 1688 if (s->pauth_active) { 1689 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1690 } 1691 break; 1692 default: 1693 /* default specified as NOP equivalent */ 1694 break; 1695 } 1696 } 1697 1698 static void gen_clrex(DisasContext *s, uint32_t insn) 1699 { 1700 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1701 } 1702 1703 /* CLREX, DSB, DMB, ISB */ 1704 static void handle_sync(DisasContext *s, uint32_t insn, 1705 unsigned int op1, unsigned int op2, unsigned int crm) 1706 { 1707 TCGBar bar; 1708 1709 if (op1 != 3) { 1710 unallocated_encoding(s); 1711 return; 1712 } 1713 1714 switch (op2) { 1715 case 2: /* CLREX */ 1716 gen_clrex(s, insn); 1717 return; 1718 case 4: /* DSB */ 1719 case 5: /* DMB */ 1720 switch (crm & 3) { 1721 case 1: /* MBReqTypes_Reads */ 1722 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1723 break; 1724 case 2: /* MBReqTypes_Writes */ 1725 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1726 break; 1727 default: /* MBReqTypes_All */ 1728 bar = TCG_BAR_SC | TCG_MO_ALL; 1729 break; 1730 } 1731 tcg_gen_mb(bar); 1732 return; 1733 case 6: /* ISB */ 1734 /* We need to break the TB after this insn to execute 1735 * a self-modified code correctly and also to take 1736 * any pending interrupts immediately. 1737 */ 1738 reset_btype(s); 1739 gen_goto_tb(s, 0, 4); 1740 return; 1741 1742 case 7: /* SB */ 1743 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1744 goto do_unallocated; 1745 } 1746 /* 1747 * TODO: There is no speculation barrier opcode for TCG; 1748 * MB and end the TB instead. 1749 */ 1750 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1751 gen_goto_tb(s, 0, 4); 1752 return; 1753 1754 default: 1755 do_unallocated: 1756 unallocated_encoding(s); 1757 return; 1758 } 1759 } 1760 1761 static void gen_xaflag(void) 1762 { 1763 TCGv_i32 z = tcg_temp_new_i32(); 1764 1765 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1766 1767 /* 1768 * (!C & !Z) << 31 1769 * (!(C | Z)) << 31 1770 * ~((C | Z) << 31) 1771 * ~-(C | Z) 1772 * (C | Z) - 1 1773 */ 1774 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1775 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1776 1777 /* !(Z & C) */ 1778 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1779 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1780 1781 /* (!C & Z) << 31 -> -(Z & ~C) */ 1782 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1783 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1784 1785 /* C | Z */ 1786 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1787 } 1788 1789 static void gen_axflag(void) 1790 { 1791 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1792 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1793 1794 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1795 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1796 1797 tcg_gen_movi_i32(cpu_NF, 0); 1798 tcg_gen_movi_i32(cpu_VF, 0); 1799 } 1800 1801 /* MSR (immediate) - move immediate to processor state field */ 1802 static void handle_msr_i(DisasContext *s, uint32_t insn, 1803 unsigned int op1, unsigned int op2, unsigned int crm) 1804 { 1805 int op = op1 << 3 | op2; 1806 1807 /* End the TB by default, chaining is ok. */ 1808 s->base.is_jmp = DISAS_TOO_MANY; 1809 1810 switch (op) { 1811 case 0x00: /* CFINV */ 1812 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1813 goto do_unallocated; 1814 } 1815 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1816 s->base.is_jmp = DISAS_NEXT; 1817 break; 1818 1819 case 0x01: /* XAFlag */ 1820 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1821 goto do_unallocated; 1822 } 1823 gen_xaflag(); 1824 s->base.is_jmp = DISAS_NEXT; 1825 break; 1826 1827 case 0x02: /* AXFlag */ 1828 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1829 goto do_unallocated; 1830 } 1831 gen_axflag(); 1832 s->base.is_jmp = DISAS_NEXT; 1833 break; 1834 1835 case 0x03: /* UAO */ 1836 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1837 goto do_unallocated; 1838 } 1839 if (crm & 1) { 1840 set_pstate_bits(PSTATE_UAO); 1841 } else { 1842 clear_pstate_bits(PSTATE_UAO); 1843 } 1844 gen_rebuild_hflags(s); 1845 break; 1846 1847 case 0x04: /* PAN */ 1848 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1849 goto do_unallocated; 1850 } 1851 if (crm & 1) { 1852 set_pstate_bits(PSTATE_PAN); 1853 } else { 1854 clear_pstate_bits(PSTATE_PAN); 1855 } 1856 gen_rebuild_hflags(s); 1857 break; 1858 1859 case 0x05: /* SPSel */ 1860 if (s->current_el == 0) { 1861 goto do_unallocated; 1862 } 1863 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1864 break; 1865 1866 case 0x19: /* SSBS */ 1867 if (!dc_isar_feature(aa64_ssbs, s)) { 1868 goto do_unallocated; 1869 } 1870 if (crm & 1) { 1871 set_pstate_bits(PSTATE_SSBS); 1872 } else { 1873 clear_pstate_bits(PSTATE_SSBS); 1874 } 1875 /* Don't need to rebuild hflags since SSBS is a nop */ 1876 break; 1877 1878 case 0x1a: /* DIT */ 1879 if (!dc_isar_feature(aa64_dit, s)) { 1880 goto do_unallocated; 1881 } 1882 if (crm & 1) { 1883 set_pstate_bits(PSTATE_DIT); 1884 } else { 1885 clear_pstate_bits(PSTATE_DIT); 1886 } 1887 /* There's no need to rebuild hflags because DIT is a nop */ 1888 break; 1889 1890 case 0x1e: /* DAIFSet */ 1891 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1892 break; 1893 1894 case 0x1f: /* DAIFClear */ 1895 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1896 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1897 s->base.is_jmp = DISAS_UPDATE_EXIT; 1898 break; 1899 1900 case 0x1c: /* TCO */ 1901 if (dc_isar_feature(aa64_mte, s)) { 1902 /* Full MTE is enabled -- set the TCO bit as directed. */ 1903 if (crm & 1) { 1904 set_pstate_bits(PSTATE_TCO); 1905 } else { 1906 clear_pstate_bits(PSTATE_TCO); 1907 } 1908 gen_rebuild_hflags(s); 1909 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1910 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1911 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1912 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1913 s->base.is_jmp = DISAS_NEXT; 1914 } else { 1915 goto do_unallocated; 1916 } 1917 break; 1918 1919 case 0x1b: /* SVCR* */ 1920 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1921 goto do_unallocated; 1922 } 1923 if (sme_access_check(s)) { 1924 int old = s->pstate_sm | (s->pstate_za << 1); 1925 int new = (crm & 1) * 3; 1926 int msk = (crm >> 1) & 3; 1927 1928 if ((old ^ new) & msk) { 1929 /* At least one bit changes. */ 1930 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1931 tcg_constant_i32(msk)); 1932 } else { 1933 s->base.is_jmp = DISAS_NEXT; 1934 } 1935 } 1936 break; 1937 1938 default: 1939 do_unallocated: 1940 unallocated_encoding(s); 1941 return; 1942 } 1943 } 1944 1945 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1946 { 1947 TCGv_i32 tmp = tcg_temp_new_i32(); 1948 TCGv_i32 nzcv = tcg_temp_new_i32(); 1949 1950 /* build bit 31, N */ 1951 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1952 /* build bit 30, Z */ 1953 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1954 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1955 /* build bit 29, C */ 1956 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1957 /* build bit 28, V */ 1958 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1959 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1960 /* generate result */ 1961 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1962 } 1963 1964 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1965 { 1966 TCGv_i32 nzcv = tcg_temp_new_i32(); 1967 1968 /* take NZCV from R[t] */ 1969 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1970 1971 /* bit 31, N */ 1972 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1973 /* bit 30, Z */ 1974 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1975 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1976 /* bit 29, C */ 1977 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1978 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1979 /* bit 28, V */ 1980 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1981 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1982 } 1983 1984 static void gen_sysreg_undef(DisasContext *s, bool isread, 1985 uint8_t op0, uint8_t op1, uint8_t op2, 1986 uint8_t crn, uint8_t crm, uint8_t rt) 1987 { 1988 /* 1989 * Generate code to emit an UNDEF with correct syndrome 1990 * information for a failed system register access. 1991 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1992 * but if FEAT_IDST is implemented then read accesses to registers 1993 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1994 * syndrome. 1995 */ 1996 uint32_t syndrome; 1997 1998 if (isread && dc_isar_feature(aa64_ids, s) && 1999 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2000 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2001 } else { 2002 syndrome = syn_uncategorized(); 2003 } 2004 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2005 } 2006 2007 /* MRS - move from system register 2008 * MSR (register) - move to system register 2009 * SYS 2010 * SYSL 2011 * These are all essentially the same insn in 'read' and 'write' 2012 * versions, with varying op0 fields. 2013 */ 2014 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2015 unsigned int op0, unsigned int op1, unsigned int op2, 2016 unsigned int crn, unsigned int crm, unsigned int rt) 2017 { 2018 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2019 crn, crm, op0, op1, op2); 2020 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2021 bool need_exit_tb = false; 2022 TCGv_ptr tcg_ri = NULL; 2023 TCGv_i64 tcg_rt; 2024 2025 if (!ri) { 2026 /* Unknown register; this might be a guest error or a QEMU 2027 * unimplemented feature. 2028 */ 2029 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2030 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2031 isread ? "read" : "write", op0, op1, crn, crm, op2); 2032 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2033 return; 2034 } 2035 2036 /* Check access permissions */ 2037 if (!cp_access_ok(s->current_el, ri, isread)) { 2038 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2039 return; 2040 } 2041 2042 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2043 /* Emit code to perform further access permissions checks at 2044 * runtime; this may result in an exception. 2045 */ 2046 uint32_t syndrome; 2047 2048 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2049 gen_a64_update_pc(s, 0); 2050 tcg_ri = tcg_temp_new_ptr(); 2051 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2052 tcg_constant_i32(key), 2053 tcg_constant_i32(syndrome), 2054 tcg_constant_i32(isread)); 2055 } else if (ri->type & ARM_CP_RAISES_EXC) { 2056 /* 2057 * The readfn or writefn might raise an exception; 2058 * synchronize the CPU state in case it does. 2059 */ 2060 gen_a64_update_pc(s, 0); 2061 } 2062 2063 /* Handle special cases first */ 2064 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2065 case 0: 2066 break; 2067 case ARM_CP_NOP: 2068 return; 2069 case ARM_CP_NZCV: 2070 tcg_rt = cpu_reg(s, rt); 2071 if (isread) { 2072 gen_get_nzcv(tcg_rt); 2073 } else { 2074 gen_set_nzcv(tcg_rt); 2075 } 2076 return; 2077 case ARM_CP_CURRENTEL: 2078 /* Reads as current EL value from pstate, which is 2079 * guaranteed to be constant by the tb flags. 2080 */ 2081 tcg_rt = cpu_reg(s, rt); 2082 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2083 return; 2084 case ARM_CP_DC_ZVA: 2085 /* Writes clear the aligned block of memory which rt points into. */ 2086 if (s->mte_active[0]) { 2087 int desc = 0; 2088 2089 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2090 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2091 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2092 2093 tcg_rt = tcg_temp_new_i64(); 2094 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2095 tcg_constant_i32(desc), cpu_reg(s, rt)); 2096 } else { 2097 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2098 } 2099 gen_helper_dc_zva(cpu_env, tcg_rt); 2100 return; 2101 case ARM_CP_DC_GVA: 2102 { 2103 TCGv_i64 clean_addr, tag; 2104 2105 /* 2106 * DC_GVA, like DC_ZVA, requires that we supply the original 2107 * pointer for an invalid page. Probe that address first. 2108 */ 2109 tcg_rt = cpu_reg(s, rt); 2110 clean_addr = clean_data_tbi(s, tcg_rt); 2111 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2112 2113 if (s->ata) { 2114 /* Extract the tag from the register to match STZGM. */ 2115 tag = tcg_temp_new_i64(); 2116 tcg_gen_shri_i64(tag, tcg_rt, 56); 2117 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2118 } 2119 } 2120 return; 2121 case ARM_CP_DC_GZVA: 2122 { 2123 TCGv_i64 clean_addr, tag; 2124 2125 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2126 tcg_rt = cpu_reg(s, rt); 2127 clean_addr = clean_data_tbi(s, tcg_rt); 2128 gen_helper_dc_zva(cpu_env, clean_addr); 2129 2130 if (s->ata) { 2131 /* Extract the tag from the register to match STZGM. */ 2132 tag = tcg_temp_new_i64(); 2133 tcg_gen_shri_i64(tag, tcg_rt, 56); 2134 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2135 } 2136 } 2137 return; 2138 default: 2139 g_assert_not_reached(); 2140 } 2141 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2142 return; 2143 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2144 return; 2145 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2146 return; 2147 } 2148 2149 if (ri->type & ARM_CP_IO) { 2150 /* I/O operations must end the TB here (whether read or write) */ 2151 need_exit_tb = translator_io_start(&s->base); 2152 } 2153 2154 tcg_rt = cpu_reg(s, rt); 2155 2156 if (isread) { 2157 if (ri->type & ARM_CP_CONST) { 2158 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2159 } else if (ri->readfn) { 2160 if (!tcg_ri) { 2161 tcg_ri = gen_lookup_cp_reg(key); 2162 } 2163 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2164 } else { 2165 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2166 } 2167 } else { 2168 if (ri->type & ARM_CP_CONST) { 2169 /* If not forbidden by access permissions, treat as WI */ 2170 return; 2171 } else if (ri->writefn) { 2172 if (!tcg_ri) { 2173 tcg_ri = gen_lookup_cp_reg(key); 2174 } 2175 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2176 } else { 2177 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2178 } 2179 } 2180 2181 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2182 /* 2183 * A write to any coprocessor regiser that ends a TB 2184 * must rebuild the hflags for the next TB. 2185 */ 2186 gen_rebuild_hflags(s); 2187 /* 2188 * We default to ending the TB on a coprocessor register write, 2189 * but allow this to be suppressed by the register definition 2190 * (usually only necessary to work around guest bugs). 2191 */ 2192 need_exit_tb = true; 2193 } 2194 if (need_exit_tb) { 2195 s->base.is_jmp = DISAS_UPDATE_EXIT; 2196 } 2197 } 2198 2199 /* System 2200 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2201 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2202 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2203 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2204 */ 2205 static void disas_system(DisasContext *s, uint32_t insn) 2206 { 2207 unsigned int l, op0, op1, crn, crm, op2, rt; 2208 l = extract32(insn, 21, 1); 2209 op0 = extract32(insn, 19, 2); 2210 op1 = extract32(insn, 16, 3); 2211 crn = extract32(insn, 12, 4); 2212 crm = extract32(insn, 8, 4); 2213 op2 = extract32(insn, 5, 3); 2214 rt = extract32(insn, 0, 5); 2215 2216 if (op0 == 0) { 2217 if (l || rt != 31) { 2218 unallocated_encoding(s); 2219 return; 2220 } 2221 switch (crn) { 2222 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2223 handle_hint(s, insn, op1, op2, crm); 2224 break; 2225 case 3: /* CLREX, DSB, DMB, ISB */ 2226 handle_sync(s, insn, op1, op2, crm); 2227 break; 2228 case 4: /* MSR (immediate) */ 2229 handle_msr_i(s, insn, op1, op2, crm); 2230 break; 2231 default: 2232 unallocated_encoding(s); 2233 break; 2234 } 2235 return; 2236 } 2237 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2238 } 2239 2240 /* Exception generation 2241 * 2242 * 31 24 23 21 20 5 4 2 1 0 2243 * +-----------------+-----+------------------------+-----+----+ 2244 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2245 * +-----------------------+------------------------+----------+ 2246 */ 2247 static void disas_exc(DisasContext *s, uint32_t insn) 2248 { 2249 int opc = extract32(insn, 21, 3); 2250 int op2_ll = extract32(insn, 0, 5); 2251 int imm16 = extract32(insn, 5, 16); 2252 uint32_t syndrome; 2253 2254 switch (opc) { 2255 case 0: 2256 /* For SVC, HVC and SMC we advance the single-step state 2257 * machine before taking the exception. This is architecturally 2258 * mandated, to ensure that single-stepping a system call 2259 * instruction works properly. 2260 */ 2261 switch (op2_ll) { 2262 case 1: /* SVC */ 2263 syndrome = syn_aa64_svc(imm16); 2264 if (s->fgt_svc) { 2265 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2266 break; 2267 } 2268 gen_ss_advance(s); 2269 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2270 break; 2271 case 2: /* HVC */ 2272 if (s->current_el == 0) { 2273 unallocated_encoding(s); 2274 break; 2275 } 2276 /* The pre HVC helper handles cases when HVC gets trapped 2277 * as an undefined insn by runtime configuration. 2278 */ 2279 gen_a64_update_pc(s, 0); 2280 gen_helper_pre_hvc(cpu_env); 2281 gen_ss_advance(s); 2282 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2283 break; 2284 case 3: /* SMC */ 2285 if (s->current_el == 0) { 2286 unallocated_encoding(s); 2287 break; 2288 } 2289 gen_a64_update_pc(s, 0); 2290 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2291 gen_ss_advance(s); 2292 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2293 break; 2294 default: 2295 unallocated_encoding(s); 2296 break; 2297 } 2298 break; 2299 case 1: 2300 if (op2_ll != 0) { 2301 unallocated_encoding(s); 2302 break; 2303 } 2304 /* BRK */ 2305 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2306 break; 2307 case 2: 2308 if (op2_ll != 0) { 2309 unallocated_encoding(s); 2310 break; 2311 } 2312 /* HLT. This has two purposes. 2313 * Architecturally, it is an external halting debug instruction. 2314 * Since QEMU doesn't implement external debug, we treat this as 2315 * it is required for halting debug disabled: it will UNDEF. 2316 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2317 */ 2318 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2319 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2320 } else { 2321 unallocated_encoding(s); 2322 } 2323 break; 2324 case 5: 2325 if (op2_ll < 1 || op2_ll > 3) { 2326 unallocated_encoding(s); 2327 break; 2328 } 2329 /* DCPS1, DCPS2, DCPS3 */ 2330 unallocated_encoding(s); 2331 break; 2332 default: 2333 unallocated_encoding(s); 2334 break; 2335 } 2336 } 2337 2338 /* Branches, exception generating and system instructions */ 2339 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2340 { 2341 switch (extract32(insn, 25, 7)) { 2342 case 0x6a: /* Exception generation / System */ 2343 if (insn & (1 << 24)) { 2344 if (extract32(insn, 22, 2) == 0) { 2345 disas_system(s, insn); 2346 } else { 2347 unallocated_encoding(s); 2348 } 2349 } else { 2350 disas_exc(s, insn); 2351 } 2352 break; 2353 default: 2354 unallocated_encoding(s); 2355 break; 2356 } 2357 } 2358 2359 /* 2360 * Load/Store exclusive instructions are implemented by remembering 2361 * the value/address loaded, and seeing if these are the same 2362 * when the store is performed. This is not actually the architecturally 2363 * mandated semantics, but it works for typical guest code sequences 2364 * and avoids having to monitor regular stores. 2365 * 2366 * The store exclusive uses the atomic cmpxchg primitives to avoid 2367 * races in multi-threaded linux-user and when MTTCG softmmu is 2368 * enabled. 2369 */ 2370 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2371 int size, bool is_pair) 2372 { 2373 int idx = get_mem_index(s); 2374 MemOp memop; 2375 TCGv_i64 dirty_addr, clean_addr; 2376 2377 s->is_ldex = true; 2378 dirty_addr = cpu_reg_sp(s, rn); 2379 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, size); 2380 2381 g_assert(size <= 3); 2382 if (is_pair) { 2383 g_assert(size >= 2); 2384 if (size == 2) { 2385 /* The pair must be single-copy atomic for the doubleword. */ 2386 memop = finalize_memop(s, MO_64 | MO_ALIGN); 2387 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2388 if (s->be_data == MO_LE) { 2389 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2390 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2391 } else { 2392 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2393 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2394 } 2395 } else { 2396 /* 2397 * The pair must be single-copy atomic for *each* doubleword, not 2398 * the entire quadword, however it must be quadword aligned. 2399 * Expose the complete load to tcg, for ease of tlb lookup, 2400 * but indicate that only 8-byte atomicity is required. 2401 */ 2402 TCGv_i128 t16 = tcg_temp_new_i128(); 2403 2404 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN_16, 2405 MO_ATOM_IFALIGN_PAIR); 2406 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2407 2408 if (s->be_data == MO_LE) { 2409 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2410 cpu_exclusive_high, t16); 2411 } else { 2412 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2413 cpu_exclusive_val, t16); 2414 } 2415 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2416 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2417 } 2418 } else { 2419 memop = finalize_memop(s, size | MO_ALIGN); 2420 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2421 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2422 } 2423 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2424 } 2425 2426 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2427 int rn, int size, int is_pair) 2428 { 2429 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2430 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2431 * [addr] = {Rt}; 2432 * if (is_pair) { 2433 * [addr + datasize] = {Rt2}; 2434 * } 2435 * {Rd} = 0; 2436 * } else { 2437 * {Rd} = 1; 2438 * } 2439 * env->exclusive_addr = -1; 2440 */ 2441 TCGLabel *fail_label = gen_new_label(); 2442 TCGLabel *done_label = gen_new_label(); 2443 TCGv_i64 tmp, dirty_addr, clean_addr; 2444 2445 dirty_addr = cpu_reg_sp(s, rn); 2446 clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, size); 2447 2448 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2449 2450 tmp = tcg_temp_new_i64(); 2451 if (is_pair) { 2452 if (size == 2) { 2453 if (s->be_data == MO_LE) { 2454 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2455 } else { 2456 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2457 } 2458 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2459 cpu_exclusive_val, tmp, 2460 get_mem_index(s), 2461 MO_64 | MO_ALIGN | s->be_data); 2462 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2463 } else { 2464 TCGv_i128 t16 = tcg_temp_new_i128(); 2465 TCGv_i128 c16 = tcg_temp_new_i128(); 2466 TCGv_i64 a, b; 2467 2468 if (s->be_data == MO_LE) { 2469 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2470 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2471 cpu_exclusive_high); 2472 } else { 2473 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2474 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2475 cpu_exclusive_val); 2476 } 2477 2478 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2479 get_mem_index(s), 2480 MO_128 | MO_ALIGN | s->be_data); 2481 2482 a = tcg_temp_new_i64(); 2483 b = tcg_temp_new_i64(); 2484 if (s->be_data == MO_LE) { 2485 tcg_gen_extr_i128_i64(a, b, t16); 2486 } else { 2487 tcg_gen_extr_i128_i64(b, a, t16); 2488 } 2489 2490 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2491 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2492 tcg_gen_or_i64(tmp, a, b); 2493 2494 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2495 } 2496 } else { 2497 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2498 cpu_reg(s, rt), get_mem_index(s), 2499 size | MO_ALIGN | s->be_data); 2500 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2501 } 2502 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2503 tcg_gen_br(done_label); 2504 2505 gen_set_label(fail_label); 2506 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2507 gen_set_label(done_label); 2508 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2509 } 2510 2511 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2512 int rn, int size) 2513 { 2514 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2515 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2516 int memidx = get_mem_index(s); 2517 TCGv_i64 clean_addr; 2518 2519 if (rn == 31) { 2520 gen_check_sp_alignment(s); 2521 } 2522 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2523 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2524 size | MO_ALIGN | s->be_data); 2525 } 2526 2527 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2528 int rn, int size) 2529 { 2530 TCGv_i64 s1 = cpu_reg(s, rs); 2531 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2532 TCGv_i64 t1 = cpu_reg(s, rt); 2533 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2534 TCGv_i64 clean_addr; 2535 int memidx = get_mem_index(s); 2536 2537 if (rn == 31) { 2538 gen_check_sp_alignment(s); 2539 } 2540 2541 /* This is a single atomic access, despite the "pair". */ 2542 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2543 2544 if (size == 2) { 2545 TCGv_i64 cmp = tcg_temp_new_i64(); 2546 TCGv_i64 val = tcg_temp_new_i64(); 2547 2548 if (s->be_data == MO_LE) { 2549 tcg_gen_concat32_i64(val, t1, t2); 2550 tcg_gen_concat32_i64(cmp, s1, s2); 2551 } else { 2552 tcg_gen_concat32_i64(val, t2, t1); 2553 tcg_gen_concat32_i64(cmp, s2, s1); 2554 } 2555 2556 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2557 MO_64 | MO_ALIGN | s->be_data); 2558 2559 if (s->be_data == MO_LE) { 2560 tcg_gen_extr32_i64(s1, s2, cmp); 2561 } else { 2562 tcg_gen_extr32_i64(s2, s1, cmp); 2563 } 2564 } else { 2565 TCGv_i128 cmp = tcg_temp_new_i128(); 2566 TCGv_i128 val = tcg_temp_new_i128(); 2567 2568 if (s->be_data == MO_LE) { 2569 tcg_gen_concat_i64_i128(val, t1, t2); 2570 tcg_gen_concat_i64_i128(cmp, s1, s2); 2571 } else { 2572 tcg_gen_concat_i64_i128(val, t2, t1); 2573 tcg_gen_concat_i64_i128(cmp, s2, s1); 2574 } 2575 2576 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2577 MO_128 | MO_ALIGN | s->be_data); 2578 2579 if (s->be_data == MO_LE) { 2580 tcg_gen_extr_i128_i64(s1, s2, cmp); 2581 } else { 2582 tcg_gen_extr_i128_i64(s2, s1, cmp); 2583 } 2584 } 2585 } 2586 2587 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2588 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2589 */ 2590 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2591 { 2592 int opc0 = extract32(opc, 0, 1); 2593 int regsize; 2594 2595 if (is_signed) { 2596 regsize = opc0 ? 32 : 64; 2597 } else { 2598 regsize = size == 3 ? 64 : 32; 2599 } 2600 return regsize == 64; 2601 } 2602 2603 /* Load/store exclusive 2604 * 2605 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2606 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2607 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2608 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2609 * 2610 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2611 * L: 0 -> store, 1 -> load 2612 * o2: 0 -> exclusive, 1 -> not 2613 * o1: 0 -> single register, 1 -> register pair 2614 * o0: 1 -> load-acquire/store-release, 0 -> not 2615 */ 2616 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2617 { 2618 int rt = extract32(insn, 0, 5); 2619 int rn = extract32(insn, 5, 5); 2620 int rt2 = extract32(insn, 10, 5); 2621 int rs = extract32(insn, 16, 5); 2622 int is_lasr = extract32(insn, 15, 1); 2623 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2624 int size = extract32(insn, 30, 2); 2625 TCGv_i64 clean_addr; 2626 MemOp memop; 2627 2628 switch (o2_L_o1_o0) { 2629 case 0x0: /* STXR */ 2630 case 0x1: /* STLXR */ 2631 if (rn == 31) { 2632 gen_check_sp_alignment(s); 2633 } 2634 if (is_lasr) { 2635 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2636 } 2637 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2638 return; 2639 2640 case 0x4: /* LDXR */ 2641 case 0x5: /* LDAXR */ 2642 if (rn == 31) { 2643 gen_check_sp_alignment(s); 2644 } 2645 gen_load_exclusive(s, rt, rt2, rn, size, false); 2646 if (is_lasr) { 2647 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2648 } 2649 return; 2650 2651 case 0x8: /* STLLR */ 2652 if (!dc_isar_feature(aa64_lor, s)) { 2653 break; 2654 } 2655 /* StoreLORelease is the same as Store-Release for QEMU. */ 2656 /* fall through */ 2657 case 0x9: /* STLR */ 2658 /* Generate ISS for non-exclusive accesses including LASR. */ 2659 if (rn == 31) { 2660 gen_check_sp_alignment(s); 2661 } 2662 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2663 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2664 memop = finalize_memop(s, size | MO_ALIGN); 2665 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2666 true, rn != 31, size); 2667 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2668 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2669 return; 2670 2671 case 0xc: /* LDLAR */ 2672 if (!dc_isar_feature(aa64_lor, s)) { 2673 break; 2674 } 2675 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2676 /* fall through */ 2677 case 0xd: /* LDAR */ 2678 /* Generate ISS for non-exclusive accesses including LASR. */ 2679 if (rn == 31) { 2680 gen_check_sp_alignment(s); 2681 } 2682 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2683 memop = finalize_memop(s, size | MO_ALIGN); 2684 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2685 false, rn != 31, size); 2686 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2687 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2688 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2689 return; 2690 2691 case 0x2: case 0x3: /* CASP / STXP */ 2692 if (size & 2) { /* STXP / STLXP */ 2693 if (rn == 31) { 2694 gen_check_sp_alignment(s); 2695 } 2696 if (is_lasr) { 2697 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2698 } 2699 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2700 return; 2701 } 2702 if (rt2 == 31 2703 && ((rt | rs) & 1) == 0 2704 && dc_isar_feature(aa64_atomics, s)) { 2705 /* CASP / CASPL */ 2706 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2707 return; 2708 } 2709 break; 2710 2711 case 0x6: case 0x7: /* CASPA / LDXP */ 2712 if (size & 2) { /* LDXP / LDAXP */ 2713 if (rn == 31) { 2714 gen_check_sp_alignment(s); 2715 } 2716 gen_load_exclusive(s, rt, rt2, rn, size, true); 2717 if (is_lasr) { 2718 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2719 } 2720 return; 2721 } 2722 if (rt2 == 31 2723 && ((rt | rs) & 1) == 0 2724 && dc_isar_feature(aa64_atomics, s)) { 2725 /* CASPA / CASPAL */ 2726 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2727 return; 2728 } 2729 break; 2730 2731 case 0xa: /* CAS */ 2732 case 0xb: /* CASL */ 2733 case 0xe: /* CASA */ 2734 case 0xf: /* CASAL */ 2735 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2736 gen_compare_and_swap(s, rs, rt, rn, size); 2737 return; 2738 } 2739 break; 2740 } 2741 unallocated_encoding(s); 2742 } 2743 2744 /* 2745 * Load register (literal) 2746 * 2747 * 31 30 29 27 26 25 24 23 5 4 0 2748 * +-----+-------+---+-----+-------------------+-------+ 2749 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2750 * +-----+-------+---+-----+-------------------+-------+ 2751 * 2752 * V: 1 -> vector (simd/fp) 2753 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2754 * 10-> 32 bit signed, 11 -> prefetch 2755 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2756 */ 2757 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2758 { 2759 int rt = extract32(insn, 0, 5); 2760 int64_t imm = sextract32(insn, 5, 19) << 2; 2761 bool is_vector = extract32(insn, 26, 1); 2762 int opc = extract32(insn, 30, 2); 2763 bool is_signed = false; 2764 int size = 2; 2765 TCGv_i64 tcg_rt, clean_addr; 2766 2767 if (is_vector) { 2768 if (opc == 3) { 2769 unallocated_encoding(s); 2770 return; 2771 } 2772 size = 2 + opc; 2773 if (!fp_access_check(s)) { 2774 return; 2775 } 2776 } else { 2777 if (opc == 3) { 2778 /* PRFM (literal) : prefetch */ 2779 return; 2780 } 2781 size = 2 + extract32(opc, 0, 1); 2782 is_signed = extract32(opc, 1, 1); 2783 } 2784 2785 tcg_rt = cpu_reg(s, rt); 2786 2787 clean_addr = tcg_temp_new_i64(); 2788 gen_pc_plus_diff(s, clean_addr, imm); 2789 if (is_vector) { 2790 do_fp_ld(s, rt, clean_addr, size); 2791 } else { 2792 /* Only unsigned 32bit loads target 32bit registers. */ 2793 bool iss_sf = opc != 0; 2794 MemOp memop = finalize_memop(s, size + is_signed * MO_SIGN); 2795 2796 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2797 } 2798 } 2799 2800 /* 2801 * LDNP (Load Pair - non-temporal hint) 2802 * LDP (Load Pair - non vector) 2803 * LDPSW (Load Pair Signed Word - non vector) 2804 * STNP (Store Pair - non-temporal hint) 2805 * STP (Store Pair - non vector) 2806 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2807 * LDP (Load Pair of SIMD&FP) 2808 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2809 * STP (Store Pair of SIMD&FP) 2810 * 2811 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2812 * +-----+-------+---+---+-------+---+-----------------------------+ 2813 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2814 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2815 * 2816 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2817 * LDPSW/STGP 01 2818 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2819 * V: 0 -> GPR, 1 -> Vector 2820 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2821 * 10 -> signed offset, 11 -> pre-index 2822 * L: 0 -> Store 1 -> Load 2823 * 2824 * Rt, Rt2 = GPR or SIMD registers to be stored 2825 * Rn = general purpose register containing address 2826 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2827 */ 2828 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2829 { 2830 int rt = extract32(insn, 0, 5); 2831 int rn = extract32(insn, 5, 5); 2832 int rt2 = extract32(insn, 10, 5); 2833 uint64_t offset = sextract64(insn, 15, 7); 2834 int index = extract32(insn, 23, 2); 2835 bool is_vector = extract32(insn, 26, 1); 2836 bool is_load = extract32(insn, 22, 1); 2837 int opc = extract32(insn, 30, 2); 2838 2839 bool is_signed = false; 2840 bool postindex = false; 2841 bool wback = false; 2842 bool set_tag = false; 2843 2844 TCGv_i64 clean_addr, dirty_addr; 2845 2846 int size; 2847 2848 if (opc == 3) { 2849 unallocated_encoding(s); 2850 return; 2851 } 2852 2853 if (is_vector) { 2854 size = 2 + opc; 2855 } else if (opc == 1 && !is_load) { 2856 /* STGP */ 2857 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2858 unallocated_encoding(s); 2859 return; 2860 } 2861 size = 3; 2862 set_tag = true; 2863 } else { 2864 size = 2 + extract32(opc, 1, 1); 2865 is_signed = extract32(opc, 0, 1); 2866 if (!is_load && is_signed) { 2867 unallocated_encoding(s); 2868 return; 2869 } 2870 } 2871 2872 switch (index) { 2873 case 1: /* post-index */ 2874 postindex = true; 2875 wback = true; 2876 break; 2877 case 0: 2878 /* signed offset with "non-temporal" hint. Since we don't emulate 2879 * caches we don't care about hints to the cache system about 2880 * data access patterns, and handle this identically to plain 2881 * signed offset. 2882 */ 2883 if (is_signed) { 2884 /* There is no non-temporal-hint version of LDPSW */ 2885 unallocated_encoding(s); 2886 return; 2887 } 2888 postindex = false; 2889 break; 2890 case 2: /* signed offset, rn not updated */ 2891 postindex = false; 2892 break; 2893 case 3: /* pre-index */ 2894 postindex = false; 2895 wback = true; 2896 break; 2897 } 2898 2899 if (is_vector && !fp_access_check(s)) { 2900 return; 2901 } 2902 2903 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2904 2905 if (rn == 31) { 2906 gen_check_sp_alignment(s); 2907 } 2908 2909 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2910 if (!postindex) { 2911 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2912 } 2913 2914 if (set_tag) { 2915 if (!s->ata) { 2916 /* 2917 * TODO: We could rely on the stores below, at least for 2918 * system mode, if we arrange to add MO_ALIGN_16. 2919 */ 2920 gen_helper_stg_stub(cpu_env, dirty_addr); 2921 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2922 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2923 } else { 2924 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2925 } 2926 } 2927 2928 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2929 (wback || rn != 31) && !set_tag, 2 << size); 2930 2931 if (is_vector) { 2932 if (is_load) { 2933 do_fp_ld(s, rt, clean_addr, size); 2934 } else { 2935 do_fp_st(s, rt, clean_addr, size); 2936 } 2937 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2938 if (is_load) { 2939 do_fp_ld(s, rt2, clean_addr, size); 2940 } else { 2941 do_fp_st(s, rt2, clean_addr, size); 2942 } 2943 } else { 2944 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2945 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2946 MemOp mop = size + 1; 2947 2948 /* 2949 * With LSE2, non-sign-extending pairs are treated atomically if 2950 * aligned, and if unaligned one of the pair will be completely 2951 * within a 16-byte block and that element will be atomic. 2952 * Otherwise each element is separately atomic. 2953 * In all cases, issue one operation with the correct atomicity. 2954 * 2955 * This treats sign-extending loads like zero-extending loads, 2956 * since that reuses the most code below. 2957 */ 2958 if (s->align_mem) { 2959 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2960 } 2961 mop = finalize_memop_pair(s, mop); 2962 2963 if (is_load) { 2964 if (size == 2) { 2965 int o2 = s->be_data == MO_LE ? 32 : 0; 2966 int o1 = o2 ^ 32; 2967 2968 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2969 if (is_signed) { 2970 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2971 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2972 } else { 2973 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2974 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2975 } 2976 } else { 2977 TCGv_i128 tmp = tcg_temp_new_i128(); 2978 2979 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2980 if (s->be_data == MO_LE) { 2981 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2982 } else { 2983 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2984 } 2985 } 2986 } else { 2987 if (size == 2) { 2988 TCGv_i64 tmp = tcg_temp_new_i64(); 2989 2990 if (s->be_data == MO_LE) { 2991 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2992 } else { 2993 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2994 } 2995 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2996 } else { 2997 TCGv_i128 tmp = tcg_temp_new_i128(); 2998 2999 if (s->be_data == MO_LE) { 3000 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3001 } else { 3002 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3003 } 3004 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3005 } 3006 } 3007 } 3008 3009 if (wback) { 3010 if (postindex) { 3011 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3012 } 3013 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3014 } 3015 } 3016 3017 /* 3018 * Load/store (immediate post-indexed) 3019 * Load/store (immediate pre-indexed) 3020 * Load/store (unscaled immediate) 3021 * 3022 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3023 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3024 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3025 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3026 * 3027 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3028 10 -> unprivileged 3029 * V = 0 -> non-vector 3030 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3031 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3032 */ 3033 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3034 int opc, 3035 int size, 3036 int rt, 3037 bool is_vector) 3038 { 3039 int rn = extract32(insn, 5, 5); 3040 int imm9 = sextract32(insn, 12, 9); 3041 int idx = extract32(insn, 10, 2); 3042 bool is_signed = false; 3043 bool is_store = false; 3044 bool is_extended = false; 3045 bool is_unpriv = (idx == 2); 3046 bool iss_valid; 3047 bool post_index; 3048 bool writeback; 3049 int memidx; 3050 MemOp memop; 3051 TCGv_i64 clean_addr, dirty_addr; 3052 3053 if (is_vector) { 3054 size |= (opc & 2) << 1; 3055 if (size > 4 || is_unpriv) { 3056 unallocated_encoding(s); 3057 return; 3058 } 3059 is_store = ((opc & 1) == 0); 3060 if (!fp_access_check(s)) { 3061 return; 3062 } 3063 } else { 3064 if (size == 3 && opc == 2) { 3065 /* PRFM - prefetch */ 3066 if (idx != 0) { 3067 unallocated_encoding(s); 3068 return; 3069 } 3070 return; 3071 } 3072 if (opc == 3 && size > 1) { 3073 unallocated_encoding(s); 3074 return; 3075 } 3076 is_store = (opc == 0); 3077 is_signed = !is_store && extract32(opc, 1, 1); 3078 is_extended = (size < 3) && extract32(opc, 0, 1); 3079 } 3080 3081 switch (idx) { 3082 case 0: 3083 case 2: 3084 post_index = false; 3085 writeback = false; 3086 break; 3087 case 1: 3088 post_index = true; 3089 writeback = true; 3090 break; 3091 case 3: 3092 post_index = false; 3093 writeback = true; 3094 break; 3095 default: 3096 g_assert_not_reached(); 3097 } 3098 3099 iss_valid = !is_vector && !writeback; 3100 3101 if (rn == 31) { 3102 gen_check_sp_alignment(s); 3103 } 3104 3105 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3106 if (!post_index) { 3107 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3108 } 3109 3110 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3111 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3112 3113 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3114 writeback || rn != 31, 3115 size, is_unpriv, memidx); 3116 3117 if (is_vector) { 3118 if (is_store) { 3119 do_fp_st(s, rt, clean_addr, size); 3120 } else { 3121 do_fp_ld(s, rt, clean_addr, size); 3122 } 3123 } else { 3124 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3125 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3126 3127 if (is_store) { 3128 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3129 iss_valid, rt, iss_sf, false); 3130 } else { 3131 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3132 is_extended, memidx, 3133 iss_valid, rt, iss_sf, false); 3134 } 3135 } 3136 3137 if (writeback) { 3138 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3139 if (post_index) { 3140 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3141 } 3142 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3143 } 3144 } 3145 3146 /* 3147 * Load/store (register offset) 3148 * 3149 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3150 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3151 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3152 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3153 * 3154 * For non-vector: 3155 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3156 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3157 * For vector: 3158 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3159 * opc<0>: 0 -> store, 1 -> load 3160 * V: 1 -> vector/simd 3161 * opt: extend encoding (see DecodeRegExtend) 3162 * S: if S=1 then scale (essentially index by sizeof(size)) 3163 * Rt: register to transfer into/out of 3164 * Rn: address register or SP for base 3165 * Rm: offset register or ZR for offset 3166 */ 3167 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3168 int opc, 3169 int size, 3170 int rt, 3171 bool is_vector) 3172 { 3173 int rn = extract32(insn, 5, 5); 3174 int shift = extract32(insn, 12, 1); 3175 int rm = extract32(insn, 16, 5); 3176 int opt = extract32(insn, 13, 3); 3177 bool is_signed = false; 3178 bool is_store = false; 3179 bool is_extended = false; 3180 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3181 MemOp memop; 3182 3183 if (extract32(opt, 1, 1) == 0) { 3184 unallocated_encoding(s); 3185 return; 3186 } 3187 3188 if (is_vector) { 3189 size |= (opc & 2) << 1; 3190 if (size > 4) { 3191 unallocated_encoding(s); 3192 return; 3193 } 3194 is_store = !extract32(opc, 0, 1); 3195 if (!fp_access_check(s)) { 3196 return; 3197 } 3198 } else { 3199 if (size == 3 && opc == 2) { 3200 /* PRFM - prefetch */ 3201 return; 3202 } 3203 if (opc == 3 && size > 1) { 3204 unallocated_encoding(s); 3205 return; 3206 } 3207 is_store = (opc == 0); 3208 is_signed = !is_store && extract32(opc, 1, 1); 3209 is_extended = (size < 3) && extract32(opc, 0, 1); 3210 } 3211 3212 if (rn == 31) { 3213 gen_check_sp_alignment(s); 3214 } 3215 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3216 3217 tcg_rm = read_cpu_reg(s, rm, 1); 3218 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3219 3220 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3221 3222 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3223 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3224 3225 if (is_vector) { 3226 if (is_store) { 3227 do_fp_st(s, rt, clean_addr, size); 3228 } else { 3229 do_fp_ld(s, rt, clean_addr, size); 3230 } 3231 } else { 3232 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3233 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3234 3235 if (is_store) { 3236 do_gpr_st(s, tcg_rt, clean_addr, memop, 3237 true, rt, iss_sf, false); 3238 } else { 3239 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3240 is_extended, true, rt, iss_sf, false); 3241 } 3242 } 3243 } 3244 3245 /* 3246 * Load/store (unsigned immediate) 3247 * 3248 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3249 * +----+-------+---+-----+-----+------------+-------+------+ 3250 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3251 * +----+-------+---+-----+-----+------------+-------+------+ 3252 * 3253 * For non-vector: 3254 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3255 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3256 * For vector: 3257 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3258 * opc<0>: 0 -> store, 1 -> load 3259 * Rn: base address register (inc SP) 3260 * Rt: target register 3261 */ 3262 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3263 int opc, 3264 int size, 3265 int rt, 3266 bool is_vector) 3267 { 3268 int rn = extract32(insn, 5, 5); 3269 unsigned int imm12 = extract32(insn, 10, 12); 3270 unsigned int offset; 3271 TCGv_i64 clean_addr, dirty_addr; 3272 bool is_store; 3273 bool is_signed = false; 3274 bool is_extended = false; 3275 MemOp memop; 3276 3277 if (is_vector) { 3278 size |= (opc & 2) << 1; 3279 if (size > 4) { 3280 unallocated_encoding(s); 3281 return; 3282 } 3283 is_store = !extract32(opc, 0, 1); 3284 if (!fp_access_check(s)) { 3285 return; 3286 } 3287 } else { 3288 if (size == 3 && opc == 2) { 3289 /* PRFM - prefetch */ 3290 return; 3291 } 3292 if (opc == 3 && size > 1) { 3293 unallocated_encoding(s); 3294 return; 3295 } 3296 is_store = (opc == 0); 3297 is_signed = !is_store && extract32(opc, 1, 1); 3298 is_extended = (size < 3) && extract32(opc, 0, 1); 3299 } 3300 3301 if (rn == 31) { 3302 gen_check_sp_alignment(s); 3303 } 3304 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3305 offset = imm12 << size; 3306 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3307 3308 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3309 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3310 3311 if (is_vector) { 3312 if (is_store) { 3313 do_fp_st(s, rt, clean_addr, size); 3314 } else { 3315 do_fp_ld(s, rt, clean_addr, size); 3316 } 3317 } else { 3318 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3319 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3320 if (is_store) { 3321 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3322 } else { 3323 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3324 is_extended, true, rt, iss_sf, false); 3325 } 3326 } 3327 } 3328 3329 /* Atomic memory operations 3330 * 3331 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3332 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3333 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3334 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3335 * 3336 * Rt: the result register 3337 * Rn: base address or SP 3338 * Rs: the source register for the operation 3339 * V: vector flag (always 0 as of v8.3) 3340 * A: acquire flag 3341 * R: release flag 3342 */ 3343 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3344 int size, int rt, bool is_vector) 3345 { 3346 int rs = extract32(insn, 16, 5); 3347 int rn = extract32(insn, 5, 5); 3348 int o3_opc = extract32(insn, 12, 4); 3349 bool r = extract32(insn, 22, 1); 3350 bool a = extract32(insn, 23, 1); 3351 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3352 AtomicThreeOpFn *fn = NULL; 3353 MemOp mop = finalize_memop(s, size | MO_ALIGN); 3354 3355 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3356 unallocated_encoding(s); 3357 return; 3358 } 3359 switch (o3_opc) { 3360 case 000: /* LDADD */ 3361 fn = tcg_gen_atomic_fetch_add_i64; 3362 break; 3363 case 001: /* LDCLR */ 3364 fn = tcg_gen_atomic_fetch_and_i64; 3365 break; 3366 case 002: /* LDEOR */ 3367 fn = tcg_gen_atomic_fetch_xor_i64; 3368 break; 3369 case 003: /* LDSET */ 3370 fn = tcg_gen_atomic_fetch_or_i64; 3371 break; 3372 case 004: /* LDSMAX */ 3373 fn = tcg_gen_atomic_fetch_smax_i64; 3374 mop |= MO_SIGN; 3375 break; 3376 case 005: /* LDSMIN */ 3377 fn = tcg_gen_atomic_fetch_smin_i64; 3378 mop |= MO_SIGN; 3379 break; 3380 case 006: /* LDUMAX */ 3381 fn = tcg_gen_atomic_fetch_umax_i64; 3382 break; 3383 case 007: /* LDUMIN */ 3384 fn = tcg_gen_atomic_fetch_umin_i64; 3385 break; 3386 case 010: /* SWP */ 3387 fn = tcg_gen_atomic_xchg_i64; 3388 break; 3389 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3390 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3391 rs != 31 || a != 1 || r != 0) { 3392 unallocated_encoding(s); 3393 return; 3394 } 3395 break; 3396 default: 3397 unallocated_encoding(s); 3398 return; 3399 } 3400 3401 if (rn == 31) { 3402 gen_check_sp_alignment(s); 3403 } 3404 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3405 3406 if (o3_opc == 014) { 3407 /* 3408 * LDAPR* are a special case because they are a simple load, not a 3409 * fetch-and-do-something op. 3410 * The architectural consistency requirements here are weaker than 3411 * full load-acquire (we only need "load-acquire processor consistent"), 3412 * but we choose to implement them as full LDAQ. 3413 */ 3414 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3415 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3416 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3417 return; 3418 } 3419 3420 tcg_rs = read_cpu_reg(s, rs, true); 3421 tcg_rt = cpu_reg(s, rt); 3422 3423 if (o3_opc == 1) { /* LDCLR */ 3424 tcg_gen_not_i64(tcg_rs, tcg_rs); 3425 } 3426 3427 /* The tcg atomic primitives are all full barriers. Therefore we 3428 * can ignore the Acquire and Release bits of this instruction. 