1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 4-operand operation using an out-of-line helper. */ 728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, int ra, int data, gen_helper_gvec_4 *fn) 730 { 731 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 732 vec_full_reg_offset(s, rn), 733 vec_full_reg_offset(s, rm), 734 vec_full_reg_offset(s, ra), 735 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 736 } 737 738 /* 739 * Expand a 4-operand operation using an out-of-line helper that takes 740 * a pointer to the CPU env. 741 */ 742 static void gen_gvec_op4_env(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, int data, 744 gen_helper_gvec_4_ptr *fn) 745 { 746 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 747 vec_full_reg_offset(s, rn), 748 vec_full_reg_offset(s, rm), 749 vec_full_reg_offset(s, ra), 750 tcg_env, 751 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 752 } 753 754 /* 755 * Expand a 4-operand + fpstatus pointer + simd data value operation using 756 * an out-of-line helper. 757 */ 758 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 759 int rm, int ra, bool is_fp16, int data, 760 gen_helper_gvec_4_ptr *fn) 761 { 762 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 763 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 764 vec_full_reg_offset(s, rn), 765 vec_full_reg_offset(s, rm), 766 vec_full_reg_offset(s, ra), fpst, 767 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 768 } 769 770 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 771 * than the 32 bit equivalent. 772 */ 773 static inline void gen_set_NZ64(TCGv_i64 result) 774 { 775 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 776 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 777 } 778 779 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 780 static inline void gen_logic_CC(int sf, TCGv_i64 result) 781 { 782 if (sf) { 783 gen_set_NZ64(result); 784 } else { 785 tcg_gen_extrl_i64_i32(cpu_ZF, result); 786 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 787 } 788 tcg_gen_movi_i32(cpu_CF, 0); 789 tcg_gen_movi_i32(cpu_VF, 0); 790 } 791 792 /* dest = T0 + T1; compute C, N, V and Z flags */ 793 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 794 { 795 TCGv_i64 result, flag, tmp; 796 result = tcg_temp_new_i64(); 797 flag = tcg_temp_new_i64(); 798 tmp = tcg_temp_new_i64(); 799 800 tcg_gen_movi_i64(tmp, 0); 801 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 802 803 tcg_gen_extrl_i64_i32(cpu_CF, flag); 804 805 gen_set_NZ64(result); 806 807 tcg_gen_xor_i64(flag, result, t0); 808 tcg_gen_xor_i64(tmp, t0, t1); 809 tcg_gen_andc_i64(flag, flag, tmp); 810 tcg_gen_extrh_i64_i32(cpu_VF, flag); 811 812 tcg_gen_mov_i64(dest, result); 813 } 814 815 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 816 { 817 TCGv_i32 t0_32 = tcg_temp_new_i32(); 818 TCGv_i32 t1_32 = tcg_temp_new_i32(); 819 TCGv_i32 tmp = tcg_temp_new_i32(); 820 821 tcg_gen_movi_i32(tmp, 0); 822 tcg_gen_extrl_i64_i32(t0_32, t0); 823 tcg_gen_extrl_i64_i32(t1_32, t1); 824 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 825 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 826 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 827 tcg_gen_xor_i32(tmp, t0_32, t1_32); 828 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 829 tcg_gen_extu_i32_i64(dest, cpu_NF); 830 } 831 832 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 833 { 834 if (sf) { 835 gen_add64_CC(dest, t0, t1); 836 } else { 837 gen_add32_CC(dest, t0, t1); 838 } 839 } 840 841 /* dest = T0 - T1; compute C, N, V and Z flags */ 842 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 843 { 844 /* 64 bit arithmetic */ 845 TCGv_i64 result, flag, tmp; 846 847 result = tcg_temp_new_i64(); 848 flag = tcg_temp_new_i64(); 849 tcg_gen_sub_i64(result, t0, t1); 850 851 gen_set_NZ64(result); 852 853 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 854 tcg_gen_extrl_i64_i32(cpu_CF, flag); 855 856 tcg_gen_xor_i64(flag, result, t0); 857 tmp = tcg_temp_new_i64(); 858 tcg_gen_xor_i64(tmp, t0, t1); 859 tcg_gen_and_i64(flag, flag, tmp); 860 tcg_gen_extrh_i64_i32(cpu_VF, flag); 861 tcg_gen_mov_i64(dest, result); 862 } 863 864 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 865 { 866 /* 32 bit arithmetic */ 867 TCGv_i32 t0_32 = tcg_temp_new_i32(); 868 TCGv_i32 t1_32 = tcg_temp_new_i32(); 869 TCGv_i32 tmp; 870 871 tcg_gen_extrl_i64_i32(t0_32, t0); 872 tcg_gen_extrl_i64_i32(t1_32, t1); 873 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 874 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 875 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 876 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 877 tmp = tcg_temp_new_i32(); 878 tcg_gen_xor_i32(tmp, t0_32, t1_32); 879 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 880 tcg_gen_extu_i32_i64(dest, cpu_NF); 881 } 882 883 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 884 { 885 if (sf) { 886 gen_sub64_CC(dest, t0, t1); 887 } else { 888 gen_sub32_CC(dest, t0, t1); 889 } 890 } 891 892 /* dest = T0 + T1 + CF; do not compute flags. */ 893 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 894 { 895 TCGv_i64 flag = tcg_temp_new_i64(); 896 tcg_gen_extu_i32_i64(flag, cpu_CF); 897 tcg_gen_add_i64(dest, t0, t1); 898 tcg_gen_add_i64(dest, dest, flag); 899 900 if (!sf) { 901 tcg_gen_ext32u_i64(dest, dest); 902 } 903 } 904 905 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 906 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 907 { 908 if (sf) { 909 TCGv_i64 result = tcg_temp_new_i64(); 910 TCGv_i64 cf_64 = tcg_temp_new_i64(); 911 TCGv_i64 vf_64 = tcg_temp_new_i64(); 912 TCGv_i64 tmp = tcg_temp_new_i64(); 913 TCGv_i64 zero = tcg_constant_i64(0); 914 915 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 916 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 917 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 918 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 919 gen_set_NZ64(result); 920 921 tcg_gen_xor_i64(vf_64, result, t0); 922 tcg_gen_xor_i64(tmp, t0, t1); 923 tcg_gen_andc_i64(vf_64, vf_64, tmp); 924 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 925 926 tcg_gen_mov_i64(dest, result); 927 } else { 928 TCGv_i32 t0_32 = tcg_temp_new_i32(); 929 TCGv_i32 t1_32 = tcg_temp_new_i32(); 930 TCGv_i32 tmp = tcg_temp_new_i32(); 931 TCGv_i32 zero = tcg_constant_i32(0); 932 933 tcg_gen_extrl_i64_i32(t0_32, t0); 934 tcg_gen_extrl_i64_i32(t1_32, t1); 935 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 936 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 937 938 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 939 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 940 tcg_gen_xor_i32(tmp, t0_32, t1_32); 941 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 942 tcg_gen_extu_i32_i64(dest, cpu_NF); 943 } 944 } 945 946 /* 947 * Load/Store generators 948 */ 949 950 /* 951 * Store from GPR register to memory. 952 */ 953 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 954 TCGv_i64 tcg_addr, MemOp memop, int memidx, 955 bool iss_valid, 956 unsigned int iss_srt, 957 bool iss_sf, bool iss_ar) 958 { 959 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 960 961 if (iss_valid) { 962 uint32_t syn; 963 964 syn = syn_data_abort_with_iss(0, 965 (memop & MO_SIZE), 966 false, 967 iss_srt, 968 iss_sf, 969 iss_ar, 970 0, 0, 0, 0, 0, false); 971 disas_set_insn_syndrome(s, syn); 972 } 973 } 974 975 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 976 TCGv_i64 tcg_addr, MemOp memop, 977 bool iss_valid, 978 unsigned int iss_srt, 979 bool iss_sf, bool iss_ar) 980 { 981 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 982 iss_valid, iss_srt, iss_sf, iss_ar); 983 } 984 985 /* 986 * Load from memory to GPR register 987 */ 988 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 989 MemOp memop, bool extend, int memidx, 990 bool iss_valid, unsigned int iss_srt, 991 bool iss_sf, bool iss_ar) 992 { 993 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 994 995 if (extend && (memop & MO_SIGN)) { 996 g_assert((memop & MO_SIZE) <= MO_32); 997 tcg_gen_ext32u_i64(dest, dest); 998 } 999 1000 if (iss_valid) { 1001 uint32_t syn; 1002 1003 syn = syn_data_abort_with_iss(0, 1004 (memop & MO_SIZE), 1005 (memop & MO_SIGN) != 0, 1006 iss_srt, 1007 iss_sf, 1008 iss_ar, 1009 0, 0, 0, 0, 0, false); 1010 disas_set_insn_syndrome(s, syn); 1011 } 1012 } 1013 1014 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1015 MemOp memop, bool extend, 1016 bool iss_valid, unsigned int iss_srt, 1017 bool iss_sf, bool iss_ar) 1018 { 1019 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1020 iss_valid, iss_srt, iss_sf, iss_ar); 1021 } 1022 1023 /* 1024 * Store from FP register to memory 1025 */ 1026 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1027 { 1028 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1029 TCGv_i64 tmplo = tcg_temp_new_i64(); 1030 1031 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1032 1033 if ((mop & MO_SIZE) < MO_128) { 1034 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1035 } else { 1036 TCGv_i64 tmphi = tcg_temp_new_i64(); 1037 TCGv_i128 t16 = tcg_temp_new_i128(); 1038 1039 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1040 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1041 1042 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1043 } 1044 } 1045 1046 /* 1047 * Load from memory to FP register 1048 */ 1049 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1050 { 1051 /* This always zero-extends and writes to a full 128 bit wide vector */ 1052 TCGv_i64 tmplo = tcg_temp_new_i64(); 1053 TCGv_i64 tmphi = NULL; 1054 1055 if ((mop & MO_SIZE) < MO_128) { 1056 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1057 } else { 1058 TCGv_i128 t16 = tcg_temp_new_i128(); 1059 1060 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1061 1062 tmphi = tcg_temp_new_i64(); 1063 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1064 } 1065 1066 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1067 1068 if (tmphi) { 1069 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1070 } 1071 clear_vec_high(s, tmphi != NULL, destidx); 1072 } 1073 1074 /* 1075 * Vector load/store helpers. 1076 * 1077 * The principal difference between this and a FP load is that we don't 1078 * zero extend as we are filling a partial chunk of the vector register. 1079 * These functions don't support 128 bit loads/stores, which would be 1080 * normal load/store operations. 1081 * 1082 * The _i32 versions are useful when operating on 32 bit quantities 1083 * (eg for floating point single or using Neon helper functions). 1084 */ 1085 1086 /* Get value of an element within a vector register */ 1087 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1088 int element, MemOp memop) 1089 { 1090 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1091 switch ((unsigned)memop) { 1092 case MO_8: 1093 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_16: 1096 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_32: 1099 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_8|MO_SIGN: 1102 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_16|MO_SIGN: 1105 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_32|MO_SIGN: 1108 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1109 break; 1110 case MO_64: 1111 case MO_64|MO_SIGN: 1112 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1113 break; 1114 default: 1115 g_assert_not_reached(); 1116 } 1117 } 1118 1119 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1120 int element, MemOp memop) 1121 { 1122 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1123 switch (memop) { 1124 case MO_8: 1125 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_16: 1128 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_8|MO_SIGN: 1131 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_16|MO_SIGN: 1134 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1135 break; 1136 case MO_32: 1137 case MO_32|MO_SIGN: 1138 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1139 break; 1140 default: 1141 g_assert_not_reached(); 1142 } 1143 } 1144 1145 /* Set value of an element within a vector register */ 1146 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1147 int element, MemOp memop) 1148 { 1149 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1150 switch (memop) { 1151 case MO_8: 1152 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_16: 1155 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_32: 1158 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 case MO_64: 1161 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1162 break; 1163 default: 1164 g_assert_not_reached(); 1165 } 1166 } 1167 1168 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1169 int destidx, int element, MemOp memop) 1170 { 1171 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1172 switch (memop) { 1173 case MO_8: 1174 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_16: 1177 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 case MO_32: 1180 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1181 break; 1182 default: 1183 g_assert_not_reached(); 1184 } 1185 } 1186 1187 /* Store from vector register to memory */ 1188 static void do_vec_st(DisasContext *s, int srcidx, int element, 1189 TCGv_i64 tcg_addr, MemOp mop) 1190 { 1191 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1192 1193 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1194 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1195 } 1196 1197 /* Load from memory to vector register */ 1198 static void do_vec_ld(DisasContext *s, int destidx, int element, 1199 TCGv_i64 tcg_addr, MemOp mop) 1200 { 1201 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1202 1203 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1204 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1205 } 1206 1207 /* Check that FP/Neon access is enabled. If it is, return 1208 * true. If not, emit code to generate an appropriate exception, 1209 * and return false; the caller should not emit any code for 1210 * the instruction. Note that this check must happen after all 1211 * unallocated-encoding checks (otherwise the syndrome information 1212 * for the resulting exception will be incorrect). 1213 */ 1214 static bool fp_access_check_only(DisasContext *s) 1215 { 1216 if (s->fp_excp_el) { 1217 assert(!s->fp_access_checked); 1218 s->fp_access_checked = true; 1219 1220 gen_exception_insn_el(s, 0, EXCP_UDEF, 1221 syn_fp_access_trap(1, 0xe, false, 0), 1222 s->fp_excp_el); 1223 return false; 1224 } 1225 s->fp_access_checked = true; 1226 return true; 1227 } 1228 1229 static bool fp_access_check(DisasContext *s) 1230 { 1231 if (!fp_access_check_only(s)) { 1232 return false; 1233 } 1234 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1235 gen_exception_insn(s, 0, EXCP_UDEF, 1236 syn_smetrap(SME_ET_Streaming, false)); 1237 return false; 1238 } 1239 return true; 1240 } 1241 1242 /* 1243 * Check that SVE access is enabled. If it is, return true. 1244 * If not, emit code to generate an appropriate exception and return false. 1245 * This function corresponds to CheckSVEEnabled(). 1246 */ 1247 bool sve_access_check(DisasContext *s) 1248 { 1249 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1250 assert(dc_isar_feature(aa64_sme, s)); 1251 if (!sme_sm_enabled_check(s)) { 1252 goto fail_exit; 1253 } 1254 } else if (s->sve_excp_el) { 1255 gen_exception_insn_el(s, 0, EXCP_UDEF, 1256 syn_sve_access_trap(), s->sve_excp_el); 1257 goto fail_exit; 1258 } 1259 s->sve_access_checked = true; 1260 return fp_access_check(s); 1261 1262 fail_exit: 1263 /* Assert that we only raise one exception per instruction. */ 1264 assert(!s->sve_access_checked); 1265 s->sve_access_checked = true; 1266 return false; 1267 } 1268 1269 /* 1270 * Check that SME access is enabled, raise an exception if not. 1271 * Note that this function corresponds to CheckSMEAccess and is 1272 * only used directly for cpregs. 1273 */ 1274 static bool sme_access_check(DisasContext *s) 1275 { 1276 if (s->sme_excp_el) { 1277 gen_exception_insn_el(s, 0, EXCP_UDEF, 1278 syn_smetrap(SME_ET_AccessTrap, false), 1279 s->sme_excp_el); 1280 return false; 1281 } 1282 return true; 1283 } 1284 1285 /* This function corresponds to CheckSMEEnabled. */ 1286 bool sme_enabled_check(DisasContext *s) 1287 { 1288 /* 1289 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1290 * to be zero when fp_excp_el has priority. This is because we need 1291 * sme_excp_el by itself for cpregs access checks. 1292 */ 1293 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1294 s->fp_access_checked = true; 1295 return sme_access_check(s); 1296 } 1297 return fp_access_check_only(s); 1298 } 1299 1300 /* Common subroutine for CheckSMEAnd*Enabled. */ 1301 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1302 { 1303 if (!sme_enabled_check(s)) { 1304 return false; 1305 } 1306 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1307 gen_exception_insn(s, 0, EXCP_UDEF, 1308 syn_smetrap(SME_ET_NotStreaming, false)); 1309 return false; 1310 } 1311 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1312 gen_exception_insn(s, 0, EXCP_UDEF, 1313 syn_smetrap(SME_ET_InactiveZA, false)); 1314 return false; 1315 } 1316 return true; 1317 } 1318 1319 /* 1320 * Expanders for AdvSIMD translation functions. 1321 */ 1322 1323 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1324 gen_helper_gvec_2 *fn) 1325 { 1326 if (!a->q && a->esz == MO_64) { 1327 return false; 1328 } 1329 if (fp_access_check(s)) { 1330 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1331 } 1332 return true; 1333 } 1334 1335 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1336 gen_helper_gvec_3 *fn) 1337 { 1338 if (!a->q && a->esz == MO_64) { 1339 return false; 1340 } 1341 if (fp_access_check(s)) { 1342 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1343 } 1344 return true; 1345 } 1346 1347 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1348 { 1349 if (!a->q && a->esz == MO_64) { 1350 return false; 1351 } 1352 if (fp_access_check(s)) { 1353 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1354 } 1355 return true; 1356 } 1357 1358 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1359 { 1360 if (a->esz == MO_64) { 1361 return false; 1362 } 1363 if (fp_access_check(s)) { 1364 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1365 } 1366 return true; 1367 } 1368 1369 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1370 { 1371 if (a->esz == MO_8) { 1372 return false; 1373 } 1374 return do_gvec_fn3_no64(s, a, fn); 1375 } 1376 1377 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1378 { 1379 if (!a->q && a->esz == MO_64) { 1380 return false; 1381 } 1382 if (fp_access_check(s)) { 1383 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1384 } 1385 return true; 1386 } 1387 1388 /* 1389 * This utility function is for doing register extension with an 1390 * optional shift. You will likely want to pass a temporary for the 1391 * destination register. See DecodeRegExtend() in the ARM ARM. 1392 */ 1393 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1394 int option, unsigned int shift) 1395 { 1396 int extsize = extract32(option, 0, 2); 1397 bool is_signed = extract32(option, 2, 1); 1398 1399 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1400 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1401 } 1402 1403 static inline void gen_check_sp_alignment(DisasContext *s) 1404 { 1405 /* The AArch64 architecture mandates that (if enabled via PSTATE 1406 * or SCTLR bits) there is a check that SP is 16-aligned on every 1407 * SP-relative load or store (with an exception generated if it is not). 1408 * In line with general QEMU practice regarding misaligned accesses, 1409 * we omit these checks for the sake of guest program performance. 1410 * This function is provided as a hook so we can more easily add these 1411 * checks in future (possibly as a "favour catching guest program bugs 1412 * over speed" user selectable option). 1413 */ 1414 } 1415 1416 /* 1417 * This provides a simple table based table lookup decoder. It is 1418 * intended to be used when the relevant bits for decode are too 1419 * awkwardly placed and switch/if based logic would be confusing and 1420 * deeply nested. Since it's a linear search through the table, tables 1421 * should be kept small. 1422 * 1423 * It returns the first handler where insn & mask == pattern, or 1424 * NULL if there is no match. 1425 * The table is terminated by an empty mask (i.e. 0) 1426 */ 1427 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1428 uint32_t insn) 1429 { 1430 const AArch64DecodeTable *tptr = table; 1431 1432 while (tptr->mask) { 1433 if ((insn & tptr->mask) == tptr->pattern) { 1434 return tptr->disas_fn; 1435 } 1436 tptr++; 1437 } 1438 return NULL; 1439 } 1440 1441 /* 1442 * The instruction disassembly implemented here matches 1443 * the instruction encoding classifications in chapter C4 1444 * of the ARM Architecture Reference Manual (DDI0487B_a); 1445 * classification names and decode diagrams here should generally 1446 * match up with those in the manual. 1447 */ 1448 1449 static bool trans_B(DisasContext *s, arg_i *a) 1450 { 1451 reset_btype(s); 1452 gen_goto_tb(s, 0, a->imm); 1453 return true; 1454 } 1455 1456 static bool trans_BL(DisasContext *s, arg_i *a) 1457 { 1458 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1459 reset_btype(s); 1460 gen_goto_tb(s, 0, a->imm); 1461 return true; 1462 } 1463 1464 1465 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1466 { 1467 DisasLabel match; 1468 TCGv_i64 tcg_cmp; 1469 1470 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1471 reset_btype(s); 1472 1473 match = gen_disas_label(s); 1474 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1475 tcg_cmp, 0, match.label); 1476 gen_goto_tb(s, 0, 4); 1477 set_disas_label(s, match); 1478 gen_goto_tb(s, 1, a->imm); 1479 return true; 1480 } 1481 1482 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1483 { 1484 DisasLabel match; 1485 TCGv_i64 tcg_cmp; 1486 1487 tcg_cmp = tcg_temp_new_i64(); 1488 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1489 1490 reset_btype(s); 1491 1492 match = gen_disas_label(s); 1493 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1494 tcg_cmp, 0, match.label); 1495 gen_goto_tb(s, 0, 4); 1496 set_disas_label(s, match); 1497 gen_goto_tb(s, 1, a->imm); 1498 return true; 1499 } 1500 1501 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1502 { 1503 /* BC.cond is only present with FEAT_HBC */ 1504 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1505 return false; 1506 } 1507 reset_btype(s); 1508 if (a->cond < 0x0e) { 1509 /* genuinely conditional branches */ 1510 DisasLabel match = gen_disas_label(s); 1511 arm_gen_test_cc(a->cond, match.label); 1512 gen_goto_tb(s, 0, 4); 1513 set_disas_label(s, match); 1514 gen_goto_tb(s, 1, a->imm); 1515 } else { 1516 /* 0xe and 0xf are both "always" conditions */ 1517 gen_goto_tb(s, 0, a->imm); 1518 } 1519 return true; 1520 } 1521 1522 static void set_btype_for_br(DisasContext *s, int rn) 1523 { 1524 if (dc_isar_feature(aa64_bti, s)) { 1525 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1526 if (rn == 16 || rn == 17) { 1527 set_btype(s, 1); 1528 } else { 1529 TCGv_i64 pc = tcg_temp_new_i64(); 1530 gen_pc_plus_diff(s, pc, 0); 1531 gen_helper_guarded_page_br(tcg_env, pc); 1532 s->btype = -1; 1533 } 1534 } 1535 } 1536 1537 static void set_btype_for_blr(DisasContext *s) 1538 { 1539 if (dc_isar_feature(aa64_bti, s)) { 1540 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1541 set_btype(s, 2); 1542 } 1543 } 1544 1545 static bool trans_BR(DisasContext *s, arg_r *a) 1546 { 1547 set_btype_for_br(s, a->rn); 1548 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1549 s->base.is_jmp = DISAS_JUMP; 1550 return true; 1551 } 1552 1553 static bool trans_BLR(DisasContext *s, arg_r *a) 1554 { 1555 TCGv_i64 dst = cpu_reg(s, a->rn); 1556 TCGv_i64 lr = cpu_reg(s, 30); 1557 if (dst == lr) { 1558 TCGv_i64 tmp = tcg_temp_new_i64(); 1559 tcg_gen_mov_i64(tmp, dst); 1560 dst = tmp; 1561 } 1562 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1563 gen_a64_set_pc(s, dst); 1564 set_btype_for_blr(s); 1565 s->base.is_jmp = DISAS_JUMP; 1566 return true; 1567 } 1568 1569 static bool trans_RET(DisasContext *s, arg_r *a) 1570 { 1571 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1572 s->base.is_jmp = DISAS_JUMP; 1573 return true; 1574 } 1575 1576 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1577 TCGv_i64 modifier, bool use_key_a) 1578 { 1579 TCGv_i64 truedst; 1580 /* 1581 * Return the branch target for a BRAA/RETA/etc, which is either 1582 * just the destination dst, or that value with the pauth check 1583 * done and the code removed from the high bits. 1584 */ 1585 if (!s->pauth_active) { 1586 return dst; 1587 } 1588 1589 truedst = tcg_temp_new_i64(); 1590 if (use_key_a) { 1591 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1592 } else { 1593 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1594 } 1595 return truedst; 1596 } 1597 1598 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1599 { 1600 TCGv_i64 dst; 1601 1602 if (!dc_isar_feature(aa64_pauth, s)) { 1603 return false; 1604 } 1605 1606 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1607 set_btype_for_br(s, a->rn); 1608 gen_a64_set_pc(s, dst); 1609 s->base.is_jmp = DISAS_JUMP; 1610 return true; 1611 } 1612 1613 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1614 { 1615 TCGv_i64 dst, lr; 1616 1617 if (!dc_isar_feature(aa64_pauth, s)) { 1618 return false; 1619 } 1620 1621 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1622 lr = cpu_reg(s, 30); 1623 if (dst == lr) { 1624 TCGv_i64 tmp = tcg_temp_new_i64(); 1625 tcg_gen_mov_i64(tmp, dst); 1626 dst = tmp; 1627 } 1628 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1629 gen_a64_set_pc(s, dst); 1630 set_btype_for_blr(s); 1631 s->base.is_jmp = DISAS_JUMP; 1632 return true; 1633 } 1634 1635 static bool trans_RETA(DisasContext *s, arg_reta *a) 1636 { 1637 TCGv_i64 dst; 1638 1639 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1640 gen_a64_set_pc(s, dst); 1641 s->base.is_jmp = DISAS_JUMP; 1642 return true; 1643 } 1644 1645 static bool trans_BRA(DisasContext *s, arg_bra *a) 1646 { 1647 TCGv_i64 dst; 1648 1649 if (!dc_isar_feature(aa64_pauth, s)) { 1650 return false; 1651 } 1652 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1653 gen_a64_set_pc(s, dst); 1654 set_btype_for_br(s, a->rn); 1655 s->base.is_jmp = DISAS_JUMP; 1656 return true; 1657 } 1658 1659 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1660 { 1661 TCGv_i64 dst, lr; 1662 1663 if (!dc_isar_feature(aa64_pauth, s)) { 1664 return false; 1665 } 1666 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1667 lr = cpu_reg(s, 30); 1668 if (dst == lr) { 1669 TCGv_i64 tmp = tcg_temp_new_i64(); 1670 tcg_gen_mov_i64(tmp, dst); 1671 dst = tmp; 1672 } 1673 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1674 gen_a64_set_pc(s, dst); 1675 set_btype_for_blr(s); 1676 s->base.is_jmp = DISAS_JUMP; 1677 return true; 1678 } 1679 1680 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1681 { 1682 TCGv_i64 dst; 1683 1684 if (s->current_el == 0) { 1685 return false; 1686 } 1687 if (s->trap_eret) { 1688 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1689 return true; 1690 } 1691 dst = tcg_temp_new_i64(); 1692 tcg_gen_ld_i64(dst, tcg_env, 1693 offsetof(CPUARMState, elr_el[s->current_el])); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1704 { 1705 TCGv_i64 dst; 1706 1707 if (!dc_isar_feature(aa64_pauth, s)) { 1708 return false; 1709 } 1710 if (s->current_el == 0) { 1711 return false; 1712 } 1713 /* The FGT trap takes precedence over an auth trap. */ 1714 if (s->trap_eret) { 1715 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1716 return true; 1717 } 1718 dst = tcg_temp_new_i64(); 1719 tcg_gen_ld_i64(dst, tcg_env, 1720 offsetof(CPUARMState, elr_el[s->current_el])); 1721 1722 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1723 1724 translator_io_start(&s->base); 1725 1726 gen_helper_exception_return(tcg_env, dst); 1727 /* Must exit loop to check un-masked IRQs */ 1728 s->base.is_jmp = DISAS_EXIT; 1729 return true; 1730 } 1731 1732 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1733 { 1734 return true; 1735 } 1736 1737 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1738 { 1739 /* 1740 * When running in MTTCG we don't generate jumps to the yield and 1741 * WFE helpers as it won't affect the scheduling of other vCPUs. 1742 * If we wanted to more completely model WFE/SEV so we don't busy 1743 * spin unnecessarily we would need to do something more involved. 1744 */ 1745 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1746 s->base.is_jmp = DISAS_YIELD; 1747 } 1748 return true; 1749 } 1750 1751 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1752 { 1753 s->base.is_jmp = DISAS_WFI; 1754 return true; 1755 } 1756 1757 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1758 { 1759 /* 1760 * When running in MTTCG we don't generate jumps to the yield and 1761 * WFE helpers as it won't affect the scheduling of other vCPUs. 1762 * If we wanted to more completely model WFE/SEV so we don't busy 1763 * spin unnecessarily we would need to do something more involved. 1764 */ 1765 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1766 s->base.is_jmp = DISAS_WFE; 1767 } 1768 return true; 1769 } 1770 1771 static bool trans_WFIT(DisasContext *s, arg_WFIT *a) 1772 { 1773 if (!dc_isar_feature(aa64_wfxt, s)) { 1774 return false; 1775 } 1776 1777 /* 1778 * Because we need to pass the register value to the helper, 1779 * it's easier to emit the code now, unlike trans_WFI which 1780 * defers it to aarch64_tr_tb_stop(). That means we need to 1781 * check ss_active so that single-stepping a WFIT doesn't halt. 1782 */ 1783 if (s->ss_active) { 1784 /* Act like a NOP under architectural singlestep */ 1785 return true; 1786 } 1787 1788 gen_a64_update_pc(s, 4); 1789 gen_helper_wfit(tcg_env, cpu_reg(s, a->rd)); 1790 /* Go back to the main loop to check for interrupts */ 1791 s->base.is_jmp = DISAS_EXIT; 1792 return true; 1793 } 1794 1795 static bool trans_WFET(DisasContext *s, arg_WFET *a) 1796 { 1797 if (!dc_isar_feature(aa64_wfxt, s)) { 1798 return false; 1799 } 1800 1801 /* 1802 * We rely here on our WFE implementation being a NOP, so we 1803 * don't need to do anything different to handle the WFET timeout 1804 * from what trans_WFE does. 1805 */ 1806 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1807 s->base.is_jmp = DISAS_WFE; 1808 } 1809 return true; 1810 } 1811 1812 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1813 { 1814 if (s->pauth_active) { 1815 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1816 } 1817 return true; 1818 } 1819 1820 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1821 { 1822 if (s->pauth_active) { 1823 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1824 } 1825 return true; 1826 } 1827 1828 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1829 { 1830 if (s->pauth_active) { 1831 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1832 } 1833 return true; 1834 } 1835 1836 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1837 { 1838 if (s->pauth_active) { 1839 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1840 } 1841 return true; 1842 } 1843 1844 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1845 { 1846 if (s->pauth_active) { 1847 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1848 } 1849 return true; 1850 } 1851 1852 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1853 { 1854 /* Without RAS, we must implement this as NOP. */ 1855 if (dc_isar_feature(aa64_ras, s)) { 1856 /* 1857 * QEMU does not have a source of physical SErrors, 1858 * so we are only concerned with virtual SErrors. 1859 * The pseudocode in the ARM for this case is 1860 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1861 * AArch64.vESBOperation(); 1862 * Most of the condition can be evaluated at translation time. 1863 * Test for EL2 present, and defer test for SEL2 to runtime. 1864 */ 1865 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1866 gen_helper_vesb(tcg_env); 1867 } 1868 } 1869 return true; 1870 } 1871 1872 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1873 { 1874 if (s->pauth_active) { 1875 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1876 } 1877 return true; 1878 } 1879 1880 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1881 { 1882 if (s->pauth_active) { 1883 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1884 } 1885 return true; 1886 } 1887 1888 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1889 { 1890 if (s->pauth_active) { 1891 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1892 } 1893 return true; 1894 } 1895 1896 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1897 { 1898 if (s->pauth_active) { 1899 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1900 } 1901 return true; 1902 } 1903 1904 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1905 { 1906 if (s->pauth_active) { 1907 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1908 } 1909 return true; 1910 } 1911 1912 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1913 { 1914 if (s->pauth_active) { 1915 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1916 } 1917 return true; 1918 } 1919 1920 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1921 { 1922 if (s->pauth_active) { 1923 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1924 } 1925 return true; 1926 } 1927 1928 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1929 { 1930 if (s->pauth_active) { 1931 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1932 } 1933 return true; 1934 } 1935 1936 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1937 { 1938 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1939 return true; 1940 } 1941 1942 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1943 { 1944 /* We handle DSB and DMB the same way */ 1945 TCGBar bar; 1946 1947 switch (a->types) { 1948 case 1: /* MBReqTypes_Reads */ 1949 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1950 break; 1951 case 2: /* MBReqTypes_Writes */ 1952 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1953 break; 1954 default: /* MBReqTypes_All */ 1955 bar = TCG_BAR_SC | TCG_MO_ALL; 1956 break; 1957 } 1958 tcg_gen_mb(bar); 1959 return true; 1960 } 1961 1962 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1963 { 1964 /* 1965 * We need to break the TB after this insn to execute 1966 * self-modifying code correctly and also to take 1967 * any pending interrupts immediately. 1968 */ 1969 reset_btype(s); 1970 gen_goto_tb(s, 0, 4); 1971 return true; 1972 } 1973 1974 static bool trans_SB(DisasContext *s, arg_SB *a) 1975 { 1976 if (!dc_isar_feature(aa64_sb, s)) { 1977 return false; 1978 } 1979 /* 1980 * TODO: There is no speculation barrier opcode for TCG; 1981 * MB and end the TB instead. 1982 */ 1983 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1984 gen_goto_tb(s, 0, 4); 1985 return true; 1986 } 1987 1988 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1989 { 1990 if (!dc_isar_feature(aa64_condm_4, s)) { 1991 return false; 1992 } 1993 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1994 return true; 1995 } 1996 1997 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1998 { 1999 TCGv_i32 z; 2000 2001 if (!dc_isar_feature(aa64_condm_5, s)) { 2002 return false; 2003 } 2004 2005 z = tcg_temp_new_i32(); 2006 2007 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 2008 2009 /* 2010 * (!C & !Z) << 31 2011 * (!(C | Z)) << 31 2012 * ~((C | Z) << 31) 2013 * ~-(C | Z) 2014 * (C | Z) - 1 2015 */ 2016 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 2017 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 2018 2019 /* !(Z & C) */ 2020 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 2021 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 2022 2023 /* (!C & Z) << 31 -> -(Z & ~C) */ 2024 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 2025 tcg_gen_neg_i32(cpu_VF, cpu_VF); 2026 2027 /* C | Z */ 2028 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 2029 2030 return true; 2031 } 2032 2033 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 2034 { 2035 if (!dc_isar_feature(aa64_condm_5, s)) { 2036 return false; 2037 } 2038 2039 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 2040 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 2041 2042 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 2043 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 2044 2045 tcg_gen_movi_i32(cpu_NF, 0); 2046 tcg_gen_movi_i32(cpu_VF, 0); 2047 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 2052 { 2053 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 2054 return false; 2055 } 2056 if (a->imm & 1) { 2057 set_pstate_bits(PSTATE_UAO); 2058 } else { 2059 clear_pstate_bits(PSTATE_UAO); 2060 } 2061 gen_rebuild_hflags(s); 2062 s->base.is_jmp = DISAS_TOO_MANY; 2063 return true; 2064 } 2065 2066 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 2067 { 2068 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 2069 return false; 2070 } 2071 if (a->imm & 1) { 2072 set_pstate_bits(PSTATE_PAN); 2073 } else { 2074 clear_pstate_bits(PSTATE_PAN); 2075 } 2076 gen_rebuild_hflags(s); 2077 s->base.is_jmp = DISAS_TOO_MANY; 2078 return true; 2079 } 2080 2081 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2082 { 2083 if (s->current_el == 0) { 2084 return false; 2085 } 2086 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2087 s->base.is_jmp = DISAS_TOO_MANY; 2088 return true; 2089 } 2090 2091 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2092 { 2093 if (!dc_isar_feature(aa64_ssbs, s)) { 2094 return false; 2095 } 2096 if (a->imm & 1) { 2097 set_pstate_bits(PSTATE_SSBS); 2098 } else { 2099 clear_pstate_bits(PSTATE_SSBS); 2100 } 2101 /* Don't need to rebuild hflags since SSBS is a nop */ 2102 s->base.is_jmp = DISAS_TOO_MANY; 2103 return true; 2104 } 2105 2106 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2107 { 2108 if (!dc_isar_feature(aa64_dit, s)) { 2109 return false; 2110 } 2111 if (a->imm & 1) { 2112 set_pstate_bits(PSTATE_DIT); 2113 } else { 2114 clear_pstate_bits(PSTATE_DIT); 2115 } 2116 /* There's no need to rebuild hflags because DIT is a nop */ 2117 s->base.is_jmp = DISAS_TOO_MANY; 2118 return true; 2119 } 2120 2121 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2122 { 2123 if (dc_isar_feature(aa64_mte, s)) { 2124 /* Full MTE is enabled -- set the TCO bit as directed. */ 2125 if (a->imm & 1) { 2126 set_pstate_bits(PSTATE_TCO); 2127 } else { 2128 clear_pstate_bits(PSTATE_TCO); 2129 } 2130 gen_rebuild_hflags(s); 2131 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2132 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2133 return true; 2134 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2135 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2136 return true; 2137 } else { 2138 /* Insn not present */ 2139 return false; 2140 } 2141 } 2142 2143 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2144 { 2145 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2146 s->base.is_jmp = DISAS_TOO_MANY; 2147 return true; 2148 } 2149 2150 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2151 { 2152 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2153 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2154 s->base.is_jmp = DISAS_UPDATE_EXIT; 2155 return true; 2156 } 2157 2158 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2159 { 2160 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2161 return false; 2162 } 2163 2164 if (a->imm == 0) { 2165 clear_pstate_bits(PSTATE_ALLINT); 2166 } else if (s->current_el > 1) { 2167 set_pstate_bits(PSTATE_ALLINT); 2168 } else { 2169 gen_helper_msr_set_allint_el1(tcg_env); 2170 } 2171 2172 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2173 s->base.is_jmp = DISAS_UPDATE_EXIT; 2174 return true; 2175 } 2176 2177 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2178 { 2179 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2180 return false; 2181 } 2182 if (sme_access_check(s)) { 2183 int old = s->pstate_sm | (s->pstate_za << 1); 2184 int new = a->imm * 3; 2185 2186 if ((old ^ new) & a->mask) { 2187 /* At least one bit changes. */ 2188 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2189 tcg_constant_i32(a->mask)); 2190 s->base.is_jmp = DISAS_TOO_MANY; 2191 } 2192 } 2193 return true; 2194 } 2195 2196 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2197 { 2198 TCGv_i32 tmp = tcg_temp_new_i32(); 2199 TCGv_i32 nzcv = tcg_temp_new_i32(); 2200 2201 /* build bit 31, N */ 2202 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2203 /* build bit 30, Z */ 2204 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2205 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2206 /* build bit 29, C */ 2207 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2208 /* build bit 28, V */ 2209 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2210 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2211 /* generate result */ 2212 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2213 } 2214 2215 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2216 { 2217 TCGv_i32 nzcv = tcg_temp_new_i32(); 2218 2219 /* take NZCV from R[t] */ 2220 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2221 2222 /* bit 31, N */ 2223 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2224 /* bit 30, Z */ 2225 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2226 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2227 /* bit 29, C */ 2228 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2229 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2230 /* bit 28, V */ 2231 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2232 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2233 } 2234 2235 static void gen_sysreg_undef(DisasContext *s, bool isread, 2236 uint8_t op0, uint8_t op1, uint8_t op2, 2237 uint8_t crn, uint8_t crm, uint8_t rt) 2238 { 2239 /* 2240 * Generate code to emit an UNDEF with correct syndrome 2241 * information for a failed system register access. 2242 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2243 * but if FEAT_IDST is implemented then read accesses to registers 2244 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2245 * syndrome. 