1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg-op.h" 24 #include "tcg/tcg-op-gvec.h" 25 #include "qemu/log.h" 26 #include "arm_ldst.h" 27 #include "translate.h" 28 #include "internals.h" 29 #include "qemu/host-utils.h" 30 #include "semihosting/semihost.h" 31 #include "exec/gen-icount.h" 32 #include "exec/helper-proto.h" 33 #include "exec/helper-gen.h" 34 #include "exec/log.h" 35 #include "cpregs.h" 36 #include "translate-a64.h" 37 #include "qemu/atomic128.h" 38 39 static TCGv_i64 cpu_X[32]; 40 static TCGv_i64 cpu_pc; 41 42 /* Load/store exclusive handling */ 43 static TCGv_i64 cpu_exclusive_high; 44 45 static const char *regnames[] = { 46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 50 }; 51 52 enum a64_shift_type { 53 A64_SHIFT_TYPE_LSL = 0, 54 A64_SHIFT_TYPE_LSR = 1, 55 A64_SHIFT_TYPE_ASR = 2, 56 A64_SHIFT_TYPE_ROR = 3 57 }; 58 59 /* Table based decoder typedefs - used when the relevant bits for decode 60 * are too awkwardly scattered across the instruction (eg SIMD). 61 */ 62 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 63 64 typedef struct AArch64DecodeTable { 65 uint32_t pattern; 66 uint32_t mask; 67 AArch64DecodeFn *disas_fn; 68 } AArch64DecodeTable; 69 70 /* initialize TCG globals. */ 71 void a64_translate_init(void) 72 { 73 int i; 74 75 cpu_pc = tcg_global_mem_new_i64(cpu_env, 76 offsetof(CPUARMState, pc), 77 "pc"); 78 for (i = 0; i < 32; i++) { 79 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 80 offsetof(CPUARMState, xregs[i]), 81 regnames[i]); 82 } 83 84 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 85 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 86 } 87 88 /* 89 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 90 */ 91 static int get_a64_user_mem_index(DisasContext *s) 92 { 93 /* 94 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 95 * which is the usual mmu_idx for this cpu state. 96 */ 97 ARMMMUIdx useridx = s->mmu_idx; 98 99 if (s->unpriv) { 100 /* 101 * We have pre-computed the condition for AccType_UNPRIV. 102 * Therefore we should never get here with a mmu_idx for 103 * which we do not know the corresponding user mmu_idx. 104 */ 105 switch (useridx) { 106 case ARMMMUIdx_E10_1: 107 case ARMMMUIdx_E10_1_PAN: 108 useridx = ARMMMUIdx_E10_0; 109 break; 110 case ARMMMUIdx_E20_2: 111 case ARMMMUIdx_E20_2_PAN: 112 useridx = ARMMMUIdx_E20_0; 113 break; 114 default: 115 g_assert_not_reached(); 116 } 117 } 118 return arm_to_core_mmu_idx(useridx); 119 } 120 121 static void set_btype_raw(int val) 122 { 123 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 124 offsetof(CPUARMState, btype)); 125 } 126 127 static void set_btype(DisasContext *s, int val) 128 { 129 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 130 tcg_debug_assert(val >= 1 && val <= 3); 131 set_btype_raw(val); 132 s->btype = -1; 133 } 134 135 static void reset_btype(DisasContext *s) 136 { 137 if (s->btype != 0) { 138 set_btype_raw(0); 139 s->btype = 0; 140 } 141 } 142 143 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 144 { 145 assert(s->pc_save != -1); 146 if (tb_cflags(s->base.tb) & CF_PCREL) { 147 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 148 } else { 149 tcg_gen_movi_i64(dest, s->pc_curr + diff); 150 } 151 } 152 153 void gen_a64_update_pc(DisasContext *s, target_long diff) 154 { 155 gen_pc_plus_diff(s, cpu_pc, diff); 156 s->pc_save = s->pc_curr + diff; 157 } 158 159 /* 160 * Handle Top Byte Ignore (TBI) bits. 161 * 162 * If address tagging is enabled via the TCR TBI bits: 163 * + for EL2 and EL3 there is only one TBI bit, and if it is set 164 * then the address is zero-extended, clearing bits [63:56] 165 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 166 * and TBI1 controls addressses with bit 55 == 1. 167 * If the appropriate TBI bit is set for the address then 168 * the address is sign-extended from bit 55 into bits [63:56] 169 * 170 * Here We have concatenated TBI{1,0} into tbi. 171 */ 172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 173 TCGv_i64 src, int tbi) 174 { 175 if (tbi == 0) { 176 /* Load unmodified address */ 177 tcg_gen_mov_i64(dst, src); 178 } else if (!regime_has_2_ranges(s->mmu_idx)) { 179 /* Force tag byte to all zero */ 180 tcg_gen_extract_i64(dst, src, 0, 56); 181 } else { 182 /* Sign-extend from bit 55. */ 183 tcg_gen_sextract_i64(dst, src, 0, 56); 184 185 switch (tbi) { 186 case 1: 187 /* tbi0 but !tbi1: only use the extension if positive */ 188 tcg_gen_and_i64(dst, dst, src); 189 break; 190 case 2: 191 /* !tbi0 but tbi1: only use the extension if negative */ 192 tcg_gen_or_i64(dst, dst, src); 193 break; 194 case 3: 195 /* tbi0 and tbi1: always use the extension */ 196 break; 197 default: 198 g_assert_not_reached(); 199 } 200 } 201 } 202 203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 204 { 205 /* 206 * If address tagging is enabled for instructions via the TCR TBI bits, 207 * then loading an address into the PC will clear out any tag. 208 */ 209 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 210 s->pc_save = -1; 211 } 212 213 /* 214 * Handle MTE and/or TBI. 215 * 216 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 217 * for the tag to be present in the FAR_ELx register. But for user-only 218 * mode we do not have a TLB with which to implement this, so we must 219 * remove the top byte now. 220 * 221 * Always return a fresh temporary that we can increment independently 222 * of the write-back address. 223 */ 224 225 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 226 { 227 TCGv_i64 clean = tcg_temp_new_i64(); 228 #ifdef CONFIG_USER_ONLY 229 gen_top_byte_ignore(s, clean, addr, s->tbid); 230 #else 231 tcg_gen_mov_i64(clean, addr); 232 #endif 233 return clean; 234 } 235 236 /* Insert a zero tag into src, with the result at dst. */ 237 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 238 { 239 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 240 } 241 242 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 243 MMUAccessType acc, int log2_size) 244 { 245 gen_helper_probe_access(cpu_env, ptr, 246 tcg_constant_i32(acc), 247 tcg_constant_i32(get_mem_index(s)), 248 tcg_constant_i32(1 << log2_size)); 249 } 250 251 /* 252 * For MTE, check a single logical or atomic access. This probes a single 253 * address, the exact one specified. The size and alignment of the access 254 * is not relevant to MTE, per se, but watchpoints do require the size, 255 * and we want to recognize those before making any other changes to state. 256 */ 257 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 258 bool is_write, bool tag_checked, 259 int log2_size, bool is_unpriv, 260 int core_idx) 261 { 262 if (tag_checked && s->mte_active[is_unpriv]) { 263 TCGv_i64 ret; 264 int desc = 0; 265 266 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 267 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 268 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 269 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 270 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 271 272 ret = tcg_temp_new_i64(); 273 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 274 275 return ret; 276 } 277 return clean_data_tbi(s, addr); 278 } 279 280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 281 bool tag_checked, int log2_size) 282 { 283 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 284 false, get_mem_index(s)); 285 } 286 287 /* 288 * For MTE, check multiple logical sequential accesses. 289 */ 290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 291 bool tag_checked, int size) 292 { 293 if (tag_checked && s->mte_active[0]) { 294 TCGv_i64 ret; 295 int desc = 0; 296 297 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 298 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 299 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 300 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 301 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 302 303 ret = tcg_temp_new_i64(); 304 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 305 306 return ret; 307 } 308 return clean_data_tbi(s, addr); 309 } 310 311 typedef struct DisasCompare64 { 312 TCGCond cond; 313 TCGv_i64 value; 314 } DisasCompare64; 315 316 static void a64_test_cc(DisasCompare64 *c64, int cc) 317 { 318 DisasCompare c32; 319 320 arm_test_cc(&c32, cc); 321 322 /* 323 * Sign-extend the 32-bit value so that the GE/LT comparisons work 324 * properly. The NE/EQ comparisons are also fine with this choice. 