3429 */ 3430 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3431 3432 if ((mop & MO_SIGN) && size != MO_64) { 3433 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3434 } 3435 } 3436 3437 /* 3438 * PAC memory operations 3439 * 3440 * 31 30 27 26 24 22 21 12 11 10 5 0 3441 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3442 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3443 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3444 * 3445 * Rt: the result register 3446 * Rn: base address or SP 3447 * V: vector flag (always 0 as of v8.3) 3448 * M: clear for key DA, set for key DB 3449 * W: pre-indexing flag 3450 * S: sign for imm9. 3451 */ 3452 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3453 int size, int rt, bool is_vector) 3454 { 3455 int rn = extract32(insn, 5, 5); 3456 bool is_wback = extract32(insn, 11, 1); 3457 bool use_key_a = !extract32(insn, 23, 1); 3458 int offset; 3459 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3460 MemOp memop; 3461 3462 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3463 unallocated_encoding(s); 3464 return; 3465 } 3466 3467 if (rn == 31) { 3468 gen_check_sp_alignment(s); 3469 } 3470 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3471 3472 if (s->pauth_active) { 3473 if (use_key_a) { 3474 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3475 tcg_constant_i64(0)); 3476 } else { 3477 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3478 tcg_constant_i64(0)); 3479 } 3480 } 3481 3482 /* Form the 10-bit signed, scaled offset. */ 3483 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3484 offset = sextract32(offset << size, 0, 10 + size); 3485 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3486 3487 memop = finalize_memop(s, size); 3488 3489 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3490 clean_addr = gen_mte_check1(s, dirty_addr, false, 3491 is_wback || rn != 31, size); 3492 3493 tcg_rt = cpu_reg(s, rt); 3494 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3495 /* extend */ false, /* iss_valid */ !is_wback, 3496 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3497 3498 if (is_wback) { 3499 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3500 } 3501 } 3502 3503 /* 3504 * LDAPR/STLR (unscaled immediate) 3505 * 3506 * 31 30 24 22 21 12 10 5 0 3507 * +------+-------------+-----+---+--------+-----+----+-----+ 3508 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3509 * +------+-------------+-----+---+--------+-----+----+-----+ 3510 * 3511 * Rt: source or destination register 3512 * Rn: base register 3513 * imm9: unscaled immediate offset 3514 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3515 * size: size of load/store 3516 */ 3517 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3518 { 3519 int rt = extract32(insn, 0, 5); 3520 int rn = extract32(insn, 5, 5); 3521 int offset = sextract32(insn, 12, 9); 3522 int opc = extract32(insn, 22, 2); 3523 int size = extract32(insn, 30, 2); 3524 TCGv_i64 clean_addr, dirty_addr; 3525 bool is_store = false; 3526 bool extend = false; 3527 bool iss_sf; 3528 MemOp mop; 3529 3530 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3531 unallocated_encoding(s); 3532 return; 3533 } 3534 3535 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3536 mop = finalize_memop(s, size | MO_ALIGN); 3537 3538 switch (opc) { 3539 case 0: /* STLURB */ 3540 is_store = true; 3541 break; 3542 case 1: /* LDAPUR* */ 3543 break; 3544 case 2: /* LDAPURS* 64-bit variant */ 3545 if (size == 3) { 3546 unallocated_encoding(s); 3547 return; 3548 } 3549 mop |= MO_SIGN; 3550 break; 3551 case 3: /* LDAPURS* 32-bit variant */ 3552 if (size > 1) { 3553 unallocated_encoding(s); 3554 return; 3555 } 3556 mop |= MO_SIGN; 3557 extend = true; /* zero-extend 32->64 after signed load */ 3558 break; 3559 default: 3560 g_assert_not_reached(); 3561 } 3562 3563 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3564 3565 if (rn == 31) { 3566 gen_check_sp_alignment(s); 3567 } 3568 3569 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3570 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3571 clean_addr = clean_data_tbi(s, dirty_addr); 3572 3573 if (is_store) { 3574 /* Store-Release semantics */ 3575 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3576 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3577 } else { 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3583 extend, true, rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 } 3586 } 3587 3588 /* Load/store register (all forms) */ 3589 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3590 { 3591 int rt = extract32(insn, 0, 5); 3592 int opc = extract32(insn, 22, 2); 3593 bool is_vector = extract32(insn, 26, 1); 3594 int size = extract32(insn, 30, 2); 3595 3596 switch (extract32(insn, 24, 2)) { 3597 case 0: 3598 if (extract32(insn, 21, 1) == 0) { 3599 /* Load/store register (unscaled immediate) 3600 * Load/store immediate pre/post-indexed 3601 * Load/store register unprivileged 3602 */ 3603 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3604 return; 3605 } 3606 switch (extract32(insn, 10, 2)) { 3607 case 0: 3608 disas_ldst_atomic(s, insn, size, rt, is_vector); 3609 return; 3610 case 2: 3611 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3612 return; 3613 default: 3614 disas_ldst_pac(s, insn, size, rt, is_vector); 3615 return; 3616 } 3617 break; 3618 case 1: 3619 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3620 return; 3621 } 3622 unallocated_encoding(s); 3623 } 3624 3625 /* AdvSIMD load/store multiple structures 3626 * 3627 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3628 * +---+---+---------------+---+-------------+--------+------+------+------+ 3629 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3630 * +---+---+---------------+---+-------------+--------+------+------+------+ 3631 * 3632 * AdvSIMD load/store multiple structures (post-indexed) 3633 * 3634 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3635 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3636 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3637 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3638 * 3639 * Rt: first (or only) SIMD&FP register to be transferred 3640 * Rn: base address or SP 3641 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3642 */ 3643 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3644 { 3645 int rt = extract32(insn, 0, 5); 3646 int rn = extract32(insn, 5, 5); 3647 int rm = extract32(insn, 16, 5); 3648 int size = extract32(insn, 10, 2); 3649 int opcode = extract32(insn, 12, 4); 3650 bool is_store = !extract32(insn, 22, 1); 3651 bool is_postidx = extract32(insn, 23, 1); 3652 bool is_q = extract32(insn, 30, 1); 3653 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3654 MemOp endian, align, mop; 3655 3656 int total; /* total bytes */ 3657 int elements; /* elements per vector */ 3658 int rpt; /* num iterations */ 3659 int selem; /* structure elements */ 3660 int r; 3661 3662 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3663 unallocated_encoding(s); 3664 return; 3665 } 3666 3667 if (!is_postidx && rm != 0) { 3668 unallocated_encoding(s); 3669 return; 3670 } 3671 3672 /* From the shared decode logic */ 3673 switch (opcode) { 3674 case 0x0: 3675 rpt = 1; 3676 selem = 4; 3677 break; 3678 case 0x2: 3679 rpt = 4; 3680 selem = 1; 3681 break; 3682 case 0x4: 3683 rpt = 1; 3684 selem = 3; 3685 break; 3686 case 0x6: 3687 rpt = 3; 3688 selem = 1; 3689 break; 3690 case 0x7: 3691 rpt = 1; 3692 selem = 1; 3693 break; 3694 case 0x8: 3695 rpt = 1; 3696 selem = 2; 3697 break; 3698 case 0xa: 3699 rpt = 2; 3700 selem = 1; 3701 break; 3702 default: 3703 unallocated_encoding(s); 3704 return; 3705 } 3706 3707 if (size == 3 && !is_q && selem != 1) { 3708 /* reserved */ 3709 unallocated_encoding(s); 3710 return; 3711 } 3712 3713 if (!fp_access_check(s)) { 3714 return; 3715 } 3716 3717 if (rn == 31) { 3718 gen_check_sp_alignment(s); 3719 } 3720 3721 /* For our purposes, bytes are always little-endian. */ 3722 endian = s->be_data; 3723 if (size == 0) { 3724 endian = MO_LE; 3725 } 3726 3727 total = rpt * selem * (is_q ? 16 : 8); 3728 tcg_rn = cpu_reg_sp(s, rn); 3729 3730 /* 3731 * Issue the MTE check vs the logical repeat count, before we 3732 * promote consecutive little-endian elements below. 3733 */ 3734 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3735 total); 3736 3737 /* 3738 * Consecutive little-endian elements from a single register 3739 * can be promoted to a larger little-endian operation. 3740 */ 3741 align = MO_ALIGN; 3742 if (selem == 1 && endian == MO_LE) { 3743 align = pow2_align(size); 3744 size = 3; 3745 } 3746 if (!s->align_mem) { 3747 align = 0; 3748 } 3749 mop = endian | size | align; 3750 3751 elements = (is_q ? 16 : 8) >> size; 3752 tcg_ebytes = tcg_constant_i64(1 << size); 3753 for (r = 0; r < rpt; r++) { 3754 int e; 3755 for (e = 0; e < elements; e++) { 3756 int xs; 3757 for (xs = 0; xs < selem; xs++) { 3758 int tt = (rt + r + xs) % 32; 3759 if (is_store) { 3760 do_vec_st(s, tt, e, clean_addr, mop); 3761 } else { 3762 do_vec_ld(s, tt, e, clean_addr, mop); 3763 } 3764 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3765 } 3766 } 3767 } 3768 3769 if (!is_store) { 3770 /* For non-quad operations, setting a slice of the low 3771 * 64 bits of the register clears the high 64 bits (in 3772 * the ARM ARM pseudocode this is implicit in the fact 3773 * that 'rval' is a 64 bit wide variable). 3774 * For quad operations, we might still need to zero the 3775 * high bits of SVE. 3776 */ 3777 for (r = 0; r < rpt * selem; r++) { 3778 int tt = (rt + r) % 32; 3779 clear_vec_high(s, is_q, tt); 3780 } 3781 } 3782 3783 if (is_postidx) { 3784 if (rm == 31) { 3785 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3786 } else { 3787 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3788 } 3789 } 3790 } 3791 3792 /* AdvSIMD load/store single structure 3793 * 3794 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3795 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3796 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3797 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3798 * 3799 * AdvSIMD load/store single structure (post-indexed) 3800 * 3801 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3802 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3803 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3804 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3805 * 3806 * Rt: first (or only) SIMD&FP register to be transferred 3807 * Rn: base address or SP 3808 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3809 * index = encoded in Q:S:size dependent on size 3810 * 3811 * lane_size = encoded in R, opc 3812 * transfer width = encoded in opc, S, size 3813 */ 3814 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3815 { 3816 int rt = extract32(insn, 0, 5); 3817 int rn = extract32(insn, 5, 5); 3818 int rm = extract32(insn, 16, 5); 3819 int size = extract32(insn, 10, 2); 3820 int S = extract32(insn, 12, 1); 3821 int opc = extract32(insn, 13, 3); 3822 int R = extract32(insn, 21, 1); 3823 int is_load = extract32(insn, 22, 1); 3824 int is_postidx = extract32(insn, 23, 1); 3825 int is_q = extract32(insn, 30, 1); 3826 3827 int scale = extract32(opc, 1, 2); 3828 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3829 bool replicate = false; 3830 int index = is_q << 3 | S << 2 | size; 3831 int xs, total; 3832 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3833 MemOp mop; 3834 3835 if (extract32(insn, 31, 1)) { 3836 unallocated_encoding(s); 3837 return; 3838 } 3839 if (!is_postidx && rm != 0) { 3840 unallocated_encoding(s); 3841 return; 3842 } 3843 3844 switch (scale) { 3845 case 3: 3846 if (!is_load || S) { 3847 unallocated_encoding(s); 3848 return; 3849 } 3850 scale = size; 3851 replicate = true; 3852 break; 3853 case 0: 3854 break; 3855 case 1: 3856 if (extract32(size, 0, 1)) { 3857 unallocated_encoding(s); 3858 return; 3859 } 3860 index >>= 1; 3861 break; 3862 case 2: 3863 if (extract32(size, 1, 1)) { 3864 unallocated_encoding(s); 3865 return; 3866 } 3867 if (!extract32(size, 0, 1)) { 3868 index >>= 2; 3869 } else { 3870 if (S) { 3871 unallocated_encoding(s); 3872 return; 3873 } 3874 index >>= 3; 3875 scale = 3; 3876 } 3877 break; 3878 default: 3879 g_assert_not_reached(); 3880 } 3881 3882 if (!fp_access_check(s)) { 3883 return; 3884 } 3885 3886 if (rn == 31) { 3887 gen_check_sp_alignment(s); 3888 } 3889 3890 total = selem << scale; 3891 tcg_rn = cpu_reg_sp(s, rn); 3892 3893 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3894 total); 3895 mop = finalize_memop(s, scale); 3896 3897 tcg_ebytes = tcg_constant_i64(1 << scale); 3898 for (xs = 0; xs < selem; xs++) { 3899 if (replicate) { 3900 /* Load and replicate to all elements */ 3901 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3902 3903 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3904 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3905 (is_q + 1) * 8, vec_full_reg_size(s), 3906 tcg_tmp); 3907 } else { 3908 /* Load/store one element per register */ 3909 if (is_load) { 3910 do_vec_ld(s, rt, index, clean_addr, mop); 3911 } else { 3912 do_vec_st(s, rt, index, clean_addr, mop); 3913 } 3914 } 3915 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3916 rt = (rt + 1) % 32; 3917 } 3918 3919 if (is_postidx) { 3920 if (rm == 31) { 3921 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3922 } else { 3923 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3924 } 3925 } 3926 } 3927 3928 /* 3929 * Load/Store memory tags 3930 * 3931 * 31 30 29 24 22 21 12 10 5 0 3932 * +-----+-------------+-----+---+------+-----+------+------+ 3933 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3934 * +-----+-------------+-----+---+------+-----+------+------+ 3935 */ 3936 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3937 { 3938 int rt = extract32(insn, 0, 5); 3939 int rn = extract32(insn, 5, 5); 3940 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3941 int op2 = extract32(insn, 10, 2); 3942 int op1 = extract32(insn, 22, 2); 3943 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3944 int index = 0; 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 /* We checked insn bits [29:24,21] in the caller. */ 3948 if (extract32(insn, 30, 2) != 3) { 3949 goto do_unallocated; 3950 } 3951 3952 /* 3953 * @index is a tri-state variable which has 3 states: 3954 * < 0 : post-index, writeback 3955 * = 0 : signed offset 3956 * > 0 : pre-index, writeback 3957 */ 3958 switch (op1) { 3959 case 0: 3960 if (op2 != 0) { 3961 /* STG */ 3962 index = op2 - 2; 3963 } else { 3964 /* STZGM */ 3965 if (s->current_el == 0 || offset != 0) { 3966 goto do_unallocated; 3967 } 3968 is_mult = is_zero = true; 3969 } 3970 break; 3971 case 1: 3972 if (op2 != 0) { 3973 /* STZG */ 3974 is_zero = true; 3975 index = op2 - 2; 3976 } else { 3977 /* LDG */ 3978 is_load = true; 3979 } 3980 break; 3981 case 2: 3982 if (op2 != 0) { 3983 /* ST2G */ 3984 is_pair = true; 3985 index = op2 - 2; 3986 } else { 3987 /* STGM */ 3988 if (s->current_el == 0 || offset != 0) { 3989 goto do_unallocated; 3990 } 3991 is_mult = true; 3992 } 3993 break; 3994 case 3: 3995 if (op2 != 0) { 3996 /* STZ2G */ 3997 is_pair = is_zero = true; 3998 index = op2 - 2; 3999 } else { 4000 /* LDGM */ 4001 if (s->current_el == 0 || offset != 0) { 4002 goto do_unallocated; 4003 } 4004 is_mult = is_load = true; 4005 } 4006 break; 4007 4008 default: 4009 do_unallocated: 4010 unallocated_encoding(s); 4011 return; 4012 } 4013 4014 if (is_mult 4015 ? !dc_isar_feature(aa64_mte, s) 4016 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4017 goto do_unallocated; 4018 } 4019 4020 if (rn == 31) { 4021 gen_check_sp_alignment(s); 4022 } 4023 4024 addr = read_cpu_reg_sp(s, rn, true); 4025 if (index >= 0) { 4026 /* pre-index or signed offset */ 4027 tcg_gen_addi_i64(addr, addr, offset); 4028 } 4029 4030 if (is_mult) { 4031 tcg_rt = cpu_reg(s, rt); 4032 4033 if (is_zero) { 4034 int size = 4 << s->dcz_blocksize; 4035 4036 if (s->ata) { 4037 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4038 } 4039 /* 4040 * The non-tags portion of STZGM is mostly like DC_ZVA, 4041 * except the alignment happens before the access. 4042 */ 4043 clean_addr = clean_data_tbi(s, addr); 4044 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4045 gen_helper_dc_zva(cpu_env, clean_addr); 4046 } else if (s->ata) { 4047 if (is_load) { 4048 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4049 } else { 4050 gen_helper_stgm(cpu_env, addr, tcg_rt); 4051 } 4052 } else { 4053 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4054 int size = 4 << GMID_EL1_BS; 4055 4056 clean_addr = clean_data_tbi(s, addr); 4057 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4058 gen_probe_access(s, clean_addr, acc, size); 4059 4060 if (is_load) { 4061 /* The result tags are zeros. */ 4062 tcg_gen_movi_i64(tcg_rt, 0); 4063 } 4064 } 4065 return; 4066 } 4067 4068 if (is_load) { 4069 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4070 tcg_rt = cpu_reg(s, rt); 4071 if (s->ata) { 4072 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4073 } else { 4074 clean_addr = clean_data_tbi(s, addr); 4075 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4076 gen_address_with_allocation_tag0(tcg_rt, addr); 4077 } 4078 } else { 4079 tcg_rt = cpu_reg_sp(s, rt); 4080 if (!s->ata) { 4081 /* 4082 * For STG and ST2G, we need to check alignment and probe memory. 4083 * TODO: For STZG and STZ2G, we could rely on the stores below, 4084 * at least for system mode; user-only won't enforce alignment. 4085 */ 4086 if (is_pair) { 4087 gen_helper_st2g_stub(cpu_env, addr); 4088 } else { 4089 gen_helper_stg_stub(cpu_env, addr); 4090 } 4091 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4092 if (is_pair) { 4093 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4094 } else { 4095 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4096 } 4097 } else { 4098 if (is_pair) { 4099 gen_helper_st2g(cpu_env, addr, tcg_rt); 4100 } else { 4101 gen_helper_stg(cpu_env, addr, tcg_rt); 4102 } 4103 } 4104 } 4105 4106 if (is_zero) { 4107 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4108 TCGv_i64 zero64 = tcg_constant_i64(0); 4109 TCGv_i128 zero128 = tcg_temp_new_i128(); 4110 int mem_index = get_mem_index(s); 4111 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4112 4113 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4114 4115 /* This is 1 or 2 atomic 16-byte operations. */ 4116 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4117 if (is_pair) { 4118 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4119 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4120 } 4121 } 4122 4123 if (index != 0) { 4124 /* pre-index or post-index */ 4125 if (index < 0) { 4126 /* post-index */ 4127 tcg_gen_addi_i64(addr, addr, offset); 4128 } 4129 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4130 } 4131 } 4132 4133 /* Loads and stores */ 4134 static void disas_ldst(DisasContext *s, uint32_t insn) 4135 { 4136 switch (extract32(insn, 24, 6)) { 4137 case 0x08: /* Load/store exclusive */ 4138 disas_ldst_excl(s, insn); 4139 break; 4140 case 0x18: case 0x1c: /* Load register (literal) */ 4141 disas_ld_lit(s, insn); 4142 break; 4143 case 0x28: case 0x29: 4144 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4145 disas_ldst_pair(s, insn); 4146 break; 4147 case 0x38: case 0x39: 4148 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4149 disas_ldst_reg(s, insn); 4150 break; 4151 case 0x0c: /* AdvSIMD load/store multiple structures */ 4152 disas_ldst_multiple_struct(s, insn); 4153 break; 4154 case 0x0d: /* AdvSIMD load/store single structure */ 4155 disas_ldst_single_struct(s, insn); 4156 break; 4157 case 0x19: 4158 if (extract32(insn, 21, 1) != 0) { 4159 disas_ldst_tag(s, insn); 4160 } else if (extract32(insn, 10, 2) == 0) { 4161 disas_ldst_ldapr_stlr(s, insn); 4162 } else { 4163 unallocated_encoding(s); 4164 } 4165 break; 4166 default: 4167 unallocated_encoding(s); 4168 break; 4169 } 4170 } 4171 4172 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4173 4174 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4175 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4176 { 4177 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4178 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4179 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4180 4181 fn(tcg_rd, tcg_rn, tcg_imm); 4182 if (!a->sf) { 4183 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4184 } 4185 return true; 4186 } 4187 4188 /* 4189 * PC-rel. addressing 4190 */ 4191 4192 static bool trans_ADR(DisasContext *s, arg_ri *a) 4193 { 4194 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4195 return true; 4196 } 4197 4198 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4199 { 4200 int64_t offset = (int64_t)a->imm << 12; 4201 4202 /* The page offset is ok for CF_PCREL. */ 4203 offset -= s->pc_curr & 0xfff; 4204 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4205 return true; 4206 } 4207 4208 /* 4209 * Add/subtract (immediate) 4210 */ 4211 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4212 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4213 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4214 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4215 4216 /* 4217 * Add/subtract (immediate, with tags) 4218 */ 4219 4220 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4221 bool sub_op) 4222 { 4223 TCGv_i64 tcg_rn, tcg_rd; 4224 int imm; 4225 4226 imm = a->uimm6 << LOG2_TAG_GRANULE; 4227 if (sub_op) { 4228 imm = -imm; 4229 } 4230 4231 tcg_rn = cpu_reg_sp(s, a->rn); 4232 tcg_rd = cpu_reg_sp(s, a->rd); 4233 4234 if (s->ata) { 4235 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4236 tcg_constant_i32(imm), 4237 tcg_constant_i32(a->uimm4)); 4238 } else { 4239 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4240 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4241 } 4242 return true; 4243 } 4244 4245 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4246 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4247 4248 /* The input should be a value in the bottom e bits (with higher 4249 * bits zero); returns that value replicated into every element 4250 * of size e in a 64 bit integer. 4251 */ 4252 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4253 { 4254 assert(e != 0); 4255 while (e < 64) { 4256 mask |= mask << e; 4257 e *= 2; 4258 } 4259 return mask; 4260 } 4261 4262 /* 4263 * Logical (immediate) 4264 */ 4265 4266 /* 4267 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4268 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4269 * value (ie should cause a guest UNDEF exception), and true if they are 4270 * valid, in which case the decoded bit pattern is written to result. 4271 */ 4272 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4273 unsigned int imms, unsigned int immr) 4274 { 4275 uint64_t mask; 4276 unsigned e, levels, s, r; 4277 int len; 4278 4279 assert(immn < 2 && imms < 64 && immr < 64); 4280 4281 /* The bit patterns we create here are 64 bit patterns which 4282 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4283 * 64 bits each. Each element contains the same value: a run 4284 * of between 1 and e-1 non-zero bits, rotated within the 4285 * element by between 0 and e-1 bits. 4286 * 4287 * The element size and run length are encoded into immn (1 bit) 4288 * and imms (6 bits) as follows: 4289 * 64 bit elements: immn = 1, imms = <length of run - 1> 4290 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4291 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4292 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4293 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4294 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4295 * Notice that immn = 0, imms = 11111x is the only combination 4296 * not covered by one of the above options; this is reserved. 4297 * Further, <length of run - 1> all-ones is a reserved pattern. 4298 * 4299 * In all cases the rotation is by immr % e (and immr is 6 bits). 4300 */ 4301 4302 /* First determine the element size */ 4303 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4304 if (len < 1) { 4305 /* This is the immn == 0, imms == 0x11111x case */ 4306 return false; 4307 } 4308 e = 1 << len; 4309 4310 levels = e - 1; 4311 s = imms & levels; 4312 r = immr & levels; 4313 4314 if (s == levels) { 4315 /* <length of run - 1> mustn't be all-ones. */ 4316 return false; 4317 } 4318 4319 /* Create the value of one element: s+1 set bits rotated 4320 * by r within the element (which is e bits wide)... 4321 */ 4322 mask = MAKE_64BIT_MASK(0, s + 1); 4323 if (r) { 4324 mask = (mask >> r) | (mask << (e - r)); 4325 mask &= MAKE_64BIT_MASK(0, e); 4326 } 4327 /* ...then replicate the element over the whole 64 bit value */ 4328 mask = bitfield_replicate(mask, e); 4329 *result = mask; 4330 return true; 4331 } 4332 4333 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4334 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4335 { 4336 TCGv_i64 tcg_rd, tcg_rn; 4337 uint64_t imm; 4338 4339 /* Some immediate field values are reserved. */ 4340 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4341 extract32(a->dbm, 0, 6), 4342 extract32(a->dbm, 6, 6))) { 4343 return false; 4344 } 4345 if (!a->sf) { 4346 imm &= 0xffffffffull; 4347 } 4348 4349 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4350 tcg_rn = cpu_reg(s, a->rn); 4351 4352 fn(tcg_rd, tcg_rn, imm); 4353 if (set_cc) { 4354 gen_logic_CC(a->sf, tcg_rd); 4355 } 4356 if (!a->sf) { 4357 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4358 } 4359 return true; 4360 } 4361 4362 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4363 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4364 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4365 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4366 4367 /* 4368 * Move wide (immediate) 4369 */ 4370 4371 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4372 { 4373 int pos = a->hw << 4; 4374 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4375 return true; 4376 } 4377 4378 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4379 { 4380 int pos = a->hw << 4; 4381 uint64_t imm = a->imm; 4382 4383 imm = ~(imm << pos); 4384 if (!a->sf) { 4385 imm = (uint32_t)imm; 4386 } 4387 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4388 return true; 4389 } 4390 4391 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4392 { 4393 int pos = a->hw << 4; 4394 TCGv_i64 tcg_rd, tcg_im; 4395 4396 tcg_rd = cpu_reg(s, a->rd); 4397 tcg_im = tcg_constant_i64(a->imm); 4398 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4399 if (!a->sf) { 4400 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4401 } 4402 return true; 4403 } 4404 4405 /* 4406 * Bitfield 4407 */ 4408 4409 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4410 { 4411 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4412 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4413 unsigned int bitsize = a->sf ? 64 : 32; 4414 unsigned int ri = a->immr; 4415 unsigned int si = a->imms; 4416 unsigned int pos, len; 4417 4418 if (si >= ri) { 4419 /* Wd<s-r:0> = Wn<s:r> */ 4420 len = (si - ri) + 1; 4421 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4422 if (!a->sf) { 4423 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4424 } 4425 } else { 4426 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4427 len = si + 1; 4428 pos = (bitsize - ri) & (bitsize - 1); 4429 4430 if (len < ri) { 4431 /* 4432 * Sign extend the destination field from len to fill the 4433 * balance of the word. Let the deposit below insert all 4434 * of those sign bits. 4435 */ 4436 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4437 len = ri; 4438 } 4439 4440 /* 4441 * We start with zero, and we haven't modified any bits outside 4442 * bitsize, therefore no final zero-extension is unneeded for !sf. 4443 */ 4444 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4445 } 4446 return true; 4447 } 4448 4449 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4450 { 4451 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4452 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4453 unsigned int bitsize = a->sf ? 64 : 32; 4454 unsigned int ri = a->immr; 4455 unsigned int si = a->imms; 4456 unsigned int pos, len; 4457 4458 tcg_rd = cpu_reg(s, a->rd); 4459 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4460 4461 if (si >= ri) { 4462 /* Wd<s-r:0> = Wn<s:r> */ 4463 len = (si - ri) + 1; 4464 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4465 } else { 4466 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4467 len = si + 1; 4468 pos = (bitsize - ri) & (bitsize - 1); 4469 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4470 } 4471 return true; 4472 } 4473 4474 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4475 { 4476 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4477 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4478 unsigned int bitsize = a->sf ? 64 : 32; 4479 unsigned int ri = a->immr; 4480 unsigned int si = a->imms; 4481 unsigned int pos, len; 4482 4483 tcg_rd = cpu_reg(s, a->rd); 4484 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4485 4486 if (si >= ri) { 4487 /* Wd<s-r:0> = Wn<s:r> */ 4488 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4489 len = (si - ri) + 1; 4490 pos = 0; 4491 } else { 4492 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4493 len = si + 1; 4494 pos = (bitsize - ri) & (bitsize - 1); 4495 } 4496 4497 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4498 if (!a->sf) { 4499 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4500 } 4501 return true; 4502 } 4503 4504 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4505 { 4506 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4507 4508 tcg_rd = cpu_reg(s, a->rd); 4509 4510 if (unlikely(a->imm == 0)) { 4511 /* 4512 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4513 * so an extract from bit 0 is a special case. 4514 */ 4515 if (a->sf) { 4516 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4517 } else { 4518 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4519 } 4520 } else { 4521 tcg_rm = cpu_reg(s, a->rm); 4522 tcg_rn = cpu_reg(s, a->rn); 4523 4524 if (a->sf) { 4525 /* Specialization to ROR happens in EXTRACT2. */ 4526 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4527 } else { 4528 TCGv_i32 t0 = tcg_temp_new_i32(); 4529 4530 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4531 if (a->rm == a->rn) { 4532 tcg_gen_rotri_i32(t0, t0, a->imm); 4533 } else { 4534 TCGv_i32 t1 = tcg_temp_new_i32(); 4535 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4536 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4537 } 4538 tcg_gen_extu_i32_i64(tcg_rd, t0); 4539 } 4540 } 4541 return true; 4542 } 4543 4544 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4545 * Note that it is the caller's responsibility to ensure that the 4546 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4547 * mandated semantics for out of range shifts. 4548 */ 4549 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4550 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4551 { 4552 switch (shift_type) { 4553 case A64_SHIFT_TYPE_LSL: 4554 tcg_gen_shl_i64(dst, src, shift_amount); 4555 break; 4556 case A64_SHIFT_TYPE_LSR: 4557 tcg_gen_shr_i64(dst, src, shift_amount); 4558 break; 4559 case A64_SHIFT_TYPE_ASR: 4560 if (!sf) { 4561 tcg_gen_ext32s_i64(dst, src); 4562 } 4563 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4564 break; 4565 case A64_SHIFT_TYPE_ROR: 4566 if (sf) { 4567 tcg_gen_rotr_i64(dst, src, shift_amount); 4568 } else { 4569 TCGv_i32 t0, t1; 4570 t0 = tcg_temp_new_i32(); 4571 t1 = tcg_temp_new_i32(); 4572 tcg_gen_extrl_i64_i32(t0, src); 4573 tcg_gen_extrl_i64_i32(t1, shift_amount); 4574 tcg_gen_rotr_i32(t0, t0, t1); 4575 tcg_gen_extu_i32_i64(dst, t0); 4576 } 4577 break; 4578 default: 4579 assert(FALSE); /* all shift types should be handled */ 4580 break; 4581 } 4582 4583 if (!sf) { /* zero extend final result */ 4584 tcg_gen_ext32u_i64(dst, dst); 4585 } 4586 } 4587 4588 /* Shift a TCGv src by immediate, put result in dst. 4589 * The shift amount must be in range (this should always be true as the 4590 * relevant instructions will UNDEF on bad shift immediates). 4591 */ 4592 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4593 enum a64_shift_type shift_type, unsigned int shift_i) 4594 { 4595 assert(shift_i < (sf ? 64 : 32)); 4596 4597 if (shift_i == 0) { 4598 tcg_gen_mov_i64(dst, src); 4599 } else { 4600 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4601 } 4602 } 4603 4604 /* Logical (shifted register) 4605 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4606 * +----+-----+-----------+-------+---+------+--------+------+------+ 4607 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4608 * +----+-----+-----------+-------+---+------+--------+------+------+ 4609 */ 4610 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4611 { 4612 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4613 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4614 4615 sf = extract32(insn, 31, 1); 4616 opc = extract32(insn, 29, 2); 4617 shift_type = extract32(insn, 22, 2); 4618 invert = extract32(insn, 21, 1); 4619 rm = extract32(insn, 16, 5); 4620 shift_amount = extract32(insn, 10, 6); 4621 rn = extract32(insn, 5, 5); 4622 rd = extract32(insn, 0, 5); 4623 4624 if (!sf && (shift_amount & (1 << 5))) { 4625 unallocated_encoding(s); 4626 return; 4627 } 4628 4629 tcg_rd = cpu_reg(s, rd); 4630 4631 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4632 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4633 * register-register MOV and MVN, so it is worth special casing. 4634 */ 4635 tcg_rm = cpu_reg(s, rm); 4636 if (invert) { 4637 tcg_gen_not_i64(tcg_rd, tcg_rm); 4638 if (!sf) { 4639 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4640 } 4641 } else { 4642 if (sf) { 4643 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4644 } else { 4645 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4646 } 4647 } 4648 return; 4649 } 4650 4651 tcg_rm = read_cpu_reg(s, rm, sf); 4652 4653 if (shift_amount) { 4654 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4655 } 4656 4657 tcg_rn = cpu_reg(s, rn); 4658 4659 switch (opc | (invert << 2)) { 4660 case 0: /* AND */ 4661 case 3: /* ANDS */ 4662 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4663 break; 4664 case 1: /* ORR */ 4665 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4666 break; 4667 case 2: /* EOR */ 4668 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4669 break; 4670 case 4: /* BIC */ 4671 case 7: /* BICS */ 4672 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4673 break; 4674 case 5: /* ORN */ 4675 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4676 break; 4677 case 6: /* EON */ 4678 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4679 break; 4680 default: 4681 assert(FALSE); 4682 break; 4683 } 4684 4685 if (!sf) { 4686 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4687 } 4688 4689 if (opc == 3) { 4690 gen_logic_CC(sf, tcg_rd); 4691 } 4692 } 4693 4694 /* 4695 * Add/subtract (extended register) 4696 * 4697 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4698 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4699 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4700 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4701 * 4702 * sf: 0 -> 32bit, 1 -> 64bit 4703 * op: 0 -> add , 1 -> sub 4704 * S: 1 -> set flags 4705 * opt: 00 4706 * option: extension type (see DecodeRegExtend) 4707 * imm3: optional shift to Rm 4708 * 4709 * Rd = Rn + LSL(extend(Rm), amount) 4710 */ 4711 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4712 { 4713 int rd = extract32(insn, 0, 5); 4714 int rn = extract32(insn, 5, 5); 4715 int imm3 = extract32(insn, 10, 3); 4716 int option = extract32(insn, 13, 3); 4717 int rm = extract32(insn, 16, 5); 4718 int opt = extract32(insn, 22, 2); 4719 bool setflags = extract32(insn, 29, 1); 4720 bool sub_op = extract32(insn, 30, 1); 4721 bool sf = extract32(insn, 31, 1); 4722 4723 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4724 TCGv_i64 tcg_rd; 4725 TCGv_i64 tcg_result; 4726 4727 if (imm3 > 4 || opt != 0) { 4728 unallocated_encoding(s); 4729 return; 4730 } 4731 4732 /* non-flag setting ops may use SP */ 4733 if (!setflags) { 4734 tcg_rd = cpu_reg_sp(s, rd); 4735 } else { 4736 tcg_rd = cpu_reg(s, rd); 4737 } 4738 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4739 4740 tcg_rm = read_cpu_reg(s, rm, sf); 4741 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4742 4743 tcg_result = tcg_temp_new_i64(); 4744 4745 if (!setflags) { 4746 if (sub_op) { 4747 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4748 } else { 4749 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4750 } 4751 } else { 4752 if (sub_op) { 4753 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4754 } else { 4755 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4756 } 4757 } 4758 4759 if (sf) { 4760 tcg_gen_mov_i64(tcg_rd, tcg_result); 4761 } else { 4762 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4763 } 4764 } 4765 4766 /* 4767 * Add/subtract (shifted register) 4768 * 4769 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4770 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4771 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4772 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4773 * 4774 * sf: 0 -> 32bit, 1 -> 64bit 4775 * op: 0 -> add , 1 -> sub 4776 * S: 1 -> set flags 4777 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4778 * imm6: Shift amount to apply to Rm before the add/sub 4779 */ 4780 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4781 { 4782 int rd = extract32(insn, 0, 5); 4783 int rn = extract32(insn, 5, 5); 4784 int imm6 = extract32(insn, 10, 6); 4785 int rm = extract32(insn, 16, 5); 4786 int shift_type = extract32(insn, 22, 2); 4787 bool setflags = extract32(insn, 29, 1); 4788 bool sub_op = extract32(insn, 30, 1); 4789 bool sf = extract32(insn, 31, 1); 4790 4791 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4792 TCGv_i64 tcg_rn, tcg_rm; 4793 TCGv_i64 tcg_result; 4794 4795 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4796 unallocated_encoding(s); 4797 return; 4798 } 4799 4800 tcg_rn = read_cpu_reg(s, rn, sf); 4801 tcg_rm = read_cpu_reg(s, rm, sf); 4802 4803 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4804 4805 tcg_result = tcg_temp_new_i64(); 4806 4807 if (!setflags) { 4808 if (sub_op) { 4809 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4810 } else { 4811 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4812 } 4813 } else { 4814 if (sub_op) { 4815 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4816 } else { 4817 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4818 } 4819 } 4820 4821 if (sf) { 4822 tcg_gen_mov_i64(tcg_rd, tcg_result); 4823 } else { 4824 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4825 } 4826 } 4827 4828 /* Data-processing (3 source) 4829 * 4830 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4831 * +--+------+-----------+------+------+----+------+------+------+ 4832 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4833 * +--+------+-----------+------+------+----+------+------+------+ 4834 */ 4835 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4836 { 4837 int rd = extract32(insn, 0, 5); 4838 int rn = extract32(insn, 5, 5); 4839 int ra = extract32(insn, 10, 5); 4840 int rm = extract32(insn, 16, 5); 4841 int op_id = (extract32(insn, 29, 3) << 4) | 4842 (extract32(insn, 21, 3) << 1) | 4843 extract32(insn, 15, 1); 4844 bool sf = extract32(insn, 31, 1); 4845 bool is_sub = extract32(op_id, 0, 1); 4846 bool is_high = extract32(op_id, 2, 1); 4847 bool is_signed = false; 4848 TCGv_i64 tcg_op1; 4849 TCGv_i64 tcg_op2; 4850 TCGv_i64 tcg_tmp; 4851 4852 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4853 switch (op_id) { 4854 case 0x42: /* SMADDL */ 4855 case 0x43: /* SMSUBL */ 4856 case 0x44: /* SMULH */ 4857 is_signed = true; 4858 break; 4859 case 0x0: /* MADD (32bit) */ 4860 case 0x1: /* MSUB (32bit) */ 4861 case 0x40: /* MADD (64bit) */ 4862 case 0x41: /* MSUB (64bit) */ 4863 case 0x4a: /* UMADDL */ 4864 case 0x4b: /* UMSUBL */ 4865 case 0x4c: /* UMULH */ 4866 break; 4867 default: 4868 unallocated_encoding(s); 4869 return; 4870 } 4871 4872 if (is_high) { 4873 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4874 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4875 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4876 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4877 4878 if (is_signed) { 4879 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4880 } else { 4881 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4882 } 4883 return; 4884 } 4885 4886 tcg_op1 = tcg_temp_new_i64(); 4887 tcg_op2 = tcg_temp_new_i64(); 4888 tcg_tmp = tcg_temp_new_i64(); 4889 4890 if (op_id < 0x42) { 4891 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4892 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4893 } else { 4894 if (is_signed) { 4895 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4896 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4897 } else { 4898 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4899 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4900 } 4901 } 4902 4903 if (ra == 31 && !is_sub) { 4904 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4905 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4906 } else { 4907 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4908 if (is_sub) { 4909 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4910 } else { 4911 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4912 } 4913 } 4914 4915 if (!sf) { 4916 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4917 } 4918 } 4919 4920 /* Add/subtract (with carry) 4921 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4922 * +--+--+--+------------------------+------+-------------+------+-----+ 4923 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4924 * +--+--+--+------------------------+------+-------------+------+-----+ 4925 */ 4926 4927 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4928 { 4929 unsigned int sf, op, setflags, rm, rn, rd; 4930 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4931 4932 sf = extract32(insn, 31, 1); 4933 op = extract32(insn, 30, 1); 4934 setflags = extract32(insn, 29, 1); 4935 rm = extract32(insn, 16, 5); 4936 rn = extract32(insn, 5, 5); 4937 rd = extract32(insn, 0, 5); 4938 4939 tcg_rd = cpu_reg(s, rd); 4940 tcg_rn = cpu_reg(s, rn); 4941 4942 if (op) { 4943 tcg_y = tcg_temp_new_i64(); 4944 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4945 } else { 4946 tcg_y = cpu_reg(s, rm); 4947 } 4948 4949 if (setflags) { 4950 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4951 } else { 4952 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4953 } 4954 } 4955 4956 /* 4957 * Rotate right into flags 4958 * 31 30 29 21 15 10 5 4 0 4959 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4960 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4961 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4962 */ 4963 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4964 { 4965 int mask = extract32(insn, 0, 4); 4966 int o2 = extract32(insn, 4, 1); 4967 int rn = extract32(insn, 5, 5); 4968 int imm6 = extract32(insn, 15, 6); 4969 int sf_op_s = extract32(insn, 29, 3); 4970 TCGv_i64 tcg_rn; 4971 TCGv_i32 nzcv; 4972 4973 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4974 unallocated_encoding(s); 4975 return; 4976 } 4977 4978 tcg_rn = read_cpu_reg(s, rn, 1); 4979 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4980 4981 nzcv = tcg_temp_new_i32(); 4982 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4983 4984 if (mask & 8) { /* N */ 4985 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4986 } 4987 if (mask & 4) { /* Z */ 4988 tcg_gen_not_i32(cpu_ZF, nzcv); 4989 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4990 } 4991 if (mask & 2) { /* C */ 4992 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4993 } 4994 if (mask & 1) { /* V */ 4995 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4996 } 4997 } 4998 4999 /* 5000 * Evaluate into flags 5001 * 31 30 29 21 15 14 10 5 4 0 5002 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5003 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5004 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5005 */ 5006 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5007 { 5008 int o3_mask = extract32(insn, 0, 5); 5009 int rn = extract32(insn, 5, 5); 5010 int o2 = extract32(insn, 15, 6); 5011 int sz = extract32(insn, 14, 1); 5012 int sf_op_s = extract32(insn, 29, 3); 5013 TCGv_i32 tmp; 5014 int shift; 5015 5016 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5017 !dc_isar_feature(aa64_condm_4, s)) { 5018 unallocated_encoding(s); 5019 return; 5020 } 5021 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5022 5023 tmp = tcg_temp_new_i32(); 5024 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5025 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5026 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5027 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5028 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5029 } 5030 5031 /* Conditional compare (immediate / register) 5032 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5033 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5034 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5035 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5036 * [1] y [0] [0] 5037 */ 5038 static void disas_cc(DisasContext *s, uint32_t insn) 5039 { 5040 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5041 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5042 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5043 DisasCompare c; 5044 5045 if (!extract32(insn, 29, 1)) { 5046 unallocated_encoding(s); 5047 return; 5048 } 5049 if (insn & (1 << 10 | 1 << 4)) { 5050 unallocated_encoding(s); 5051 return; 5052 } 5053 sf = extract32(insn, 31, 1); 5054 op = extract32(insn, 30, 1); 5055 is_imm = extract32(insn, 11, 1); 5056 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5057 cond = extract32(insn, 12, 4); 5058 rn = extract32(insn, 5, 5); 5059 nzcv = extract32(insn, 0, 4); 5060 5061 /* Set T0 = !COND. */ 5062 tcg_t0 = tcg_temp_new_i32(); 5063 arm_test_cc(&c, cond); 5064 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5065 5066 /* Load the arguments for the new comparison. */ 5067 if (is_imm) { 5068 tcg_y = tcg_temp_new_i64(); 5069 tcg_gen_movi_i64(tcg_y, y); 5070 } else { 5071 tcg_y = cpu_reg(s, y); 5072 } 5073 tcg_rn = cpu_reg(s, rn); 5074 5075 /* Set the flags for the new comparison. */ 5076 tcg_tmp = tcg_temp_new_i64(); 5077 if (op) { 5078 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5079 } else { 5080 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5081 } 5082 5083 /* If COND was false, force the flags to #nzcv. Compute two masks 5084 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5085 * For tcg hosts that support ANDC, we can make do with just T1. 