2246 */ 2247 uint32_t syndrome; 2248 2249 if (isread && dc_isar_feature(aa64_ids, s) && 2250 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2251 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2252 } else { 2253 syndrome = syn_uncategorized(); 2254 } 2255 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2256 } 2257 2258 /* MRS - move from system register 2259 * MSR (register) - move to system register 2260 * SYS 2261 * SYSL 2262 * These are all essentially the same insn in 'read' and 'write' 2263 * versions, with varying op0 fields. 2264 */ 2265 static void handle_sys(DisasContext *s, bool isread, 2266 unsigned int op0, unsigned int op1, unsigned int op2, 2267 unsigned int crn, unsigned int crm, unsigned int rt) 2268 { 2269 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2270 crn, crm, op0, op1, op2); 2271 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2272 bool need_exit_tb = false; 2273 bool nv_trap_to_el2 = false; 2274 bool nv_redirect_reg = false; 2275 bool skip_fp_access_checks = false; 2276 bool nv2_mem_redirect = false; 2277 TCGv_ptr tcg_ri = NULL; 2278 TCGv_i64 tcg_rt; 2279 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2280 2281 if (crn == 11 || crn == 15) { 2282 /* 2283 * Check for TIDCP trap, which must take precedence over 2284 * the UNDEF for "no such register" etc. 2285 */ 2286 switch (s->current_el) { 2287 case 0: 2288 if (dc_isar_feature(aa64_tidcp1, s)) { 2289 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2290 } 2291 break; 2292 case 1: 2293 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2294 break; 2295 } 2296 } 2297 2298 if (!ri) { 2299 /* Unknown register; this might be a guest error or a QEMU 2300 * unimplemented feature. 2301 */ 2302 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2303 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2304 isread ? "read" : "write", op0, op1, crn, crm, op2); 2305 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2306 return; 2307 } 2308 2309 if (s->nv2 && ri->nv2_redirect_offset) { 2310 /* 2311 * Some registers always redirect to memory; some only do so if 2312 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2313 * pairs which share an offset; see the table in R_CSRPQ). 2314 */ 2315 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2316 nv2_mem_redirect = s->nv1; 2317 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2318 nv2_mem_redirect = !s->nv1; 2319 } else { 2320 nv2_mem_redirect = true; 2321 } 2322 } 2323 2324 /* Check access permissions */ 2325 if (!cp_access_ok(s->current_el, ri, isread)) { 2326 /* 2327 * FEAT_NV/NV2 handling does not do the usual FP access checks 2328 * for registers only accessible at EL2 (though it *does* do them 2329 * for registers accessible at EL1). 2330 */ 2331 skip_fp_access_checks = true; 2332 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2333 /* 2334 * This is one of the few EL2 registers which should redirect 2335 * to the equivalent EL1 register. We do that after running 2336 * the EL2 register's accessfn. 2337 */ 2338 nv_redirect_reg = true; 2339 assert(!nv2_mem_redirect); 2340 } else if (nv2_mem_redirect) { 2341 /* 2342 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2343 * UNDEF to EL1. 2344 */ 2345 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2346 /* 2347 * This register / instruction exists and is an EL2 register, so 2348 * we must trap to EL2 if accessed in nested virtualization EL1 2349 * instead of UNDEFing. We'll do that after the usual access checks. 2350 * (This makes a difference only for a couple of registers like 2351 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2352 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2353 * an accessfn which does nothing when called from EL1, because 2354 * the trap-to-EL3 controls which would apply to that register 2355 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2356 */ 2357 nv_trap_to_el2 = true; 2358 } else { 2359 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2360 return; 2361 } 2362 } 2363 2364 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2365 /* Emit code to perform further access permissions checks at 2366 * runtime; this may result in an exception. 2367 */ 2368 gen_a64_update_pc(s, 0); 2369 tcg_ri = tcg_temp_new_ptr(); 2370 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2371 tcg_constant_i32(key), 2372 tcg_constant_i32(syndrome), 2373 tcg_constant_i32(isread)); 2374 } else if (ri->type & ARM_CP_RAISES_EXC) { 2375 /* 2376 * The readfn or writefn might raise an exception; 2377 * synchronize the CPU state in case it does. 2378 */ 2379 gen_a64_update_pc(s, 0); 2380 } 2381 2382 if (!skip_fp_access_checks) { 2383 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2384 return; 2385 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2386 return; 2387 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2388 return; 2389 } 2390 } 2391 2392 if (nv_trap_to_el2) { 2393 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2394 return; 2395 } 2396 2397 if (nv_redirect_reg) { 2398 /* 2399 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2400 * Conveniently in all cases the encoding of the EL1 register is 2401 * identical to the EL2 register except that opc1 is 0. 2402 * Get the reginfo for the EL1 register to use for the actual access. 2403 * We don't use the EL1 register's access function, and 2404 * fine-grained-traps on EL1 also do not apply here. 2405 */ 2406 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2407 crn, crm, op0, 0, op2); 2408 ri = get_arm_cp_reginfo(s->cp_regs, key); 2409 assert(ri); 2410 assert(cp_access_ok(s->current_el, ri, isread)); 2411 /* 2412 * We might not have done an update_pc earlier, so check we don't 2413 * need it. We could support this in future if necessary. 2414 */ 2415 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2416 } 2417 2418 if (nv2_mem_redirect) { 2419 /* 2420 * This system register is being redirected into an EL2 memory access. 2421 * This means it is not an IO operation, doesn't change hflags, 2422 * and need not end the TB, because it has no side effects. 2423 * 2424 * The access is 64-bit single copy atomic, guaranteed aligned because 2425 * of the definition of VCNR_EL2. Its endianness depends on 2426 * SCTLR_EL2.EE, not on the data endianness of EL1. 2427 * It is done under either the EL2 translation regime or the EL2&0 2428 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2429 * PSTATE.PAN is 0. 2430 */ 2431 TCGv_i64 ptr = tcg_temp_new_i64(); 2432 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2433 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2434 int memidx = arm_to_core_mmu_idx(armmemidx); 2435 uint32_t syn; 2436 2437 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2438 2439 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2440 tcg_gen_addi_i64(ptr, ptr, 2441 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2442 tcg_rt = cpu_reg(s, rt); 2443 2444 syn = syn_data_abort_vncr(0, !isread, 0); 2445 disas_set_insn_syndrome(s, syn); 2446 if (isread) { 2447 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2448 } else { 2449 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2450 } 2451 return; 2452 } 2453 2454 /* Handle special cases first */ 2455 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2456 case 0: 2457 break; 2458 case ARM_CP_NOP: 2459 return; 2460 case ARM_CP_NZCV: 2461 tcg_rt = cpu_reg(s, rt); 2462 if (isread) { 2463 gen_get_nzcv(tcg_rt); 2464 } else { 2465 gen_set_nzcv(tcg_rt); 2466 } 2467 return; 2468 case ARM_CP_CURRENTEL: 2469 { 2470 /* 2471 * Reads as current EL value from pstate, which is 2472 * guaranteed to be constant by the tb flags. 2473 * For nested virt we should report EL2. 2474 */ 2475 int el = s->nv ? 2 : s->current_el; 2476 tcg_rt = cpu_reg(s, rt); 2477 tcg_gen_movi_i64(tcg_rt, el << 2); 2478 return; 2479 } 2480 case ARM_CP_DC_ZVA: 2481 /* Writes clear the aligned block of memory which rt points into. */ 2482 if (s->mte_active[0]) { 2483 int desc = 0; 2484 2485 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2486 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2487 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2488 2489 tcg_rt = tcg_temp_new_i64(); 2490 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2491 tcg_constant_i32(desc), cpu_reg(s, rt)); 2492 } else { 2493 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2494 } 2495 gen_helper_dc_zva(tcg_env, tcg_rt); 2496 return; 2497 case ARM_CP_DC_GVA: 2498 { 2499 TCGv_i64 clean_addr, tag; 2500 2501 /* 2502 * DC_GVA, like DC_ZVA, requires that we supply the original 2503 * pointer for an invalid page. Probe that address first. 2504 */ 2505 tcg_rt = cpu_reg(s, rt); 2506 clean_addr = clean_data_tbi(s, tcg_rt); 2507 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2508 2509 if (s->ata[0]) { 2510 /* Extract the tag from the register to match STZGM. */ 2511 tag = tcg_temp_new_i64(); 2512 tcg_gen_shri_i64(tag, tcg_rt, 56); 2513 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2514 } 2515 } 2516 return; 2517 case ARM_CP_DC_GZVA: 2518 { 2519 TCGv_i64 clean_addr, tag; 2520 2521 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2522 tcg_rt = cpu_reg(s, rt); 2523 clean_addr = clean_data_tbi(s, tcg_rt); 2524 gen_helper_dc_zva(tcg_env, clean_addr); 2525 2526 if (s->ata[0]) { 2527 /* Extract the tag from the register to match STZGM. */ 2528 tag = tcg_temp_new_i64(); 2529 tcg_gen_shri_i64(tag, tcg_rt, 56); 2530 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2531 } 2532 } 2533 return; 2534 default: 2535 g_assert_not_reached(); 2536 } 2537 2538 if (ri->type & ARM_CP_IO) { 2539 /* I/O operations must end the TB here (whether read or write) */ 2540 need_exit_tb = translator_io_start(&s->base); 2541 } 2542 2543 tcg_rt = cpu_reg(s, rt); 2544 2545 if (isread) { 2546 if (ri->type & ARM_CP_CONST) { 2547 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2548 } else if (ri->readfn) { 2549 if (!tcg_ri) { 2550 tcg_ri = gen_lookup_cp_reg(key); 2551 } 2552 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2553 } else { 2554 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2555 } 2556 } else { 2557 if (ri->type & ARM_CP_CONST) { 2558 /* If not forbidden by access permissions, treat as WI */ 2559 return; 2560 } else if (ri->writefn) { 2561 if (!tcg_ri) { 2562 tcg_ri = gen_lookup_cp_reg(key); 2563 } 2564 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2565 } else { 2566 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2567 } 2568 } 2569 2570 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2571 /* 2572 * A write to any coprocessor register that ends a TB 2573 * must rebuild the hflags for the next TB. 2574 */ 2575 gen_rebuild_hflags(s); 2576 /* 2577 * We default to ending the TB on a coprocessor register write, 2578 * but allow this to be suppressed by the register definition 2579 * (usually only necessary to work around guest bugs). 2580 */ 2581 need_exit_tb = true; 2582 } 2583 if (need_exit_tb) { 2584 s->base.is_jmp = DISAS_UPDATE_EXIT; 2585 } 2586 } 2587 2588 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2589 { 2590 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2591 return true; 2592 } 2593 2594 static bool trans_SVC(DisasContext *s, arg_i *a) 2595 { 2596 /* 2597 * For SVC, HVC and SMC we advance the single-step state 2598 * machine before taking the exception. This is architecturally 2599 * mandated, to ensure that single-stepping a system call 2600 * instruction works properly. 2601 */ 2602 uint32_t syndrome = syn_aa64_svc(a->imm); 2603 if (s->fgt_svc) { 2604 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2605 return true; 2606 } 2607 gen_ss_advance(s); 2608 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2609 return true; 2610 } 2611 2612 static bool trans_HVC(DisasContext *s, arg_i *a) 2613 { 2614 int target_el = s->current_el == 3 ? 3 : 2; 2615 2616 if (s->current_el == 0) { 2617 unallocated_encoding(s); 2618 return true; 2619 } 2620 /* 2621 * The pre HVC helper handles cases when HVC gets trapped 2622 * as an undefined insn by runtime configuration. 2623 */ 2624 gen_a64_update_pc(s, 0); 2625 gen_helper_pre_hvc(tcg_env); 2626 /* Architecture requires ss advance before we do the actual work */ 2627 gen_ss_advance(s); 2628 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2629 return true; 2630 } 2631 2632 static bool trans_SMC(DisasContext *s, arg_i *a) 2633 { 2634 if (s->current_el == 0) { 2635 unallocated_encoding(s); 2636 return true; 2637 } 2638 gen_a64_update_pc(s, 0); 2639 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2640 /* Architecture requires ss advance before we do the actual work */ 2641 gen_ss_advance(s); 2642 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2643 return true; 2644 } 2645 2646 static bool trans_BRK(DisasContext *s, arg_i *a) 2647 { 2648 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2649 return true; 2650 } 2651 2652 static bool trans_HLT(DisasContext *s, arg_i *a) 2653 { 2654 /* 2655 * HLT. This has two purposes. 2656 * Architecturally, it is an external halting debug instruction. 2657 * Since QEMU doesn't implement external debug, we treat this as 2658 * it is required for halting debug disabled: it will UNDEF. 2659 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2660 */ 2661 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2662 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2663 } else { 2664 unallocated_encoding(s); 2665 } 2666 return true; 2667 } 2668 2669 /* 2670 * Load/Store exclusive instructions are implemented by remembering 2671 * the value/address loaded, and seeing if these are the same 2672 * when the store is performed. This is not actually the architecturally 2673 * mandated semantics, but it works for typical guest code sequences 2674 * and avoids having to monitor regular stores. 2675 * 2676 * The store exclusive uses the atomic cmpxchg primitives to avoid 2677 * races in multi-threaded linux-user and when MTTCG softmmu is 2678 * enabled. 2679 */ 2680 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2681 int size, bool is_pair) 2682 { 2683 int idx = get_mem_index(s); 2684 TCGv_i64 dirty_addr, clean_addr; 2685 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2686 2687 s->is_ldex = true; 2688 dirty_addr = cpu_reg_sp(s, rn); 2689 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2690 2691 g_assert(size <= 3); 2692 if (is_pair) { 2693 g_assert(size >= 2); 2694 if (size == 2) { 2695 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2696 if (s->be_data == MO_LE) { 2697 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2698 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2699 } else { 2700 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2701 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2702 } 2703 } else { 2704 TCGv_i128 t16 = tcg_temp_new_i128(); 2705 2706 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2707 2708 if (s->be_data == MO_LE) { 2709 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2710 cpu_exclusive_high, t16); 2711 } else { 2712 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2713 cpu_exclusive_val, t16); 2714 } 2715 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2716 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2717 } 2718 } else { 2719 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2720 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2721 } 2722 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2723 } 2724 2725 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2726 int rn, int size, int is_pair) 2727 { 2728 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2729 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2730 * [addr] = {Rt}; 2731 * if (is_pair) { 2732 * [addr + datasize] = {Rt2}; 2733 * } 2734 * {Rd} = 0; 2735 * } else { 2736 * {Rd} = 1; 2737 * } 2738 * env->exclusive_addr = -1; 2739 */ 2740 TCGLabel *fail_label = gen_new_label(); 2741 TCGLabel *done_label = gen_new_label(); 2742 TCGv_i64 tmp, clean_addr; 2743 MemOp memop; 2744 2745 /* 2746 * FIXME: We are out of spec here. We have recorded only the address 2747 * from load_exclusive, not the entire range, and we assume that the 2748 * size of the access on both sides match. The architecture allows the 2749 * store to be smaller than the load, so long as the stored bytes are 2750 * within the range recorded by the load. 2751 */ 2752 2753 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2754 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2755 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2756 2757 /* 2758 * The write, and any associated faults, only happen if the virtual 2759 * and physical addresses pass the exclusive monitor check. These 2760 * faults are exceedingly unlikely, because normally the guest uses 2761 * the exact same address register for the load_exclusive, and we 2762 * would have recognized these faults there. 2763 * 2764 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2765 * unaligned 4-byte write within the range of an aligned 8-byte load. 2766 * With LSE2, the store would need to cross a 16-byte boundary when the 2767 * load did not, which would mean the store is outside the range 2768 * recorded for the monitor, which would have failed a corrected monitor 2769 * check above. For now, we assume no size change and retain the 2770 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2771 * 2772 * It is possible to trigger an MTE fault, by performing the load with 2773 * a virtual address with a valid tag and performing the store with the 2774 * same virtual address and a different invalid tag. 2775 */ 2776 memop = size + is_pair; 2777 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2778 memop |= MO_ALIGN; 2779 } 2780 memop = finalize_memop(s, memop); 2781 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2782 2783 tmp = tcg_temp_new_i64(); 2784 if (is_pair) { 2785 if (size == 2) { 2786 if (s->be_data == MO_LE) { 2787 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2788 } else { 2789 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2790 } 2791 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2792 cpu_exclusive_val, tmp, 2793 get_mem_index(s), memop); 2794 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2795 } else { 2796 TCGv_i128 t16 = tcg_temp_new_i128(); 2797 TCGv_i128 c16 = tcg_temp_new_i128(); 2798 TCGv_i64 a, b; 2799 2800 if (s->be_data == MO_LE) { 2801 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2802 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2803 cpu_exclusive_high); 2804 } else { 2805 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2806 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2807 cpu_exclusive_val); 2808 } 2809 2810 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2811 get_mem_index(s), memop); 2812 2813 a = tcg_temp_new_i64(); 2814 b = tcg_temp_new_i64(); 2815 if (s->be_data == MO_LE) { 2816 tcg_gen_extr_i128_i64(a, b, t16); 2817 } else { 2818 tcg_gen_extr_i128_i64(b, a, t16); 2819 } 2820 2821 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2822 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2823 tcg_gen_or_i64(tmp, a, b); 2824 2825 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2826 } 2827 } else { 2828 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2829 cpu_reg(s, rt), get_mem_index(s), memop); 2830 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2831 } 2832 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2833 tcg_gen_br(done_label); 2834 2835 gen_set_label(fail_label); 2836 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2837 gen_set_label(done_label); 2838 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2839 } 2840 2841 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2842 int rn, int size) 2843 { 2844 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2845 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2846 int memidx = get_mem_index(s); 2847 TCGv_i64 clean_addr; 2848 MemOp memop; 2849 2850 if (rn == 31) { 2851 gen_check_sp_alignment(s); 2852 } 2853 memop = check_atomic_align(s, rn, size); 2854 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2855 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2856 memidx, memop); 2857 } 2858 2859 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2860 int rn, int size) 2861 { 2862 TCGv_i64 s1 = cpu_reg(s, rs); 2863 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2864 TCGv_i64 t1 = cpu_reg(s, rt); 2865 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2866 TCGv_i64 clean_addr; 2867 int memidx = get_mem_index(s); 2868 MemOp memop; 2869 2870 if (rn == 31) { 2871 gen_check_sp_alignment(s); 2872 } 2873 2874 /* This is a single atomic access, despite the "pair". */ 2875 memop = check_atomic_align(s, rn, size + 1); 2876 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2877 2878 if (size == 2) { 2879 TCGv_i64 cmp = tcg_temp_new_i64(); 2880 TCGv_i64 val = tcg_temp_new_i64(); 2881 2882 if (s->be_data == MO_LE) { 2883 tcg_gen_concat32_i64(val, t1, t2); 2884 tcg_gen_concat32_i64(cmp, s1, s2); 2885 } else { 2886 tcg_gen_concat32_i64(val, t2, t1); 2887 tcg_gen_concat32_i64(cmp, s2, s1); 2888 } 2889 2890 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2891 2892 if (s->be_data == MO_LE) { 2893 tcg_gen_extr32_i64(s1, s2, cmp); 2894 } else { 2895 tcg_gen_extr32_i64(s2, s1, cmp); 2896 } 2897 } else { 2898 TCGv_i128 cmp = tcg_temp_new_i128(); 2899 TCGv_i128 val = tcg_temp_new_i128(); 2900 2901 if (s->be_data == MO_LE) { 2902 tcg_gen_concat_i64_i128(val, t1, t2); 2903 tcg_gen_concat_i64_i128(cmp, s1, s2); 2904 } else { 2905 tcg_gen_concat_i64_i128(val, t2, t1); 2906 tcg_gen_concat_i64_i128(cmp, s2, s1); 2907 } 2908 2909 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2910 2911 if (s->be_data == MO_LE) { 2912 tcg_gen_extr_i128_i64(s1, s2, cmp); 2913 } else { 2914 tcg_gen_extr_i128_i64(s2, s1, cmp); 2915 } 2916 } 2917 } 2918 2919 /* 2920 * Compute the ISS.SF bit for syndrome information if an exception 2921 * is taken on a load or store. This indicates whether the instruction 2922 * is accessing a 32-bit or 64-bit register. This logic is derived 2923 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2924 */ 2925 static bool ldst_iss_sf(int size, bool sign, bool ext) 2926 { 2927 2928 if (sign) { 2929 /* 2930 * Signed loads are 64 bit results if we are not going to 2931 * do a zero-extend from 32 to 64 after the load. 2932 * (For a store, sign and ext are always false.) 2933 */ 2934 return !ext; 2935 } else { 2936 /* Unsigned loads/stores work at the specified size */ 2937 return size == MO_64; 2938 } 2939 } 2940 2941 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2942 { 2943 if (a->rn == 31) { 2944 gen_check_sp_alignment(s); 2945 } 2946 if (a->lasr) { 2947 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2948 } 2949 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2950 return true; 2951 } 2952 2953 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2954 { 2955 if (a->rn == 31) { 2956 gen_check_sp_alignment(s); 2957 } 2958 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2959 if (a->lasr) { 2960 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2961 } 2962 return true; 2963 } 2964 2965 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2966 { 2967 TCGv_i64 clean_addr; 2968 MemOp memop; 2969 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2970 2971 /* 2972 * StoreLORelease is the same as Store-Release for QEMU, but 2973 * needs the feature-test. 2974 */ 2975 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2976 return false; 2977 } 2978 /* Generate ISS for non-exclusive accesses including LASR. */ 2979 if (a->rn == 31) { 2980 gen_check_sp_alignment(s); 2981 } 2982 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2983 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2984 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2985 true, a->rn != 31, memop); 2986 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2987 iss_sf, a->lasr); 2988 return true; 2989 } 2990 2991 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2992 { 2993 TCGv_i64 clean_addr; 2994 MemOp memop; 2995 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2996 2997 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2998 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2999 return false; 3000 } 3001 /* Generate ISS for non-exclusive accesses including LASR. */ 3002 if (a->rn == 31) { 3003 gen_check_sp_alignment(s); 3004 } 3005 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 3006 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 3007 false, a->rn != 31, memop); 3008 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 3009 a->rt, iss_sf, a->lasr); 3010 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3011 return true; 3012 } 3013 3014 static bool trans_STXP(DisasContext *s, arg_stxr *a) 3015 { 3016 if (a->rn == 31) { 3017 gen_check_sp_alignment(s); 3018 } 3019 if (a->lasr) { 3020 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3021 } 3022 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 3023 return true; 3024 } 3025 3026 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 3027 { 3028 if (a->rn == 31) { 3029 gen_check_sp_alignment(s); 3030 } 3031 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 3032 if (a->lasr) { 3033 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3034 } 3035 return true; 3036 } 3037 3038 static bool trans_CASP(DisasContext *s, arg_CASP *a) 3039 { 3040 if (!dc_isar_feature(aa64_atomics, s)) { 3041 return false; 3042 } 3043 if (((a->rt | a->rs) & 1) != 0) { 3044 return false; 3045 } 3046 3047 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 3048 return true; 3049 } 3050 3051 static bool trans_CAS(DisasContext *s, arg_CAS *a) 3052 { 3053 if (!dc_isar_feature(aa64_atomics, s)) { 3054 return false; 3055 } 3056 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 3057 return true; 3058 } 3059 3060 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 3061 { 3062 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 3063 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 3064 TCGv_i64 clean_addr = tcg_temp_new_i64(); 3065 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3066 3067 gen_pc_plus_diff(s, clean_addr, a->imm); 3068 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3069 false, true, a->rt, iss_sf, false); 3070 return true; 3071 } 3072 3073 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3074 { 3075 /* Load register (literal), vector version */ 3076 TCGv_i64 clean_addr; 3077 MemOp memop; 3078 3079 if (!fp_access_check(s)) { 3080 return true; 3081 } 3082 memop = finalize_memop_asimd(s, a->sz); 3083 clean_addr = tcg_temp_new_i64(); 3084 gen_pc_plus_diff(s, clean_addr, a->imm); 3085 do_fp_ld(s, a->rt, clean_addr, memop); 3086 return true; 3087 } 3088 3089 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3090 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3091 uint64_t offset, bool is_store, MemOp mop) 3092 { 3093 if (a->rn == 31) { 3094 gen_check_sp_alignment(s); 3095 } 3096 3097 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3098 if (!a->p) { 3099 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3100 } 3101 3102 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3103 (a->w || a->rn != 31), 2 << a->sz, mop); 3104 } 3105 3106 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3107 TCGv_i64 dirty_addr, uint64_t offset) 3108 { 3109 if (a->w) { 3110 if (a->p) { 3111 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3112 } 3113 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3114 } 3115 } 3116 3117 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3118 { 3119 uint64_t offset = a->imm << a->sz; 3120 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3121 MemOp mop = finalize_memop(s, a->sz); 3122 3123 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3124 tcg_rt = cpu_reg(s, a->rt); 3125 tcg_rt2 = cpu_reg(s, a->rt2); 3126 /* 3127 * We built mop above for the single logical access -- rebuild it 3128 * now for the paired operation. 3129 * 3130 * With LSE2, non-sign-extending pairs are treated atomically if 3131 * aligned, and if unaligned one of the pair will be completely 3132 * within a 16-byte block and that element will be atomic. 3133 * Otherwise each element is separately atomic. 3134 * In all cases, issue one operation with the correct atomicity. 3135 */ 3136 mop = a->sz + 1; 3137 if (s->align_mem) { 3138 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3139 } 3140 mop = finalize_memop_pair(s, mop); 3141 if (a->sz == 2) { 3142 TCGv_i64 tmp = tcg_temp_new_i64(); 3143 3144 if (s->be_data == MO_LE) { 3145 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3146 } else { 3147 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3148 } 3149 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3150 } else { 3151 TCGv_i128 tmp = tcg_temp_new_i128(); 3152 3153 if (s->be_data == MO_LE) { 3154 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3155 } else { 3156 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3157 } 3158 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3159 } 3160 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3161 return true; 3162 } 3163 3164 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3165 { 3166 uint64_t offset = a->imm << a->sz; 3167 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3168 MemOp mop = finalize_memop(s, a->sz); 3169 3170 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3171 tcg_rt = cpu_reg(s, a->rt); 3172 tcg_rt2 = cpu_reg(s, a->rt2); 3173 3174 /* 3175 * We built mop above for the single logical access -- rebuild it 3176 * now for the paired operation. 3177 * 3178 * With LSE2, non-sign-extending pairs are treated atomically if 3179 * aligned, and if unaligned one of the pair will be completely 3180 * within a 16-byte block and that element will be atomic. 3181 * Otherwise each element is separately atomic. 3182 * In all cases, issue one operation with the correct atomicity. 3183 * 3184 * This treats sign-extending loads like zero-extending loads, 3185 * since that reuses the most code below. 3186 */ 3187 mop = a->sz + 1; 3188 if (s->align_mem) { 3189 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3190 } 3191 mop = finalize_memop_pair(s, mop); 3192 if (a->sz == 2) { 3193 int o2 = s->be_data == MO_LE ? 32 : 0; 3194 int o1 = o2 ^ 32; 3195 3196 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3197 if (a->sign) { 3198 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3199 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3200 } else { 3201 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3202 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3203 } 3204 } else { 3205 TCGv_i128 tmp = tcg_temp_new_i128(); 3206 3207 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3208 if (s->be_data == MO_LE) { 3209 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3210 } else { 3211 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3212 } 3213 } 3214 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3215 return true; 3216 } 3217 3218 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3219 { 3220 uint64_t offset = a->imm << a->sz; 3221 TCGv_i64 clean_addr, dirty_addr; 3222 MemOp mop; 3223 3224 if (!fp_access_check(s)) { 3225 return true; 3226 } 3227 3228 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3229 mop = finalize_memop_asimd(s, a->sz); 3230 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3231 do_fp_st(s, a->rt, clean_addr, mop); 3232 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3233 do_fp_st(s, a->rt2, clean_addr, mop); 3234 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3235 return true; 3236 } 3237 3238 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3239 { 3240 uint64_t offset = a->imm << a->sz; 3241 TCGv_i64 clean_addr, dirty_addr; 3242 MemOp mop; 3243 3244 if (!fp_access_check(s)) { 3245 return true; 3246 } 3247 3248 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3249 mop = finalize_memop_asimd(s, a->sz); 3250 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3251 do_fp_ld(s, a->rt, clean_addr, mop); 3252 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3253 do_fp_ld(s, a->rt2, clean_addr, mop); 3254 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3255 return true; 3256 } 3257 3258 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3259 { 3260 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3261 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3262 MemOp mop; 3263 TCGv_i128 tmp; 3264 3265 /* STGP only comes in one size. */ 3266 tcg_debug_assert(a->sz == MO_64); 3267 3268 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3269 return false; 3270 } 3271 3272 if (a->rn == 31) { 3273 gen_check_sp_alignment(s); 3274 } 3275 3276 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3277 if (!a->p) { 3278 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3279 } 3280 3281 clean_addr = clean_data_tbi(s, dirty_addr); 3282 tcg_rt = cpu_reg(s, a->rt); 3283 tcg_rt2 = cpu_reg(s, a->rt2); 3284 3285 /* 3286 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3287 * and one tag operation. We implement it as one single aligned 16-byte 3288 * memory operation for convenience. Note that the alignment ensures 3289 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3290 */ 3291 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3292 3293 tmp = tcg_temp_new_i128(); 3294 if (s->be_data == MO_LE) { 3295 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3296 } else { 3297 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3298 } 3299 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3300 3301 /* Perform the tag store, if tag access enabled. */ 3302 if (s->ata[0]) { 3303 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3304 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3305 } else { 3306 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3307 } 3308 } 3309 3310 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3311 return true; 3312 } 3313 3314 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3315 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3316 uint64_t offset, bool is_store, MemOp mop) 3317 { 3318 int memidx; 3319 3320 if (a->rn == 31) { 3321 gen_check_sp_alignment(s); 3322 } 3323 3324 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3325 if (!a->p) { 3326 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3327 } 3328 memidx = get_a64_user_mem_index(s, a->unpriv); 3329 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3330 a->w || a->rn != 31, 3331 mop, a->unpriv, memidx); 3332 } 3333 3334 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3335 TCGv_i64 dirty_addr, uint64_t offset) 3336 { 3337 if (a->w) { 3338 if (a->p) { 3339 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3340 } 3341 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3342 } 3343 } 3344 3345 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3346 { 3347 bool iss_sf, iss_valid = !a->w; 3348 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3349 int memidx = get_a64_user_mem_index(s, a->unpriv); 3350 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3351 3352 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3353 3354 tcg_rt = cpu_reg(s, a->rt); 3355 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3356 3357 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3358 iss_valid, a->rt, iss_sf, false); 3359 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3360 return true; 3361 } 3362 3363 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3364 { 3365 bool iss_sf, iss_valid = !a->w; 3366 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3367 int memidx = get_a64_user_mem_index(s, a->unpriv); 3368 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3369 3370 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3371 3372 tcg_rt = cpu_reg(s, a->rt); 3373 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3374 3375 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3376 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3377 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3378 return true; 3379 } 3380 3381 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3382 { 3383 TCGv_i64 clean_addr, dirty_addr; 3384 MemOp mop; 3385 3386 if (!fp_access_check(s)) { 3387 return true; 3388 } 3389 mop = finalize_memop_asimd(s, a->sz); 3390 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3391 do_fp_st(s, a->rt, clean_addr, mop); 3392 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3393 return true; 3394 } 3395 3396 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3397 { 3398 TCGv_i64 clean_addr, dirty_addr; 3399 MemOp mop; 3400 3401 if (!fp_access_check(s)) { 3402 return true; 3403 } 3404 mop = finalize_memop_asimd(s, a->sz); 3405 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3406 do_fp_ld(s, a->rt, clean_addr, mop); 3407 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3408 return true; 3409 } 3410 3411 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3412 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3413 bool is_store, MemOp memop) 3414 { 3415 TCGv_i64 tcg_rm; 3416 3417 if (a->rn == 31) { 3418 gen_check_sp_alignment(s); 3419 } 3420 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3421 3422 tcg_rm = read_cpu_reg(s, a->rm, 1); 3423 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3424 3425 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3426 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3427 } 3428 3429 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3430 { 3431 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3432 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3433 MemOp memop; 3434 3435 if (extract32(a->opt, 1, 1) == 0) { 3436 return false; 3437 } 3438 3439 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3440 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3441 tcg_rt = cpu_reg(s, a->rt); 3442 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3443 a->ext, true, a->rt, iss_sf, false); 3444 return true; 3445 } 3446 3447 static bool trans_STR(DisasContext *s, arg_ldst *a) 3448 { 3449 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3450 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3451 MemOp memop; 3452 3453 if (extract32(a->opt, 1, 1) == 0) { 3454 return false; 3455 } 3456 3457 memop = finalize_memop(s, a->sz); 3458 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3459 tcg_rt = cpu_reg(s, a->rt); 3460 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3461 return true; 3462 } 3463 3464 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3465 { 3466 TCGv_i64 clean_addr, dirty_addr; 3467 MemOp memop; 3468 3469 if (extract32(a->opt, 1, 1) == 0) { 3470 return false; 3471 } 3472 3473 if (!fp_access_check(s)) { 3474 return true; 3475 } 3476 3477 memop = finalize_memop_asimd(s, a->sz); 3478 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3479 do_fp_ld(s, a->rt, clean_addr, memop); 3480 return true; 3481 } 3482 3483 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3484 { 3485 TCGv_i64 clean_addr, dirty_addr; 3486 MemOp memop; 3487 3488 if (extract32(a->opt, 1, 1) == 0) { 3489 return false; 3490 } 3491 3492 if (!fp_access_check(s)) { 3493 return true; 3494 } 3495 3496 memop = finalize_memop_asimd(s, a->sz); 3497 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3498 do_fp_st(s, a->rt, clean_addr, memop); 3499 return true; 3500 } 3501 3502 3503 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3504 int sign, bool invert) 3505 { 3506 MemOp mop = a->sz | sign; 3507 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3508 3509 if (a->rn == 31) { 3510 gen_check_sp_alignment(s); 3511 } 3512 mop = check_atomic_align(s, a->rn, mop); 3513 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3514 a->rn != 31, mop); 3515 tcg_rs = read_cpu_reg(s, a->rs, true); 3516 tcg_rt = cpu_reg(s, a->rt); 3517 if (invert) { 3518 tcg_gen_not_i64(tcg_rs, tcg_rs); 3519 } 3520 /* 3521 * The tcg atomic primitives are all full barriers. Therefore we 3522 * can ignore the Acquire and Release bits of this instruction. 3523 */ 3524 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3525 3526 if (mop & MO_SIGN) { 3527 switch (a->sz) { 3528 case MO_8: 3529 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3530 break; 3531 case MO_16: 3532 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3533 break; 3534 case MO_32: 3535 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3536 break; 3537 case MO_64: 3538 break; 3539 default: 3540 g_assert_not_reached(); 3541 } 3542 } 3543 return true; 3544 } 3545 3546 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3547 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3548 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3549 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3550 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3551 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3552 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3553 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3554 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3555 3556 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3557 { 3558 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3559 TCGv_i64 clean_addr; 3560 MemOp mop; 3561 3562 if (!dc_isar_feature(aa64_atomics, s) || 3563 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3564 return false; 3565 } 3566 if (a->rn == 31) { 3567 gen_check_sp_alignment(s); 3568 } 3569 mop = check_ordered_align(s, a->rn, 0, false, a->sz); 3570 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3571 a->rn != 31, mop); 3572 /* 3573 * LDAPR* are a special case because they are a simple load, not a 3574 * fetch-and-do-something op. 3575 * The architectural consistency requirements here are weaker than 3576 * full load-acquire (we only need "load-acquire processor consistent"), 3577 * but we choose to implement them as full LDAQ. 3578 */ 3579 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3580 true, a->rt, iss_sf, true); 3581 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3582 return true; 3583 } 3584 3585 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3586 { 3587 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3588 MemOp memop; 3589 3590 /* Load with pointer authentication */ 3591 if (!dc_isar_feature(aa64_pauth, s)) { 3592 return false; 3593 } 3594 3595 if (a->rn == 31) { 3596 gen_check_sp_alignment(s); 3597 } 3598 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3599 3600 if (s->pauth_active) { 3601 if (!a->m) { 3602 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3603 tcg_constant_i64(0)); 3604 } else { 3605 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3606 tcg_constant_i64(0)); 3607 } 3608 } 3609 3610 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3611 3612 memop = finalize_memop(s, MO_64); 3613 3614 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3615 clean_addr = gen_mte_check1(s, dirty_addr, false, 3616 a->w || a->rn != 31, memop); 3617 3618 tcg_rt = cpu_reg(s, a->rt); 3619 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3620 /* extend */ false, /* iss_valid */ !a->w, 3621 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3622 3623 if (a->w) { 3624 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3625 } 3626 return true; 3627 } 3628 3629 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3630 { 3631 TCGv_i64 clean_addr, dirty_addr; 3632 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3633 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3634 3635 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3636 return false; 3637 } 3638 3639 if (a->rn == 31) { 3640 gen_check_sp_alignment(s); 3641 } 3642 3643 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3644 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3645 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3646 clean_addr = clean_data_tbi(s, dirty_addr); 3647 3648 /* 3649 * Load-AcquirePC semantics; we implement as the slightly more 3650 * restrictive Load-Acquire. 