325 */ 326 c64->cond = c32.cond; 327 c64->value = tcg_temp_new_i64(); 328 tcg_gen_ext_i32_i64(c64->value, c32.value); 329 } 330 331 static void gen_rebuild_hflags(DisasContext *s) 332 { 333 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 334 } 335 336 static void gen_exception_internal(int excp) 337 { 338 assert(excp_is_internal(excp)); 339 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 340 } 341 342 static void gen_exception_internal_insn(DisasContext *s, int excp) 343 { 344 gen_a64_update_pc(s, 0); 345 gen_exception_internal(excp); 346 s->base.is_jmp = DISAS_NORETURN; 347 } 348 349 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 350 { 351 gen_a64_update_pc(s, 0); 352 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 353 s->base.is_jmp = DISAS_NORETURN; 354 } 355 356 static void gen_step_complete_exception(DisasContext *s) 357 { 358 /* We just completed step of an insn. Move from Active-not-pending 359 * to Active-pending, and then also take the swstep exception. 360 * This corresponds to making the (IMPDEF) choice to prioritize 361 * swstep exceptions over asynchronous exceptions taken to an exception 362 * level where debug is disabled. This choice has the advantage that 363 * we do not need to maintain internal state corresponding to the 364 * ISV/EX syndrome bits between completion of the step and generation 365 * of the exception, and our syndrome information is always correct. 366 */ 367 gen_ss_advance(s); 368 gen_swstep_exception(s, 1, s->is_ldex); 369 s->base.is_jmp = DISAS_NORETURN; 370 } 371 372 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 373 { 374 if (s->ss_active) { 375 return false; 376 } 377 return translator_use_goto_tb(&s->base, dest); 378 } 379 380 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 381 { 382 if (use_goto_tb(s, s->pc_curr + diff)) { 383 /* 384 * For pcrel, the pc must always be up-to-date on entry to 385 * the linked TB, so that it can use simple additions for all 386 * further adjustments. For !pcrel, the linked TB is compiled 387 * to know its full virtual address, so we can delay the 388 * update to pc to the unlinked path. A long chain of links 389 * can thus avoid many updates to the PC. 390 */ 391 if (tb_cflags(s->base.tb) & CF_PCREL) { 392 gen_a64_update_pc(s, diff); 393 tcg_gen_goto_tb(n); 394 } else { 395 tcg_gen_goto_tb(n); 396 gen_a64_update_pc(s, diff); 397 } 398 tcg_gen_exit_tb(s->base.tb, n); 399 s->base.is_jmp = DISAS_NORETURN; 400 } else { 401 gen_a64_update_pc(s, diff); 402 if (s->ss_active) { 403 gen_step_complete_exception(s); 404 } else { 405 tcg_gen_lookup_and_goto_ptr(); 406 s->base.is_jmp = DISAS_NORETURN; 407 } 408 } 409 } 410 411 /* 412 * Register access functions 413 * 414 * These functions are used for directly accessing a register in where 415 * changes to the final register value are likely to be made. If you 416 * need to use a register for temporary calculation (e.g. index type 417 * operations) use the read_* form. 418 * 419 * B1.2.1 Register mappings 420 * 421 * In instruction register encoding 31 can refer to ZR (zero register) or 422 * the SP (stack pointer) depending on context. In QEMU's case we map SP 423 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 424 * This is the point of the _sp forms. 425 */ 426 TCGv_i64 cpu_reg(DisasContext *s, int reg) 427 { 428 if (reg == 31) { 429 TCGv_i64 t = tcg_temp_new_i64(); 430 tcg_gen_movi_i64(t, 0); 431 return t; 432 } else { 433 return cpu_X[reg]; 434 } 435 } 436 437 /* register access for when 31 == SP */ 438 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 439 { 440 return cpu_X[reg]; 441 } 442 443 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 444 * representing the register contents. This TCGv is an auto-freed 445 * temporary so it need not be explicitly freed, and may be modified. 446 */ 447 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 448 { 449 TCGv_i64 v = tcg_temp_new_i64(); 450 if (reg != 31) { 451 if (sf) { 452 tcg_gen_mov_i64(v, cpu_X[reg]); 453 } else { 454 tcg_gen_ext32u_i64(v, cpu_X[reg]); 455 } 456 } else { 457 tcg_gen_movi_i64(v, 0); 458 } 459 return v; 460 } 461 462 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 463 { 464 TCGv_i64 v = tcg_temp_new_i64(); 465 if (sf) { 466 tcg_gen_mov_i64(v, cpu_X[reg]); 467 } else { 468 tcg_gen_ext32u_i64(v, cpu_X[reg]); 469 } 470 return v; 471 } 472 473 /* Return the offset into CPUARMState of a slice (from 474 * the least significant end) of FP register Qn (ie 475 * Dn, Sn, Hn or Bn). 476 * (Note that this is not the same mapping as for A32; see cpu.h) 477 */ 478 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 479 { 480 return vec_reg_offset(s, regno, 0, size); 481 } 482 483 /* Offset of the high half of the 128 bit vector Qn */ 484 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 485 { 486 return vec_reg_offset(s, regno, 1, MO_64); 487 } 488 489 /* Convenience accessors for reading and writing single and double 490 * FP registers. Writing clears the upper parts of the associated 491 * 128 bit vector register, as required by the architecture. 492 * Note that unlike the GP register accessors, the values returned 493 * by the read functions must be manually freed. 494 */ 495 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 496 { 497 TCGv_i64 v = tcg_temp_new_i64(); 498 499 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 500 return v; 501 } 502 503 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 504 { 505 TCGv_i32 v = tcg_temp_new_i32(); 506 507 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 508 return v; 509 } 510 511 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 512 { 513 TCGv_i32 v = tcg_temp_new_i32(); 514 515 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 516 return v; 517 } 518 519 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 520 * If SVE is not enabled, then there are only 128 bits in the vector. 521 */ 522 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 523 { 524 unsigned ofs = fp_reg_offset(s, rd, MO_64); 525 unsigned vsz = vec_full_reg_size(s); 526 527 /* Nop move, with side effect of clearing the tail. */ 528 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 529 } 530 531 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 532 { 533 unsigned ofs = fp_reg_offset(s, reg, MO_64); 534 535 tcg_gen_st_i64(v, cpu_env, ofs); 536 clear_vec_high(s, false, reg); 537 } 538 539 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 540 { 541 TCGv_i64 tmp = tcg_temp_new_i64(); 542 543 tcg_gen_extu_i32_i64(tmp, v); 544 write_fp_dreg(s, reg, tmp); 545 } 546 547 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 548 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 549 GVecGen2Fn *gvec_fn, int vece) 550 { 551 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 552 is_q ? 16 : 8, vec_full_reg_size(s)); 553 } 554 555 /* Expand a 2-operand + immediate AdvSIMD vector operation using 556 * an expander function. 557 */ 558 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 559 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 560 { 561 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 562 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 563 } 564 565 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 566 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 567 GVecGen3Fn *gvec_fn, int vece) 568 { 569 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 570 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 571 } 572 573 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 574 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 575 int rx, GVecGen4Fn *gvec_fn, int vece) 576 { 577 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 578 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 579 is_q ? 16 : 8, vec_full_reg_size(s)); 580 } 581 582 /* Expand a 2-operand operation using an out-of-line helper. */ 583 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 584 int rn, int data, gen_helper_gvec_2 *fn) 585 { 586 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 587 vec_full_reg_offset(s, rn), 588 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 589 } 590 591 /* Expand a 3-operand operation using an out-of-line helper. */ 592 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 593 int rn, int rm, int data, gen_helper_gvec_3 *fn) 594 { 595 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 596 vec_full_reg_offset(s, rn), 597 vec_full_reg_offset(s, rm), 598 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 599 } 600 601 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 602 * an out-of-line helper. 