5086 * In either case, allow the tcg optimizer to delete any unused mask. 5087 */ 5088 tcg_t1 = tcg_temp_new_i32(); 5089 tcg_t2 = tcg_temp_new_i32(); 5090 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5091 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5092 5093 if (nzcv & 8) { /* N */ 5094 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5095 } else { 5096 if (TCG_TARGET_HAS_andc_i32) { 5097 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5098 } else { 5099 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5100 } 5101 } 5102 if (nzcv & 4) { /* Z */ 5103 if (TCG_TARGET_HAS_andc_i32) { 5104 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5105 } else { 5106 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5107 } 5108 } else { 5109 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5110 } 5111 if (nzcv & 2) { /* C */ 5112 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5113 } else { 5114 if (TCG_TARGET_HAS_andc_i32) { 5115 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5116 } else { 5117 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5118 } 5119 } 5120 if (nzcv & 1) { /* V */ 5121 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5122 } else { 5123 if (TCG_TARGET_HAS_andc_i32) { 5124 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5125 } else { 5126 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5127 } 5128 } 5129 } 5130 5131 /* Conditional select 5132 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5133 * +----+----+---+-----------------+------+------+-----+------+------+ 5134 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5135 * +----+----+---+-----------------+------+------+-----+------+------+ 5136 */ 5137 static void disas_cond_select(DisasContext *s, uint32_t insn) 5138 { 5139 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5140 TCGv_i64 tcg_rd, zero; 5141 DisasCompare64 c; 5142 5143 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5144 /* S == 1 or op2<1> == 1 */ 5145 unallocated_encoding(s); 5146 return; 5147 } 5148 sf = extract32(insn, 31, 1); 5149 else_inv = extract32(insn, 30, 1); 5150 rm = extract32(insn, 16, 5); 5151 cond = extract32(insn, 12, 4); 5152 else_inc = extract32(insn, 10, 1); 5153 rn = extract32(insn, 5, 5); 5154 rd = extract32(insn, 0, 5); 5155 5156 tcg_rd = cpu_reg(s, rd); 5157 5158 a64_test_cc(&c, cond); 5159 zero = tcg_constant_i64(0); 5160 5161 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5162 /* CSET & CSETM. */ 5163 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5164 if (else_inv) { 5165 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5166 } 5167 } else { 5168 TCGv_i64 t_true = cpu_reg(s, rn); 5169 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5170 if (else_inv && else_inc) { 5171 tcg_gen_neg_i64(t_false, t_false); 5172 } else if (else_inv) { 5173 tcg_gen_not_i64(t_false, t_false); 5174 } else if (else_inc) { 5175 tcg_gen_addi_i64(t_false, t_false, 1); 5176 } 5177 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5178 } 5179 5180 if (!sf) { 5181 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5182 } 5183 } 5184 5185 static void handle_clz(DisasContext *s, unsigned int sf, 5186 unsigned int rn, unsigned int rd) 5187 { 5188 TCGv_i64 tcg_rd, tcg_rn; 5189 tcg_rd = cpu_reg(s, rd); 5190 tcg_rn = cpu_reg(s, rn); 5191 5192 if (sf) { 5193 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5194 } else { 5195 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5196 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5197 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5198 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5199 } 5200 } 5201 5202 static void handle_cls(DisasContext *s, unsigned int sf, 5203 unsigned int rn, unsigned int rd) 5204 { 5205 TCGv_i64 tcg_rd, tcg_rn; 5206 tcg_rd = cpu_reg(s, rd); 5207 tcg_rn = cpu_reg(s, rn); 5208 5209 if (sf) { 5210 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5211 } else { 5212 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5213 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5214 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5215 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5216 } 5217 } 5218 5219 static void handle_rbit(DisasContext *s, unsigned int sf, 5220 unsigned int rn, unsigned int rd) 5221 { 5222 TCGv_i64 tcg_rd, tcg_rn; 5223 tcg_rd = cpu_reg(s, rd); 5224 tcg_rn = cpu_reg(s, rn); 5225 5226 if (sf) { 5227 gen_helper_rbit64(tcg_rd, tcg_rn); 5228 } else { 5229 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5230 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5231 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5232 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5233 } 5234 } 5235 5236 /* REV with sf==1, opcode==3 ("REV64") */ 5237 static void handle_rev64(DisasContext *s, unsigned int sf, 5238 unsigned int rn, unsigned int rd) 5239 { 5240 if (!sf) { 5241 unallocated_encoding(s); 5242 return; 5243 } 5244 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5245 } 5246 5247 /* REV with sf==0, opcode==2 5248 * REV32 (sf==1, opcode==2) 5249 */ 5250 static void handle_rev32(DisasContext *s, unsigned int sf, 5251 unsigned int rn, unsigned int rd) 5252 { 5253 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5254 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5255 5256 if (sf) { 5257 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5258 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5259 } else { 5260 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5261 } 5262 } 5263 5264 /* REV16 (opcode==1) */ 5265 static void handle_rev16(DisasContext *s, unsigned int sf, 5266 unsigned int rn, unsigned int rd) 5267 { 5268 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5269 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5270 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5271 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5272 5273 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5274 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5275 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5276 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5277 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5278 } 5279 5280 /* Data-processing (1 source) 5281 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5282 * +----+---+---+-----------------+---------+--------+------+------+ 5283 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5284 * +----+---+---+-----------------+---------+--------+------+------+ 5285 */ 5286 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5287 { 5288 unsigned int sf, opcode, opcode2, rn, rd; 5289 TCGv_i64 tcg_rd; 5290 5291 if (extract32(insn, 29, 1)) { 5292 unallocated_encoding(s); 5293 return; 5294 } 5295 5296 sf = extract32(insn, 31, 1); 5297 opcode = extract32(insn, 10, 6); 5298 opcode2 = extract32(insn, 16, 5); 5299 rn = extract32(insn, 5, 5); 5300 rd = extract32(insn, 0, 5); 5301 5302 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5303 5304 switch (MAP(sf, opcode2, opcode)) { 5305 case MAP(0, 0x00, 0x00): /* RBIT */ 5306 case MAP(1, 0x00, 0x00): 5307 handle_rbit(s, sf, rn, rd); 5308 break; 5309 case MAP(0, 0x00, 0x01): /* REV16 */ 5310 case MAP(1, 0x00, 0x01): 5311 handle_rev16(s, sf, rn, rd); 5312 break; 5313 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5314 case MAP(1, 0x00, 0x02): 5315 handle_rev32(s, sf, rn, rd); 5316 break; 5317 case MAP(1, 0x00, 0x03): /* REV64 */ 5318 handle_rev64(s, sf, rn, rd); 5319 break; 5320 case MAP(0, 0x00, 0x04): /* CLZ */ 5321 case MAP(1, 0x00, 0x04): 5322 handle_clz(s, sf, rn, rd); 5323 break; 5324 case MAP(0, 0x00, 0x05): /* CLS */ 5325 case MAP(1, 0x00, 0x05): 5326 handle_cls(s, sf, rn, rd); 5327 break; 5328 case MAP(1, 0x01, 0x00): /* PACIA */ 5329 if (s->pauth_active) { 5330 tcg_rd = cpu_reg(s, rd); 5331 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5332 } else if (!dc_isar_feature(aa64_pauth, s)) { 5333 goto do_unallocated; 5334 } 5335 break; 5336 case MAP(1, 0x01, 0x01): /* PACIB */ 5337 if (s->pauth_active) { 5338 tcg_rd = cpu_reg(s, rd); 5339 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5340 } else if (!dc_isar_feature(aa64_pauth, s)) { 5341 goto do_unallocated; 5342 } 5343 break; 5344 case MAP(1, 0x01, 0x02): /* PACDA */ 5345 if (s->pauth_active) { 5346 tcg_rd = cpu_reg(s, rd); 5347 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5348 } else if (!dc_isar_feature(aa64_pauth, s)) { 5349 goto do_unallocated; 5350 } 5351 break; 5352 case MAP(1, 0x01, 0x03): /* PACDB */ 5353 if (s->pauth_active) { 5354 tcg_rd = cpu_reg(s, rd); 5355 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5356 } else if (!dc_isar_feature(aa64_pauth, s)) { 5357 goto do_unallocated; 5358 } 5359 break; 5360 case MAP(1, 0x01, 0x04): /* AUTIA */ 5361 if (s->pauth_active) { 5362 tcg_rd = cpu_reg(s, rd); 5363 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5364 } else if (!dc_isar_feature(aa64_pauth, s)) { 5365 goto do_unallocated; 5366 } 5367 break; 5368 case MAP(1, 0x01, 0x05): /* AUTIB */ 5369 if (s->pauth_active) { 5370 tcg_rd = cpu_reg(s, rd); 5371 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5372 } else if (!dc_isar_feature(aa64_pauth, s)) { 5373 goto do_unallocated; 5374 } 5375 break; 5376 case MAP(1, 0x01, 0x06): /* AUTDA */ 5377 if (s->pauth_active) { 5378 tcg_rd = cpu_reg(s, rd); 5379 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5380 } else if (!dc_isar_feature(aa64_pauth, s)) { 5381 goto do_unallocated; 5382 } 5383 break; 5384 case MAP(1, 0x01, 0x07): /* AUTDB */ 5385 if (s->pauth_active) { 5386 tcg_rd = cpu_reg(s, rd); 5387 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5388 } else if (!dc_isar_feature(aa64_pauth, s)) { 5389 goto do_unallocated; 5390 } 5391 break; 5392 case MAP(1, 0x01, 0x08): /* PACIZA */ 5393 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5394 goto do_unallocated; 5395 } else if (s->pauth_active) { 5396 tcg_rd = cpu_reg(s, rd); 5397 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5398 } 5399 break; 5400 case MAP(1, 0x01, 0x09): /* PACIZB */ 5401 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5402 goto do_unallocated; 5403 } else if (s->pauth_active) { 5404 tcg_rd = cpu_reg(s, rd); 5405 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5406 } 5407 break; 5408 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5409 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5410 goto do_unallocated; 5411 } else if (s->pauth_active) { 5412 tcg_rd = cpu_reg(s, rd); 5413 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5414 } 5415 break; 5416 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5417 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5418 goto do_unallocated; 5419 } else if (s->pauth_active) { 5420 tcg_rd = cpu_reg(s, rd); 5421 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5422 } 5423 break; 5424 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5425 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5426 goto do_unallocated; 5427 } else if (s->pauth_active) { 5428 tcg_rd = cpu_reg(s, rd); 5429 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5430 } 5431 break; 5432 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5433 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5434 goto do_unallocated; 5435 } else if (s->pauth_active) { 5436 tcg_rd = cpu_reg(s, rd); 5437 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5438 } 5439 break; 5440 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5441 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5442 goto do_unallocated; 5443 } else if (s->pauth_active) { 5444 tcg_rd = cpu_reg(s, rd); 5445 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5446 } 5447 break; 5448 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5449 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5450 goto do_unallocated; 5451 } else if (s->pauth_active) { 5452 tcg_rd = cpu_reg(s, rd); 5453 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5454 } 5455 break; 5456 case MAP(1, 0x01, 0x10): /* XPACI */ 5457 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5458 goto do_unallocated; 5459 } else if (s->pauth_active) { 5460 tcg_rd = cpu_reg(s, rd); 5461 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5462 } 5463 break; 5464 case MAP(1, 0x01, 0x11): /* XPACD */ 5465 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5466 goto do_unallocated; 5467 } else if (s->pauth_active) { 5468 tcg_rd = cpu_reg(s, rd); 5469 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5470 } 5471 break; 5472 default: 5473 do_unallocated: 5474 unallocated_encoding(s); 5475 break; 5476 } 5477 5478 #undef MAP 5479 } 5480 5481 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5482 unsigned int rm, unsigned int rn, unsigned int rd) 5483 { 5484 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5485 tcg_rd = cpu_reg(s, rd); 5486 5487 if (!sf && is_signed) { 5488 tcg_n = tcg_temp_new_i64(); 5489 tcg_m = tcg_temp_new_i64(); 5490 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5491 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5492 } else { 5493 tcg_n = read_cpu_reg(s, rn, sf); 5494 tcg_m = read_cpu_reg(s, rm, sf); 5495 } 5496 5497 if (is_signed) { 5498 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5499 } else { 5500 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5501 } 5502 5503 if (!sf) { /* zero extend final result */ 5504 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5505 } 5506 } 5507 5508 /* LSLV, LSRV, ASRV, RORV */ 5509 static void handle_shift_reg(DisasContext *s, 5510 enum a64_shift_type shift_type, unsigned int sf, 5511 unsigned int rm, unsigned int rn, unsigned int rd) 5512 { 5513 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5514 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5515 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5516 5517 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5518 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5519 } 5520 5521 /* CRC32[BHWX], CRC32C[BHWX] */ 5522 static void handle_crc32(DisasContext *s, 5523 unsigned int sf, unsigned int sz, bool crc32c, 5524 unsigned int rm, unsigned int rn, unsigned int rd) 5525 { 5526 TCGv_i64 tcg_acc, tcg_val; 5527 TCGv_i32 tcg_bytes; 5528 5529 if (!dc_isar_feature(aa64_crc32, s) 5530 || (sf == 1 && sz != 3) 5531 || (sf == 0 && sz == 3)) { 5532 unallocated_encoding(s); 5533 return; 5534 } 5535 5536 if (sz == 3) { 5537 tcg_val = cpu_reg(s, rm); 5538 } else { 5539 uint64_t mask; 5540 switch (sz) { 5541 case 0: 5542 mask = 0xFF; 5543 break; 5544 case 1: 5545 mask = 0xFFFF; 5546 break; 5547 case 2: 5548 mask = 0xFFFFFFFF; 5549 break; 5550 default: 5551 g_assert_not_reached(); 5552 } 5553 tcg_val = tcg_temp_new_i64(); 5554 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5555 } 5556 5557 tcg_acc = cpu_reg(s, rn); 5558 tcg_bytes = tcg_constant_i32(1 << sz); 5559 5560 if (crc32c) { 5561 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5562 } else { 5563 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5564 } 5565 } 5566 5567 /* Data-processing (2 source) 5568 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5569 * +----+---+---+-----------------+------+--------+------+------+ 5570 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5571 * +----+---+---+-----------------+------+--------+------+------+ 5572 */ 5573 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5574 { 5575 unsigned int sf, rm, opcode, rn, rd, setflag; 5576 sf = extract32(insn, 31, 1); 5577 setflag = extract32(insn, 29, 1); 5578 rm = extract32(insn, 16, 5); 5579 opcode = extract32(insn, 10, 6); 5580 rn = extract32(insn, 5, 5); 5581 rd = extract32(insn, 0, 5); 5582 5583 if (setflag && opcode != 0) { 5584 unallocated_encoding(s); 5585 return; 5586 } 5587 5588 switch (opcode) { 5589 case 0: /* SUBP(S) */ 5590 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5591 goto do_unallocated; 5592 } else { 5593 TCGv_i64 tcg_n, tcg_m, tcg_d; 5594 5595 tcg_n = read_cpu_reg_sp(s, rn, true); 5596 tcg_m = read_cpu_reg_sp(s, rm, true); 5597 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5598 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5599 tcg_d = cpu_reg(s, rd); 5600 5601 if (setflag) { 5602 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5603 } else { 5604 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5605 } 5606 } 5607 break; 5608 case 2: /* UDIV */ 5609 handle_div(s, false, sf, rm, rn, rd); 5610 break; 5611 case 3: /* SDIV */ 5612 handle_div(s, true, sf, rm, rn, rd); 5613 break; 5614 case 4: /* IRG */ 5615 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5616 goto do_unallocated; 5617 } 5618 if (s->ata) { 5619 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5620 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5621 } else { 5622 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5623 cpu_reg_sp(s, rn)); 5624 } 5625 break; 5626 case 5: /* GMI */ 5627 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5628 goto do_unallocated; 5629 } else { 5630 TCGv_i64 t = tcg_temp_new_i64(); 5631 5632 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5633 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5634 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5635 } 5636 break; 5637 case 8: /* LSLV */ 5638 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5639 break; 5640 case 9: /* LSRV */ 5641 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5642 break; 5643 case 10: /* ASRV */ 5644 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5645 break; 5646 case 11: /* RORV */ 5647 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5648 break; 5649 case 12: /* PACGA */ 5650 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5651 goto do_unallocated; 5652 } 5653 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5654 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5655 break; 5656 case 16: 5657 case 17: 5658 case 18: 5659 case 19: 5660 case 20: 5661 case 21: 5662 case 22: 5663 case 23: /* CRC32 */ 5664 { 5665 int sz = extract32(opcode, 0, 2); 5666 bool crc32c = extract32(opcode, 2, 1); 5667 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5668 break; 5669 } 5670 default: 5671 do_unallocated: 5672 unallocated_encoding(s); 5673 break; 5674 } 5675 } 5676 5677 /* 5678 * Data processing - register 5679 * 31 30 29 28 25 21 20 16 10 0 5680 * +--+---+--+---+-------+-----+-------+-------+---------+ 5681 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5682 * +--+---+--+---+-------+-----+-------+-------+---------+ 5683 */ 5684 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5685 { 5686 int op0 = extract32(insn, 30, 1); 5687 int op1 = extract32(insn, 28, 1); 5688 int op2 = extract32(insn, 21, 4); 5689 int op3 = extract32(insn, 10, 6); 5690 5691 if (!op1) { 5692 if (op2 & 8) { 5693 if (op2 & 1) { 5694 /* Add/sub (extended register) */ 5695 disas_add_sub_ext_reg(s, insn); 5696 } else { 5697 /* Add/sub (shifted register) */ 5698 disas_add_sub_reg(s, insn); 5699 } 5700 } else { 5701 /* Logical (shifted register) */ 5702 disas_logic_reg(s, insn); 5703 } 5704 return; 5705 } 5706 5707 switch (op2) { 5708 case 0x0: 5709 switch (op3) { 5710 case 0x00: /* Add/subtract (with carry) */ 5711 disas_adc_sbc(s, insn); 5712 break; 5713 5714 case 0x01: /* Rotate right into flags */ 5715 case 0x21: 5716 disas_rotate_right_into_flags(s, insn); 5717 break; 5718 5719 case 0x02: /* Evaluate into flags */ 5720 case 0x12: 5721 case 0x22: 5722 case 0x32: 5723 disas_evaluate_into_flags(s, insn); 5724 break; 5725 5726 default: 5727 goto do_unallocated; 5728 } 5729 break; 5730 5731 case 0x2: /* Conditional compare */ 5732 disas_cc(s, insn); /* both imm and reg forms */ 5733 break; 5734 5735 case 0x4: /* Conditional select */ 5736 disas_cond_select(s, insn); 5737 break; 5738 5739 case 0x6: /* Data-processing */ 5740 if (op0) { /* (1 source) */ 5741 disas_data_proc_1src(s, insn); 5742 } else { /* (2 source) */ 5743 disas_data_proc_2src(s, insn); 5744 } 5745 break; 5746 case 0x8 ... 0xf: /* (3 source) */ 5747 disas_data_proc_3src(s, insn); 5748 break; 5749 5750 default: 5751 do_unallocated: 5752 unallocated_encoding(s); 5753 break; 5754 } 5755 } 5756 5757 static void handle_fp_compare(DisasContext *s, int size, 5758 unsigned int rn, unsigned int rm, 5759 bool cmp_with_zero, bool signal_all_nans) 5760 { 5761 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5762 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5763 5764 if (size == MO_64) { 5765 TCGv_i64 tcg_vn, tcg_vm; 5766 5767 tcg_vn = read_fp_dreg(s, rn); 5768 if (cmp_with_zero) { 5769 tcg_vm = tcg_constant_i64(0); 5770 } else { 5771 tcg_vm = read_fp_dreg(s, rm); 5772 } 5773 if (signal_all_nans) { 5774 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5775 } else { 5776 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5777 } 5778 } else { 5779 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5780 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5781 5782 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5783 if (cmp_with_zero) { 5784 tcg_gen_movi_i32(tcg_vm, 0); 5785 } else { 5786 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5787 } 5788 5789 switch (size) { 5790 case MO_32: 5791 if (signal_all_nans) { 5792 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5793 } else { 5794 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5795 } 5796 break; 5797 case MO_16: 5798 if (signal_all_nans) { 5799 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5800 } else { 5801 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5802 } 5803 break; 5804 default: 5805 g_assert_not_reached(); 5806 } 5807 } 5808 5809 gen_set_nzcv(tcg_flags); 5810 } 5811 5812 /* Floating point compare 5813 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5814 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5815 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5816 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5817 */ 5818 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5819 { 5820 unsigned int mos, type, rm, op, rn, opc, op2r; 5821 int size; 5822 5823 mos = extract32(insn, 29, 3); 5824 type = extract32(insn, 22, 2); 5825 rm = extract32(insn, 16, 5); 5826 op = extract32(insn, 14, 2); 5827 rn = extract32(insn, 5, 5); 5828 opc = extract32(insn, 3, 2); 5829 op2r = extract32(insn, 0, 3); 5830 5831 if (mos || op || op2r) { 5832 unallocated_encoding(s); 5833 return; 5834 } 5835 5836 switch (type) { 5837 case 0: 5838 size = MO_32; 5839 break; 5840 case 1: 5841 size = MO_64; 5842 break; 5843 case 3: 5844 size = MO_16; 5845 if (dc_isar_feature(aa64_fp16, s)) { 5846 break; 5847 } 5848 /* fallthru */ 5849 default: 5850 unallocated_encoding(s); 5851 return; 5852 } 5853 5854 if (!fp_access_check(s)) { 5855 return; 5856 } 5857 5858 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5859 } 5860 5861 /* Floating point conditional compare 5862 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5863 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5864 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5865 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5866 */ 5867 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5868 { 5869 unsigned int mos, type, rm, cond, rn, op, nzcv; 5870 TCGLabel *label_continue = NULL; 5871 int size; 5872 5873 mos = extract32(insn, 29, 3); 5874 type = extract32(insn, 22, 2); 5875 rm = extract32(insn, 16, 5); 5876 cond = extract32(insn, 12, 4); 5877 rn = extract32(insn, 5, 5); 5878 op = extract32(insn, 4, 1); 5879 nzcv = extract32(insn, 0, 4); 5880 5881 if (mos) { 5882 unallocated_encoding(s); 5883 return; 5884 } 5885 5886 switch (type) { 5887 case 0: 5888 size = MO_32; 5889 break; 5890 case 1: 5891 size = MO_64; 5892 break; 5893 case 3: 5894 size = MO_16; 5895 if (dc_isar_feature(aa64_fp16, s)) { 5896 break; 5897 } 5898 /* fallthru */ 5899 default: 5900 unallocated_encoding(s); 5901 return; 5902 } 5903 5904 if (!fp_access_check(s)) { 5905 return; 5906 } 5907 5908 if (cond < 0x0e) { /* not always */ 5909 TCGLabel *label_match = gen_new_label(); 5910 label_continue = gen_new_label(); 5911 arm_gen_test_cc(cond, label_match); 5912 /* nomatch: */ 5913 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5914 tcg_gen_br(label_continue); 5915 gen_set_label(label_match); 5916 } 5917 5918 handle_fp_compare(s, size, rn, rm, false, op); 5919 5920 if (cond < 0x0e) { 5921 gen_set_label(label_continue); 5922 } 5923 } 5924 5925 /* Floating point conditional select 5926 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5927 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5928 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5929 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5930 */ 5931 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5932 { 5933 unsigned int mos, type, rm, cond, rn, rd; 5934 TCGv_i64 t_true, t_false; 5935 DisasCompare64 c; 5936 MemOp sz; 5937 5938 mos = extract32(insn, 29, 3); 5939 type = extract32(insn, 22, 2); 5940 rm = extract32(insn, 16, 5); 5941 cond = extract32(insn, 12, 4); 5942 rn = extract32(insn, 5, 5); 5943 rd = extract32(insn, 0, 5); 5944 5945 if (mos) { 5946 unallocated_encoding(s); 5947 return; 5948 } 5949 5950 switch (type) { 5951 case 0: 5952 sz = MO_32; 5953 break; 5954 case 1: 5955 sz = MO_64; 5956 break; 5957 case 3: 5958 sz = MO_16; 5959 if (dc_isar_feature(aa64_fp16, s)) { 5960 break; 5961 } 5962 /* fallthru */ 5963 default: 5964 unallocated_encoding(s); 5965 return; 5966 } 5967 5968 if (!fp_access_check(s)) { 5969 return; 5970 } 5971 5972 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5973 t_true = tcg_temp_new_i64(); 5974 t_false = tcg_temp_new_i64(); 5975 read_vec_element(s, t_true, rn, 0, sz); 5976 read_vec_element(s, t_false, rm, 0, sz); 5977 5978 a64_test_cc(&c, cond); 5979 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5980 t_true, t_false); 5981 5982 /* Note that sregs & hregs write back zeros to the high bits, 5983 and we've already done the zero-extension. */ 5984 write_fp_dreg(s, rd, t_true); 5985 } 5986 5987 /* Floating-point data-processing (1 source) - half precision */ 5988 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5989 { 5990 TCGv_ptr fpst = NULL; 5991 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5992 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5993 5994 switch (opcode) { 5995 case 0x0: /* FMOV */ 5996 tcg_gen_mov_i32(tcg_res, tcg_op); 5997 break; 5998 case 0x1: /* FABS */ 5999 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6000 break; 6001 case 0x2: /* FNEG */ 6002 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6003 break; 6004 case 0x3: /* FSQRT */ 6005 fpst = fpstatus_ptr(FPST_FPCR_F16); 6006 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6007 break; 6008 case 0x8: /* FRINTN */ 6009 case 0x9: /* FRINTP */ 6010 case 0xa: /* FRINTM */ 6011 case 0xb: /* FRINTZ */ 6012 case 0xc: /* FRINTA */ 6013 { 6014 TCGv_i32 tcg_rmode; 6015 6016 fpst = fpstatus_ptr(FPST_FPCR_F16); 6017 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6018 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6019 gen_restore_rmode(tcg_rmode, fpst); 6020 break; 6021 } 6022 case 0xe: /* FRINTX */ 6023 fpst = fpstatus_ptr(FPST_FPCR_F16); 6024 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6025 break; 6026 case 0xf: /* FRINTI */ 6027 fpst = fpstatus_ptr(FPST_FPCR_F16); 6028 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6029 break; 6030 default: 6031 g_assert_not_reached(); 6032 } 6033 6034 write_fp_sreg(s, rd, tcg_res); 6035 } 6036 6037 /* Floating-point data-processing (1 source) - single precision */ 6038 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6039 { 6040 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6041 TCGv_i32 tcg_op, tcg_res; 6042 TCGv_ptr fpst; 6043 int rmode = -1; 6044 6045 tcg_op = read_fp_sreg(s, rn); 6046 tcg_res = tcg_temp_new_i32(); 6047 6048 switch (opcode) { 6049 case 0x0: /* FMOV */ 6050 tcg_gen_mov_i32(tcg_res, tcg_op); 6051 goto done; 6052 case 0x1: /* FABS */ 6053 gen_helper_vfp_abss(tcg_res, tcg_op); 6054 goto done; 6055 case 0x2: /* FNEG */ 6056 gen_helper_vfp_negs(tcg_res, tcg_op); 6057 goto done; 6058 case 0x3: /* FSQRT */ 6059 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6060 goto done; 6061 case 0x6: /* BFCVT */ 6062 gen_fpst = gen_helper_bfcvt; 6063 break; 6064 case 0x8: /* FRINTN */ 6065 case 0x9: /* FRINTP */ 6066 case 0xa: /* FRINTM */ 6067 case 0xb: /* FRINTZ */ 6068 case 0xc: /* FRINTA */ 6069 rmode = opcode & 7; 6070 gen_fpst = gen_helper_rints; 6071 break; 6072 case 0xe: /* FRINTX */ 6073 gen_fpst = gen_helper_rints_exact; 6074 break; 6075 case 0xf: /* FRINTI */ 6076 gen_fpst = gen_helper_rints; 6077 break; 6078 case 0x10: /* FRINT32Z */ 6079 rmode = FPROUNDING_ZERO; 6080 gen_fpst = gen_helper_frint32_s; 6081 break; 6082 case 0x11: /* FRINT32X */ 6083 gen_fpst = gen_helper_frint32_s; 6084 break; 6085 case 0x12: /* FRINT64Z */ 6086 rmode = FPROUNDING_ZERO; 6087 gen_fpst = gen_helper_frint64_s; 6088 break; 6089 case 0x13: /* FRINT64X */ 6090 gen_fpst = gen_helper_frint64_s; 6091 break; 6092 default: 6093 g_assert_not_reached(); 6094 } 6095 6096 fpst = fpstatus_ptr(FPST_FPCR); 6097 if (rmode >= 0) { 6098 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6099 gen_fpst(tcg_res, tcg_op, fpst); 6100 gen_restore_rmode(tcg_rmode, fpst); 6101 } else { 6102 gen_fpst(tcg_res, tcg_op, fpst); 6103 } 6104 6105 done: 6106 write_fp_sreg(s, rd, tcg_res); 6107 } 6108 6109 /* Floating-point data-processing (1 source) - double precision */ 6110 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6111 { 6112 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6113 TCGv_i64 tcg_op, tcg_res; 6114 TCGv_ptr fpst; 6115 int rmode = -1; 6116 6117 switch (opcode) { 6118 case 0x0: /* FMOV */ 6119 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6120 return; 6121 } 6122 6123 tcg_op = read_fp_dreg(s, rn); 6124 tcg_res = tcg_temp_new_i64(); 6125 6126 switch (opcode) { 6127 case 0x1: /* FABS */ 6128 gen_helper_vfp_absd(tcg_res, tcg_op); 6129 goto done; 6130 case 0x2: /* FNEG */ 6131 gen_helper_vfp_negd(tcg_res, tcg_op); 6132 goto done; 6133 case 0x3: /* FSQRT */ 6134 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6135 goto done; 6136 case 0x8: /* FRINTN */ 6137 case 0x9: /* FRINTP */ 6138 case 0xa: /* FRINTM */ 6139 case 0xb: /* FRINTZ */ 6140 case 0xc: /* FRINTA */ 6141 rmode = opcode & 7; 6142 gen_fpst = gen_helper_rintd; 6143 break; 6144 case 0xe: /* FRINTX */ 6145 gen_fpst = gen_helper_rintd_exact; 6146 break; 6147 case 0xf: /* FRINTI */ 6148 gen_fpst = gen_helper_rintd; 6149 break; 6150 case 0x10: /* FRINT32Z */ 6151 rmode = FPROUNDING_ZERO; 6152 gen_fpst = gen_helper_frint32_d; 6153 break; 6154 case 0x11: /* FRINT32X */ 6155 gen_fpst = gen_helper_frint32_d; 6156 break; 6157 case 0x12: /* FRINT64Z */ 6158 rmode = FPROUNDING_ZERO; 6159 gen_fpst = gen_helper_frint64_d; 6160 break; 6161 case 0x13: /* FRINT64X */ 6162 gen_fpst = gen_helper_frint64_d; 6163 break; 6164 default: 6165 g_assert_not_reached(); 6166 } 6167 6168 fpst = fpstatus_ptr(FPST_FPCR); 6169 if (rmode >= 0) { 6170 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6171 gen_fpst(tcg_res, tcg_op, fpst); 6172 gen_restore_rmode(tcg_rmode, fpst); 6173 } else { 6174 gen_fpst(tcg_res, tcg_op, fpst); 6175 } 6176 6177 done: 6178 write_fp_dreg(s, rd, tcg_res); 6179 } 6180 6181 static void handle_fp_fcvt(DisasContext *s, int opcode, 6182 int rd, int rn, int dtype, int ntype) 6183 { 6184 switch (ntype) { 6185 case 0x0: 6186 { 6187 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6188 if (dtype == 1) { 6189 /* Single to double */ 6190 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6191 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6192 write_fp_dreg(s, rd, tcg_rd); 6193 } else { 6194 /* Single to half */ 6195 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6196 TCGv_i32 ahp = get_ahp_flag(); 6197 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6198 6199 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6200 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6201 write_fp_sreg(s, rd, tcg_rd); 6202 } 6203 break; 6204 } 6205 case 0x1: 6206 { 6207 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6208 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6209 if (dtype == 0) { 6210 /* Double to single */ 6211 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6212 } else { 6213 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6214 TCGv_i32 ahp = get_ahp_flag(); 6215 /* Double to half */ 6216 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6217 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6218 } 6219 write_fp_sreg(s, rd, tcg_rd); 6220 break; 6221 } 6222 case 0x3: 6223 { 6224 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6225 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6226 TCGv_i32 tcg_ahp = get_ahp_flag(); 6227 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6228 if (dtype == 0) { 6229 /* Half to single */ 6230 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6231 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6232 write_fp_sreg(s, rd, tcg_rd); 6233 } else { 6234 /* Half to double */ 6235 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6236 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6237 write_fp_dreg(s, rd, tcg_rd); 6238 } 6239 break; 6240 } 6241 default: 6242 g_assert_not_reached(); 6243 } 6244 } 6245 6246 /* Floating point data-processing (1 source) 6247 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6248 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6249 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6250 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6251 */ 6252 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6253 { 6254 int mos = extract32(insn, 29, 3); 6255 int type = extract32(insn, 22, 2); 6256 int opcode = extract32(insn, 15, 6); 6257 int rn = extract32(insn, 5, 5); 6258 int rd = extract32(insn, 0, 5); 6259 6260 if (mos) { 6261 goto do_unallocated; 6262 } 6263 6264 switch (opcode) { 6265 case 0x4: case 0x5: case 0x7: 6266 { 6267 /* FCVT between half, single and double precision */ 6268 int dtype = extract32(opcode, 0, 2); 6269 if (type == 2 || dtype == type) { 6270 goto do_unallocated; 6271 } 6272 if (!fp_access_check(s)) { 6273 return; 6274 } 6275 6276 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6277 break; 6278 } 6279 6280 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6281 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6282 goto do_unallocated; 6283 } 6284 /* fall through */ 6285 case 0x0 ... 0x3: 6286 case 0x8 ... 0xc: 6287 case 0xe ... 0xf: 6288 /* 32-to-32 and 64-to-64 ops */ 6289 switch (type) { 6290 case 0: 6291 if (!fp_access_check(s)) { 6292 return; 6293 } 6294 handle_fp_1src_single(s, opcode, rd, rn); 6295 break; 6296 case 1: 6297 if (!fp_access_check(s)) { 6298 return; 6299 } 6300 handle_fp_1src_double(s, opcode, rd, rn); 6301 break; 6302 case 3: 6303 if (!dc_isar_feature(aa64_fp16, s)) { 6304 goto do_unallocated; 6305 } 6306 6307 if (!fp_access_check(s)) { 6308 return; 6309 } 6310 handle_fp_1src_half(s, opcode, rd, rn); 6311 break; 6312 default: 6313 goto do_unallocated; 6314 } 6315 break; 6316 6317 case 0x6: 6318 switch (type) { 6319 case 1: /* BFCVT */ 6320 if (!dc_isar_feature(aa64_bf16, s)) { 6321 goto do_unallocated; 6322 } 6323 if (!fp_access_check(s)) { 6324 return; 6325 } 6326 handle_fp_1src_single(s, opcode, rd, rn); 6327 break; 6328 default: 6329 goto do_unallocated; 6330 } 6331 break; 6332 6333 default: 6334 do_unallocated: 6335 unallocated_encoding(s); 6336 break; 6337 } 6338 } 6339 6340 /* Floating-point data-processing (2 source) - single precision */ 6341 static void handle_fp_2src_single(DisasContext *s, int opcode, 6342 int rd, int rn, int rm) 6343 { 6344 TCGv_i32 tcg_op1; 6345 TCGv_i32 tcg_op2; 6346 TCGv_i32 tcg_res; 6347 TCGv_ptr fpst; 6348 6349 tcg_res = tcg_temp_new_i32(); 6350 fpst = fpstatus_ptr(FPST_FPCR); 6351 tcg_op1 = read_fp_sreg(s, rn); 6352 tcg_op2 = read_fp_sreg(s, rm); 6353 6354 switch (opcode) { 6355 case 0x0: /* FMUL */ 6356 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6357 break; 6358 case 0x1: /* FDIV */ 6359 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6360 break; 6361 case 0x2: /* FADD */ 6362 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6363 break; 6364 case 0x3: /* FSUB */ 6365 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6366 break; 6367 case 0x4: /* FMAX */ 6368 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6369 break; 6370 case 0x5: /* FMIN */ 6371 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6372 break; 6373 case 0x6: /* FMAXNM */ 6374 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6375 break; 6376 case 0x7: /* FMINNM */ 6377 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6378 break; 6379 case 0x8: /* FNMUL */ 6380 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6381 gen_helper_vfp_negs(tcg_res, tcg_res); 6382 break; 6383 } 6384 6385 write_fp_sreg(s, rd, tcg_res); 6386 } 6387 6388 /* Floating-point data-processing (2 source) - double precision */ 6389 static void handle_fp_2src_double(DisasContext *s, int opcode, 6390 int rd, int rn, int rm) 6391 { 6392 TCGv_i64 tcg_op1; 6393 TCGv_i64 tcg_op2; 6394 TCGv_i64 tcg_res; 6395 TCGv_ptr fpst; 6396 6397 tcg_res = tcg_temp_new_i64(); 6398 fpst = fpstatus_ptr(FPST_FPCR); 6399 tcg_op1 = read_fp_dreg(s, rn); 6400 tcg_op2 = read_fp_dreg(s, rm); 6401 6402 switch (opcode) { 6403 case 0x0: /* FMUL */ 6404 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6405 break; 6406 case 0x1: /* FDIV */ 6407 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6408 break; 6409 case 0x2: /* FADD */ 6410 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6411 break; 6412 case 0x3: /* FSUB */ 6413 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6414 break; 6415 case 0x4: /* FMAX */ 6416 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6417 break; 6418 case 0x5: /* FMIN */ 6419 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6420 break; 6421 case 0x6: /* FMAXNM */ 6422 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6423 break; 6424 case 0x7: /* FMINNM */ 6425 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6426 break; 6427 case 0x8: /* FNMUL */ 6428 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6429 gen_helper_vfp_negd(tcg_res, tcg_res); 6430 break; 6431 } 6432 6433 write_fp_dreg(s, rd, tcg_res); 6434 } 6435 6436 /* Floating-point data-processing (2 source) - half precision */ 6437 static void handle_fp_2src_half(DisasContext *s, int opcode, 6438 int rd, int rn, int rm) 6439 { 6440 TCGv_i32 tcg_op1; 6441 TCGv_i32 tcg_op2; 6442 TCGv_i32 tcg_res; 6443 TCGv_ptr fpst; 6444 6445 tcg_res = tcg_temp_new_i32(); 6446 fpst = fpstatus_ptr(FPST_FPCR_F16); 6447 tcg_op1 = read_fp_hreg(s, rn); 6448 tcg_op2 = read_fp_hreg(s, rm); 6449 6450 switch (opcode) { 6451 case 0x0: /* FMUL */ 6452 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6453 break; 6454 case 0x1: /* FDIV */ 6455 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6456 break; 6457 case 0x2: /* FADD */ 6458 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6459 break; 6460 case 0x3: /* FSUB */ 6461 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6462 break; 6463 case 0x4: /* FMAX */ 6464 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6465 break; 6466 case 0x5: /* FMIN */ 6467 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6468 break; 6469 case 0x6: /* FMAXNM */ 6470 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6471 break; 6472 case 0x7: /* FMINNM */ 6473 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6474 break; 6475 case 0x8: /* FNMUL */ 6476 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6477 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6478 break; 6479 default: 6480 g_assert_not_reached(); 6481 } 6482 6483 write_fp_sreg(s, rd, tcg_res); 6484 } 6485 6486 /* Floating point data-processing (2 source) 6487 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6488 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6489 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6490 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6491 */ 6492 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6493 { 6494 int mos = extract32(insn, 29, 3); 6495 int type = extract32(insn, 22, 2); 6496 int rd = extract32(insn, 0, 5); 6497 int rn = extract32(insn, 5, 5); 6498 int rm = extract32(insn, 16, 5); 6499 int opcode = extract32(insn, 12, 4); 6500 6501 if (opcode > 8 || mos) { 6502 unallocated_encoding(s); 6503 return; 6504 } 6505 6506 switch (type) { 6507 case 0: 6508 if (!fp_access_check(s)) { 6509 return; 6510 } 6511 handle_fp_2src_single(s, opcode, rd, rn, rm); 6512 break; 6513 case 1: 6514 if (!fp_access_check(s)) { 6515 return; 6516 } 6517 handle_fp_2src_double(s, opcode, rd, rn, rm); 6518 break; 6519 case 3: 6520 if (!dc_isar_feature(aa64_fp16, s)) { 6521 unallocated_encoding(s); 6522 return; 6523 } 6524 if (!fp_access_check(s)) { 6525 return; 6526 } 6527 handle_fp_2src_half(s, opcode, rd, rn, rm); 6528 break; 6529 default: 6530 unallocated_encoding(s); 6531 } 6532 } 6533 6534 /* Floating-point data-processing (3 source) - single precision */ 6535 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6536 int rd, int rn, int rm, int ra) 6537 { 6538 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6539 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6540 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6541 6542 tcg_op1 = read_fp_sreg(s, rn); 6543 tcg_op2 = read_fp_sreg(s, rm); 6544 tcg_op3 = read_fp_sreg(s, ra); 6545 6546 /* These are fused multiply-add, and must be done as one 6547 * floating point operation with no rounding between the 6548 * multiplication and addition steps. 