3651 */ 3652 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3653 a->rt, iss_sf, true); 3654 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3655 return true; 3656 } 3657 3658 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3659 { 3660 TCGv_i64 clean_addr, dirty_addr; 3661 MemOp mop = a->sz; 3662 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3663 3664 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3665 return false; 3666 } 3667 3668 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3669 3670 if (a->rn == 31) { 3671 gen_check_sp_alignment(s); 3672 } 3673 3674 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3675 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3676 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3677 clean_addr = clean_data_tbi(s, dirty_addr); 3678 3679 /* Store-Release semantics */ 3680 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3681 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3682 return true; 3683 } 3684 3685 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3686 { 3687 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3688 MemOp endian, align, mop; 3689 3690 int total; /* total bytes */ 3691 int elements; /* elements per vector */ 3692 int r; 3693 int size = a->sz; 3694 3695 if (!a->p && a->rm != 0) { 3696 /* For non-postindexed accesses the Rm field must be 0 */ 3697 return false; 3698 } 3699 if (size == 3 && !a->q && a->selem != 1) { 3700 return false; 3701 } 3702 if (!fp_access_check(s)) { 3703 return true; 3704 } 3705 3706 if (a->rn == 31) { 3707 gen_check_sp_alignment(s); 3708 } 3709 3710 /* For our purposes, bytes are always little-endian. */ 3711 endian = s->be_data; 3712 if (size == 0) { 3713 endian = MO_LE; 3714 } 3715 3716 total = a->rpt * a->selem * (a->q ? 16 : 8); 3717 tcg_rn = cpu_reg_sp(s, a->rn); 3718 3719 /* 3720 * Issue the MTE check vs the logical repeat count, before we 3721 * promote consecutive little-endian elements below. 3722 */ 3723 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3724 finalize_memop_asimd(s, size)); 3725 3726 /* 3727 * Consecutive little-endian elements from a single register 3728 * can be promoted to a larger little-endian operation. 3729 */ 3730 align = MO_ALIGN; 3731 if (a->selem == 1 && endian == MO_LE) { 3732 align = pow2_align(size); 3733 size = 3; 3734 } 3735 if (!s->align_mem) { 3736 align = 0; 3737 } 3738 mop = endian | size | align; 3739 3740 elements = (a->q ? 16 : 8) >> size; 3741 tcg_ebytes = tcg_constant_i64(1 << size); 3742 for (r = 0; r < a->rpt; r++) { 3743 int e; 3744 for (e = 0; e < elements; e++) { 3745 int xs; 3746 for (xs = 0; xs < a->selem; xs++) { 3747 int tt = (a->rt + r + xs) % 32; 3748 do_vec_ld(s, tt, e, clean_addr, mop); 3749 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3750 } 3751 } 3752 } 3753 3754 /* 3755 * For non-quad operations, setting a slice of the low 64 bits of 3756 * the register clears the high 64 bits (in the ARM ARM pseudocode 3757 * this is implicit in the fact that 'rval' is a 64 bit wide 3758 * variable). For quad operations, we might still need to zero 3759 * the high bits of SVE. 3760 */ 3761 for (r = 0; r < a->rpt * a->selem; r++) { 3762 int tt = (a->rt + r) % 32; 3763 clear_vec_high(s, a->q, tt); 3764 } 3765 3766 if (a->p) { 3767 if (a->rm == 31) { 3768 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3769 } else { 3770 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3771 } 3772 } 3773 return true; 3774 } 3775 3776 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3777 { 3778 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3779 MemOp endian, align, mop; 3780 3781 int total; /* total bytes */ 3782 int elements; /* elements per vector */ 3783 int r; 3784 int size = a->sz; 3785 3786 if (!a->p && a->rm != 0) { 3787 /* For non-postindexed accesses the Rm field must be 0 */ 3788 return false; 3789 } 3790 if (size == 3 && !a->q && a->selem != 1) { 3791 return false; 3792 } 3793 if (!fp_access_check(s)) { 3794 return true; 3795 } 3796 3797 if (a->rn == 31) { 3798 gen_check_sp_alignment(s); 3799 } 3800 3801 /* For our purposes, bytes are always little-endian. */ 3802 endian = s->be_data; 3803 if (size == 0) { 3804 endian = MO_LE; 3805 } 3806 3807 total = a->rpt * a->selem * (a->q ? 16 : 8); 3808 tcg_rn = cpu_reg_sp(s, a->rn); 3809 3810 /* 3811 * Issue the MTE check vs the logical repeat count, before we 3812 * promote consecutive little-endian elements below. 3813 */ 3814 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3815 finalize_memop_asimd(s, size)); 3816 3817 /* 3818 * Consecutive little-endian elements from a single register 3819 * can be promoted to a larger little-endian operation. 3820 */ 3821 align = MO_ALIGN; 3822 if (a->selem == 1 && endian == MO_LE) { 3823 align = pow2_align(size); 3824 size = 3; 3825 } 3826 if (!s->align_mem) { 3827 align = 0; 3828 } 3829 mop = endian | size | align; 3830 3831 elements = (a->q ? 16 : 8) >> size; 3832 tcg_ebytes = tcg_constant_i64(1 << size); 3833 for (r = 0; r < a->rpt; r++) { 3834 int e; 3835 for (e = 0; e < elements; e++) { 3836 int xs; 3837 for (xs = 0; xs < a->selem; xs++) { 3838 int tt = (a->rt + r + xs) % 32; 3839 do_vec_st(s, tt, e, clean_addr, mop); 3840 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3841 } 3842 } 3843 } 3844 3845 if (a->p) { 3846 if (a->rm == 31) { 3847 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3848 } else { 3849 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3850 } 3851 } 3852 return true; 3853 } 3854 3855 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3856 { 3857 int xs, total, rt; 3858 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3859 MemOp mop; 3860 3861 if (!a->p && a->rm != 0) { 3862 return false; 3863 } 3864 if (!fp_access_check(s)) { 3865 return true; 3866 } 3867 3868 if (a->rn == 31) { 3869 gen_check_sp_alignment(s); 3870 } 3871 3872 total = a->selem << a->scale; 3873 tcg_rn = cpu_reg_sp(s, a->rn); 3874 3875 mop = finalize_memop_asimd(s, a->scale); 3876 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3877 total, mop); 3878 3879 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3880 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3881 do_vec_st(s, rt, a->index, clean_addr, mop); 3882 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3883 } 3884 3885 if (a->p) { 3886 if (a->rm == 31) { 3887 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3888 } else { 3889 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3890 } 3891 } 3892 return true; 3893 } 3894 3895 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3896 { 3897 int xs, total, rt; 3898 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3899 MemOp mop; 3900 3901 if (!a->p && a->rm != 0) { 3902 return false; 3903 } 3904 if (!fp_access_check(s)) { 3905 return true; 3906 } 3907 3908 if (a->rn == 31) { 3909 gen_check_sp_alignment(s); 3910 } 3911 3912 total = a->selem << a->scale; 3913 tcg_rn = cpu_reg_sp(s, a->rn); 3914 3915 mop = finalize_memop_asimd(s, a->scale); 3916 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3917 total, mop); 3918 3919 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3920 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3921 do_vec_ld(s, rt, a->index, clean_addr, mop); 3922 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3923 } 3924 3925 if (a->p) { 3926 if (a->rm == 31) { 3927 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3928 } else { 3929 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3930 } 3931 } 3932 return true; 3933 } 3934 3935 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3936 { 3937 int xs, total, rt; 3938 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3939 MemOp mop; 3940 3941 if (!a->p && a->rm != 0) { 3942 return false; 3943 } 3944 if (!fp_access_check(s)) { 3945 return true; 3946 } 3947 3948 if (a->rn == 31) { 3949 gen_check_sp_alignment(s); 3950 } 3951 3952 total = a->selem << a->scale; 3953 tcg_rn = cpu_reg_sp(s, a->rn); 3954 3955 mop = finalize_memop_asimd(s, a->scale); 3956 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3957 total, mop); 3958 3959 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3960 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3961 /* Load and replicate to all elements */ 3962 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3963 3964 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3965 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3966 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3967 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3968 } 3969 3970 if (a->p) { 3971 if (a->rm == 31) { 3972 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3973 } else { 3974 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3975 } 3976 } 3977 return true; 3978 } 3979 3980 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3981 { 3982 TCGv_i64 addr, clean_addr, tcg_rt; 3983 int size = 4 << s->dcz_blocksize; 3984 3985 if (!dc_isar_feature(aa64_mte, s)) { 3986 return false; 3987 } 3988 if (s->current_el == 0) { 3989 return false; 3990 } 3991 3992 if (a->rn == 31) { 3993 gen_check_sp_alignment(s); 3994 } 3995 3996 addr = read_cpu_reg_sp(s, a->rn, true); 3997 tcg_gen_addi_i64(addr, addr, a->imm); 3998 tcg_rt = cpu_reg(s, a->rt); 3999 4000 if (s->ata[0]) { 4001 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 4002 } 4003 /* 4004 * The non-tags portion of STZGM is mostly like DC_ZVA, 4005 * except the alignment happens before the access. 4006 */ 4007 clean_addr = clean_data_tbi(s, addr); 4008 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4009 gen_helper_dc_zva(tcg_env, clean_addr); 4010 return true; 4011 } 4012 4013 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 4014 { 4015 TCGv_i64 addr, clean_addr, tcg_rt; 4016 4017 if (!dc_isar_feature(aa64_mte, s)) { 4018 return false; 4019 } 4020 if (s->current_el == 0) { 4021 return false; 4022 } 4023 4024 if (a->rn == 31) { 4025 gen_check_sp_alignment(s); 4026 } 4027 4028 addr = read_cpu_reg_sp(s, a->rn, true); 4029 tcg_gen_addi_i64(addr, addr, a->imm); 4030 tcg_rt = cpu_reg(s, a->rt); 4031 4032 if (s->ata[0]) { 4033 gen_helper_stgm(tcg_env, addr, tcg_rt); 4034 } else { 4035 MMUAccessType acc = MMU_DATA_STORE; 4036 int size = 4 << s->gm_blocksize; 4037 4038 clean_addr = clean_data_tbi(s, addr); 4039 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4040 gen_probe_access(s, clean_addr, acc, size); 4041 } 4042 return true; 4043 } 4044 4045 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 4046 { 4047 TCGv_i64 addr, clean_addr, tcg_rt; 4048 4049 if (!dc_isar_feature(aa64_mte, s)) { 4050 return false; 4051 } 4052 if (s->current_el == 0) { 4053 return false; 4054 } 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 tcg_gen_addi_i64(addr, addr, a->imm); 4062 tcg_rt = cpu_reg(s, a->rt); 4063 4064 if (s->ata[0]) { 4065 gen_helper_ldgm(tcg_rt, tcg_env, addr); 4066 } else { 4067 MMUAccessType acc = MMU_DATA_LOAD; 4068 int size = 4 << s->gm_blocksize; 4069 4070 clean_addr = clean_data_tbi(s, addr); 4071 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4072 gen_probe_access(s, clean_addr, acc, size); 4073 /* The result tags are zeros. */ 4074 tcg_gen_movi_i64(tcg_rt, 0); 4075 } 4076 return true; 4077 } 4078 4079 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4080 { 4081 TCGv_i64 addr, clean_addr, tcg_rt; 4082 4083 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4084 return false; 4085 } 4086 4087 if (a->rn == 31) { 4088 gen_check_sp_alignment(s); 4089 } 4090 4091 addr = read_cpu_reg_sp(s, a->rn, true); 4092 if (!a->p) { 4093 /* pre-index or signed offset */ 4094 tcg_gen_addi_i64(addr, addr, a->imm); 4095 } 4096 4097 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4098 tcg_rt = cpu_reg(s, a->rt); 4099 if (s->ata[0]) { 4100 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4101 } else { 4102 /* 4103 * Tag access disabled: we must check for aborts on the load 4104 * load from [rn+offset], and then insert a 0 tag into rt. 4105 */ 4106 clean_addr = clean_data_tbi(s, addr); 4107 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4108 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4109 } 4110 4111 if (a->w) { 4112 /* pre-index or post-index */ 4113 if (a->p) { 4114 /* post-index */ 4115 tcg_gen_addi_i64(addr, addr, a->imm); 4116 } 4117 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4118 } 4119 return true; 4120 } 4121 4122 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4123 { 4124 TCGv_i64 addr, tcg_rt; 4125 4126 if (a->rn == 31) { 4127 gen_check_sp_alignment(s); 4128 } 4129 4130 addr = read_cpu_reg_sp(s, a->rn, true); 4131 if (!a->p) { 4132 /* pre-index or signed offset */ 4133 tcg_gen_addi_i64(addr, addr, a->imm); 4134 } 4135 tcg_rt = cpu_reg_sp(s, a->rt); 4136 if (!s->ata[0]) { 4137 /* 4138 * For STG and ST2G, we need to check alignment and probe memory. 4139 * TODO: For STZG and STZ2G, we could rely on the stores below, 4140 * at least for system mode; user-only won't enforce alignment. 4141 */ 4142 if (is_pair) { 4143 gen_helper_st2g_stub(tcg_env, addr); 4144 } else { 4145 gen_helper_stg_stub(tcg_env, addr); 4146 } 4147 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4148 if (is_pair) { 4149 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4150 } else { 4151 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4152 } 4153 } else { 4154 if (is_pair) { 4155 gen_helper_st2g(tcg_env, addr, tcg_rt); 4156 } else { 4157 gen_helper_stg(tcg_env, addr, tcg_rt); 4158 } 4159 } 4160 4161 if (is_zero) { 4162 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4163 TCGv_i64 zero64 = tcg_constant_i64(0); 4164 TCGv_i128 zero128 = tcg_temp_new_i128(); 4165 int mem_index = get_mem_index(s); 4166 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4167 4168 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4169 4170 /* This is 1 or 2 atomic 16-byte operations. */ 4171 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4172 if (is_pair) { 4173 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4174 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4175 } 4176 } 4177 4178 if (a->w) { 4179 /* pre-index or post-index */ 4180 if (a->p) { 4181 /* post-index */ 4182 tcg_gen_addi_i64(addr, addr, a->imm); 4183 } 4184 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4185 } 4186 return true; 4187 } 4188 4189 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4190 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4191 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4192 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4193 4194 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4195 4196 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4197 bool is_setg, SetFn fn) 4198 { 4199 int memidx; 4200 uint32_t syndrome, desc = 0; 4201 4202 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4203 return false; 4204 } 4205 4206 /* 4207 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4208 * us to pull this check before the CheckMOPSEnabled() test 4209 * (which we do in the helper function) 4210 */ 4211 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4212 a->rd == 31 || a->rn == 31) { 4213 return false; 4214 } 4215 4216 memidx = get_a64_user_mem_index(s, a->unpriv); 4217 4218 /* 4219 * We pass option_a == true, matching our implementation; 4220 * we pass wrong_option == false: helper function may set that bit. 4221 */ 4222 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4223 is_epilogue, false, true, a->rd, a->rs, a->rn); 4224 4225 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4226 /* We may need to do MTE tag checking, so assemble the descriptor */ 4227 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4228 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4229 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4230 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4231 } 4232 /* The helper function always needs the memidx even with MTE disabled */ 4233 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4234 4235 /* 4236 * The helper needs the register numbers, but since they're in 4237 * the syndrome anyway, we let it extract them from there rather 4238 * than passing in an extra three integer arguments. 4239 */ 4240 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4241 return true; 4242 } 4243 4244 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4245 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4246 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4247 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4248 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4249 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4250 4251 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4252 4253 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4254 { 4255 int rmemidx, wmemidx; 4256 uint32_t syndrome, rdesc = 0, wdesc = 0; 4257 bool wunpriv = extract32(a->options, 0, 1); 4258 bool runpriv = extract32(a->options, 1, 1); 4259 4260 /* 4261 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4262 * us to pull this check before the CheckMOPSEnabled() test 4263 * (which we do in the helper function) 4264 */ 4265 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4266 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4267 return false; 4268 } 4269 4270 rmemidx = get_a64_user_mem_index(s, runpriv); 4271 wmemidx = get_a64_user_mem_index(s, wunpriv); 4272 4273 /* 4274 * We pass option_a == true, matching our implementation; 4275 * we pass wrong_option == false: helper function may set that bit. 4276 */ 4277 syndrome = syn_mop(false, false, a->options, is_epilogue, 4278 false, true, a->rd, a->rs, a->rn); 4279 4280 /* If we need to do MTE tag checking, assemble the descriptors */ 4281 if (s->mte_active[runpriv]) { 4282 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4283 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4284 } 4285 if (s->mte_active[wunpriv]) { 4286 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4287 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4288 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4289 } 4290 /* The helper function needs these parts of the descriptor regardless */ 4291 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4292 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4293 4294 /* 4295 * The helper needs the register numbers, but since they're in 4296 * the syndrome anyway, we let it extract them from there rather 4297 * than passing in an extra three integer arguments. 4298 */ 4299 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4300 tcg_constant_i32(rdesc)); 4301 return true; 4302 } 4303 4304 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4305 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4306 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4307 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4308 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4309 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4310 4311 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4312 4313 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4314 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4315 { 4316 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4317 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4318 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4319 4320 fn(tcg_rd, tcg_rn, tcg_imm); 4321 if (!a->sf) { 4322 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4323 } 4324 return true; 4325 } 4326 4327 /* 4328 * PC-rel. addressing 4329 */ 4330 4331 static bool trans_ADR(DisasContext *s, arg_ri *a) 4332 { 4333 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4334 return true; 4335 } 4336 4337 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4338 { 4339 int64_t offset = (int64_t)a->imm << 12; 4340 4341 /* The page offset is ok for CF_PCREL. */ 4342 offset -= s->pc_curr & 0xfff; 4343 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4344 return true; 4345 } 4346 4347 /* 4348 * Add/subtract (immediate) 4349 */ 4350 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4351 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4352 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4353 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4354 4355 /* 4356 * Add/subtract (immediate, with tags) 4357 */ 4358 4359 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4360 bool sub_op) 4361 { 4362 TCGv_i64 tcg_rn, tcg_rd; 4363 int imm; 4364 4365 imm = a->uimm6 << LOG2_TAG_GRANULE; 4366 if (sub_op) { 4367 imm = -imm; 4368 } 4369 4370 tcg_rn = cpu_reg_sp(s, a->rn); 4371 tcg_rd = cpu_reg_sp(s, a->rd); 4372 4373 if (s->ata[0]) { 4374 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4375 tcg_constant_i32(imm), 4376 tcg_constant_i32(a->uimm4)); 4377 } else { 4378 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4379 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4380 } 4381 return true; 4382 } 4383 4384 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4385 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4386 4387 /* The input should be a value in the bottom e bits (with higher 4388 * bits zero); returns that value replicated into every element 4389 * of size e in a 64 bit integer. 4390 */ 4391 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4392 { 4393 assert(e != 0); 4394 while (e < 64) { 4395 mask |= mask << e; 4396 e *= 2; 4397 } 4398 return mask; 4399 } 4400 4401 /* 4402 * Logical (immediate) 4403 */ 4404 4405 /* 4406 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4407 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4408 * value (ie should cause a guest UNDEF exception), and true if they are 4409 * valid, in which case the decoded bit pattern is written to result. 4410 */ 4411 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4412 unsigned int imms, unsigned int immr) 4413 { 4414 uint64_t mask; 4415 unsigned e, levels, s, r; 4416 int len; 4417 4418 assert(immn < 2 && imms < 64 && immr < 64); 4419 4420 /* The bit patterns we create here are 64 bit patterns which 4421 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4422 * 64 bits each. Each element contains the same value: a run 4423 * of between 1 and e-1 non-zero bits, rotated within the 4424 * element by between 0 and e-1 bits. 4425 * 4426 * The element size and run length are encoded into immn (1 bit) 4427 * and imms (6 bits) as follows: 4428 * 64 bit elements: immn = 1, imms = <length of run - 1> 4429 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4430 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4431 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4432 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4433 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4434 * Notice that immn = 0, imms = 11111x is the only combination 4435 * not covered by one of the above options; this is reserved. 4436 * Further, <length of run - 1> all-ones is a reserved pattern. 4437 * 4438 * In all cases the rotation is by immr % e (and immr is 6 bits). 4439 */ 4440 4441 /* First determine the element size */ 4442 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4443 if (len < 1) { 4444 /* This is the immn == 0, imms == 0x11111x case */ 4445 return false; 4446 } 4447 e = 1 << len; 4448 4449 levels = e - 1; 4450 s = imms & levels; 4451 r = immr & levels; 4452 4453 if (s == levels) { 4454 /* <length of run - 1> mustn't be all-ones. */ 4455 return false; 4456 } 4457 4458 /* Create the value of one element: s+1 set bits rotated 4459 * by r within the element (which is e bits wide)... 4460 */ 4461 mask = MAKE_64BIT_MASK(0, s + 1); 4462 if (r) { 4463 mask = (mask >> r) | (mask << (e - r)); 4464 mask &= MAKE_64BIT_MASK(0, e); 4465 } 4466 /* ...then replicate the element over the whole 64 bit value */ 4467 mask = bitfield_replicate(mask, e); 4468 *result = mask; 4469 return true; 4470 } 4471 4472 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4473 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4474 { 4475 TCGv_i64 tcg_rd, tcg_rn; 4476 uint64_t imm; 4477 4478 /* Some immediate field values are reserved. */ 4479 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4480 extract32(a->dbm, 0, 6), 4481 extract32(a->dbm, 6, 6))) { 4482 return false; 4483 } 4484 if (!a->sf) { 4485 imm &= 0xffffffffull; 4486 } 4487 4488 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4489 tcg_rn = cpu_reg(s, a->rn); 4490 4491 fn(tcg_rd, tcg_rn, imm); 4492 if (set_cc) { 4493 gen_logic_CC(a->sf, tcg_rd); 4494 } 4495 if (!a->sf) { 4496 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4497 } 4498 return true; 4499 } 4500 4501 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4502 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4503 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4504 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4505 4506 /* 4507 * Move wide (immediate) 4508 */ 4509 4510 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4511 { 4512 int pos = a->hw << 4; 4513 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4514 return true; 4515 } 4516 4517 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4518 { 4519 int pos = a->hw << 4; 4520 uint64_t imm = a->imm; 4521 4522 imm = ~(imm << pos); 4523 if (!a->sf) { 4524 imm = (uint32_t)imm; 4525 } 4526 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4527 return true; 4528 } 4529 4530 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4531 { 4532 int pos = a->hw << 4; 4533 TCGv_i64 tcg_rd, tcg_im; 4534 4535 tcg_rd = cpu_reg(s, a->rd); 4536 tcg_im = tcg_constant_i64(a->imm); 4537 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4538 if (!a->sf) { 4539 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4540 } 4541 return true; 4542 } 4543 4544 /* 4545 * Bitfield 4546 */ 4547 4548 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4549 { 4550 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4551 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4552 unsigned int bitsize = a->sf ? 64 : 32; 4553 unsigned int ri = a->immr; 4554 unsigned int si = a->imms; 4555 unsigned int pos, len; 4556 4557 if (si >= ri) { 4558 /* Wd<s-r:0> = Wn<s:r> */ 4559 len = (si - ri) + 1; 4560 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4561 if (!a->sf) { 4562 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4563 } 4564 } else { 4565 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4566 len = si + 1; 4567 pos = (bitsize - ri) & (bitsize - 1); 4568 4569 if (len < ri) { 4570 /* 4571 * Sign extend the destination field from len to fill the 4572 * balance of the word. Let the deposit below insert all 4573 * of those sign bits. 4574 */ 4575 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4576 len = ri; 4577 } 4578 4579 /* 4580 * We start with zero, and we haven't modified any bits outside 4581 * bitsize, therefore no final zero-extension is unneeded for !sf. 4582 */ 4583 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4584 } 4585 return true; 4586 } 4587 4588 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4589 { 4590 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4591 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4592 unsigned int bitsize = a->sf ? 64 : 32; 4593 unsigned int ri = a->immr; 4594 unsigned int si = a->imms; 4595 unsigned int pos, len; 4596 4597 tcg_rd = cpu_reg(s, a->rd); 4598 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4599 4600 if (si >= ri) { 4601 /* Wd<s-r:0> = Wn<s:r> */ 4602 len = (si - ri) + 1; 4603 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4604 } else { 4605 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4606 len = si + 1; 4607 pos = (bitsize - ri) & (bitsize - 1); 4608 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4609 } 4610 return true; 4611 } 4612 4613 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4614 { 4615 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4616 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4617 unsigned int bitsize = a->sf ? 64 : 32; 4618 unsigned int ri = a->immr; 4619 unsigned int si = a->imms; 4620 unsigned int pos, len; 4621 4622 tcg_rd = cpu_reg(s, a->rd); 4623 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4624 4625 if (si >= ri) { 4626 /* Wd<s-r:0> = Wn<s:r> */ 4627 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4628 len = (si - ri) + 1; 4629 pos = 0; 4630 } else { 4631 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4632 len = si + 1; 4633 pos = (bitsize - ri) & (bitsize - 1); 4634 } 4635 4636 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4637 if (!a->sf) { 4638 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4639 } 4640 return true; 4641 } 4642 4643 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4644 { 4645 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4646 4647 tcg_rd = cpu_reg(s, a->rd); 4648 4649 if (unlikely(a->imm == 0)) { 4650 /* 4651 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4652 * so an extract from bit 0 is a special case. 4653 */ 4654 if (a->sf) { 4655 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4656 } else { 4657 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4658 } 4659 } else { 4660 tcg_rm = cpu_reg(s, a->rm); 4661 tcg_rn = cpu_reg(s, a->rn); 4662 4663 if (a->sf) { 4664 /* Specialization to ROR happens in EXTRACT2. */ 4665 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4666 } else { 4667 TCGv_i32 t0 = tcg_temp_new_i32(); 4668 4669 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4670 if (a->rm == a->rn) { 4671 tcg_gen_rotri_i32(t0, t0, a->imm); 4672 } else { 4673 TCGv_i32 t1 = tcg_temp_new_i32(); 4674 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4675 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4676 } 4677 tcg_gen_extu_i32_i64(tcg_rd, t0); 4678 } 4679 } 4680 return true; 4681 } 4682 4683 /* 4684 * Cryptographic AES, SHA, SHA512 4685 */ 4686 4687 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4688 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4689 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4690 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4691 4692 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4693 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4694 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4695 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4696 4697 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4698 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4699 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4700 4701 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4702 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4703 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4704 4705 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4706 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4707 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4708 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4709 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4710 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4711 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4712 4713 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4714 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4715 4716 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4717 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4718 4719 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4720 { 4721 if (!dc_isar_feature(aa64_sm3, s)) { 4722 return false; 4723 } 4724 if (fp_access_check(s)) { 4725 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4726 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4727 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4728 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4729 unsigned vsz, dofs; 4730 4731 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4732 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4733 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4734 4735 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4736 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4737 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4738 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4739 4740 /* Clear the whole register first, then store bits [127:96]. */ 4741 vsz = vec_full_reg_size(s); 4742 dofs = vec_full_reg_offset(s, a->rd); 4743 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4744 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4745 } 4746 return true; 4747 } 4748 4749 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4750 { 4751 if (fp_access_check(s)) { 4752 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4753 } 4754 return true; 4755 } 4756 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4757 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4758 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4759 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4760 4761 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4762 { 4763 if (!dc_isar_feature(aa64_sha3, s)) { 4764 return false; 4765 } 4766 if (fp_access_check(s)) { 4767 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4768 vec_full_reg_offset(s, a->rn), 4769 vec_full_reg_offset(s, a->rm), a->imm, 16, 4770 vec_full_reg_size(s)); 4771 } 4772 return true; 4773 } 4774 4775 /* 4776 * Advanced SIMD copy 4777 */ 4778 4779 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4780 { 4781 unsigned esz = ctz32(imm); 4782 if (esz <= MO_64) { 4783 *pesz = esz; 4784 *pidx = imm >> (esz + 1); 4785 return true; 4786 } 4787 return false; 4788 } 4789 4790 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4791 { 4792 MemOp esz; 4793 unsigned idx; 4794 4795 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4796 return false; 4797 } 4798 if (fp_access_check(s)) { 4799 /* 4800 * This instruction just extracts the specified element and 4801 * zero-extends it into the bottom of the destination register. 4802 */ 4803 TCGv_i64 tmp = tcg_temp_new_i64(); 4804 read_vec_element(s, tmp, a->rn, idx, esz); 4805 write_fp_dreg(s, a->rd, tmp); 4806 } 4807 return true; 4808 } 4809 4810 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4811 { 4812 MemOp esz; 4813 unsigned idx; 4814 4815 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4816 return false; 4817 } 4818 if (esz == MO_64 && !a->q) { 4819 return false; 4820 } 4821 if (fp_access_check(s)) { 4822 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4823 vec_reg_offset(s, a->rn, idx, esz), 4824 a->q ? 16 : 8, vec_full_reg_size(s)); 4825 } 4826 return true; 4827 } 4828 4829 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4830 { 4831 MemOp esz; 4832 unsigned idx; 4833 4834 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4835 return false; 4836 } 4837 if (esz == MO_64 && !a->q) { 4838 return false; 4839 } 4840 if (fp_access_check(s)) { 4841 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4842 a->q ? 