603 */ 604 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 605 int rm, bool is_fp16, int data, 606 gen_helper_gvec_3_ptr *fn) 607 { 608 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 609 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 610 vec_full_reg_offset(s, rn), 611 vec_full_reg_offset(s, rm), fpst, 612 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 613 } 614 615 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 616 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 617 int rm, gen_helper_gvec_3_ptr *fn) 618 { 619 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 620 621 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 622 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 623 vec_full_reg_offset(s, rn), 624 vec_full_reg_offset(s, rm), qc_ptr, 625 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 626 } 627 628 /* Expand a 4-operand operation using an out-of-line helper. */ 629 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 630 int rm, int ra, int data, gen_helper_gvec_4 *fn) 631 { 632 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 633 vec_full_reg_offset(s, rn), 634 vec_full_reg_offset(s, rm), 635 vec_full_reg_offset(s, ra), 636 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 637 } 638 639 /* 640 * Expand a 4-operand + fpstatus pointer + simd data value operation using 641 * an out-of-line helper. 642 */ 643 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 644 int rm, int ra, bool is_fp16, int data, 645 gen_helper_gvec_4_ptr *fn) 646 { 647 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 648 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 649 vec_full_reg_offset(s, rn), 650 vec_full_reg_offset(s, rm), 651 vec_full_reg_offset(s, ra), fpst, 652 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 653 } 654 655 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 656 * than the 32 bit equivalent. 657 */ 658 static inline void gen_set_NZ64(TCGv_i64 result) 659 { 660 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 661 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 662 } 663 664 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 665 static inline void gen_logic_CC(int sf, TCGv_i64 result) 666 { 667 if (sf) { 668 gen_set_NZ64(result); 669 } else { 670 tcg_gen_extrl_i64_i32(cpu_ZF, result); 671 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 672 } 673 tcg_gen_movi_i32(cpu_CF, 0); 674 tcg_gen_movi_i32(cpu_VF, 0); 675 } 676 677 /* dest = T0 + T1; compute C, N, V and Z flags */ 678 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 679 { 680 if (sf) { 681 TCGv_i64 result, flag, tmp; 682 result = tcg_temp_new_i64(); 683 flag = tcg_temp_new_i64(); 684 tmp = tcg_temp_new_i64(); 685 686 tcg_gen_movi_i64(tmp, 0); 687 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 688 689 tcg_gen_extrl_i64_i32(cpu_CF, flag); 690 691 gen_set_NZ64(result); 692 693 tcg_gen_xor_i64(flag, result, t0); 694 tcg_gen_xor_i64(tmp, t0, t1); 695 tcg_gen_andc_i64(flag, flag, tmp); 696 tcg_gen_extrh_i64_i32(cpu_VF, flag); 697 698 tcg_gen_mov_i64(dest, result); 699 } else { 700 /* 32 bit arithmetic */ 701 TCGv_i32 t0_32 = tcg_temp_new_i32(); 702 TCGv_i32 t1_32 = tcg_temp_new_i32(); 703 TCGv_i32 tmp = tcg_temp_new_i32(); 704 705 tcg_gen_movi_i32(tmp, 0); 706 tcg_gen_extrl_i64_i32(t0_32, t0); 707 tcg_gen_extrl_i64_i32(t1_32, t1); 708 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 709 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 710 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 711 tcg_gen_xor_i32(tmp, t0_32, t1_32); 712 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 713 tcg_gen_extu_i32_i64(dest, cpu_NF); 714 } 715 } 716 717 /* dest = T0 - T1; compute C, N, V and Z flags */ 718 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 719 { 720 if (sf) { 721 /* 64 bit arithmetic */ 722 TCGv_i64 result, flag, tmp; 723 724 result = tcg_temp_new_i64(); 725 flag = tcg_temp_new_i64(); 726 tcg_gen_sub_i64(result, t0, t1); 727 728 gen_set_NZ64(result); 729 730 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 731 tcg_gen_extrl_i64_i32(cpu_CF, flag); 732 733 tcg_gen_xor_i64(flag, result, t0); 734 tmp = tcg_temp_new_i64(); 735 tcg_gen_xor_i64(tmp, t0, t1); 736 tcg_gen_and_i64(flag, flag, tmp); 737 tcg_gen_extrh_i64_i32(cpu_VF, flag); 738 tcg_gen_mov_i64(dest, result); 739 } else { 740 /* 32 bit arithmetic */ 741 TCGv_i32 t0_32 = tcg_temp_new_i32(); 742 TCGv_i32 t1_32 = tcg_temp_new_i32(); 743 TCGv_i32 tmp; 744 745 tcg_gen_extrl_i64_i32(t0_32, t0); 746 tcg_gen_extrl_i64_i32(t1_32, t1); 747 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 748 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 749 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 750 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 751 tmp = tcg_temp_new_i32(); 752 tcg_gen_xor_i32(tmp, t0_32, t1_32); 753 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 754 tcg_gen_extu_i32_i64(dest, cpu_NF); 755 } 756 } 757 758 /* dest = T0 + T1 + CF; do not compute flags. */ 759 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 760 { 761 TCGv_i64 flag = tcg_temp_new_i64(); 762 tcg_gen_extu_i32_i64(flag, cpu_CF); 763 tcg_gen_add_i64(dest, t0, t1); 764 tcg_gen_add_i64(dest, dest, flag); 765 766 if (!sf) { 767 tcg_gen_ext32u_i64(dest, dest); 768 } 769 } 770 771 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 772 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 773 { 774 if (sf) { 775 TCGv_i64 result = tcg_temp_new_i64(); 776 TCGv_i64 cf_64 = tcg_temp_new_i64(); 777 TCGv_i64 vf_64 = tcg_temp_new_i64(); 778 TCGv_i64 tmp = tcg_temp_new_i64(); 779 TCGv_i64 zero = tcg_constant_i64(0); 780 781 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 782 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 783 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 784 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 785 gen_set_NZ64(result); 786 787 tcg_gen_xor_i64(vf_64, result, t0); 788 tcg_gen_xor_i64(tmp, t0, t1); 789 tcg_gen_andc_i64(vf_64, vf_64, tmp); 790 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 791 792 tcg_gen_mov_i64(dest, result); 793 } else { 794 TCGv_i32 t0_32 = tcg_temp_new_i32(); 795 TCGv_i32 t1_32 = tcg_temp_new_i32(); 796 TCGv_i32 tmp = tcg_temp_new_i32(); 797 TCGv_i32 zero = tcg_constant_i32(0); 798 799 tcg_gen_extrl_i64_i32(t0_32, t0); 800 tcg_gen_extrl_i64_i32(t1_32, t1); 801 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 802 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 803 804 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 805 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 806 tcg_gen_xor_i32(tmp, t0_32, t1_32); 807 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 808 tcg_gen_extu_i32_i64(dest, cpu_NF); 809 } 810 } 811 812 /* 813 * Load/Store generators 814 */ 815 816 /* 817 * Store from GPR register to memory. 818 */ 819 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 820 TCGv_i64 tcg_addr, MemOp memop, int memidx, 821 bool iss_valid, 822 unsigned int iss_srt, 823 bool iss_sf, bool iss_ar) 824 { 825 memop = finalize_memop(s, memop); 826 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 827 828 if (iss_valid) { 829 uint32_t syn; 830 831 syn = syn_data_abort_with_iss(0, 832 (memop & MO_SIZE), 833 false, 834 iss_srt, 835 iss_sf, 836 iss_ar, 837 0, 0, 0, 0, 0, false); 838 disas_set_insn_syndrome(s, syn); 839 } 840 } 841 842 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 843 TCGv_i64 tcg_addr, MemOp memop, 844 bool iss_valid, 845 unsigned int iss_srt, 846 bool iss_sf, bool iss_ar) 847 { 848 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 849 iss_valid, iss_srt, iss_sf, iss_ar); 850 } 851 852 /* 853 * Load from memory to GPR register 854 */ 855 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 856 MemOp memop, bool extend, int memidx, 857 bool iss_valid, unsigned int iss_srt, 858 bool iss_sf, bool iss_ar) 859 { 860 memop = finalize_memop(s, memop); 861 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 862 863 if (extend && (memop & MO_SIGN)) { 864 g_assert((memop & MO_SIZE) <= MO_32); 865 tcg_gen_ext32u_i64(dest, dest); 866 } 867 868 if (iss_valid) { 869 uint32_t syn; 870 871 syn = syn_data_abort_with_iss(0, 872 (memop & MO_SIZE), 873 (memop & MO_SIGN) != 0, 874 iss_srt, 875 iss_sf, 876 iss_ar, 877 0, 0, 0, 0, 