6549 * NB that doing the negations here as separate steps is 6550 * correct : an input NaN should come out with its sign bit 6551 * flipped if it is a negated-input. 6552 */ 6553 if (o1 == true) { 6554 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6555 } 6556 6557 if (o0 != o1) { 6558 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6559 } 6560 6561 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6562 6563 write_fp_sreg(s, rd, tcg_res); 6564 } 6565 6566 /* Floating-point data-processing (3 source) - double precision */ 6567 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6568 int rd, int rn, int rm, int ra) 6569 { 6570 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6571 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6572 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6573 6574 tcg_op1 = read_fp_dreg(s, rn); 6575 tcg_op2 = read_fp_dreg(s, rm); 6576 tcg_op3 = read_fp_dreg(s, ra); 6577 6578 /* These are fused multiply-add, and must be done as one 6579 * floating point operation with no rounding between the 6580 * multiplication and addition steps. 6581 * NB that doing the negations here as separate steps is 6582 * correct : an input NaN should come out with its sign bit 6583 * flipped if it is a negated-input. 6584 */ 6585 if (o1 == true) { 6586 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6587 } 6588 6589 if (o0 != o1) { 6590 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6591 } 6592 6593 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6594 6595 write_fp_dreg(s, rd, tcg_res); 6596 } 6597 6598 /* Floating-point data-processing (3 source) - half precision */ 6599 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6600 int rd, int rn, int rm, int ra) 6601 { 6602 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6603 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6604 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6605 6606 tcg_op1 = read_fp_hreg(s, rn); 6607 tcg_op2 = read_fp_hreg(s, rm); 6608 tcg_op3 = read_fp_hreg(s, ra); 6609 6610 /* These are fused multiply-add, and must be done as one 6611 * floating point operation with no rounding between the 6612 * multiplication and addition steps. 6613 * NB that doing the negations here as separate steps is 6614 * correct : an input NaN should come out with its sign bit 6615 * flipped if it is a negated-input. 6616 */ 6617 if (o1 == true) { 6618 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6619 } 6620 6621 if (o0 != o1) { 6622 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6623 } 6624 6625 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6626 6627 write_fp_sreg(s, rd, tcg_res); 6628 } 6629 6630 /* Floating point data-processing (3 source) 6631 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6632 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6633 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6634 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6635 */ 6636 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6637 { 6638 int mos = extract32(insn, 29, 3); 6639 int type = extract32(insn, 22, 2); 6640 int rd = extract32(insn, 0, 5); 6641 int rn = extract32(insn, 5, 5); 6642 int ra = extract32(insn, 10, 5); 6643 int rm = extract32(insn, 16, 5); 6644 bool o0 = extract32(insn, 15, 1); 6645 bool o1 = extract32(insn, 21, 1); 6646 6647 if (mos) { 6648 unallocated_encoding(s); 6649 return; 6650 } 6651 6652 switch (type) { 6653 case 0: 6654 if (!fp_access_check(s)) { 6655 return; 6656 } 6657 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6658 break; 6659 case 1: 6660 if (!fp_access_check(s)) { 6661 return; 6662 } 6663 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6664 break; 6665 case 3: 6666 if (!dc_isar_feature(aa64_fp16, s)) { 6667 unallocated_encoding(s); 6668 return; 6669 } 6670 if (!fp_access_check(s)) { 6671 return; 6672 } 6673 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6674 break; 6675 default: 6676 unallocated_encoding(s); 6677 } 6678 } 6679 6680 /* Floating point immediate 6681 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6682 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6683 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6684 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6685 */ 6686 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6687 { 6688 int rd = extract32(insn, 0, 5); 6689 int imm5 = extract32(insn, 5, 5); 6690 int imm8 = extract32(insn, 13, 8); 6691 int type = extract32(insn, 22, 2); 6692 int mos = extract32(insn, 29, 3); 6693 uint64_t imm; 6694 MemOp sz; 6695 6696 if (mos || imm5) { 6697 unallocated_encoding(s); 6698 return; 6699 } 6700 6701 switch (type) { 6702 case 0: 6703 sz = MO_32; 6704 break; 6705 case 1: 6706 sz = MO_64; 6707 break; 6708 case 3: 6709 sz = MO_16; 6710 if (dc_isar_feature(aa64_fp16, s)) { 6711 break; 6712 } 6713 /* fallthru */ 6714 default: 6715 unallocated_encoding(s); 6716 return; 6717 } 6718 6719 if (!fp_access_check(s)) { 6720 return; 6721 } 6722 6723 imm = vfp_expand_imm(sz, imm8); 6724 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6725 } 6726 6727 /* Handle floating point <=> fixed point conversions. Note that we can 6728 * also deal with fp <=> integer conversions as a special case (scale == 64) 6729 * OPTME: consider handling that special case specially or at least skipping 6730 * the call to scalbn in the helpers for zero shifts. 6731 */ 6732 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6733 bool itof, int rmode, int scale, int sf, int type) 6734 { 6735 bool is_signed = !(opcode & 1); 6736 TCGv_ptr tcg_fpstatus; 6737 TCGv_i32 tcg_shift, tcg_single; 6738 TCGv_i64 tcg_double; 6739 6740 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6741 6742 tcg_shift = tcg_constant_i32(64 - scale); 6743 6744 if (itof) { 6745 TCGv_i64 tcg_int = cpu_reg(s, rn); 6746 if (!sf) { 6747 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6748 6749 if (is_signed) { 6750 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6751 } else { 6752 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6753 } 6754 6755 tcg_int = tcg_extend; 6756 } 6757 6758 switch (type) { 6759 case 1: /* float64 */ 6760 tcg_double = tcg_temp_new_i64(); 6761 if (is_signed) { 6762 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6763 tcg_shift, tcg_fpstatus); 6764 } else { 6765 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6766 tcg_shift, tcg_fpstatus); 6767 } 6768 write_fp_dreg(s, rd, tcg_double); 6769 break; 6770 6771 case 0: /* float32 */ 6772 tcg_single = tcg_temp_new_i32(); 6773 if (is_signed) { 6774 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6775 tcg_shift, tcg_fpstatus); 6776 } else { 6777 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6778 tcg_shift, tcg_fpstatus); 6779 } 6780 write_fp_sreg(s, rd, tcg_single); 6781 break; 6782 6783 case 3: /* float16 */ 6784 tcg_single = tcg_temp_new_i32(); 6785 if (is_signed) { 6786 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6787 tcg_shift, tcg_fpstatus); 6788 } else { 6789 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6790 tcg_shift, tcg_fpstatus); 6791 } 6792 write_fp_sreg(s, rd, tcg_single); 6793 break; 6794 6795 default: 6796 g_assert_not_reached(); 6797 } 6798 } else { 6799 TCGv_i64 tcg_int = cpu_reg(s, rd); 6800 TCGv_i32 tcg_rmode; 6801 6802 if (extract32(opcode, 2, 1)) { 6803 /* There are too many rounding modes to all fit into rmode, 6804 * so FCVTA[US] is a special case. 6805 */ 6806 rmode = FPROUNDING_TIEAWAY; 6807 } 6808 6809 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6810 6811 switch (type) { 6812 case 1: /* float64 */ 6813 tcg_double = read_fp_dreg(s, rn); 6814 if (is_signed) { 6815 if (!sf) { 6816 gen_helper_vfp_tosld(tcg_int, tcg_double, 6817 tcg_shift, tcg_fpstatus); 6818 } else { 6819 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6820 tcg_shift, tcg_fpstatus); 6821 } 6822 } else { 6823 if (!sf) { 6824 gen_helper_vfp_tould(tcg_int, tcg_double, 6825 tcg_shift, tcg_fpstatus); 6826 } else { 6827 gen_helper_vfp_touqd(tcg_int, tcg_double, 6828 tcg_shift, tcg_fpstatus); 6829 } 6830 } 6831 if (!sf) { 6832 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6833 } 6834 break; 6835 6836 case 0: /* float32 */ 6837 tcg_single = read_fp_sreg(s, rn); 6838 if (sf) { 6839 if (is_signed) { 6840 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6841 tcg_shift, tcg_fpstatus); 6842 } else { 6843 gen_helper_vfp_touqs(tcg_int, tcg_single, 6844 tcg_shift, tcg_fpstatus); 6845 } 6846 } else { 6847 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6848 if (is_signed) { 6849 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6850 tcg_shift, tcg_fpstatus); 6851 } else { 6852 gen_helper_vfp_touls(tcg_dest, tcg_single, 6853 tcg_shift, tcg_fpstatus); 6854 } 6855 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6856 } 6857 break; 6858 6859 case 3: /* float16 */ 6860 tcg_single = read_fp_sreg(s, rn); 6861 if (sf) { 6862 if (is_signed) { 6863 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6864 tcg_shift, tcg_fpstatus); 6865 } else { 6866 gen_helper_vfp_touqh(tcg_int, tcg_single, 6867 tcg_shift, tcg_fpstatus); 6868 } 6869 } else { 6870 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6871 if (is_signed) { 6872 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6873 tcg_shift, tcg_fpstatus); 6874 } else { 6875 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6876 tcg_shift, tcg_fpstatus); 6877 } 6878 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6879 } 6880 break; 6881 6882 default: 6883 g_assert_not_reached(); 6884 } 6885 6886 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6887 } 6888 } 6889 6890 /* Floating point <-> fixed point conversions 6891 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6892 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6893 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6894 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6895 */ 6896 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6897 { 6898 int rd = extract32(insn, 0, 5); 6899 int rn = extract32(insn, 5, 5); 6900 int scale = extract32(insn, 10, 6); 6901 int opcode = extract32(insn, 16, 3); 6902 int rmode = extract32(insn, 19, 2); 6903 int type = extract32(insn, 22, 2); 6904 bool sbit = extract32(insn, 29, 1); 6905 bool sf = extract32(insn, 31, 1); 6906 bool itof; 6907 6908 if (sbit || (!sf && scale < 32)) { 6909 unallocated_encoding(s); 6910 return; 6911 } 6912 6913 switch (type) { 6914 case 0: /* float32 */ 6915 case 1: /* float64 */ 6916 break; 6917 case 3: /* float16 */ 6918 if (dc_isar_feature(aa64_fp16, s)) { 6919 break; 6920 } 6921 /* fallthru */ 6922 default: 6923 unallocated_encoding(s); 6924 return; 6925 } 6926 6927 switch ((rmode << 3) | opcode) { 6928 case 0x2: /* SCVTF */ 6929 case 0x3: /* UCVTF */ 6930 itof = true; 6931 break; 6932 case 0x18: /* FCVTZS */ 6933 case 0x19: /* FCVTZU */ 6934 itof = false; 6935 break; 6936 default: 6937 unallocated_encoding(s); 6938 return; 6939 } 6940 6941 if (!fp_access_check(s)) { 6942 return; 6943 } 6944 6945 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6946 } 6947 6948 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6949 { 6950 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6951 * without conversion. 6952 */ 6953 6954 if (itof) { 6955 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6956 TCGv_i64 tmp; 6957 6958 switch (type) { 6959 case 0: 6960 /* 32 bit */ 6961 tmp = tcg_temp_new_i64(); 6962 tcg_gen_ext32u_i64(tmp, tcg_rn); 6963 write_fp_dreg(s, rd, tmp); 6964 break; 6965 case 1: 6966 /* 64 bit */ 6967 write_fp_dreg(s, rd, tcg_rn); 6968 break; 6969 case 2: 6970 /* 64 bit to top half. */ 6971 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6972 clear_vec_high(s, true, rd); 6973 break; 6974 case 3: 6975 /* 16 bit */ 6976 tmp = tcg_temp_new_i64(); 6977 tcg_gen_ext16u_i64(tmp, tcg_rn); 6978 write_fp_dreg(s, rd, tmp); 6979 break; 6980 default: 6981 g_assert_not_reached(); 6982 } 6983 } else { 6984 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6985 6986 switch (type) { 6987 case 0: 6988 /* 32 bit */ 6989 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6990 break; 6991 case 1: 6992 /* 64 bit */ 6993 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6994 break; 6995 case 2: 6996 /* 64 bits from top half */ 6997 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6998 break; 6999 case 3: 7000 /* 16 bit */ 7001 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7002 break; 7003 default: 7004 g_assert_not_reached(); 7005 } 7006 } 7007 } 7008 7009 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7010 { 7011 TCGv_i64 t = read_fp_dreg(s, rn); 7012 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7013 7014 gen_helper_fjcvtzs(t, t, fpstatus); 7015 7016 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7017 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7018 tcg_gen_movi_i32(cpu_CF, 0); 7019 tcg_gen_movi_i32(cpu_NF, 0); 7020 tcg_gen_movi_i32(cpu_VF, 0); 7021 } 7022 7023 /* Floating point <-> integer conversions 7024 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7025 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7026 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7027 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7028 */ 7029 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7030 { 7031 int rd = extract32(insn, 0, 5); 7032 int rn = extract32(insn, 5, 5); 7033 int opcode = extract32(insn, 16, 3); 7034 int rmode = extract32(insn, 19, 2); 7035 int type = extract32(insn, 22, 2); 7036 bool sbit = extract32(insn, 29, 1); 7037 bool sf = extract32(insn, 31, 1); 7038 bool itof = false; 7039 7040 if (sbit) { 7041 goto do_unallocated; 7042 } 7043 7044 switch (opcode) { 7045 case 2: /* SCVTF */ 7046 case 3: /* UCVTF */ 7047 itof = true; 7048 /* fallthru */ 7049 case 4: /* FCVTAS */ 7050 case 5: /* FCVTAU */ 7051 if (rmode != 0) { 7052 goto do_unallocated; 7053 } 7054 /* fallthru */ 7055 case 0: /* FCVT[NPMZ]S */ 7056 case 1: /* FCVT[NPMZ]U */ 7057 switch (type) { 7058 case 0: /* float32 */ 7059 case 1: /* float64 */ 7060 break; 7061 case 3: /* float16 */ 7062 if (!dc_isar_feature(aa64_fp16, s)) { 7063 goto do_unallocated; 7064 } 7065 break; 7066 default: 7067 goto do_unallocated; 7068 } 7069 if (!fp_access_check(s)) { 7070 return; 7071 } 7072 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7073 break; 7074 7075 default: 7076 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7077 case 0b01100110: /* FMOV half <-> 32-bit int */ 7078 case 0b01100111: 7079 case 0b11100110: /* FMOV half <-> 64-bit int */ 7080 case 0b11100111: 7081 if (!dc_isar_feature(aa64_fp16, s)) { 7082 goto do_unallocated; 7083 } 7084 /* fallthru */ 7085 case 0b00000110: /* FMOV 32-bit */ 7086 case 0b00000111: 7087 case 0b10100110: /* FMOV 64-bit */ 7088 case 0b10100111: 7089 case 0b11001110: /* FMOV top half of 128-bit */ 7090 case 0b11001111: 7091 if (!fp_access_check(s)) { 7092 return; 7093 } 7094 itof = opcode & 1; 7095 handle_fmov(s, rd, rn, type, itof); 7096 break; 7097 7098 case 0b00111110: /* FJCVTZS */ 7099 if (!dc_isar_feature(aa64_jscvt, s)) { 7100 goto do_unallocated; 7101 } else if (fp_access_check(s)) { 7102 handle_fjcvtzs(s, rd, rn); 7103 } 7104 break; 7105 7106 default: 7107 do_unallocated: 7108 unallocated_encoding(s); 7109 return; 7110 } 7111 break; 7112 } 7113 } 7114 7115 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7116 * 31 30 29 28 25 24 0 7117 * +---+---+---+---------+-----------------------------+ 7118 * | | 0 | | 1 1 1 1 | | 7119 * +---+---+---+---------+-----------------------------+ 7120 */ 7121 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7122 { 7123 if (extract32(insn, 24, 1)) { 7124 /* Floating point data-processing (3 source) */ 7125 disas_fp_3src(s, insn); 7126 } else if (extract32(insn, 21, 1) == 0) { 7127 /* Floating point to fixed point conversions */ 7128 disas_fp_fixed_conv(s, insn); 7129 } else { 7130 switch (extract32(insn, 10, 2)) { 7131 case 1: 7132 /* Floating point conditional compare */ 7133 disas_fp_ccomp(s, insn); 7134 break; 7135 case 2: 7136 /* Floating point data-processing (2 source) */ 7137 disas_fp_2src(s, insn); 7138 break; 7139 case 3: 7140 /* Floating point conditional select */ 7141 disas_fp_csel(s, insn); 7142 break; 7143 case 0: 7144 switch (ctz32(extract32(insn, 12, 4))) { 7145 case 0: /* [15:12] == xxx1 */ 7146 /* Floating point immediate */ 7147 disas_fp_imm(s, insn); 7148 break; 7149 case 1: /* [15:12] == xx10 */ 7150 /* Floating point compare */ 7151 disas_fp_compare(s, insn); 7152 break; 7153 case 2: /* [15:12] == x100 */ 7154 /* Floating point data-processing (1 source) */ 7155 disas_fp_1src(s, insn); 7156 break; 7157 case 3: /* [15:12] == 1000 */ 7158 unallocated_encoding(s); 7159 break; 7160 default: /* [15:12] == 0000 */ 7161 /* Floating point <-> integer conversions */ 7162 disas_fp_int_conv(s, insn); 7163 break; 7164 } 7165 break; 7166 } 7167 } 7168 } 7169 7170 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7171 int pos) 7172 { 7173 /* Extract 64 bits from the middle of two concatenated 64 bit 7174 * vector register slices left:right. The extracted bits start 7175 * at 'pos' bits into the right (least significant) side. 7176 * We return the result in tcg_right, and guarantee not to 7177 * trash tcg_left. 7178 */ 7179 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7180 assert(pos > 0 && pos < 64); 7181 7182 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7183 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7184 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7185 } 7186 7187 /* EXT 7188 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7189 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7190 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7191 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7192 */ 7193 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7194 { 7195 int is_q = extract32(insn, 30, 1); 7196 int op2 = extract32(insn, 22, 2); 7197 int imm4 = extract32(insn, 11, 4); 7198 int rm = extract32(insn, 16, 5); 7199 int rn = extract32(insn, 5, 5); 7200 int rd = extract32(insn, 0, 5); 7201 int pos = imm4 << 3; 7202 TCGv_i64 tcg_resl, tcg_resh; 7203 7204 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7205 unallocated_encoding(s); 7206 return; 7207 } 7208 7209 if (!fp_access_check(s)) { 7210 return; 7211 } 7212 7213 tcg_resh = tcg_temp_new_i64(); 7214 tcg_resl = tcg_temp_new_i64(); 7215 7216 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7217 * either extracting 128 bits from a 128:128 concatenation, or 7218 * extracting 64 bits from a 64:64 concatenation. 7219 */ 7220 if (!is_q) { 7221 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7222 if (pos != 0) { 7223 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7224 do_ext64(s, tcg_resh, tcg_resl, pos); 7225 } 7226 } else { 7227 TCGv_i64 tcg_hh; 7228 typedef struct { 7229 int reg; 7230 int elt; 7231 } EltPosns; 7232 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7233 EltPosns *elt = eltposns; 7234 7235 if (pos >= 64) { 7236 elt++; 7237 pos -= 64; 7238 } 7239 7240 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7241 elt++; 7242 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7243 elt++; 7244 if (pos != 0) { 7245 do_ext64(s, tcg_resh, tcg_resl, pos); 7246 tcg_hh = tcg_temp_new_i64(); 7247 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7248 do_ext64(s, tcg_hh, tcg_resh, pos); 7249 } 7250 } 7251 7252 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7253 if (is_q) { 7254 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7255 } 7256 clear_vec_high(s, is_q, rd); 7257 } 7258 7259 /* TBL/TBX 7260 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7261 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7262 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7263 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7264 */ 7265 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7266 { 7267 int op2 = extract32(insn, 22, 2); 7268 int is_q = extract32(insn, 30, 1); 7269 int rm = extract32(insn, 16, 5); 7270 int rn = extract32(insn, 5, 5); 7271 int rd = extract32(insn, 0, 5); 7272 int is_tbx = extract32(insn, 12, 1); 7273 int len = (extract32(insn, 13, 2) + 1) * 16; 7274 7275 if (op2 != 0) { 7276 unallocated_encoding(s); 7277 return; 7278 } 7279 7280 if (!fp_access_check(s)) { 7281 return; 7282 } 7283 7284 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7285 vec_full_reg_offset(s, rm), cpu_env, 7286 is_q ? 16 : 8, vec_full_reg_size(s), 7287 (len << 6) | (is_tbx << 5) | rn, 7288 gen_helper_simd_tblx); 7289 } 7290 7291 /* ZIP/UZP/TRN 7292 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7293 * +---+---+-------------+------+---+------+---+------------------+------+ 7294 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7295 * +---+---+-------------+------+---+------+---+------------------+------+ 7296 */ 7297 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7298 { 7299 int rd = extract32(insn, 0, 5); 7300 int rn = extract32(insn, 5, 5); 7301 int rm = extract32(insn, 16, 5); 7302 int size = extract32(insn, 22, 2); 7303 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7304 * bit 2 indicates 1 vs 2 variant of the insn. 7305 */ 7306 int opcode = extract32(insn, 12, 2); 7307 bool part = extract32(insn, 14, 1); 7308 bool is_q = extract32(insn, 30, 1); 7309 int esize = 8 << size; 7310 int i; 7311 int datasize = is_q ? 128 : 64; 7312 int elements = datasize / esize; 7313 TCGv_i64 tcg_res[2], tcg_ele; 7314 7315 if (opcode == 0 || (size == 3 && !is_q)) { 7316 unallocated_encoding(s); 7317 return; 7318 } 7319 7320 if (!fp_access_check(s)) { 7321 return; 7322 } 7323 7324 tcg_res[0] = tcg_temp_new_i64(); 7325 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7326 tcg_ele = tcg_temp_new_i64(); 7327 7328 for (i = 0; i < elements; i++) { 7329 int o, w; 7330 7331 switch (opcode) { 7332 case 1: /* UZP1/2 */ 7333 { 7334 int midpoint = elements / 2; 7335 if (i < midpoint) { 7336 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7337 } else { 7338 read_vec_element(s, tcg_ele, rm, 7339 2 * (i - midpoint) + part, size); 7340 } 7341 break; 7342 } 7343 case 2: /* TRN1/2 */ 7344 if (i & 1) { 7345 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7346 } else { 7347 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7348 } 7349 break; 7350 case 3: /* ZIP1/2 */ 7351 { 7352 int base = part * elements / 2; 7353 if (i & 1) { 7354 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7355 } else { 7356 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7357 } 7358 break; 7359 } 7360 default: 7361 g_assert_not_reached(); 7362 } 7363 7364 w = (i * esize) / 64; 7365 o = (i * esize) % 64; 7366 if (o == 0) { 7367 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7368 } else { 7369 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7370 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7371 } 7372 } 7373 7374 for (i = 0; i <= is_q; ++i) { 7375 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7376 } 7377 clear_vec_high(s, is_q, rd); 7378 } 7379 7380 /* 7381 * do_reduction_op helper 7382 * 7383 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7384 * important for correct NaN propagation that we do these 7385 * operations in exactly the order specified by the pseudocode. 7386 * 7387 * This is a recursive function, TCG temps should be freed by the 7388 * calling function once it is done with the values. 7389 */ 7390 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7391 int esize, int size, int vmap, TCGv_ptr fpst) 7392 { 7393 if (esize == size) { 7394 int element; 7395 MemOp msize = esize == 16 ? MO_16 : MO_32; 7396 TCGv_i32 tcg_elem; 7397 7398 /* We should have one register left here */ 7399 assert(ctpop8(vmap) == 1); 7400 element = ctz32(vmap); 7401 assert(element < 8); 7402 7403 tcg_elem = tcg_temp_new_i32(); 7404 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7405 return tcg_elem; 7406 } else { 7407 int bits = size / 2; 7408 int shift = ctpop8(vmap) / 2; 7409 int vmap_lo = (vmap >> shift) & vmap; 7410 int vmap_hi = (vmap & ~vmap_lo); 7411 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7412 7413 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7414 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7415 tcg_res = tcg_temp_new_i32(); 7416 7417 switch (fpopcode) { 7418 case 0x0c: /* fmaxnmv half-precision */ 7419 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7420 break; 7421 case 0x0f: /* fmaxv half-precision */ 7422 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7423 break; 7424 case 0x1c: /* fminnmv half-precision */ 7425 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7426 break; 7427 case 0x1f: /* fminv half-precision */ 7428 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7429 break; 7430 case 0x2c: /* fmaxnmv */ 7431 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7432 break; 7433 case 0x2f: /* fmaxv */ 7434 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7435 break; 7436 case 0x3c: /* fminnmv */ 7437 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7438 break; 7439 case 0x3f: /* fminv */ 7440 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7441 break; 7442 default: 7443 g_assert_not_reached(); 7444 } 7445 return tcg_res; 7446 } 7447 } 7448 7449 /* AdvSIMD across lanes 7450 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7451 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7452 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7453 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7454 */ 7455 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7456 { 7457 int rd = extract32(insn, 0, 5); 7458 int rn = extract32(insn, 5, 5); 7459 int size = extract32(insn, 22, 2); 7460 int opcode = extract32(insn, 12, 5); 7461 bool is_q = extract32(insn, 30, 1); 7462 bool is_u = extract32(insn, 29, 1); 7463 bool is_fp = false; 7464 bool is_min = false; 7465 int esize; 7466 int elements; 7467 int i; 7468 TCGv_i64 tcg_res, tcg_elt; 7469 7470 switch (opcode) { 7471 case 0x1b: /* ADDV */ 7472 if (is_u) { 7473 unallocated_encoding(s); 7474 return; 7475 } 7476 /* fall through */ 7477 case 0x3: /* SADDLV, UADDLV */ 7478 case 0xa: /* SMAXV, UMAXV */ 7479 case 0x1a: /* SMINV, UMINV */ 7480 if (size == 3 || (size == 2 && !is_q)) { 7481 unallocated_encoding(s); 7482 return; 7483 } 7484 break; 7485 case 0xc: /* FMAXNMV, FMINNMV */ 7486 case 0xf: /* FMAXV, FMINV */ 7487 /* Bit 1 of size field encodes min vs max and the actual size 7488 * depends on the encoding of the U bit. If not set (and FP16 7489 * enabled) then we do half-precision float instead of single 7490 * precision. 7491 */ 7492 is_min = extract32(size, 1, 1); 7493 is_fp = true; 7494 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7495 size = 1; 7496 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7497 unallocated_encoding(s); 7498 return; 7499 } else { 7500 size = 2; 7501 } 7502 break; 7503 default: 7504 unallocated_encoding(s); 7505 return; 7506 } 7507 7508 if (!fp_access_check(s)) { 7509 return; 7510 } 7511 7512 esize = 8 << size; 7513 elements = (is_q ? 128 : 64) / esize; 7514 7515 tcg_res = tcg_temp_new_i64(); 7516 tcg_elt = tcg_temp_new_i64(); 7517 7518 /* These instructions operate across all lanes of a vector 7519 * to produce a single result. We can guarantee that a 64 7520 * bit intermediate is sufficient: 7521 * + for [US]ADDLV the maximum element size is 32 bits, and 7522 * the result type is 64 bits 7523 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7524 * same as the element size, which is 32 bits at most 7525 * For the integer operations we can choose to work at 64 7526 * or 32 bits and truncate at the end; for simplicity 7527 * we use 64 bits always. The floating point 7528 * ops do require 32 bit intermediates, though. 7529 */ 7530 if (!is_fp) { 7531 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7532 7533 for (i = 1; i < elements; i++) { 7534 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7535 7536 switch (opcode) { 7537 case 0x03: /* SADDLV / UADDLV */ 7538 case 0x1b: /* ADDV */ 7539 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7540 break; 7541 case 0x0a: /* SMAXV / UMAXV */ 7542 if (is_u) { 7543 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7544 } else { 7545 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7546 } 7547 break; 7548 case 0x1a: /* SMINV / UMINV */ 7549 if (is_u) { 7550 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7551 } else { 7552 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7553 } 7554 break; 7555 default: 7556 g_assert_not_reached(); 7557 } 7558 7559 } 7560 } else { 7561 /* Floating point vector reduction ops which work across 32 7562 * bit (single) or 16 bit (half-precision) intermediates. 7563 * Note that correct NaN propagation requires that we do these 7564 * operations in exactly the order specified by the pseudocode. 7565 */ 7566 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7567 int fpopcode = opcode | is_min << 4 | is_u << 5; 7568 int vmap = (1 << elements) - 1; 7569 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7570 (is_q ? 128 : 64), vmap, fpst); 7571 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7572 } 7573 7574 /* Now truncate the result to the width required for the final output */ 7575 if (opcode == 0x03) { 7576 /* SADDLV, UADDLV: result is 2*esize */ 7577 size++; 7578 } 7579 7580 switch (size) { 7581 case 0: 7582 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7583 break; 7584 case 1: 7585 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7586 break; 7587 case 2: 7588 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7589 break; 7590 case 3: 7591 break; 7592 default: 7593 g_assert_not_reached(); 7594 } 7595 7596 write_fp_dreg(s, rd, tcg_res); 7597 } 7598 7599 /* DUP (Element, Vector) 7600 * 7601 * 31 30 29 21 20 16 15 10 9 5 4 0 7602 * +---+---+-------------------+--------+-------------+------+------+ 7603 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7604 * +---+---+-------------------+--------+-------------+------+------+ 7605 * 7606 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7607 */ 7608 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7609 int imm5) 7610 { 7611 int size = ctz32(imm5); 7612 int index; 7613 7614 if (size > 3 || (size == 3 && !is_q)) { 7615 unallocated_encoding(s); 7616 return; 7617 } 7618 7619 if (!fp_access_check(s)) { 7620 return; 7621 } 7622 7623 index = imm5 >> (size + 1); 7624 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7625 vec_reg_offset(s, rn, index, size), 7626 is_q ? 16 : 8, vec_full_reg_size(s)); 7627 } 7628 7629 /* DUP (element, scalar) 7630 * 31 21 20 16 15 10 9 5 4 0 7631 * +-----------------------+--------+-------------+------+------+ 7632 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7633 * +-----------------------+--------+-------------+------+------+ 7634 */ 7635 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7636 int imm5) 7637 { 7638 int size = ctz32(imm5); 7639 int index; 7640 TCGv_i64 tmp; 7641 7642 if (size > 3) { 7643 unallocated_encoding(s); 7644 return; 7645 } 7646 7647 if (!fp_access_check(s)) { 7648 return; 7649 } 7650 7651 index = imm5 >> (size + 1); 7652 7653 /* This instruction just extracts the specified element and 7654 * zero-extends it into the bottom of the destination register. 7655 */ 7656 tmp = tcg_temp_new_i64(); 7657 read_vec_element(s, tmp, rn, index, size); 7658 write_fp_dreg(s, rd, tmp); 7659 } 7660 7661 /* DUP (General) 7662 * 7663 * 31 30 29 21 20 16 15 10 9 5 4 0 7664 * +---+---+-------------------+--------+-------------+------+------+ 7665 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7666 * +---+---+-------------------+--------+-------------+------+------+ 7667 * 7668 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7669 */ 7670 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7671 int imm5) 7672 { 7673 int size = ctz32(imm5); 7674 uint32_t dofs, oprsz, maxsz; 7675 7676 if (size > 3 || ((size == 3) && !is_q)) { 7677 unallocated_encoding(s); 7678 return; 7679 } 7680 7681 if (!fp_access_check(s)) { 7682 return; 7683 } 7684 7685 dofs = vec_full_reg_offset(s, rd); 7686 oprsz = is_q ? 16 : 8; 7687 maxsz = vec_full_reg_size(s); 7688 7689 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7690 } 7691 7692 /* INS (Element) 7693 * 7694 * 31 21 20 16 15 14 11 10 9 5 4 0 7695 * +-----------------------+--------+------------+---+------+------+ 7696 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7697 * +-----------------------+--------+------------+---+------+------+ 7698 * 7699 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7700 * index: encoded in imm5<4:size+1> 7701 */ 7702 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7703 int imm4, int imm5) 7704 { 7705 int size = ctz32(imm5); 7706 int src_index, dst_index; 7707 TCGv_i64 tmp; 7708 7709 if (size > 3) { 7710 unallocated_encoding(s); 7711 return; 7712 } 7713 7714 if (!fp_access_check(s)) { 7715 return; 7716 } 7717 7718 dst_index = extract32(imm5, 1+size, 5); 7719 src_index = extract32(imm4, size, 4); 7720 7721 tmp = tcg_temp_new_i64(); 7722 7723 read_vec_element(s, tmp, rn, src_index, size); 7724 write_vec_element(s, tmp, rd, dst_index, size); 7725 7726 /* INS is considered a 128-bit write for SVE. */ 7727 clear_vec_high(s, true, rd); 7728 } 7729 7730 7731 /* INS (General) 7732 * 7733 * 31 21 20 16 15 10 9 5 4 0 7734 * +-----------------------+--------+-------------+------+------+ 7735 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7736 * +-----------------------+--------+-------------+------+------+ 7737 * 7738 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7739 * index: encoded in imm5<4:size+1> 7740 */ 7741 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7742 { 7743 int size = ctz32(imm5); 7744 int idx; 7745 7746 if (size > 3) { 7747 unallocated_encoding(s); 7748 return; 7749 } 7750 7751 if (!fp_access_check(s)) { 7752 return; 7753 } 7754 7755 idx = extract32(imm5, 1 + size, 4 - size); 7756 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7757 7758 /* INS is considered a 128-bit write for SVE. */ 7759 clear_vec_high(s, true, rd); 7760 } 7761 7762 /* 7763 * UMOV (General) 7764 * SMOV (General) 7765 * 7766 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7767 * +---+---+-------------------+--------+-------------+------+------+ 7768 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7769 * +---+---+-------------------+--------+-------------+------+------+ 7770 * 7771 * U: unsigned when set 7772 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7773 */ 7774 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7775 int rn, int rd, int imm5) 7776 { 7777 int size = ctz32(imm5); 7778 int element; 7779 TCGv_i64 tcg_rd; 7780 7781 /* Check for UnallocatedEncodings */ 7782 if (is_signed) { 7783 if (size > 2 || (size == 2 && !is_q)) { 7784 unallocated_encoding(s); 7785 return; 7786 } 7787 } else { 7788 if (size > 3 7789 || (size < 3 && is_q) 7790 || (size == 3 && !is_q)) { 7791 unallocated_encoding(s); 7792 return; 7793 } 7794 } 7795 7796 if (!fp_access_check(s)) { 7797 return; 7798 } 7799 7800 element = extract32(imm5, 1+size, 4); 7801 7802 tcg_rd = cpu_reg(s, rd); 7803 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7804 if (is_signed && !is_q) { 7805 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7806 } 7807 } 7808 7809 /* AdvSIMD copy 7810 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7811 * +---+---+----+-----------------+------+---+------+---+------+------+ 7812 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7813 * +---+---+----+-----------------+------+---+------+---+------+------+ 7814 */ 7815 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7816 { 7817 int rd = extract32(insn, 0, 5); 7818 int rn = extract32(insn, 5, 5); 7819 int imm4 = extract32(insn, 11, 4); 7820 int op = extract32(insn, 29, 1); 7821 int is_q = extract32(insn, 30, 1); 7822 int imm5 = extract32(insn, 16, 5); 7823 7824 if (op) { 7825 if (is_q) { 7826 /* INS (element) */ 7827 handle_simd_inse(s, rd, rn, imm4, imm5); 7828 } else { 7829 unallocated_encoding(s); 7830 } 7831 } else { 7832 switch (imm4) { 7833 case 0: 7834 /* DUP (element - vector) */ 7835 handle_simd_dupe(s, is_q, rd, rn, imm5); 7836 break; 7837 case 1: 7838 /* DUP (general) */ 7839 handle_simd_dupg(s, is_q, rd, rn, imm5); 7840 break; 7841 case 3: 7842 if (is_q) { 7843 /* INS (general) */ 7844 handle_simd_insg(s, rd, rn, imm5); 7845 } else { 7846 unallocated_encoding(s); 7847 } 7848 break; 7849 case 5: 7850 case 7: 7851 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7852 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7853 break; 7854 default: 7855 unallocated_encoding(s); 7856 break; 7857 } 7858 } 7859 } 7860 7861 /* AdvSIMD modified immediate 7862 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7863 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7864 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7865 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7866 * 7867 * There are a number of operations that can be carried out here: 7868 * MOVI - move (shifted) imm into register 7869 * MVNI - move inverted (shifted) imm into register 7870 * ORR - bitwise OR of (shifted) imm with register 7871 * BIC - bitwise clear of (shifted) imm with register 7872 * With ARMv8.2 we also have: 7873 * FMOV half-precision 7874 */ 7875 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7876 { 7877 int rd = extract32(insn, 0, 5); 7878 int cmode = extract32(insn, 12, 4); 7879 int o2 = extract32(insn, 11, 1); 7880 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7881 bool is_neg = extract32(insn, 29, 1); 7882 bool is_q = extract32(insn, 30, 1); 7883 uint64_t imm = 0; 7884 7885 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7886 /* Check for FMOV (vector, immediate) - half-precision */ 7887 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7888 unallocated_encoding(s); 7889 return; 7890 } 7891 } 7892 7893 if (!fp_access_check(s)) { 7894 return; 7895 } 7896 7897 if (cmode == 15 && o2 && !is_neg) { 7898 /* FMOV (vector, immediate) - half-precision */ 7899 imm = vfp_expand_imm(MO_16, abcdefgh); 7900 /* now duplicate across the lanes */ 7901 imm = dup_const(MO_16, imm); 7902 } else { 7903 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7904 } 7905 7906 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7907 /* MOVI or MVNI, with MVNI negation handled above. */ 7908 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7909 vec_full_reg_size(s), imm); 7910 } else { 7911 /* ORR or BIC, with BIC negation to AND handled above. */ 7912 if (is_neg) { 7913 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7914 } else { 7915 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7916 } 7917 } 7918 } 7919 7920 /* AdvSIMD scalar copy 7921 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7922 * +-----+----+-----------------+------+---+------+---+------+------+ 7923 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7924 * +-----+----+-----------------+------+---+------+---+------+------+ 7925 */ 7926 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7927 { 7928 int rd = extract32(insn, 0, 5); 7929 int rn = extract32(insn, 5, 5); 7930 int imm4 = extract32(insn, 11, 4); 7931 int imm5 = extract32(insn, 16, 5); 7932 int op = extract32(insn, 29, 1); 7933 7934 if (op != 0 || imm4 != 0) { 7935 unallocated_encoding(s); 7936 return; 7937 } 7938 7939 /* DUP (element, scalar) */ 7940 handle_simd_dupes(s, rd, rn, imm5); 7941 } 7942 7943 /* AdvSIMD scalar pairwise 7944 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7945 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7946 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7947 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7948 */ 7949 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7950 { 7951 int u = extract32(insn, 29, 1); 7952 int size = extract32(insn, 22, 2); 7953 int opcode = extract32(insn, 12, 5); 7954 int rn = extract32(insn, 5, 5); 7955 int rd = extract32(insn, 0, 5); 7956 TCGv_ptr fpst; 7957 7958 /* For some ops (the FP ones), size[1] is part of the encoding. 7959 * For ADDP strictly it is not but size[1] is always 1 for valid 7960 * encodings. 7961 */ 7962 opcode |= (extract32(size, 1, 1) << 5); 7963 7964 switch (opcode) { 7965 case 0x3b: /* ADDP */ 7966 if (u || size != 3) { 7967 unallocated_encoding(s); 7968 return; 7969 } 7970 if (!fp_access_check(s)) { 7971 return; 7972 } 7973 7974 fpst = NULL; 7975 break; 7976 case 0xc: /* FMAXNMP */ 7977 case 0xd: /* FADDP */ 7978 case 0xf: /* FMAXP */ 7979 case 0x2c: /* FMINNMP */ 7980 case 0x2f: /* FMINP */ 7981 /* FP op, size[0] is 32 or 64 bit*/ 7982 if (!u) { 7983 if (!dc_isar_feature(aa64_fp16, s)) { 7984 unallocated_encoding(s); 7985 return; 7986 } else { 7987 size = MO_16; 7988 } 7989 } else { 7990 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7991 } 7992 7993 if (!fp_access_check(s)) { 7994 return; 7995 } 7996 7997 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7998 break; 7999 default: 8000 unallocated_encoding(s); 8001 return; 8002 } 8003 8004 if (size == MO_64) { 8005 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8006 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8007 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8008 8009 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8010 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8011 8012 switch (opcode) { 8013 case 0x3b: /* ADDP */ 8014 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8015 break; 8016 case 0xc: /* FMAXNMP */ 8017 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8018 break; 8019 case 0xd: /* FADDP */ 8020 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8021 break; 8022 case 0xf: /* FMAXP */ 8023 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8024 break; 8025 case 0x2c: /* FMINNMP */ 8026 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8027 break; 8028 case 0x2f: /* FMINP */ 8029 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8030 break; 8031 default: 8032 g_assert_not_reached(); 8033 } 8034 8035 write_fp_dreg(s, rd, tcg_res); 8036 } else { 8037 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8038 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8039 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8040 8041 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8042 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8043 8044 if (size == MO_16) { 8045 switch (opcode) { 8046 case 0xc: /* FMAXNMP */ 8047 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8048 break; 8049 case 0xd: /* FADDP */ 8050 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8051 break; 8052 case 0xf: /* FMAXP */ 8053 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8054 break; 8055 case 0x2c: /* FMINNMP */ 8056 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8057 break; 8058 case 0x2f: /* FMINP */ 8059 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8060 break; 8061 default: 8062 g_assert_not_reached(); 8063 } 8064 } else { 8065 switch (opcode) { 8066 case 0xc: /* FMAXNMP */ 8067 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8068 break; 8069 case 0xd: /* FADDP */ 8070 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8071 break; 8072 case 0xf: /* FMAXP */ 8073 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8074 break; 8075 case 0x2c: /* FMINNMP */ 8076 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8077 break; 8078 case 0x2f: /* FMINP */ 8079 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8080 break; 8081 default: 8082 g_assert_not_reached(); 8083 } 8084 } 8085 8086 write_fp_sreg(s, rd, tcg_res); 8087 } 8088 } 8089 8090 /* 8091 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8092 * 8093 * This code is handles the common shifting code and is used by both 8094 * the vector and scalar code. 8095 */ 8096 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8097 TCGv_i64 tcg_rnd, bool accumulate, 8098 bool is_u, int size, int shift) 8099 { 8100 bool extended_result = false; 8101 bool round = tcg_rnd != NULL; 8102 int ext_lshift = 0; 8103 TCGv_i64 tcg_src_hi; 8104 8105 if (round && size == 3) { 8106 extended_result = true; 8107 ext_lshift = 64 - shift; 8108 tcg_src_hi = tcg_temp_new_i64(); 8109 } else if (shift == 64) { 8110 if (!accumulate && is_u) { 8111 /* result is zero */ 8112 tcg_gen_movi_i64(tcg_res, 0); 8113 return; 8114 } 8115 } 8116 8117 /* Deal with the rounding step */ 8118 if (round) { 8119 if (extended_result) { 8120 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8121 if (!is_u) { 8122 /* take care of sign extending tcg_res */ 8123 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8124 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8125 tcg_src, tcg_src_hi, 8126 tcg_rnd, tcg_zero); 8127 } else { 8128 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8129 tcg_src, tcg_zero, 8130 tcg_rnd, tcg_zero); 8131 } 8132 } else { 8133 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8134 } 8135 } 8136 8137 /* Now do the shift right */ 8138 if (round && extended_result) { 8139 /* extended case, >64 bit precision required */ 8140 if (ext_lshift == 0) { 8141 /* special case, only high bits matter */ 8142 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8143 } else { 8144 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8145 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8146 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8147 } 8148 } else { 8149 if (is_u) { 8150 if (shift == 64) { 8151 /* essentially shifting in 64 zeros */ 8152 tcg_gen_movi_i64(tcg_src, 0); 8153 } else { 8154 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8155 } 8156 } else { 8157 if (shift == 64) { 8158 /* effectively extending the sign-bit */ 8159 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8160 } else { 8161 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8162 } 8163 } 8164 } 8165 8166 if (accumulate) { 8167 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8168 } else { 8169 tcg_gen_mov_i64(tcg_res, tcg_src); 8170 } 8171 } 8172 8173 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8174 static void handle_scalar_simd_shri(DisasContext *s, 8175 bool is_u, int immh, int immb, 8176 int opcode, int rn, int rd) 8177 { 8178 const int size = 3; 8179 int immhb = immh << 3 | immb; 8180 int shift = 2 * (8 << size) - immhb; 8181 bool accumulate = false; 8182 bool round = false; 8183 bool insert = false; 8184 TCGv_i64 tcg_rn; 8185 TCGv_i64 tcg_rd; 8186 TCGv_i64 tcg_round; 8187 8188 if (!extract32(immh, 3, 1)) { 8189 unallocated_encoding(s); 8190 return; 8191 } 8192 8193 if (!fp_access_check(s)) { 8194 return; 8195 } 8196 8197 switch (opcode) { 8198 case 0x02: /* SSRA / USRA (accumulate) */ 8199 accumulate = true; 8200 break; 8201 case 0x04: /* SRSHR / URSHR (rounding) */ 8202 round = true; 8203 break; 8204 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8205 accumulate = round = true; 8206 break; 8207 case 0x08: /* SRI */ 8208 insert = true; 8209 break; 8210 } 8211 8212 if (round) { 8213 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8214 } else { 8215 tcg_round = NULL; 8216 } 8217 8218 tcg_rn = read_fp_dreg(s, rn); 8219 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8220 8221 if (insert) { 8222 /* shift count same as element size is valid but does nothing; 8223 * special case to avoid potential shift by 64. 