16 : 8, vec_full_reg_size(s), 4843 cpu_reg(s, a->rn)); 4844 } 4845 return true; 4846 } 4847 4848 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4849 { 4850 MemOp esz; 4851 unsigned idx; 4852 4853 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4854 return false; 4855 } 4856 if (is_signed) { 4857 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4858 return false; 4859 } 4860 } else { 4861 if (esz == MO_64 ? !a->q : a->q) { 4862 return false; 4863 } 4864 } 4865 if (fp_access_check(s)) { 4866 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4867 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4868 if (is_signed && !a->q) { 4869 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4870 } 4871 } 4872 return true; 4873 } 4874 4875 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4876 TRANS(UMOV, do_smov_umov, a, 0) 4877 4878 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4879 { 4880 MemOp esz; 4881 unsigned idx; 4882 4883 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4884 return false; 4885 } 4886 if (fp_access_check(s)) { 4887 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4888 clear_vec_high(s, true, a->rd); 4889 } 4890 return true; 4891 } 4892 4893 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4894 { 4895 MemOp esz; 4896 unsigned didx, sidx; 4897 4898 if (!decode_esz_idx(a->di, &esz, &didx)) { 4899 return false; 4900 } 4901 sidx = a->si >> esz; 4902 if (fp_access_check(s)) { 4903 TCGv_i64 tmp = tcg_temp_new_i64(); 4904 4905 read_vec_element(s, tmp, a->rn, sidx, esz); 4906 write_vec_element(s, tmp, a->rd, didx, esz); 4907 4908 /* INS is considered a 128-bit write for SVE. */ 4909 clear_vec_high(s, true, a->rd); 4910 } 4911 return true; 4912 } 4913 4914 /* 4915 * Advanced SIMD three same 4916 */ 4917 4918 typedef struct FPScalar { 4919 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4920 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4921 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4922 } FPScalar; 4923 4924 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4925 { 4926 switch (a->esz) { 4927 case MO_64: 4928 if (fp_access_check(s)) { 4929 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4930 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4931 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4932 write_fp_dreg(s, a->rd, t0); 4933 } 4934 break; 4935 case MO_32: 4936 if (fp_access_check(s)) { 4937 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4938 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4939 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4940 write_fp_sreg(s, a->rd, t0); 4941 } 4942 break; 4943 case MO_16: 4944 if (!dc_isar_feature(aa64_fp16, s)) { 4945 return false; 4946 } 4947 if (fp_access_check(s)) { 4948 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4949 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4950 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4951 write_fp_sreg(s, a->rd, t0); 4952 } 4953 break; 4954 default: 4955 return false; 4956 } 4957 return true; 4958 } 4959 4960 static const FPScalar f_scalar_fadd = { 4961 gen_helper_vfp_addh, 4962 gen_helper_vfp_adds, 4963 gen_helper_vfp_addd, 4964 }; 4965 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4966 4967 static const FPScalar f_scalar_fsub = { 4968 gen_helper_vfp_subh, 4969 gen_helper_vfp_subs, 4970 gen_helper_vfp_subd, 4971 }; 4972 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4973 4974 static const FPScalar f_scalar_fdiv = { 4975 gen_helper_vfp_divh, 4976 gen_helper_vfp_divs, 4977 gen_helper_vfp_divd, 4978 }; 4979 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4980 4981 static const FPScalar f_scalar_fmul = { 4982 gen_helper_vfp_mulh, 4983 gen_helper_vfp_muls, 4984 gen_helper_vfp_muld, 4985 }; 4986 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4987 4988 static const FPScalar f_scalar_fmax = { 4989 gen_helper_advsimd_maxh, 4990 gen_helper_vfp_maxs, 4991 gen_helper_vfp_maxd, 4992 }; 4993 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4994 4995 static const FPScalar f_scalar_fmin = { 4996 gen_helper_advsimd_minh, 4997 gen_helper_vfp_mins, 4998 gen_helper_vfp_mind, 4999 }; 5000 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 5001 5002 static const FPScalar f_scalar_fmaxnm = { 5003 gen_helper_advsimd_maxnumh, 5004 gen_helper_vfp_maxnums, 5005 gen_helper_vfp_maxnumd, 5006 }; 5007 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 5008 5009 static const FPScalar f_scalar_fminnm = { 5010 gen_helper_advsimd_minnumh, 5011 gen_helper_vfp_minnums, 5012 gen_helper_vfp_minnumd, 5013 }; 5014 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 5015 5016 static const FPScalar f_scalar_fmulx = { 5017 gen_helper_advsimd_mulxh, 5018 gen_helper_vfp_mulxs, 5019 gen_helper_vfp_mulxd, 5020 }; 5021 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 5022 5023 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5024 { 5025 gen_helper_vfp_mulh(d, n, m, s); 5026 gen_vfp_negh(d, d); 5027 } 5028 5029 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5030 { 5031 gen_helper_vfp_muls(d, n, m, s); 5032 gen_vfp_negs(d, d); 5033 } 5034 5035 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5036 { 5037 gen_helper_vfp_muld(d, n, m, s); 5038 gen_vfp_negd(d, d); 5039 } 5040 5041 static const FPScalar f_scalar_fnmul = { 5042 gen_fnmul_h, 5043 gen_fnmul_s, 5044 gen_fnmul_d, 5045 }; 5046 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 5047 5048 static const FPScalar f_scalar_fcmeq = { 5049 gen_helper_advsimd_ceq_f16, 5050 gen_helper_neon_ceq_f32, 5051 gen_helper_neon_ceq_f64, 5052 }; 5053 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 5054 5055 static const FPScalar f_scalar_fcmge = { 5056 gen_helper_advsimd_cge_f16, 5057 gen_helper_neon_cge_f32, 5058 gen_helper_neon_cge_f64, 5059 }; 5060 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 5061 5062 static const FPScalar f_scalar_fcmgt = { 5063 gen_helper_advsimd_cgt_f16, 5064 gen_helper_neon_cgt_f32, 5065 gen_helper_neon_cgt_f64, 5066 }; 5067 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 5068 5069 static const FPScalar f_scalar_facge = { 5070 gen_helper_advsimd_acge_f16, 5071 gen_helper_neon_acge_f32, 5072 gen_helper_neon_acge_f64, 5073 }; 5074 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5075 5076 static const FPScalar f_scalar_facgt = { 5077 gen_helper_advsimd_acgt_f16, 5078 gen_helper_neon_acgt_f32, 5079 gen_helper_neon_acgt_f64, 5080 }; 5081 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5082 5083 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5084 { 5085 gen_helper_vfp_subh(d, n, m, s); 5086 gen_vfp_absh(d, d); 5087 } 5088 5089 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5090 { 5091 gen_helper_vfp_subs(d, n, m, s); 5092 gen_vfp_abss(d, d); 5093 } 5094 5095 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5096 { 5097 gen_helper_vfp_subd(d, n, m, s); 5098 gen_vfp_absd(d, d); 5099 } 5100 5101 static const FPScalar f_scalar_fabd = { 5102 gen_fabd_h, 5103 gen_fabd_s, 5104 gen_fabd_d, 5105 }; 5106 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5107 5108 static const FPScalar f_scalar_frecps = { 5109 gen_helper_recpsf_f16, 5110 gen_helper_recpsf_f32, 5111 gen_helper_recpsf_f64, 5112 }; 5113 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5114 5115 static const FPScalar f_scalar_frsqrts = { 5116 gen_helper_rsqrtsf_f16, 5117 gen_helper_rsqrtsf_f32, 5118 gen_helper_rsqrtsf_f64, 5119 }; 5120 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5121 5122 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a, 5123 MemOp sgn_n, MemOp sgn_m, 5124 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp), 5125 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) 5126 { 5127 TCGv_i64 t0, t1, t2, qc; 5128 MemOp esz = a->esz; 5129 5130 if (!fp_access_check(s)) { 5131 return true; 5132 } 5133 5134 t0 = tcg_temp_new_i64(); 5135 t1 = tcg_temp_new_i64(); 5136 t2 = tcg_temp_new_i64(); 5137 qc = tcg_temp_new_i64(); 5138 read_vec_element(s, t1, a->rn, 0, esz | sgn_n); 5139 read_vec_element(s, t2, a->rm, 0, esz | sgn_m); 5140 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5141 5142 if (esz == MO_64) { 5143 gen_d(t0, qc, t1, t2); 5144 } else { 5145 gen_bhs(t0, qc, t1, t2, esz); 5146 tcg_gen_ext_i64(t0, t0, esz); 5147 } 5148 5149 write_fp_dreg(s, a->rd, t0); 5150 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5151 return true; 5152 } 5153 5154 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d) 5155 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d) 5156 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d) 5157 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d) 5158 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d) 5159 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d) 5160 5161 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a, 5162 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64)) 5163 { 5164 if (fp_access_check(s)) { 5165 TCGv_i64 t0 = tcg_temp_new_i64(); 5166 TCGv_i64 t1 = tcg_temp_new_i64(); 5167 5168 read_vec_element(s, t0, a->rn, 0, MO_64); 5169 read_vec_element(s, t1, a->rm, 0, MO_64); 5170 fn(t0, t0, t1); 5171 write_fp_dreg(s, a->rd, t0); 5172 } 5173 return true; 5174 } 5175 5176 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64) 5177 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64) 5178 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64) 5179 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64) 5180 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64) 5181 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64) 5182 5183 typedef struct ENVScalar2 { 5184 NeonGenTwoOpEnvFn *gen_bhs[3]; 5185 NeonGenTwo64OpEnvFn *gen_d; 5186 } ENVScalar2; 5187 5188 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f) 5189 { 5190 if (!fp_access_check(s)) { 5191 return true; 5192 } 5193 if (a->esz == MO_64) { 5194 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5195 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5196 f->gen_d(t0, tcg_env, t0, t1); 5197 write_fp_dreg(s, a->rd, t0); 5198 } else { 5199 TCGv_i32 t0 = tcg_temp_new_i32(); 5200 TCGv_i32 t1 = tcg_temp_new_i32(); 5201 5202 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5203 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5204 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 5205 write_fp_sreg(s, a->rd, t0); 5206 } 5207 return true; 5208 } 5209 5210 static const ENVScalar2 f_scalar_sqshl = { 5211 { gen_helper_neon_qshl_s8, 5212 gen_helper_neon_qshl_s16, 5213 gen_helper_neon_qshl_s32 }, 5214 gen_helper_neon_qshl_s64, 5215 }; 5216 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl) 5217 5218 static const ENVScalar2 f_scalar_uqshl = { 5219 { gen_helper_neon_qshl_u8, 5220 gen_helper_neon_qshl_u16, 5221 gen_helper_neon_qshl_u32 }, 5222 gen_helper_neon_qshl_u64, 5223 }; 5224 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl) 5225 5226 static const ENVScalar2 f_scalar_sqrshl = { 5227 { gen_helper_neon_qrshl_s8, 5228 gen_helper_neon_qrshl_s16, 5229 gen_helper_neon_qrshl_s32 }, 5230 gen_helper_neon_qrshl_s64, 5231 }; 5232 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl) 5233 5234 static const ENVScalar2 f_scalar_uqrshl = { 5235 { gen_helper_neon_qrshl_u8, 5236 gen_helper_neon_qrshl_u16, 5237 gen_helper_neon_qrshl_u32 }, 5238 gen_helper_neon_qrshl_u64, 5239 }; 5240 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl) 5241 5242 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a, 5243 const ENVScalar2 *f) 5244 { 5245 if (a->esz == MO_16 || a->esz == MO_32) { 5246 return do_env_scalar2(s, a, f); 5247 } 5248 return false; 5249 } 5250 5251 static const ENVScalar2 f_scalar_sqdmulh = { 5252 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 } 5253 }; 5254 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh) 5255 5256 static const ENVScalar2 f_scalar_sqrdmulh = { 5257 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 } 5258 }; 5259 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh) 5260 5261 typedef struct ENVScalar3 { 5262 NeonGenThreeOpEnvFn *gen_hs[2]; 5263 } ENVScalar3; 5264 5265 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a, 5266 const ENVScalar3 *f) 5267 { 5268 TCGv_i32 t0, t1, t2; 5269 5270 if (a->esz != MO_16 && a->esz != MO_32) { 5271 return false; 5272 } 5273 if (!fp_access_check(s)) { 5274 return true; 5275 } 5276 5277 t0 = tcg_temp_new_i32(); 5278 t1 = tcg_temp_new_i32(); 5279 t2 = tcg_temp_new_i32(); 5280 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5281 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5282 read_vec_element_i32(s, t2, a->rd, 0, a->esz); 5283 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2); 5284 write_fp_sreg(s, a->rd, t0); 5285 return true; 5286 } 5287 5288 static const ENVScalar3 f_scalar_sqrdmlah = { 5289 { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 } 5290 }; 5291 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah) 5292 5293 static const ENVScalar3 f_scalar_sqrdmlsh = { 5294 { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 } 5295 }; 5296 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh) 5297 5298 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond) 5299 { 5300 if (fp_access_check(s)) { 5301 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5302 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5303 tcg_gen_negsetcond_i64(cond, t0, t0, t1); 5304 write_fp_dreg(s, a->rd, t0); 5305 } 5306 return true; 5307 } 5308 5309 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT) 5310 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU) 5311 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE) 5312 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU) 5313 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ) 5314 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE) 5315 5316 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data, 5317 gen_helper_gvec_3_ptr * const fns[3]) 5318 { 5319 MemOp esz = a->esz; 5320 5321 switch (esz) { 5322 case MO_64: 5323 if (!a->q) { 5324 return false; 5325 } 5326 break; 5327 case MO_32: 5328 break; 5329 case MO_16: 5330 if (!dc_isar_feature(aa64_fp16, s)) { 5331 return false; 5332 } 5333 break; 5334 default: 5335 return false; 5336 } 5337 if (fp_access_check(s)) { 5338 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5339 esz == MO_16, data, fns[esz - 1]); 5340 } 5341 return true; 5342 } 5343 5344 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5345 gen_helper_gvec_fadd_h, 5346 gen_helper_gvec_fadd_s, 5347 gen_helper_gvec_fadd_d, 5348 }; 5349 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd) 5350 5351 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5352 gen_helper_gvec_fsub_h, 5353 gen_helper_gvec_fsub_s, 5354 gen_helper_gvec_fsub_d, 5355 }; 5356 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub) 5357 5358 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5359 gen_helper_gvec_fdiv_h, 5360 gen_helper_gvec_fdiv_s, 5361 gen_helper_gvec_fdiv_d, 5362 }; 5363 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv) 5364 5365 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5366 gen_helper_gvec_fmul_h, 5367 gen_helper_gvec_fmul_s, 5368 gen_helper_gvec_fmul_d, 5369 }; 5370 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul) 5371 5372 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5373 gen_helper_gvec_fmax_h, 5374 gen_helper_gvec_fmax_s, 5375 gen_helper_gvec_fmax_d, 5376 }; 5377 TRANS(FMAX_v, do_fp3_vector, a, 0, f_vector_fmax) 5378 5379 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5380 gen_helper_gvec_fmin_h, 5381 gen_helper_gvec_fmin_s, 5382 gen_helper_gvec_fmin_d, 5383 }; 5384 TRANS(FMIN_v, do_fp3_vector, a, 0, f_vector_fmin) 5385 5386 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5387 gen_helper_gvec_fmaxnum_h, 5388 gen_helper_gvec_fmaxnum_s, 5389 gen_helper_gvec_fmaxnum_d, 5390 }; 5391 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm) 5392 5393 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5394 gen_helper_gvec_fminnum_h, 5395 gen_helper_gvec_fminnum_s, 5396 gen_helper_gvec_fminnum_d, 5397 }; 5398 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm) 5399 5400 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5401 gen_helper_gvec_fmulx_h, 5402 gen_helper_gvec_fmulx_s, 5403 gen_helper_gvec_fmulx_d, 5404 }; 5405 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx) 5406 5407 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5408 gen_helper_gvec_vfma_h, 5409 gen_helper_gvec_vfma_s, 5410 gen_helper_gvec_vfma_d, 5411 }; 5412 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla) 5413 5414 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5415 gen_helper_gvec_vfms_h, 5416 gen_helper_gvec_vfms_s, 5417 gen_helper_gvec_vfms_d, 5418 }; 5419 TRANS(FMLS_v, do_fp3_vector, a, 0, f_vector_fmls) 5420 5421 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5422 gen_helper_gvec_fceq_h, 5423 gen_helper_gvec_fceq_s, 5424 gen_helper_gvec_fceq_d, 5425 }; 5426 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq) 5427 5428 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5429 gen_helper_gvec_fcge_h, 5430 gen_helper_gvec_fcge_s, 5431 gen_helper_gvec_fcge_d, 5432 }; 5433 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge) 5434 5435 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5436 gen_helper_gvec_fcgt_h, 5437 gen_helper_gvec_fcgt_s, 5438 gen_helper_gvec_fcgt_d, 5439 }; 5440 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt) 5441 5442 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5443 gen_helper_gvec_facge_h, 5444 gen_helper_gvec_facge_s, 5445 gen_helper_gvec_facge_d, 5446 }; 5447 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge) 5448 5449 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5450 gen_helper_gvec_facgt_h, 5451 gen_helper_gvec_facgt_s, 5452 gen_helper_gvec_facgt_d, 5453 }; 5454 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt) 5455 5456 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5457 gen_helper_gvec_fabd_h, 5458 gen_helper_gvec_fabd_s, 5459 gen_helper_gvec_fabd_d, 5460 }; 5461 TRANS(FABD_v, do_fp3_vector, a, 0, f_vector_fabd) 5462 5463 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5464 gen_helper_gvec_recps_h, 5465 gen_helper_gvec_recps_s, 5466 gen_helper_gvec_recps_d, 5467 }; 5468 TRANS(FRECPS_v, do_fp3_vector, a, 0, f_vector_frecps) 5469 5470 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5471 gen_helper_gvec_rsqrts_h, 5472 gen_helper_gvec_rsqrts_s, 5473 gen_helper_gvec_rsqrts_d, 5474 }; 5475 TRANS(FRSQRTS_v, do_fp3_vector, a, 0, f_vector_frsqrts) 5476 5477 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5478 gen_helper_gvec_faddp_h, 5479 gen_helper_gvec_faddp_s, 5480 gen_helper_gvec_faddp_d, 5481 }; 5482 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp) 5483 5484 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5485 gen_helper_gvec_fmaxp_h, 5486 gen_helper_gvec_fmaxp_s, 5487 gen_helper_gvec_fmaxp_d, 5488 }; 5489 TRANS(FMAXP_v, do_fp3_vector, a, 0, f_vector_fmaxp) 5490 5491 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5492 gen_helper_gvec_fminp_h, 5493 gen_helper_gvec_fminp_s, 5494 gen_helper_gvec_fminp_d, 5495 }; 5496 TRANS(FMINP_v, do_fp3_vector, a, 0, f_vector_fminp) 5497 5498 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5499 gen_helper_gvec_fmaxnump_h, 5500 gen_helper_gvec_fmaxnump_s, 5501 gen_helper_gvec_fmaxnump_d, 5502 }; 5503 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp) 5504 5505 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5506 gen_helper_gvec_fminnump_h, 5507 gen_helper_gvec_fminnump_s, 5508 gen_helper_gvec_fminnump_d, 5509 }; 5510 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp) 5511 5512 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2) 5513 { 5514 if (fp_access_check(s)) { 5515 int data = (is_2 << 1) | is_s; 5516 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5517 vec_full_reg_offset(s, a->rn), 5518 vec_full_reg_offset(s, a->rm), tcg_env, 5519 a->q ? 16 : 8, vec_full_reg_size(s), 5520 data, gen_helper_gvec_fmlal_a64); 5521 } 5522 return true; 5523 } 5524 5525 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false) 5526 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false) 5527 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true) 5528 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true) 5529 5530 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5531 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) 5532 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) 5533 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) 5534 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) 5535 5536 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and) 5537 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc) 5538 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or) 5539 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc) 5540 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor) 5541 5542 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c) 5543 { 5544 if (fp_access_check(s)) { 5545 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0); 5546 } 5547 return true; 5548 } 5549 5550 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm) 5551 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd) 5552 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn) 5553 5554 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc) 5555 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc) 5556 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc) 5557 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc) 5558 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc) 5559 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc) 5560 5561 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl) 5562 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl) 5563 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl) 5564 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl) 5565 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl) 5566 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl) 5567 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl) 5568 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl) 5569 5570 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add) 5571 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub) 5572 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd) 5573 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd) 5574 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub) 5575 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub) 5576 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd) 5577 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd) 5578 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax) 5579 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax) 5580 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin) 5581 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin) 5582 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba) 5583 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba) 5584 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd) 5585 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd) 5586 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul) 5587 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b) 5588 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla) 5589 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls) 5590 5591 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond) 5592 { 5593 if (a->esz == MO_64 && !a->q) { 5594 return false; 5595 } 5596 if (fp_access_check(s)) { 5597 tcg_gen_gvec_cmp(cond, a->esz, 5598 vec_full_reg_offset(s, a->rd), 5599 vec_full_reg_offset(s, a->rn), 5600 vec_full_reg_offset(s, a->rm), 5601 a->q ? 16 : 8, vec_full_reg_size(s)); 5602 } 5603 return true; 5604 } 5605 5606 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT) 5607 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU) 5608 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE) 5609 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU) 5610 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ) 5611 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst) 5612 5613 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc) 5614 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc) 5615 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc) 5616 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc) 5617 5618 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a, 5619 gen_helper_gvec_4 *fn) 5620 { 5621 if (fp_access_check(s)) { 5622 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn); 5623 } 5624 return true; 5625 } 5626 5627 static bool do_dot_vector_env(DisasContext *s, arg_qrrr_e *a, 5628 gen_helper_gvec_4_ptr *fn) 5629 { 5630 if (fp_access_check(s)) { 5631 gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn); 5632 } 5633 return true; 5634 } 5635 5636 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b) 5637 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b) 5638 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b) 5639 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfdot) 5640 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfmmla) 5641 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b) 5642 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b) 5643 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b) 5644 5645 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a) 5646 { 5647 if (!dc_isar_feature(aa64_bf16, s)) { 5648 return false; 5649 } 5650 if (fp_access_check(s)) { 5651 /* Q bit selects BFMLALB vs BFMLALT. */ 5652 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q, 5653 gen_helper_gvec_bfmlal); 5654 } 5655 return true; 5656 } 5657 5658 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = { 5659 gen_helper_gvec_fcaddh, 5660 gen_helper_gvec_fcadds, 5661 gen_helper_gvec_fcaddd, 5662 }; 5663 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0, f_vector_fcadd) 5664 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1, f_vector_fcadd) 5665 5666 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a) 5667 { 5668 gen_helper_gvec_4_ptr *fn; 5669 5670 if (!dc_isar_feature(aa64_fcma, s)) { 5671 return false; 5672 } 5673 switch (a->esz) { 5674 case MO_64: 5675 if (!a->q) { 5676 return false; 5677 } 5678 fn = gen_helper_gvec_fcmlad; 5679 break; 5680 case MO_32: 5681 fn = gen_helper_gvec_fcmlas; 5682 break; 5683 case MO_16: 5684 if (!dc_isar_feature(aa64_fp16, s)) { 5685 return false; 5686 } 5687 fn = gen_helper_gvec_fcmlah; 5688 break; 5689 default: 5690 return false; 5691 } 5692 if (fp_access_check(s)) { 5693 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5694 a->esz == MO_16, a->rot, fn); 5695 } 5696 return true; 5697 } 5698 5699 /* 5700 * Widening vector x vector/indexed. 5701 * 5702 * These read from the top or bottom half of a 128-bit vector. 5703 * After widening, optionally accumulate with a 128-bit vector. 5704 * Implement these inline, as the number of elements are limited 5705 * and the related SVE and SME operations on larger vectors use 5706 * even/odd elements instead of top/bottom half. 5707 * 5708 * If idx >= 0, operand 2 is indexed, otherwise vector. 5709 * If acc, operand 0 is loaded with rd. 5710 */ 5711 5712 /* For low half, iterating up. */ 5713 static bool do_3op_widening(DisasContext *s, MemOp memop, int top, 5714 int rd, int rn, int rm, int idx, 5715 NeonGenTwo64OpFn *fn, bool acc) 5716 { 5717 TCGv_i64 tcg_op0 = tcg_temp_new_i64(); 5718 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 5719 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 5720 MemOp esz = memop & MO_SIZE; 5721 int half = 8 >> esz; 5722 int top_swap, top_half; 5723 5724 /* There are no 64x64->128 bit operations. */ 5725 if (esz >= MO_64) { 5726 return false; 5727 } 5728 if (!fp_access_check(s)) { 5729 return true; 5730 } 5731 5732 if (idx >= 0) { 5733 read_vec_element(s, tcg_op2, rm, idx, memop); 5734 } 5735 5736 /* 5737 * For top half inputs, iterate forward; backward for bottom half. 5738 * This means the store to the destination will not occur until 5739 * overlapping input inputs are consumed. 5740 * Use top_swap to conditionally invert the forward iteration index. 5741 */ 5742 top_swap = top ? 0 : half - 1; 5743 top_half = top ? half : 0; 5744 5745 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) { 5746 int elt = elt_fwd ^ top_swap; 5747 5748 read_vec_element(s, tcg_op1, rn, elt + top_half, memop); 5749 if (idx < 0) { 5750 read_vec_element(s, tcg_op2, rm, elt + top_half, memop); 5751 } 5752 if (acc) { 5753 read_vec_element(s, tcg_op0, rd, elt, memop + 1); 5754 } 5755 fn(tcg_op0, tcg_op1, tcg_op2); 5756 write_vec_element(s, tcg_op0, rd, elt, esz + 1); 5757 } 5758 clear_vec_high(s, 1, rd); 5759 return true; 5760 } 5761 5762 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5763 { 5764 TCGv_i64 t = tcg_temp_new_i64(); 5765 tcg_gen_mul_i64(t, n, m); 5766 tcg_gen_add_i64(d, d, t); 5767 } 5768 5769 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5770 { 5771 TCGv_i64 t = tcg_temp_new_i64(); 5772 tcg_gen_mul_i64(t, n, m); 5773 tcg_gen_sub_i64(d, d, t); 5774 } 5775 5776 TRANS(SMULL_v, do_3op_widening, 5777 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5778 tcg_gen_mul_i64, false) 5779 TRANS(UMULL_v, do_3op_widening, 5780 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5781 tcg_gen_mul_i64, false) 5782 TRANS(SMLAL_v, do_3op_widening, 5783 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5784 gen_muladd_i64, true) 5785 TRANS(UMLAL_v, do_3op_widening, 5786 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5787 gen_muladd_i64, true) 5788 TRANS(SMLSL_v, do_3op_widening, 5789 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5790 gen_mulsub_i64, true) 5791 TRANS(UMLSL_v, do_3op_widening, 5792 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5793 gen_mulsub_i64, true) 5794 5795 TRANS(SMULL_vi, do_3op_widening, 5796 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5797 tcg_gen_mul_i64, false) 5798 TRANS(UMULL_vi, do_3op_widening, 5799 a->esz, a->q, a->rd, a->rn, a->rm, a->idx, 5800 tcg_gen_mul_i64, false) 5801 TRANS(SMLAL_vi, do_3op_widening, 5802 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5803 gen_muladd_i64, true) 5804 TRANS(UMLAL_vi, do_3op_widening, 5805 a->esz, a->q, a->rd, a->rn, a->rm, a->idx, 5806 gen_muladd_i64, true) 5807 TRANS(SMLSL_vi, do_3op_widening, 5808 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5809 gen_mulsub_i64, true) 5810 TRANS(UMLSL_vi, do_3op_widening, 5811 a->esz, a->q, a->rd, a->rn, a->rm, a->idx, 5812 gen_mulsub_i64, true) 5813 5814 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5815 { 5816 TCGv_i64 t1 = tcg_temp_new_i64(); 5817 TCGv_i64 t2 = tcg_temp_new_i64(); 5818 5819 tcg_gen_sub_i64(t1, n, m); 5820 tcg_gen_sub_i64(t2, m, n); 5821 tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2); 5822 } 5823 5824 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5825 { 5826 TCGv_i64 t1 = tcg_temp_new_i64(); 5827 TCGv_i64 t2 = tcg_temp_new_i64(); 5828 5829 tcg_gen_sub_i64(t1, n, m); 5830 tcg_gen_sub_i64(t2, m, n); 5831 tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2); 5832 } 5833 5834 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5835 { 5836 TCGv_i64 t = tcg_temp_new_i64(); 5837 gen_sabd_i64(t, n, m); 5838 tcg_gen_add_i64(d, d, t); 5839 } 5840 5841 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5842 { 5843 TCGv_i64 t = tcg_temp_new_i64(); 5844 gen_uabd_i64(t, n, m); 5845 tcg_gen_add_i64(d, d, t); 5846 } 5847 5848 TRANS(SADDL_v, do_3op_widening, 5849 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5850 tcg_gen_add_i64, false) 5851 TRANS(UADDL_v, do_3op_widening, 5852 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5853 tcg_gen_add_i64, false) 5854 TRANS(SSUBL_v, do_3op_widening, 5855 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5856 tcg_gen_sub_i64, false) 5857 TRANS(USUBL_v, do_3op_widening, 5858 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5859 tcg_gen_sub_i64, false) 5860 TRANS(SABDL_v, do_3op_widening, 5861 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5862 gen_sabd_i64, false) 5863 TRANS(UABDL_v, do_3op_widening, 5864 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5865 gen_uabd_i64, false) 5866 TRANS(SABAL_v, do_3op_widening, 5867 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5868 gen_saba_i64, true) 5869 TRANS(UABAL_v, do_3op_widening, 5870 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5871 gen_uaba_i64, true) 5872 5873 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5874 { 5875 tcg_gen_mul_i64(d, n, m); 5876 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d); 5877 } 5878 5879 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5880 { 5881 tcg_gen_mul_i64(d, n, m); 5882 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d); 5883 } 5884 5885 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5886 { 5887 TCGv_i64 t = tcg_temp_new_i64(); 5888 5889 tcg_gen_mul_i64(t, n, m); 5890 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t); 5891 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t); 5892 } 5893 5894 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5895 { 5896 TCGv_i64 t = tcg_temp_new_i64(); 5897 5898 tcg_gen_mul_i64(t, n, m); 5899 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t); 5900 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t); 5901 } 5902 5903 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5904 { 5905 TCGv_i64 t = tcg_temp_new_i64(); 5906 5907 tcg_gen_mul_i64(t, n, m); 5908 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t); 5909 tcg_gen_neg_i64(t, t); 5910 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t); 5911 } 5912 5913 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5914 { 5915 TCGv_i64 t = tcg_temp_new_i64(); 5916 5917 tcg_gen_mul_i64(t, n, m); 5918 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t); 5919 tcg_gen_neg_i64(t, t); 5920 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t); 5921 } 5922 5923 TRANS(SQDMULL_v, do_3op_widening, 5924 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5925 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false) 5926 TRANS(SQDMLAL_v, do_3op_widening, 5927 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5928 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true) 5929 TRANS(SQDMLSL_v, do_3op_widening, 5930 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5931 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true) 5932 5933 TRANS(SQDMULL_vi, do_3op_widening, 5934 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5935 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false) 5936 TRANS(SQDMLAL_vi, do_3op_widening, 5937 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5938 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true) 5939 TRANS(SQDMLSL_vi, do_3op_widening, 5940 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5941 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true) 5942 5943 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a, 5944 MemOp sign, bool sub) 5945 { 5946 TCGv_i64 tcg_op0, tcg_op1; 5947 MemOp esz = a->esz; 5948 int half = 8 >> esz; 5949 bool top = a->q; 5950 int top_swap = top ? 0 : half - 1; 5951 int top_half = top ? half : 0; 5952 5953 /* There are no 64x64->128 bit operations. */ 5954 if (esz >= MO_64) { 5955 return false; 5956 } 5957 if (!fp_access_check(s)) { 5958 return true; 5959 } 5960 tcg_op0 = tcg_temp_new_i64(); 5961 tcg_op1 = tcg_temp_new_i64(); 5962 5963 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) { 5964 int elt = elt_fwd ^ top_swap; 5965 5966 read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign); 5967 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1); 5968 if (sub) { 5969 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1); 5970 } else { 5971 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1); 5972 } 5973 write_vec_element(s, tcg_op0, a->rd, elt, esz + 1); 5974 } 5975 clear_vec_high(s, 1, a->rd); 5976 return true; 5977 } 5978 5979 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false) 5980 TRANS(UADDW, do_addsub_wide, a, 0, false) 5981 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true) 5982 TRANS(USUBW, do_addsub_wide, a, 0, true) 5983 5984 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a, 5985 bool sub, bool round) 5986 { 5987 TCGv_i64 tcg_op0, tcg_op1; 5988 MemOp esz = a->esz; 5989 int half = 8 >> esz; 5990 bool top = a->q; 5991 int ebits = 8 << esz; 5992 uint64_t rbit = 1ull << (ebits - 1); 5993 int top_swap, top_half; 5994 5995 /* There are no 128x128->64 bit operations. */ 5996 if (esz >= MO_64) { 5997 return false; 5998 } 5999 if (!fp_access_check(s)) { 6000 return true; 6001 } 6002 tcg_op0 = tcg_temp_new_i64(); 6003 tcg_op1 = tcg_temp_new_i64(); 6004 6005 /* 6006 * For top half inputs, iterate backward; forward for bottom half. 6007 * This means the store to the destination will not occur until 6008 * overlapping input inputs are consumed. 6009 */ 6010 top_swap = top ? half - 1 : 0; 6011 top_half = top ? half : 0; 6012 6013 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) { 6014 int elt = elt_fwd ^ top_swap; 6015 6016 read_vec_element(s, tcg_op1, a->rm, elt, esz + 1); 6017 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1); 6018 if (sub) { 6019 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1); 6020 } else { 6021 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1); 6022 } 6023 if (round) { 6024 tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit); 6025 } 6026 tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits); 6027 write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz); 6028 } 6029 clear_vec_high(s, top, a->rd); 6030 return true; 6031 } 6032 6033 TRANS(ADDHN, do_addsub_highnarrow, a, false, false) 6034 TRANS(SUBHN, do_addsub_highnarrow, a, true, false) 6035 TRANS(RADDHN, do_addsub_highnarrow, a, false, true) 6036 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true) 6037 6038 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn) 6039 { 6040 if (fp_access_check(s)) { 6041 /* The Q field specifies lo/hi half input for these insns. */ 6042 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn); 6043 } 6044 return true; 6045 } 6046 6047 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h) 6048 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q) 6049 6050 /* 6051 * Advanced SIMD scalar/vector x indexed element 6052 */ 6053 6054 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 6055 { 6056 switch (a->esz) { 6057 case MO_64: 6058 if (fp_access_check(s)) { 6059 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 6060 TCGv_i64 t1 = tcg_temp_new_i64(); 6061 6062 read_vec_element(s, t1, a->rm, a->idx, MO_64); 6063 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6064 write_fp_dreg(s, a->rd, t0); 6065 } 6066 break; 6067 case MO_32: 6068 if (fp_access_check(s)) { 6069 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 6070 TCGv_i32 t1 = tcg_temp_new_i32(); 6071 6072 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 6073 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6074 write_fp_sreg(s, a->rd, t0); 6075 } 6076 break; 6077 case MO_16: 6078 if (!dc_isar_feature(aa64_fp16, s)) { 6079 return false; 6080 } 6081 if (fp_access_check(s)) { 6082 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 6083 TCGv_i32 t1 = tcg_temp_new_i32(); 6084 6085 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 6086 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 6087 write_fp_sreg(s, a->rd, t0); 6088 } 6089 break; 6090 default: 6091 g_assert_not_reached(); 6092 } 6093 return true; 6094 } 6095 6096 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 6097 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 6098 6099 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 6100 { 6101 switch (a->esz) { 6102 case MO_64: 6103 if (fp_access_check(s)) { 6104 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 6105 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 6106 TCGv_i64 t2 = tcg_temp_new_i64(); 6107 6108 read_vec_element(s, t2, a->rm, a->idx, MO_64); 6109 if (neg) { 6110 gen_vfp_negd(t1, t1); 6111 } 6112 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 6113 write_fp_dreg(s, a->rd, t0); 6114 } 6115 break; 6116 case MO_32: 6117 if (fp_access_check(s)) { 6118 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 6119 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 6120 TCGv_i32 t2 = tcg_temp_new_i32(); 6121 6122 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 6123 if (neg) { 6124 gen_vfp_negs(t1, t1); 6125 } 6126 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 6127 write_fp_sreg(s, a->rd, t0); 6128 } 6129 break; 6130 case MO_16: 6131 if (!dc_isar_feature(aa64_fp16, s)) { 6132 return false; 6133 } 6134 if (fp_access_check(s)) { 6135 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 6136 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 6137 TCGv_i32 t2 = tcg_temp_new_i32(); 6138 6139 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 6140 if (neg) { 6141 gen_vfp_negh(t1, t1); 6142 } 6143 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 6144 fpstatus_ptr(FPST_FPCR_F16)); 6145 write_fp_sreg(s, a->rd, t0); 6146 } 6147 break; 6148 default: 6149 g_assert_not_reached(); 6150 } 6151 return true; 6152 } 6153 6154 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 6155 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 6156 6157 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a, 6158 const ENVScalar2 *f) 6159 { 6160 if (a->esz < MO_16 || a->esz > MO_32) { 6161 return false; 6162 } 6163 if (fp_access_check(s)) { 6164 TCGv_i32 t0 = tcg_temp_new_i32(); 6165 TCGv_i32 t1 = tcg_temp_new_i32(); 6166 6167 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 6168 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 6169 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 6170 write_fp_sreg(s, a->rd, t0); 6171 } 6172 return true; 6173 } 6174 6175 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh) 6176 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh) 6177 6178 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a, 6179 const ENVScalar3 *f) 6180 { 6181 if (a->esz < MO_16 || a->esz > MO_32) { 6182 return false; 6183 } 6184 if (fp_access_check(s)) { 6185 TCGv_i32 t0 = tcg_temp_new_i32(); 6186 TCGv_i32 t1 = tcg_temp_new_i32(); 6187 TCGv_i32 t2 = tcg_temp_new_i32(); 6188 6189 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 6190 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 6191 read_vec_element_i32(s, t2, a->rd, 0, a->esz); 6192 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2); 6193 write_fp_sreg(s, a->rd, t0); 6194 } 6195 return true; 6196 } 6197 6198 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah) 6199 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh) 6200 6201 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a, 6202 NeonGenTwo64OpFn *fn, bool acc) 6203 { 6204 if (fp_access_check(s)) { 6205 TCGv_i64 t0 = tcg_temp_new_i64(); 6206 TCGv_i64 t1 = tcg_temp_new_i64(); 6207 TCGv_i64 t2 = tcg_temp_new_i64(); 6208 unsigned vsz, dofs; 6209 6210 if (acc) { 6211 read_vec_element(s, t0, a->rd, 0, a->esz + 1); 6212 } 6213 read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN); 6214 read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN); 6215 fn(t0, t1, t2); 6216 6217 /* Clear the whole register first, then store scalar. */ 6218 vsz = vec_full_reg_size(s); 6219 dofs = vec_full_reg_offset(s, a->rd); 6220 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 6221 write_vec_element(s, t0, a->rd, 0, a->esz + 1); 6222 } 6223 return true; 6224 } 6225 6226 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a, 6227 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false) 6228 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a, 6229 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true) 6230 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a, 6231 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true) 6232 6233 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 6234 gen_helper_gvec_3_ptr * const fns[3]) 6235 { 6236 MemOp esz = a->esz; 6237 6238 switch (esz) { 6239 case MO_64: 6240 if (!a->q) { 6241 return false; 6242 } 6243 break; 6244 case MO_32: 6245 break; 6246 case MO_16: 6247 if (!dc_isar_feature(aa64_fp16, s)) { 6248 return false; 6249 } 6250 break; 6251 default: 6252 g_assert_not_reached(); 6253 } 6254 if (fp_access_check(s)) { 6255 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 6256 esz == MO_16, a->idx, fns[esz - 1]); 6257 } 6258 return true; 6259 } 6260 6261 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 6262 gen_helper_gvec_fmul_idx_h, 6263 gen_helper_gvec_fmul_idx_s, 6264 gen_helper_gvec_fmul_idx_d, 6265 }; 6266 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 6267 6268 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 6269 gen_helper_gvec_fmulx_idx_h, 6270 gen_helper_gvec_fmulx_idx_s, 6271 gen_helper_gvec_fmulx_idx_d, 6272 }; 6273 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 6274 6275 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 6276 { 6277 static gen_helper_gvec_4_ptr * const fns[3] = { 6278 gen_helper_gvec_fmla_idx_h, 6279 gen_helper_gvec_fmla_idx_s, 6280 gen_helper_gvec_fmla_idx_d, 6281 }; 6282 MemOp esz = a->esz; 6283 6284 switch (esz) { 6285 case MO_64: 6286 if (!a->q) { 6287 return false; 6288 } 6289 break; 6290 case MO_32: 6291 break; 6292 case MO_16: 6293 if (!dc_isar_feature(aa64_fp16, s)) { 6294 return false; 6295 } 6296 break; 6297 default: 6298 g_assert_not_reached(); 6299 } 6300 if (fp_access_check(s)) { 6301 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 6302 esz == MO_16, (a->idx << 1) | neg, 6303 fns[esz - 1]); 6304 } 6305 return true; 6306 } 6307 6308 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 6309 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 6310 6311 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2) 6312 { 6313 if (fp_access_check(s)) { 6314 int data = (a->idx << 2) | (is_2 << 1) | is_s; 6315 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 6316 vec_full_reg_offset(s, a->rn), 6317 vec_full_reg_offset(s, a->rm), tcg_env, 6318 a->q ? 16 : 8, vec_full_reg_size(s), 6319 data, gen_helper_gvec_fmlal_idx_a64); 6320 } 6321 return true; 6322 } 6323 6324 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false) 6325 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false) 6326 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true) 6327 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true) 6328 6329 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a, 6330 gen_helper_gvec_3 * const fns[2]) 6331 { 6332 assert(a->esz == MO_16 || a->esz == MO_32); 6333 if (fp_access_check(s)) { 6334 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]); 6335 } 6336 return true; 6337 } 6338 6339 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = { 6340 gen_helper_gvec_mul_idx_h, 6341 gen_helper_gvec_mul_idx_s, 6342 }; 6343 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul) 6344 6345 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub) 6346 { 6347 static gen_helper_gvec_4 * const fns[2][2] = { 6348 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h }, 6349 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s }, 6350 }; 6351 6352 assert(a->esz == MO_16 || a->esz == MO_32); 6353 if (fp_access_check(s)) { 6354 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 6355 a->idx, fns[a->esz - 1][sub]); 6356 } 6357 return true; 6358 } 6359 6360 TRANS(MLA_vi, do_mla_vector_idx, a, false) 6361 TRANS(MLS_vi, do_mla_vector_idx, a, true) 6362 6363 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a, 6364 gen_helper_gvec_4 * const fns[2]) 6365 { 6366 assert(a->esz == MO_16 || a->esz == MO_32); 6367 if (fp_access_check(s)) { 6368 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd), 6369 vec_full_reg_offset(s, a->rn), 6370 vec_full_reg_offset(s, a->rm), 6371 offsetof(CPUARMState, vfp.qc), 6372 a->q ? 