0, false); 878 disas_set_insn_syndrome(s, syn); 879 } 880 } 881 882 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 883 MemOp memop, bool extend, 884 bool iss_valid, unsigned int iss_srt, 885 bool iss_sf, bool iss_ar) 886 { 887 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 888 iss_valid, iss_srt, iss_sf, iss_ar); 889 } 890 891 /* 892 * Store from FP register to memory 893 */ 894 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 895 { 896 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 897 TCGv_i64 tmplo = tcg_temp_new_i64(); 898 MemOp mop; 899 900 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 901 902 if (size < 4) { 903 mop = finalize_memop(s, size); 904 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 905 } else { 906 bool be = s->be_data == MO_BE; 907 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); 908 TCGv_i64 tmphi = tcg_temp_new_i64(); 909 910 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 911 912 mop = s->be_data | MO_UQ; 913 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 914 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 915 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 916 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr, 917 get_mem_index(s), mop); 918 } 919 } 920 921 /* 922 * Load from memory to FP register 923 */ 924 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 925 { 926 /* This always zero-extends and writes to a full 128 bit wide vector */ 927 TCGv_i64 tmplo = tcg_temp_new_i64(); 928 TCGv_i64 tmphi = NULL; 929 MemOp mop; 930 931 if (size < 4) { 932 mop = finalize_memop(s, size); 933 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 934 } else { 935 bool be = s->be_data == MO_BE; 936 TCGv_i64 tcg_hiaddr; 937 938 tmphi = tcg_temp_new_i64(); 939 tcg_hiaddr = tcg_temp_new_i64(); 940 941 mop = s->be_data | MO_UQ; 942 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 943 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 944 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 945 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr, 946 get_mem_index(s), mop); 947 } 948 949 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 950 951 if (tmphi) { 952 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 953 } 954 clear_vec_high(s, tmphi != NULL, destidx); 955 } 956 957 /* 958 * Vector load/store helpers. 959 * 960 * The principal difference between this and a FP load is that we don't 961 * zero extend as we are filling a partial chunk of the vector register. 962 * These functions don't support 128 bit loads/stores, which would be 963 * normal load/store operations. 964 * 965 * The _i32 versions are useful when operating on 32 bit quantities 966 * (eg for floating point single or using Neon helper functions). 967 */ 968 969 /* Get value of an element within a vector register */ 970 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 971 int element, MemOp memop) 972 { 973 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 974 switch ((unsigned)memop) { 975 case MO_8: 976 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 977 break; 978 case MO_16: 979 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 980 break; 981 case MO_32: 982 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 983 break; 984 case MO_8|MO_SIGN: 985 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 986 break; 987 case MO_16|MO_SIGN: 988 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 989 break; 990 case MO_32|MO_SIGN: 991 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 992 break; 993 case MO_64: 994 case MO_64|MO_SIGN: 995 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 996 break; 997 default: 998 g_assert_not_reached(); 999 } 1000 } 1001 1002 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1003 int element, MemOp memop) 1004 { 1005 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1006 switch (memop) { 1007 case MO_8: 1008 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1009 break; 1010 case MO_16: 1011 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1012 break; 1013 case MO_8|MO_SIGN: 1014 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1015 break; 1016 case MO_16|MO_SIGN: 1017 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1018 break; 1019 case MO_32: 1020 case MO_32|MO_SIGN: 1021 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1022 break; 1023 default: 1024 g_assert_not_reached(); 1025 } 1026 } 1027 1028 /* Set value of an element within a vector register */ 1029 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1030 int element, MemOp memop) 1031 { 1032 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1033 switch (memop) { 1034 case MO_8: 1035 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1036 break; 1037 case MO_16: 1038 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1039 break; 1040 case MO_32: 1041 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1042 break; 1043 case MO_64: 1044 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1045 break; 1046 default: 1047 g_assert_not_reached(); 1048 } 1049 } 1050 1051 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1052 int destidx, int element, MemOp memop) 1053 { 1054 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1055 switch (memop) { 1056 case MO_8: 1057 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1058 break; 1059 case MO_16: 1060 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1061 break; 1062 case MO_32: 1063 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1064 break; 1065 default: 1066 g_assert_not_reached(); 1067 } 1068 } 1069 1070 /* Store from vector register to memory */ 1071 static void do_vec_st(DisasContext *s, int srcidx, int element, 1072 TCGv_i64 tcg_addr, MemOp mop) 1073 { 1074 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1075 1076 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1077 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1078 } 1079 1080 /* Load from memory to vector register */ 1081 static void do_vec_ld(DisasContext *s, int destidx, int element, 1082 TCGv_i64 tcg_addr, MemOp mop) 1083 { 1084 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1085 1086 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1087 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1088 } 1089 1090 /* Check that FP/Neon access is enabled. If it is, return 1091 * true. If not, emit code to generate an appropriate exception, 1092 * and return false; the caller should not emit any code for 1093 * the instruction. Note that this check must happen after all 1094 * unallocated-encoding checks (otherwise the syndrome information 1095 * for the resulting exception will be incorrect). 1096 */ 1097 static bool fp_access_check_only(DisasContext *s) 1098 { 1099 if (s->fp_excp_el) { 1100 assert(!s->fp_access_checked); 1101 s->fp_access_checked = true; 1102 1103 gen_exception_insn_el(s, 0, EXCP_UDEF, 1104 syn_fp_access_trap(1, 0xe, false, 0), 1105 s->fp_excp_el); 1106 return false; 1107 } 1108 s->fp_access_checked = true; 1109 return true; 1110 } 1111 1112 static bool fp_access_check(DisasContext *s) 1113 { 1114 if (!fp_access_check_only(s)) { 1115 return false; 1116 } 1117 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1118 gen_exception_insn(s, 0, EXCP_UDEF, 1119 syn_smetrap(SME_ET_Streaming, false)); 1120 return false; 1121 } 1122 return true; 1123 } 1124 1125 /* 1126 * Check that SVE access is enabled. If it is, return true. 1127 * If not, emit code to generate an appropriate exception and return false. 1128 * This function corresponds to CheckSVEEnabled(). 1129 */ 1130 bool sve_access_check(DisasContext *s) 1131 { 1132 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1133 assert(dc_isar_feature(aa64_sme, s)); 1134 if (!sme_sm_enabled_check(s)) { 1135 goto fail_exit; 1136 } 1137 } else if (s->sve_excp_el) { 1138 gen_exception_insn_el(s, 0, EXCP_UDEF, 1139 syn_sve_access_trap(), s->sve_excp_el); 1140 goto fail_exit; 1141 } 1142 s->sve_access_checked = true; 1143 return fp_access_check(s); 1144 1145 fail_exit: 1146 /* Assert that we only raise one exception per instruction. */ 1147 assert(!s->sve_access_checked); 1148 s->sve_access_checked = true; 1149 return false; 1150 } 1151 1152 /* 1153 * Check that SME access is enabled, raise an exception if not. 1154 * Note that this function corresponds to CheckSMEAccess and is 1155 * only used directly for cpregs. 