8224 */ 8225 int esize = 8 << size; 8226 if (shift != esize) { 8227 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8228 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8229 } 8230 } else { 8231 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8232 accumulate, is_u, size, shift); 8233 } 8234 8235 write_fp_dreg(s, rd, tcg_rd); 8236 } 8237 8238 /* SHL/SLI - Scalar shift left */ 8239 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8240 int immh, int immb, int opcode, 8241 int rn, int rd) 8242 { 8243 int size = 32 - clz32(immh) - 1; 8244 int immhb = immh << 3 | immb; 8245 int shift = immhb - (8 << size); 8246 TCGv_i64 tcg_rn; 8247 TCGv_i64 tcg_rd; 8248 8249 if (!extract32(immh, 3, 1)) { 8250 unallocated_encoding(s); 8251 return; 8252 } 8253 8254 if (!fp_access_check(s)) { 8255 return; 8256 } 8257 8258 tcg_rn = read_fp_dreg(s, rn); 8259 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8260 8261 if (insert) { 8262 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8263 } else { 8264 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8265 } 8266 8267 write_fp_dreg(s, rd, tcg_rd); 8268 } 8269 8270 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8271 * (signed/unsigned) narrowing */ 8272 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8273 bool is_u_shift, bool is_u_narrow, 8274 int immh, int immb, int opcode, 8275 int rn, int rd) 8276 { 8277 int immhb = immh << 3 | immb; 8278 int size = 32 - clz32(immh) - 1; 8279 int esize = 8 << size; 8280 int shift = (2 * esize) - immhb; 8281 int elements = is_scalar ? 1 : (64 / esize); 8282 bool round = extract32(opcode, 0, 1); 8283 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8284 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8285 TCGv_i32 tcg_rd_narrowed; 8286 TCGv_i64 tcg_final; 8287 8288 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8289 { gen_helper_neon_narrow_sat_s8, 8290 gen_helper_neon_unarrow_sat8 }, 8291 { gen_helper_neon_narrow_sat_s16, 8292 gen_helper_neon_unarrow_sat16 }, 8293 { gen_helper_neon_narrow_sat_s32, 8294 gen_helper_neon_unarrow_sat32 }, 8295 { NULL, NULL }, 8296 }; 8297 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8298 gen_helper_neon_narrow_sat_u8, 8299 gen_helper_neon_narrow_sat_u16, 8300 gen_helper_neon_narrow_sat_u32, 8301 NULL 8302 }; 8303 NeonGenNarrowEnvFn *narrowfn; 8304 8305 int i; 8306 8307 assert(size < 4); 8308 8309 if (extract32(immh, 3, 1)) { 8310 unallocated_encoding(s); 8311 return; 8312 } 8313 8314 if (!fp_access_check(s)) { 8315 return; 8316 } 8317 8318 if (is_u_shift) { 8319 narrowfn = unsigned_narrow_fns[size]; 8320 } else { 8321 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8322 } 8323 8324 tcg_rn = tcg_temp_new_i64(); 8325 tcg_rd = tcg_temp_new_i64(); 8326 tcg_rd_narrowed = tcg_temp_new_i32(); 8327 tcg_final = tcg_temp_new_i64(); 8328 8329 if (round) { 8330 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8331 } else { 8332 tcg_round = NULL; 8333 } 8334 8335 for (i = 0; i < elements; i++) { 8336 read_vec_element(s, tcg_rn, rn, i, ldop); 8337 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8338 false, is_u_shift, size+1, shift); 8339 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8340 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8341 if (i == 0) { 8342 tcg_gen_mov_i64(tcg_final, tcg_rd); 8343 } else { 8344 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8345 } 8346 } 8347 8348 if (!is_q) { 8349 write_vec_element(s, tcg_final, rd, 0, MO_64); 8350 } else { 8351 write_vec_element(s, tcg_final, rd, 1, MO_64); 8352 } 8353 clear_vec_high(s, is_q, rd); 8354 } 8355 8356 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8357 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8358 bool src_unsigned, bool dst_unsigned, 8359 int immh, int immb, int rn, int rd) 8360 { 8361 int immhb = immh << 3 | immb; 8362 int size = 32 - clz32(immh) - 1; 8363 int shift = immhb - (8 << size); 8364 int pass; 8365 8366 assert(immh != 0); 8367 assert(!(scalar && is_q)); 8368 8369 if (!scalar) { 8370 if (!is_q && extract32(immh, 3, 1)) { 8371 unallocated_encoding(s); 8372 return; 8373 } 8374 8375 /* Since we use the variable-shift helpers we must 8376 * replicate the shift count into each element of 8377 * the tcg_shift value. 8378 */ 8379 switch (size) { 8380 case 0: 8381 shift |= shift << 8; 8382 /* fall through */ 8383 case 1: 8384 shift |= shift << 16; 8385 break; 8386 case 2: 8387 case 3: 8388 break; 8389 default: 8390 g_assert_not_reached(); 8391 } 8392 } 8393 8394 if (!fp_access_check(s)) { 8395 return; 8396 } 8397 8398 if (size == 3) { 8399 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8400 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8401 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8402 { NULL, gen_helper_neon_qshl_u64 }, 8403 }; 8404 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8405 int maxpass = is_q ? 2 : 1; 8406 8407 for (pass = 0; pass < maxpass; pass++) { 8408 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8409 8410 read_vec_element(s, tcg_op, rn, pass, MO_64); 8411 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8412 write_vec_element(s, tcg_op, rd, pass, MO_64); 8413 } 8414 clear_vec_high(s, is_q, rd); 8415 } else { 8416 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8417 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8418 { 8419 { gen_helper_neon_qshl_s8, 8420 gen_helper_neon_qshl_s16, 8421 gen_helper_neon_qshl_s32 }, 8422 { gen_helper_neon_qshlu_s8, 8423 gen_helper_neon_qshlu_s16, 8424 gen_helper_neon_qshlu_s32 } 8425 }, { 8426 { NULL, NULL, NULL }, 8427 { gen_helper_neon_qshl_u8, 8428 gen_helper_neon_qshl_u16, 8429 gen_helper_neon_qshl_u32 } 8430 } 8431 }; 8432 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8433 MemOp memop = scalar ? size : MO_32; 8434 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8435 8436 for (pass = 0; pass < maxpass; pass++) { 8437 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8438 8439 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8440 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8441 if (scalar) { 8442 switch (size) { 8443 case 0: 8444 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8445 break; 8446 case 1: 8447 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8448 break; 8449 case 2: 8450 break; 8451 default: 8452 g_assert_not_reached(); 8453 } 8454 write_fp_sreg(s, rd, tcg_op); 8455 } else { 8456 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8457 } 8458 } 8459 8460 if (!scalar) { 8461 clear_vec_high(s, is_q, rd); 8462 } 8463 } 8464 } 8465 8466 /* Common vector code for handling integer to FP conversion */ 8467 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8468 int elements, int is_signed, 8469 int fracbits, int size) 8470 { 8471 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8472 TCGv_i32 tcg_shift = NULL; 8473 8474 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8475 int pass; 8476 8477 if (fracbits || size == MO_64) { 8478 tcg_shift = tcg_constant_i32(fracbits); 8479 } 8480 8481 if (size == MO_64) { 8482 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8483 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8484 8485 for (pass = 0; pass < elements; pass++) { 8486 read_vec_element(s, tcg_int64, rn, pass, mop); 8487 8488 if (is_signed) { 8489 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8490 tcg_shift, tcg_fpst); 8491 } else { 8492 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8493 tcg_shift, tcg_fpst); 8494 } 8495 if (elements == 1) { 8496 write_fp_dreg(s, rd, tcg_double); 8497 } else { 8498 write_vec_element(s, tcg_double, rd, pass, MO_64); 8499 } 8500 } 8501 } else { 8502 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8503 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8504 8505 for (pass = 0; pass < elements; pass++) { 8506 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8507 8508 switch (size) { 8509 case MO_32: 8510 if (fracbits) { 8511 if (is_signed) { 8512 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8513 tcg_shift, tcg_fpst); 8514 } else { 8515 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8516 tcg_shift, tcg_fpst); 8517 } 8518 } else { 8519 if (is_signed) { 8520 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8521 } else { 8522 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8523 } 8524 } 8525 break; 8526 case MO_16: 8527 if (fracbits) { 8528 if (is_signed) { 8529 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8530 tcg_shift, tcg_fpst); 8531 } else { 8532 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8533 tcg_shift, tcg_fpst); 8534 } 8535 } else { 8536 if (is_signed) { 8537 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8538 } else { 8539 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8540 } 8541 } 8542 break; 8543 default: 8544 g_assert_not_reached(); 8545 } 8546 8547 if (elements == 1) { 8548 write_fp_sreg(s, rd, tcg_float); 8549 } else { 8550 write_vec_element_i32(s, tcg_float, rd, pass, size); 8551 } 8552 } 8553 } 8554 8555 clear_vec_high(s, elements << size == 16, rd); 8556 } 8557 8558 /* UCVTF/SCVTF - Integer to FP conversion */ 8559 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8560 bool is_q, bool is_u, 8561 int immh, int immb, int opcode, 8562 int rn, int rd) 8563 { 8564 int size, elements, fracbits; 8565 int immhb = immh << 3 | immb; 8566 8567 if (immh & 8) { 8568 size = MO_64; 8569 if (!is_scalar && !is_q) { 8570 unallocated_encoding(s); 8571 return; 8572 } 8573 } else if (immh & 4) { 8574 size = MO_32; 8575 } else if (immh & 2) { 8576 size = MO_16; 8577 if (!dc_isar_feature(aa64_fp16, s)) { 8578 unallocated_encoding(s); 8579 return; 8580 } 8581 } else { 8582 /* immh == 0 would be a failure of the decode logic */ 8583 g_assert(immh == 1); 8584 unallocated_encoding(s); 8585 return; 8586 } 8587 8588 if (is_scalar) { 8589 elements = 1; 8590 } else { 8591 elements = (8 << is_q) >> size; 8592 } 8593 fracbits = (16 << size) - immhb; 8594 8595 if (!fp_access_check(s)) { 8596 return; 8597 } 8598 8599 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8600 } 8601 8602 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8603 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8604 bool is_q, bool is_u, 8605 int immh, int immb, int rn, int rd) 8606 { 8607 int immhb = immh << 3 | immb; 8608 int pass, size, fracbits; 8609 TCGv_ptr tcg_fpstatus; 8610 TCGv_i32 tcg_rmode, tcg_shift; 8611 8612 if (immh & 0x8) { 8613 size = MO_64; 8614 if (!is_scalar && !is_q) { 8615 unallocated_encoding(s); 8616 return; 8617 } 8618 } else if (immh & 0x4) { 8619 size = MO_32; 8620 } else if (immh & 0x2) { 8621 size = MO_16; 8622 if (!dc_isar_feature(aa64_fp16, s)) { 8623 unallocated_encoding(s); 8624 return; 8625 } 8626 } else { 8627 /* Should have split out AdvSIMD modified immediate earlier. */ 8628 assert(immh == 1); 8629 unallocated_encoding(s); 8630 return; 8631 } 8632 8633 if (!fp_access_check(s)) { 8634 return; 8635 } 8636 8637 assert(!(is_scalar && is_q)); 8638 8639 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8640 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8641 fracbits = (16 << size) - immhb; 8642 tcg_shift = tcg_constant_i32(fracbits); 8643 8644 if (size == MO_64) { 8645 int maxpass = is_scalar ? 1 : 2; 8646 8647 for (pass = 0; pass < maxpass; pass++) { 8648 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8649 8650 read_vec_element(s, tcg_op, rn, pass, MO_64); 8651 if (is_u) { 8652 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8653 } else { 8654 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8655 } 8656 write_vec_element(s, tcg_op, rd, pass, MO_64); 8657 } 8658 clear_vec_high(s, is_q, rd); 8659 } else { 8660 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8661 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8662 8663 switch (size) { 8664 case MO_16: 8665 if (is_u) { 8666 fn = gen_helper_vfp_touhh; 8667 } else { 8668 fn = gen_helper_vfp_toshh; 8669 } 8670 break; 8671 case MO_32: 8672 if (is_u) { 8673 fn = gen_helper_vfp_touls; 8674 } else { 8675 fn = gen_helper_vfp_tosls; 8676 } 8677 break; 8678 default: 8679 g_assert_not_reached(); 8680 } 8681 8682 for (pass = 0; pass < maxpass; pass++) { 8683 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8684 8685 read_vec_element_i32(s, tcg_op, rn, pass, size); 8686 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8687 if (is_scalar) { 8688 write_fp_sreg(s, rd, tcg_op); 8689 } else { 8690 write_vec_element_i32(s, tcg_op, rd, pass, size); 8691 } 8692 } 8693 if (!is_scalar) { 8694 clear_vec_high(s, is_q, rd); 8695 } 8696 } 8697 8698 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8699 } 8700 8701 /* AdvSIMD scalar shift by immediate 8702 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8703 * +-----+---+-------------+------+------+--------+---+------+------+ 8704 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8705 * +-----+---+-------------+------+------+--------+---+------+------+ 8706 * 8707 * This is the scalar version so it works on a fixed sized registers 8708 */ 8709 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8710 { 8711 int rd = extract32(insn, 0, 5); 8712 int rn = extract32(insn, 5, 5); 8713 int opcode = extract32(insn, 11, 5); 8714 int immb = extract32(insn, 16, 3); 8715 int immh = extract32(insn, 19, 4); 8716 bool is_u = extract32(insn, 29, 1); 8717 8718 if (immh == 0) { 8719 unallocated_encoding(s); 8720 return; 8721 } 8722 8723 switch (opcode) { 8724 case 0x08: /* SRI */ 8725 if (!is_u) { 8726 unallocated_encoding(s); 8727 return; 8728 } 8729 /* fall through */ 8730 case 0x00: /* SSHR / USHR */ 8731 case 0x02: /* SSRA / USRA */ 8732 case 0x04: /* SRSHR / URSHR */ 8733 case 0x06: /* SRSRA / URSRA */ 8734 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8735 break; 8736 case 0x0a: /* SHL / SLI */ 8737 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8738 break; 8739 case 0x1c: /* SCVTF, UCVTF */ 8740 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8741 opcode, rn, rd); 8742 break; 8743 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8744 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8745 if (!is_u) { 8746 unallocated_encoding(s); 8747 return; 8748 } 8749 handle_vec_simd_sqshrn(s, true, false, false, true, 8750 immh, immb, opcode, rn, rd); 8751 break; 8752 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8753 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8754 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8755 immh, immb, opcode, rn, rd); 8756 break; 8757 case 0xc: /* SQSHLU */ 8758 if (!is_u) { 8759 unallocated_encoding(s); 8760 return; 8761 } 8762 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8763 break; 8764 case 0xe: /* SQSHL, UQSHL */ 8765 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8766 break; 8767 case 0x1f: /* FCVTZS, FCVTZU */ 8768 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8769 break; 8770 default: 8771 unallocated_encoding(s); 8772 break; 8773 } 8774 } 8775 8776 /* AdvSIMD scalar three different 8777 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8778 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8779 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8780 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8781 */ 8782 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8783 { 8784 bool is_u = extract32(insn, 29, 1); 8785 int size = extract32(insn, 22, 2); 8786 int opcode = extract32(insn, 12, 4); 8787 int rm = extract32(insn, 16, 5); 8788 int rn = extract32(insn, 5, 5); 8789 int rd = extract32(insn, 0, 5); 8790 8791 if (is_u) { 8792 unallocated_encoding(s); 8793 return; 8794 } 8795 8796 switch (opcode) { 8797 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8798 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8799 case 0xd: /* SQDMULL, SQDMULL2 */ 8800 if (size == 0 || size == 3) { 8801 unallocated_encoding(s); 8802 return; 8803 } 8804 break; 8805 default: 8806 unallocated_encoding(s); 8807 return; 8808 } 8809 8810 if (!fp_access_check(s)) { 8811 return; 8812 } 8813 8814 if (size == 2) { 8815 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8816 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8817 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8818 8819 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8820 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8821 8822 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8823 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8824 8825 switch (opcode) { 8826 case 0xd: /* SQDMULL, SQDMULL2 */ 8827 break; 8828 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8829 tcg_gen_neg_i64(tcg_res, tcg_res); 8830 /* fall through */ 8831 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8832 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8833 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8834 tcg_res, tcg_op1); 8835 break; 8836 default: 8837 g_assert_not_reached(); 8838 } 8839 8840 write_fp_dreg(s, rd, tcg_res); 8841 } else { 8842 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8843 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8844 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8845 8846 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8847 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8848 8849 switch (opcode) { 8850 case 0xd: /* SQDMULL, SQDMULL2 */ 8851 break; 8852 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8853 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8854 /* fall through */ 8855 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8856 { 8857 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8858 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8859 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8860 tcg_res, tcg_op3); 8861 break; 8862 } 8863 default: 8864 g_assert_not_reached(); 8865 } 8866 8867 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8868 write_fp_dreg(s, rd, tcg_res); 8869 } 8870 } 8871 8872 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8873 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8874 { 8875 /* Handle 64x64->64 opcodes which are shared between the scalar 8876 * and vector 3-same groups. We cover every opcode where size == 3 8877 * is valid in either the three-reg-same (integer, not pairwise) 8878 * or scalar-three-reg-same groups. 8879 */ 8880 TCGCond cond; 8881 8882 switch (opcode) { 8883 case 0x1: /* SQADD */ 8884 if (u) { 8885 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8886 } else { 8887 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8888 } 8889 break; 8890 case 0x5: /* SQSUB */ 8891 if (u) { 8892 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8893 } else { 8894 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8895 } 8896 break; 8897 case 0x6: /* CMGT, CMHI */ 8898 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8899 * We implement this using setcond (test) and then negating. 8900 */ 8901 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8902 do_cmop: 8903 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8904 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8905 break; 8906 case 0x7: /* CMGE, CMHS */ 8907 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8908 goto do_cmop; 8909 case 0x11: /* CMTST, CMEQ */ 8910 if (u) { 8911 cond = TCG_COND_EQ; 8912 goto do_cmop; 8913 } 8914 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8915 break; 8916 case 0x8: /* SSHL, USHL */ 8917 if (u) { 8918 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8919 } else { 8920 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8921 } 8922 break; 8923 case 0x9: /* SQSHL, UQSHL */ 8924 if (u) { 8925 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8926 } else { 8927 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8928 } 8929 break; 8930 case 0xa: /* SRSHL, URSHL */ 8931 if (u) { 8932 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8933 } else { 8934 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8935 } 8936 break; 8937 case 0xb: /* SQRSHL, UQRSHL */ 8938 if (u) { 8939 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8940 } else { 8941 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8942 } 8943 break; 8944 case 0x10: /* ADD, SUB */ 8945 if (u) { 8946 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8947 } else { 8948 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8949 } 8950 break; 8951 default: 8952 g_assert_not_reached(); 8953 } 8954 } 8955 8956 /* Handle the 3-same-operands float operations; shared by the scalar 8957 * and vector encodings. The caller must filter out any encodings 8958 * not allocated for the encoding it is dealing with. 8959 */ 8960 static void handle_3same_float(DisasContext *s, int size, int elements, 8961 int fpopcode, int rd, int rn, int rm) 8962 { 8963 int pass; 8964 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8965 8966 for (pass = 0; pass < elements; pass++) { 8967 if (size) { 8968 /* Double */ 8969 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8970 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8971 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8972 8973 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8974 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8975 8976 switch (fpopcode) { 8977 case 0x39: /* FMLS */ 8978 /* As usual for ARM, separate negation for fused multiply-add */ 8979 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8980 /* fall through */ 8981 case 0x19: /* FMLA */ 8982 read_vec_element(s, tcg_res, rd, pass, MO_64); 8983 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8984 tcg_res, fpst); 8985 break; 8986 case 0x18: /* FMAXNM */ 8987 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8988 break; 8989 case 0x1a: /* FADD */ 8990 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8991 break; 8992 case 0x1b: /* FMULX */ 8993 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8994 break; 8995 case 0x1c: /* FCMEQ */ 8996 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8997 break; 8998 case 0x1e: /* FMAX */ 8999 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9000 break; 9001 case 0x1f: /* FRECPS */ 9002 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9003 break; 9004 case 0x38: /* FMINNM */ 9005 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9006 break; 9007 case 0x3a: /* FSUB */ 9008 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9009 break; 9010 case 0x3e: /* FMIN */ 9011 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9012 break; 9013 case 0x3f: /* FRSQRTS */ 9014 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9015 break; 9016 case 0x5b: /* FMUL */ 9017 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9018 break; 9019 case 0x5c: /* FCMGE */ 9020 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9021 break; 9022 case 0x5d: /* FACGE */ 9023 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9024 break; 9025 case 0x5f: /* FDIV */ 9026 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9027 break; 9028 case 0x7a: /* FABD */ 9029 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9030 gen_helper_vfp_absd(tcg_res, tcg_res); 9031 break; 9032 case 0x7c: /* FCMGT */ 9033 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9034 break; 9035 case 0x7d: /* FACGT */ 9036 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9037 break; 9038 default: 9039 g_assert_not_reached(); 9040 } 9041 9042 write_vec_element(s, tcg_res, rd, pass, MO_64); 9043 } else { 9044 /* Single */ 9045 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9046 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9047 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9048 9049 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9050 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9051 9052 switch (fpopcode) { 9053 case 0x39: /* FMLS */ 9054 /* As usual for ARM, separate negation for fused multiply-add */ 9055 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9056 /* fall through */ 9057 case 0x19: /* FMLA */ 9058 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9059 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9060 tcg_res, fpst); 9061 break; 9062 case 0x1a: /* FADD */ 9063 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9064 break; 9065 case 0x1b: /* FMULX */ 9066 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9067 break; 9068 case 0x1c: /* FCMEQ */ 9069 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9070 break; 9071 case 0x1e: /* FMAX */ 9072 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9073 break; 9074 case 0x1f: /* FRECPS */ 9075 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9076 break; 9077 case 0x18: /* FMAXNM */ 9078 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9079 break; 9080 case 0x38: /* FMINNM */ 9081 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9082 break; 9083 case 0x3a: /* FSUB */ 9084 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9085 break; 9086 case 0x3e: /* FMIN */ 9087 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9088 break; 9089 case 0x3f: /* FRSQRTS */ 9090 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9091 break; 9092 case 0x5b: /* FMUL */ 9093 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9094 break; 9095 case 0x5c: /* FCMGE */ 9096 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9097 break; 9098 case 0x5d: /* FACGE */ 9099 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9100 break; 9101 case 0x5f: /* FDIV */ 9102 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9103 break; 9104 case 0x7a: /* FABD */ 9105 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9106 gen_helper_vfp_abss(tcg_res, tcg_res); 9107 break; 9108 case 0x7c: /* FCMGT */ 9109 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9110 break; 9111 case 0x7d: /* FACGT */ 9112 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9113 break; 9114 default: 9115 g_assert_not_reached(); 9116 } 9117 9118 if (elements == 1) { 9119 /* scalar single so clear high part */ 9120 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9121 9122 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9123 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9124 } else { 9125 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9126 } 9127 } 9128 } 9129 9130 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9131 } 9132 9133 /* AdvSIMD scalar three same 9134 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9135 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9136 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9137 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9138 */ 9139 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9140 { 9141 int rd = extract32(insn, 0, 5); 9142 int rn = extract32(insn, 5, 5); 9143 int opcode = extract32(insn, 11, 5); 9144 int rm = extract32(insn, 16, 5); 9145 int size = extract32(insn, 22, 2); 9146 bool u = extract32(insn, 29, 1); 9147 TCGv_i64 tcg_rd; 9148 9149 if (opcode >= 0x18) { 9150 /* Floating point: U, size[1] and opcode indicate operation */ 9151 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9152 switch (fpopcode) { 9153 case 0x1b: /* FMULX */ 9154 case 0x1f: /* FRECPS */ 9155 case 0x3f: /* FRSQRTS */ 9156 case 0x5d: /* FACGE */ 9157 case 0x7d: /* FACGT */ 9158 case 0x1c: /* FCMEQ */ 9159 case 0x5c: /* FCMGE */ 9160 case 0x7c: /* FCMGT */ 9161 case 0x7a: /* FABD */ 9162 break; 9163 default: 9164 unallocated_encoding(s); 9165 return; 9166 } 9167 9168 if (!fp_access_check(s)) { 9169 return; 9170 } 9171 9172 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9173 return; 9174 } 9175 9176 switch (opcode) { 9177 case 0x1: /* SQADD, UQADD */ 9178 case 0x5: /* SQSUB, UQSUB */ 9179 case 0x9: /* SQSHL, UQSHL */ 9180 case 0xb: /* SQRSHL, UQRSHL */ 9181 break; 9182 case 0x8: /* SSHL, USHL */ 9183 case 0xa: /* SRSHL, URSHL */ 9184 case 0x6: /* CMGT, CMHI */ 9185 case 0x7: /* CMGE, CMHS */ 9186 case 0x11: /* CMTST, CMEQ */ 9187 case 0x10: /* ADD, SUB (vector) */ 9188 if (size != 3) { 9189 unallocated_encoding(s); 9190 return; 9191 } 9192 break; 9193 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9194 if (size != 1 && size != 2) { 9195 unallocated_encoding(s); 9196 return; 9197 } 9198 break; 9199 default: 9200 unallocated_encoding(s); 9201 return; 9202 } 9203 9204 if (!fp_access_check(s)) { 9205 return; 9206 } 9207 9208 tcg_rd = tcg_temp_new_i64(); 9209 9210 if (size == 3) { 9211 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9212 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9213 9214 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9215 } else { 9216 /* Do a single operation on the lowest element in the vector. 9217 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9218 * no side effects for all these operations. 9219 * OPTME: special-purpose helpers would avoid doing some 9220 * unnecessary work in the helper for the 8 and 16 bit cases. 9221 */ 9222 NeonGenTwoOpEnvFn *genenvfn; 9223 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9224 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9225 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9226 9227 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9228 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9229 9230 switch (opcode) { 9231 case 0x1: /* SQADD, UQADD */ 9232 { 9233 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9234 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9235 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9236 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9237 }; 9238 genenvfn = fns[size][u]; 9239 break; 9240 } 9241 case 0x5: /* SQSUB, UQSUB */ 9242 { 9243 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9244 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9245 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9246 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9247 }; 9248 genenvfn = fns[size][u]; 9249 break; 9250 } 9251 case 0x9: /* SQSHL, UQSHL */ 9252 { 9253 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9254 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9255 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9256 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9257 }; 9258 genenvfn = fns[size][u]; 9259 break; 9260 } 9261 case 0xb: /* SQRSHL, UQRSHL */ 9262 { 9263 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9264 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9265 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9266 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9267 }; 9268 genenvfn = fns[size][u]; 9269 break; 9270 } 9271 case 0x16: /* SQDMULH, SQRDMULH */ 9272 { 9273 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9274 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9275 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9276 }; 9277 assert(size == 1 || size == 2); 9278 genenvfn = fns[size - 1][u]; 9279 break; 9280 } 9281 default: 9282 g_assert_not_reached(); 9283 } 9284 9285 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9286 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9287 } 9288 9289 write_fp_dreg(s, rd, tcg_rd); 9290 } 9291 9292 /* AdvSIMD scalar three same FP16 9293 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9294 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9295 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9296 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9297 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9298 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9299 */ 9300 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9301 uint32_t insn) 9302 { 9303 int rd = extract32(insn, 0, 5); 9304 int rn = extract32(insn, 5, 5); 9305 int opcode = extract32(insn, 11, 3); 9306 int rm = extract32(insn, 16, 5); 9307 bool u = extract32(insn, 29, 1); 9308 bool a = extract32(insn, 23, 1); 9309 int fpopcode = opcode | (a << 3) | (u << 4); 9310 TCGv_ptr fpst; 9311 TCGv_i32 tcg_op1; 9312 TCGv_i32 tcg_op2; 9313 TCGv_i32 tcg_res; 9314 9315 switch (fpopcode) { 9316 case 0x03: /* FMULX */ 9317 case 0x04: /* FCMEQ (reg) */ 9318 case 0x07: /* FRECPS */ 9319 case 0x0f: /* FRSQRTS */ 9320 case 0x14: /* FCMGE (reg) */ 9321 case 0x15: /* FACGE */ 9322 case 0x1a: /* FABD */ 9323 case 0x1c: /* FCMGT (reg) */ 9324 case 0x1d: /* FACGT */ 9325 break; 9326 default: 9327 unallocated_encoding(s); 9328 return; 9329 } 9330 9331 if (!dc_isar_feature(aa64_fp16, s)) { 9332 unallocated_encoding(s); 9333 } 9334 9335 if (!fp_access_check(s)) { 9336 return; 9337 } 9338 9339 fpst = fpstatus_ptr(FPST_FPCR_F16); 9340 9341 tcg_op1 = read_fp_hreg(s, rn); 9342 tcg_op2 = read_fp_hreg(s, rm); 9343 tcg_res = tcg_temp_new_i32(); 9344 9345 switch (fpopcode) { 9346 case 0x03: /* FMULX */ 9347 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9348 break; 9349 case 0x04: /* FCMEQ (reg) */ 9350 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9351 break; 9352 case 0x07: /* FRECPS */ 9353 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9354 break; 9355 case 0x0f: /* FRSQRTS */ 9356 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9357 break; 9358 case 0x14: /* FCMGE (reg) */ 9359 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9360 break; 9361 case 0x15: /* FACGE */ 9362 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9363 break; 9364 case 0x1a: /* FABD */ 9365 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9366 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9367 break; 9368 case 0x1c: /* FCMGT (reg) */ 9369 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9370 break; 9371 case 0x1d: /* FACGT */ 9372 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9373 break; 9374 default: 9375 g_assert_not_reached(); 9376 } 9377 9378 write_fp_sreg(s, rd, tcg_res); 9379 } 9380 9381 /* AdvSIMD scalar three same extra 9382 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9383 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9384 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9385 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9386 */ 9387 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9388 uint32_t insn) 9389 { 9390 int rd = extract32(insn, 0, 5); 9391 int rn = extract32(insn, 5, 5); 9392 int opcode = extract32(insn, 11, 4); 9393 int rm = extract32(insn, 16, 5); 9394 int size = extract32(insn, 22, 2); 9395 bool u = extract32(insn, 29, 1); 9396 TCGv_i32 ele1, ele2, ele3; 9397 TCGv_i64 res; 9398 bool feature; 9399 9400 switch (u * 16 + opcode) { 9401 case 0x10: /* SQRDMLAH (vector) */ 9402 case 0x11: /* SQRDMLSH (vector) */ 9403 if (size != 1 && size != 2) { 9404 unallocated_encoding(s); 9405 return; 9406 } 9407 feature = dc_isar_feature(aa64_rdm, s); 9408 break; 9409 default: 9410 unallocated_encoding(s); 9411 return; 9412 } 9413 if (!feature) { 9414 unallocated_encoding(s); 9415 return; 9416 } 9417 if (!fp_access_check(s)) { 9418 return; 9419 } 9420 9421 /* Do a single operation on the lowest element in the vector. 9422 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9423 * with no side effects for all these operations. 9424 * OPTME: special-purpose helpers would avoid doing some 9425 * unnecessary work in the helper for the 16 bit cases. 9426 */ 9427 ele1 = tcg_temp_new_i32(); 9428 ele2 = tcg_temp_new_i32(); 9429 ele3 = tcg_temp_new_i32(); 9430 9431 read_vec_element_i32(s, ele1, rn, 0, size); 9432 read_vec_element_i32(s, ele2, rm, 0, size); 9433 read_vec_element_i32(s, ele3, rd, 0, size); 9434 9435 switch (opcode) { 9436 case 0x0: /* SQRDMLAH */ 9437 if (size == 1) { 9438 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9439 } else { 9440 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9441 } 9442 break; 9443 case 0x1: /* SQRDMLSH */ 9444 if (size == 1) { 9445 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9446 } else { 9447 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9448 } 9449 break; 9450 default: 9451 g_assert_not_reached(); 9452 } 9453 9454 res = tcg_temp_new_i64(); 9455 tcg_gen_extu_i32_i64(res, ele3); 9456 write_fp_dreg(s, rd, res); 9457 } 9458 9459 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9460 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9461 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9462 { 9463 /* Handle 64->64 opcodes which are shared between the scalar and 9464 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9465 * is valid in either group and also the double-precision fp ops. 9466 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9467 * requires them. 9468 */ 9469 TCGCond cond; 9470 9471 switch (opcode) { 9472 case 0x4: /* CLS, CLZ */ 9473 if (u) { 9474 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9475 } else { 9476 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9477 } 9478 break; 9479 case 0x5: /* NOT */ 9480 /* This opcode is shared with CNT and RBIT but we have earlier 9481 * enforced that size == 3 if and only if this is the NOT insn. 9482 */ 9483 tcg_gen_not_i64(tcg_rd, tcg_rn); 9484 break; 9485 case 0x7: /* SQABS, SQNEG */ 9486 if (u) { 9487 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9488 } else { 9489 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9490 } 9491 break; 9492 case 0xa: /* CMLT */ 9493 /* 64 bit integer comparison against zero, result is 9494 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9495 * subtracting 1. 9496 */ 9497 cond = TCG_COND_LT; 9498 do_cmop: 9499 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9500 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9501 break; 9502 case 0x8: /* CMGT, CMGE */ 9503 cond = u ? TCG_COND_GE : TCG_COND_GT; 9504 goto do_cmop; 9505 case 0x9: /* CMEQ, CMLE */ 9506 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9507 goto do_cmop; 9508 case 0xb: /* ABS, NEG */ 9509 if (u) { 9510 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9511 } else { 9512 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9513 } 9514 break; 9515 case 0x2f: /* FABS */ 9516 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9517 break; 9518 case 0x6f: /* FNEG */ 9519 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9520 break; 9521 case 0x7f: /* FSQRT */ 9522 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9523 break; 9524 case 0x1a: /* FCVTNS */ 9525 case 0x1b: /* FCVTMS */ 9526 case 0x1c: /* FCVTAS */ 9527 case 0x3a: /* FCVTPS */ 9528 case 0x3b: /* FCVTZS */ 9529 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9530 break; 9531 case 0x5a: /* FCVTNU */ 9532 case 0x5b: /* FCVTMU */ 9533 case 0x5c: /* FCVTAU */ 9534 case 0x7a: /* FCVTPU */ 9535 case 0x7b: /* FCVTZU */ 9536 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9537 break; 9538 case 0x18: /* FRINTN */ 9539 case 0x19: /* FRINTM */ 9540 case 0x38: /* FRINTP */ 9541 case 0x39: /* FRINTZ */ 9542 case 0x58: /* FRINTA */ 9543 case 0x79: /* FRINTI */ 9544 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9545 break; 9546 case 0x59: /* FRINTX */ 9547 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9548 break; 9549 case 0x1e: /* FRINT32Z */ 9550 case 0x5e: /* FRINT32X */ 9551 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9552 break; 9553 case 0x1f: /* FRINT64Z */ 9554 case 0x5f: /* FRINT64X */ 9555 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9556 break; 9557 default: 9558 g_assert_not_reached(); 9559 } 9560 } 9561 9562 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9563 bool is_scalar, bool is_u, bool is_q, 9564 int size, int rn, int rd) 9565 { 9566 bool is_double = (size == MO_64); 9567 TCGv_ptr fpst; 9568 9569 if (!fp_access_check(s)) { 9570 return; 9571 } 9572 9573 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9574 9575 if (is_double) { 9576 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9577 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9578 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9579 NeonGenTwoDoubleOpFn *genfn; 9580 bool swap = false; 9581 int pass; 9582 9583 switch (opcode) { 9584 case 0x2e: /* FCMLT (zero) */ 9585 swap = true; 9586 /* fallthrough */ 9587 case 0x2c: /* FCMGT (zero) */ 9588 genfn = gen_helper_neon_cgt_f64; 9589 break; 9590 case 0x2d: /* FCMEQ (zero) */ 9591 genfn = gen_helper_neon_ceq_f64; 9592 break; 9593 case 0x6d: /* FCMLE (zero) */ 9594 swap = true; 9595 /* fall through */ 9596 case 0x6c: /* FCMGE (zero) */ 9597 genfn = gen_helper_neon_cge_f64; 9598 break; 9599 default: 9600 g_assert_not_reached(); 9601 } 9602 9603 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9604 read_vec_element(s, tcg_op, rn, pass, MO_64); 9605 if (swap) { 9606 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9607 } else { 9608 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9609 } 9610 write_vec_element(s, tcg_res, rd, pass, MO_64); 9611 } 9612 9613 clear_vec_high(s, !is_scalar, rd); 9614 } else { 9615 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9616 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9617 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9618 NeonGenTwoSingleOpFn *genfn; 9619 bool swap = false; 9620 int pass, maxpasses; 9621 9622 if (size == MO_16) { 9623 switch (opcode) { 9624 case 0x2e: /* FCMLT (zero) */ 9625 swap = true; 9626 /* fall through */ 9627 case 0x2c: /* FCMGT (zero) */ 9628 genfn = gen_helper_advsimd_cgt_f16; 9629 break; 9630 case 0x2d: /* FCMEQ (zero) */ 9631 genfn = gen_helper_advsimd_ceq_f16; 9632 break; 9633 case 0x6d: /* FCMLE (zero) */ 9634 swap = true; 9635 /* fall through */ 9636 case 0x6c: /* FCMGE (zero) */ 9637 genfn = gen_helper_advsimd_cge_f16; 9638 break; 9639 default: 9640 g_assert_not_reached(); 9641 } 9642 } else { 9643 switch (opcode) { 9644 case 0x2e: /* FCMLT (zero) */ 9645 swap = true; 9646 /* fall through */ 9647 case 0x2c: /* FCMGT (zero) */ 9648 genfn = gen_helper_neon_cgt_f32; 9649 break; 9650 case 0x2d: /* FCMEQ (zero) */ 9651 genfn = gen_helper_neon_ceq_f32; 9652 break; 9653 case 0x6d: /* FCMLE (zero) */ 9654 swap = true; 9655 /* fall through */ 9656 case 0x6c: /* FCMGE (zero) */ 9657 genfn = gen_helper_neon_cge_f32; 9658 break; 9659 default: 9660 g_assert_not_reached(); 9661 } 9662 } 9663 9664 if (is_scalar) { 9665 maxpasses = 1; 9666 } else { 9667 int vector_size = 8 << is_q; 9668 maxpasses = vector_size >> size; 9669 } 9670 9671 for (pass = 0; pass < maxpasses; pass++) { 9672 read_vec_element_i32(s, tcg_op, rn, pass, size); 9673 if (swap) { 9674 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9675 } else { 9676 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9677 } 9678 if (is_scalar) { 9679 write_fp_sreg(s, rd, tcg_res); 9680 } else { 9681 write_vec_element_i32(s, tcg_res, rd, pass, size); 9682 } 9683 } 9684 9685 if (!is_scalar) { 9686 clear_vec_high(s, is_q, rd); 9687 } 9688 } 9689 } 9690 9691 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9692 bool is_scalar, bool is_u, bool is_q, 9693 int size, int rn, int rd) 9694 { 9695 bool is_double = (size == 3); 9696 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9697 9698 if (is_double) { 9699 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9700 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9701 int pass; 9702 9703 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9704 read_vec_element(s, tcg_op, rn, pass, MO_64); 9705 switch (opcode) { 9706 case 0x3d: /* FRECPE */ 9707 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9708 break; 9709 case 0x3f: /* FRECPX */ 9710 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9711 break; 9712 case 0x7d: /* FRSQRTE */ 9713 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9714 break; 9715 default: 9716 g_assert_not_reached(); 9717 } 9718 write_vec_element(s, tcg_res, rd, pass, MO_64); 9719 } 9720 clear_vec_high(s, !is_scalar, rd); 9721 } else { 9722 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9723 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9724 int pass, maxpasses; 9725 9726 if (is_scalar) { 9727 maxpasses = 1; 9728 } else { 9729 maxpasses = is_q ? 