16 : 8, vec_full_reg_size(s), 6373 a->idx, fns[a->esz - 1]); 6374 } 6375 return true; 6376 } 6377 6378 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = { 6379 gen_helper_neon_sqdmulh_idx_h, 6380 gen_helper_neon_sqdmulh_idx_s, 6381 }; 6382 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh) 6383 6384 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = { 6385 gen_helper_neon_sqrdmulh_idx_h, 6386 gen_helper_neon_sqrdmulh_idx_s, 6387 }; 6388 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh) 6389 6390 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = { 6391 gen_helper_neon_sqrdmlah_idx_h, 6392 gen_helper_neon_sqrdmlah_idx_s, 6393 }; 6394 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a, 6395 f_vector_idx_sqrdmlah) 6396 6397 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = { 6398 gen_helper_neon_sqrdmlsh_idx_h, 6399 gen_helper_neon_sqrdmlsh_idx_s, 6400 }; 6401 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a, 6402 f_vector_idx_sqrdmlsh) 6403 6404 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a, 6405 gen_helper_gvec_4 *fn) 6406 { 6407 if (fp_access_check(s)) { 6408 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn); 6409 } 6410 return true; 6411 } 6412 6413 static bool do_dot_vector_idx_env(DisasContext *s, arg_qrrx_e *a, 6414 gen_helper_gvec_4_ptr *fn) 6415 { 6416 if (fp_access_check(s)) { 6417 gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn); 6418 } 6419 return true; 6420 } 6421 6422 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b) 6423 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b) 6424 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a, 6425 gen_helper_gvec_sudot_idx_b) 6426 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a, 6427 gen_helper_gvec_usdot_idx_b) 6428 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx_env, a, 6429 gen_helper_gvec_bfdot_idx) 6430 6431 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a) 6432 { 6433 if (!dc_isar_feature(aa64_bf16, s)) { 6434 return false; 6435 } 6436 if (fp_access_check(s)) { 6437 /* Q bit selects BFMLALB vs BFMLALT. */ 6438 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0, 6439 (a->idx << 1) | a->q, 6440 gen_helper_gvec_bfmlal_idx); 6441 } 6442 return true; 6443 } 6444 6445 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a) 6446 { 6447 gen_helper_gvec_4_ptr *fn; 6448 6449 if (!dc_isar_feature(aa64_fcma, s)) { 6450 return false; 6451 } 6452 switch (a->esz) { 6453 case MO_16: 6454 if (!dc_isar_feature(aa64_fp16, s)) { 6455 return false; 6456 } 6457 fn = gen_helper_gvec_fcmlah_idx; 6458 break; 6459 case MO_32: 6460 fn = gen_helper_gvec_fcmlas_idx; 6461 break; 6462 default: 6463 g_assert_not_reached(); 6464 } 6465 if (fp_access_check(s)) { 6466 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 6467 a->esz == MO_16, (a->idx << 2) | a->rot, fn); 6468 } 6469 return true; 6470 } 6471 6472 /* 6473 * Advanced SIMD scalar pairwise 6474 */ 6475 6476 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 6477 { 6478 switch (a->esz) { 6479 case MO_64: 6480 if (fp_access_check(s)) { 6481 TCGv_i64 t0 = tcg_temp_new_i64(); 6482 TCGv_i64 t1 = tcg_temp_new_i64(); 6483 6484 read_vec_element(s, t0, a->rn, 0, MO_64); 6485 read_vec_element(s, t1, a->rn, 1, MO_64); 6486 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6487 write_fp_dreg(s, a->rd, t0); 6488 } 6489 break; 6490 case MO_32: 6491 if (fp_access_check(s)) { 6492 TCGv_i32 t0 = tcg_temp_new_i32(); 6493 TCGv_i32 t1 = tcg_temp_new_i32(); 6494 6495 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 6496 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 6497 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6498 write_fp_sreg(s, a->rd, t0); 6499 } 6500 break; 6501 case MO_16: 6502 if (!dc_isar_feature(aa64_fp16, s)) { 6503 return false; 6504 } 6505 if (fp_access_check(s)) { 6506 TCGv_i32 t0 = tcg_temp_new_i32(); 6507 TCGv_i32 t1 = tcg_temp_new_i32(); 6508 6509 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 6510 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 6511 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 6512 write_fp_sreg(s, a->rd, t0); 6513 } 6514 break; 6515 default: 6516 g_assert_not_reached(); 6517 } 6518 return true; 6519 } 6520 6521 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 6522 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 6523 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 6524 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 6525 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 6526 6527 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 6528 { 6529 if (fp_access_check(s)) { 6530 TCGv_i64 t0 = tcg_temp_new_i64(); 6531 TCGv_i64 t1 = tcg_temp_new_i64(); 6532 6533 read_vec_element(s, t0, a->rn, 0, MO_64); 6534 read_vec_element(s, t1, a->rn, 1, MO_64); 6535 tcg_gen_add_i64(t0, t0, t1); 6536 write_fp_dreg(s, a->rd, t0); 6537 } 6538 return true; 6539 } 6540 6541 /* 6542 * Floating-point conditional select 6543 */ 6544 6545 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a) 6546 { 6547 TCGv_i64 t_true, t_false; 6548 DisasCompare64 c; 6549 6550 switch (a->esz) { 6551 case MO_32: 6552 case MO_64: 6553 break; 6554 case MO_16: 6555 if (!dc_isar_feature(aa64_fp16, s)) { 6556 return false; 6557 } 6558 break; 6559 default: 6560 return false; 6561 } 6562 6563 if (!fp_access_check(s)) { 6564 return true; 6565 } 6566 6567 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6568 t_true = tcg_temp_new_i64(); 6569 t_false = tcg_temp_new_i64(); 6570 read_vec_element(s, t_true, a->rn, 0, a->esz); 6571 read_vec_element(s, t_false, a->rm, 0, a->esz); 6572 6573 a64_test_cc(&c, a->cond); 6574 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6575 t_true, t_false); 6576 6577 /* 6578 * Note that sregs & hregs write back zeros to the high bits, 6579 * and we've already done the zero-extension. 6580 */ 6581 write_fp_dreg(s, a->rd, t_true); 6582 return true; 6583 } 6584 6585 /* 6586 * Floating-point data-processing (3 source) 6587 */ 6588 6589 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n) 6590 { 6591 TCGv_ptr fpst; 6592 6593 /* 6594 * These are fused multiply-add. Note that doing the negations here 6595 * as separate steps is correct: an input NaN should come out with 6596 * its sign bit flipped if it is a negated-input. 6597 */ 6598 switch (a->esz) { 6599 case MO_64: 6600 if (fp_access_check(s)) { 6601 TCGv_i64 tn = read_fp_dreg(s, a->rn); 6602 TCGv_i64 tm = read_fp_dreg(s, a->rm); 6603 TCGv_i64 ta = read_fp_dreg(s, a->ra); 6604 6605 if (neg_a) { 6606 gen_vfp_negd(ta, ta); 6607 } 6608 if (neg_n) { 6609 gen_vfp_negd(tn, tn); 6610 } 6611 fpst = fpstatus_ptr(FPST_FPCR); 6612 gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst); 6613 write_fp_dreg(s, a->rd, ta); 6614 } 6615 break; 6616 6617 case MO_32: 6618 if (fp_access_check(s)) { 6619 TCGv_i32 tn = read_fp_sreg(s, a->rn); 6620 TCGv_i32 tm = read_fp_sreg(s, a->rm); 6621 TCGv_i32 ta = read_fp_sreg(s, a->ra); 6622 6623 if (neg_a) { 6624 gen_vfp_negs(ta, ta); 6625 } 6626 if (neg_n) { 6627 gen_vfp_negs(tn, tn); 6628 } 6629 fpst = fpstatus_ptr(FPST_FPCR); 6630 gen_helper_vfp_muladds(ta, tn, tm, ta, fpst); 6631 write_fp_sreg(s, a->rd, ta); 6632 } 6633 break; 6634 6635 case MO_16: 6636 if (!dc_isar_feature(aa64_fp16, s)) { 6637 return false; 6638 } 6639 if (fp_access_check(s)) { 6640 TCGv_i32 tn = read_fp_hreg(s, a->rn); 6641 TCGv_i32 tm = read_fp_hreg(s, a->rm); 6642 TCGv_i32 ta = read_fp_hreg(s, a->ra); 6643 6644 if (neg_a) { 6645 gen_vfp_negh(ta, ta); 6646 } 6647 if (neg_n) { 6648 gen_vfp_negh(tn, tn); 6649 } 6650 fpst = fpstatus_ptr(FPST_FPCR_F16); 6651 gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst); 6652 write_fp_sreg(s, a->rd, ta); 6653 } 6654 break; 6655 6656 default: 6657 return false; 6658 } 6659 return true; 6660 } 6661 6662 TRANS(FMADD, do_fmadd, a, false, false) 6663 TRANS(FNMADD, do_fmadd, a, true, true) 6664 TRANS(FMSUB, do_fmadd, a, false, true) 6665 TRANS(FNMSUB, do_fmadd, a, true, false) 6666 6667 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 6668 * Note that it is the caller's responsibility to ensure that the 6669 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 6670 * mandated semantics for out of range shifts. 6671 */ 6672 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 6673 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 6674 { 6675 switch (shift_type) { 6676 case A64_SHIFT_TYPE_LSL: 6677 tcg_gen_shl_i64(dst, src, shift_amount); 6678 break; 6679 case A64_SHIFT_TYPE_LSR: 6680 tcg_gen_shr_i64(dst, src, shift_amount); 6681 break; 6682 case A64_SHIFT_TYPE_ASR: 6683 if (!sf) { 6684 tcg_gen_ext32s_i64(dst, src); 6685 } 6686 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 6687 break; 6688 case A64_SHIFT_TYPE_ROR: 6689 if (sf) { 6690 tcg_gen_rotr_i64(dst, src, shift_amount); 6691 } else { 6692 TCGv_i32 t0, t1; 6693 t0 = tcg_temp_new_i32(); 6694 t1 = tcg_temp_new_i32(); 6695 tcg_gen_extrl_i64_i32(t0, src); 6696 tcg_gen_extrl_i64_i32(t1, shift_amount); 6697 tcg_gen_rotr_i32(t0, t0, t1); 6698 tcg_gen_extu_i32_i64(dst, t0); 6699 } 6700 break; 6701 default: 6702 assert(FALSE); /* all shift types should be handled */ 6703 break; 6704 } 6705 6706 if (!sf) { /* zero extend final result */ 6707 tcg_gen_ext32u_i64(dst, dst); 6708 } 6709 } 6710 6711 /* Shift a TCGv src by immediate, put result in dst. 6712 * The shift amount must be in range (this should always be true as the 6713 * relevant instructions will UNDEF on bad shift immediates). 6714 */ 6715 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 6716 enum a64_shift_type shift_type, unsigned int shift_i) 6717 { 6718 assert(shift_i < (sf ? 64 : 32)); 6719 6720 if (shift_i == 0) { 6721 tcg_gen_mov_i64(dst, src); 6722 } else { 6723 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 6724 } 6725 } 6726 6727 /* Logical (shifted register) 6728 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 6729 * +----+-----+-----------+-------+---+------+--------+------+------+ 6730 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 6731 * +----+-----+-----------+-------+---+------+--------+------+------+ 6732 */ 6733 static void disas_logic_reg(DisasContext *s, uint32_t insn) 6734 { 6735 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 6736 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 6737 6738 sf = extract32(insn, 31, 1); 6739 opc = extract32(insn, 29, 2); 6740 shift_type = extract32(insn, 22, 2); 6741 invert = extract32(insn, 21, 1); 6742 rm = extract32(insn, 16, 5); 6743 shift_amount = extract32(insn, 10, 6); 6744 rn = extract32(insn, 5, 5); 6745 rd = extract32(insn, 0, 5); 6746 6747 if (!sf && (shift_amount & (1 << 5))) { 6748 unallocated_encoding(s); 6749 return; 6750 } 6751 6752 tcg_rd = cpu_reg(s, rd); 6753 6754 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 6755 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 6756 * register-register MOV and MVN, so it is worth special casing. 6757 */ 6758 tcg_rm = cpu_reg(s, rm); 6759 if (invert) { 6760 tcg_gen_not_i64(tcg_rd, tcg_rm); 6761 if (!sf) { 6762 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6763 } 6764 } else { 6765 if (sf) { 6766 tcg_gen_mov_i64(tcg_rd, tcg_rm); 6767 } else { 6768 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 6769 } 6770 } 6771 return; 6772 } 6773 6774 tcg_rm = read_cpu_reg(s, rm, sf); 6775 6776 if (shift_amount) { 6777 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 6778 } 6779 6780 tcg_rn = cpu_reg(s, rn); 6781 6782 switch (opc | (invert << 2)) { 6783 case 0: /* AND */ 6784 case 3: /* ANDS */ 6785 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 6786 break; 6787 case 1: /* ORR */ 6788 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 6789 break; 6790 case 2: /* EOR */ 6791 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 6792 break; 6793 case 4: /* BIC */ 6794 case 7: /* BICS */ 6795 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 6796 break; 6797 case 5: /* ORN */ 6798 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 6799 break; 6800 case 6: /* EON */ 6801 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 6802 break; 6803 default: 6804 assert(FALSE); 6805 break; 6806 } 6807 6808 if (!sf) { 6809 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6810 } 6811 6812 if (opc == 3) { 6813 gen_logic_CC(sf, tcg_rd); 6814 } 6815 } 6816 6817 /* 6818 * Add/subtract (extended register) 6819 * 6820 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 6821 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6822 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 6823 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6824 * 6825 * sf: 0 -> 32bit, 1 -> 64bit 6826 * op: 0 -> add , 1 -> sub 6827 * S: 1 -> set flags 6828 * opt: 00 6829 * option: extension type (see DecodeRegExtend) 6830 * imm3: optional shift to Rm 6831 * 6832 * Rd = Rn + LSL(extend(Rm), amount) 6833 */ 6834 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 6835 { 6836 int rd = extract32(insn, 0, 5); 6837 int rn = extract32(insn, 5, 5); 6838 int imm3 = extract32(insn, 10, 3); 6839 int option = extract32(insn, 13, 3); 6840 int rm = extract32(insn, 16, 5); 6841 int opt = extract32(insn, 22, 2); 6842 bool setflags = extract32(insn, 29, 1); 6843 bool sub_op = extract32(insn, 30, 1); 6844 bool sf = extract32(insn, 31, 1); 6845 6846 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 6847 TCGv_i64 tcg_rd; 6848 TCGv_i64 tcg_result; 6849 6850 if (imm3 > 4 || opt != 0) { 6851 unallocated_encoding(s); 6852 return; 6853 } 6854 6855 /* non-flag setting ops may use SP */ 6856 if (!setflags) { 6857 tcg_rd = cpu_reg_sp(s, rd); 6858 } else { 6859 tcg_rd = cpu_reg(s, rd); 6860 } 6861 tcg_rn = read_cpu_reg_sp(s, rn, sf); 6862 6863 tcg_rm = read_cpu_reg(s, rm, sf); 6864 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 6865 6866 tcg_result = tcg_temp_new_i64(); 6867 6868 if (!setflags) { 6869 if (sub_op) { 6870 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6871 } else { 6872 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6873 } 6874 } else { 6875 if (sub_op) { 6876 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6877 } else { 6878 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6879 } 6880 } 6881 6882 if (sf) { 6883 tcg_gen_mov_i64(tcg_rd, tcg_result); 6884 } else { 6885 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6886 } 6887 } 6888 6889 /* 6890 * Add/subtract (shifted register) 6891 * 6892 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 6893 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6894 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 6895 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6896 * 6897 * sf: 0 -> 32bit, 1 -> 64bit 6898 * op: 0 -> add , 1 -> sub 6899 * S: 1 -> set flags 6900 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 6901 * imm6: Shift amount to apply to Rm before the add/sub 6902 */ 6903 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 6904 { 6905 int rd = extract32(insn, 0, 5); 6906 int rn = extract32(insn, 5, 5); 6907 int imm6 = extract32(insn, 10, 6); 6908 int rm = extract32(insn, 16, 5); 6909 int shift_type = extract32(insn, 22, 2); 6910 bool setflags = extract32(insn, 29, 1); 6911 bool sub_op = extract32(insn, 30, 1); 6912 bool sf = extract32(insn, 31, 1); 6913 6914 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6915 TCGv_i64 tcg_rn, tcg_rm; 6916 TCGv_i64 tcg_result; 6917 6918 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 6919 unallocated_encoding(s); 6920 return; 6921 } 6922 6923 tcg_rn = read_cpu_reg(s, rn, sf); 6924 tcg_rm = read_cpu_reg(s, rm, sf); 6925 6926 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 6927 6928 tcg_result = tcg_temp_new_i64(); 6929 6930 if (!setflags) { 6931 if (sub_op) { 6932 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6933 } else { 6934 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6935 } 6936 } else { 6937 if (sub_op) { 6938 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6939 } else { 6940 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6941 } 6942 } 6943 6944 if (sf) { 6945 tcg_gen_mov_i64(tcg_rd, tcg_result); 6946 } else { 6947 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6948 } 6949 } 6950 6951 /* Data-processing (3 source) 6952 * 6953 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 6954 * +--+------+-----------+------+------+----+------+------+------+ 6955 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 6956 * +--+------+-----------+------+------+----+------+------+------+ 6957 */ 6958 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 6959 { 6960 int rd = extract32(insn, 0, 5); 6961 int rn = extract32(insn, 5, 5); 6962 int ra = extract32(insn, 10, 5); 6963 int rm = extract32(insn, 16, 5); 6964 int op_id = (extract32(insn, 29, 3) << 4) | 6965 (extract32(insn, 21, 3) << 1) | 6966 extract32(insn, 15, 1); 6967 bool sf = extract32(insn, 31, 1); 6968 bool is_sub = extract32(op_id, 0, 1); 6969 bool is_high = extract32(op_id, 2, 1); 6970 bool is_signed = false; 6971 TCGv_i64 tcg_op1; 6972 TCGv_i64 tcg_op2; 6973 TCGv_i64 tcg_tmp; 6974 6975 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 6976 switch (op_id) { 6977 case 0x42: /* SMADDL */ 6978 case 0x43: /* SMSUBL */ 6979 case 0x44: /* SMULH */ 6980 is_signed = true; 6981 break; 6982 case 0x0: /* MADD (32bit) */ 6983 case 0x1: /* MSUB (32bit) */ 6984 case 0x40: /* MADD (64bit) */ 6985 case 0x41: /* MSUB (64bit) */ 6986 case 0x4a: /* UMADDL */ 6987 case 0x4b: /* UMSUBL */ 6988 case 0x4c: /* UMULH */ 6989 break; 6990 default: 6991 unallocated_encoding(s); 6992 return; 6993 } 6994 6995 if (is_high) { 6996 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 6997 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6998 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6999 TCGv_i64 tcg_rm = cpu_reg(s, rm); 7000 7001 if (is_signed) { 7002 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 7003 } else { 7004 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 7005 } 7006 return; 7007 } 7008 7009 tcg_op1 = tcg_temp_new_i64(); 7010 tcg_op2 = tcg_temp_new_i64(); 7011 tcg_tmp = tcg_temp_new_i64(); 7012 7013 if (op_id < 0x42) { 7014 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 7015 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 7016 } else { 7017 if (is_signed) { 7018 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 7019 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 7020 } else { 7021 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 7022 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 7023 } 7024 } 7025 7026 if (ra == 31 && !is_sub) { 7027 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 7028 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 7029 } else { 7030 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 7031 if (is_sub) { 7032 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 7033 } else { 7034 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 7035 } 7036 } 7037 7038 if (!sf) { 7039 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 7040 } 7041 } 7042 7043 /* Add/subtract (with carry) 7044 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 7045 * +--+--+--+------------------------+------+-------------+------+-----+ 7046 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 7047 * +--+--+--+------------------------+------+-------------+------+-----+ 7048 */ 7049 7050 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 7051 { 7052 unsigned int sf, op, setflags, rm, rn, rd; 7053 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 7054 7055 sf = extract32(insn, 31, 1); 7056 op = extract32(insn, 30, 1); 7057 setflags = extract32(insn, 29, 1); 7058 rm = extract32(insn, 16, 5); 7059 rn = extract32(insn, 5, 5); 7060 rd = extract32(insn, 0, 5); 7061 7062 tcg_rd = cpu_reg(s, rd); 7063 tcg_rn = cpu_reg(s, rn); 7064 7065 if (op) { 7066 tcg_y = tcg_temp_new_i64(); 7067 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 7068 } else { 7069 tcg_y = cpu_reg(s, rm); 7070 } 7071 7072 if (setflags) { 7073 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 7074 } else { 7075 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 7076 } 7077 } 7078 7079 /* 7080 * Rotate right into flags 7081 * 31 30 29 21 15 10 5 4 0 7082 * +--+--+--+-----------------+--------+-----------+------+--+------+ 7083 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 7084 * +--+--+--+-----------------+--------+-----------+------+--+------+ 7085 */ 7086 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 7087 { 7088 int mask = extract32(insn, 0, 4); 7089 int o2 = extract32(insn, 4, 1); 7090 int rn = extract32(insn, 5, 5); 7091 int imm6 = extract32(insn, 15, 6); 7092 int sf_op_s = extract32(insn, 29, 3); 7093 TCGv_i64 tcg_rn; 7094 TCGv_i32 nzcv; 7095 7096 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 7097 unallocated_encoding(s); 7098 return; 7099 } 7100 7101 tcg_rn = read_cpu_reg(s, rn, 1); 7102 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 7103 7104 nzcv = tcg_temp_new_i32(); 7105 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 7106 7107 if (mask & 8) { /* N */ 7108 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 7109 } 7110 if (mask & 4) { /* Z */ 7111 tcg_gen_not_i32(cpu_ZF, nzcv); 7112 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 7113 } 7114 if (mask & 2) { /* C */ 7115 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 7116 } 7117 if (mask & 1) { /* V */ 7118 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 7119 } 7120 } 7121 7122 /* 7123 * Evaluate into flags 7124 * 31 30 29 21 15 14 10 5 4 0 7125 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 7126 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 7127 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 7128 */ 7129 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 7130 { 7131 int o3_mask = extract32(insn, 0, 5); 7132 int rn = extract32(insn, 5, 5); 7133 int o2 = extract32(insn, 15, 6); 7134 int sz = extract32(insn, 14, 1); 7135 int sf_op_s = extract32(insn, 29, 3); 7136 TCGv_i32 tmp; 7137 int shift; 7138 7139 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 7140 !dc_isar_feature(aa64_condm_4, s)) { 7141 unallocated_encoding(s); 7142 return; 7143 } 7144 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 7145 7146 tmp = tcg_temp_new_i32(); 7147 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 7148 tcg_gen_shli_i32(cpu_NF, tmp, shift); 7149 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 7150 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 7151 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 7152 } 7153 7154 /* Conditional compare (immediate / register) 7155 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 7156 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 7157 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 7158 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 7159 * [1] y [0] [0] 7160 */ 7161 static void disas_cc(DisasContext *s, uint32_t insn) 7162 { 7163 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 7164 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 7165 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 7166 DisasCompare c; 7167 7168 if (!extract32(insn, 29, 1)) { 7169 unallocated_encoding(s); 7170 return; 7171 } 7172 if (insn & (1 << 10 | 1 << 4)) { 7173 unallocated_encoding(s); 7174 return; 7175 } 7176 sf = extract32(insn, 31, 1); 7177 op = extract32(insn, 30, 1); 7178 is_imm = extract32(insn, 11, 1); 7179 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 7180 cond = extract32(insn, 12, 4); 7181 rn = extract32(insn, 5, 5); 7182 nzcv = extract32(insn, 0, 4); 7183 7184 /* Set T0 = !COND. */ 7185 tcg_t0 = tcg_temp_new_i32(); 7186 arm_test_cc(&c, cond); 7187 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 7188 7189 /* Load the arguments for the new comparison. */ 7190 if (is_imm) { 7191 tcg_y = tcg_temp_new_i64(); 7192 tcg_gen_movi_i64(tcg_y, y); 7193 } else { 7194 tcg_y = cpu_reg(s, y); 7195 } 7196 tcg_rn = cpu_reg(s, rn); 7197 7198 /* Set the flags for the new comparison. */ 7199 tcg_tmp = tcg_temp_new_i64(); 7200 if (op) { 7201 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 7202 } else { 7203 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 7204 } 7205 7206 /* If COND was false, force the flags to #nzcv. Compute two masks 7207 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 7208 * For tcg hosts that support ANDC, we can make do with just T1. 7209 * In either case, allow the tcg optimizer to delete any unused mask. 7210 */ 7211 tcg_t1 = tcg_temp_new_i32(); 7212 tcg_t2 = tcg_temp_new_i32(); 7213 tcg_gen_neg_i32(tcg_t1, tcg_t0); 7214 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 7215 7216 if (nzcv & 8) { /* N */ 7217 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 7218 } else { 7219 if (TCG_TARGET_HAS_andc_i32) { 7220 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 7221 } else { 7222 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 7223 } 7224 } 7225 if (nzcv & 4) { /* Z */ 7226 if (TCG_TARGET_HAS_andc_i32) { 7227 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 7228 } else { 7229 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 7230 } 7231 } else { 7232 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 7233 } 7234 if (nzcv & 2) { /* C */ 7235 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 7236 } else { 7237 if (TCG_TARGET_HAS_andc_i32) { 7238 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 7239 } else { 7240 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 7241 } 7242 } 7243 if (nzcv & 1) { /* V */ 7244 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 7245 } else { 7246 if (TCG_TARGET_HAS_andc_i32) { 7247 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 7248 } else { 7249 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 7250 } 7251 } 7252 } 7253 7254 /* Conditional select 7255 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 7256 * +----+----+---+-----------------+------+------+-----+------+------+ 7257 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 7258 * +----+----+---+-----------------+------+------+-----+------+------+ 7259 */ 7260 static void disas_cond_select(DisasContext *s, uint32_t insn) 7261 { 7262 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 7263 TCGv_i64 tcg_rd, zero; 7264 DisasCompare64 c; 7265 7266 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 7267 /* S == 1 or op2<1> == 1 */ 7268 unallocated_encoding(s); 7269 return; 7270 } 7271 sf = extract32(insn, 31, 1); 7272 else_inv = extract32(insn, 30, 1); 7273 rm = extract32(insn, 16, 5); 7274 cond = extract32(insn, 12, 4); 7275 else_inc = extract32(insn, 10, 1); 7276 rn = extract32(insn, 5, 5); 7277 rd = extract32(insn, 0, 5); 7278 7279 tcg_rd = cpu_reg(s, rd); 7280 7281 a64_test_cc(&c, cond); 7282 zero = tcg_constant_i64(0); 7283 7284 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 7285 /* CSET & CSETM. */ 7286 if (else_inv) { 7287 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 7288 tcg_rd, c.value, zero); 7289 } else { 7290 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 7291 tcg_rd, c.value, zero); 7292 } 7293 } else { 7294 TCGv_i64 t_true = cpu_reg(s, rn); 7295 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 7296 if (else_inv && else_inc) { 7297 tcg_gen_neg_i64(t_false, t_false); 7298 } else if (else_inv) { 7299 tcg_gen_not_i64(t_false, t_false); 7300 } else if (else_inc) { 7301 tcg_gen_addi_i64(t_false, t_false, 1); 7302 } 7303 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 7304 } 7305 7306 if (!sf) { 7307 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7308 } 7309 } 7310 7311 static void handle_clz(DisasContext *s, unsigned int sf, 7312 unsigned int rn, unsigned int rd) 7313 { 7314 TCGv_i64 tcg_rd, tcg_rn; 7315 tcg_rd = cpu_reg(s, rd); 7316 tcg_rn = cpu_reg(s, rn); 7317 7318 if (sf) { 7319 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 7320 } else { 7321 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 7322 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 7323 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 7324 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 7325 } 7326 } 7327 7328 static void handle_cls(DisasContext *s, unsigned int sf, 7329 unsigned int rn, unsigned int rd) 7330 { 7331 TCGv_i64 tcg_rd, tcg_rn; 7332 tcg_rd = cpu_reg(s, rd); 7333 tcg_rn = cpu_reg(s, rn); 7334 7335 if (sf) { 7336 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 7337 } else { 7338 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 7339 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 7340 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 7341 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 7342 } 7343 } 7344 7345 static void handle_rbit(DisasContext *s, unsigned int sf, 7346 unsigned int rn, unsigned int rd) 7347 { 7348 TCGv_i64 tcg_rd, tcg_rn; 7349 tcg_rd = cpu_reg(s, rd); 7350 tcg_rn = cpu_reg(s, rn); 7351 7352 if (sf) { 7353 gen_helper_rbit64(tcg_rd, tcg_rn); 7354 } else { 7355 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 7356 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 7357 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 7358 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 7359 } 7360 } 7361 7362 /* REV with sf==1, opcode==3 ("REV64") */ 7363 static void handle_rev64(DisasContext *s, unsigned int sf, 7364 unsigned int rn, unsigned int rd) 7365 { 7366 if (!sf) { 7367 unallocated_encoding(s); 7368 return; 7369 } 7370 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 7371 } 7372 7373 /* REV with sf==0, opcode==2 7374 * REV32 (sf==1, opcode==2) 7375 */ 7376 static void handle_rev32(DisasContext *s, unsigned int sf, 7377 unsigned int rn, unsigned int rd) 7378 { 7379 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7380 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7381 7382 if (sf) { 7383 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 7384 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 7385 } else { 7386 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 7387 } 7388 } 7389 7390 /* REV16 (opcode==1) */ 7391 static void handle_rev16(DisasContext *s, unsigned int sf, 7392 unsigned int rn, unsigned int rd) 7393 { 7394 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7395 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7396 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 7397 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 7398 7399 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 7400 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 7401 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 7402 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 7403 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 7404 } 7405 7406 /* Data-processing (1 source) 7407 * 31 30 29 28 21 20 16 15 10 9 5 4 0 7408 * +----+---+---+-----------------+---------+--------+------+------+ 7409 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 7410 * +----+---+---+-----------------+---------+--------+------+------+ 7411 */ 7412 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 7413 { 7414 unsigned int sf, opcode, opcode2, rn, rd; 7415 TCGv_i64 tcg_rd; 7416 7417 if (extract32(insn, 29, 1)) { 7418 unallocated_encoding(s); 7419 return; 7420 } 7421 7422 sf = extract32(insn, 31, 1); 7423 opcode = extract32(insn, 10, 6); 7424 opcode2 = extract32(insn, 16, 5); 7425 rn = extract32(insn, 5, 5); 7426 rd = extract32(insn, 0, 5); 7427 7428 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 7429 7430 switch (MAP(sf, opcode2, opcode)) { 7431 case MAP(0, 0x00, 0x00): /* RBIT */ 7432 case MAP(1, 0x00, 0x00): 7433 handle_rbit(s, sf, rn, rd); 7434 break; 7435 case MAP(0, 0x00, 0x01): /* REV16 */ 7436 case MAP(1, 0x00, 0x01): 7437 handle_rev16(s, sf, rn, rd); 7438 break; 7439 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 7440 case MAP(1, 0x00, 0x02): 7441 handle_rev32(s, sf, rn, rd); 7442 break; 7443 case MAP(1, 0x00, 0x03): /* REV64 */ 7444 handle_rev64(s, sf, rn, rd); 7445 break; 7446 case MAP(0, 0x00, 0x04): /* CLZ */ 7447 case MAP(1, 0x00, 0x04): 7448 handle_clz(s, sf, rn, rd); 7449 break; 7450 case MAP(0, 0x00, 0x05): /* CLS */ 7451 case MAP(1, 0x00, 0x05): 7452 handle_cls(s, sf, rn, rd); 7453 break; 7454 case MAP(1, 0x01, 0x00): /* PACIA */ 7455 if (s->pauth_active) { 7456 tcg_rd = cpu_reg(s, rd); 7457 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7458 } else if (!dc_isar_feature(aa64_pauth, s)) { 7459 goto do_unallocated; 7460 } 7461 break; 7462 case MAP(1, 0x01, 0x01): /* PACIB */ 7463 if (s->pauth_active) { 7464 tcg_rd = cpu_reg(s, rd); 7465 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7466 } else if (!dc_isar_feature(aa64_pauth, s)) { 7467 goto do_unallocated; 7468 } 7469 break; 7470 case MAP(1, 0x01, 0x02): /* PACDA */ 7471 if (s->pauth_active) { 7472 tcg_rd = cpu_reg(s, rd); 7473 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7474 } else if (!dc_isar_feature(aa64_pauth, s)) { 7475 goto do_unallocated; 7476 } 7477 break; 7478 case MAP(1, 0x01, 0x03): /* PACDB */ 7479 if (s->pauth_active) { 7480 tcg_rd = cpu_reg(s, rd); 7481 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7482 } else if (!dc_isar_feature(aa64_pauth, s)) { 7483 goto do_unallocated; 7484 } 7485 break; 7486 case MAP(1, 0x01, 0x04): /* AUTIA */ 7487 if (s->pauth_active) { 7488 tcg_rd = cpu_reg(s, rd); 7489 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7490 } else if (!dc_isar_feature(aa64_pauth, s)) { 7491 goto do_unallocated; 7492 } 7493 break; 7494 case MAP(1, 0x01, 0x05): /* AUTIB */ 7495 if (s->pauth_active) { 7496 tcg_rd = cpu_reg(s, rd); 7497 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7498 } else if (!dc_isar_feature(aa64_pauth, s)) { 7499 goto do_unallocated; 7500 } 7501 break; 7502 case MAP(1, 0x01, 0x06): /* AUTDA */ 7503 if (s->pauth_active) { 7504 tcg_rd = cpu_reg(s, rd); 7505 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7506 } else if (!dc_isar_feature(aa64_pauth, s)) { 7507 goto do_unallocated; 7508 } 7509 break; 7510 case MAP(1, 0x01, 0x07): /* AUTDB */ 7511 if (s->pauth_active) { 7512 tcg_rd = cpu_reg(s, rd); 7513 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7514 } else if (!dc_isar_feature(aa64_pauth, s)) { 7515 goto do_unallocated; 7516 } 7517 break; 7518 case MAP(1, 0x01, 0x08): /* PACIZA */ 7519 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7520 goto do_unallocated; 7521 } else if (s->pauth_active) { 7522 tcg_rd = cpu_reg(s, rd); 7523 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7524 } 7525 break; 7526 case MAP(1, 0x01, 0x09): /* PACIZB */ 7527 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7528 goto do_unallocated; 7529 } else if (s->pauth_active) { 7530 tcg_rd = cpu_reg(s, rd); 7531 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7532 } 7533 break; 7534 case MAP(1, 0x01, 0x0a): /* PACDZA */ 7535 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7536 goto do_unallocated; 7537 } else if (s->pauth_active) { 7538 tcg_rd = cpu_reg(s, rd); 7539 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7540 } 7541 break; 7542 case MAP(1, 0x01, 0x0b): /* PACDZB */ 7543 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7544 goto do_unallocated; 7545 } else if (s->pauth_active) { 7546 tcg_rd = cpu_reg(s, rd); 7547 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7548 } 7549 break; 7550 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 7551 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7552 goto do_unallocated; 7553 } else if (s->pauth_active) { 7554 tcg_rd = cpu_reg(s, rd); 7555 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7556 } 7557 break; 7558 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 7559 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7560 goto do_unallocated; 7561 } else if (s->pauth_active) { 7562 tcg_rd = cpu_reg(s, rd); 7563 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7564 } 7565 break; 7566 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 7567 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7568 goto do_unallocated; 7569 } else if (s->pauth_active) { 7570 tcg_rd = cpu_reg(s, rd); 7571 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7572 } 7573 break; 7574 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 7575 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7576 goto do_unallocated; 7577 } else if (s->pauth_active) { 7578 tcg_rd = cpu_reg(s, rd); 7579 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7580 } 7581 break; 7582 case MAP(1, 0x01, 0x10): /* XPACI */ 7583 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7584 goto do_unallocated; 7585 } else if (s->pauth_active) { 7586 tcg_rd = cpu_reg(s, rd); 7587 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 7588 } 7589 break; 7590 case MAP(1, 0x01, 0x11): /* XPACD */ 7591 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7592 goto do_unallocated; 7593 } else if (s->pauth_active) { 7594 tcg_rd = cpu_reg(s, rd); 7595 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 7596 } 7597 break; 7598 default: 7599 do_unallocated: 7600 unallocated_encoding(s); 7601 break; 7602 } 7603 7604 #undef MAP 7605 } 7606 7607 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 7608 unsigned int rm, unsigned int rn, unsigned int rd) 7609 { 7610 TCGv_i64 tcg_n, tcg_m, tcg_rd; 7611 tcg_rd = cpu_reg(s, rd); 7612 7613 if (!sf && is_signed) { 7614 tcg_n = tcg_temp_new_i64(); 7615 tcg_m = tcg_temp_new_i64(); 7616 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 7617 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 7618 } else { 7619 tcg_n = read_cpu_reg(s, rn, sf); 7620 tcg_m = read_cpu_reg(s, rm, sf); 7621 } 7622 7623 if (is_signed) { 7624 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 7625 } else { 7626 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 7627 } 7628 7629 if (!sf) { /* zero extend final result */ 7630 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7631 } 7632 } 7633 7634 /* LSLV, LSRV, ASRV, RORV */ 7635 static void handle_shift_reg(DisasContext *s, 7636 enum a64_shift_type shift_type, unsigned int sf, 7637 unsigned int rm, unsigned int rn, unsigned int rd) 7638 { 7639 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 7640 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7641 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 7642 7643 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 7644 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 7645 } 7646 7647 /* CRC32[BHWX], CRC32C[BHWX] */ 7648 static void handle_crc32(DisasContext *s, 7649 unsigned int sf, unsigned int sz, bool crc32c, 7650 unsigned int rm, unsigned int rn, unsigned int rd) 7651 { 7652 TCGv_i64 tcg_acc, tcg_val; 7653 TCGv_i32 tcg_bytes; 7654 7655 if (!dc_isar_feature(aa64_crc32, s) 7656 || (sf == 1 && sz != 3) 7657 || (sf == 0 && sz == 3)) { 7658 unallocated_encoding(s); 7659 return; 7660 } 7661 7662 if (sz == 3) { 7663 tcg_val = cpu_reg(s, rm); 7664 } else { 7665 uint64_t mask; 7666 switch (sz) { 7667 case 0: 7668 mask = 0xFF; 7669 break; 7670 case 1: 7671 mask = 0xFFFF; 7672 break; 7673 case 2: 7674 mask = 0xFFFFFFFF; 7675 break; 7676 default: 7677 g_assert_not_reached(); 7678 } 7679 tcg_val = tcg_temp_new_i64(); 7680 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 7681 } 7682 7683 tcg_acc = cpu_reg(s, rn); 7684 tcg_bytes = tcg_constant_i32(1 << sz); 7685 7686 if (crc32c) { 7687 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 7688 } else { 7689 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 7690 } 7691 } 7692 7693 /* Data-processing (2 source) 7694 * 31 30 29 28 21 20 16 15 10 9 5 4 0 7695 * +----+---+---+-----------------+------+--------+------+------+ 7696 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 7697 * +----+---+---+-----------------+------+--------+------+------+ 7698 */ 7699 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 7700 { 7701 unsigned int sf, rm, opcode, rn, rd, setflag; 7702 sf = extract32(insn, 31, 1); 7703 setflag = extract32(insn, 29, 1); 7704 rm = extract32(insn, 16, 5); 7705 opcode = extract32(insn, 10, 6); 7706 rn = extract32(insn, 5, 5); 7707 rd = extract32(insn, 0, 5); 7708 7709 if (setflag && opcode != 0) { 7710 unallocated_encoding(s); 7711 return; 7712 } 7713 7714 switch (opcode) { 7715 case 0: /* SUBP(S) */ 7716 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7717 goto do_unallocated; 7718 } else { 7719 TCGv_i64 tcg_n, tcg_m, tcg_d; 7720 7721 tcg_n = read_cpu_reg_sp(s, rn, true); 7722 tcg_m = read_cpu_reg_sp(s, rm, true); 7723 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 7724 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 7725 tcg_d = cpu_reg(s, rd); 7726 7727 if (setflag) { 7728 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 7729 } else { 7730 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 7731 } 7732 } 7733 break; 7734 case 2: /* UDIV */ 7735 handle_div(s, false, sf, rm, rn, rd); 7736 break; 7737 case 3: /* SDIV */ 7738 handle_div(s, true, sf, rm, rn, rd); 7739 break; 7740 case 4: /* IRG */ 7741 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7742 goto do_unallocated; 7743 } 7744 if (s->ata[0]) { 7745 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 7746 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 7747 } else { 7748 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 7749 cpu_reg_sp(s, rn)); 7750 } 7751 break; 7752 case 5: /* GMI */ 7753 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7754 goto do_unallocated; 7755 } else { 7756 TCGv_i64 t = tcg_temp_new_i64(); 7757 7758 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 7759 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 7760 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 7761 } 7762 break; 7763 case 8: /* LSLV */ 7764 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 7765 break; 7766 case 9: /* LSRV */ 7767 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 7768 break; 7769 case 10: /* ASRV */ 7770 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 7771 break; 7772 case 11: /* RORV */ 7773 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 7774 break; 7775 case 12: /* PACGA */ 7776 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 7777 goto do_unallocated; 7778 } 7779 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 7780 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 7781 break; 7782 case 16: 7783 case 17: 7784 case 18: 7785 case 19: 7786 case 20: 7787 case 21: 7788 case 22: 7789 case 23: /* CRC32 */ 7790 { 7791 int sz = extract32(opcode, 0, 2); 7792 bool crc32c = extract32(opcode, 2, 1); 7793 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 7794 break; 7795 } 7796 default: 7797 do_unallocated: 7798 unallocated_encoding(s); 7799 break; 7800 } 7801 } 7802 7803 /* 7804 * Data processing - register 7805 * 31 30 29 28 25 21 20 16 10 0 7806 * +--+---+--+---+-------+-----+-------+-------+---------+ 7807 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 7808 * +--+---+--+---+-------+-----+-------+-------+---------+ 7809 */ 7810 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 7811 { 7812 int op0 = extract32(insn, 30, 1); 7813 int op1 = extract32(insn, 28, 1); 7814 int op2 = extract32(insn, 21, 4); 7815 int op3 = extract32(insn, 10, 6); 7816 7817 if (!op1) { 7818 if (op2 & 8) { 7819 if (op2 & 1) { 7820 /* Add/sub (extended register) */ 7821 disas_add_sub_ext_reg(s, insn); 7822 } else { 7823 /* Add/sub (shifted register) */ 7824 disas_add_sub_reg(s, insn); 7825 } 7826 } else { 7827 /* Logical (shifted register) */ 7828 disas_logic_reg(s, insn); 7829 } 7830 return; 7831 } 7832 7833 switch (op2) { 7834 case 0x0: 7835 switch (op3) { 7836 case 0x00: /* Add/subtract (with carry) */ 7837 disas_adc_sbc(s, insn); 7838 break; 7839 7840 case 0x01: /* Rotate right into flags */ 7841 case 0x21: 7842 disas_rotate_right_into_flags(s, insn); 7843 break; 7844 7845 case 0x02: /* Evaluate into flags */ 7846 case 0x12: 7847 case 0x22: 7848 case 0x32: 7849 disas_evaluate_into_flags(s, insn); 7850 break; 7851 7852 default: 7853 goto do_unallocated; 7854 } 7855 break; 7856 7857 case 0x2: /* Conditional compare */ 7858 disas_cc(s, insn); /* both imm and reg forms */ 7859 break; 7860 7861 case 0x4: /* Conditional select */ 7862 disas_cond_select(s, insn); 7863 break; 7864 7865 case 0x6: /* Data-processing */ 7866 if (op0) { /* (1 source) */ 7867 disas_data_proc_1src(s, insn); 7868 } else { /* (2 source) */ 7869 disas_data_proc_2src(s, insn); 7870 } 7871 break; 7872 case 0x8 ... 