1156 */ 1157 static bool sme_access_check(DisasContext *s) 1158 { 1159 if (s->sme_excp_el) { 1160 gen_exception_insn_el(s, 0, EXCP_UDEF, 1161 syn_smetrap(SME_ET_AccessTrap, false), 1162 s->sme_excp_el); 1163 return false; 1164 } 1165 return true; 1166 } 1167 1168 /* This function corresponds to CheckSMEEnabled. */ 1169 bool sme_enabled_check(DisasContext *s) 1170 { 1171 /* 1172 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1173 * to be zero when fp_excp_el has priority. This is because we need 1174 * sme_excp_el by itself for cpregs access checks. 1175 */ 1176 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1177 s->fp_access_checked = true; 1178 return sme_access_check(s); 1179 } 1180 return fp_access_check_only(s); 1181 } 1182 1183 /* Common subroutine for CheckSMEAnd*Enabled. */ 1184 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1185 { 1186 if (!sme_enabled_check(s)) { 1187 return false; 1188 } 1189 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1190 gen_exception_insn(s, 0, EXCP_UDEF, 1191 syn_smetrap(SME_ET_NotStreaming, false)); 1192 return false; 1193 } 1194 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1195 gen_exception_insn(s, 0, EXCP_UDEF, 1196 syn_smetrap(SME_ET_InactiveZA, false)); 1197 return false; 1198 } 1199 return true; 1200 } 1201 1202 /* 1203 * This utility function is for doing register extension with an 1204 * optional shift. You will likely want to pass a temporary for the 1205 * destination register. See DecodeRegExtend() in the ARM ARM. 1206 */ 1207 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1208 int option, unsigned int shift) 1209 { 1210 int extsize = extract32(option, 0, 2); 1211 bool is_signed = extract32(option, 2, 1); 1212 1213 if (is_signed) { 1214 switch (extsize) { 1215 case 0: 1216 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1217 break; 1218 case 1: 1219 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1220 break; 1221 case 2: 1222 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1223 break; 1224 case 3: 1225 tcg_gen_mov_i64(tcg_out, tcg_in); 1226 break; 1227 } 1228 } else { 1229 switch (extsize) { 1230 case 0: 1231 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1232 break; 1233 case 1: 1234 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1235 break; 1236 case 2: 1237 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1238 break; 1239 case 3: 1240 tcg_gen_mov_i64(tcg_out, tcg_in); 1241 break; 1242 } 1243 } 1244 1245 if (shift) { 1246 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1247 } 1248 } 1249 1250 static inline void gen_check_sp_alignment(DisasContext *s) 1251 { 1252 /* The AArch64 architecture mandates that (if enabled via PSTATE 1253 * or SCTLR bits) there is a check that SP is 16-aligned on every 1254 * SP-relative load or store (with an exception generated if it is not). 1255 * In line with general QEMU practice regarding misaligned accesses, 1256 * we omit these checks for the sake of guest program performance. 1257 * This function is provided as a hook so we can more easily add these 1258 * checks in future (possibly as a "favour catching guest program bugs 1259 * over speed" user selectable option). 1260 */ 1261 } 1262 1263 /* 1264 * This provides a simple table based table lookup decoder. It is 1265 * intended to be used when the relevant bits for decode are too 1266 * awkwardly placed and switch/if based logic would be confusing and 1267 * deeply nested. Since it's a linear search through the table, tables 1268 * should be kept small. 1269 * 1270 * It returns the first handler where insn & mask == pattern, or 1271 * NULL if there is no match. 1272 * The table is terminated by an empty mask (i.e. 0) 1273 */ 1274 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1275 uint32_t insn) 1276 { 1277 const AArch64DecodeTable *tptr = table; 1278 1279 while (tptr->mask) { 1280 if ((insn & tptr->mask) == tptr->pattern) { 1281 return tptr->disas_fn; 1282 } 1283 tptr++; 1284 } 1285 return NULL; 1286 } 1287 1288 /* 1289 * The instruction disassembly implemented here matches 1290 * the instruction encoding classifications in chapter C4 1291 * of the ARM Architecture Reference Manual (DDI0487B_a); 1292 * classification names and decode diagrams here should generally 1293 * match up with those in the manual. 1294 */ 1295 1296 /* Unconditional branch (immediate) 1297 * 31 30 26 25 0 1298 * +----+-----------+-------------------------------------+ 1299 * | op | 0 0 1 0 1 | imm26 | 1300 * +----+-----------+-------------------------------------+ 1301 */ 1302 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) 1303 { 1304 int64_t diff = sextract32(insn, 0, 26) * 4; 1305 1306 if (insn & (1U << 31)) { 1307 /* BL Branch with link */ 1308 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1309 } 1310 1311 /* B Branch / BL Branch with link */ 1312 reset_btype(s); 1313 gen_goto_tb(s, 0, diff); 1314 } 1315 1316 /* Compare and branch (immediate) 1317 * 31 30 25 24 23 5 4 0 1318 * +----+-------------+----+---------------------+--------+ 1319 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | 1320 * +----+-------------+----+---------------------+--------+ 1321 */ 1322 static void disas_comp_b_imm(DisasContext *s, uint32_t insn) 1323 { 1324 unsigned int sf, op, rt; 1325 int64_t diff; 1326 DisasLabel match; 1327 TCGv_i64 tcg_cmp; 1328 1329 sf = extract32(insn, 31, 1); 1330 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ 1331 rt = extract32(insn, 0, 5); 1332 diff = sextract32(insn, 5, 19) * 4; 1333 1334 tcg_cmp = read_cpu_reg(s, rt, sf); 1335 reset_btype(s); 1336 1337 match = gen_disas_label(s); 1338 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1339 tcg_cmp, 0, match.label); 1340 gen_goto_tb(s, 0, 4); 1341 set_disas_label(s, match); 1342 gen_goto_tb(s, 1, diff); 1343 } 1344 1345 /* Test and branch (immediate) 1346 * 31 30 25 24 23 19 18 5 4 0 1347 * +----+-------------+----+-------+-------------+------+ 1348 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | 1349 * +----+-------------+----+-------+-------------+------+ 1350 */ 1351 static void disas_test_b_imm(DisasContext *s, uint32_t insn) 1352 { 1353 unsigned int bit_pos, op, rt; 1354 int64_t diff; 1355 DisasLabel match; 1356 TCGv_i64 tcg_cmp; 1357 1358 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); 1359 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ 1360 diff = sextract32(insn, 5, 14) * 4; 1361 rt = extract32(insn, 0, 5); 1362 1363 tcg_cmp = tcg_temp_new_i64(); 1364 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); 1365 1366 reset_btype(s); 1367 1368 match = gen_disas_label(s); 1369 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1370 tcg_cmp, 0, match.label); 1371 gen_goto_tb(s, 0, 4); 1372 set_disas_label(s, match); 1373 gen_goto_tb(s, 1, diff); 1374 } 1375 1376 /* Conditional branch (immediate) 1377 * 31 25 24 23 5 4 3 0 1378 * +---------------+----+---------------------+----+------+ 1379 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | 1380 * +---------------+----+---------------------+----+------+ 1381 */ 1382 static void disas_cond_b_imm(DisasContext *s, uint32_t insn) 1383 { 1384 unsigned int cond; 1385 int64_t diff; 1386 1387 if ((insn & (1 << 4)) || (insn & (1 << 24))) { 1388 unallocated_encoding(s); 1389 return; 1390 } 1391 diff = sextract32(insn, 5, 19) * 4; 1392 cond = extract32(insn, 0, 4); 1393 1394 reset_btype(s); 1395 if (cond < 0x0e) { 1396 /* genuinely conditional branches */ 1397 DisasLabel match = gen_disas_label(s); 1398 arm_gen_test_cc(cond, match.label); 1399 gen_goto_tb(s, 0, 4); 1400 set_disas_label(s, match); 1401 gen_goto_tb(s, 1, diff); 1402 } else { 1403 /* 0xe and 0xf are both "always" conditions */ 1404 gen_goto_tb(s, 0, diff); 1405 } 1406 } 1407 1408 /* HINT instruction group, including various allocated HINTs */ 1409 static void handle_hint(DisasContext *s, uint32_t insn, 1410 unsigned int op1, unsigned int op2, unsigned int crm) 1411 { 1412 unsigned int selector = crm << 3 | op2; 1413 1414 if (op1 != 3) { 1415 unallocated_encoding(s); 1416 return; 1417 } 1418 1419 switch (selector) { 1420 case 0b00000: /* NOP */ 1421 break; 1422 case 0b00011: /* WFI */ 1423 s->base.is_jmp = DISAS_WFI; 1424 break; 1425 case 0b00001: /* YIELD */ 1426 /* When running in MTTCG we don't generate jumps to the yield and 1427 * WFE helpers as it won't affect the scheduling of other vCPUs. 1428 * If we wanted to more completely model WFE/SEV so we don't busy 1429 * spin unnecessarily we would need to do something more involved. 