4 : 2; 9730 } 9731 9732 for (pass = 0; pass < maxpasses; pass++) { 9733 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9734 9735 switch (opcode) { 9736 case 0x3c: /* URECPE */ 9737 gen_helper_recpe_u32(tcg_res, tcg_op); 9738 break; 9739 case 0x3d: /* FRECPE */ 9740 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9741 break; 9742 case 0x3f: /* FRECPX */ 9743 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9744 break; 9745 case 0x7d: /* FRSQRTE */ 9746 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9747 break; 9748 default: 9749 g_assert_not_reached(); 9750 } 9751 9752 if (is_scalar) { 9753 write_fp_sreg(s, rd, tcg_res); 9754 } else { 9755 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9756 } 9757 } 9758 if (!is_scalar) { 9759 clear_vec_high(s, is_q, rd); 9760 } 9761 } 9762 } 9763 9764 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9765 int opcode, bool u, bool is_q, 9766 int size, int rn, int rd) 9767 { 9768 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9769 * in the source becomes a size element in the destination). 9770 */ 9771 int pass; 9772 TCGv_i32 tcg_res[2]; 9773 int destelt = is_q ? 2 : 0; 9774 int passes = scalar ? 1 : 2; 9775 9776 if (scalar) { 9777 tcg_res[1] = tcg_constant_i32(0); 9778 } 9779 9780 for (pass = 0; pass < passes; pass++) { 9781 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9782 NeonGenNarrowFn *genfn = NULL; 9783 NeonGenNarrowEnvFn *genenvfn = NULL; 9784 9785 if (scalar) { 9786 read_vec_element(s, tcg_op, rn, pass, size + 1); 9787 } else { 9788 read_vec_element(s, tcg_op, rn, pass, MO_64); 9789 } 9790 tcg_res[pass] = tcg_temp_new_i32(); 9791 9792 switch (opcode) { 9793 case 0x12: /* XTN, SQXTUN */ 9794 { 9795 static NeonGenNarrowFn * const xtnfns[3] = { 9796 gen_helper_neon_narrow_u8, 9797 gen_helper_neon_narrow_u16, 9798 tcg_gen_extrl_i64_i32, 9799 }; 9800 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9801 gen_helper_neon_unarrow_sat8, 9802 gen_helper_neon_unarrow_sat16, 9803 gen_helper_neon_unarrow_sat32, 9804 }; 9805 if (u) { 9806 genenvfn = sqxtunfns[size]; 9807 } else { 9808 genfn = xtnfns[size]; 9809 } 9810 break; 9811 } 9812 case 0x14: /* SQXTN, UQXTN */ 9813 { 9814 static NeonGenNarrowEnvFn * const fns[3][2] = { 9815 { gen_helper_neon_narrow_sat_s8, 9816 gen_helper_neon_narrow_sat_u8 }, 9817 { gen_helper_neon_narrow_sat_s16, 9818 gen_helper_neon_narrow_sat_u16 }, 9819 { gen_helper_neon_narrow_sat_s32, 9820 gen_helper_neon_narrow_sat_u32 }, 9821 }; 9822 genenvfn = fns[size][u]; 9823 break; 9824 } 9825 case 0x16: /* FCVTN, FCVTN2 */ 9826 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9827 if (size == 2) { 9828 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9829 } else { 9830 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9831 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9832 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9833 TCGv_i32 ahp = get_ahp_flag(); 9834 9835 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9836 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9837 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9838 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9839 } 9840 break; 9841 case 0x36: /* BFCVTN, BFCVTN2 */ 9842 { 9843 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9844 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9845 } 9846 break; 9847 case 0x56: /* FCVTXN, FCVTXN2 */ 9848 /* 64 bit to 32 bit float conversion 9849 * with von Neumann rounding (round to odd) 9850 */ 9851 assert(size == 2); 9852 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9853 break; 9854 default: 9855 g_assert_not_reached(); 9856 } 9857 9858 if (genfn) { 9859 genfn(tcg_res[pass], tcg_op); 9860 } else if (genenvfn) { 9861 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9862 } 9863 } 9864 9865 for (pass = 0; pass < 2; pass++) { 9866 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9867 } 9868 clear_vec_high(s, is_q, rd); 9869 } 9870 9871 /* Remaining saturating accumulating ops */ 9872 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9873 bool is_q, int size, int rn, int rd) 9874 { 9875 bool is_double = (size == 3); 9876 9877 if (is_double) { 9878 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9879 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9880 int pass; 9881 9882 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9883 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9884 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9885 9886 if (is_u) { /* USQADD */ 9887 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9888 } else { /* SUQADD */ 9889 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9890 } 9891 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9892 } 9893 clear_vec_high(s, !is_scalar, rd); 9894 } else { 9895 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9896 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9897 int pass, maxpasses; 9898 9899 if (is_scalar) { 9900 maxpasses = 1; 9901 } else { 9902 maxpasses = is_q ? 4 : 2; 9903 } 9904 9905 for (pass = 0; pass < maxpasses; pass++) { 9906 if (is_scalar) { 9907 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9908 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9909 } else { 9910 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9911 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9912 } 9913 9914 if (is_u) { /* USQADD */ 9915 switch (size) { 9916 case 0: 9917 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9918 break; 9919 case 1: 9920 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9921 break; 9922 case 2: 9923 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9924 break; 9925 default: 9926 g_assert_not_reached(); 9927 } 9928 } else { /* SUQADD */ 9929 switch (size) { 9930 case 0: 9931 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9932 break; 9933 case 1: 9934 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9935 break; 9936 case 2: 9937 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9938 break; 9939 default: 9940 g_assert_not_reached(); 9941 } 9942 } 9943 9944 if (is_scalar) { 9945 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9946 } 9947 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9948 } 9949 clear_vec_high(s, is_q, rd); 9950 } 9951 } 9952 9953 /* AdvSIMD scalar two reg misc 9954 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9955 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9956 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9957 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9958 */ 9959 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9960 { 9961 int rd = extract32(insn, 0, 5); 9962 int rn = extract32(insn, 5, 5); 9963 int opcode = extract32(insn, 12, 5); 9964 int size = extract32(insn, 22, 2); 9965 bool u = extract32(insn, 29, 1); 9966 bool is_fcvt = false; 9967 int rmode; 9968 TCGv_i32 tcg_rmode; 9969 TCGv_ptr tcg_fpstatus; 9970 9971 switch (opcode) { 9972 case 0x3: /* USQADD / SUQADD*/ 9973 if (!fp_access_check(s)) { 9974 return; 9975 } 9976 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9977 return; 9978 case 0x7: /* SQABS / SQNEG */ 9979 break; 9980 case 0xa: /* CMLT */ 9981 if (u) { 9982 unallocated_encoding(s); 9983 return; 9984 } 9985 /* fall through */ 9986 case 0x8: /* CMGT, CMGE */ 9987 case 0x9: /* CMEQ, CMLE */ 9988 case 0xb: /* ABS, NEG */ 9989 if (size != 3) { 9990 unallocated_encoding(s); 9991 return; 9992 } 9993 break; 9994 case 0x12: /* SQXTUN */ 9995 if (!u) { 9996 unallocated_encoding(s); 9997 return; 9998 } 9999 /* fall through */ 10000 case 0x14: /* SQXTN, UQXTN */ 10001 if (size == 3) { 10002 unallocated_encoding(s); 10003 return; 10004 } 10005 if (!fp_access_check(s)) { 10006 return; 10007 } 10008 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10009 return; 10010 case 0xc ... 0xf: 10011 case 0x16 ... 0x1d: 10012 case 0x1f: 10013 /* Floating point: U, size[1] and opcode indicate operation; 10014 * size[0] indicates single or double precision. 10015 */ 10016 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10017 size = extract32(size, 0, 1) ? 3 : 2; 10018 switch (opcode) { 10019 case 0x2c: /* FCMGT (zero) */ 10020 case 0x2d: /* FCMEQ (zero) */ 10021 case 0x2e: /* FCMLT (zero) */ 10022 case 0x6c: /* FCMGE (zero) */ 10023 case 0x6d: /* FCMLE (zero) */ 10024 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10025 return; 10026 case 0x1d: /* SCVTF */ 10027 case 0x5d: /* UCVTF */ 10028 { 10029 bool is_signed = (opcode == 0x1d); 10030 if (!fp_access_check(s)) { 10031 return; 10032 } 10033 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10034 return; 10035 } 10036 case 0x3d: /* FRECPE */ 10037 case 0x3f: /* FRECPX */ 10038 case 0x7d: /* FRSQRTE */ 10039 if (!fp_access_check(s)) { 10040 return; 10041 } 10042 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10043 return; 10044 case 0x1a: /* FCVTNS */ 10045 case 0x1b: /* FCVTMS */ 10046 case 0x3a: /* FCVTPS */ 10047 case 0x3b: /* FCVTZS */ 10048 case 0x5a: /* FCVTNU */ 10049 case 0x5b: /* FCVTMU */ 10050 case 0x7a: /* FCVTPU */ 10051 case 0x7b: /* FCVTZU */ 10052 is_fcvt = true; 10053 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10054 break; 10055 case 0x1c: /* FCVTAS */ 10056 case 0x5c: /* FCVTAU */ 10057 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10058 is_fcvt = true; 10059 rmode = FPROUNDING_TIEAWAY; 10060 break; 10061 case 0x56: /* FCVTXN, FCVTXN2 */ 10062 if (size == 2) { 10063 unallocated_encoding(s); 10064 return; 10065 } 10066 if (!fp_access_check(s)) { 10067 return; 10068 } 10069 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10070 return; 10071 default: 10072 unallocated_encoding(s); 10073 return; 10074 } 10075 break; 10076 default: 10077 unallocated_encoding(s); 10078 return; 10079 } 10080 10081 if (!fp_access_check(s)) { 10082 return; 10083 } 10084 10085 if (is_fcvt) { 10086 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10087 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10088 } else { 10089 tcg_fpstatus = NULL; 10090 tcg_rmode = NULL; 10091 } 10092 10093 if (size == 3) { 10094 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10095 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10096 10097 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10098 write_fp_dreg(s, rd, tcg_rd); 10099 } else { 10100 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10101 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10102 10103 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10104 10105 switch (opcode) { 10106 case 0x7: /* SQABS, SQNEG */ 10107 { 10108 NeonGenOneOpEnvFn *genfn; 10109 static NeonGenOneOpEnvFn * const fns[3][2] = { 10110 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10111 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10112 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10113 }; 10114 genfn = fns[size][u]; 10115 genfn(tcg_rd, cpu_env, tcg_rn); 10116 break; 10117 } 10118 case 0x1a: /* FCVTNS */ 10119 case 0x1b: /* FCVTMS */ 10120 case 0x1c: /* FCVTAS */ 10121 case 0x3a: /* FCVTPS */ 10122 case 0x3b: /* FCVTZS */ 10123 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10124 tcg_fpstatus); 10125 break; 10126 case 0x5a: /* FCVTNU */ 10127 case 0x5b: /* FCVTMU */ 10128 case 0x5c: /* FCVTAU */ 10129 case 0x7a: /* FCVTPU */ 10130 case 0x7b: /* FCVTZU */ 10131 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10132 tcg_fpstatus); 10133 break; 10134 default: 10135 g_assert_not_reached(); 10136 } 10137 10138 write_fp_sreg(s, rd, tcg_rd); 10139 } 10140 10141 if (is_fcvt) { 10142 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10143 } 10144 } 10145 10146 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10147 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10148 int immh, int immb, int opcode, int rn, int rd) 10149 { 10150 int size = 32 - clz32(immh) - 1; 10151 int immhb = immh << 3 | immb; 10152 int shift = 2 * (8 << size) - immhb; 10153 GVecGen2iFn *gvec_fn; 10154 10155 if (extract32(immh, 3, 1) && !is_q) { 10156 unallocated_encoding(s); 10157 return; 10158 } 10159 tcg_debug_assert(size <= 3); 10160 10161 if (!fp_access_check(s)) { 10162 return; 10163 } 10164 10165 switch (opcode) { 10166 case 0x02: /* SSRA / USRA (accumulate) */ 10167 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10168 break; 10169 10170 case 0x08: /* SRI */ 10171 gvec_fn = gen_gvec_sri; 10172 break; 10173 10174 case 0x00: /* SSHR / USHR */ 10175 if (is_u) { 10176 if (shift == 8 << size) { 10177 /* Shift count the same size as element size produces zero. */ 10178 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10179 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10180 return; 10181 } 10182 gvec_fn = tcg_gen_gvec_shri; 10183 } else { 10184 /* Shift count the same size as element size produces all sign. */ 10185 if (shift == 8 << size) { 10186 shift -= 1; 10187 } 10188 gvec_fn = tcg_gen_gvec_sari; 10189 } 10190 break; 10191 10192 case 0x04: /* SRSHR / URSHR (rounding) */ 10193 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10194 break; 10195 10196 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10197 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10198 break; 10199 10200 default: 10201 g_assert_not_reached(); 10202 } 10203 10204 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10205 } 10206 10207 /* SHL/SLI - Vector shift left */ 10208 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10209 int immh, int immb, int opcode, int rn, int rd) 10210 { 10211 int size = 32 - clz32(immh) - 1; 10212 int immhb = immh << 3 | immb; 10213 int shift = immhb - (8 << size); 10214 10215 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10216 assert(size >= 0 && size <= 3); 10217 10218 if (extract32(immh, 3, 1) && !is_q) { 10219 unallocated_encoding(s); 10220 return; 10221 } 10222 10223 if (!fp_access_check(s)) { 10224 return; 10225 } 10226 10227 if (insert) { 10228 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10229 } else { 10230 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10231 } 10232 } 10233 10234 /* USHLL/SHLL - Vector shift left with widening */ 10235 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10236 int immh, int immb, int opcode, int rn, int rd) 10237 { 10238 int size = 32 - clz32(immh) - 1; 10239 int immhb = immh << 3 | immb; 10240 int shift = immhb - (8 << size); 10241 int dsize = 64; 10242 int esize = 8 << size; 10243 int elements = dsize/esize; 10244 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10245 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10246 int i; 10247 10248 if (size >= 3) { 10249 unallocated_encoding(s); 10250 return; 10251 } 10252 10253 if (!fp_access_check(s)) { 10254 return; 10255 } 10256 10257 /* For the LL variants the store is larger than the load, 10258 * so if rd == rn we would overwrite parts of our input. 10259 * So load everything right now and use shifts in the main loop. 10260 */ 10261 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10262 10263 for (i = 0; i < elements; i++) { 10264 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10265 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10266 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10267 write_vec_element(s, tcg_rd, rd, i, size + 1); 10268 } 10269 } 10270 10271 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10272 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10273 int immh, int immb, int opcode, int rn, int rd) 10274 { 10275 int immhb = immh << 3 | immb; 10276 int size = 32 - clz32(immh) - 1; 10277 int dsize = 64; 10278 int esize = 8 << size; 10279 int elements = dsize/esize; 10280 int shift = (2 * esize) - immhb; 10281 bool round = extract32(opcode, 0, 1); 10282 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10283 TCGv_i64 tcg_round; 10284 int i; 10285 10286 if (extract32(immh, 3, 1)) { 10287 unallocated_encoding(s); 10288 return; 10289 } 10290 10291 if (!fp_access_check(s)) { 10292 return; 10293 } 10294 10295 tcg_rn = tcg_temp_new_i64(); 10296 tcg_rd = tcg_temp_new_i64(); 10297 tcg_final = tcg_temp_new_i64(); 10298 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10299 10300 if (round) { 10301 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10302 } else { 10303 tcg_round = NULL; 10304 } 10305 10306 for (i = 0; i < elements; i++) { 10307 read_vec_element(s, tcg_rn, rn, i, size+1); 10308 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10309 false, true, size+1, shift); 10310 10311 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10312 } 10313 10314 if (!is_q) { 10315 write_vec_element(s, tcg_final, rd, 0, MO_64); 10316 } else { 10317 write_vec_element(s, tcg_final, rd, 1, MO_64); 10318 } 10319 10320 clear_vec_high(s, is_q, rd); 10321 } 10322 10323 10324 /* AdvSIMD shift by immediate 10325 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10326 * +---+---+---+-------------+------+------+--------+---+------+------+ 10327 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10328 * +---+---+---+-------------+------+------+--------+---+------+------+ 10329 */ 10330 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10331 { 10332 int rd = extract32(insn, 0, 5); 10333 int rn = extract32(insn, 5, 5); 10334 int opcode = extract32(insn, 11, 5); 10335 int immb = extract32(insn, 16, 3); 10336 int immh = extract32(insn, 19, 4); 10337 bool is_u = extract32(insn, 29, 1); 10338 bool is_q = extract32(insn, 30, 1); 10339 10340 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10341 assert(immh != 0); 10342 10343 switch (opcode) { 10344 case 0x08: /* SRI */ 10345 if (!is_u) { 10346 unallocated_encoding(s); 10347 return; 10348 } 10349 /* fall through */ 10350 case 0x00: /* SSHR / USHR */ 10351 case 0x02: /* SSRA / USRA (accumulate) */ 10352 case 0x04: /* SRSHR / URSHR (rounding) */ 10353 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10354 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10355 break; 10356 case 0x0a: /* SHL / SLI */ 10357 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10358 break; 10359 case 0x10: /* SHRN */ 10360 case 0x11: /* RSHRN / SQRSHRUN */ 10361 if (is_u) { 10362 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10363 opcode, rn, rd); 10364 } else { 10365 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10366 } 10367 break; 10368 case 0x12: /* SQSHRN / UQSHRN */ 10369 case 0x13: /* SQRSHRN / UQRSHRN */ 10370 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10371 opcode, rn, rd); 10372 break; 10373 case 0x14: /* SSHLL / USHLL */ 10374 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10375 break; 10376 case 0x1c: /* SCVTF / UCVTF */ 10377 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10378 opcode, rn, rd); 10379 break; 10380 case 0xc: /* SQSHLU */ 10381 if (!is_u) { 10382 unallocated_encoding(s); 10383 return; 10384 } 10385 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10386 break; 10387 case 0xe: /* SQSHL, UQSHL */ 10388 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10389 break; 10390 case 0x1f: /* FCVTZS/ FCVTZU */ 10391 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10392 return; 10393 default: 10394 unallocated_encoding(s); 10395 return; 10396 } 10397 } 10398 10399 /* Generate code to do a "long" addition or subtraction, ie one done in 10400 * TCGv_i64 on vector lanes twice the width specified by size. 10401 */ 10402 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10403 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10404 { 10405 static NeonGenTwo64OpFn * const fns[3][2] = { 10406 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10407 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10408 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10409 }; 10410 NeonGenTwo64OpFn *genfn; 10411 assert(size < 3); 10412 10413 genfn = fns[size][is_sub]; 10414 genfn(tcg_res, tcg_op1, tcg_op2); 10415 } 10416 10417 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10418 int opcode, int rd, int rn, int rm) 10419 { 10420 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10421 TCGv_i64 tcg_res[2]; 10422 int pass, accop; 10423 10424 tcg_res[0] = tcg_temp_new_i64(); 10425 tcg_res[1] = tcg_temp_new_i64(); 10426 10427 /* Does this op do an adding accumulate, a subtracting accumulate, 10428 * or no accumulate at all? 10429 */ 10430 switch (opcode) { 10431 case 5: 10432 case 8: 10433 case 9: 10434 accop = 1; 10435 break; 10436 case 10: 10437 case 11: 10438 accop = -1; 10439 break; 10440 default: 10441 accop = 0; 10442 break; 10443 } 10444 10445 if (accop != 0) { 10446 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10447 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10448 } 10449 10450 /* size == 2 means two 32x32->64 operations; this is worth special 10451 * casing because we can generally handle it inline. 10452 */ 10453 if (size == 2) { 10454 for (pass = 0; pass < 2; pass++) { 10455 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10456 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10457 TCGv_i64 tcg_passres; 10458 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10459 10460 int elt = pass + is_q * 2; 10461 10462 read_vec_element(s, tcg_op1, rn, elt, memop); 10463 read_vec_element(s, tcg_op2, rm, elt, memop); 10464 10465 if (accop == 0) { 10466 tcg_passres = tcg_res[pass]; 10467 } else { 10468 tcg_passres = tcg_temp_new_i64(); 10469 } 10470 10471 switch (opcode) { 10472 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10473 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10474 break; 10475 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10476 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10477 break; 10478 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10479 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10480 { 10481 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10482 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10483 10484 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10485 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10486 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10487 tcg_passres, 10488 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10489 break; 10490 } 10491 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10492 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10493 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10494 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10495 break; 10496 case 9: /* SQDMLAL, SQDMLAL2 */ 10497 case 11: /* SQDMLSL, SQDMLSL2 */ 10498 case 13: /* SQDMULL, SQDMULL2 */ 10499 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10500 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10501 tcg_passres, tcg_passres); 10502 break; 10503 default: 10504 g_assert_not_reached(); 10505 } 10506 10507 if (opcode == 9 || opcode == 11) { 10508 /* saturating accumulate ops */ 10509 if (accop < 0) { 10510 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10511 } 10512 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10513 tcg_res[pass], tcg_passres); 10514 } else if (accop > 0) { 10515 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10516 } else if (accop < 0) { 10517 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10518 } 10519 } 10520 } else { 10521 /* size 0 or 1, generally helper functions */ 10522 for (pass = 0; pass < 2; pass++) { 10523 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10524 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10525 TCGv_i64 tcg_passres; 10526 int elt = pass + is_q * 2; 10527 10528 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10529 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10530 10531 if (accop == 0) { 10532 tcg_passres = tcg_res[pass]; 10533 } else { 10534 tcg_passres = tcg_temp_new_i64(); 10535 } 10536 10537 switch (opcode) { 10538 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10539 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10540 { 10541 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10542 static NeonGenWidenFn * const widenfns[2][2] = { 10543 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10544 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10545 }; 10546 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10547 10548 widenfn(tcg_op2_64, tcg_op2); 10549 widenfn(tcg_passres, tcg_op1); 10550 gen_neon_addl(size, (opcode == 2), tcg_passres, 10551 tcg_passres, tcg_op2_64); 10552 break; 10553 } 10554 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10555 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10556 if (size == 0) { 10557 if (is_u) { 10558 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10559 } else { 10560 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10561 } 10562 } else { 10563 if (is_u) { 10564 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10565 } else { 10566 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10567 } 10568 } 10569 break; 10570 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10571 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10572 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10573 if (size == 0) { 10574 if (is_u) { 10575 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10576 } else { 10577 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10578 } 10579 } else { 10580 if (is_u) { 10581 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10582 } else { 10583 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10584 } 10585 } 10586 break; 10587 case 9: /* SQDMLAL, SQDMLAL2 */ 10588 case 11: /* SQDMLSL, SQDMLSL2 */ 10589 case 13: /* SQDMULL, SQDMULL2 */ 10590 assert(size == 1); 10591 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10592 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10593 tcg_passres, tcg_passres); 10594 break; 10595 default: 10596 g_assert_not_reached(); 10597 } 10598 10599 if (accop != 0) { 10600 if (opcode == 9 || opcode == 11) { 10601 /* saturating accumulate ops */ 10602 if (accop < 0) { 10603 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10604 } 10605 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10606 tcg_res[pass], 10607 tcg_passres); 10608 } else { 10609 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10610 tcg_res[pass], tcg_passres); 10611 } 10612 } 10613 } 10614 } 10615 10616 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10617 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10618 } 10619 10620 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10621 int opcode, int rd, int rn, int rm) 10622 { 10623 TCGv_i64 tcg_res[2]; 10624 int part = is_q ? 2 : 0; 10625 int pass; 10626 10627 for (pass = 0; pass < 2; pass++) { 10628 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10629 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10630 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10631 static NeonGenWidenFn * const widenfns[3][2] = { 10632 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10633 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10634 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10635 }; 10636 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10637 10638 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10639 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10640 widenfn(tcg_op2_wide, tcg_op2); 10641 tcg_res[pass] = tcg_temp_new_i64(); 10642 gen_neon_addl(size, (opcode == 3), 10643 tcg_res[pass], tcg_op1, tcg_op2_wide); 10644 } 10645 10646 for (pass = 0; pass < 2; pass++) { 10647 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10648 } 10649 } 10650 10651 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10652 { 10653 tcg_gen_addi_i64(in, in, 1U << 31); 10654 tcg_gen_extrh_i64_i32(res, in); 10655 } 10656 10657 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10658 int opcode, int rd, int rn, int rm) 10659 { 10660 TCGv_i32 tcg_res[2]; 10661 int part = is_q ? 2 : 0; 10662 int pass; 10663 10664 for (pass = 0; pass < 2; pass++) { 10665 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10666 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10667 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10668 static NeonGenNarrowFn * const narrowfns[3][2] = { 10669 { gen_helper_neon_narrow_high_u8, 10670 gen_helper_neon_narrow_round_high_u8 }, 10671 { gen_helper_neon_narrow_high_u16, 10672 gen_helper_neon_narrow_round_high_u16 }, 10673 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10674 }; 10675 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10676 10677 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10678 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10679 10680 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10681 10682 tcg_res[pass] = tcg_temp_new_i32(); 10683 gennarrow(tcg_res[pass], tcg_wideres); 10684 } 10685 10686 for (pass = 0; pass < 2; pass++) { 10687 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10688 } 10689 clear_vec_high(s, is_q, rd); 10690 } 10691 10692 /* AdvSIMD three different 10693 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10694 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10695 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10696 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10697 */ 10698 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10699 { 10700 /* Instructions in this group fall into three basic classes 10701 * (in each case with the operation working on each element in 10702 * the input vectors): 10703 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10704 * 128 bit input) 10705 * (2) wide 64 x 128 -> 128 10706 * (3) narrowing 128 x 128 -> 64 10707 * Here we do initial decode, catch unallocated cases and 10708 * dispatch to separate functions for each class. 10709 */ 10710 int is_q = extract32(insn, 30, 1); 10711 int is_u = extract32(insn, 29, 1); 10712 int size = extract32(insn, 22, 2); 10713 int opcode = extract32(insn, 12, 4); 10714 int rm = extract32(insn, 16, 5); 10715 int rn = extract32(insn, 5, 5); 10716 int rd = extract32(insn, 0, 5); 10717 10718 switch (opcode) { 10719 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10720 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10721 /* 64 x 128 -> 128 */ 10722 if (size == 3) { 10723 unallocated_encoding(s); 10724 return; 10725 } 10726 if (!fp_access_check(s)) { 10727 return; 10728 } 10729 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10730 break; 10731 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10732 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10733 /* 128 x 128 -> 64 */ 10734 if (size == 3) { 10735 unallocated_encoding(s); 10736 return; 10737 } 10738 if (!fp_access_check(s)) { 10739 return; 10740 } 10741 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10742 break; 10743 case 14: /* PMULL, PMULL2 */ 10744 if (is_u) { 10745 unallocated_encoding(s); 10746 return; 10747 } 10748 switch (size) { 10749 case 0: /* PMULL.P8 */ 10750 if (!fp_access_check(s)) { 10751 return; 10752 } 10753 /* The Q field specifies lo/hi half input for this insn. */ 10754 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10755 gen_helper_neon_pmull_h); 10756 break; 10757 10758 case 3: /* PMULL.P64 */ 10759 if (!dc_isar_feature(aa64_pmull, s)) { 10760 unallocated_encoding(s); 10761 return; 10762 } 10763 if (!fp_access_check(s)) { 10764 return; 10765 } 10766 /* The Q field specifies lo/hi half input for this insn. */ 10767 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10768 gen_helper_gvec_pmull_q); 10769 break; 10770 10771 default: 10772 unallocated_encoding(s); 10773 break; 10774 } 10775 return; 10776 case 9: /* SQDMLAL, SQDMLAL2 */ 10777 case 11: /* SQDMLSL, SQDMLSL2 */ 10778 case 13: /* SQDMULL, SQDMULL2 */ 10779 if (is_u || size == 0) { 10780 unallocated_encoding(s); 10781 return; 10782 } 10783 /* fall through */ 10784 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10785 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10786 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10787 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10788 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10789 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10790 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10791 /* 64 x 64 -> 128 */ 10792 if (size == 3) { 10793 unallocated_encoding(s); 10794 return; 10795 } 10796 if (!fp_access_check(s)) { 10797 return; 10798 } 10799 10800 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10801 break; 10802 default: 10803 /* opcode 15 not allocated */ 10804 unallocated_encoding(s); 10805 break; 10806 } 10807 } 10808 10809 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10810 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10811 { 10812 int rd = extract32(insn, 0, 5); 10813 int rn = extract32(insn, 5, 5); 10814 int rm = extract32(insn, 16, 5); 10815 int size = extract32(insn, 22, 2); 10816 bool is_u = extract32(insn, 29, 1); 10817 bool is_q = extract32(insn, 30, 1); 10818 10819 if (!fp_access_check(s)) { 10820 return; 10821 } 10822 10823 switch (size + 4 * is_u) { 10824 case 0: /* AND */ 10825 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10826 return; 10827 case 1: /* BIC */ 10828 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10829 return; 10830 case 2: /* ORR */ 10831 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10832 return; 10833 case 3: /* ORN */ 10834 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10835 return; 10836 case 4: /* EOR */ 10837 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10838 return; 10839 10840 case 5: /* BSL bitwise select */ 10841 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10842 return; 10843 case 6: /* BIT, bitwise insert if true */ 10844 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10845 return; 10846 case 7: /* BIF, bitwise insert if false */ 10847 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10848 return; 10849 10850 default: 10851 g_assert_not_reached(); 10852 } 10853 } 10854 10855 /* Pairwise op subgroup of C3.6.16. 10856 * 10857 * This is called directly or via the handle_3same_float for float pairwise 10858 * operations where the opcode and size are calculated differently. 10859 */ 10860 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10861 int size, int rn, int rm, int rd) 10862 { 10863 TCGv_ptr fpst; 10864 int pass; 10865 10866 /* Floating point operations need fpst */ 10867 if (opcode >= 0x58) { 10868 fpst = fpstatus_ptr(FPST_FPCR); 10869 } else { 10870 fpst = NULL; 10871 } 10872 10873 if (!fp_access_check(s)) { 10874 return; 10875 } 10876 10877 /* These operations work on the concatenated rm:rn, with each pair of 10878 * adjacent elements being operated on to produce an element in the result. 10879 */ 10880 if (size == 3) { 10881 TCGv_i64 tcg_res[2]; 10882 10883 for (pass = 0; pass < 2; pass++) { 10884 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10885 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10886 int passreg = (pass == 0) ? rn : rm; 10887 10888 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10889 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10890 tcg_res[pass] = tcg_temp_new_i64(); 10891 10892 switch (opcode) { 10893 case 0x17: /* ADDP */ 10894 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10895 break; 10896 case 0x58: /* FMAXNMP */ 10897 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10898 break; 10899 case 0x5a: /* FADDP */ 10900 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10901 break; 10902 case 0x5e: /* FMAXP */ 10903 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10904 break; 10905 case 0x78: /* FMINNMP */ 10906 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10907 break; 10908 case 0x7e: /* FMINP */ 10909 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10910 break; 10911 default: 10912 g_assert_not_reached(); 10913 } 10914 } 10915 10916 for (pass = 0; pass < 2; pass++) { 10917 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10918 } 10919 } else { 10920 int maxpass = is_q ? 4 : 2; 10921 TCGv_i32 tcg_res[4]; 10922 10923 for (pass = 0; pass < maxpass; pass++) { 10924 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10925 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10926 NeonGenTwoOpFn *genfn = NULL; 10927 int passreg = pass < (maxpass / 2) ? rn : rm; 10928 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10929 10930 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10931 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10932 tcg_res[pass] = tcg_temp_new_i32(); 10933 10934 switch (opcode) { 10935 case 0x17: /* ADDP */ 10936 { 10937 static NeonGenTwoOpFn * const fns[3] = { 10938 gen_helper_neon_padd_u8, 10939 gen_helper_neon_padd_u16, 10940 tcg_gen_add_i32, 10941 }; 10942 genfn = fns[size]; 10943 break; 10944 } 10945 case 0x14: /* SMAXP, UMAXP */ 10946 { 10947 static NeonGenTwoOpFn * const fns[3][2] = { 10948 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10949 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10950 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10951 }; 10952 genfn = fns[size][u]; 10953 break; 10954 } 10955 case 0x15: /* SMINP, UMINP */ 10956 { 10957 static NeonGenTwoOpFn * const fns[3][2] = { 10958 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10959 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10960 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10961 }; 10962 genfn = fns[size][u]; 10963 break; 10964 } 10965 /* The FP operations are all on single floats (32 bit) */ 10966 case 0x58: /* FMAXNMP */ 10967 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10968 break; 10969 case 0x5a: /* FADDP */ 10970 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10971 break; 10972 case 0x5e: /* FMAXP */ 10973 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10974 break; 10975 case 0x78: /* FMINNMP */ 10976 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10977 break; 10978 case 0x7e: /* FMINP */ 10979 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10980 break; 10981 default: 10982 g_assert_not_reached(); 10983 } 10984 10985 /* FP ops called directly, otherwise call now */ 10986 if (genfn) { 10987 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10988 } 10989 } 10990 10991 for (pass = 0; pass < maxpass; pass++) { 10992 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10993 } 10994 clear_vec_high(s, is_q, rd); 10995 } 10996 } 10997 10998 /* Floating point op subgroup of C3.6.16. */ 10999 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11000 { 11001 /* For floating point ops, the U, size[1] and opcode bits 11002 * together indicate the operation. size[0] indicates single 11003 * or double. 11004 */ 11005 int fpopcode = extract32(insn, 11, 5) 11006 | (extract32(insn, 23, 1) << 5) 11007 | (extract32(insn, 29, 1) << 6); 11008 int is_q = extract32(insn, 30, 1); 11009 int size = extract32(insn, 22, 1); 11010 int rm = extract32(insn, 16, 5); 11011 int rn = extract32(insn, 5, 5); 11012 int rd = extract32(insn, 0, 5); 11013 11014 int datasize = is_q ? 128 : 64; 11015 int esize = 32 << size; 11016 int elements = datasize / esize; 11017 11018 if (size == 1 && !is_q) { 11019 unallocated_encoding(s); 11020 return; 11021 } 11022 11023 switch (fpopcode) { 11024 case 0x58: /* FMAXNMP */ 11025 case 0x5a: /* FADDP */ 11026 case 0x5e: /* FMAXP */ 11027 case 0x78: /* FMINNMP */ 11028 case 0x7e: /* FMINP */ 11029 if (size && !is_q) { 11030 unallocated_encoding(s); 11031 return; 11032 } 11033 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11034 rn, rm, rd); 11035 return; 11036 case 0x1b: /* FMULX */ 11037 case 0x1f: /* FRECPS */ 11038 case 0x3f: /* FRSQRTS */ 11039 case 0x5d: /* FACGE */ 11040 case 0x7d: /* FACGT */ 11041 case 0x19: /* FMLA */ 11042 case 0x39: /* FMLS */ 11043 case 0x18: /* FMAXNM */ 11044 case 0x1a: /* FADD */ 11045 case 0x1c: /* FCMEQ */ 11046 case 0x1e: /* FMAX */ 11047 case 0x38: /* FMINNM */ 11048 case 0x3a: /* FSUB */ 11049 case 0x3e: /* FMIN */ 11050 case 0x5b: /* FMUL */ 11051 case 0x5c: /* FCMGE */ 11052 case 0x5f: /* FDIV */ 11053 case 0x7a: /* FABD */ 11054 case 0x7c: /* FCMGT */ 11055 if (!fp_access_check(s)) { 11056 return; 11057 } 11058 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11059 return; 11060 11061 case 0x1d: /* FMLAL */ 11062 case 0x3d: /* FMLSL */ 11063 case 0x59: /* FMLAL2 */ 11064 case 0x79: /* FMLSL2 */ 11065 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11066 unallocated_encoding(s); 11067 return; 11068 } 11069 if (fp_access_check(s)) { 11070 int is_s = extract32(insn, 23, 1); 11071 int is_2 = extract32(insn, 29, 1); 11072 int data = (is_2 << 1) | is_s; 11073 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11074 vec_full_reg_offset(s, rn), 11075 vec_full_reg_offset(s, rm), cpu_env, 11076 is_q ? 16 : 8, vec_full_reg_size(s), 11077 data, gen_helper_gvec_fmlal_a64); 11078 } 11079 return; 11080 11081 default: 11082 unallocated_encoding(s); 11083 return; 11084 } 11085 } 11086 11087 /* Integer op subgroup of C3.6.16. */ 11088 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11089 { 11090 int is_q = extract32(insn, 30, 1); 11091 int u = extract32(insn, 29, 1); 11092 int size = extract32(insn, 22, 2); 11093 int opcode = extract32(insn, 11, 5); 11094 int rm = extract32(insn, 16, 5); 11095 int rn = extract32(insn, 5, 5); 11096 int rd = extract32(insn, 0, 5); 11097 int pass; 11098 TCGCond cond; 11099 11100 switch (opcode) { 11101 case 0x13: /* MUL, PMUL */ 11102 if (u && size != 0) { 11103 unallocated_encoding(s); 11104 return; 11105 } 11106 /* fall through */ 11107 case 0x0: /* SHADD, UHADD */ 11108 case 0x2: /* SRHADD, URHADD */ 11109 case 0x4: /* SHSUB, UHSUB */ 11110 case 0xc: /* SMAX, UMAX */ 11111 case 0xd: /* SMIN, UMIN */ 11112 case 0xe: /* SABD, UABD */ 11113 case 0xf: /* SABA, UABA */ 11114 case 0x12: /* MLA, MLS */ 11115 if (size == 3) { 11116 unallocated_encoding(s); 11117 return; 11118 } 11119 break; 11120 case 0x16: /* SQDMULH, SQRDMULH */ 11121 if (size == 0 || size == 3) { 11122 unallocated_encoding(s); 11123 return; 11124 } 11125 break; 11126 default: 11127 if (size == 3 && !is_q) { 11128 unallocated_encoding(s); 11129 return; 11130 } 11131 break; 11132 } 11133 11134 if (!fp_access_check(s)) { 11135 return; 11136 } 11137 11138 switch (opcode) { 11139 case 0x01: /* SQADD, UQADD */ 11140 if (u) { 11141 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11142 } else { 11143 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11144 } 11145 return; 11146 case 0x05: /* SQSUB, UQSUB */ 11147 if (u) { 11148 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11149 } else { 11150 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11151 } 11152 return; 11153 case 0x08: /* SSHL, USHL */ 11154 if (u) { 11155 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11156 } else { 11157 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11158 } 11159 return; 11160 case 0x0c: /* SMAX, UMAX */ 11161 if (u) { 11162 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11163 } else { 11164 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11165 } 11166 return; 11167 case 0x0d: /* SMIN, UMIN */ 11168 if (u) { 11169 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11170 } else { 11171 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11172 } 11173 return; 11174 case 0xe: /* SABD, UABD */ 11175 if (u) { 11176 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11177 } else { 11178 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11179 } 11180 return; 11181 case 0xf: /* SABA, UABA */ 11182 if (u) { 11183 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11184 } else { 11185 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11186 } 11187 return; 11188 case 0x10: /* ADD, SUB */ 11189 if (u) { 11190 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11191 } else { 11192 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11193 } 11194 return; 11195 case 0x13: /* MUL, PMUL */ 11196 if (!u) { /* MUL */ 11197 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11198 } else { /* PMUL */ 11199 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11200 } 11201 return; 11202 case 0x12: /* MLA, MLS */ 11203 if (u) { 11204 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11205 } else { 11206 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11207 } 11208 return; 11209 case 0x16: /* SQDMULH, SQRDMULH */ 11210 { 11211 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11212 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11213 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11214 }; 11215 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11216 } 11217 return; 11218 case 0x11: 11219 if (!u) { /* CMTST */ 11220 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11221 return; 11222 } 11223 /* else CMEQ */ 11224 cond = TCG_COND_EQ; 11225 goto do_gvec_cmp; 11226 case 0x06: /* CMGT, CMHI */ 11227 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11228 goto do_gvec_cmp; 11229 case 0x07: /* CMGE, CMHS */ 11230 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11231 do_gvec_cmp: 11232 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11233 vec_full_reg_offset(s, rn), 11234 vec_full_reg_offset(s, rm), 11235 is_q ? 