0xf: /* (3 source) */ 7873 disas_data_proc_3src(s, insn); 7874 break; 7875 7876 default: 7877 do_unallocated: 7878 unallocated_encoding(s); 7879 break; 7880 } 7881 } 7882 7883 static void handle_fp_compare(DisasContext *s, int size, 7884 unsigned int rn, unsigned int rm, 7885 bool cmp_with_zero, bool signal_all_nans) 7886 { 7887 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 7888 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7889 7890 if (size == MO_64) { 7891 TCGv_i64 tcg_vn, tcg_vm; 7892 7893 tcg_vn = read_fp_dreg(s, rn); 7894 if (cmp_with_zero) { 7895 tcg_vm = tcg_constant_i64(0); 7896 } else { 7897 tcg_vm = read_fp_dreg(s, rm); 7898 } 7899 if (signal_all_nans) { 7900 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7901 } else { 7902 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7903 } 7904 } else { 7905 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 7906 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 7907 7908 read_vec_element_i32(s, tcg_vn, rn, 0, size); 7909 if (cmp_with_zero) { 7910 tcg_gen_movi_i32(tcg_vm, 0); 7911 } else { 7912 read_vec_element_i32(s, tcg_vm, rm, 0, size); 7913 } 7914 7915 switch (size) { 7916 case MO_32: 7917 if (signal_all_nans) { 7918 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7919 } else { 7920 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7921 } 7922 break; 7923 case MO_16: 7924 if (signal_all_nans) { 7925 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7926 } else { 7927 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7928 } 7929 break; 7930 default: 7931 g_assert_not_reached(); 7932 } 7933 } 7934 7935 gen_set_nzcv(tcg_flags); 7936 } 7937 7938 /* Floating point compare 7939 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 7940 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7941 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 7942 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7943 */ 7944 static void disas_fp_compare(DisasContext *s, uint32_t insn) 7945 { 7946 unsigned int mos, type, rm, op, rn, opc, op2r; 7947 int size; 7948 7949 mos = extract32(insn, 29, 3); 7950 type = extract32(insn, 22, 2); 7951 rm = extract32(insn, 16, 5); 7952 op = extract32(insn, 14, 2); 7953 rn = extract32(insn, 5, 5); 7954 opc = extract32(insn, 3, 2); 7955 op2r = extract32(insn, 0, 3); 7956 7957 if (mos || op || op2r) { 7958 unallocated_encoding(s); 7959 return; 7960 } 7961 7962 switch (type) { 7963 case 0: 7964 size = MO_32; 7965 break; 7966 case 1: 7967 size = MO_64; 7968 break; 7969 case 3: 7970 size = MO_16; 7971 if (dc_isar_feature(aa64_fp16, s)) { 7972 break; 7973 } 7974 /* fallthru */ 7975 default: 7976 unallocated_encoding(s); 7977 return; 7978 } 7979 7980 if (!fp_access_check(s)) { 7981 return; 7982 } 7983 7984 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 7985 } 7986 7987 /* Floating point conditional compare 7988 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 7989 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7990 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 7991 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7992 */ 7993 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 7994 { 7995 unsigned int mos, type, rm, cond, rn, op, nzcv; 7996 TCGLabel *label_continue = NULL; 7997 int size; 7998 7999 mos = extract32(insn, 29, 3); 8000 type = extract32(insn, 22, 2); 8001 rm = extract32(insn, 16, 5); 8002 cond = extract32(insn, 12, 4); 8003 rn = extract32(insn, 5, 5); 8004 op = extract32(insn, 4, 1); 8005 nzcv = extract32(insn, 0, 4); 8006 8007 if (mos) { 8008 unallocated_encoding(s); 8009 return; 8010 } 8011 8012 switch (type) { 8013 case 0: 8014 size = MO_32; 8015 break; 8016 case 1: 8017 size = MO_64; 8018 break; 8019 case 3: 8020 size = MO_16; 8021 if (dc_isar_feature(aa64_fp16, s)) { 8022 break; 8023 } 8024 /* fallthru */ 8025 default: 8026 unallocated_encoding(s); 8027 return; 8028 } 8029 8030 if (!fp_access_check(s)) { 8031 return; 8032 } 8033 8034 if (cond < 0x0e) { /* not always */ 8035 TCGLabel *label_match = gen_new_label(); 8036 label_continue = gen_new_label(); 8037 arm_gen_test_cc(cond, label_match); 8038 /* nomatch: */ 8039 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 8040 tcg_gen_br(label_continue); 8041 gen_set_label(label_match); 8042 } 8043 8044 handle_fp_compare(s, size, rn, rm, false, op); 8045 8046 if (cond < 0x0e) { 8047 gen_set_label(label_continue); 8048 } 8049 } 8050 8051 /* Floating-point data-processing (1 source) - half precision */ 8052 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 8053 { 8054 TCGv_ptr fpst = NULL; 8055 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 8056 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8057 8058 switch (opcode) { 8059 case 0x0: /* FMOV */ 8060 tcg_gen_mov_i32(tcg_res, tcg_op); 8061 break; 8062 case 0x1: /* FABS */ 8063 gen_vfp_absh(tcg_res, tcg_op); 8064 break; 8065 case 0x2: /* FNEG */ 8066 gen_vfp_negh(tcg_res, tcg_op); 8067 break; 8068 case 0x3: /* FSQRT */ 8069 fpst = fpstatus_ptr(FPST_FPCR_F16); 8070 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 8071 break; 8072 case 0x8: /* FRINTN */ 8073 case 0x9: /* FRINTP */ 8074 case 0xa: /* FRINTM */ 8075 case 0xb: /* FRINTZ */ 8076 case 0xc: /* FRINTA */ 8077 { 8078 TCGv_i32 tcg_rmode; 8079 8080 fpst = fpstatus_ptr(FPST_FPCR_F16); 8081 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 8082 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 8083 gen_restore_rmode(tcg_rmode, fpst); 8084 break; 8085 } 8086 case 0xe: /* FRINTX */ 8087 fpst = fpstatus_ptr(FPST_FPCR_F16); 8088 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 8089 break; 8090 case 0xf: /* FRINTI */ 8091 fpst = fpstatus_ptr(FPST_FPCR_F16); 8092 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 8093 break; 8094 default: 8095 g_assert_not_reached(); 8096 } 8097 8098 write_fp_sreg(s, rd, tcg_res); 8099 } 8100 8101 /* Floating-point data-processing (1 source) - single precision */ 8102 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 8103 { 8104 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 8105 TCGv_i32 tcg_op, tcg_res; 8106 TCGv_ptr fpst; 8107 int rmode = -1; 8108 8109 tcg_op = read_fp_sreg(s, rn); 8110 tcg_res = tcg_temp_new_i32(); 8111 8112 switch (opcode) { 8113 case 0x0: /* FMOV */ 8114 tcg_gen_mov_i32(tcg_res, tcg_op); 8115 goto done; 8116 case 0x1: /* FABS */ 8117 gen_vfp_abss(tcg_res, tcg_op); 8118 goto done; 8119 case 0x2: /* FNEG */ 8120 gen_vfp_negs(tcg_res, tcg_op); 8121 goto done; 8122 case 0x3: /* FSQRT */ 8123 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 8124 goto done; 8125 case 0x6: /* BFCVT */ 8126 gen_fpst = gen_helper_bfcvt; 8127 break; 8128 case 0x8: /* FRINTN */ 8129 case 0x9: /* FRINTP */ 8130 case 0xa: /* FRINTM */ 8131 case 0xb: /* FRINTZ */ 8132 case 0xc: /* FRINTA */ 8133 rmode = opcode & 7; 8134 gen_fpst = gen_helper_rints; 8135 break; 8136 case 0xe: /* FRINTX */ 8137 gen_fpst = gen_helper_rints_exact; 8138 break; 8139 case 0xf: /* FRINTI */ 8140 gen_fpst = gen_helper_rints; 8141 break; 8142 case 0x10: /* FRINT32Z */ 8143 rmode = FPROUNDING_ZERO; 8144 gen_fpst = gen_helper_frint32_s; 8145 break; 8146 case 0x11: /* FRINT32X */ 8147 gen_fpst = gen_helper_frint32_s; 8148 break; 8149 case 0x12: /* FRINT64Z */ 8150 rmode = FPROUNDING_ZERO; 8151 gen_fpst = gen_helper_frint64_s; 8152 break; 8153 case 0x13: /* FRINT64X */ 8154 gen_fpst = gen_helper_frint64_s; 8155 break; 8156 default: 8157 g_assert_not_reached(); 8158 } 8159 8160 fpst = fpstatus_ptr(FPST_FPCR); 8161 if (rmode >= 0) { 8162 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 8163 gen_fpst(tcg_res, tcg_op, fpst); 8164 gen_restore_rmode(tcg_rmode, fpst); 8165 } else { 8166 gen_fpst(tcg_res, tcg_op, fpst); 8167 } 8168 8169 done: 8170 write_fp_sreg(s, rd, tcg_res); 8171 } 8172 8173 /* Floating-point data-processing (1 source) - double precision */ 8174 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 8175 { 8176 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 8177 TCGv_i64 tcg_op, tcg_res; 8178 TCGv_ptr fpst; 8179 int rmode = -1; 8180 8181 switch (opcode) { 8182 case 0x0: /* FMOV */ 8183 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 8184 return; 8185 } 8186 8187 tcg_op = read_fp_dreg(s, rn); 8188 tcg_res = tcg_temp_new_i64(); 8189 8190 switch (opcode) { 8191 case 0x1: /* FABS */ 8192 gen_vfp_absd(tcg_res, tcg_op); 8193 goto done; 8194 case 0x2: /* FNEG */ 8195 gen_vfp_negd(tcg_res, tcg_op); 8196 goto done; 8197 case 0x3: /* FSQRT */ 8198 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 8199 goto done; 8200 case 0x8: /* FRINTN */ 8201 case 0x9: /* FRINTP */ 8202 case 0xa: /* FRINTM */ 8203 case 0xb: /* FRINTZ */ 8204 case 0xc: /* FRINTA */ 8205 rmode = opcode & 7; 8206 gen_fpst = gen_helper_rintd; 8207 break; 8208 case 0xe: /* FRINTX */ 8209 gen_fpst = gen_helper_rintd_exact; 8210 break; 8211 case 0xf: /* FRINTI */ 8212 gen_fpst = gen_helper_rintd; 8213 break; 8214 case 0x10: /* FRINT32Z */ 8215 rmode = FPROUNDING_ZERO; 8216 gen_fpst = gen_helper_frint32_d; 8217 break; 8218 case 0x11: /* FRINT32X */ 8219 gen_fpst = gen_helper_frint32_d; 8220 break; 8221 case 0x12: /* FRINT64Z */ 8222 rmode = FPROUNDING_ZERO; 8223 gen_fpst = gen_helper_frint64_d; 8224 break; 8225 case 0x13: /* FRINT64X */ 8226 gen_fpst = gen_helper_frint64_d; 8227 break; 8228 default: 8229 g_assert_not_reached(); 8230 } 8231 8232 fpst = fpstatus_ptr(FPST_FPCR); 8233 if (rmode >= 0) { 8234 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 8235 gen_fpst(tcg_res, tcg_op, fpst); 8236 gen_restore_rmode(tcg_rmode, fpst); 8237 } else { 8238 gen_fpst(tcg_res, tcg_op, fpst); 8239 } 8240 8241 done: 8242 write_fp_dreg(s, rd, tcg_res); 8243 } 8244 8245 static void handle_fp_fcvt(DisasContext *s, int opcode, 8246 int rd, int rn, int dtype, int ntype) 8247 { 8248 switch (ntype) { 8249 case 0x0: 8250 { 8251 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 8252 if (dtype == 1) { 8253 /* Single to double */ 8254 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 8255 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 8256 write_fp_dreg(s, rd, tcg_rd); 8257 } else { 8258 /* Single to half */ 8259 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 8260 TCGv_i32 ahp = get_ahp_flag(); 8261 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8262 8263 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 8264 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 8265 write_fp_sreg(s, rd, tcg_rd); 8266 } 8267 break; 8268 } 8269 case 0x1: 8270 { 8271 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 8272 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 8273 if (dtype == 0) { 8274 /* Double to single */ 8275 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 8276 } else { 8277 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8278 TCGv_i32 ahp = get_ahp_flag(); 8279 /* Double to half */ 8280 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 8281 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 8282 } 8283 write_fp_sreg(s, rd, tcg_rd); 8284 break; 8285 } 8286 case 0x3: 8287 { 8288 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 8289 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 8290 TCGv_i32 tcg_ahp = get_ahp_flag(); 8291 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 8292 if (dtype == 0) { 8293 /* Half to single */ 8294 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 8295 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 8296 write_fp_sreg(s, rd, tcg_rd); 8297 } else { 8298 /* Half to double */ 8299 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 8300 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 8301 write_fp_dreg(s, rd, tcg_rd); 8302 } 8303 break; 8304 } 8305 default: 8306 g_assert_not_reached(); 8307 } 8308 } 8309 8310 /* Floating point data-processing (1 source) 8311 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 8312 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 8313 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 8314 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 8315 */ 8316 static void disas_fp_1src(DisasContext *s, uint32_t insn) 8317 { 8318 int mos = extract32(insn, 29, 3); 8319 int type = extract32(insn, 22, 2); 8320 int opcode = extract32(insn, 15, 6); 8321 int rn = extract32(insn, 5, 5); 8322 int rd = extract32(insn, 0, 5); 8323 8324 if (mos) { 8325 goto do_unallocated; 8326 } 8327 8328 switch (opcode) { 8329 case 0x4: case 0x5: case 0x7: 8330 { 8331 /* FCVT between half, single and double precision */ 8332 int dtype = extract32(opcode, 0, 2); 8333 if (type == 2 || dtype == type) { 8334 goto do_unallocated; 8335 } 8336 if (!fp_access_check(s)) { 8337 return; 8338 } 8339 8340 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 8341 break; 8342 } 8343 8344 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 8345 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 8346 goto do_unallocated; 8347 } 8348 /* fall through */ 8349 case 0x0 ... 0x3: 8350 case 0x8 ... 0xc: 8351 case 0xe ... 0xf: 8352 /* 32-to-32 and 64-to-64 ops */ 8353 switch (type) { 8354 case 0: 8355 if (!fp_access_check(s)) { 8356 return; 8357 } 8358 handle_fp_1src_single(s, opcode, rd, rn); 8359 break; 8360 case 1: 8361 if (!fp_access_check(s)) { 8362 return; 8363 } 8364 handle_fp_1src_double(s, opcode, rd, rn); 8365 break; 8366 case 3: 8367 if (!dc_isar_feature(aa64_fp16, s)) { 8368 goto do_unallocated; 8369 } 8370 8371 if (!fp_access_check(s)) { 8372 return; 8373 } 8374 handle_fp_1src_half(s, opcode, rd, rn); 8375 break; 8376 default: 8377 goto do_unallocated; 8378 } 8379 break; 8380 8381 case 0x6: 8382 switch (type) { 8383 case 1: /* BFCVT */ 8384 if (!dc_isar_feature(aa64_bf16, s)) { 8385 goto do_unallocated; 8386 } 8387 if (!fp_access_check(s)) { 8388 return; 8389 } 8390 handle_fp_1src_single(s, opcode, rd, rn); 8391 break; 8392 default: 8393 goto do_unallocated; 8394 } 8395 break; 8396 8397 default: 8398 do_unallocated: 8399 unallocated_encoding(s); 8400 break; 8401 } 8402 } 8403 8404 /* Floating point immediate 8405 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 8406 * +---+---+---+-----------+------+---+------------+-------+------+------+ 8407 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 8408 * +---+---+---+-----------+------+---+------------+-------+------+------+ 8409 */ 8410 static void disas_fp_imm(DisasContext *s, uint32_t insn) 8411 { 8412 int rd = extract32(insn, 0, 5); 8413 int imm5 = extract32(insn, 5, 5); 8414 int imm8 = extract32(insn, 13, 8); 8415 int type = extract32(insn, 22, 2); 8416 int mos = extract32(insn, 29, 3); 8417 uint64_t imm; 8418 MemOp sz; 8419 8420 if (mos || imm5) { 8421 unallocated_encoding(s); 8422 return; 8423 } 8424 8425 switch (type) { 8426 case 0: 8427 sz = MO_32; 8428 break; 8429 case 1: 8430 sz = MO_64; 8431 break; 8432 case 3: 8433 sz = MO_16; 8434 if (dc_isar_feature(aa64_fp16, s)) { 8435 break; 8436 } 8437 /* fallthru */ 8438 default: 8439 unallocated_encoding(s); 8440 return; 8441 } 8442 8443 if (!fp_access_check(s)) { 8444 return; 8445 } 8446 8447 imm = vfp_expand_imm(sz, imm8); 8448 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 8449 } 8450 8451 /* Handle floating point <=> fixed point conversions. Note that we can 8452 * also deal with fp <=> integer conversions as a special case (scale == 64) 8453 * OPTME: consider handling that special case specially or at least skipping 8454 * the call to scalbn in the helpers for zero shifts. 8455 */ 8456 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 8457 bool itof, int rmode, int scale, int sf, int type) 8458 { 8459 bool is_signed = !(opcode & 1); 8460 TCGv_ptr tcg_fpstatus; 8461 TCGv_i32 tcg_shift, tcg_single; 8462 TCGv_i64 tcg_double; 8463 8464 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 8465 8466 tcg_shift = tcg_constant_i32(64 - scale); 8467 8468 if (itof) { 8469 TCGv_i64 tcg_int = cpu_reg(s, rn); 8470 if (!sf) { 8471 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 8472 8473 if (is_signed) { 8474 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 8475 } else { 8476 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 8477 } 8478 8479 tcg_int = tcg_extend; 8480 } 8481 8482 switch (type) { 8483 case 1: /* float64 */ 8484 tcg_double = tcg_temp_new_i64(); 8485 if (is_signed) { 8486 gen_helper_vfp_sqtod(tcg_double, tcg_int, 8487 tcg_shift, tcg_fpstatus); 8488 } else { 8489 gen_helper_vfp_uqtod(tcg_double, tcg_int, 8490 tcg_shift, tcg_fpstatus); 8491 } 8492 write_fp_dreg(s, rd, tcg_double); 8493 break; 8494 8495 case 0: /* float32 */ 8496 tcg_single = tcg_temp_new_i32(); 8497 if (is_signed) { 8498 gen_helper_vfp_sqtos(tcg_single, tcg_int, 8499 tcg_shift, tcg_fpstatus); 8500 } else { 8501 gen_helper_vfp_uqtos(tcg_single, tcg_int, 8502 tcg_shift, tcg_fpstatus); 8503 } 8504 write_fp_sreg(s, rd, tcg_single); 8505 break; 8506 8507 case 3: /* float16 */ 8508 tcg_single = tcg_temp_new_i32(); 8509 if (is_signed) { 8510 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 8511 tcg_shift, tcg_fpstatus); 8512 } else { 8513 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 8514 tcg_shift, tcg_fpstatus); 8515 } 8516 write_fp_sreg(s, rd, tcg_single); 8517 break; 8518 8519 default: 8520 g_assert_not_reached(); 8521 } 8522 } else { 8523 TCGv_i64 tcg_int = cpu_reg(s, rd); 8524 TCGv_i32 tcg_rmode; 8525 8526 if (extract32(opcode, 2, 1)) { 8527 /* There are too many rounding modes to all fit into rmode, 8528 * so FCVTA[US] is a special case. 8529 */ 8530 rmode = FPROUNDING_TIEAWAY; 8531 } 8532 8533 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 8534 8535 switch (type) { 8536 case 1: /* float64 */ 8537 tcg_double = read_fp_dreg(s, rn); 8538 if (is_signed) { 8539 if (!sf) { 8540 gen_helper_vfp_tosld(tcg_int, tcg_double, 8541 tcg_shift, tcg_fpstatus); 8542 } else { 8543 gen_helper_vfp_tosqd(tcg_int, tcg_double, 8544 tcg_shift, tcg_fpstatus); 8545 } 8546 } else { 8547 if (!sf) { 8548 gen_helper_vfp_tould(tcg_int, tcg_double, 8549 tcg_shift, tcg_fpstatus); 8550 } else { 8551 gen_helper_vfp_touqd(tcg_int, tcg_double, 8552 tcg_shift, tcg_fpstatus); 8553 } 8554 } 8555 if (!sf) { 8556 tcg_gen_ext32u_i64(tcg_int, tcg_int); 8557 } 8558 break; 8559 8560 case 0: /* float32 */ 8561 tcg_single = read_fp_sreg(s, rn); 8562 if (sf) { 8563 if (is_signed) { 8564 gen_helper_vfp_tosqs(tcg_int, tcg_single, 8565 tcg_shift, tcg_fpstatus); 8566 } else { 8567 gen_helper_vfp_touqs(tcg_int, tcg_single, 8568 tcg_shift, tcg_fpstatus); 8569 } 8570 } else { 8571 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 8572 if (is_signed) { 8573 gen_helper_vfp_tosls(tcg_dest, tcg_single, 8574 tcg_shift, tcg_fpstatus); 8575 } else { 8576 gen_helper_vfp_touls(tcg_dest, tcg_single, 8577 tcg_shift, tcg_fpstatus); 8578 } 8579 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 8580 } 8581 break; 8582 8583 case 3: /* float16 */ 8584 tcg_single = read_fp_sreg(s, rn); 8585 if (sf) { 8586 if (is_signed) { 8587 gen_helper_vfp_tosqh(tcg_int, tcg_single, 8588 tcg_shift, tcg_fpstatus); 8589 } else { 8590 gen_helper_vfp_touqh(tcg_int, tcg_single, 8591 tcg_shift, tcg_fpstatus); 8592 } 8593 } else { 8594 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 8595 if (is_signed) { 8596 gen_helper_vfp_toslh(tcg_dest, tcg_single, 8597 tcg_shift, tcg_fpstatus); 8598 } else { 8599 gen_helper_vfp_toulh(tcg_dest, tcg_single, 8600 tcg_shift, tcg_fpstatus); 8601 } 8602 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 8603 } 8604 break; 8605 8606 default: 8607 g_assert_not_reached(); 8608 } 8609 8610 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8611 } 8612 } 8613 8614 /* Floating point <-> fixed point conversions 8615 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 8616 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 8617 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 8618 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 8619 */ 8620 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 8621 { 8622 int rd = extract32(insn, 0, 5); 8623 int rn = extract32(insn, 5, 5); 8624 int scale = extract32(insn, 10, 6); 8625 int opcode = extract32(insn, 16, 3); 8626 int rmode = extract32(insn, 19, 2); 8627 int type = extract32(insn, 22, 2); 8628 bool sbit = extract32(insn, 29, 1); 8629 bool sf = extract32(insn, 31, 1); 8630 bool itof; 8631 8632 if (sbit || (!sf && scale < 32)) { 8633 unallocated_encoding(s); 8634 return; 8635 } 8636 8637 switch (type) { 8638 case 0: /* float32 */ 8639 case 1: /* float64 */ 8640 break; 8641 case 3: /* float16 */ 8642 if (dc_isar_feature(aa64_fp16, s)) { 8643 break; 8644 } 8645 /* fallthru */ 8646 default: 8647 unallocated_encoding(s); 8648 return; 8649 } 8650 8651 switch ((rmode << 3) | opcode) { 8652 case 0x2: /* SCVTF */ 8653 case 0x3: /* UCVTF */ 8654 itof = true; 8655 break; 8656 case 0x18: /* FCVTZS */ 8657 case 0x19: /* FCVTZU */ 8658 itof = false; 8659 break; 8660 default: 8661 unallocated_encoding(s); 8662 return; 8663 } 8664 8665 if (!fp_access_check(s)) { 8666 return; 8667 } 8668 8669 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 8670 } 8671 8672 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 8673 { 8674 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 8675 * without conversion. 8676 */ 8677 8678 if (itof) { 8679 TCGv_i64 tcg_rn = cpu_reg(s, rn); 8680 TCGv_i64 tmp; 8681 8682 switch (type) { 8683 case 0: 8684 /* 32 bit */ 8685 tmp = tcg_temp_new_i64(); 8686 tcg_gen_ext32u_i64(tmp, tcg_rn); 8687 write_fp_dreg(s, rd, tmp); 8688 break; 8689 case 1: 8690 /* 64 bit */ 8691 write_fp_dreg(s, rd, tcg_rn); 8692 break; 8693 case 2: 8694 /* 64 bit to top half. */ 8695 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 8696 clear_vec_high(s, true, rd); 8697 break; 8698 case 3: 8699 /* 16 bit */ 8700 tmp = tcg_temp_new_i64(); 8701 tcg_gen_ext16u_i64(tmp, tcg_rn); 8702 write_fp_dreg(s, rd, tmp); 8703 break; 8704 default: 8705 g_assert_not_reached(); 8706 } 8707 } else { 8708 TCGv_i64 tcg_rd = cpu_reg(s, rd); 8709 8710 switch (type) { 8711 case 0: 8712 /* 32 bit */ 8713 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 8714 break; 8715 case 1: 8716 /* 64 bit */ 8717 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 8718 break; 8719 case 2: 8720 /* 64 bits from top half */ 8721 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 8722 break; 8723 case 3: 8724 /* 16 bit */ 8725 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 8726 break; 8727 default: 8728 g_assert_not_reached(); 8729 } 8730 } 8731 } 8732 8733 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 8734 { 8735 TCGv_i64 t = read_fp_dreg(s, rn); 8736 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 8737 8738 gen_helper_fjcvtzs(t, t, fpstatus); 8739 8740 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 8741 tcg_gen_extrh_i64_i32(cpu_ZF, t); 8742 tcg_gen_movi_i32(cpu_CF, 0); 8743 tcg_gen_movi_i32(cpu_NF, 0); 8744 tcg_gen_movi_i32(cpu_VF, 0); 8745 } 8746 8747 /* Floating point <-> integer conversions 8748 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 8749 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8750 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 8751 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8752 */ 8753 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 8754 { 8755 int rd = extract32(insn, 0, 5); 8756 int rn = extract32(insn, 5, 5); 8757 int opcode = extract32(insn, 16, 3); 8758 int rmode = extract32(insn, 19, 2); 8759 int type = extract32(insn, 22, 2); 8760 bool sbit = extract32(insn, 29, 1); 8761 bool sf = extract32(insn, 31, 1); 8762 bool itof = false; 8763 8764 if (sbit) { 8765 goto do_unallocated; 8766 } 8767 8768 switch (opcode) { 8769 case 2: /* SCVTF */ 8770 case 3: /* UCVTF */ 8771 itof = true; 8772 /* fallthru */ 8773 case 4: /* FCVTAS */ 8774 case 5: /* FCVTAU */ 8775 if (rmode != 0) { 8776 goto do_unallocated; 8777 } 8778 /* fallthru */ 8779 case 0: /* FCVT[NPMZ]S */ 8780 case 1: /* FCVT[NPMZ]U */ 8781 switch (type) { 8782 case 0: /* float32 */ 8783 case 1: /* float64 */ 8784 break; 8785 case 3: /* float16 */ 8786 if (!dc_isar_feature(aa64_fp16, s)) { 8787 goto do_unallocated; 8788 } 8789 break; 8790 default: 8791 goto do_unallocated; 8792 } 8793 if (!fp_access_check(s)) { 8794 return; 8795 } 8796 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 8797 break; 8798 8799 default: 8800 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 8801 case 0b01100110: /* FMOV half <-> 32-bit int */ 8802 case 0b01100111: 8803 case 0b11100110: /* FMOV half <-> 64-bit int */ 8804 case 0b11100111: 8805 if (!dc_isar_feature(aa64_fp16, s)) { 8806 goto do_unallocated; 8807 } 8808 /* fallthru */ 8809 case 0b00000110: /* FMOV 32-bit */ 8810 case 0b00000111: 8811 case 0b10100110: /* FMOV 64-bit */ 8812 case 0b10100111: 8813 case 0b11001110: /* FMOV top half of 128-bit */ 8814 case 0b11001111: 8815 if (!fp_access_check(s)) { 8816 return; 8817 } 8818 itof = opcode & 1; 8819 handle_fmov(s, rd, rn, type, itof); 8820 break; 8821 8822 case 0b00111110: /* FJCVTZS */ 8823 if (!dc_isar_feature(aa64_jscvt, s)) { 8824 goto do_unallocated; 8825 } else if (fp_access_check(s)) { 8826 handle_fjcvtzs(s, rd, rn); 8827 } 8828 break; 8829 8830 default: 8831 do_unallocated: 8832 unallocated_encoding(s); 8833 return; 8834 } 8835 break; 8836 } 8837 } 8838 8839 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 8840 * 31 30 29 28 25 24 0 8841 * +---+---+---+---------+-----------------------------+ 8842 * | | 0 | | 1 1 1 1 | | 8843 * +---+---+---+---------+-----------------------------+ 8844 */ 8845 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 8846 { 8847 if (extract32(insn, 24, 1)) { 8848 unallocated_encoding(s); /* in decodetree */ 8849 } else if (extract32(insn, 21, 1) == 0) { 8850 /* Floating point to fixed point conversions */ 8851 disas_fp_fixed_conv(s, insn); 8852 } else { 8853 switch (extract32(insn, 10, 2)) { 8854 case 1: 8855 /* Floating point conditional compare */ 8856 disas_fp_ccomp(s, insn); 8857 break; 8858 case 2: 8859 /* Floating point data-processing (2 source) */ 8860 unallocated_encoding(s); /* in decodetree */ 8861 break; 8862 case 3: 8863 /* Floating point conditional select */ 8864 unallocated_encoding(s); /* in decodetree */ 8865 break; 8866 case 0: 8867 switch (ctz32(extract32(insn, 12, 4))) { 8868 case 0: /* [15:12] == xxx1 */ 8869 /* Floating point immediate */ 8870 disas_fp_imm(s, insn); 8871 break; 8872 case 1: /* [15:12] == xx10 */ 8873 /* Floating point compare */ 8874 disas_fp_compare(s, insn); 8875 break; 8876 case 2: /* [15:12] == x100 */ 8877 /* Floating point data-processing (1 source) */ 8878 disas_fp_1src(s, insn); 8879 break; 8880 case 3: /* [15:12] == 1000 */ 8881 unallocated_encoding(s); 8882 break; 8883 default: /* [15:12] == 0000 */ 8884 /* Floating point <-> integer conversions */ 8885 disas_fp_int_conv(s, insn); 8886 break; 8887 } 8888 break; 8889 } 8890 } 8891 } 8892 8893 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 8894 int pos) 8895 { 8896 /* Extract 64 bits from the middle of two concatenated 64 bit 8897 * vector register slices left:right. The extracted bits start 8898 * at 'pos' bits into the right (least significant) side. 8899 * We return the result in tcg_right, and guarantee not to 8900 * trash tcg_left. 8901 */ 8902 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8903 assert(pos > 0 && pos < 64); 8904 8905 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 8906 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 8907 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 8908 } 8909 8910 /* EXT 8911 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 8912 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8913 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 8914 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8915 */ 8916 static void disas_simd_ext(DisasContext *s, uint32_t insn) 8917 { 8918 int is_q = extract32(insn, 30, 1); 8919 int op2 = extract32(insn, 22, 2); 8920 int imm4 = extract32(insn, 11, 4); 8921 int rm = extract32(insn, 16, 5); 8922 int rn = extract32(insn, 5, 5); 8923 int rd = extract32(insn, 0, 5); 8924 int pos = imm4 << 3; 8925 TCGv_i64 tcg_resl, tcg_resh; 8926 8927 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 8928 unallocated_encoding(s); 8929 return; 8930 } 8931 8932 if (!fp_access_check(s)) { 8933 return; 8934 } 8935 8936 tcg_resh = tcg_temp_new_i64(); 8937 tcg_resl = tcg_temp_new_i64(); 8938 8939 /* Vd gets bits starting at pos bits into Vm:Vn. This is 8940 * either extracting 128 bits from a 128:128 concatenation, or 8941 * extracting 64 bits from a 64:64 concatenation. 8942 */ 8943 if (!is_q) { 8944 read_vec_element(s, tcg_resl, rn, 0, MO_64); 8945 if (pos != 0) { 8946 read_vec_element(s, tcg_resh, rm, 0, MO_64); 8947 do_ext64(s, tcg_resh, tcg_resl, pos); 8948 } 8949 } else { 8950 TCGv_i64 tcg_hh; 8951 typedef struct { 8952 int reg; 8953 int elt; 8954 } EltPosns; 8955 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 8956 EltPosns *elt = eltposns; 8957 8958 if (pos >= 64) { 8959 elt++; 8960 pos -= 64; 8961 } 8962 8963 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 8964 elt++; 8965 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 8966 elt++; 8967 if (pos != 0) { 8968 do_ext64(s, tcg_resh, tcg_resl, pos); 8969 tcg_hh = tcg_temp_new_i64(); 8970 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8971 do_ext64(s, tcg_hh, tcg_resh, pos); 8972 } 8973 } 8974 8975 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8976 if (is_q) { 8977 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8978 } 8979 clear_vec_high(s, is_q, rd); 8980 } 8981 8982 /* TBL/TBX 8983 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8984 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8985 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8986 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8987 */ 8988 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8989 { 8990 int op2 = extract32(insn, 22, 2); 8991 int is_q = extract32(insn, 30, 1); 8992 int rm = extract32(insn, 16, 5); 8993 int rn = extract32(insn, 5, 5); 8994 int rd = extract32(insn, 0, 5); 8995 int is_tbx = extract32(insn, 12, 1); 8996 int len = (extract32(insn, 13, 2) + 1) * 16; 8997 8998 if (op2 != 0) { 8999 unallocated_encoding(s); 9000 return; 9001 } 9002 9003 if (!fp_access_check(s)) { 9004 return; 9005 } 9006 9007 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 9008 vec_full_reg_offset(s, rm), tcg_env, 9009 is_q ? 16 : 8, vec_full_reg_size(s), 9010 (len << 6) | (is_tbx << 5) | rn, 9011 gen_helper_simd_tblx); 9012 } 9013 9014 /* ZIP/UZP/TRN 9015 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 9016 * +---+---+-------------+------+---+------+---+------------------+------+ 9017 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 9018 * +---+---+-------------+------+---+------+---+------------------+------+ 9019 */ 9020 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 9021 { 9022 int rd = extract32(insn, 0, 5); 9023 int rn = extract32(insn, 5, 5); 9024 int rm = extract32(insn, 16, 5); 9025 int size = extract32(insn, 22, 2); 9026 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 9027 * bit 2 indicates 1 vs 2 variant of the insn. 9028 */ 9029 int opcode = extract32(insn, 12, 2); 9030 bool part = extract32(insn, 14, 1); 9031 bool is_q = extract32(insn, 30, 1); 9032 int esize = 8 << size; 9033 int i; 9034 int datasize = is_q ? 128 : 64; 9035 int elements = datasize / esize; 9036 TCGv_i64 tcg_res[2], tcg_ele; 9037 9038 if (opcode == 0 || (size == 3 && !is_q)) { 9039 unallocated_encoding(s); 9040 return; 9041 } 9042 9043 if (!fp_access_check(s)) { 9044 return; 9045 } 9046 9047 tcg_res[0] = tcg_temp_new_i64(); 9048 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 9049 tcg_ele = tcg_temp_new_i64(); 9050 9051 for (i = 0; i < elements; i++) { 9052 int o, w; 9053 9054 switch (opcode) { 9055 case 1: /* UZP1/2 */ 9056 { 9057 int midpoint = elements / 2; 9058 if (i < midpoint) { 9059 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 9060 } else { 9061 read_vec_element(s, tcg_ele, rm, 9062 2 * (i - midpoint) + part, size); 9063 } 9064 break; 9065 } 9066 case 2: /* TRN1/2 */ 9067 if (i & 1) { 9068 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 9069 } else { 9070 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 9071 } 9072 break; 9073 case 3: /* ZIP1/2 */ 9074 { 9075 int base = part * elements / 2; 9076 if (i & 1) { 9077 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 9078 } else { 9079 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 9080 } 9081 break; 9082 } 9083 default: 9084 g_assert_not_reached(); 9085 } 9086 9087 w = (i * esize) / 64; 9088 o = (i * esize) % 64; 9089 if (o == 0) { 9090 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 9091 } else { 9092 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 9093 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 9094 } 9095 } 9096 9097 for (i = 0; i <= is_q; ++i) { 9098 write_vec_element(s, tcg_res[i], rd, i, MO_64); 9099 } 9100 clear_vec_high(s, is_q, rd); 9101 } 9102 9103 /* 9104 * do_reduction_op helper 9105 * 9106 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 9107 * important for correct NaN propagation that we do these 9108 * operations in exactly the order specified by the pseudocode. 9109 * 9110 * This is a recursive function, TCG temps should be freed by the 9111 * calling function once it is done with the values. 9112 */ 9113 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 9114 int esize, int size, int vmap, TCGv_ptr fpst) 9115 { 9116 if (esize == size) { 9117 int element; 9118 MemOp msize = esize == 16 ? MO_16 : MO_32; 9119 TCGv_i32 tcg_elem; 9120 9121 /* We should have one register left here */ 9122 assert(ctpop8(vmap) == 1); 9123 element = ctz32(vmap); 9124 assert(element < 8); 9125 9126 tcg_elem = tcg_temp_new_i32(); 9127 read_vec_element_i32(s, tcg_elem, rn, element, msize); 9128 return tcg_elem; 9129 } else { 9130 int bits = size / 2; 9131 int shift = ctpop8(vmap) / 2; 9132 int vmap_lo = (vmap >> shift) & vmap; 9133 int vmap_hi = (vmap & ~vmap_lo); 9134 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 9135 9136 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 9137 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 9138 tcg_res = tcg_temp_new_i32(); 9139 9140 switch (fpopcode) { 9141 case 0x0c: /* fmaxnmv half-precision */ 9142 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 9143 break; 9144 case 0x0f: /* fmaxv half-precision */ 9145 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 9146 break; 9147 case 0x1c: /* fminnmv half-precision */ 9148 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 9149 break; 9150 case 0x1f: /* fminv half-precision */ 9151 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 9152 break; 9153 case 0x2c: /* fmaxnmv */ 9154 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 9155 break; 9156 case 0x2f: /* fmaxv */ 9157 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 9158 break; 9159 case 0x3c: /* fminnmv */ 9160 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 9161 break; 9162 case 0x3f: /* fminv */ 9163 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 9164 break; 9165 default: 9166 g_assert_not_reached(); 9167 } 9168 return tcg_res; 9169 } 9170 } 9171 9172 /* AdvSIMD across lanes 9173 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9174 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 9175 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 9176 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 9177 */ 9178 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 9179 { 9180 int rd = extract32(insn, 0, 5); 9181 int rn = extract32(insn, 5, 5); 9182 int size = extract32(insn, 22, 2); 9183 int opcode = extract32(insn, 12, 5); 9184 bool is_q = extract32(insn, 30, 1); 9185 bool is_u = extract32(insn, 29, 1); 9186 bool is_fp = false; 9187 bool is_min = false; 9188 int esize; 9189 int elements; 9190 int i; 9191 TCGv_i64 tcg_res, tcg_elt; 9192 9193 switch (opcode) { 9194 case 0x1b: /* ADDV */ 9195 if (is_u) { 9196 unallocated_encoding(s); 9197 return; 9198 } 9199 /* fall through */ 9200 case 0x3: /* SADDLV, UADDLV */ 9201 case 0xa: /* SMAXV, UMAXV */ 9202 case 0x1a: /* SMINV, UMINV */ 9203 if (size == 3 || (size == 2 && !is_q)) { 9204 unallocated_encoding(s); 9205 return; 9206 } 9207 break; 9208 case 0xc: /* FMAXNMV, FMINNMV */ 9209 case 0xf: /* FMAXV, FMINV */ 9210 /* Bit 1 of size field encodes min vs max and the actual size 9211 * depends on the encoding of the U bit. If not set (and FP16 9212 * enabled) then we do half-precision float instead of single 9213 * precision. 9214 */ 9215 is_min = extract32(size, 1, 1); 9216 is_fp = true; 9217 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 9218 size = 1; 9219 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 9220 unallocated_encoding(s); 9221 return; 9222 } else { 9223 size = 2; 9224 } 9225 break; 9226 default: 9227 unallocated_encoding(s); 9228 return; 9229 } 9230 9231 if (!fp_access_check(s)) { 9232 return; 9233 } 9234 9235 esize = 8 << size; 9236 elements = (is_q ? 128 : 64) / esize; 9237 9238 tcg_res = tcg_temp_new_i64(); 9239 tcg_elt = tcg_temp_new_i64(); 9240 9241 /* These instructions operate across all lanes of a vector 9242 * to produce a single result. We can guarantee that a 64 9243 * bit intermediate is sufficient: 9244 * + for [US]ADDLV the maximum element size is 32 bits, and 9245 * the result type is 64 bits 9246 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 9247 * same as the element size, which is 32 bits at most 9248 * For the integer operations we can choose to work at 64 9249 * or 32 bits and truncate at the end; for simplicity 9250 * we use 64 bits always. The floating point 9251 * ops do require 32 bit intermediates, though. 9252 */ 9253 if (!is_fp) { 9254 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 9255 9256 for (i = 1; i < elements; i++) { 9257 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 9258 9259 switch (opcode) { 9260 case 0x03: /* SADDLV / UADDLV */ 9261 case 0x1b: /* ADDV */ 9262 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 9263 break; 9264 case 0x0a: /* SMAXV / UMAXV */ 9265 if (is_u) { 9266 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 9267 } else { 9268 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 9269 } 9270 break; 9271 case 0x1a: /* SMINV / UMINV */ 9272 if (is_u) { 9273 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 9274 } else { 9275 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 9276 } 9277 break; 9278 default: 9279 g_assert_not_reached(); 9280 } 9281 9282 } 9283 } else { 9284 /* Floating point vector reduction ops which work across 32 9285 * bit (single) or 16 bit (half-precision) intermediates. 9286 * Note that correct NaN propagation requires that we do these 9287 * operations in exactly the order specified by the pseudocode. 9288 */ 9289 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9290 int fpopcode = opcode | is_min << 4 | is_u << 5; 9291 int vmap = (1 << elements) - 1; 9292 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 9293 (is_q ? 