1430 */ 1431 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1432 s->base.is_jmp = DISAS_YIELD; 1433 } 1434 break; 1435 case 0b00010: /* WFE */ 1436 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1437 s->base.is_jmp = DISAS_WFE; 1438 } 1439 break; 1440 case 0b00100: /* SEV */ 1441 case 0b00101: /* SEVL */ 1442 case 0b00110: /* DGH */ 1443 /* we treat all as NOP at least for now */ 1444 break; 1445 case 0b00111: /* XPACLRI */ 1446 if (s->pauth_active) { 1447 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1448 } 1449 break; 1450 case 0b01000: /* PACIA1716 */ 1451 if (s->pauth_active) { 1452 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1453 } 1454 break; 1455 case 0b01010: /* PACIB1716 */ 1456 if (s->pauth_active) { 1457 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1458 } 1459 break; 1460 case 0b01100: /* AUTIA1716 */ 1461 if (s->pauth_active) { 1462 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1463 } 1464 break; 1465 case 0b01110: /* AUTIB1716 */ 1466 if (s->pauth_active) { 1467 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1468 } 1469 break; 1470 case 0b10000: /* ESB */ 1471 /* Without RAS, we must implement this as NOP. */ 1472 if (dc_isar_feature(aa64_ras, s)) { 1473 /* 1474 * QEMU does not have a source of physical SErrors, 1475 * so we are only concerned with virtual SErrors. 1476 * The pseudocode in the ARM for this case is 1477 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1478 * AArch64.vESBOperation(); 1479 * Most of the condition can be evaluated at translation time. 1480 * Test for EL2 present, and defer test for SEL2 to runtime. 1481 */ 1482 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1483 gen_helper_vesb(cpu_env); 1484 } 1485 } 1486 break; 1487 case 0b11000: /* PACIAZ */ 1488 if (s->pauth_active) { 1489 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1490 tcg_constant_i64(0)); 1491 } 1492 break; 1493 case 0b11001: /* PACIASP */ 1494 if (s->pauth_active) { 1495 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1496 } 1497 break; 1498 case 0b11010: /* PACIBZ */ 1499 if (s->pauth_active) { 1500 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1501 tcg_constant_i64(0)); 1502 } 1503 break; 1504 case 0b11011: /* PACIBSP */ 1505 if (s->pauth_active) { 1506 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1507 } 1508 break; 1509 case 0b11100: /* AUTIAZ */ 1510 if (s->pauth_active) { 1511 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1512 tcg_constant_i64(0)); 1513 } 1514 break; 1515 case 0b11101: /* AUTIASP */ 1516 if (s->pauth_active) { 1517 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1518 } 1519 break; 1520 case 0b11110: /* AUTIBZ */ 1521 if (s->pauth_active) { 1522 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1523 tcg_constant_i64(0)); 1524 } 1525 break; 1526 case 0b11111: /* AUTIBSP */ 1527 if (s->pauth_active) { 1528 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1529 } 1530 break; 1531 default: 1532 /* default specified as NOP equivalent */ 1533 break; 1534 } 1535 } 1536 1537 static void gen_clrex(DisasContext *s, uint32_t insn) 1538 { 1539 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1540 } 1541 1542 /* CLREX, DSB, DMB, ISB */ 1543 static void handle_sync(DisasContext *s, uint32_t insn, 1544 unsigned int op1, unsigned int op2, unsigned int crm) 1545 { 1546 TCGBar bar; 1547 1548 if (op1 != 3) { 1549 unallocated_encoding(s); 1550 return; 1551 } 1552 1553 switch (op2) { 1554 case 2: /* CLREX */ 1555 gen_clrex(s, insn); 1556 return; 1557 case 4: /* DSB */ 1558 case 5: /* DMB */ 1559 switch (crm & 3) { 1560 case 1: /* MBReqTypes_Reads */ 1561 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1562 break; 1563 case 2: /* MBReqTypes_Writes */ 1564 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1565 break; 1566 default: /* MBReqTypes_All */ 1567 bar = TCG_BAR_SC | TCG_MO_ALL; 1568 break; 1569 } 1570 tcg_gen_mb(bar); 1571 return; 1572 case 6: /* ISB */ 1573 /* We need to break the TB after this insn to execute 1574 * a self-modified code correctly and also to take 1575 * any pending interrupts immediately. 1576 */ 1577 reset_btype(s); 1578 gen_goto_tb(s, 0, 4); 1579 return; 1580 1581 case 7: /* SB */ 1582 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1583 goto do_unallocated; 1584 } 1585 /* 1586 * TODO: There is no speculation barrier opcode for TCG; 1587 * MB and end the TB instead. 1588 */ 1589 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1590 gen_goto_tb(s, 0, 4); 1591 return; 1592 1593 default: 1594 do_unallocated: 1595 unallocated_encoding(s); 1596 return; 1597 } 1598 } 1599 1600 static void gen_xaflag(void) 1601 { 1602 TCGv_i32 z = tcg_temp_new_i32(); 1603 1604 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1605 1606 /* 1607 * (!C & !Z) << 31 1608 * (!(C | Z)) << 31 1609 * ~((C | Z) << 31) 1610 * ~-(C | Z) 1611 * (C | Z) - 1 1612 */ 1613 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1614 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1615 1616 /* !(Z & C) */ 1617 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1618 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1619 1620 /* (!C & Z) << 31 -> -(Z & ~C) */ 1621 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1622 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1623 1624 /* C | Z */ 1625 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1626 } 1627 1628 static void gen_axflag(void) 1629 { 1630 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1631 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1632 1633 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1634 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1635 1636 tcg_gen_movi_i32(cpu_NF, 0); 1637 tcg_gen_movi_i32(cpu_VF, 0); 1638 } 1639 1640 /* MSR (immediate) - move immediate to processor state field */ 1641 static void handle_msr_i(DisasContext *s, uint32_t insn, 1642 unsigned int op1, unsigned int op2, unsigned int crm) 1643 { 1644 int op = op1 << 3 | op2; 1645 1646 /* End the TB by default, chaining is ok. */ 1647 s->base.is_jmp = DISAS_TOO_MANY; 1648 1649 switch (op) { 1650 case 0x00: /* CFINV */ 1651 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1652 goto do_unallocated; 1653 } 1654 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1655 s->base.is_jmp = DISAS_NEXT; 1656 break; 1657 1658 case 0x01: /* XAFlag */ 1659 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1660 goto do_unallocated; 1661 } 1662 gen_xaflag(); 1663 s->base.is_jmp = DISAS_NEXT; 1664 break; 1665 1666 case 0x02: /* AXFlag */ 1667 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1668 goto do_unallocated; 1669 } 1670 gen_axflag(); 1671 s->base.is_jmp = DISAS_NEXT; 1672 break; 1673 1674 case 0x03: /* UAO */ 1675 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1676 goto do_unallocated; 1677 } 1678 if (crm & 1) { 1679 set_pstate_bits(PSTATE_UAO); 1680 } else { 1681 clear_pstate_bits(PSTATE_UAO); 1682 } 1683 gen_rebuild_hflags(s); 1684 break; 1685 1686 case 0x04: /* PAN */ 1687 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1688 goto do_unallocated; 1689 } 1690 if (crm & 1) { 1691 set_pstate_bits(PSTATE_PAN); 1692 } else { 1693 clear_pstate_bits(PSTATE_PAN); 1694 } 1695 gen_rebuild_hflags(s); 1696 break; 1697 1698 case 0x05: /* SPSel */ 1699 if (s->current_el == 0) { 1700 goto do_unallocated; 1701 } 1702 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1703 break; 1704 1705 case 0x19: /* SSBS */ 1706 if (!dc_isar_feature(aa64_ssbs, s)) { 1707 goto do_unallocated; 1708 } 1709 if (crm & 1) { 1710 set_pstate_bits(PSTATE_SSBS); 1711 } else { 1712 clear_pstate_bits(PSTATE_SSBS); 1713 } 1714 /* Don't need to rebuild hflags since SSBS is a nop */ 1715 break; 1716 1717 case 0x1a: /* DIT */ 1718 if (!dc_isar_feature(aa64_dit, s)) { 1719 goto do_unallocated; 1720 } 1721 if (crm & 1) { 1722 set_pstate_bits(PSTATE_DIT); 1723 } else { 1724 clear_pstate_bits(PSTATE_DIT); 1725 } 1726 /* There's no need to rebuild hflags because DIT is a nop */ 1727 break; 1728 1729 case 0x1e: /* DAIFSet */ 1730 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1731 break; 1732 1733 case 0x1f: /* DAIFClear */ 1734 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1735 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1736 s->base.is_jmp = DISAS_UPDATE_EXIT; 1737 break; 1738 1739 case 0x1c: /* TCO */ 1740 if (dc_isar_feature(aa64_mte, s)) { 1741 /* Full MTE is enabled -- set the TCO bit as directed. */ 1742 if (crm & 1) { 1743 set_pstate_bits(PSTATE_TCO); 