16 : 8, vec_full_reg_size(s)); 11236 return; 11237 } 11238 11239 if (size == 3) { 11240 assert(is_q); 11241 for (pass = 0; pass < 2; pass++) { 11242 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11243 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11244 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11245 11246 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11247 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11248 11249 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11250 11251 write_vec_element(s, tcg_res, rd, pass, MO_64); 11252 } 11253 } else { 11254 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11255 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11256 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11257 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11258 NeonGenTwoOpFn *genfn = NULL; 11259 NeonGenTwoOpEnvFn *genenvfn = NULL; 11260 11261 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11262 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11263 11264 switch (opcode) { 11265 case 0x0: /* SHADD, UHADD */ 11266 { 11267 static NeonGenTwoOpFn * const fns[3][2] = { 11268 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11269 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11270 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11271 }; 11272 genfn = fns[size][u]; 11273 break; 11274 } 11275 case 0x2: /* SRHADD, URHADD */ 11276 { 11277 static NeonGenTwoOpFn * const fns[3][2] = { 11278 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11279 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11280 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11281 }; 11282 genfn = fns[size][u]; 11283 break; 11284 } 11285 case 0x4: /* SHSUB, UHSUB */ 11286 { 11287 static NeonGenTwoOpFn * const fns[3][2] = { 11288 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11289 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11290 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11291 }; 11292 genfn = fns[size][u]; 11293 break; 11294 } 11295 case 0x9: /* SQSHL, UQSHL */ 11296 { 11297 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11298 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11299 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11300 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11301 }; 11302 genenvfn = fns[size][u]; 11303 break; 11304 } 11305 case 0xa: /* SRSHL, URSHL */ 11306 { 11307 static NeonGenTwoOpFn * const fns[3][2] = { 11308 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11309 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11310 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11311 }; 11312 genfn = fns[size][u]; 11313 break; 11314 } 11315 case 0xb: /* SQRSHL, UQRSHL */ 11316 { 11317 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11318 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11319 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11320 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11321 }; 11322 genenvfn = fns[size][u]; 11323 break; 11324 } 11325 default: 11326 g_assert_not_reached(); 11327 } 11328 11329 if (genenvfn) { 11330 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11331 } else { 11332 genfn(tcg_res, tcg_op1, tcg_op2); 11333 } 11334 11335 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11336 } 11337 } 11338 clear_vec_high(s, is_q, rd); 11339 } 11340 11341 /* AdvSIMD three same 11342 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11343 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11344 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11345 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11346 */ 11347 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11348 { 11349 int opcode = extract32(insn, 11, 5); 11350 11351 switch (opcode) { 11352 case 0x3: /* logic ops */ 11353 disas_simd_3same_logic(s, insn); 11354 break; 11355 case 0x17: /* ADDP */ 11356 case 0x14: /* SMAXP, UMAXP */ 11357 case 0x15: /* SMINP, UMINP */ 11358 { 11359 /* Pairwise operations */ 11360 int is_q = extract32(insn, 30, 1); 11361 int u = extract32(insn, 29, 1); 11362 int size = extract32(insn, 22, 2); 11363 int rm = extract32(insn, 16, 5); 11364 int rn = extract32(insn, 5, 5); 11365 int rd = extract32(insn, 0, 5); 11366 if (opcode == 0x17) { 11367 if (u || (size == 3 && !is_q)) { 11368 unallocated_encoding(s); 11369 return; 11370 } 11371 } else { 11372 if (size == 3) { 11373 unallocated_encoding(s); 11374 return; 11375 } 11376 } 11377 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11378 break; 11379 } 11380 case 0x18 ... 0x31: 11381 /* floating point ops, sz[1] and U are part of opcode */ 11382 disas_simd_3same_float(s, insn); 11383 break; 11384 default: 11385 disas_simd_3same_int(s, insn); 11386 break; 11387 } 11388 } 11389 11390 /* 11391 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11392 * 11393 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11394 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11395 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11396 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11397 * 11398 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11399 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11400 * 11401 */ 11402 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11403 { 11404 int opcode = extract32(insn, 11, 3); 11405 int u = extract32(insn, 29, 1); 11406 int a = extract32(insn, 23, 1); 11407 int is_q = extract32(insn, 30, 1); 11408 int rm = extract32(insn, 16, 5); 11409 int rn = extract32(insn, 5, 5); 11410 int rd = extract32(insn, 0, 5); 11411 /* 11412 * For these floating point ops, the U, a and opcode bits 11413 * together indicate the operation. 11414 */ 11415 int fpopcode = opcode | (a << 3) | (u << 4); 11416 int datasize = is_q ? 128 : 64; 11417 int elements = datasize / 16; 11418 bool pairwise; 11419 TCGv_ptr fpst; 11420 int pass; 11421 11422 switch (fpopcode) { 11423 case 0x0: /* FMAXNM */ 11424 case 0x1: /* FMLA */ 11425 case 0x2: /* FADD */ 11426 case 0x3: /* FMULX */ 11427 case 0x4: /* FCMEQ */ 11428 case 0x6: /* FMAX */ 11429 case 0x7: /* FRECPS */ 11430 case 0x8: /* FMINNM */ 11431 case 0x9: /* FMLS */ 11432 case 0xa: /* FSUB */ 11433 case 0xe: /* FMIN */ 11434 case 0xf: /* FRSQRTS */ 11435 case 0x13: /* FMUL */ 11436 case 0x14: /* FCMGE */ 11437 case 0x15: /* FACGE */ 11438 case 0x17: /* FDIV */ 11439 case 0x1a: /* FABD */ 11440 case 0x1c: /* FCMGT */ 11441 case 0x1d: /* FACGT */ 11442 pairwise = false; 11443 break; 11444 case 0x10: /* FMAXNMP */ 11445 case 0x12: /* FADDP */ 11446 case 0x16: /* FMAXP */ 11447 case 0x18: /* FMINNMP */ 11448 case 0x1e: /* FMINP */ 11449 pairwise = true; 11450 break; 11451 default: 11452 unallocated_encoding(s); 11453 return; 11454 } 11455 11456 if (!dc_isar_feature(aa64_fp16, s)) { 11457 unallocated_encoding(s); 11458 return; 11459 } 11460 11461 if (!fp_access_check(s)) { 11462 return; 11463 } 11464 11465 fpst = fpstatus_ptr(FPST_FPCR_F16); 11466 11467 if (pairwise) { 11468 int maxpass = is_q ? 8 : 4; 11469 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11470 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11471 TCGv_i32 tcg_res[8]; 11472 11473 for (pass = 0; pass < maxpass; pass++) { 11474 int passreg = pass < (maxpass / 2) ? rn : rm; 11475 int passelt = (pass << 1) & (maxpass - 1); 11476 11477 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11478 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11479 tcg_res[pass] = tcg_temp_new_i32(); 11480 11481 switch (fpopcode) { 11482 case 0x10: /* FMAXNMP */ 11483 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11484 fpst); 11485 break; 11486 case 0x12: /* FADDP */ 11487 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11488 break; 11489 case 0x16: /* FMAXP */ 11490 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11491 break; 11492 case 0x18: /* FMINNMP */ 11493 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11494 fpst); 11495 break; 11496 case 0x1e: /* FMINP */ 11497 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11498 break; 11499 default: 11500 g_assert_not_reached(); 11501 } 11502 } 11503 11504 for (pass = 0; pass < maxpass; pass++) { 11505 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11506 } 11507 } else { 11508 for (pass = 0; pass < elements; pass++) { 11509 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11510 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11511 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11512 11513 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11514 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11515 11516 switch (fpopcode) { 11517 case 0x0: /* FMAXNM */ 11518 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11519 break; 11520 case 0x1: /* FMLA */ 11521 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11522 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11523 fpst); 11524 break; 11525 case 0x2: /* FADD */ 11526 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11527 break; 11528 case 0x3: /* FMULX */ 11529 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11530 break; 11531 case 0x4: /* FCMEQ */ 11532 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11533 break; 11534 case 0x6: /* FMAX */ 11535 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11536 break; 11537 case 0x7: /* FRECPS */ 11538 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11539 break; 11540 case 0x8: /* FMINNM */ 11541 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11542 break; 11543 case 0x9: /* FMLS */ 11544 /* As usual for ARM, separate negation for fused multiply-add */ 11545 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11546 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11547 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11548 fpst); 11549 break; 11550 case 0xa: /* FSUB */ 11551 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11552 break; 11553 case 0xe: /* FMIN */ 11554 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11555 break; 11556 case 0xf: /* FRSQRTS */ 11557 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11558 break; 11559 case 0x13: /* FMUL */ 11560 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11561 break; 11562 case 0x14: /* FCMGE */ 11563 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11564 break; 11565 case 0x15: /* FACGE */ 11566 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11567 break; 11568 case 0x17: /* FDIV */ 11569 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11570 break; 11571 case 0x1a: /* FABD */ 11572 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11573 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11574 break; 11575 case 0x1c: /* FCMGT */ 11576 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11577 break; 11578 case 0x1d: /* FACGT */ 11579 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11580 break; 11581 default: 11582 g_assert_not_reached(); 11583 } 11584 11585 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11586 } 11587 } 11588 11589 clear_vec_high(s, is_q, rd); 11590 } 11591 11592 /* AdvSIMD three same extra 11593 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11594 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11595 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11596 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11597 */ 11598 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11599 { 11600 int rd = extract32(insn, 0, 5); 11601 int rn = extract32(insn, 5, 5); 11602 int opcode = extract32(insn, 11, 4); 11603 int rm = extract32(insn, 16, 5); 11604 int size = extract32(insn, 22, 2); 11605 bool u = extract32(insn, 29, 1); 11606 bool is_q = extract32(insn, 30, 1); 11607 bool feature; 11608 int rot; 11609 11610 switch (u * 16 + opcode) { 11611 case 0x10: /* SQRDMLAH (vector) */ 11612 case 0x11: /* SQRDMLSH (vector) */ 11613 if (size != 1 && size != 2) { 11614 unallocated_encoding(s); 11615 return; 11616 } 11617 feature = dc_isar_feature(aa64_rdm, s); 11618 break; 11619 case 0x02: /* SDOT (vector) */ 11620 case 0x12: /* UDOT (vector) */ 11621 if (size != MO_32) { 11622 unallocated_encoding(s); 11623 return; 11624 } 11625 feature = dc_isar_feature(aa64_dp, s); 11626 break; 11627 case 0x03: /* USDOT */ 11628 if (size != MO_32) { 11629 unallocated_encoding(s); 11630 return; 11631 } 11632 feature = dc_isar_feature(aa64_i8mm, s); 11633 break; 11634 case 0x04: /* SMMLA */ 11635 case 0x14: /* UMMLA */ 11636 case 0x05: /* USMMLA */ 11637 if (!is_q || size != MO_32) { 11638 unallocated_encoding(s); 11639 return; 11640 } 11641 feature = dc_isar_feature(aa64_i8mm, s); 11642 break; 11643 case 0x18: /* FCMLA, #0 */ 11644 case 0x19: /* FCMLA, #90 */ 11645 case 0x1a: /* FCMLA, #180 */ 11646 case 0x1b: /* FCMLA, #270 */ 11647 case 0x1c: /* FCADD, #90 */ 11648 case 0x1e: /* FCADD, #270 */ 11649 if (size == 0 11650 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11651 || (size == 3 && !is_q)) { 11652 unallocated_encoding(s); 11653 return; 11654 } 11655 feature = dc_isar_feature(aa64_fcma, s); 11656 break; 11657 case 0x1d: /* BFMMLA */ 11658 if (size != MO_16 || !is_q) { 11659 unallocated_encoding(s); 11660 return; 11661 } 11662 feature = dc_isar_feature(aa64_bf16, s); 11663 break; 11664 case 0x1f: 11665 switch (size) { 11666 case 1: /* BFDOT */ 11667 case 3: /* BFMLAL{B,T} */ 11668 feature = dc_isar_feature(aa64_bf16, s); 11669 break; 11670 default: 11671 unallocated_encoding(s); 11672 return; 11673 } 11674 break; 11675 default: 11676 unallocated_encoding(s); 11677 return; 11678 } 11679 if (!feature) { 11680 unallocated_encoding(s); 11681 return; 11682 } 11683 if (!fp_access_check(s)) { 11684 return; 11685 } 11686 11687 switch (opcode) { 11688 case 0x0: /* SQRDMLAH (vector) */ 11689 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11690 return; 11691 11692 case 0x1: /* SQRDMLSH (vector) */ 11693 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11694 return; 11695 11696 case 0x2: /* SDOT / UDOT */ 11697 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11698 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11699 return; 11700 11701 case 0x3: /* USDOT */ 11702 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11703 return; 11704 11705 case 0x04: /* SMMLA, UMMLA */ 11706 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11707 u ? gen_helper_gvec_ummla_b 11708 : gen_helper_gvec_smmla_b); 11709 return; 11710 case 0x05: /* USMMLA */ 11711 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11712 return; 11713 11714 case 0x8: /* FCMLA, #0 */ 11715 case 0x9: /* FCMLA, #90 */ 11716 case 0xa: /* FCMLA, #180 */ 11717 case 0xb: /* FCMLA, #270 */ 11718 rot = extract32(opcode, 0, 2); 11719 switch (size) { 11720 case 1: 11721 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11722 gen_helper_gvec_fcmlah); 11723 break; 11724 case 2: 11725 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11726 gen_helper_gvec_fcmlas); 11727 break; 11728 case 3: 11729 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11730 gen_helper_gvec_fcmlad); 11731 break; 11732 default: 11733 g_assert_not_reached(); 11734 } 11735 return; 11736 11737 case 0xc: /* FCADD, #90 */ 11738 case 0xe: /* FCADD, #270 */ 11739 rot = extract32(opcode, 1, 1); 11740 switch (size) { 11741 case 1: 11742 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11743 gen_helper_gvec_fcaddh); 11744 break; 11745 case 2: 11746 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11747 gen_helper_gvec_fcadds); 11748 break; 11749 case 3: 11750 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11751 gen_helper_gvec_fcaddd); 11752 break; 11753 default: 11754 g_assert_not_reached(); 11755 } 11756 return; 11757 11758 case 0xd: /* BFMMLA */ 11759 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11760 return; 11761 case 0xf: 11762 switch (size) { 11763 case 1: /* BFDOT */ 11764 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11765 break; 11766 case 3: /* BFMLAL{B,T} */ 11767 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11768 gen_helper_gvec_bfmlal); 11769 break; 11770 default: 11771 g_assert_not_reached(); 11772 } 11773 return; 11774 11775 default: 11776 g_assert_not_reached(); 11777 } 11778 } 11779 11780 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11781 int size, int rn, int rd) 11782 { 11783 /* Handle 2-reg-misc ops which are widening (so each size element 11784 * in the source becomes a 2*size element in the destination. 11785 * The only instruction like this is FCVTL. 11786 */ 11787 int pass; 11788 11789 if (size == 3) { 11790 /* 32 -> 64 bit fp conversion */ 11791 TCGv_i64 tcg_res[2]; 11792 int srcelt = is_q ? 2 : 0; 11793 11794 for (pass = 0; pass < 2; pass++) { 11795 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11796 tcg_res[pass] = tcg_temp_new_i64(); 11797 11798 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11799 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11800 } 11801 for (pass = 0; pass < 2; pass++) { 11802 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11803 } 11804 } else { 11805 /* 16 -> 32 bit fp conversion */ 11806 int srcelt = is_q ? 4 : 0; 11807 TCGv_i32 tcg_res[4]; 11808 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11809 TCGv_i32 ahp = get_ahp_flag(); 11810 11811 for (pass = 0; pass < 4; pass++) { 11812 tcg_res[pass] = tcg_temp_new_i32(); 11813 11814 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11815 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11816 fpst, ahp); 11817 } 11818 for (pass = 0; pass < 4; pass++) { 11819 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11820 } 11821 } 11822 } 11823 11824 static void handle_rev(DisasContext *s, int opcode, bool u, 11825 bool is_q, int size, int rn, int rd) 11826 { 11827 int op = (opcode << 1) | u; 11828 int opsz = op + size; 11829 int grp_size = 3 - opsz; 11830 int dsize = is_q ? 128 : 64; 11831 int i; 11832 11833 if (opsz >= 3) { 11834 unallocated_encoding(s); 11835 return; 11836 } 11837 11838 if (!fp_access_check(s)) { 11839 return; 11840 } 11841 11842 if (size == 0) { 11843 /* Special case bytes, use bswap op on each group of elements */ 11844 int groups = dsize / (8 << grp_size); 11845 11846 for (i = 0; i < groups; i++) { 11847 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11848 11849 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11850 switch (grp_size) { 11851 case MO_16: 11852 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11853 break; 11854 case MO_32: 11855 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11856 break; 11857 case MO_64: 11858 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11859 break; 11860 default: 11861 g_assert_not_reached(); 11862 } 11863 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11864 } 11865 clear_vec_high(s, is_q, rd); 11866 } else { 11867 int revmask = (1 << grp_size) - 1; 11868 int esize = 8 << size; 11869 int elements = dsize / esize; 11870 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11871 TCGv_i64 tcg_rd[2]; 11872 11873 for (i = 0; i < 2; i++) { 11874 tcg_rd[i] = tcg_temp_new_i64(); 11875 tcg_gen_movi_i64(tcg_rd[i], 0); 11876 } 11877 11878 for (i = 0; i < elements; i++) { 11879 int e_rev = (i & 0xf) ^ revmask; 11880 int w = (e_rev * esize) / 64; 11881 int o = (e_rev * esize) % 64; 11882 11883 read_vec_element(s, tcg_rn, rn, i, size); 11884 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11885 } 11886 11887 for (i = 0; i < 2; i++) { 11888 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11889 } 11890 clear_vec_high(s, true, rd); 11891 } 11892 } 11893 11894 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11895 bool is_q, int size, int rn, int rd) 11896 { 11897 /* Implement the pairwise operations from 2-misc: 11898 * SADDLP, UADDLP, SADALP, UADALP. 11899 * These all add pairs of elements in the input to produce a 11900 * double-width result element in the output (possibly accumulating). 11901 */ 11902 bool accum = (opcode == 0x6); 11903 int maxpass = is_q ? 2 : 1; 11904 int pass; 11905 TCGv_i64 tcg_res[2]; 11906 11907 if (size == 2) { 11908 /* 32 + 32 -> 64 op */ 11909 MemOp memop = size + (u ? 0 : MO_SIGN); 11910 11911 for (pass = 0; pass < maxpass; pass++) { 11912 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11913 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11914 11915 tcg_res[pass] = tcg_temp_new_i64(); 11916 11917 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11918 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11919 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11920 if (accum) { 11921 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11922 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11923 } 11924 } 11925 } else { 11926 for (pass = 0; pass < maxpass; pass++) { 11927 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11928 NeonGenOne64OpFn *genfn; 11929 static NeonGenOne64OpFn * const fns[2][2] = { 11930 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11931 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11932 }; 11933 11934 genfn = fns[size][u]; 11935 11936 tcg_res[pass] = tcg_temp_new_i64(); 11937 11938 read_vec_element(s, tcg_op, rn, pass, MO_64); 11939 genfn(tcg_res[pass], tcg_op); 11940 11941 if (accum) { 11942 read_vec_element(s, tcg_op, rd, pass, MO_64); 11943 if (size == 0) { 11944 gen_helper_neon_addl_u16(tcg_res[pass], 11945 tcg_res[pass], tcg_op); 11946 } else { 11947 gen_helper_neon_addl_u32(tcg_res[pass], 11948 tcg_res[pass], tcg_op); 11949 } 11950 } 11951 } 11952 } 11953 if (!is_q) { 11954 tcg_res[1] = tcg_constant_i64(0); 11955 } 11956 for (pass = 0; pass < 2; pass++) { 11957 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11958 } 11959 } 11960 11961 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11962 { 11963 /* Implement SHLL and SHLL2 */ 11964 int pass; 11965 int part = is_q ? 2 : 0; 11966 TCGv_i64 tcg_res[2]; 11967 11968 for (pass = 0; pass < 2; pass++) { 11969 static NeonGenWidenFn * const widenfns[3] = { 11970 gen_helper_neon_widen_u8, 11971 gen_helper_neon_widen_u16, 11972 tcg_gen_extu_i32_i64, 11973 }; 11974 NeonGenWidenFn *widenfn = widenfns[size]; 11975 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11976 11977 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11978 tcg_res[pass] = tcg_temp_new_i64(); 11979 widenfn(tcg_res[pass], tcg_op); 11980 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11981 } 11982 11983 for (pass = 0; pass < 2; pass++) { 11984 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11985 } 11986 } 11987 11988 /* AdvSIMD two reg misc 11989 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11990 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11991 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11992 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11993 */ 11994 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11995 { 11996 int size = extract32(insn, 22, 2); 11997 int opcode = extract32(insn, 12, 5); 11998 bool u = extract32(insn, 29, 1); 11999 bool is_q = extract32(insn, 30, 1); 12000 int rn = extract32(insn, 5, 5); 12001 int rd = extract32(insn, 0, 5); 12002 bool need_fpstatus = false; 12003 int rmode = -1; 12004 TCGv_i32 tcg_rmode; 12005 TCGv_ptr tcg_fpstatus; 12006 12007 switch (opcode) { 12008 case 0x0: /* REV64, REV32 */ 12009 case 0x1: /* REV16 */ 12010 handle_rev(s, opcode, u, is_q, size, rn, rd); 12011 return; 12012 case 0x5: /* CNT, NOT, RBIT */ 12013 if (u && size == 0) { 12014 /* NOT */ 12015 break; 12016 } else if (u && size == 1) { 12017 /* RBIT */ 12018 break; 12019 } else if (!u && size == 0) { 12020 /* CNT */ 12021 break; 12022 } 12023 unallocated_encoding(s); 12024 return; 12025 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12026 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12027 if (size == 3) { 12028 unallocated_encoding(s); 12029 return; 12030 } 12031 if (!fp_access_check(s)) { 12032 return; 12033 } 12034 12035 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12036 return; 12037 case 0x4: /* CLS, CLZ */ 12038 if (size == 3) { 12039 unallocated_encoding(s); 12040 return; 12041 } 12042 break; 12043 case 0x2: /* SADDLP, UADDLP */ 12044 case 0x6: /* SADALP, UADALP */ 12045 if (size == 3) { 12046 unallocated_encoding(s); 12047 return; 12048 } 12049 if (!fp_access_check(s)) { 12050 return; 12051 } 12052 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12053 return; 12054 case 0x13: /* SHLL, SHLL2 */ 12055 if (u == 0 || size == 3) { 12056 unallocated_encoding(s); 12057 return; 12058 } 12059 if (!fp_access_check(s)) { 12060 return; 12061 } 12062 handle_shll(s, is_q, size, rn, rd); 12063 return; 12064 case 0xa: /* CMLT */ 12065 if (u == 1) { 12066 unallocated_encoding(s); 12067 return; 12068 } 12069 /* fall through */ 12070 case 0x8: /* CMGT, CMGE */ 12071 case 0x9: /* CMEQ, CMLE */ 12072 case 0xb: /* ABS, NEG */ 12073 if (size == 3 && !is_q) { 12074 unallocated_encoding(s); 12075 return; 12076 } 12077 break; 12078 case 0x3: /* SUQADD, USQADD */ 12079 if (size == 3 && !is_q) { 12080 unallocated_encoding(s); 12081 return; 12082 } 12083 if (!fp_access_check(s)) { 12084 return; 12085 } 12086 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12087 return; 12088 case 0x7: /* SQABS, SQNEG */ 12089 if (size == 3 && !is_q) { 12090 unallocated_encoding(s); 12091 return; 12092 } 12093 break; 12094 case 0xc ... 0xf: 12095 case 0x16 ... 0x1f: 12096 { 12097 /* Floating point: U, size[1] and opcode indicate operation; 12098 * size[0] indicates single or double precision. 12099 */ 12100 int is_double = extract32(size, 0, 1); 12101 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12102 size = is_double ? 3 : 2; 12103 switch (opcode) { 12104 case 0x2f: /* FABS */ 12105 case 0x6f: /* FNEG */ 12106 if (size == 3 && !is_q) { 12107 unallocated_encoding(s); 12108 return; 12109 } 12110 break; 12111 case 0x1d: /* SCVTF */ 12112 case 0x5d: /* UCVTF */ 12113 { 12114 bool is_signed = (opcode == 0x1d) ? true : false; 12115 int elements = is_double ? 2 : is_q ? 4 : 2; 12116 if (is_double && !is_q) { 12117 unallocated_encoding(s); 12118 return; 12119 } 12120 if (!fp_access_check(s)) { 12121 return; 12122 } 12123 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12124 return; 12125 } 12126 case 0x2c: /* FCMGT (zero) */ 12127 case 0x2d: /* FCMEQ (zero) */ 12128 case 0x2e: /* FCMLT (zero) */ 12129 case 0x6c: /* FCMGE (zero) */ 12130 case 0x6d: /* FCMLE (zero) */ 12131 if (size == 3 && !is_q) { 12132 unallocated_encoding(s); 12133 return; 12134 } 12135 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12136 return; 12137 case 0x7f: /* FSQRT */ 12138 if (size == 3 && !is_q) { 12139 unallocated_encoding(s); 12140 return; 12141 } 12142 break; 12143 case 0x1a: /* FCVTNS */ 12144 case 0x1b: /* FCVTMS */ 12145 case 0x3a: /* FCVTPS */ 12146 case 0x3b: /* FCVTZS */ 12147 case 0x5a: /* FCVTNU */ 12148 case 0x5b: /* FCVTMU */ 12149 case 0x7a: /* FCVTPU */ 12150 case 0x7b: /* FCVTZU */ 12151 need_fpstatus = true; 12152 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12153 if (size == 3 && !is_q) { 12154 unallocated_encoding(s); 12155 return; 12156 } 12157 break; 12158 case 0x5c: /* FCVTAU */ 12159 case 0x1c: /* FCVTAS */ 12160 need_fpstatus = true; 12161 rmode = FPROUNDING_TIEAWAY; 12162 if (size == 3 && !is_q) { 12163 unallocated_encoding(s); 12164 return; 12165 } 12166 break; 12167 case 0x3c: /* URECPE */ 12168 if (size == 3) { 12169 unallocated_encoding(s); 12170 return; 12171 } 12172 /* fall through */ 12173 case 0x3d: /* FRECPE */ 12174 case 0x7d: /* FRSQRTE */ 12175 if (size == 3 && !is_q) { 12176 unallocated_encoding(s); 12177 return; 12178 } 12179 if (!fp_access_check(s)) { 12180 return; 12181 } 12182 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12183 return; 12184 case 0x56: /* FCVTXN, FCVTXN2 */ 12185 if (size == 2) { 12186 unallocated_encoding(s); 12187 return; 12188 } 12189 /* fall through */ 12190 case 0x16: /* FCVTN, FCVTN2 */ 12191 /* handle_2misc_narrow does a 2*size -> size operation, but these 12192 * instructions encode the source size rather than dest size. 12193 */ 12194 if (!fp_access_check(s)) { 12195 return; 12196 } 12197 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12198 return; 12199 case 0x36: /* BFCVTN, BFCVTN2 */ 12200 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12201 unallocated_encoding(s); 12202 return; 12203 } 12204 if (!fp_access_check(s)) { 12205 return; 12206 } 12207 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12208 return; 12209 case 0x17: /* FCVTL, FCVTL2 */ 12210 if (!fp_access_check(s)) { 12211 return; 12212 } 12213 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12214 return; 12215 case 0x18: /* FRINTN */ 12216 case 0x19: /* FRINTM */ 12217 case 0x38: /* FRINTP */ 12218 case 0x39: /* FRINTZ */ 12219 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12220 /* fall through */ 12221 case 0x59: /* FRINTX */ 12222 case 0x79: /* FRINTI */ 12223 need_fpstatus = true; 12224 if (size == 3 && !is_q) { 12225 unallocated_encoding(s); 12226 return; 12227 } 12228 break; 12229 case 0x58: /* FRINTA */ 12230 rmode = FPROUNDING_TIEAWAY; 12231 need_fpstatus = true; 12232 if (size == 3 && !is_q) { 12233 unallocated_encoding(s); 12234 return; 12235 } 12236 break; 12237 case 0x7c: /* URSQRTE */ 12238 if (size == 3) { 12239 unallocated_encoding(s); 12240 return; 12241 } 12242 break; 12243 case 0x1e: /* FRINT32Z */ 12244 case 0x1f: /* FRINT64Z */ 12245 rmode = FPROUNDING_ZERO; 12246 /* fall through */ 12247 case 0x5e: /* FRINT32X */ 12248 case 0x5f: /* FRINT64X */ 12249 need_fpstatus = true; 12250 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12251 unallocated_encoding(s); 12252 return; 12253 } 12254 break; 12255 default: 12256 unallocated_encoding(s); 12257 return; 12258 } 12259 break; 12260 } 12261 default: 12262 unallocated_encoding(s); 12263 return; 12264 } 12265 12266 if (!fp_access_check(s)) { 12267 return; 12268 } 12269 12270 if (need_fpstatus || rmode >= 0) { 12271 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12272 } else { 12273 tcg_fpstatus = NULL; 12274 } 12275 if (rmode >= 0) { 12276 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12277 } else { 12278 tcg_rmode = NULL; 12279 } 12280 12281 switch (opcode) { 12282 case 0x5: 12283 if (u && size == 0) { /* NOT */ 12284 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12285 return; 12286 } 12287 break; 12288 case 0x8: /* CMGT, CMGE */ 12289 if (u) { 12290 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12291 } else { 12292 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12293 } 12294 return; 12295 case 0x9: /* CMEQ, CMLE */ 12296 if (u) { 12297 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12298 } else { 12299 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12300 } 12301 return; 12302 case 0xa: /* CMLT */ 12303 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12304 return; 12305 case 0xb: 12306 if (u) { /* ABS, NEG */ 12307 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12308 } else { 12309 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12310 } 12311 return; 12312 } 12313 12314 if (size == 3) { 12315 /* All 64-bit element operations can be shared with scalar 2misc */ 12316 int pass; 12317 12318 /* Coverity claims (size == 3 && !is_q) has been eliminated 12319 * from all paths leading to here. 12320 */ 12321 tcg_debug_assert(is_q); 12322 for (pass = 0; pass < 2; pass++) { 12323 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12324 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12325 12326 read_vec_element(s, tcg_op, rn, pass, MO_64); 12327 12328 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12329 tcg_rmode, tcg_fpstatus); 12330 12331 write_vec_element(s, tcg_res, rd, pass, MO_64); 12332 } 12333 } else { 12334 int pass; 12335 12336 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12337 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12338 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12339 12340 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12341 12342 if (size == 2) { 12343 /* Special cases for 32 bit elements */ 12344 switch (opcode) { 12345 case 0x4: /* CLS */ 12346 if (u) { 12347 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12348 } else { 12349 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12350 } 12351 break; 12352 case 0x7: /* SQABS, SQNEG */ 12353 if (u) { 12354 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12355 } else { 12356 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12357 } 12358 break; 12359 case 0x2f: /* FABS */ 12360 gen_helper_vfp_abss(tcg_res, tcg_op); 12361 break; 12362 case 0x6f: /* FNEG */ 12363 gen_helper_vfp_negs(tcg_res, tcg_op); 12364 break; 12365 case 0x7f: /* FSQRT */ 12366 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12367 break; 12368 case 0x1a: /* FCVTNS */ 12369 case 0x1b: /* FCVTMS */ 12370 case 0x1c: /* FCVTAS */ 12371 case 0x3a: /* FCVTPS */ 12372 case 0x3b: /* FCVTZS */ 12373 gen_helper_vfp_tosls(tcg_res, tcg_op, 12374 tcg_constant_i32(0), tcg_fpstatus); 12375 break; 12376 case 0x5a: /* FCVTNU */ 12377 case 0x5b: /* FCVTMU */ 12378 case 0x5c: /* FCVTAU */ 12379 case 0x7a: /* FCVTPU */ 12380 case 0x7b: /* FCVTZU */ 12381 gen_helper_vfp_touls(tcg_res, tcg_op, 12382 tcg_constant_i32(0), tcg_fpstatus); 12383 break; 12384 case 0x18: /* FRINTN */ 12385 case 0x19: /* FRINTM */ 12386 case 0x38: /* FRINTP */ 12387 case 0x39: /* FRINTZ */ 12388 case 0x58: /* FRINTA */ 12389 case 0x79: /* FRINTI */ 12390 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12391 break; 12392 case 0x59: /* FRINTX */ 12393 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12394 break; 12395 case 0x7c: /* URSQRTE */ 12396 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12397 break; 12398 case 0x1e: /* FRINT32Z */ 12399 case 0x5e: /* FRINT32X */ 12400 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12401 break; 12402 case 0x1f: /* FRINT64Z */ 12403 case 0x5f: /* FRINT64X */ 12404 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12405 break; 12406 default: 12407 g_assert_not_reached(); 12408 } 12409 } else { 12410 /* Use helpers for 8 and 16 bit elements */ 12411 switch (opcode) { 12412 case 0x5: /* CNT, RBIT */ 12413 /* For these two insns size is part of the opcode specifier 12414 * (handled earlier); they always operate on byte elements. 12415 */ 12416 if (u) { 12417 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12418 } else { 12419 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12420 } 12421 break; 12422 case 0x7: /* SQABS, SQNEG */ 12423 { 12424 NeonGenOneOpEnvFn *genfn; 12425 static NeonGenOneOpEnvFn * const fns[2][2] = { 12426 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12427 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12428 }; 12429 genfn = fns[size][u]; 12430 genfn(tcg_res, cpu_env, tcg_op); 12431 break; 12432 } 12433 case 0x4: /* CLS, CLZ */ 12434 if (u) { 12435 if (size == 0) { 12436 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12437 } else { 12438 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12439 } 12440 } else { 12441 if (size == 0) { 12442 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12443 } else { 12444 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12445 } 12446 } 12447 break; 12448 default: 12449 g_assert_not_reached(); 12450 } 12451 } 12452 12453 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12454 } 12455 } 12456 clear_vec_high(s, is_q, rd); 12457 12458 if (tcg_rmode) { 12459 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12460 } 12461 } 12462 12463 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12464 * 12465 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12466 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12467 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12468 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12469 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12470 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12471 * 12472 * This actually covers two groups where scalar access is governed by 12473 * bit 28. A bunch of the instructions (float to integral) only exist 12474 * in the vector form and are un-allocated for the scalar decode. Also 12475 * in the scalar decode Q is always 1. 12476 */ 12477 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12478 { 12479 int fpop, opcode, a, u; 12480 int rn, rd; 12481 bool is_q; 12482 bool is_scalar; 12483 bool only_in_vector = false; 12484 12485 int pass; 12486 TCGv_i32 tcg_rmode = NULL; 12487 TCGv_ptr tcg_fpstatus = NULL; 12488 bool need_fpst = true; 12489 int rmode = -1; 12490 12491 if (!dc_isar_feature(aa64_fp16, s)) { 12492 unallocated_encoding(s); 12493 return; 12494 } 12495 12496 rd = extract32(insn, 0, 5); 12497 rn = extract32(insn, 5, 5); 12498 12499 a = extract32(insn, 23, 1); 12500 u = extract32(insn, 29, 1); 12501 is_scalar = extract32(insn, 28, 1); 12502 is_q = extract32(insn, 30, 1); 12503 12504 opcode = extract32(insn, 12, 5); 12505 fpop = deposit32(opcode, 5, 1, a); 12506 fpop = deposit32(fpop, 6, 1, u); 12507 12508 switch (fpop) { 12509 case 0x1d: /* SCVTF */ 12510 case 0x5d: /* UCVTF */ 12511 { 12512 int elements; 12513 12514 if (is_scalar) { 12515 elements = 1; 12516 } else { 12517 elements = (is_q ? 8 : 4); 12518 } 12519 12520 if (!fp_access_check(s)) { 12521 return; 12522 } 12523 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12524 return; 12525 } 12526 break; 12527 case 0x2c: /* FCMGT (zero) */ 12528 case 0x2d: /* FCMEQ (zero) */ 12529 case 0x2e: /* FCMLT (zero) */ 12530 case 0x6c: /* FCMGE (zero) */ 12531 case 0x6d: /* FCMLE (zero) */ 12532 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12533 return; 12534 case 0x3d: /* FRECPE */ 12535 case 0x3f: /* FRECPX */ 12536 break; 12537 case 0x18: /* FRINTN */ 12538 only_in_vector = true; 12539 rmode = FPROUNDING_TIEEVEN; 12540 break; 12541 case 0x19: /* FRINTM */ 12542 only_in_vector = true; 12543 rmode = FPROUNDING_NEGINF; 12544 break; 12545 case 0x38: /* FRINTP */ 12546 only_in_vector = true; 12547 rmode = FPROUNDING_POSINF; 12548 break; 12549 case 0x39: /* FRINTZ */ 12550 only_in_vector = true; 12551 rmode = FPROUNDING_ZERO; 12552 break; 12553 case 0x58: /* FRINTA */ 12554 only_in_vector = true; 12555 rmode = FPROUNDING_TIEAWAY; 12556 break; 12557 case 0x59: /* FRINTX */ 12558 case 0x79: /* FRINTI */ 12559 only_in_vector = true; 12560 /* current rounding mode */ 12561 break; 12562 case 0x1a: /* FCVTNS */ 12563 rmode = FPROUNDING_TIEEVEN; 12564 break; 12565 case 0x1b: /* FCVTMS */ 12566 rmode = FPROUNDING_NEGINF; 12567 break; 12568 case 0x1c: /* FCVTAS */ 12569 rmode = FPROUNDING_TIEAWAY; 12570 break; 12571 case 0x3a: /* FCVTPS */ 12572 rmode = FPROUNDING_POSINF; 12573 break; 12574 case 0x3b: /* FCVTZS */ 12575 rmode = FPROUNDING_ZERO; 12576 break; 12577 case 0x5a: /* FCVTNU */ 12578 rmode = FPROUNDING_TIEEVEN; 12579 break; 12580 case 0x5b: /* FCVTMU */ 12581 rmode = FPROUNDING_NEGINF; 12582 break; 12583 case 0x5c: /* FCVTAU */ 12584 rmode = FPROUNDING_TIEAWAY; 12585 break; 12586 case 0x7a: /* FCVTPU */ 12587 rmode = FPROUNDING_POSINF; 12588 break; 12589 case 0x7b: /* FCVTZU */ 12590 rmode = FPROUNDING_ZERO; 12591 break; 12592 case 0x2f: /* FABS */ 12593 case 0x6f: /* FNEG */ 12594 need_fpst = false; 12595 break; 12596 case 0x7d: /* FRSQRTE */ 12597 case 0x7f: /* FSQRT (vector) */ 12598 break; 12599 default: 12600 unallocated_encoding(s); 12601 return; 12602 } 12603 12604 12605 /* Check additional constraints for the scalar encoding */ 12606 if (is_scalar) { 12607 if (!is_q) { 12608 unallocated_encoding(s); 12609 return; 12610 } 12611 /* FRINTxx is only in the vector form */ 12612 if (only_in_vector) { 12613 unallocated_encoding(s); 12614 return; 12615 } 12616 } 12617 12618 if (!fp_access_check(s)) { 12619 return; 12620 } 12621 12622 if (rmode >= 0 || need_fpst) { 12623 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12624 } 12625 12626 if (rmode >= 0) { 12627 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12628 } 12629 12630 if (is_scalar) { 12631 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12632 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12633 12634 switch (fpop) { 12635 case 0x1a: /* FCVTNS */ 12636 case 0x1b: /* FCVTMS */ 12637 case 0x1c: /* FCVTAS */ 12638 case 0x3a: /* FCVTPS */ 12639 case 0x3b: /* FCVTZS */ 12640 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12641 break; 12642 case 0x3d: /* FRECPE */ 12643 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12644 break; 12645 case 0x3f: /* FRECPX */ 12646 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12647 break; 12648 case 0x5a: /* FCVTNU */ 12649 case 0x5b: /* FCVTMU */ 12650 case 0x5c: /* FCVTAU */ 12651 case 0x7a: /* FCVTPU */ 12652 case 0x7b: /* FCVTZU */ 12653 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12654 break; 12655 case 0x6f: /* FNEG */ 12656 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12657 break; 12658 case 0x7d: /* FRSQRTE */ 12659 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12660 break; 12661 default: 12662 g_assert_not_reached(); 12663 } 12664 12665 /* limit any sign extension going on */ 12666 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12667 write_fp_sreg(s, rd, tcg_res); 12668 } else { 12669 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12670 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12671 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12672 12673 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12674 12675 switch (fpop) { 12676 case 0x1a: /* FCVTNS */ 12677 case 0x1b: /* FCVTMS */ 12678 case 0x1c: /* FCVTAS */ 12679 case 0x3a: /* FCVTPS */ 12680 case 0x3b: /* FCVTZS */ 12681 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12682 break; 12683 case 0x3d: /* FRECPE */ 12684 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12685 break; 12686 case 0x5a: /* FCVTNU */ 12687 case 0x5b: /* FCVTMU */ 12688 case 0x5c: /* FCVTAU */ 12689 case 0x7a: /* FCVTPU */ 12690 case 0x7b: /* FCVTZU */ 12691 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12692 break; 12693 case 0x18: /* FRINTN */ 12694 case 0x19: /* FRINTM */ 12695 case 0x38: /* FRINTP */ 12696 case 0x39: /* FRINTZ */ 12697 case 0x58: /* FRINTA */ 12698 case 0x79: /* FRINTI */ 12699 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12700 break; 12701 case 0x59: /* FRINTX */ 12702 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12703 break; 12704 case 0x2f: /* FABS */ 12705 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12706 break; 12707 case 0x6f: /* FNEG */ 12708 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12709 break; 12710 case 0x7d: /* FRSQRTE */ 12711 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12712 break; 12713 case 0x7f: /* FSQRT */ 12714 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12715 break; 12716 default: 12717 g_assert_not_reached(); 12718 } 12719 12720 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12721 } 12722 12723 clear_vec_high(s, is_q, rd); 12724 } 12725 12726 if (tcg_rmode) { 12727 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12728 } 12729 } 12730 12731 /* AdvSIMD scalar x indexed element 12732 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12733 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12734 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12735 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12736 * AdvSIMD vector x indexed element 12737 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12738 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12739 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12740 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12741 */ 12742 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12743 { 12744 /* This encoding has two kinds of instruction: 12745 * normal, where we perform elt x idxelt => elt for each 12746 * element in the vector 12747 * long, where we perform elt x idxelt and generate a result of 12748 * double the width of the input element 12749 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12750 */ 12751 bool is_scalar = extract32(insn, 28, 1); 12752 bool is_q = extract32(insn, 30, 1); 12753 bool u = extract32(insn, 29, 1); 12754 int size = extract32(insn, 22, 2); 12755 int l = extract32(insn, 21, 1); 12756 int m = extract32(insn, 20, 1); 12757 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12758 int rm = extract32(insn, 16, 4); 12759 int opcode = extract32(insn, 12, 4); 12760 int h = extract32(insn, 11, 1); 12761 int rn = extract32(insn, 5, 5); 12762 int rd = extract32(insn, 0, 5); 12763 bool is_long = false; 12764 int is_fp = 0; 12765 bool is_fp16 = false; 12766 int index; 12767 TCGv_ptr fpst; 12768 12769 switch (16 * u + opcode) { 12770 case 0x08: /* MUL */ 12771 case 0x10: /* MLA */ 12772 case 0x14: /* MLS */ 12773 if (is_scalar) { 12774 unallocated_encoding(s); 12775 return; 12776 } 12777 break; 12778 case 0x02: /* SMLAL, SMLAL2 */ 12779 case 0x12: /* UMLAL, UMLAL2 */ 12780 case 0x06: /* SMLSL, SMLSL2 */ 12781 case 0x16: /* UMLSL, UMLSL2 */ 12782 case 0x0a: /* SMULL, SMULL2 */ 12783 case 0x1a: /* UMULL, UMULL2 */ 12784 if (is_scalar) { 12785 unallocated_encoding(s); 12786 return; 12787 } 12788 is_long = true; 12789 break; 12790 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12791 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12792 case 0x0b: /* SQDMULL, SQDMULL2 */ 12793 is_long = true; 12794 break; 12795 case 0x0c: /* SQDMULH */ 12796 case 0x0d: /* SQRDMULH */ 12797 break; 12798 case 0x01: /* FMLA */ 12799 case 0x05: /* FMLS */ 12800 case 0x09: /* FMUL */ 12801 case 0x19: /* FMULX */ 12802 is_fp = 1; 12803 break; 12804 case 0x1d: /* SQRDMLAH */ 12805 case 0x1f: /* SQRDMLSH */ 12806 if (!dc_isar_feature(aa64_rdm, s)) { 12807 unallocated_encoding(s); 12808 return; 12809 } 12810 break; 12811 case 0x0e: /* SDOT */ 12812 case 0x1e: /* UDOT */ 12813 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12814 unallocated_encoding(s); 12815 return; 12816 } 12817 break; 12818 case 0x0f: 12819 switch (size) { 12820 case 0: /* SUDOT */ 12821 case 2: /* USDOT */ 12822 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12823 unallocated_encoding(s); 12824 return; 12825 } 12826 size = MO_32; 12827 break; 12828 case 1: /* BFDOT */ 12829 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12830 unallocated_encoding(s); 12831 return; 12832 } 12833 size = MO_32; 12834 break; 12835 case 3: /* BFMLAL{B,T} */ 12836 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12837 unallocated_encoding(s); 12838 return; 12839 } 12840 /* can't set is_fp without other incorrect size checks */ 12841 size = MO_16; 12842 break; 12843 default: 12844 unallocated_encoding(s); 12845 return; 12846 } 12847 break; 12848 case 0x11: /* FCMLA #0 */ 12849 case 0x13: /* FCMLA #90 */ 12850 case 0x15: /* FCMLA #180 */ 12851 case 0x17: /* FCMLA #270 */ 12852 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12853 unallocated_encoding(s); 12854 return; 12855 } 12856 is_fp = 2; 12857 break; 12858 case 0x00: /* FMLAL */ 12859 case 0x04: /* FMLSL */ 12860 case 0x18: /* FMLAL2 */ 12861 case 0x1c: /* FMLSL2 */ 12862 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12863 unallocated_encoding(s); 12864 return; 12865 } 12866 size = MO_16; 12867 /* is_fp, but we pass cpu_env not fp_status. */ 12868 break; 12869 default: 12870 unallocated_encoding(s); 12871 return; 12872 } 12873 12874 switch (is_fp) { 12875 case 1: /* normal fp */ 12876 /* convert insn encoded size to MemOp size */ 12877 switch (size) { 12878 case 0: /* half-precision */ 12879 size = MO_16; 12880 is_fp16 = true; 12881 break; 12882 case MO_32: /* single precision */ 12883 case MO_64: /* double precision */ 12884 break; 12885 default: 12886 unallocated_encoding(s); 12887 return; 12888 } 12889 break; 12890 12891 case 2: /* complex fp */ 12892 /* Each indexable element is a complex pair. */ 12893 size += 1; 12894 switch (size) { 12895 case MO_32: 12896 if (h && !is_q) { 12897 unallocated_encoding(s); 12898 return; 12899 } 12900 is_fp16 = true; 12901 break; 12902 case MO_64: 12903 break; 12904 default: 12905 unallocated_encoding(s); 12906 return; 12907 } 12908 break; 12909 12910 default: /* integer */ 12911 switch (size) { 12912 case MO_8: 12913 case MO_64: 12914 unallocated_encoding(s); 12915 return; 12916 } 12917 break; 12918 } 12919 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12920 unallocated_encoding(s); 12921 return; 12922 } 12923 12924 /* Given MemOp size, adjust register and indexing. */ 12925 switch (size) { 12926 case MO_16: 12927 index = h << 2 | l << 1 | m; 12928 break; 12929 case MO_32: 12930 index = h << 1 | l; 12931 rm |= m << 4; 12932 break; 12933 case MO_64: 12934 if (l || !is_q) { 12935 unallocated_encoding(s); 12936 return; 12937 } 12938 index = h; 12939 rm |= m << 4; 12940 break; 12941 default: 12942 g_assert_not_reached(); 12943 } 12944 12945 if (!fp_access_check(s)) { 12946 return; 12947 } 12948 12949 if (is_fp) { 12950 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12951 } else { 12952 fpst = NULL; 12953 } 12954 12955 switch (16 * u + opcode) { 12956 case 0x0e: /* SDOT */ 12957 case 0x1e: /* UDOT */ 12958 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12959 u ? gen_helper_gvec_udot_idx_b 12960 : gen_helper_gvec_sdot_idx_b); 12961 return; 12962 case 0x0f: 12963 switch (extract32(insn, 22, 2)) { 12964 case 0: /* SUDOT */ 12965 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12966 gen_helper_gvec_sudot_idx_b); 12967 return; 12968 case 1: /* BFDOT */ 12969 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12970 gen_helper_gvec_bfdot_idx); 12971 return; 12972 case 2: /* USDOT */ 12973 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12974 gen_helper_gvec_usdot_idx_b); 12975 return; 12976 case 3: /* BFMLAL{B,T} */ 12977 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12978 gen_helper_gvec_bfmlal_idx); 12979 return; 12980 } 12981 g_assert_not_reached(); 12982 case 0x11: /* FCMLA #0 */ 12983 case 0x13: /* FCMLA #90 */ 12984 case 0x15: /* FCMLA #180 */ 12985 case 0x17: /* FCMLA #270 */ 12986 { 12987 int rot = extract32(insn, 13, 2); 12988 int data = (index << 2) | rot; 12989 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12990 vec_full_reg_offset(s, rn), 12991 vec_full_reg_offset(s, rm), 12992 vec_full_reg_offset(s, rd), fpst, 12993 is_q ? 