128 : 64), vmap, fpst); 9294 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 9295 } 9296 9297 /* Now truncate the result to the width required for the final output */ 9298 if (opcode == 0x03) { 9299 /* SADDLV, UADDLV: result is 2*esize */ 9300 size++; 9301 } 9302 9303 switch (size) { 9304 case 0: 9305 tcg_gen_ext8u_i64(tcg_res, tcg_res); 9306 break; 9307 case 1: 9308 tcg_gen_ext16u_i64(tcg_res, tcg_res); 9309 break; 9310 case 2: 9311 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9312 break; 9313 case 3: 9314 break; 9315 default: 9316 g_assert_not_reached(); 9317 } 9318 9319 write_fp_dreg(s, rd, tcg_res); 9320 } 9321 9322 /* AdvSIMD modified immediate 9323 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 9324 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 9325 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 9326 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 9327 * 9328 * There are a number of operations that can be carried out here: 9329 * MOVI - move (shifted) imm into register 9330 * MVNI - move inverted (shifted) imm into register 9331 * ORR - bitwise OR of (shifted) imm with register 9332 * BIC - bitwise clear of (shifted) imm with register 9333 * With ARMv8.2 we also have: 9334 * FMOV half-precision 9335 */ 9336 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 9337 { 9338 int rd = extract32(insn, 0, 5); 9339 int cmode = extract32(insn, 12, 4); 9340 int o2 = extract32(insn, 11, 1); 9341 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 9342 bool is_neg = extract32(insn, 29, 1); 9343 bool is_q = extract32(insn, 30, 1); 9344 uint64_t imm = 0; 9345 9346 if (o2) { 9347 if (cmode != 0xf || is_neg) { 9348 unallocated_encoding(s); 9349 return; 9350 } 9351 /* FMOV (vector, immediate) - half-precision */ 9352 if (!dc_isar_feature(aa64_fp16, s)) { 9353 unallocated_encoding(s); 9354 return; 9355 } 9356 imm = vfp_expand_imm(MO_16, abcdefgh); 9357 /* now duplicate across the lanes */ 9358 imm = dup_const(MO_16, imm); 9359 } else { 9360 if (cmode == 0xf && is_neg && !is_q) { 9361 unallocated_encoding(s); 9362 return; 9363 } 9364 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 9365 } 9366 9367 if (!fp_access_check(s)) { 9368 return; 9369 } 9370 9371 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 9372 /* MOVI or MVNI, with MVNI negation handled above. */ 9373 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 9374 vec_full_reg_size(s), imm); 9375 } else { 9376 /* ORR or BIC, with BIC negation to AND handled above. */ 9377 if (is_neg) { 9378 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 9379 } else { 9380 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 9381 } 9382 } 9383 } 9384 9385 /* 9386 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 9387 * 9388 * This code is handles the common shifting code and is used by both 9389 * the vector and scalar code. 9390 */ 9391 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 9392 TCGv_i64 tcg_rnd, bool accumulate, 9393 bool is_u, int size, int shift) 9394 { 9395 bool extended_result = false; 9396 bool round = tcg_rnd != NULL; 9397 int ext_lshift = 0; 9398 TCGv_i64 tcg_src_hi; 9399 9400 if (round && size == 3) { 9401 extended_result = true; 9402 ext_lshift = 64 - shift; 9403 tcg_src_hi = tcg_temp_new_i64(); 9404 } else if (shift == 64) { 9405 if (!accumulate && is_u) { 9406 /* result is zero */ 9407 tcg_gen_movi_i64(tcg_res, 0); 9408 return; 9409 } 9410 } 9411 9412 /* Deal with the rounding step */ 9413 if (round) { 9414 if (extended_result) { 9415 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9416 if (!is_u) { 9417 /* take care of sign extending tcg_res */ 9418 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 9419 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 9420 tcg_src, tcg_src_hi, 9421 tcg_rnd, tcg_zero); 9422 } else { 9423 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 9424 tcg_src, tcg_zero, 9425 tcg_rnd, tcg_zero); 9426 } 9427 } else { 9428 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 9429 } 9430 } 9431 9432 /* Now do the shift right */ 9433 if (round && extended_result) { 9434 /* extended case, >64 bit precision required */ 9435 if (ext_lshift == 0) { 9436 /* special case, only high bits matter */ 9437 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 9438 } else { 9439 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 9440 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 9441 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 9442 } 9443 } else { 9444 if (is_u) { 9445 if (shift == 64) { 9446 /* essentially shifting in 64 zeros */ 9447 tcg_gen_movi_i64(tcg_src, 0); 9448 } else { 9449 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 9450 } 9451 } else { 9452 if (shift == 64) { 9453 /* effectively extending the sign-bit */ 9454 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 9455 } else { 9456 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 9457 } 9458 } 9459 } 9460 9461 if (accumulate) { 9462 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 9463 } else { 9464 tcg_gen_mov_i64(tcg_res, tcg_src); 9465 } 9466 } 9467 9468 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 9469 static void handle_scalar_simd_shri(DisasContext *s, 9470 bool is_u, int immh, int immb, 9471 int opcode, int rn, int rd) 9472 { 9473 const int size = 3; 9474 int immhb = immh << 3 | immb; 9475 int shift = 2 * (8 << size) - immhb; 9476 bool accumulate = false; 9477 bool round = false; 9478 bool insert = false; 9479 TCGv_i64 tcg_rn; 9480 TCGv_i64 tcg_rd; 9481 TCGv_i64 tcg_round; 9482 9483 if (!extract32(immh, 3, 1)) { 9484 unallocated_encoding(s); 9485 return; 9486 } 9487 9488 if (!fp_access_check(s)) { 9489 return; 9490 } 9491 9492 switch (opcode) { 9493 case 0x02: /* SSRA / USRA (accumulate) */ 9494 accumulate = true; 9495 break; 9496 case 0x04: /* SRSHR / URSHR (rounding) */ 9497 round = true; 9498 break; 9499 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 9500 accumulate = round = true; 9501 break; 9502 case 0x08: /* SRI */ 9503 insert = true; 9504 break; 9505 } 9506 9507 if (round) { 9508 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 9509 } else { 9510 tcg_round = NULL; 9511 } 9512 9513 tcg_rn = read_fp_dreg(s, rn); 9514 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 9515 9516 if (insert) { 9517 /* shift count same as element size is valid but does nothing; 9518 * special case to avoid potential shift by 64. 9519 */ 9520 int esize = 8 << size; 9521 if (shift != esize) { 9522 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 9523 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 9524 } 9525 } else { 9526 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 9527 accumulate, is_u, size, shift); 9528 } 9529 9530 write_fp_dreg(s, rd, tcg_rd); 9531 } 9532 9533 /* SHL/SLI - Scalar shift left */ 9534 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 9535 int immh, int immb, int opcode, 9536 int rn, int rd) 9537 { 9538 int size = 32 - clz32(immh) - 1; 9539 int immhb = immh << 3 | immb; 9540 int shift = immhb - (8 << size); 9541 TCGv_i64 tcg_rn; 9542 TCGv_i64 tcg_rd; 9543 9544 if (!extract32(immh, 3, 1)) { 9545 unallocated_encoding(s); 9546 return; 9547 } 9548 9549 if (!fp_access_check(s)) { 9550 return; 9551 } 9552 9553 tcg_rn = read_fp_dreg(s, rn); 9554 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 9555 9556 if (insert) { 9557 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 9558 } else { 9559 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 9560 } 9561 9562 write_fp_dreg(s, rd, tcg_rd); 9563 } 9564 9565 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 9566 * (signed/unsigned) narrowing */ 9567 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 9568 bool is_u_shift, bool is_u_narrow, 9569 int immh, int immb, int opcode, 9570 int rn, int rd) 9571 { 9572 int immhb = immh << 3 | immb; 9573 int size = 32 - clz32(immh) - 1; 9574 int esize = 8 << size; 9575 int shift = (2 * esize) - immhb; 9576 int elements = is_scalar ? 1 : (64 / esize); 9577 bool round = extract32(opcode, 0, 1); 9578 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 9579 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 9580 TCGv_i32 tcg_rd_narrowed; 9581 TCGv_i64 tcg_final; 9582 9583 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 9584 { gen_helper_neon_narrow_sat_s8, 9585 gen_helper_neon_unarrow_sat8 }, 9586 { gen_helper_neon_narrow_sat_s16, 9587 gen_helper_neon_unarrow_sat16 }, 9588 { gen_helper_neon_narrow_sat_s32, 9589 gen_helper_neon_unarrow_sat32 }, 9590 { NULL, NULL }, 9591 }; 9592 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 9593 gen_helper_neon_narrow_sat_u8, 9594 gen_helper_neon_narrow_sat_u16, 9595 gen_helper_neon_narrow_sat_u32, 9596 NULL 9597 }; 9598 NeonGenNarrowEnvFn *narrowfn; 9599 9600 int i; 9601 9602 assert(size < 4); 9603 9604 if (extract32(immh, 3, 1)) { 9605 unallocated_encoding(s); 9606 return; 9607 } 9608 9609 if (!fp_access_check(s)) { 9610 return; 9611 } 9612 9613 if (is_u_shift) { 9614 narrowfn = unsigned_narrow_fns[size]; 9615 } else { 9616 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 9617 } 9618 9619 tcg_rn = tcg_temp_new_i64(); 9620 tcg_rd = tcg_temp_new_i64(); 9621 tcg_rd_narrowed = tcg_temp_new_i32(); 9622 tcg_final = tcg_temp_new_i64(); 9623 9624 if (round) { 9625 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 9626 } else { 9627 tcg_round = NULL; 9628 } 9629 9630 for (i = 0; i < elements; i++) { 9631 read_vec_element(s, tcg_rn, rn, i, ldop); 9632 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 9633 false, is_u_shift, size+1, shift); 9634 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 9635 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 9636 if (i == 0) { 9637 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 9638 } else { 9639 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 9640 } 9641 } 9642 9643 if (!is_q) { 9644 write_vec_element(s, tcg_final, rd, 0, MO_64); 9645 } else { 9646 write_vec_element(s, tcg_final, rd, 1, MO_64); 9647 } 9648 clear_vec_high(s, is_q, rd); 9649 } 9650 9651 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 9652 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 9653 bool src_unsigned, bool dst_unsigned, 9654 int immh, int immb, int rn, int rd) 9655 { 9656 int immhb = immh << 3 | immb; 9657 int size = 32 - clz32(immh) - 1; 9658 int shift = immhb - (8 << size); 9659 int pass; 9660 9661 assert(immh != 0); 9662 assert(!(scalar && is_q)); 9663 9664 if (!scalar) { 9665 if (!is_q && extract32(immh, 3, 1)) { 9666 unallocated_encoding(s); 9667 return; 9668 } 9669 9670 /* Since we use the variable-shift helpers we must 9671 * replicate the shift count into each element of 9672 * the tcg_shift value. 9673 */ 9674 switch (size) { 9675 case 0: 9676 shift |= shift << 8; 9677 /* fall through */ 9678 case 1: 9679 shift |= shift << 16; 9680 break; 9681 case 2: 9682 case 3: 9683 break; 9684 default: 9685 g_assert_not_reached(); 9686 } 9687 } 9688 9689 if (!fp_access_check(s)) { 9690 return; 9691 } 9692 9693 if (size == 3) { 9694 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 9695 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 9696 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 9697 { NULL, gen_helper_neon_qshl_u64 }, 9698 }; 9699 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 9700 int maxpass = is_q ? 2 : 1; 9701 9702 for (pass = 0; pass < maxpass; pass++) { 9703 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9704 9705 read_vec_element(s, tcg_op, rn, pass, MO_64); 9706 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9707 write_vec_element(s, tcg_op, rd, pass, MO_64); 9708 } 9709 clear_vec_high(s, is_q, rd); 9710 } else { 9711 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 9712 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 9713 { 9714 { gen_helper_neon_qshl_s8, 9715 gen_helper_neon_qshl_s16, 9716 gen_helper_neon_qshl_s32 }, 9717 { gen_helper_neon_qshlu_s8, 9718 gen_helper_neon_qshlu_s16, 9719 gen_helper_neon_qshlu_s32 } 9720 }, { 9721 { NULL, NULL, NULL }, 9722 { gen_helper_neon_qshl_u8, 9723 gen_helper_neon_qshl_u16, 9724 gen_helper_neon_qshl_u32 } 9725 } 9726 }; 9727 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 9728 MemOp memop = scalar ? size : MO_32; 9729 int maxpass = scalar ? 1 : is_q ? 4 : 2; 9730 9731 for (pass = 0; pass < maxpass; pass++) { 9732 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9733 9734 read_vec_element_i32(s, tcg_op, rn, pass, memop); 9735 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9736 if (scalar) { 9737 switch (size) { 9738 case 0: 9739 tcg_gen_ext8u_i32(tcg_op, tcg_op); 9740 break; 9741 case 1: 9742 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9743 break; 9744 case 2: 9745 break; 9746 default: 9747 g_assert_not_reached(); 9748 } 9749 write_fp_sreg(s, rd, tcg_op); 9750 } else { 9751 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 9752 } 9753 } 9754 9755 if (!scalar) { 9756 clear_vec_high(s, is_q, rd); 9757 } 9758 } 9759 } 9760 9761 /* Common vector code for handling integer to FP conversion */ 9762 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 9763 int elements, int is_signed, 9764 int fracbits, int size) 9765 { 9766 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9767 TCGv_i32 tcg_shift = NULL; 9768 9769 MemOp mop = size | (is_signed ? MO_SIGN : 0); 9770 int pass; 9771 9772 if (fracbits || size == MO_64) { 9773 tcg_shift = tcg_constant_i32(fracbits); 9774 } 9775 9776 if (size == MO_64) { 9777 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 9778 TCGv_i64 tcg_double = tcg_temp_new_i64(); 9779 9780 for (pass = 0; pass < elements; pass++) { 9781 read_vec_element(s, tcg_int64, rn, pass, mop); 9782 9783 if (is_signed) { 9784 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 9785 tcg_shift, tcg_fpst); 9786 } else { 9787 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 9788 tcg_shift, tcg_fpst); 9789 } 9790 if (elements == 1) { 9791 write_fp_dreg(s, rd, tcg_double); 9792 } else { 9793 write_vec_element(s, tcg_double, rd, pass, MO_64); 9794 } 9795 } 9796 } else { 9797 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 9798 TCGv_i32 tcg_float = tcg_temp_new_i32(); 9799 9800 for (pass = 0; pass < elements; pass++) { 9801 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 9802 9803 switch (size) { 9804 case MO_32: 9805 if (fracbits) { 9806 if (is_signed) { 9807 gen_helper_vfp_sltos(tcg_float, tcg_int32, 9808 tcg_shift, tcg_fpst); 9809 } else { 9810 gen_helper_vfp_ultos(tcg_float, tcg_int32, 9811 tcg_shift, tcg_fpst); 9812 } 9813 } else { 9814 if (is_signed) { 9815 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 9816 } else { 9817 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 9818 } 9819 } 9820 break; 9821 case MO_16: 9822 if (fracbits) { 9823 if (is_signed) { 9824 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 9825 tcg_shift, tcg_fpst); 9826 } else { 9827 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 9828 tcg_shift, tcg_fpst); 9829 } 9830 } else { 9831 if (is_signed) { 9832 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 9833 } else { 9834 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 9835 } 9836 } 9837 break; 9838 default: 9839 g_assert_not_reached(); 9840 } 9841 9842 if (elements == 1) { 9843 write_fp_sreg(s, rd, tcg_float); 9844 } else { 9845 write_vec_element_i32(s, tcg_float, rd, pass, size); 9846 } 9847 } 9848 } 9849 9850 clear_vec_high(s, elements << size == 16, rd); 9851 } 9852 9853 /* UCVTF/SCVTF - Integer to FP conversion */ 9854 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 9855 bool is_q, bool is_u, 9856 int immh, int immb, int opcode, 9857 int rn, int rd) 9858 { 9859 int size, elements, fracbits; 9860 int immhb = immh << 3 | immb; 9861 9862 if (immh & 8) { 9863 size = MO_64; 9864 if (!is_scalar && !is_q) { 9865 unallocated_encoding(s); 9866 return; 9867 } 9868 } else if (immh & 4) { 9869 size = MO_32; 9870 } else if (immh & 2) { 9871 size = MO_16; 9872 if (!dc_isar_feature(aa64_fp16, s)) { 9873 unallocated_encoding(s); 9874 return; 9875 } 9876 } else { 9877 /* immh == 0 would be a failure of the decode logic */ 9878 g_assert(immh == 1); 9879 unallocated_encoding(s); 9880 return; 9881 } 9882 9883 if (is_scalar) { 9884 elements = 1; 9885 } else { 9886 elements = (8 << is_q) >> size; 9887 } 9888 fracbits = (16 << size) - immhb; 9889 9890 if (!fp_access_check(s)) { 9891 return; 9892 } 9893 9894 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 9895 } 9896 9897 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 9898 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 9899 bool is_q, bool is_u, 9900 int immh, int immb, int rn, int rd) 9901 { 9902 int immhb = immh << 3 | immb; 9903 int pass, size, fracbits; 9904 TCGv_ptr tcg_fpstatus; 9905 TCGv_i32 tcg_rmode, tcg_shift; 9906 9907 if (immh & 0x8) { 9908 size = MO_64; 9909 if (!is_scalar && !is_q) { 9910 unallocated_encoding(s); 9911 return; 9912 } 9913 } else if (immh & 0x4) { 9914 size = MO_32; 9915 } else if (immh & 0x2) { 9916 size = MO_16; 9917 if (!dc_isar_feature(aa64_fp16, s)) { 9918 unallocated_encoding(s); 9919 return; 9920 } 9921 } else { 9922 /* Should have split out AdvSIMD modified immediate earlier. */ 9923 assert(immh == 1); 9924 unallocated_encoding(s); 9925 return; 9926 } 9927 9928 if (!fp_access_check(s)) { 9929 return; 9930 } 9931 9932 assert(!(is_scalar && is_q)); 9933 9934 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9935 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9936 fracbits = (16 << size) - immhb; 9937 tcg_shift = tcg_constant_i32(fracbits); 9938 9939 if (size == MO_64) { 9940 int maxpass = is_scalar ? 1 : 2; 9941 9942 for (pass = 0; pass < maxpass; pass++) { 9943 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9944 9945 read_vec_element(s, tcg_op, rn, pass, MO_64); 9946 if (is_u) { 9947 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9948 } else { 9949 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9950 } 9951 write_vec_element(s, tcg_op, rd, pass, MO_64); 9952 } 9953 clear_vec_high(s, is_q, rd); 9954 } else { 9955 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9956 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9957 9958 switch (size) { 9959 case MO_16: 9960 if (is_u) { 9961 fn = gen_helper_vfp_touhh; 9962 } else { 9963 fn = gen_helper_vfp_toshh; 9964 } 9965 break; 9966 case MO_32: 9967 if (is_u) { 9968 fn = gen_helper_vfp_touls; 9969 } else { 9970 fn = gen_helper_vfp_tosls; 9971 } 9972 break; 9973 default: 9974 g_assert_not_reached(); 9975 } 9976 9977 for (pass = 0; pass < maxpass; pass++) { 9978 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9979 9980 read_vec_element_i32(s, tcg_op, rn, pass, size); 9981 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9982 if (is_scalar) { 9983 if (size == MO_16 && !is_u) { 9984 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9985 } 9986 write_fp_sreg(s, rd, tcg_op); 9987 } else { 9988 write_vec_element_i32(s, tcg_op, rd, pass, size); 9989 } 9990 } 9991 if (!is_scalar) { 9992 clear_vec_high(s, is_q, rd); 9993 } 9994 } 9995 9996 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9997 } 9998 9999 /* AdvSIMD scalar shift by immediate 10000 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10001 * +-----+---+-------------+------+------+--------+---+------+------+ 10002 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10003 * +-----+---+-------------+------+------+--------+---+------+------+ 10004 * 10005 * This is the scalar version so it works on a fixed sized registers 10006 */ 10007 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 10008 { 10009 int rd = extract32(insn, 0, 5); 10010 int rn = extract32(insn, 5, 5); 10011 int opcode = extract32(insn, 11, 5); 10012 int immb = extract32(insn, 16, 3); 10013 int immh = extract32(insn, 19, 4); 10014 bool is_u = extract32(insn, 29, 1); 10015 10016 if (immh == 0) { 10017 unallocated_encoding(s); 10018 return; 10019 } 10020 10021 switch (opcode) { 10022 case 0x08: /* SRI */ 10023 if (!is_u) { 10024 unallocated_encoding(s); 10025 return; 10026 } 10027 /* fall through */ 10028 case 0x00: /* SSHR / USHR */ 10029 case 0x02: /* SSRA / USRA */ 10030 case 0x04: /* SRSHR / URSHR */ 10031 case 0x06: /* SRSRA / URSRA */ 10032 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 10033 break; 10034 case 0x0a: /* SHL / SLI */ 10035 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 10036 break; 10037 case 0x1c: /* SCVTF, UCVTF */ 10038 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 10039 opcode, rn, rd); 10040 break; 10041 case 0x10: /* SQSHRUN, SQSHRUN2 */ 10042 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 10043 if (!is_u) { 10044 unallocated_encoding(s); 10045 return; 10046 } 10047 handle_vec_simd_sqshrn(s, true, false, false, true, 10048 immh, immb, opcode, rn, rd); 10049 break; 10050 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 10051 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 10052 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 10053 immh, immb, opcode, rn, rd); 10054 break; 10055 case 0xc: /* SQSHLU */ 10056 if (!is_u) { 10057 unallocated_encoding(s); 10058 return; 10059 } 10060 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 10061 break; 10062 case 0xe: /* SQSHL, UQSHL */ 10063 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 10064 break; 10065 case 0x1f: /* FCVTZS, FCVTZU */ 10066 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 10067 break; 10068 default: 10069 unallocated_encoding(s); 10070 break; 10071 } 10072 } 10073 10074 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 10075 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 10076 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 10077 { 10078 /* Handle 64->64 opcodes which are shared between the scalar and 10079 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 10080 * is valid in either group and also the double-precision fp ops. 10081 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 10082 * requires them. 10083 */ 10084 TCGCond cond; 10085 10086 switch (opcode) { 10087 case 0x4: /* CLS, CLZ */ 10088 if (u) { 10089 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 10090 } else { 10091 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 10092 } 10093 break; 10094 case 0x5: /* NOT */ 10095 /* This opcode is shared with CNT and RBIT but we have earlier 10096 * enforced that size == 3 if and only if this is the NOT insn. 10097 */ 10098 tcg_gen_not_i64(tcg_rd, tcg_rn); 10099 break; 10100 case 0x7: /* SQABS, SQNEG */ 10101 if (u) { 10102 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 10103 } else { 10104 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 10105 } 10106 break; 10107 case 0xa: /* CMLT */ 10108 cond = TCG_COND_LT; 10109 do_cmop: 10110 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 10111 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 10112 break; 10113 case 0x8: /* CMGT, CMGE */ 10114 cond = u ? TCG_COND_GE : TCG_COND_GT; 10115 goto do_cmop; 10116 case 0x9: /* CMEQ, CMLE */ 10117 cond = u ? TCG_COND_LE : TCG_COND_EQ; 10118 goto do_cmop; 10119 case 0xb: /* ABS, NEG */ 10120 if (u) { 10121 tcg_gen_neg_i64(tcg_rd, tcg_rn); 10122 } else { 10123 tcg_gen_abs_i64(tcg_rd, tcg_rn); 10124 } 10125 break; 10126 case 0x2f: /* FABS */ 10127 gen_vfp_absd(tcg_rd, tcg_rn); 10128 break; 10129 case 0x6f: /* FNEG */ 10130 gen_vfp_negd(tcg_rd, tcg_rn); 10131 break; 10132 case 0x7f: /* FSQRT */ 10133 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 10134 break; 10135 case 0x1a: /* FCVTNS */ 10136 case 0x1b: /* FCVTMS */ 10137 case 0x1c: /* FCVTAS */ 10138 case 0x3a: /* FCVTPS */ 10139 case 0x3b: /* FCVTZS */ 10140 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 10141 break; 10142 case 0x5a: /* FCVTNU */ 10143 case 0x5b: /* FCVTMU */ 10144 case 0x5c: /* FCVTAU */ 10145 case 0x7a: /* FCVTPU */ 10146 case 0x7b: /* FCVTZU */ 10147 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 10148 break; 10149 case 0x18: /* FRINTN */ 10150 case 0x19: /* FRINTM */ 10151 case 0x38: /* FRINTP */ 10152 case 0x39: /* FRINTZ */ 10153 case 0x58: /* FRINTA */ 10154 case 0x79: /* FRINTI */ 10155 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 10156 break; 10157 case 0x59: /* FRINTX */ 10158 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 10159 break; 10160 case 0x1e: /* FRINT32Z */ 10161 case 0x5e: /* FRINT32X */ 10162 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 10163 break; 10164 case 0x1f: /* FRINT64Z */ 10165 case 0x5f: /* FRINT64X */ 10166 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 10167 break; 10168 default: 10169 g_assert_not_reached(); 10170 } 10171 } 10172 10173 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 10174 bool is_scalar, bool is_u, bool is_q, 10175 int size, int rn, int rd) 10176 { 10177 bool is_double = (size == MO_64); 10178 TCGv_ptr fpst; 10179 10180 if (!fp_access_check(s)) { 10181 return; 10182 } 10183 10184 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 10185 10186 if (is_double) { 10187 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10188 TCGv_i64 tcg_zero = tcg_constant_i64(0); 10189 TCGv_i64 tcg_res = tcg_temp_new_i64(); 10190 NeonGenTwoDoubleOpFn *genfn; 10191 bool swap = false; 10192 int pass; 10193 10194 switch (opcode) { 10195 case 0x2e: /* FCMLT (zero) */ 10196 swap = true; 10197 /* fallthrough */ 10198 case 0x2c: /* FCMGT (zero) */ 10199 genfn = gen_helper_neon_cgt_f64; 10200 break; 10201 case 0x2d: /* FCMEQ (zero) */ 10202 genfn = gen_helper_neon_ceq_f64; 10203 break; 10204 case 0x6d: /* FCMLE (zero) */ 10205 swap = true; 10206 /* fall through */ 10207 case 0x6c: /* FCMGE (zero) */ 10208 genfn = gen_helper_neon_cge_f64; 10209 break; 10210 default: 10211 g_assert_not_reached(); 10212 } 10213 10214 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10215 read_vec_element(s, tcg_op, rn, pass, MO_64); 10216 if (swap) { 10217 genfn(tcg_res, tcg_zero, tcg_op, fpst); 10218 } else { 10219 genfn(tcg_res, tcg_op, tcg_zero, fpst); 10220 } 10221 write_vec_element(s, tcg_res, rd, pass, MO_64); 10222 } 10223 10224 clear_vec_high(s, !is_scalar, rd); 10225 } else { 10226 TCGv_i32 tcg_op = tcg_temp_new_i32(); 10227 TCGv_i32 tcg_zero = tcg_constant_i32(0); 10228 TCGv_i32 tcg_res = tcg_temp_new_i32(); 10229 NeonGenTwoSingleOpFn *genfn; 10230 bool swap = false; 10231 int pass, maxpasses; 10232 10233 if (size == MO_16) { 10234 switch (opcode) { 10235 case 0x2e: /* FCMLT (zero) */ 10236 swap = true; 10237 /* fall through */ 10238 case 0x2c: /* FCMGT (zero) */ 10239 genfn = gen_helper_advsimd_cgt_f16; 10240 break; 10241 case 0x2d: /* FCMEQ (zero) */ 10242 genfn = gen_helper_advsimd_ceq_f16; 10243 break; 10244 case 0x6d: /* FCMLE (zero) */ 10245 swap = true; 10246 /* fall through */ 10247 case 0x6c: /* FCMGE (zero) */ 10248 genfn = gen_helper_advsimd_cge_f16; 10249 break; 10250 default: 10251 g_assert_not_reached(); 10252 } 10253 } else { 10254 switch (opcode) { 10255 case 0x2e: /* FCMLT (zero) */ 10256 swap = true; 10257 /* fall through */ 10258 case 0x2c: /* FCMGT (zero) */ 10259 genfn = gen_helper_neon_cgt_f32; 10260 break; 10261 case 0x2d: /* FCMEQ (zero) */ 10262 genfn = gen_helper_neon_ceq_f32; 10263 break; 10264 case 0x6d: /* FCMLE (zero) */ 10265 swap = true; 10266 /* fall through */ 10267 case 0x6c: /* FCMGE (zero) */ 10268 genfn = gen_helper_neon_cge_f32; 10269 break; 10270 default: 10271 g_assert_not_reached(); 10272 } 10273 } 10274 10275 if (is_scalar) { 10276 maxpasses = 1; 10277 } else { 10278 int vector_size = 8 << is_q; 10279 maxpasses = vector_size >> size; 10280 } 10281 10282 for (pass = 0; pass < maxpasses; pass++) { 10283 read_vec_element_i32(s, tcg_op, rn, pass, size); 10284 if (swap) { 10285 genfn(tcg_res, tcg_zero, tcg_op, fpst); 10286 } else { 10287 genfn(tcg_res, tcg_op, tcg_zero, fpst); 10288 } 10289 if (is_scalar) { 10290 write_fp_sreg(s, rd, tcg_res); 10291 } else { 10292 write_vec_element_i32(s, tcg_res, rd, pass, size); 10293 } 10294 } 10295 10296 if (!is_scalar) { 10297 clear_vec_high(s, is_q, rd); 10298 } 10299 } 10300 } 10301 10302 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 10303 bool is_scalar, bool is_u, bool is_q, 10304 int size, int rn, int rd) 10305 { 10306 bool is_double = (size == 3); 10307 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10308 10309 if (is_double) { 10310 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10311 TCGv_i64 tcg_res = tcg_temp_new_i64(); 10312 int pass; 10313 10314 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10315 read_vec_element(s, tcg_op, rn, pass, MO_64); 10316 switch (opcode) { 10317 case 0x3d: /* FRECPE */ 10318 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 10319 break; 10320 case 0x3f: /* FRECPX */ 10321 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 10322 break; 10323 case 0x7d: /* FRSQRTE */ 10324 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 10325 break; 10326 default: 10327 g_assert_not_reached(); 10328 } 10329 write_vec_element(s, tcg_res, rd, pass, MO_64); 10330 } 10331 clear_vec_high(s, !is_scalar, rd); 10332 } else { 10333 TCGv_i32 tcg_op = tcg_temp_new_i32(); 10334 TCGv_i32 tcg_res = tcg_temp_new_i32(); 10335 int pass, maxpasses; 10336 10337 if (is_scalar) { 10338 maxpasses = 1; 10339 } else { 10340 maxpasses = is_q ? 4 : 2; 10341 } 10342 10343 for (pass = 0; pass < maxpasses; pass++) { 10344 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 10345 10346 switch (opcode) { 10347 case 0x3c: /* URECPE */ 10348 gen_helper_recpe_u32(tcg_res, tcg_op); 10349 break; 10350 case 0x3d: /* FRECPE */ 10351 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 10352 break; 10353 case 0x3f: /* FRECPX */ 10354 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 10355 break; 10356 case 0x7d: /* FRSQRTE */ 10357 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 10358 break; 10359 default: 10360 g_assert_not_reached(); 10361 } 10362 10363 if (is_scalar) { 10364 write_fp_sreg(s, rd, tcg_res); 10365 } else { 10366 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 10367 } 10368 } 10369 if (!is_scalar) { 10370 clear_vec_high(s, is_q, rd); 10371 } 10372 } 10373 } 10374 10375 static void handle_2misc_narrow(DisasContext *s, bool scalar, 10376 int opcode, bool u, bool is_q, 10377 int size, int rn, int rd) 10378 { 10379 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 10380 * in the source becomes a size element in the destination). 10381 */ 10382 int pass; 10383 TCGv_i32 tcg_res[2]; 10384 int destelt = is_q ? 2 : 0; 10385 int passes = scalar ? 1 : 2; 10386 10387 if (scalar) { 10388 tcg_res[1] = tcg_constant_i32(0); 10389 } 10390 10391 for (pass = 0; pass < passes; pass++) { 10392 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10393 NeonGenNarrowFn *genfn = NULL; 10394 NeonGenNarrowEnvFn *genenvfn = NULL; 10395 10396 if (scalar) { 10397 read_vec_element(s, tcg_op, rn, pass, size + 1); 10398 } else { 10399 read_vec_element(s, tcg_op, rn, pass, MO_64); 10400 } 10401 tcg_res[pass] = tcg_temp_new_i32(); 10402 10403 switch (opcode) { 10404 case 0x12: /* XTN, SQXTUN */ 10405 { 10406 static NeonGenNarrowFn * const xtnfns[3] = { 10407 gen_helper_neon_narrow_u8, 10408 gen_helper_neon_narrow_u16, 10409 tcg_gen_extrl_i64_i32, 10410 }; 10411 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 10412 gen_helper_neon_unarrow_sat8, 10413 gen_helper_neon_unarrow_sat16, 10414 gen_helper_neon_unarrow_sat32, 10415 }; 10416 if (u) { 10417 genenvfn = sqxtunfns[size]; 10418 } else { 10419 genfn = xtnfns[size]; 10420 } 10421 break; 10422 } 10423 case 0x14: /* SQXTN, UQXTN */ 10424 { 10425 static NeonGenNarrowEnvFn * const fns[3][2] = { 10426 { gen_helper_neon_narrow_sat_s8, 10427 gen_helper_neon_narrow_sat_u8 }, 10428 { gen_helper_neon_narrow_sat_s16, 10429 gen_helper_neon_narrow_sat_u16 }, 10430 { gen_helper_neon_narrow_sat_s32, 10431 gen_helper_neon_narrow_sat_u32 }, 10432 }; 10433 genenvfn = fns[size][u]; 10434 break; 10435 } 10436 case 0x16: /* FCVTN, FCVTN2 */ 10437 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10438 if (size == 2) { 10439 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 10440 } else { 10441 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10442 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10443 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10444 TCGv_i32 ahp = get_ahp_flag(); 10445 10446 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10447 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10448 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10449 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10450 } 10451 break; 10452 case 0x36: /* BFCVTN, BFCVTN2 */ 10453 { 10454 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10455 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10456 } 10457 break; 10458 case 0x56: /* FCVTXN, FCVTXN2 */ 10459 /* 64 bit to 32 bit float conversion 10460 * with von Neumann rounding (round to odd) 10461 */ 10462 assert(size == 2); 10463 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10464 break; 10465 default: 10466 g_assert_not_reached(); 10467 } 10468 10469 if (genfn) { 10470 genfn(tcg_res[pass], tcg_op); 10471 } else if (genenvfn) { 10472 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10473 } 10474 } 10475 10476 for (pass = 0; pass < 2; pass++) { 10477 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10478 } 10479 clear_vec_high(s, is_q, rd); 10480 } 10481 10482 /* AdvSIMD scalar two reg misc 10483 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10484 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10485 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10486 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10487 */ 10488 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10489 { 10490 int rd = extract32(insn, 0, 5); 10491 int rn = extract32(insn, 5, 5); 10492 int opcode = extract32(insn, 12, 5); 10493 int size = extract32(insn, 22, 2); 10494 bool u = extract32(insn, 29, 1); 10495 bool is_fcvt = false; 10496 int rmode; 10497 TCGv_i32 tcg_rmode; 10498 TCGv_ptr tcg_fpstatus; 10499 10500 switch (opcode) { 10501 case 0x7: /* SQABS / SQNEG */ 10502 break; 10503 case 0xa: /* CMLT */ 10504 if (u) { 10505 unallocated_encoding(s); 10506 return; 10507 } 10508 /* fall through */ 10509 case 0x8: /* CMGT, CMGE */ 10510 case 0x9: /* CMEQ, CMLE */ 10511 case 0xb: /* ABS, NEG */ 10512 if (size != 3) { 10513 unallocated_encoding(s); 10514 return; 10515 } 10516 break; 10517 case 0x12: /* SQXTUN */ 10518 if (!u) { 10519 unallocated_encoding(s); 10520 return; 10521 } 10522 /* fall through */ 10523 case 0x14: /* SQXTN, UQXTN */ 10524 if (size == 3) { 10525 unallocated_encoding(s); 10526 return; 10527 } 10528 if (!fp_access_check(s)) { 10529 return; 10530 } 10531 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10532 return; 10533 case 0xc ... 0xf: 10534 case 0x16 ... 0x1d: 10535 case 0x1f: 10536 /* Floating point: U, size[1] and opcode indicate operation; 10537 * size[0] indicates single or double precision. 10538 */ 10539 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10540 size = extract32(size, 0, 1) ? 3 : 2; 10541 switch (opcode) { 10542 case 0x2c: /* FCMGT (zero) */ 10543 case 0x2d: /* FCMEQ (zero) */ 10544 case 0x2e: /* FCMLT (zero) */ 10545 case 0x6c: /* FCMGE (zero) */ 10546 case 0x6d: /* FCMLE (zero) */ 10547 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10548 return; 10549 case 0x1d: /* SCVTF */ 10550 case 0x5d: /* UCVTF */ 10551 { 10552 bool is_signed = (opcode == 0x1d); 10553 if (!fp_access_check(s)) { 10554 return; 10555 } 10556 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10557 return; 10558 } 10559 case 0x3d: /* FRECPE */ 10560 case 0x3f: /* FRECPX */ 10561 case 0x7d: /* FRSQRTE */ 10562 if (!fp_access_check(s)) { 10563 return; 10564 } 10565 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10566 return; 10567 case 0x1a: /* FCVTNS */ 10568 case 0x1b: /* FCVTMS */ 10569 case 0x3a: /* FCVTPS */ 10570 case 0x3b: /* FCVTZS */ 10571 case 0x5a: /* FCVTNU */ 10572 case 0x5b: /* FCVTMU */ 10573 case 0x7a: /* FCVTPU */ 10574 case 0x7b: /* FCVTZU */ 10575 is_fcvt = true; 10576 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10577 break; 10578 case 0x1c: /* FCVTAS */ 10579 case 0x5c: /* FCVTAU */ 10580 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10581 is_fcvt = true; 10582 rmode = FPROUNDING_TIEAWAY; 10583 break; 10584 case 0x56: /* FCVTXN, FCVTXN2 */ 10585 if (size == 2) { 10586 unallocated_encoding(s); 10587 return; 10588 } 10589 if (!fp_access_check(s)) { 10590 return; 10591 } 10592 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10593 return; 10594 default: 10595 unallocated_encoding(s); 10596 return; 10597 } 10598 break; 10599 default: 10600 case 0x3: /* USQADD / SUQADD */ 10601 unallocated_encoding(s); 10602 return; 10603 } 10604 10605 if (!fp_access_check(s)) { 10606 return; 10607 } 10608 10609 if (is_fcvt) { 10610 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10611 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10612 } else { 10613 tcg_fpstatus = NULL; 10614 tcg_rmode = NULL; 10615 } 10616 10617 if (size == 3) { 10618 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10619 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10620 10621 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10622 write_fp_dreg(s, rd, tcg_rd); 10623 } else { 10624 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10625 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10626 10627 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10628 10629 switch (opcode) { 10630 case 0x7: /* SQABS, SQNEG */ 10631 { 10632 NeonGenOneOpEnvFn *genfn; 10633 static NeonGenOneOpEnvFn * const fns[3][2] = { 10634 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10635 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10636 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10637 }; 10638 genfn = fns[size][u]; 10639 genfn(tcg_rd, tcg_env, tcg_rn); 10640 break; 10641 } 10642 case 0x1a: /* FCVTNS */ 10643 case 0x1b: /* FCVTMS */ 10644 case 0x1c: /* FCVTAS */ 10645 case 0x3a: /* FCVTPS */ 10646 case 0x3b: /* FCVTZS */ 10647 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10648 tcg_fpstatus); 10649 break; 10650 case 0x5a: /* FCVTNU */ 10651 case 0x5b: /* FCVTMU */ 10652 case 0x5c: /* FCVTAU */ 10653 case 0x7a: /* FCVTPU */ 10654 case 0x7b: /* FCVTZU */ 10655 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10656 tcg_fpstatus); 10657 break; 10658 default: 10659 g_assert_not_reached(); 10660 } 10661 10662 write_fp_sreg(s, rd, tcg_rd); 10663 } 10664 10665 if (is_fcvt) { 10666 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10667 } 10668 } 10669 10670 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10671 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10672 int immh, int immb, int opcode, int rn, int rd) 10673 { 10674 int size = 32 - clz32(immh) - 1; 10675 int immhb = immh << 3 | immb; 10676 int shift = 2 * (8 << size) - immhb; 10677 GVecGen2iFn *gvec_fn; 10678 10679 if (extract32(immh, 3, 1) && !is_q) { 10680 unallocated_encoding(s); 10681 return; 10682 } 10683 tcg_debug_assert(size <= 3); 10684 10685 if (!fp_access_check(s)) { 10686 return; 10687 } 10688 10689 switch (opcode) { 10690 case 0x02: /* SSRA / USRA (accumulate) */ 10691 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10692 break; 10693 10694 case 0x08: /* SRI */ 10695 gvec_fn = gen_gvec_sri; 10696 break; 10697 10698 case 0x00: /* SSHR / USHR */ 10699 if (is_u) { 10700 if (shift == 8 << size) { 10701 /* Shift count the same size as element size produces zero. */ 10702 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10703 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10704 return; 10705 } 10706 gvec_fn = tcg_gen_gvec_shri; 10707 } else { 10708 /* Shift count the same size as element size produces all sign. */ 10709 if (shift == 8 << size) { 10710 shift -= 1; 10711 } 10712 gvec_fn = tcg_gen_gvec_sari; 10713 } 10714 break; 10715 10716 case 0x04: /* SRSHR / URSHR (rounding) */ 10717 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10718 break; 10719 10720 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10721 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10722 break; 10723 10724 default: 10725 g_assert_not_reached(); 10726 } 10727 10728 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10729 } 10730 10731 /* SHL/SLI - Vector shift left */ 10732 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10733 int immh, int immb, int opcode, int rn, int rd) 10734 { 10735 int size = 32 - clz32(immh) - 1; 10736 int immhb = immh << 3 | immb; 10737 int shift = immhb - (8 << size); 10738 10739 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10740 assert(size >= 0 && size <= 3); 10741 10742 if (extract32(immh, 3, 1) && !is_q) { 10743 unallocated_encoding(s); 10744 return; 10745 } 10746 10747 if (!fp_access_check(s)) { 10748 return; 10749 } 10750 10751 if (insert) { 10752 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10753 } else { 10754 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10755 } 10756 } 10757 10758 /* USHLL/SHLL - Vector shift left with widening */ 10759 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10760 int immh, int immb, int opcode, int rn, int rd) 10761 { 10762 int size = 32 - clz32(immh) - 1; 10763 int immhb = immh << 3 | immb; 10764 int shift = immhb - (8 << size); 10765 int dsize = 64; 10766 int esize = 8 << size; 10767 int elements = dsize/esize; 10768 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10769 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10770 int i; 10771 10772 if (size >= 3) { 10773 unallocated_encoding(s); 10774 return; 10775 } 10776 10777 if (!fp_access_check(s)) { 10778 return; 10779 } 10780 10781 /* For the LL variants the store is larger than the load, 10782 * so if rd == rn we would overwrite parts of our input. 10783 * So load everything right now and use shifts in the main loop. 10784 */ 10785 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10786 10787 for (i = 0; i < elements; i++) { 10788 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10789 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10790 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10791 write_vec_element(s, tcg_rd, rd, i, size + 1); 10792 } 10793 clear_vec_high(s, true, rd); 10794 } 10795 10796 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10797 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10798 int immh, int immb, int opcode, int rn, int rd) 10799 { 10800 int immhb = immh << 3 | immb; 10801 int size = 32 - clz32(immh) - 1; 10802 int dsize = 64; 10803 int esize = 8 << size; 10804 int elements = dsize/esize; 10805 int shift = (2 * esize) - immhb; 10806 bool round = extract32(opcode, 0, 1); 10807 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10808 TCGv_i64 tcg_round; 10809 int i; 10810 10811 if (extract32(immh, 3, 1)) { 10812 unallocated_encoding(s); 10813 return; 10814 } 10815 10816 if (!fp_access_check(s)) { 10817 return; 10818 } 10819 10820 tcg_rn = tcg_temp_new_i64(); 10821 tcg_rd = tcg_temp_new_i64(); 10822 tcg_final = tcg_temp_new_i64(); 10823 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10824 10825 if (round) { 10826 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10827 } else { 10828 tcg_round = NULL; 10829 } 10830 10831 for (i = 0; i < elements; i++) { 10832 read_vec_element(s, tcg_rn, rn, i, size+1); 10833 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10834 false, true, size+1, shift); 10835 10836 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10837 } 10838 10839 if (!is_q) { 10840 write_vec_element(s, tcg_final, rd, 0, MO_64); 10841 } else { 10842 write_vec_element(s, tcg_final, rd, 1, MO_64); 10843 } 10844 10845 clear_vec_high(s, is_q, rd); 10846 } 10847 10848 10849 /* AdvSIMD shift by immediate 10850 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10851 * +---+---+---+-------------+------+------+--------+---+------+------+ 10852 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10853 * +---+---+---+-------------+------+------+--------+---+------+------+ 10854 */ 10855 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10856 { 10857 int rd = extract32(insn, 0, 5); 10858 int rn = extract32(insn, 5, 5); 10859 int opcode = extract32(insn, 11, 5); 10860 int immb = extract32(insn, 16, 3); 10861 int immh = extract32(insn, 19, 4); 10862 bool is_u = extract32(insn, 29, 1); 10863 bool is_q = extract32(insn, 30, 1); 10864 10865 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10866 assert(immh != 0); 10867 10868 switch (opcode) { 10869 case 0x08: /* SRI */ 10870 if (!is_u) { 10871 unallocated_encoding(s); 10872 return; 10873 } 10874 /* fall through */ 10875 case 0x00: /* SSHR / USHR */ 10876 case 0x02: /* SSRA / USRA (accumulate) */ 10877 case 0x04: /* SRSHR / URSHR (rounding) */ 10878 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10879 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10880 break; 10881 case 0x0a: /* SHL / SLI */ 10882 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10883 break; 10884 case 0x10: /* SHRN */ 10885 case 0x11: /* RSHRN / SQRSHRUN */ 10886 if (is_u) { 10887 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10888 opcode, rn, rd); 10889 } else { 10890 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10891 } 10892 break; 10893 case 0x12: /* SQSHRN / UQSHRN */ 10894 case 0x13: /* SQRSHRN / UQRSHRN */ 10895 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10896 opcode, rn, rd); 10897 break; 10898 case 0x14: /* SSHLL / USHLL */ 10899 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10900 break; 10901 case 0x1c: /* SCVTF / UCVTF */ 10902 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10903 opcode, rn, rd); 10904 break; 10905 case 0xc: /* SQSHLU */ 10906 if (!is_u) { 10907 unallocated_encoding(s); 10908 return; 10909 } 10910 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10911 break; 10912 case 0xe: /* SQSHL, UQSHL */ 10913 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10914 break; 10915 case 0x1f: /* FCVTZS/ FCVTZU */ 10916 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10917 return; 10918 default: 10919 unallocated_encoding(s); 10920 return; 10921 } 10922 } 10923 10924 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 10925 int size, int rn, int rd) 10926 { 10927 /* Handle 2-reg-misc ops which are widening (so each size element 10928 * in the source becomes a 2*size element in the destination. 