1744 } else { 1745 clear_pstate_bits(PSTATE_TCO); 1746 } 1747 gen_rebuild_hflags(s); 1748 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1749 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1750 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1751 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1752 s->base.is_jmp = DISAS_NEXT; 1753 } else { 1754 goto do_unallocated; 1755 } 1756 break; 1757 1758 case 0x1b: /* SVCR* */ 1759 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1760 goto do_unallocated; 1761 } 1762 if (sme_access_check(s)) { 1763 int old = s->pstate_sm | (s->pstate_za << 1); 1764 int new = (crm & 1) * 3; 1765 int msk = (crm >> 1) & 3; 1766 1767 if ((old ^ new) & msk) { 1768 /* At least one bit changes. */ 1769 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1770 tcg_constant_i32(msk)); 1771 } else { 1772 s->base.is_jmp = DISAS_NEXT; 1773 } 1774 } 1775 break; 1776 1777 default: 1778 do_unallocated: 1779 unallocated_encoding(s); 1780 return; 1781 } 1782 } 1783 1784 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1785 { 1786 TCGv_i32 tmp = tcg_temp_new_i32(); 1787 TCGv_i32 nzcv = tcg_temp_new_i32(); 1788 1789 /* build bit 31, N */ 1790 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1791 /* build bit 30, Z */ 1792 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1793 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1794 /* build bit 29, C */ 1795 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1796 /* build bit 28, V */ 1797 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1798 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1799 /* generate result */ 1800 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1801 } 1802 1803 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1804 { 1805 TCGv_i32 nzcv = tcg_temp_new_i32(); 1806 1807 /* take NZCV from R[t] */ 1808 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1809 1810 /* bit 31, N */ 1811 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1812 /* bit 30, Z */ 1813 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1814 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1815 /* bit 29, C */ 1816 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1817 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1818 /* bit 28, V */ 1819 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1820 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1821 } 1822 1823 static void gen_sysreg_undef(DisasContext *s, bool isread, 1824 uint8_t op0, uint8_t op1, uint8_t op2, 1825 uint8_t crn, uint8_t crm, uint8_t rt) 1826 { 1827 /* 1828 * Generate code to emit an UNDEF with correct syndrome 1829 * information for a failed system register access. 1830 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1831 * but if FEAT_IDST is implemented then read accesses to registers 1832 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1833 * syndrome. 1834 */ 1835 uint32_t syndrome; 1836 1837 if (isread && dc_isar_feature(aa64_ids, s) && 1838 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 1839 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1840 } else { 1841 syndrome = syn_uncategorized(); 1842 } 1843 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 1844 } 1845 1846 /* MRS - move from system register 1847 * MSR (register) - move to system register 1848 * SYS 1849 * SYSL 1850 * These are all essentially the same insn in 'read' and 'write' 1851 * versions, with varying op0 fields. 1852 */ 1853 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 1854 unsigned int op0, unsigned int op1, unsigned int op2, 1855 unsigned int crn, unsigned int crm, unsigned int rt) 1856 { 1857 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 1858 crn, crm, op0, op1, op2); 1859 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 1860 TCGv_ptr tcg_ri = NULL; 1861 TCGv_i64 tcg_rt; 1862 1863 if (!ri) { 1864 /* Unknown register; this might be a guest error or a QEMU 1865 * unimplemented feature. 1866 */ 1867 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 1868 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 1869 isread ? "read" : "write", op0, op1, crn, crm, op2); 1870 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1871 return; 1872 } 1873 1874 /* Check access permissions */ 1875 if (!cp_access_ok(s->current_el, ri, isread)) { 1876 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1877 return; 1878 } 1879 1880 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 1881 /* Emit code to perform further access permissions checks at 1882 * runtime; this may result in an exception. 1883 */ 1884 uint32_t syndrome; 1885 1886 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1887 gen_a64_update_pc(s, 0); 1888 tcg_ri = tcg_temp_new_ptr(); 1889 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 1890 tcg_constant_i32(key), 1891 tcg_constant_i32(syndrome), 1892 tcg_constant_i32(isread)); 1893 } else if (ri->type & ARM_CP_RAISES_EXC) { 1894 /* 1895 * The readfn or writefn might raise an exception; 1896 * synchronize the CPU state in case it does. 1897 */ 1898 gen_a64_update_pc(s, 0); 1899 } 1900 1901 /* Handle special cases first */ 1902 switch (ri->type & ARM_CP_SPECIAL_MASK) { 1903 case 0: 1904 break; 1905 case ARM_CP_NOP: 1906 return; 1907 case ARM_CP_NZCV: 1908 tcg_rt = cpu_reg(s, rt); 1909 if (isread) { 1910 gen_get_nzcv(tcg_rt); 1911 } else { 1912 gen_set_nzcv(tcg_rt); 1913 } 1914 return; 1915 case ARM_CP_CURRENTEL: 1916 /* Reads as current EL value from pstate, which is 1917 * guaranteed to be constant by the tb flags. 1918 */ 1919 tcg_rt = cpu_reg(s, rt); 1920 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 1921 return; 1922 case ARM_CP_DC_ZVA: 1923 /* Writes clear the aligned block of memory which rt points into. */ 1924 if (s->mte_active[0]) { 1925 int desc = 0; 1926 1927 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 1928 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 1929 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 1930 1931 tcg_rt = tcg_temp_new_i64(); 1932 gen_helper_mte_check_zva(tcg_rt, cpu_env, 1933 tcg_constant_i32(desc), cpu_reg(s, rt)); 1934 } else { 1935 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 1936 } 1937 gen_helper_dc_zva(cpu_env, tcg_rt); 1938 return; 1939 case ARM_CP_DC_GVA: 1940 { 1941 TCGv_i64 clean_addr, tag; 1942 1943 /* 1944 * DC_GVA, like DC_ZVA, requires that we supply the original 1945 * pointer for an invalid page. Probe that address first. 1946 */ 1947 tcg_rt = cpu_reg(s, rt); 1948 clean_addr = clean_data_tbi(s, tcg_rt); 1949 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 1950 1951 if (s->ata) { 1952 /* Extract the tag from the register to match STZGM. */ 1953 tag = tcg_temp_new_i64(); 1954 tcg_gen_shri_i64(tag, tcg_rt, 56); 1955 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1956 } 1957 } 1958 return; 1959 case ARM_CP_DC_GZVA: 1960 { 1961 TCGv_i64 clean_addr, tag; 1962 1963 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 1964 tcg_rt = cpu_reg(s, rt); 1965 clean_addr = clean_data_tbi(s, tcg_rt); 1966 gen_helper_dc_zva(cpu_env, clean_addr); 1967 1968 if (s->ata) { 1969 /* Extract the tag from the register to match STZGM. */ 1970 tag = tcg_temp_new_i64(); 1971 tcg_gen_shri_i64(tag, tcg_rt, 56); 1972 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1973 } 1974 } 1975 return; 1976 default: 1977 g_assert_not_reached(); 1978 } 1979 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 1980 return; 1981 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 1982 return; 1983 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 1984 return; 1985 } 1986 1987 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 1988 gen_io_start(); 1989 } 1990 1991 tcg_rt = cpu_reg(s, rt); 1992 1993 if (isread) { 1994 if (ri->type & ARM_CP_CONST) { 1995 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 1996 } else if (ri->readfn) { 1997 if (!tcg_ri) { 1998 tcg_ri = gen_lookup_cp_reg(key); 1999 } 2000 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2001 } else { 2002 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2003 } 2004 } else { 2005 if (ri->type & ARM_CP_CONST) { 2006 /* If not forbidden by access permissions, treat as WI */ 2007 return; 2008 } else if (ri->writefn) { 2009 if (!tcg_ri) { 2010 tcg_ri = gen_lookup_cp_reg(key); 2011 } 2012 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2013 } else { 2014 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2015 } 2016 } 2017 2018 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2019 /* I/O operations must end the TB here (whether read or write) */ 2020 s->base.is_jmp = DISAS_UPDATE_EXIT; 2021 } 2022 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2023 /* 2024 * A write to any coprocessor regiser that ends a TB 2025 * must rebuild the hflags for the next TB. 2026 */ 2027 gen_rebuild_hflags(s); 2028 /* 2029 * We default to ending the TB on a coprocessor register write, 2030 * but allow this to be suppressed by the register definition 2031 * (usually only necessary to work around guest bugs). 