16 : 8, vec_full_reg_size(s), data, 12994 size == MO_64 12995 ? gen_helper_gvec_fcmlas_idx 12996 : gen_helper_gvec_fcmlah_idx); 12997 } 12998 return; 12999 13000 case 0x00: /* FMLAL */ 13001 case 0x04: /* FMLSL */ 13002 case 0x18: /* FMLAL2 */ 13003 case 0x1c: /* FMLSL2 */ 13004 { 13005 int is_s = extract32(opcode, 2, 1); 13006 int is_2 = u; 13007 int data = (index << 2) | (is_2 << 1) | is_s; 13008 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13009 vec_full_reg_offset(s, rn), 13010 vec_full_reg_offset(s, rm), cpu_env, 13011 is_q ? 16 : 8, vec_full_reg_size(s), 13012 data, gen_helper_gvec_fmlal_idx_a64); 13013 } 13014 return; 13015 13016 case 0x08: /* MUL */ 13017 if (!is_long && !is_scalar) { 13018 static gen_helper_gvec_3 * const fns[3] = { 13019 gen_helper_gvec_mul_idx_h, 13020 gen_helper_gvec_mul_idx_s, 13021 gen_helper_gvec_mul_idx_d, 13022 }; 13023 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13024 vec_full_reg_offset(s, rn), 13025 vec_full_reg_offset(s, rm), 13026 is_q ? 16 : 8, vec_full_reg_size(s), 13027 index, fns[size - 1]); 13028 return; 13029 } 13030 break; 13031 13032 case 0x10: /* MLA */ 13033 if (!is_long && !is_scalar) { 13034 static gen_helper_gvec_4 * const fns[3] = { 13035 gen_helper_gvec_mla_idx_h, 13036 gen_helper_gvec_mla_idx_s, 13037 gen_helper_gvec_mla_idx_d, 13038 }; 13039 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13040 vec_full_reg_offset(s, rn), 13041 vec_full_reg_offset(s, rm), 13042 vec_full_reg_offset(s, rd), 13043 is_q ? 16 : 8, vec_full_reg_size(s), 13044 index, fns[size - 1]); 13045 return; 13046 } 13047 break; 13048 13049 case 0x14: /* MLS */ 13050 if (!is_long && !is_scalar) { 13051 static gen_helper_gvec_4 * const fns[3] = { 13052 gen_helper_gvec_mls_idx_h, 13053 gen_helper_gvec_mls_idx_s, 13054 gen_helper_gvec_mls_idx_d, 13055 }; 13056 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13057 vec_full_reg_offset(s, rn), 13058 vec_full_reg_offset(s, rm), 13059 vec_full_reg_offset(s, rd), 13060 is_q ? 16 : 8, vec_full_reg_size(s), 13061 index, fns[size - 1]); 13062 return; 13063 } 13064 break; 13065 } 13066 13067 if (size == 3) { 13068 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13069 int pass; 13070 13071 assert(is_fp && is_q && !is_long); 13072 13073 read_vec_element(s, tcg_idx, rm, index, MO_64); 13074 13075 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13076 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13077 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13078 13079 read_vec_element(s, tcg_op, rn, pass, MO_64); 13080 13081 switch (16 * u + opcode) { 13082 case 0x05: /* FMLS */ 13083 /* As usual for ARM, separate negation for fused multiply-add */ 13084 gen_helper_vfp_negd(tcg_op, tcg_op); 13085 /* fall through */ 13086 case 0x01: /* FMLA */ 13087 read_vec_element(s, tcg_res, rd, pass, MO_64); 13088 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13089 break; 13090 case 0x09: /* FMUL */ 13091 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13092 break; 13093 case 0x19: /* FMULX */ 13094 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13095 break; 13096 default: 13097 g_assert_not_reached(); 13098 } 13099 13100 write_vec_element(s, tcg_res, rd, pass, MO_64); 13101 } 13102 13103 clear_vec_high(s, !is_scalar, rd); 13104 } else if (!is_long) { 13105 /* 32 bit floating point, or 16 or 32 bit integer. 13106 * For the 16 bit scalar case we use the usual Neon helpers and 13107 * rely on the fact that 0 op 0 == 0 with no side effects. 13108 */ 13109 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13110 int pass, maxpasses; 13111 13112 if (is_scalar) { 13113 maxpasses = 1; 13114 } else { 13115 maxpasses = is_q ? 4 : 2; 13116 } 13117 13118 read_vec_element_i32(s, tcg_idx, rm, index, size); 13119 13120 if (size == 1 && !is_scalar) { 13121 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13122 * the index into both halves of the 32 bit tcg_idx and then use 13123 * the usual Neon helpers. 13124 */ 13125 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13126 } 13127 13128 for (pass = 0; pass < maxpasses; pass++) { 13129 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13130 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13131 13132 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13133 13134 switch (16 * u + opcode) { 13135 case 0x08: /* MUL */ 13136 case 0x10: /* MLA */ 13137 case 0x14: /* MLS */ 13138 { 13139 static NeonGenTwoOpFn * const fns[2][2] = { 13140 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13141 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13142 }; 13143 NeonGenTwoOpFn *genfn; 13144 bool is_sub = opcode == 0x4; 13145 13146 if (size == 1) { 13147 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13148 } else { 13149 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13150 } 13151 if (opcode == 0x8) { 13152 break; 13153 } 13154 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13155 genfn = fns[size - 1][is_sub]; 13156 genfn(tcg_res, tcg_op, tcg_res); 13157 break; 13158 } 13159 case 0x05: /* FMLS */ 13160 case 0x01: /* FMLA */ 13161 read_vec_element_i32(s, tcg_res, rd, pass, 13162 is_scalar ? size : MO_32); 13163 switch (size) { 13164 case 1: 13165 if (opcode == 0x5) { 13166 /* As usual for ARM, separate negation for fused 13167 * multiply-add */ 13168 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13169 } 13170 if (is_scalar) { 13171 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13172 tcg_res, fpst); 13173 } else { 13174 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13175 tcg_res, fpst); 13176 } 13177 break; 13178 case 2: 13179 if (opcode == 0x5) { 13180 /* As usual for ARM, separate negation for 13181 * fused multiply-add */ 13182 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13183 } 13184 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13185 tcg_res, fpst); 13186 break; 13187 default: 13188 g_assert_not_reached(); 13189 } 13190 break; 13191 case 0x09: /* FMUL */ 13192 switch (size) { 13193 case 1: 13194 if (is_scalar) { 13195 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13196 tcg_idx, fpst); 13197 } else { 13198 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13199 tcg_idx, fpst); 13200 } 13201 break; 13202 case 2: 13203 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13204 break; 13205 default: 13206 g_assert_not_reached(); 13207 } 13208 break; 13209 case 0x19: /* FMULX */ 13210 switch (size) { 13211 case 1: 13212 if (is_scalar) { 13213 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13214 tcg_idx, fpst); 13215 } else { 13216 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13217 tcg_idx, fpst); 13218 } 13219 break; 13220 case 2: 13221 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13222 break; 13223 default: 13224 g_assert_not_reached(); 13225 } 13226 break; 13227 case 0x0c: /* SQDMULH */ 13228 if (size == 1) { 13229 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13230 tcg_op, tcg_idx); 13231 } else { 13232 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13233 tcg_op, tcg_idx); 13234 } 13235 break; 13236 case 0x0d: /* SQRDMULH */ 13237 if (size == 1) { 13238 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13239 tcg_op, tcg_idx); 13240 } else { 13241 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13242 tcg_op, tcg_idx); 13243 } 13244 break; 13245 case 0x1d: /* SQRDMLAH */ 13246 read_vec_element_i32(s, tcg_res, rd, pass, 13247 is_scalar ? size : MO_32); 13248 if (size == 1) { 13249 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13250 tcg_op, tcg_idx, tcg_res); 13251 } else { 13252 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13253 tcg_op, tcg_idx, tcg_res); 13254 } 13255 break; 13256 case 0x1f: /* SQRDMLSH */ 13257 read_vec_element_i32(s, tcg_res, rd, pass, 13258 is_scalar ? size : MO_32); 13259 if (size == 1) { 13260 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13261 tcg_op, tcg_idx, tcg_res); 13262 } else { 13263 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13264 tcg_op, tcg_idx, tcg_res); 13265 } 13266 break; 13267 default: 13268 g_assert_not_reached(); 13269 } 13270 13271 if (is_scalar) { 13272 write_fp_sreg(s, rd, tcg_res); 13273 } else { 13274 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13275 } 13276 } 13277 13278 clear_vec_high(s, is_q, rd); 13279 } else { 13280 /* long ops: 16x16->32 or 32x32->64 */ 13281 TCGv_i64 tcg_res[2]; 13282 int pass; 13283 bool satop = extract32(opcode, 0, 1); 13284 MemOp memop = MO_32; 13285 13286 if (satop || !u) { 13287 memop |= MO_SIGN; 13288 } 13289 13290 if (size == 2) { 13291 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13292 13293 read_vec_element(s, tcg_idx, rm, index, memop); 13294 13295 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13296 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13297 TCGv_i64 tcg_passres; 13298 int passelt; 13299 13300 if (is_scalar) { 13301 passelt = 0; 13302 } else { 13303 passelt = pass + (is_q * 2); 13304 } 13305 13306 read_vec_element(s, tcg_op, rn, passelt, memop); 13307 13308 tcg_res[pass] = tcg_temp_new_i64(); 13309 13310 if (opcode == 0xa || opcode == 0xb) { 13311 /* Non-accumulating ops */ 13312 tcg_passres = tcg_res[pass]; 13313 } else { 13314 tcg_passres = tcg_temp_new_i64(); 13315 } 13316 13317 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13318 13319 if (satop) { 13320 /* saturating, doubling */ 13321 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13322 tcg_passres, tcg_passres); 13323 } 13324 13325 if (opcode == 0xa || opcode == 0xb) { 13326 continue; 13327 } 13328 13329 /* Accumulating op: handle accumulate step */ 13330 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13331 13332 switch (opcode) { 13333 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13334 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13335 break; 13336 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13337 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13338 break; 13339 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13340 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13341 /* fall through */ 13342 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13343 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13344 tcg_res[pass], 13345 tcg_passres); 13346 break; 13347 default: 13348 g_assert_not_reached(); 13349 } 13350 } 13351 13352 clear_vec_high(s, !is_scalar, rd); 13353 } else { 13354 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13355 13356 assert(size == 1); 13357 read_vec_element_i32(s, tcg_idx, rm, index, size); 13358 13359 if (!is_scalar) { 13360 /* The simplest way to handle the 16x16 indexed ops is to 13361 * duplicate the index into both halves of the 32 bit tcg_idx 13362 * and then use the usual Neon helpers. 13363 */ 13364 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13365 } 13366 13367 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13368 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13369 TCGv_i64 tcg_passres; 13370 13371 if (is_scalar) { 13372 read_vec_element_i32(s, tcg_op, rn, pass, size); 13373 } else { 13374 read_vec_element_i32(s, tcg_op, rn, 13375 pass + (is_q * 2), MO_32); 13376 } 13377 13378 tcg_res[pass] = tcg_temp_new_i64(); 13379 13380 if (opcode == 0xa || opcode == 0xb) { 13381 /* Non-accumulating ops */ 13382 tcg_passres = tcg_res[pass]; 13383 } else { 13384 tcg_passres = tcg_temp_new_i64(); 13385 } 13386 13387 if (memop & MO_SIGN) { 13388 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13389 } else { 13390 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13391 } 13392 if (satop) { 13393 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13394 tcg_passres, tcg_passres); 13395 } 13396 13397 if (opcode == 0xa || opcode == 0xb) { 13398 continue; 13399 } 13400 13401 /* Accumulating op: handle accumulate step */ 13402 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13403 13404 switch (opcode) { 13405 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13406 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13407 tcg_passres); 13408 break; 13409 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13410 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13411 tcg_passres); 13412 break; 13413 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13414 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13415 /* fall through */ 13416 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13417 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13418 tcg_res[pass], 13419 tcg_passres); 13420 break; 13421 default: 13422 g_assert_not_reached(); 13423 } 13424 } 13425 13426 if (is_scalar) { 13427 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13428 } 13429 } 13430 13431 if (is_scalar) { 13432 tcg_res[1] = tcg_constant_i64(0); 13433 } 13434 13435 for (pass = 0; pass < 2; pass++) { 13436 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13437 } 13438 } 13439 } 13440 13441 /* Crypto AES 13442 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13443 * +-----------------+------+-----------+--------+-----+------+------+ 13444 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13445 * +-----------------+------+-----------+--------+-----+------+------+ 13446 */ 13447 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13448 { 13449 int size = extract32(insn, 22, 2); 13450 int opcode = extract32(insn, 12, 5); 13451 int rn = extract32(insn, 5, 5); 13452 int rd = extract32(insn, 0, 5); 13453 int decrypt; 13454 gen_helper_gvec_2 *genfn2 = NULL; 13455 gen_helper_gvec_3 *genfn3 = NULL; 13456 13457 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13458 unallocated_encoding(s); 13459 return; 13460 } 13461 13462 switch (opcode) { 13463 case 0x4: /* AESE */ 13464 decrypt = 0; 13465 genfn3 = gen_helper_crypto_aese; 13466 break; 13467 case 0x6: /* AESMC */ 13468 decrypt = 0; 13469 genfn2 = gen_helper_crypto_aesmc; 13470 break; 13471 case 0x5: /* AESD */ 13472 decrypt = 1; 13473 genfn3 = gen_helper_crypto_aese; 13474 break; 13475 case 0x7: /* AESIMC */ 13476 decrypt = 1; 13477 genfn2 = gen_helper_crypto_aesmc; 13478 break; 13479 default: 13480 unallocated_encoding(s); 13481 return; 13482 } 13483 13484 if (!fp_access_check(s)) { 13485 return; 13486 } 13487 if (genfn2) { 13488 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13489 } else { 13490 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13491 } 13492 } 13493 13494 /* Crypto three-reg SHA 13495 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13496 * +-----------------+------+---+------+---+--------+-----+------+------+ 13497 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13498 * +-----------------+------+---+------+---+--------+-----+------+------+ 13499 */ 13500 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13501 { 13502 int size = extract32(insn, 22, 2); 13503 int opcode = extract32(insn, 12, 3); 13504 int rm = extract32(insn, 16, 5); 13505 int rn = extract32(insn, 5, 5); 13506 int rd = extract32(insn, 0, 5); 13507 gen_helper_gvec_3 *genfn; 13508 bool feature; 13509 13510 if (size != 0) { 13511 unallocated_encoding(s); 13512 return; 13513 } 13514 13515 switch (opcode) { 13516 case 0: /* SHA1C */ 13517 genfn = gen_helper_crypto_sha1c; 13518 feature = dc_isar_feature(aa64_sha1, s); 13519 break; 13520 case 1: /* SHA1P */ 13521 genfn = gen_helper_crypto_sha1p; 13522 feature = dc_isar_feature(aa64_sha1, s); 13523 break; 13524 case 2: /* SHA1M */ 13525 genfn = gen_helper_crypto_sha1m; 13526 feature = dc_isar_feature(aa64_sha1, s); 13527 break; 13528 case 3: /* SHA1SU0 */ 13529 genfn = gen_helper_crypto_sha1su0; 13530 feature = dc_isar_feature(aa64_sha1, s); 13531 break; 13532 case 4: /* SHA256H */ 13533 genfn = gen_helper_crypto_sha256h; 13534 feature = dc_isar_feature(aa64_sha256, s); 13535 break; 13536 case 5: /* SHA256H2 */ 13537 genfn = gen_helper_crypto_sha256h2; 13538 feature = dc_isar_feature(aa64_sha256, s); 13539 break; 13540 case 6: /* SHA256SU1 */ 13541 genfn = gen_helper_crypto_sha256su1; 13542 feature = dc_isar_feature(aa64_sha256, s); 13543 break; 13544 default: 13545 unallocated_encoding(s); 13546 return; 13547 } 13548 13549 if (!feature) { 13550 unallocated_encoding(s); 13551 return; 13552 } 13553 13554 if (!fp_access_check(s)) { 13555 return; 13556 } 13557 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13558 } 13559 13560 /* Crypto two-reg SHA 13561 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13562 * +-----------------+------+-----------+--------+-----+------+------+ 13563 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13564 * +-----------------+------+-----------+--------+-----+------+------+ 13565 */ 13566 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13567 { 13568 int size = extract32(insn, 22, 2); 13569 int opcode = extract32(insn, 12, 5); 13570 int rn = extract32(insn, 5, 5); 13571 int rd = extract32(insn, 0, 5); 13572 gen_helper_gvec_2 *genfn; 13573 bool feature; 13574 13575 if (size != 0) { 13576 unallocated_encoding(s); 13577 return; 13578 } 13579 13580 switch (opcode) { 13581 case 0: /* SHA1H */ 13582 feature = dc_isar_feature(aa64_sha1, s); 13583 genfn = gen_helper_crypto_sha1h; 13584 break; 13585 case 1: /* SHA1SU1 */ 13586 feature = dc_isar_feature(aa64_sha1, s); 13587 genfn = gen_helper_crypto_sha1su1; 13588 break; 13589 case 2: /* SHA256SU0 */ 13590 feature = dc_isar_feature(aa64_sha256, s); 13591 genfn = gen_helper_crypto_sha256su0; 13592 break; 13593 default: 13594 unallocated_encoding(s); 13595 return; 13596 } 13597 13598 if (!feature) { 13599 unallocated_encoding(s); 13600 return; 13601 } 13602 13603 if (!fp_access_check(s)) { 13604 return; 13605 } 13606 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13607 } 13608 13609 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13610 { 13611 tcg_gen_rotli_i64(d, m, 1); 13612 tcg_gen_xor_i64(d, d, n); 13613 } 13614 13615 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13616 { 13617 tcg_gen_rotli_vec(vece, d, m, 1); 13618 tcg_gen_xor_vec(vece, d, d, n); 13619 } 13620 13621 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13622 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13623 { 13624 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13625 static const GVecGen3 op = { 13626 .fni8 = gen_rax1_i64, 13627 .fniv = gen_rax1_vec, 13628 .opt_opc = vecop_list, 13629 .fno = gen_helper_crypto_rax1, 13630 .vece = MO_64, 13631 }; 13632 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13633 } 13634 13635 /* Crypto three-reg SHA512 13636 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13637 * +-----------------------+------+---+---+-----+--------+------+------+ 13638 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13639 * +-----------------------+------+---+---+-----+--------+------+------+ 13640 */ 13641 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13642 { 13643 int opcode = extract32(insn, 10, 2); 13644 int o = extract32(insn, 14, 1); 13645 int rm = extract32(insn, 16, 5); 13646 int rn = extract32(insn, 5, 5); 13647 int rd = extract32(insn, 0, 5); 13648 bool feature; 13649 gen_helper_gvec_3 *oolfn = NULL; 13650 GVecGen3Fn *gvecfn = NULL; 13651 13652 if (o == 0) { 13653 switch (opcode) { 13654 case 0: /* SHA512H */ 13655 feature = dc_isar_feature(aa64_sha512, s); 13656 oolfn = gen_helper_crypto_sha512h; 13657 break; 13658 case 1: /* SHA512H2 */ 13659 feature = dc_isar_feature(aa64_sha512, s); 13660 oolfn = gen_helper_crypto_sha512h2; 13661 break; 13662 case 2: /* SHA512SU1 */ 13663 feature = dc_isar_feature(aa64_sha512, s); 13664 oolfn = gen_helper_crypto_sha512su1; 13665 break; 13666 case 3: /* RAX1 */ 13667 feature = dc_isar_feature(aa64_sha3, s); 13668 gvecfn = gen_gvec_rax1; 13669 break; 13670 default: 13671 g_assert_not_reached(); 13672 } 13673 } else { 13674 switch (opcode) { 13675 case 0: /* SM3PARTW1 */ 13676 feature = dc_isar_feature(aa64_sm3, s); 13677 oolfn = gen_helper_crypto_sm3partw1; 13678 break; 13679 case 1: /* SM3PARTW2 */ 13680 feature = dc_isar_feature(aa64_sm3, s); 13681 oolfn = gen_helper_crypto_sm3partw2; 13682 break; 13683 case 2: /* SM4EKEY */ 13684 feature = dc_isar_feature(aa64_sm4, s); 13685 oolfn = gen_helper_crypto_sm4ekey; 13686 break; 13687 default: 13688 unallocated_encoding(s); 13689 return; 13690 } 13691 } 13692 13693 if (!feature) { 13694 unallocated_encoding(s); 13695 return; 13696 } 13697 13698 if (!fp_access_check(s)) { 13699 return; 13700 } 13701 13702 if (oolfn) { 13703 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13704 } else { 13705 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13706 } 13707 } 13708 13709 /* Crypto two-reg SHA512 13710 * 31 12 11 10 9 5 4 0 13711 * +-----------------------------------------+--------+------+------+ 13712 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13713 * +-----------------------------------------+--------+------+------+ 13714 */ 13715 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13716 { 13717 int opcode = extract32(insn, 10, 2); 13718 int rn = extract32(insn, 5, 5); 13719 int rd = extract32(insn, 0, 5); 13720 bool feature; 13721 13722 switch (opcode) { 13723 case 0: /* SHA512SU0 */ 13724 feature = dc_isar_feature(aa64_sha512, s); 13725 break; 13726 case 1: /* SM4E */ 13727 feature = dc_isar_feature(aa64_sm4, s); 13728 break; 13729 default: 13730 unallocated_encoding(s); 13731 return; 13732 } 13733 13734 if (!feature) { 13735 unallocated_encoding(s); 13736 return; 13737 } 13738 13739 if (!fp_access_check(s)) { 13740 return; 13741 } 13742 13743 switch (opcode) { 13744 case 0: /* SHA512SU0 */ 13745 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13746 break; 13747 case 1: /* SM4E */ 13748 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13749 break; 13750 default: 13751 g_assert_not_reached(); 13752 } 13753 } 13754 13755 /* Crypto four-register 13756 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13757 * +-------------------+-----+------+---+------+------+------+ 13758 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13759 * +-------------------+-----+------+---+------+------+------+ 13760 */ 13761 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13762 { 13763 int op0 = extract32(insn, 21, 2); 13764 int rm = extract32(insn, 16, 5); 13765 int ra = extract32(insn, 10, 5); 13766 int rn = extract32(insn, 5, 5); 13767 int rd = extract32(insn, 0, 5); 13768 bool feature; 13769 13770 switch (op0) { 13771 case 0: /* EOR3 */ 13772 case 1: /* BCAX */ 13773 feature = dc_isar_feature(aa64_sha3, s); 13774 break; 13775 case 2: /* SM3SS1 */ 13776 feature = dc_isar_feature(aa64_sm3, s); 13777 break; 13778 default: 13779 unallocated_encoding(s); 13780 return; 13781 } 13782 13783 if (!feature) { 13784 unallocated_encoding(s); 13785 return; 13786 } 13787 13788 if (!fp_access_check(s)) { 13789 return; 13790 } 13791 13792 if (op0 < 2) { 13793 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13794 int pass; 13795 13796 tcg_op1 = tcg_temp_new_i64(); 13797 tcg_op2 = tcg_temp_new_i64(); 13798 tcg_op3 = tcg_temp_new_i64(); 13799 tcg_res[0] = tcg_temp_new_i64(); 13800 tcg_res[1] = tcg_temp_new_i64(); 13801 13802 for (pass = 0; pass < 2; pass++) { 13803 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13804 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13805 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13806 13807 if (op0 == 0) { 13808 /* EOR3 */ 13809 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13810 } else { 13811 /* BCAX */ 13812 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13813 } 13814 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13815 } 13816 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13817 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13818 } else { 13819 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13820 13821 tcg_op1 = tcg_temp_new_i32(); 13822 tcg_op2 = tcg_temp_new_i32(); 13823 tcg_op3 = tcg_temp_new_i32(); 13824 tcg_res = tcg_temp_new_i32(); 13825 tcg_zero = tcg_constant_i32(0); 13826 13827 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13828 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13829 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13830 13831 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13832 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13833 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13834 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13835 13836 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13837 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13838 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13839 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13840 } 13841 } 13842 13843 /* Crypto XAR 13844 * 31 21 20 16 15 10 9 5 4 0 13845 * +-----------------------+------+--------+------+------+ 13846 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13847 * +-----------------------+------+--------+------+------+ 13848 */ 13849 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13850 { 13851 int rm = extract32(insn, 16, 5); 13852 int imm6 = extract32(insn, 10, 6); 13853 int rn = extract32(insn, 5, 5); 13854 int rd = extract32(insn, 0, 5); 13855 13856 if (!dc_isar_feature(aa64_sha3, s)) { 13857 unallocated_encoding(s); 13858 return; 13859 } 13860 13861 if (!fp_access_check(s)) { 13862 return; 13863 } 13864 13865 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13866 vec_full_reg_offset(s, rn), 13867 vec_full_reg_offset(s, rm), imm6, 16, 13868 vec_full_reg_size(s)); 13869 } 13870 13871 /* Crypto three-reg imm2 13872 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13873 * +-----------------------+------+-----+------+--------+------+------+ 13874 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13875 * +-----------------------+------+-----+------+--------+------+------+ 13876 */ 13877 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13878 { 13879 static gen_helper_gvec_3 * const fns[4] = { 13880 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13881 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13882 }; 13883 int opcode = extract32(insn, 10, 2); 13884 int imm2 = extract32(insn, 12, 2); 13885 int rm = extract32(insn, 16, 5); 13886 int rn = extract32(insn, 5, 5); 13887 int rd = extract32(insn, 0, 5); 13888 13889 if (!dc_isar_feature(aa64_sm3, s)) { 13890 unallocated_encoding(s); 13891 return; 13892 } 13893 13894 if (!fp_access_check(s)) { 13895 return; 13896 } 13897 13898 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13899 } 13900 13901 /* C3.6 Data processing - SIMD, inc Crypto 13902 * 13903 * As the decode gets a little complex we are using a table based 13904 * approach for this part of the decode. 13905 */ 13906 static const AArch64DecodeTable data_proc_simd[] = { 13907 /* pattern , mask , fn */ 13908 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13909 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13910 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13911 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13912 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13913 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13914 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13915 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13916 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13917 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13918 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13919 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13920 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13921 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13922 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13923 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13924 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13925 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13926 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13927 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13928 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13929 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13930 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13931 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13932 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13933 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13934 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13935 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13936 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13937 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13938 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13939 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13940 { 0x00000000, 0x00000000, NULL } 13941 }; 13942 13943 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13944 { 13945 /* Note that this is called with all non-FP cases from 13946 * table C3-6 so it must UNDEF for entries not specifically 13947 * allocated to instructions in that table. 13948 */ 13949 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13950 if (fn) { 13951 fn(s, insn); 13952 } else { 13953 unallocated_encoding(s); 13954 } 13955 } 13956 13957 /* C3.6 Data processing - SIMD and floating point */ 13958 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13959 { 13960 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13961 disas_data_proc_fp(s, insn); 13962 } else { 13963 /* SIMD, including crypto */ 13964 disas_data_proc_simd(s, insn); 13965 } 13966 } 13967 13968 static bool trans_OK(DisasContext *s, arg_OK *a) 13969 { 13970 return true; 13971 } 13972 13973 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13974 { 13975 s->is_nonstreaming = true; 13976 return true; 13977 } 13978 13979 /** 13980 * is_guarded_page: 13981 * @env: The cpu environment 13982 * @s: The DisasContext 13983 * 13984 * Return true if the page is guarded. 13985 */ 13986 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13987 { 13988 uint64_t addr = s->base.pc_first; 13989 #ifdef CONFIG_USER_ONLY 13990 return page_get_flags(addr) & PAGE_BTI; 13991 #else 13992 CPUTLBEntryFull *full; 13993 void *host; 13994 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13995 int flags; 13996 13997 /* 13998 * We test this immediately after reading an insn, which means 13999 * that the TLB entry must be present and valid, and thus this 14000 * access will never raise an exception. 14001 */ 14002 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14003 false, &host, &full, 0); 14004 assert(!(flags & TLB_INVALID_MASK)); 14005 14006 return full->guarded; 14007 #endif 14008 } 14009 14010 /** 14011 * btype_destination_ok: 14012 * @insn: The instruction at the branch destination 14013 * @bt: SCTLR_ELx.BT 14014 * @btype: PSTATE.BTYPE, and is non-zero 14015 * 14016 * On a guarded page, there are a limited number of insns 14017 * that may be present at the branch target: 14018 * - branch target identifiers, 14019 * - paciasp, pacibsp, 14020 * - BRK insn 14021 * - HLT insn 14022 * Anything else causes a Branch Target Exception. 14023 * 14024 * Return true if the branch is compatible, false to raise BTITRAP. 14025 */ 14026 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14027 { 14028 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14029 /* HINT space */ 14030 switch (extract32(insn, 5, 7)) { 14031 case 0b011001: /* PACIASP */ 14032 case 0b011011: /* PACIBSP */ 14033 /* 14034 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14035 * with btype == 3. Otherwise all btype are ok. 14036 */ 14037 return !bt || btype != 3; 14038 case 0b100000: /* BTI */ 14039 /* Not compatible with any btype. */ 14040 return false; 14041 case 0b100010: /* BTI c */ 14042 /* Not compatible with btype == 3 */ 14043 return btype != 3; 14044 case 0b100100: /* BTI j */ 14045 /* Not compatible with btype == 2 */ 14046 return btype != 2; 14047 case 0b100110: /* BTI jc */ 14048 /* Compatible with any btype. */ 14049 return true; 14050 } 14051 } else { 14052 switch (insn & 0xffe0001fu) { 14053 case 0xd4200000u: /* BRK */ 14054 case 0xd4400000u: /* HLT */ 14055 /* Give priority to the breakpoint exception. */ 14056 return true; 14057 } 14058 } 14059 return false; 14060 } 14061 14062 /* C3.1 A64 instruction index by encoding */ 14063 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14064 { 14065 switch (extract32(insn, 25, 4)) { 14066 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14067 disas_b_exc_sys(s, insn); 14068 break; 14069 case 0x4: 14070 case 0x6: 14071 case 0xc: 14072 case 0xe: /* Loads and stores */ 14073 disas_ldst(s, insn); 14074 break; 14075 case 0x5: 14076 case 0xd: /* Data processing - register */ 14077 disas_data_proc_reg(s, insn); 14078 break; 14079 case 0x7: 14080 case 0xf: /* Data processing - SIMD and floating point */ 14081 disas_data_proc_simd_fp(s, insn); 14082 break; 14083 default: 14084 unallocated_encoding(s); 14085 break; 14086 } 14087 } 14088 14089 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14090 CPUState *cpu) 14091 { 14092 DisasContext *dc = container_of(dcbase, DisasContext, base); 14093 CPUARMState *env = cpu->env_ptr; 14094 ARMCPU *arm_cpu = env_archcpu(env); 14095 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14096 int bound, core_mmu_idx; 14097 14098 dc->isar = &arm_cpu->isar; 14099 dc->condjmp = 0; 14100 dc->pc_save = dc->base.pc_first; 14101 dc->aarch64 = true; 14102 dc->thumb = false; 14103 dc->sctlr_b = 0; 14104 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14105 dc->condexec_mask = 0; 14106 dc->condexec_cond = 0; 14107 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14108 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14109 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14110 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14111 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14112 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14113 #if !defined(CONFIG_USER_ONLY) 14114 dc->user = (dc->current_el == 0); 14115 #endif 14116 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14117 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14118 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14119 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14120 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14121 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14122 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14123 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14124 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14125 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14126 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14127 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14128 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14129 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14130 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14131 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14132 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14133 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14134 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14135 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14136 dc->vec_len = 0; 14137 dc->vec_stride = 0; 14138 dc->cp_regs = arm_cpu->cp_regs; 14139 dc->features = env->features; 14140 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14141 14142 #ifdef CONFIG_USER_ONLY 14143 /* In sve_probe_page, we assume TBI is enabled. */ 14144 tcg_debug_assert(dc->tbid & 1); 14145 #endif 14146 14147 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14148 14149 /* Single step state. The code-generation logic here is: 14150 * SS_ACTIVE == 0: 14151 * generate code with no special handling for single-stepping (except 14152 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14153 * this happens anyway because those changes are all system register or 14154 * PSTATE writes). 14155 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14156 * emit code for one insn 14157 * emit code to clear PSTATE.SS 14158 * emit code to generate software step exception for completed step 14159 * end TB (as usual for having generated an exception) 14160 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14161 * emit code to generate a software step exception 14162 * end the TB 14163 */ 14164 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14165 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14166 dc->is_ldex = false; 14167 14168 /* Bound the number of insns to execute to those left on the page. */ 14169 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14170 14171 /* If architectural single step active, limit to 1. */ 14172 if (dc->ss_active) { 14173 bound = 1; 14174 } 14175 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14176 } 14177 14178 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14179 { 14180 } 14181 14182 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14183 { 14184 DisasContext *dc = container_of(dcbase, DisasContext, base); 14185 target_ulong pc_arg = dc->base.pc_next; 14186 14187 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14188 pc_arg &= ~TARGET_PAGE_MASK; 14189 } 14190 tcg_gen_insn_start(pc_arg, 0, 0); 14191 dc->insn_start = tcg_last_op(); 14192 } 14193 14194 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14195 { 14196 DisasContext *s = container_of(dcbase, DisasContext, base); 14197 CPUARMState *env = cpu->env_ptr; 14198 uint64_t pc = s->base.pc_next; 14199 uint32_t insn; 14200 14201 /* Singlestep exceptions have the highest priority. */ 14202 if (s->ss_active && !s->pstate_ss) { 14203 /* Singlestep state is Active-pending. 14204 * If we're in this state at the start of a TB then either 14205 * a) we just took an exception to an EL which is being debugged 14206 * and this is the first insn in the exception handler 14207 * b) debug exceptions were masked and we just unmasked them 14208 * without changing EL (eg by clearing PSTATE.D) 14209 * In either case we're going to take a swstep exception in the 14210 * "did not step an insn" case, and so the syndrome ISV and EX 14211 * bits should be zero. 14212 */ 14213 assert(s->base.num_insns == 1); 14214 gen_swstep_exception(s, 0, 0); 14215 s->base.is_jmp = DISAS_NORETURN; 14216 s->base.pc_next = pc + 4; 14217 return; 14218 } 14219 14220 if (pc & 3) { 14221 /* 14222 * PC alignment fault. This has priority over the instruction abort 14223 * that we would receive from a translation fault via arm_ldl_code. 14224 * This should only be possible after an indirect branch, at the 14225 * start of the TB. 14226 */ 14227 assert(s->base.num_insns == 1); 14228 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14229 s->base.is_jmp = DISAS_NORETURN; 14230 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14231 return; 14232 } 14233 14234 s->pc_curr = pc; 14235 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14236 s->insn = insn; 14237 s->base.pc_next = pc + 4; 14238 14239 s->fp_access_checked = false; 14240 s->sve_access_checked = false; 14241 14242 if (s->pstate_il) { 14243 /* 14244 * Illegal execution state. This has priority over BTI 14245 * exceptions, but comes after instruction abort exceptions. 14246 */ 14247 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14248 return; 14249 } 14250 14251 if (dc_isar_feature(aa64_bti, s)) { 14252 if (s->base.num_insns == 1) { 14253 /* 14254 * At the first insn of the TB, compute s->guarded_page. 14255 * We delayed computing this until successfully reading 14256 * the first insn of the TB, above. This (mostly) ensures 14257 * that the softmmu tlb entry has been populated, and the 14258 * page table GP bit is available. 14259 * 14260 * Note that we need to compute this even if btype == 0, 14261 * because this value is used for BR instructions later 14262 * where ENV is not available. 14263 */ 14264 s->guarded_page = is_guarded_page(env, s); 14265 14266 /* First insn can have btype set to non-zero. */ 14267 tcg_debug_assert(s->btype >= 0); 14268 14269 /* 14270 * Note that the Branch Target Exception has fairly high 14271 * priority -- below debugging exceptions but above most 14272 * everything else. This allows us to handle this now 14273 * instead of waiting until the insn is otherwise decoded. 14274 */ 14275 if (s->btype != 0 14276 && s->guarded_page 14277 && !btype_destination_ok(insn, s->bt, s->btype)) { 14278 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14279 return; 14280 } 14281 } else { 14282 /* Not the first insn: btype must be 0. */ 14283 tcg_debug_assert(s->btype == 0); 14284 } 14285 } 14286 14287 s->is_nonstreaming = false; 14288 if (s->sme_trap_nonstreaming) { 14289 disas_sme_fa64(s, insn); 14290 } 14291 14292 if (!disas_a64(s, insn) && 14293 !disas_sme(s, insn) && 14294 !disas_sve(s, insn)) { 14295 disas_a64_legacy(s, insn); 14296 } 14297 14298 /* 14299 * After execution of most insns, btype is reset to 0. 14300 * Note that we set btype == -1 when the insn sets btype. 14301 */ 14302 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14303 reset_btype(s); 14304 } 14305 } 14306 14307 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14308 { 14309 DisasContext *dc = container_of(dcbase, DisasContext, base); 14310 14311 if (unlikely(dc->ss_active)) { 14312 /* Note that this means single stepping WFI doesn't halt the CPU. 14313 * For conditional branch insns this is harmless unreachable code as 14314 * gen_goto_tb() has already handled emitting the debug exception 14315 * (and thus a tb-jump is not possible when singlestepping). 14316 */ 14317 switch (dc->base.is_jmp) { 14318 default: 14319 gen_a64_update_pc(dc, 4); 14320 /* fall through */ 14321 case DISAS_EXIT: 14322 case DISAS_JUMP: 14323 gen_step_complete_exception(dc); 14324 break; 14325 case DISAS_NORETURN: 14326 break; 14327 } 14328 } else { 14329 switch (dc->base.is_jmp) { 14330 case DISAS_NEXT: 14331 case DISAS_TOO_MANY: 14332 gen_goto_tb(dc, 1, 4); 14333 break; 14334 default: 14335 case DISAS_UPDATE_EXIT: 14336 gen_a64_update_pc(dc, 4); 14337 /* fall through */ 14338 case DISAS_EXIT: 14339 tcg_gen_exit_tb(NULL, 0); 14340 break; 14341 case DISAS_UPDATE_NOCHAIN: 14342 gen_a64_update_pc(dc, 4); 14343 /* fall through */ 14344 case DISAS_JUMP: 14345 tcg_gen_lookup_and_goto_ptr(); 14346 break; 14347 case DISAS_NORETURN: 14348 case DISAS_SWI: 14349 break; 14350 case DISAS_WFE: 14351 gen_a64_update_pc(dc, 4); 14352 gen_helper_wfe(cpu_env); 14353 break; 14354 case DISAS_YIELD: 14355 gen_a64_update_pc(dc, 4); 14356 gen_helper_yield(cpu_env); 14357 break; 14358 case DISAS_WFI: 14359 /* 14360 * This is a special case because we don't want to just halt 14361 * the CPU if trying to debug across a WFI. 14362 */ 14363 gen_a64_update_pc(dc, 4); 14364 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14365 /* 14366 * The helper doesn't necessarily throw an exception, but we 14367 * must go back to the main loop to check for interrupts anyway. 14368 */ 14369 tcg_gen_exit_tb(NULL, 0); 14370 break; 14371 } 14372 } 14373 } 14374 14375 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14376 CPUState *cpu, FILE *logfile) 14377 { 14378 DisasContext *dc = container_of(dcbase, DisasContext, base); 14379 14380 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14381 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14382 } 14383 14384 const TranslatorOps aarch64_translator_ops = { 14385 .init_disas_context = aarch64_tr_init_disas_context, 14386 .tb_start = aarch64_tr_tb_start, 14387 .insn_start = aarch64_tr_insn_start, 14388 .translate_insn = aarch64_tr_translate_insn, 14389 .tb_stop = aarch64_tr_tb_stop, 14390 .disas_log = aarch64_tr_disas_log, 14391 }; 14392