10929 * The only instruction like this is FCVTL. 10930 */ 10931 int pass; 10932 10933 if (size == 3) { 10934 /* 32 -> 64 bit fp conversion */ 10935 TCGv_i64 tcg_res[2]; 10936 int srcelt = is_q ? 2 : 0; 10937 10938 for (pass = 0; pass < 2; pass++) { 10939 TCGv_i32 tcg_op = tcg_temp_new_i32(); 10940 tcg_res[pass] = tcg_temp_new_i64(); 10941 10942 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 10943 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 10944 } 10945 for (pass = 0; pass < 2; pass++) { 10946 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10947 } 10948 } else { 10949 /* 16 -> 32 bit fp conversion */ 10950 int srcelt = is_q ? 4 : 0; 10951 TCGv_i32 tcg_res[4]; 10952 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10953 TCGv_i32 ahp = get_ahp_flag(); 10954 10955 for (pass = 0; pass < 4; pass++) { 10956 tcg_res[pass] = tcg_temp_new_i32(); 10957 10958 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 10959 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 10960 fpst, ahp); 10961 } 10962 for (pass = 0; pass < 4; pass++) { 10963 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10964 } 10965 } 10966 } 10967 10968 static void handle_rev(DisasContext *s, int opcode, bool u, 10969 bool is_q, int size, int rn, int rd) 10970 { 10971 int op = (opcode << 1) | u; 10972 int opsz = op + size; 10973 int grp_size = 3 - opsz; 10974 int dsize = is_q ? 128 : 64; 10975 int i; 10976 10977 if (opsz >= 3) { 10978 unallocated_encoding(s); 10979 return; 10980 } 10981 10982 if (!fp_access_check(s)) { 10983 return; 10984 } 10985 10986 if (size == 0) { 10987 /* Special case bytes, use bswap op on each group of elements */ 10988 int groups = dsize / (8 << grp_size); 10989 10990 for (i = 0; i < groups; i++) { 10991 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 10992 10993 read_vec_element(s, tcg_tmp, rn, i, grp_size); 10994 switch (grp_size) { 10995 case MO_16: 10996 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 10997 break; 10998 case MO_32: 10999 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11000 break; 11001 case MO_64: 11002 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11003 break; 11004 default: 11005 g_assert_not_reached(); 11006 } 11007 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11008 } 11009 clear_vec_high(s, is_q, rd); 11010 } else { 11011 int revmask = (1 << grp_size) - 1; 11012 int esize = 8 << size; 11013 int elements = dsize / esize; 11014 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11015 TCGv_i64 tcg_rd[2]; 11016 11017 for (i = 0; i < 2; i++) { 11018 tcg_rd[i] = tcg_temp_new_i64(); 11019 tcg_gen_movi_i64(tcg_rd[i], 0); 11020 } 11021 11022 for (i = 0; i < elements; i++) { 11023 int e_rev = (i & 0xf) ^ revmask; 11024 int w = (e_rev * esize) / 64; 11025 int o = (e_rev * esize) % 64; 11026 11027 read_vec_element(s, tcg_rn, rn, i, size); 11028 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11029 } 11030 11031 for (i = 0; i < 2; i++) { 11032 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11033 } 11034 clear_vec_high(s, true, rd); 11035 } 11036 } 11037 11038 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11039 bool is_q, int size, int rn, int rd) 11040 { 11041 /* Implement the pairwise operations from 2-misc: 11042 * SADDLP, UADDLP, SADALP, UADALP. 11043 * These all add pairs of elements in the input to produce a 11044 * double-width result element in the output (possibly accumulating). 11045 */ 11046 bool accum = (opcode == 0x6); 11047 int maxpass = is_q ? 2 : 1; 11048 int pass; 11049 TCGv_i64 tcg_res[2]; 11050 11051 if (size == 2) { 11052 /* 32 + 32 -> 64 op */ 11053 MemOp memop = size + (u ? 0 : MO_SIGN); 11054 11055 for (pass = 0; pass < maxpass; pass++) { 11056 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11057 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11058 11059 tcg_res[pass] = tcg_temp_new_i64(); 11060 11061 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11062 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11063 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11064 if (accum) { 11065 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11066 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11067 } 11068 } 11069 } else { 11070 for (pass = 0; pass < maxpass; pass++) { 11071 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11072 NeonGenOne64OpFn *genfn; 11073 static NeonGenOne64OpFn * const fns[2][2] = { 11074 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11075 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11076 }; 11077 11078 genfn = fns[size][u]; 11079 11080 tcg_res[pass] = tcg_temp_new_i64(); 11081 11082 read_vec_element(s, tcg_op, rn, pass, MO_64); 11083 genfn(tcg_res[pass], tcg_op); 11084 11085 if (accum) { 11086 read_vec_element(s, tcg_op, rd, pass, MO_64); 11087 if (size == 0) { 11088 gen_helper_neon_addl_u16(tcg_res[pass], 11089 tcg_res[pass], tcg_op); 11090 } else { 11091 gen_helper_neon_addl_u32(tcg_res[pass], 11092 tcg_res[pass], tcg_op); 11093 } 11094 } 11095 } 11096 } 11097 if (!is_q) { 11098 tcg_res[1] = tcg_constant_i64(0); 11099 } 11100 for (pass = 0; pass < 2; pass++) { 11101 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11102 } 11103 } 11104 11105 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11106 { 11107 /* Implement SHLL and SHLL2 */ 11108 int pass; 11109 int part = is_q ? 2 : 0; 11110 TCGv_i64 tcg_res[2]; 11111 11112 for (pass = 0; pass < 2; pass++) { 11113 static NeonGenWidenFn * const widenfns[3] = { 11114 gen_helper_neon_widen_u8, 11115 gen_helper_neon_widen_u16, 11116 tcg_gen_extu_i32_i64, 11117 }; 11118 NeonGenWidenFn *widenfn = widenfns[size]; 11119 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11120 11121 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11122 tcg_res[pass] = tcg_temp_new_i64(); 11123 widenfn(tcg_res[pass], tcg_op); 11124 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11125 } 11126 11127 for (pass = 0; pass < 2; pass++) { 11128 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11129 } 11130 } 11131 11132 /* AdvSIMD two reg misc 11133 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11134 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11135 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11136 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11137 */ 11138 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11139 { 11140 int size = extract32(insn, 22, 2); 11141 int opcode = extract32(insn, 12, 5); 11142 bool u = extract32(insn, 29, 1); 11143 bool is_q = extract32(insn, 30, 1); 11144 int rn = extract32(insn, 5, 5); 11145 int rd = extract32(insn, 0, 5); 11146 bool need_fpstatus = false; 11147 int rmode = -1; 11148 TCGv_i32 tcg_rmode; 11149 TCGv_ptr tcg_fpstatus; 11150 11151 switch (opcode) { 11152 case 0x0: /* REV64, REV32 */ 11153 case 0x1: /* REV16 */ 11154 handle_rev(s, opcode, u, is_q, size, rn, rd); 11155 return; 11156 case 0x5: /* CNT, NOT, RBIT */ 11157 if (u && size == 0) { 11158 /* NOT */ 11159 break; 11160 } else if (u && size == 1) { 11161 /* RBIT */ 11162 break; 11163 } else if (!u && size == 0) { 11164 /* CNT */ 11165 break; 11166 } 11167 unallocated_encoding(s); 11168 return; 11169 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11170 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11171 if (size == 3) { 11172 unallocated_encoding(s); 11173 return; 11174 } 11175 if (!fp_access_check(s)) { 11176 return; 11177 } 11178 11179 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11180 return; 11181 case 0x4: /* CLS, CLZ */ 11182 if (size == 3) { 11183 unallocated_encoding(s); 11184 return; 11185 } 11186 break; 11187 case 0x2: /* SADDLP, UADDLP */ 11188 case 0x6: /* SADALP, UADALP */ 11189 if (size == 3) { 11190 unallocated_encoding(s); 11191 return; 11192 } 11193 if (!fp_access_check(s)) { 11194 return; 11195 } 11196 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11197 return; 11198 case 0x13: /* SHLL, SHLL2 */ 11199 if (u == 0 || size == 3) { 11200 unallocated_encoding(s); 11201 return; 11202 } 11203 if (!fp_access_check(s)) { 11204 return; 11205 } 11206 handle_shll(s, is_q, size, rn, rd); 11207 return; 11208 case 0xa: /* CMLT */ 11209 if (u == 1) { 11210 unallocated_encoding(s); 11211 return; 11212 } 11213 /* fall through */ 11214 case 0x8: /* CMGT, CMGE */ 11215 case 0x9: /* CMEQ, CMLE */ 11216 case 0xb: /* ABS, NEG */ 11217 if (size == 3 && !is_q) { 11218 unallocated_encoding(s); 11219 return; 11220 } 11221 break; 11222 case 0x7: /* SQABS, SQNEG */ 11223 if (size == 3 && !is_q) { 11224 unallocated_encoding(s); 11225 return; 11226 } 11227 break; 11228 case 0xc ... 0xf: 11229 case 0x16 ... 0x1f: 11230 { 11231 /* Floating point: U, size[1] and opcode indicate operation; 11232 * size[0] indicates single or double precision. 11233 */ 11234 int is_double = extract32(size, 0, 1); 11235 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11236 size = is_double ? 3 : 2; 11237 switch (opcode) { 11238 case 0x2f: /* FABS */ 11239 case 0x6f: /* FNEG */ 11240 if (size == 3 && !is_q) { 11241 unallocated_encoding(s); 11242 return; 11243 } 11244 break; 11245 case 0x1d: /* SCVTF */ 11246 case 0x5d: /* UCVTF */ 11247 { 11248 bool is_signed = (opcode == 0x1d) ? true : false; 11249 int elements = is_double ? 2 : is_q ? 4 : 2; 11250 if (is_double && !is_q) { 11251 unallocated_encoding(s); 11252 return; 11253 } 11254 if (!fp_access_check(s)) { 11255 return; 11256 } 11257 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11258 return; 11259 } 11260 case 0x2c: /* FCMGT (zero) */ 11261 case 0x2d: /* FCMEQ (zero) */ 11262 case 0x2e: /* FCMLT (zero) */ 11263 case 0x6c: /* FCMGE (zero) */ 11264 case 0x6d: /* FCMLE (zero) */ 11265 if (size == 3 && !is_q) { 11266 unallocated_encoding(s); 11267 return; 11268 } 11269 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11270 return; 11271 case 0x7f: /* FSQRT */ 11272 if (size == 3 && !is_q) { 11273 unallocated_encoding(s); 11274 return; 11275 } 11276 break; 11277 case 0x1a: /* FCVTNS */ 11278 case 0x1b: /* FCVTMS */ 11279 case 0x3a: /* FCVTPS */ 11280 case 0x3b: /* FCVTZS */ 11281 case 0x5a: /* FCVTNU */ 11282 case 0x5b: /* FCVTMU */ 11283 case 0x7a: /* FCVTPU */ 11284 case 0x7b: /* FCVTZU */ 11285 need_fpstatus = true; 11286 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11287 if (size == 3 && !is_q) { 11288 unallocated_encoding(s); 11289 return; 11290 } 11291 break; 11292 case 0x5c: /* FCVTAU */ 11293 case 0x1c: /* FCVTAS */ 11294 need_fpstatus = true; 11295 rmode = FPROUNDING_TIEAWAY; 11296 if (size == 3 && !is_q) { 11297 unallocated_encoding(s); 11298 return; 11299 } 11300 break; 11301 case 0x3c: /* URECPE */ 11302 if (size == 3) { 11303 unallocated_encoding(s); 11304 return; 11305 } 11306 /* fall through */ 11307 case 0x3d: /* FRECPE */ 11308 case 0x7d: /* FRSQRTE */ 11309 if (size == 3 && !is_q) { 11310 unallocated_encoding(s); 11311 return; 11312 } 11313 if (!fp_access_check(s)) { 11314 return; 11315 } 11316 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11317 return; 11318 case 0x56: /* FCVTXN, FCVTXN2 */ 11319 if (size == 2) { 11320 unallocated_encoding(s); 11321 return; 11322 } 11323 /* fall through */ 11324 case 0x16: /* FCVTN, FCVTN2 */ 11325 /* handle_2misc_narrow does a 2*size -> size operation, but these 11326 * instructions encode the source size rather than dest size. 11327 */ 11328 if (!fp_access_check(s)) { 11329 return; 11330 } 11331 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11332 return; 11333 case 0x36: /* BFCVTN, BFCVTN2 */ 11334 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11335 unallocated_encoding(s); 11336 return; 11337 } 11338 if (!fp_access_check(s)) { 11339 return; 11340 } 11341 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11342 return; 11343 case 0x17: /* FCVTL, FCVTL2 */ 11344 if (!fp_access_check(s)) { 11345 return; 11346 } 11347 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11348 return; 11349 case 0x18: /* FRINTN */ 11350 case 0x19: /* FRINTM */ 11351 case 0x38: /* FRINTP */ 11352 case 0x39: /* FRINTZ */ 11353 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11354 /* fall through */ 11355 case 0x59: /* FRINTX */ 11356 case 0x79: /* FRINTI */ 11357 need_fpstatus = true; 11358 if (size == 3 && !is_q) { 11359 unallocated_encoding(s); 11360 return; 11361 } 11362 break; 11363 case 0x58: /* FRINTA */ 11364 rmode = FPROUNDING_TIEAWAY; 11365 need_fpstatus = true; 11366 if (size == 3 && !is_q) { 11367 unallocated_encoding(s); 11368 return; 11369 } 11370 break; 11371 case 0x7c: /* URSQRTE */ 11372 if (size == 3) { 11373 unallocated_encoding(s); 11374 return; 11375 } 11376 break; 11377 case 0x1e: /* FRINT32Z */ 11378 case 0x1f: /* FRINT64Z */ 11379 rmode = FPROUNDING_ZERO; 11380 /* fall through */ 11381 case 0x5e: /* FRINT32X */ 11382 case 0x5f: /* FRINT64X */ 11383 need_fpstatus = true; 11384 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 11385 unallocated_encoding(s); 11386 return; 11387 } 11388 break; 11389 default: 11390 unallocated_encoding(s); 11391 return; 11392 } 11393 break; 11394 } 11395 default: 11396 case 0x3: /* SUQADD, USQADD */ 11397 unallocated_encoding(s); 11398 return; 11399 } 11400 11401 if (!fp_access_check(s)) { 11402 return; 11403 } 11404 11405 if (need_fpstatus || rmode >= 0) { 11406 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 11407 } else { 11408 tcg_fpstatus = NULL; 11409 } 11410 if (rmode >= 0) { 11411 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11412 } else { 11413 tcg_rmode = NULL; 11414 } 11415 11416 switch (opcode) { 11417 case 0x5: 11418 if (u && size == 0) { /* NOT */ 11419 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 11420 return; 11421 } 11422 break; 11423 case 0x8: /* CMGT, CMGE */ 11424 if (u) { 11425 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 11426 } else { 11427 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 11428 } 11429 return; 11430 case 0x9: /* CMEQ, CMLE */ 11431 if (u) { 11432 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 11433 } else { 11434 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 11435 } 11436 return; 11437 case 0xa: /* CMLT */ 11438 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 11439 return; 11440 case 0xb: 11441 if (u) { /* ABS, NEG */ 11442 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 11443 } else { 11444 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 11445 } 11446 return; 11447 } 11448 11449 if (size == 3) { 11450 /* All 64-bit element operations can be shared with scalar 2misc */ 11451 int pass; 11452 11453 /* Coverity claims (size == 3 && !is_q) has been eliminated 11454 * from all paths leading to here. 11455 */ 11456 tcg_debug_assert(is_q); 11457 for (pass = 0; pass < 2; pass++) { 11458 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11459 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11460 11461 read_vec_element(s, tcg_op, rn, pass, MO_64); 11462 11463 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 11464 tcg_rmode, tcg_fpstatus); 11465 11466 write_vec_element(s, tcg_res, rd, pass, MO_64); 11467 } 11468 } else { 11469 int pass; 11470 11471 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11472 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11473 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11474 11475 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 11476 11477 if (size == 2) { 11478 /* Special cases for 32 bit elements */ 11479 switch (opcode) { 11480 case 0x4: /* CLS */ 11481 if (u) { 11482 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 11483 } else { 11484 tcg_gen_clrsb_i32(tcg_res, tcg_op); 11485 } 11486 break; 11487 case 0x7: /* SQABS, SQNEG */ 11488 if (u) { 11489 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 11490 } else { 11491 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 11492 } 11493 break; 11494 case 0x2f: /* FABS */ 11495 gen_vfp_abss(tcg_res, tcg_op); 11496 break; 11497 case 0x6f: /* FNEG */ 11498 gen_vfp_negs(tcg_res, tcg_op); 11499 break; 11500 case 0x7f: /* FSQRT */ 11501 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 11502 break; 11503 case 0x1a: /* FCVTNS */ 11504 case 0x1b: /* FCVTMS */ 11505 case 0x1c: /* FCVTAS */ 11506 case 0x3a: /* FCVTPS */ 11507 case 0x3b: /* FCVTZS */ 11508 gen_helper_vfp_tosls(tcg_res, tcg_op, 11509 tcg_constant_i32(0), tcg_fpstatus); 11510 break; 11511 case 0x5a: /* FCVTNU */ 11512 case 0x5b: /* FCVTMU */ 11513 case 0x5c: /* FCVTAU */ 11514 case 0x7a: /* FCVTPU */ 11515 case 0x7b: /* FCVTZU */ 11516 gen_helper_vfp_touls(tcg_res, tcg_op, 11517 tcg_constant_i32(0), tcg_fpstatus); 11518 break; 11519 case 0x18: /* FRINTN */ 11520 case 0x19: /* FRINTM */ 11521 case 0x38: /* FRINTP */ 11522 case 0x39: /* FRINTZ */ 11523 case 0x58: /* FRINTA */ 11524 case 0x79: /* FRINTI */ 11525 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 11526 break; 11527 case 0x59: /* FRINTX */ 11528 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 11529 break; 11530 case 0x7c: /* URSQRTE */ 11531 gen_helper_rsqrte_u32(tcg_res, tcg_op); 11532 break; 11533 case 0x1e: /* FRINT32Z */ 11534 case 0x5e: /* FRINT32X */ 11535 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 11536 break; 11537 case 0x1f: /* FRINT64Z */ 11538 case 0x5f: /* FRINT64X */ 11539 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 11540 break; 11541 default: 11542 g_assert_not_reached(); 11543 } 11544 } else { 11545 /* Use helpers for 8 and 16 bit elements */ 11546 switch (opcode) { 11547 case 0x5: /* CNT, RBIT */ 11548 /* For these two insns size is part of the opcode specifier 11549 * (handled earlier); they always operate on byte elements. 11550 */ 11551 if (u) { 11552 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 11553 } else { 11554 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 11555 } 11556 break; 11557 case 0x7: /* SQABS, SQNEG */ 11558 { 11559 NeonGenOneOpEnvFn *genfn; 11560 static NeonGenOneOpEnvFn * const fns[2][2] = { 11561 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 11562 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 11563 }; 11564 genfn = fns[size][u]; 11565 genfn(tcg_res, tcg_env, tcg_op); 11566 break; 11567 } 11568 case 0x4: /* CLS, CLZ */ 11569 if (u) { 11570 if (size == 0) { 11571 gen_helper_neon_clz_u8(tcg_res, tcg_op); 11572 } else { 11573 gen_helper_neon_clz_u16(tcg_res, tcg_op); 11574 } 11575 } else { 11576 if (size == 0) { 11577 gen_helper_neon_cls_s8(tcg_res, tcg_op); 11578 } else { 11579 gen_helper_neon_cls_s16(tcg_res, tcg_op); 11580 } 11581 } 11582 break; 11583 default: 11584 g_assert_not_reached(); 11585 } 11586 } 11587 11588 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11589 } 11590 } 11591 clear_vec_high(s, is_q, rd); 11592 11593 if (tcg_rmode) { 11594 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 11595 } 11596 } 11597 11598 /* AdvSIMD [scalar] two register miscellaneous (FP16) 11599 * 11600 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 11601 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11602 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 11603 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11604 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 11605 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 11606 * 11607 * This actually covers two groups where scalar access is governed by 11608 * bit 28. A bunch of the instructions (float to integral) only exist 11609 * in the vector form and are un-allocated for the scalar decode. Also 11610 * in the scalar decode Q is always 1. 11611 */ 11612 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 11613 { 11614 int fpop, opcode, a, u; 11615 int rn, rd; 11616 bool is_q; 11617 bool is_scalar; 11618 bool only_in_vector = false; 11619 11620 int pass; 11621 TCGv_i32 tcg_rmode = NULL; 11622 TCGv_ptr tcg_fpstatus = NULL; 11623 bool need_fpst = true; 11624 int rmode = -1; 11625 11626 if (!dc_isar_feature(aa64_fp16, s)) { 11627 unallocated_encoding(s); 11628 return; 11629 } 11630 11631 rd = extract32(insn, 0, 5); 11632 rn = extract32(insn, 5, 5); 11633 11634 a = extract32(insn, 23, 1); 11635 u = extract32(insn, 29, 1); 11636 is_scalar = extract32(insn, 28, 1); 11637 is_q = extract32(insn, 30, 1); 11638 11639 opcode = extract32(insn, 12, 5); 11640 fpop = deposit32(opcode, 5, 1, a); 11641 fpop = deposit32(fpop, 6, 1, u); 11642 11643 switch (fpop) { 11644 case 0x1d: /* SCVTF */ 11645 case 0x5d: /* UCVTF */ 11646 { 11647 int elements; 11648 11649 if (is_scalar) { 11650 elements = 1; 11651 } else { 11652 elements = (is_q ? 8 : 4); 11653 } 11654 11655 if (!fp_access_check(s)) { 11656 return; 11657 } 11658 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 11659 return; 11660 } 11661 break; 11662 case 0x2c: /* FCMGT (zero) */ 11663 case 0x2d: /* FCMEQ (zero) */ 11664 case 0x2e: /* FCMLT (zero) */ 11665 case 0x6c: /* FCMGE (zero) */ 11666 case 0x6d: /* FCMLE (zero) */ 11667 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 11668 return; 11669 case 0x3d: /* FRECPE */ 11670 case 0x3f: /* FRECPX */ 11671 break; 11672 case 0x18: /* FRINTN */ 11673 only_in_vector = true; 11674 rmode = FPROUNDING_TIEEVEN; 11675 break; 11676 case 0x19: /* FRINTM */ 11677 only_in_vector = true; 11678 rmode = FPROUNDING_NEGINF; 11679 break; 11680 case 0x38: /* FRINTP */ 11681 only_in_vector = true; 11682 rmode = FPROUNDING_POSINF; 11683 break; 11684 case 0x39: /* FRINTZ */ 11685 only_in_vector = true; 11686 rmode = FPROUNDING_ZERO; 11687 break; 11688 case 0x58: /* FRINTA */ 11689 only_in_vector = true; 11690 rmode = FPROUNDING_TIEAWAY; 11691 break; 11692 case 0x59: /* FRINTX */ 11693 case 0x79: /* FRINTI */ 11694 only_in_vector = true; 11695 /* current rounding mode */ 11696 break; 11697 case 0x1a: /* FCVTNS */ 11698 rmode = FPROUNDING_TIEEVEN; 11699 break; 11700 case 0x1b: /* FCVTMS */ 11701 rmode = FPROUNDING_NEGINF; 11702 break; 11703 case 0x1c: /* FCVTAS */ 11704 rmode = FPROUNDING_TIEAWAY; 11705 break; 11706 case 0x3a: /* FCVTPS */ 11707 rmode = FPROUNDING_POSINF; 11708 break; 11709 case 0x3b: /* FCVTZS */ 11710 rmode = FPROUNDING_ZERO; 11711 break; 11712 case 0x5a: /* FCVTNU */ 11713 rmode = FPROUNDING_TIEEVEN; 11714 break; 11715 case 0x5b: /* FCVTMU */ 11716 rmode = FPROUNDING_NEGINF; 11717 break; 11718 case 0x5c: /* FCVTAU */ 11719 rmode = FPROUNDING_TIEAWAY; 11720 break; 11721 case 0x7a: /* FCVTPU */ 11722 rmode = FPROUNDING_POSINF; 11723 break; 11724 case 0x7b: /* FCVTZU */ 11725 rmode = FPROUNDING_ZERO; 11726 break; 11727 case 0x2f: /* FABS */ 11728 case 0x6f: /* FNEG */ 11729 need_fpst = false; 11730 break; 11731 case 0x7d: /* FRSQRTE */ 11732 case 0x7f: /* FSQRT (vector) */ 11733 break; 11734 default: 11735 unallocated_encoding(s); 11736 return; 11737 } 11738 11739 11740 /* Check additional constraints for the scalar encoding */ 11741 if (is_scalar) { 11742 if (!is_q) { 11743 unallocated_encoding(s); 11744 return; 11745 } 11746 /* FRINTxx is only in the vector form */ 11747 if (only_in_vector) { 11748 unallocated_encoding(s); 11749 return; 11750 } 11751 } 11752 11753 if (!fp_access_check(s)) { 11754 return; 11755 } 11756 11757 if (rmode >= 0 || need_fpst) { 11758 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 11759 } 11760 11761 if (rmode >= 0) { 11762 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11763 } 11764 11765 if (is_scalar) { 11766 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 11767 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11768 11769 switch (fpop) { 11770 case 0x1a: /* FCVTNS */ 11771 case 0x1b: /* FCVTMS */ 11772 case 0x1c: /* FCVTAS */ 11773 case 0x3a: /* FCVTPS */ 11774 case 0x3b: /* FCVTZS */ 11775 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11776 break; 11777 case 0x3d: /* FRECPE */ 11778 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 11779 break; 11780 case 0x3f: /* FRECPX */ 11781 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 11782 break; 11783 case 0x5a: /* FCVTNU */ 11784 case 0x5b: /* FCVTMU */ 11785 case 0x5c: /* FCVTAU */ 11786 case 0x7a: /* FCVTPU */ 11787 case 0x7b: /* FCVTZU */ 11788 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 11789 break; 11790 case 0x6f: /* FNEG */ 11791 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 11792 break; 11793 case 0x7d: /* FRSQRTE */ 11794 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 11795 break; 11796 default: 11797 g_assert_not_reached(); 11798 } 11799 11800 /* limit any sign extension going on */ 11801 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 11802 write_fp_sreg(s, rd, tcg_res); 11803 } else { 11804 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 11805 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11806 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11807 11808 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 11809 11810 switch (fpop) { 11811 case 0x1a: /* FCVTNS */ 11812 case 0x1b: /* FCVTMS */ 11813 case 0x1c: /* FCVTAS */ 11814 case 0x3a: /* FCVTPS */ 11815 case 0x3b: /* FCVTZS */ 11816 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11817 break; 11818 case 0x3d: /* FRECPE */ 11819 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 11820 break; 11821 case 0x5a: /* FCVTNU */ 11822 case 0x5b: /* FCVTMU */ 11823 case 0x5c: /* FCVTAU */ 11824 case 0x7a: /* FCVTPU */ 11825 case 0x7b: /* FCVTZU */ 11826 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 11827 break; 11828 case 0x18: /* FRINTN */ 11829 case 0x19: /* FRINTM */ 11830 case 0x38: /* FRINTP */ 11831 case 0x39: /* FRINTZ */ 11832 case 0x58: /* FRINTA */ 11833 case 0x79: /* FRINTI */ 11834 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 11835 break; 11836 case 0x59: /* FRINTX */ 11837 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 11838 break; 11839 case 0x2f: /* FABS */ 11840 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 11841 break; 11842 case 0x6f: /* FNEG */ 11843 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 11844 break; 11845 case 0x7d: /* FRSQRTE */ 11846 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 11847 break; 11848 case 0x7f: /* FSQRT */ 11849 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 11850 break; 11851 default: 11852 g_assert_not_reached(); 11853 } 11854 11855 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11856 } 11857 11858 clear_vec_high(s, is_q, rd); 11859 } 11860 11861 if (tcg_rmode) { 11862 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 11863 } 11864 } 11865 11866 /* C3.6 Data processing - SIMD, inc Crypto 11867 * 11868 * As the decode gets a little complex we are using a table based 11869 * approach for this part of the decode. 11870 */ 11871 static const AArch64DecodeTable data_proc_simd[] = { 11872 /* pattern , mask , fn */ 11873 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 11874 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 11875 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 11876 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 11877 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 11878 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 11879 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 11880 { 0x2e000000, 0xbf208400, disas_simd_ext }, 11881 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 11882 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 11883 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 11884 { 0x00000000, 0x00000000, NULL } 11885 }; 11886 11887 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 11888 { 11889 /* Note that this is called with all non-FP cases from 11890 * table C3-6 so it must UNDEF for entries not specifically 11891 * allocated to instructions in that table. 11892 */ 11893 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 11894 if (fn) { 11895 fn(s, insn); 11896 } else { 11897 unallocated_encoding(s); 11898 } 11899 } 11900 11901 /* C3.6 Data processing - SIMD and floating point */ 11902 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 11903 { 11904 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 11905 disas_data_proc_fp(s, insn); 11906 } else { 11907 /* SIMD, including crypto */ 11908 disas_data_proc_simd(s, insn); 11909 } 11910 } 11911 11912 static bool trans_OK(DisasContext *s, arg_OK *a) 11913 { 11914 return true; 11915 } 11916 11917 static bool trans_FAIL(DisasContext *s, arg_OK *a) 11918 { 11919 s->is_nonstreaming = true; 11920 return true; 11921 } 11922 11923 /** 11924 * btype_destination_ok: 11925 * @insn: The instruction at the branch destination 11926 * @bt: SCTLR_ELx.BT 11927 * @btype: PSTATE.BTYPE, and is non-zero 11928 * 11929 * On a guarded page, there are a limited number of insns 11930 * that may be present at the branch target: 11931 * - branch target identifiers, 11932 * - paciasp, pacibsp, 11933 * - BRK insn 11934 * - HLT insn 11935 * Anything else causes a Branch Target Exception. 11936 * 11937 * Return true if the branch is compatible, false to raise BTITRAP. 11938 */ 11939 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 11940 { 11941 if ((insn & 0xfffff01fu) == 0xd503201fu) { 11942 /* HINT space */ 11943 switch (extract32(insn, 5, 7)) { 11944 case 0b011001: /* PACIASP */ 11945 case 0b011011: /* PACIBSP */ 11946 /* 11947 * If SCTLR_ELx.BT, then PACI*SP are not compatible 11948 * with btype == 3. Otherwise all btype are ok. 11949 */ 11950 return !bt || btype != 3; 11951 case 0b100000: /* BTI */ 11952 /* Not compatible with any btype. */ 11953 return false; 11954 case 0b100010: /* BTI c */ 11955 /* Not compatible with btype == 3 */ 11956 return btype != 3; 11957 case 0b100100: /* BTI j */ 11958 /* Not compatible with btype == 2 */ 11959 return btype != 2; 11960 case 0b100110: /* BTI jc */ 11961 /* Compatible with any btype. */ 11962 return true; 11963 } 11964 } else { 11965 switch (insn & 0xffe0001fu) { 11966 case 0xd4200000u: /* BRK */ 11967 case 0xd4400000u: /* HLT */ 11968 /* Give priority to the breakpoint exception. */ 11969 return true; 11970 } 11971 } 11972 return false; 11973 } 11974 11975 /* C3.1 A64 instruction index by encoding */ 11976 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 11977 { 11978 switch (extract32(insn, 25, 4)) { 11979 case 0x5: 11980 case 0xd: /* Data processing - register */ 11981 disas_data_proc_reg(s, insn); 11982 break; 11983 case 0x7: 11984 case 0xf: /* Data processing - SIMD and floating point */ 11985 disas_data_proc_simd_fp(s, insn); 11986 break; 11987 default: 11988 unallocated_encoding(s); 11989 break; 11990 } 11991 } 11992 11993 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 11994 CPUState *cpu) 11995 { 11996 DisasContext *dc = container_of(dcbase, DisasContext, base); 11997 CPUARMState *env = cpu_env(cpu); 11998 ARMCPU *arm_cpu = env_archcpu(env); 11999 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 12000 int bound, core_mmu_idx; 12001 12002 dc->isar = &arm_cpu->isar; 12003 dc->condjmp = 0; 12004 dc->pc_save = dc->base.pc_first; 12005 dc->aarch64 = true; 12006 dc->thumb = false; 12007 dc->sctlr_b = 0; 12008 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 12009 dc->condexec_mask = 0; 12010 dc->condexec_cond = 0; 12011 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 12012 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 12013 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 12014 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 12015 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 12016 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx, false); 12017 #if !defined(CONFIG_USER_ONLY) 12018 dc->user = (dc->current_el == 0); 12019 #endif 12020 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 12021 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 12022 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 12023 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 12024 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 12025 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 12026 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 12027 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 12028 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 12029 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 12030 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 12031 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 12032 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 12033 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 12034 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 12035 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 12036 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 12037 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 12038 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 12039 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 12040 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 12041 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 12042 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 12043 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 12044 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 12045 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 12046 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 12047 dc->vec_len = 0; 12048 dc->vec_stride = 0; 12049 dc->cp_regs = arm_cpu->cp_regs; 12050 dc->features = env->features; 12051 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 12052 dc->gm_blocksize = arm_cpu->gm_blocksize; 12053 12054 #ifdef CONFIG_USER_ONLY 12055 /* In sve_probe_page, we assume TBI is enabled. */ 12056 tcg_debug_assert(dc->tbid & 1); 12057 #endif 12058 12059 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 12060 12061 /* Single step state. The code-generation logic here is: 12062 * SS_ACTIVE == 0: 12063 * generate code with no special handling for single-stepping (except 12064 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 12065 * this happens anyway because those changes are all system register or 12066 * PSTATE writes). 12067 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 12068 * emit code for one insn 12069 * emit code to clear PSTATE.SS 12070 * emit code to generate software step exception for completed step 12071 * end TB (as usual for having generated an exception) 12072 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 12073 * emit code to generate a software step exception 12074 * end the TB 12075 */ 12076 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 12077 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 12078 dc->is_ldex = false; 12079 12080 /* Bound the number of insns to execute to those left on the page. */ 12081 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 12082 12083 /* If architectural single step active, limit to 1. */ 12084 if (dc->ss_active) { 12085 bound = 1; 12086 } 12087 dc->base.max_insns = MIN(dc->base.max_insns, bound); 12088 } 12089 12090 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 12091 { 12092 } 12093 12094 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 12095 { 12096 DisasContext *dc = container_of(dcbase, DisasContext, base); 12097 target_ulong pc_arg = dc->base.pc_next; 12098 12099 if (tb_cflags(dcbase->tb) & CF_PCREL) { 12100 pc_arg &= ~TARGET_PAGE_MASK; 12101 } 12102 tcg_gen_insn_start(pc_arg, 0, 0); 12103 dc->insn_start_updated = false; 12104 } 12105 12106 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 12107 { 12108 DisasContext *s = container_of(dcbase, DisasContext, base); 12109 CPUARMState *env = cpu_env(cpu); 12110 uint64_t pc = s->base.pc_next; 12111 uint32_t insn; 12112 12113 /* Singlestep exceptions have the highest priority. */ 12114 if (s->ss_active && !s->pstate_ss) { 12115 /* Singlestep state is Active-pending. 12116 * If we're in this state at the start of a TB then either 12117 * a) we just took an exception to an EL which is being debugged 12118 * and this is the first insn in the exception handler 12119 * b) debug exceptions were masked and we just unmasked them 12120 * without changing EL (eg by clearing PSTATE.D) 12121 * In either case we're going to take a swstep exception in the 12122 * "did not step an insn" case, and so the syndrome ISV and EX 12123 * bits should be zero. 12124 */ 12125 assert(s->base.num_insns == 1); 12126 gen_swstep_exception(s, 0, 0); 12127 s->base.is_jmp = DISAS_NORETURN; 12128 s->base.pc_next = pc + 4; 12129 return; 12130 } 12131 12132 if (pc & 3) { 12133 /* 12134 * PC alignment fault. This has priority over the instruction abort 12135 * that we would receive from a translation fault via arm_ldl_code. 12136 * This should only be possible after an indirect branch, at the 12137 * start of the TB. 12138 */ 12139 assert(s->base.num_insns == 1); 12140 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 12141 s->base.is_jmp = DISAS_NORETURN; 12142 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 12143 return; 12144 } 12145 12146 s->pc_curr = pc; 12147 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 12148 s->insn = insn; 12149 s->base.pc_next = pc + 4; 12150 12151 s->fp_access_checked = false; 12152 s->sve_access_checked = false; 12153 12154 if (s->pstate_il) { 12155 /* 12156 * Illegal execution state. This has priority over BTI 12157 * exceptions, but comes after instruction abort exceptions. 12158 */ 12159 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 12160 return; 12161 } 12162 12163 if (dc_isar_feature(aa64_bti, s)) { 12164 if (s->base.num_insns == 1) { 12165 /* First insn can have btype set to non-zero. */ 12166 tcg_debug_assert(s->btype >= 0); 12167 12168 /* 12169 * Note that the Branch Target Exception has fairly high 12170 * priority -- below debugging exceptions but above most 12171 * everything else. This allows us to handle this now 12172 * instead of waiting until the insn is otherwise decoded. 12173 * 12174 * We can check all but the guarded page check here; 12175 * defer the latter to a helper. 12176 */ 12177 if (s->btype != 0 12178 && !btype_destination_ok(insn, s->bt, s->btype)) { 12179 gen_helper_guarded_page_check(tcg_env); 12180 } 12181 } else { 12182 /* Not the first insn: btype must be 0. */ 12183 tcg_debug_assert(s->btype == 0); 12184 } 12185 } 12186 12187 s->is_nonstreaming = false; 12188 if (s->sme_trap_nonstreaming) { 12189 disas_sme_fa64(s, insn); 12190 } 12191 12192 if (!disas_a64(s, insn) && 12193 !disas_sme(s, insn) && 12194 !disas_sve(s, insn)) { 12195 disas_a64_legacy(s, insn); 12196 } 12197 12198 /* 12199 * After execution of most insns, btype is reset to 0. 12200 * Note that we set btype == -1 when the insn sets btype. 12201 */ 12202 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 12203 reset_btype(s); 12204 } 12205 } 12206 12207 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 12208 { 12209 DisasContext *dc = container_of(dcbase, DisasContext, base); 12210 12211 if (unlikely(dc->ss_active)) { 12212 /* Note that this means single stepping WFI doesn't halt the CPU. 12213 * For conditional branch insns this is harmless unreachable code as 12214 * gen_goto_tb() has already handled emitting the debug exception 12215 * (and thus a tb-jump is not possible when singlestepping). 12216 */ 12217 switch (dc->base.is_jmp) { 12218 default: 12219 gen_a64_update_pc(dc, 4); 12220 /* fall through */ 12221 case DISAS_EXIT: 12222 case DISAS_JUMP: 12223 gen_step_complete_exception(dc); 12224 break; 12225 case DISAS_NORETURN: 12226 break; 12227 } 12228 } else { 12229 switch (dc->base.is_jmp) { 12230 case DISAS_NEXT: 12231 case DISAS_TOO_MANY: 12232 gen_goto_tb(dc, 1, 4); 12233 break; 12234 default: 12235 case DISAS_UPDATE_EXIT: 12236 gen_a64_update_pc(dc, 4); 12237 /* fall through */ 12238 case DISAS_EXIT: 12239 tcg_gen_exit_tb(NULL, 0); 12240 break; 12241 case DISAS_UPDATE_NOCHAIN: 12242 gen_a64_update_pc(dc, 4); 12243 /* fall through */ 12244 case DISAS_JUMP: 12245 tcg_gen_lookup_and_goto_ptr(); 12246 break; 12247 case DISAS_NORETURN: 12248 case DISAS_SWI: 12249 break; 12250 case DISAS_WFE: 12251 gen_a64_update_pc(dc, 4); 12252 gen_helper_wfe(tcg_env); 12253 break; 12254 case DISAS_YIELD: 12255 gen_a64_update_pc(dc, 4); 12256 gen_helper_yield(tcg_env); 12257 break; 12258 case DISAS_WFI: 12259 /* 12260 * This is a special case because we don't want to just halt 12261 * the CPU if trying to debug across a WFI. 12262 */ 12263 gen_a64_update_pc(dc, 4); 12264 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 12265 /* 12266 * The helper doesn't necessarily throw an exception, but we 12267 * must go back to the main loop to check for interrupts anyway. 12268 */ 12269 tcg_gen_exit_tb(NULL, 0); 12270 break; 12271 } 12272 } 12273 } 12274 12275 const TranslatorOps aarch64_translator_ops = { 12276 .init_disas_context = aarch64_tr_init_disas_context, 12277 .tb_start = aarch64_tr_tb_start, 12278 .insn_start = aarch64_tr_insn_start, 12279 .translate_insn = aarch64_tr_translate_insn, 12280 .tb_stop = aarch64_tr_tb_stop, 12281 }; 12282