2032 */ 2033 s->base.is_jmp = DISAS_UPDATE_EXIT; 2034 } 2035 } 2036 2037 /* System 2038 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2039 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2040 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2041 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2042 */ 2043 static void disas_system(DisasContext *s, uint32_t insn) 2044 { 2045 unsigned int l, op0, op1, crn, crm, op2, rt; 2046 l = extract32(insn, 21, 1); 2047 op0 = extract32(insn, 19, 2); 2048 op1 = extract32(insn, 16, 3); 2049 crn = extract32(insn, 12, 4); 2050 crm = extract32(insn, 8, 4); 2051 op2 = extract32(insn, 5, 3); 2052 rt = extract32(insn, 0, 5); 2053 2054 if (op0 == 0) { 2055 if (l || rt != 31) { 2056 unallocated_encoding(s); 2057 return; 2058 } 2059 switch (crn) { 2060 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2061 handle_hint(s, insn, op1, op2, crm); 2062 break; 2063 case 3: /* CLREX, DSB, DMB, ISB */ 2064 handle_sync(s, insn, op1, op2, crm); 2065 break; 2066 case 4: /* MSR (immediate) */ 2067 handle_msr_i(s, insn, op1, op2, crm); 2068 break; 2069 default: 2070 unallocated_encoding(s); 2071 break; 2072 } 2073 return; 2074 } 2075 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2076 } 2077 2078 /* Exception generation 2079 * 2080 * 31 24 23 21 20 5 4 2 1 0 2081 * +-----------------+-----+------------------------+-----+----+ 2082 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2083 * +-----------------------+------------------------+----------+ 2084 */ 2085 static void disas_exc(DisasContext *s, uint32_t insn) 2086 { 2087 int opc = extract32(insn, 21, 3); 2088 int op2_ll = extract32(insn, 0, 5); 2089 int imm16 = extract32(insn, 5, 16); 2090 uint32_t syndrome; 2091 2092 switch (opc) { 2093 case 0: 2094 /* For SVC, HVC and SMC we advance the single-step state 2095 * machine before taking the exception. This is architecturally 2096 * mandated, to ensure that single-stepping a system call 2097 * instruction works properly. 2098 */ 2099 switch (op2_ll) { 2100 case 1: /* SVC */ 2101 syndrome = syn_aa64_svc(imm16); 2102 if (s->fgt_svc) { 2103 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2104 break; 2105 } 2106 gen_ss_advance(s); 2107 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2108 break; 2109 case 2: /* HVC */ 2110 if (s->current_el == 0) { 2111 unallocated_encoding(s); 2112 break; 2113 } 2114 /* The pre HVC helper handles cases when HVC gets trapped 2115 * as an undefined insn by runtime configuration. 2116 */ 2117 gen_a64_update_pc(s, 0); 2118 gen_helper_pre_hvc(cpu_env); 2119 gen_ss_advance(s); 2120 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2121 break; 2122 case 3: /* SMC */ 2123 if (s->current_el == 0) { 2124 unallocated_encoding(s); 2125 break; 2126 } 2127 gen_a64_update_pc(s, 0); 2128 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2129 gen_ss_advance(s); 2130 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2131 break; 2132 default: 2133 unallocated_encoding(s); 2134 break; 2135 } 2136 break; 2137 case 1: 2138 if (op2_ll != 0) { 2139 unallocated_encoding(s); 2140 break; 2141 } 2142 /* BRK */ 2143 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2144 break; 2145 case 2: 2146 if (op2_ll != 0) { 2147 unallocated_encoding(s); 2148 break; 2149 } 2150 /* HLT. This has two purposes. 2151 * Architecturally, it is an external halting debug instruction. 2152 * Since QEMU doesn't implement external debug, we treat this as 2153 * it is required for halting debug disabled: it will UNDEF. 2154 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2155 */ 2156 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2157 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2158 } else { 2159 unallocated_encoding(s); 2160 } 2161 break; 2162 case 5: 2163 if (op2_ll < 1 || op2_ll > 3) { 2164 unallocated_encoding(s); 2165 break; 2166 } 2167 /* DCPS1, DCPS2, DCPS3 */ 2168 unallocated_encoding(s); 2169 break; 2170 default: 2171 unallocated_encoding(s); 2172 break; 2173 } 2174 } 2175 2176 /* Unconditional branch (register) 2177 * 31 25 24 21 20 16 15 10 9 5 4 0 2178 * +---------------+-------+-------+-------+------+-------+ 2179 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | 2180 * +---------------+-------+-------+-------+------+-------+ 2181 */ 2182 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) 2183 { 2184 unsigned int opc, op2, op3, rn, op4; 2185 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */ 2186 TCGv_i64 dst; 2187 TCGv_i64 modifier; 2188 2189 opc = extract32(insn, 21, 4); 2190 op2 = extract32(insn, 16, 5); 2191 op3 = extract32(insn, 10, 6); 2192 rn = extract32(insn, 5, 5); 2193 op4 = extract32(insn, 0, 5); 2194 2195 if (op2 != 0x1f) { 2196 goto do_unallocated; 2197 } 2198 2199 switch (opc) { 2200 case 0: /* BR */ 2201 case 1: /* BLR */ 2202 case 2: /* RET */ 2203 btype_mod = opc; 2204 switch (op3) { 2205 case 0: 2206 /* BR, BLR, RET */ 2207 if (op4 != 0) { 2208 goto do_unallocated; 2209 } 2210 dst = cpu_reg(s, rn); 2211 break; 2212 2213 case 2: 2214 case 3: 2215 if (!dc_isar_feature(aa64_pauth, s)) { 2216 goto do_unallocated; 2217 } 2218 if (opc == 2) { 2219 /* RETAA, RETAB */ 2220 if (rn != 0x1f || op4 != 0x1f) { 2221 goto do_unallocated; 2222 } 2223 rn = 30; 2224 modifier = cpu_X[31]; 2225 } else { 2226 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */ 2227 if (op4 != 0x1f) { 2228 goto do_unallocated; 2229 } 2230 modifier = tcg_constant_i64(0); 2231 } 2232 if (s->pauth_active) { 2233 dst = tcg_temp_new_i64(); 2234 if (op3 == 2) { 2235 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2236 } else { 2237 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2238 } 2239 } else { 2240 dst = cpu_reg(s, rn); 2241 } 2242 break; 2243 2244 default: 2245 goto do_unallocated; 2246 } 2247 /* BLR also needs to load return address */ 2248 if (opc == 1) { 2249 TCGv_i64 lr = cpu_reg(s, 30); 2250 if (dst == lr) { 2251 TCGv_i64 tmp = tcg_temp_new_i64(); 2252 tcg_gen_mov_i64(tmp, dst); 2253 dst = tmp; 2254 } 2255 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2256 } 2257 gen_a64_set_pc(s, dst); 2258 break; 2259 2260 case 8: /* BRAA */ 2261 case 9: /* BLRAA */ 2262 if (!dc_isar_feature(aa64_pauth, s)) { 2263 goto do_unallocated; 2264 } 2265 if ((op3 & ~1) != 2) { 2266 goto do_unallocated; 2267 } 2268 btype_mod = opc & 1; 2269 if (s->pauth_active) { 2270 dst = tcg_temp_new_i64(); 2271 modifier = cpu_reg_sp(s, op4); 2272 if (op3 == 2) { 2273 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2274 } else { 2275 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2276 } 2277 } else { 2278 dst = cpu_reg(s, rn); 2279 } 2280 /* BLRAA also needs to load return address */ 2281 if (opc == 9) { 2282 TCGv_i64 lr = cpu_reg(s, 30); 2283 if (dst == lr) { 2284 TCGv_i64 tmp = tcg_temp_new_i64(); 2285 tcg_gen_mov_i64(tmp, dst); 2286 dst = tmp; 2287 } 2288 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2289 } 2290 gen_a64_set_pc(s, dst); 2291 break; 2292 2293 case 4: /* ERET */ 2294 if (s->current_el == 0) { 2295 goto do_unallocated; 2296 } 2297 switch (op3) { 2298 case 0: /* ERET */ 2299 if (op4 != 0) { 2300 goto do_unallocated; 2301 } 2302 if (s->fgt_eret) { 2303 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2304 return; 2305 } 2306 dst = tcg_temp_new_i64(); 2307 tcg_gen_ld_i64(dst, cpu_env, 2308 offsetof(CPUARMState, elr_el[s->current_el])); 2309 break; 2310 2311 case 2: /* ERETAA */ 2312 case 3: /* ERETAB */ 2313 if (!dc_isar_feature(aa64_pauth, s)) { 2314 goto do_unallocated; 2315 } 2316 if (rn != 0x1f || op4 != 0x1f) { 2317 goto do_unallocated; 2318 } 2319 /* The FGT trap takes precedence over an auth trap. */ 2320 if (s->fgt_eret) { 2321 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2322 return; 2323 } 2324 dst = tcg_temp_new_i64(); 2325 tcg_gen_ld_i64(dst, cpu_env, 2326 offsetof(CPUARMState, elr_el[s->current_el])); 2327 if (s->pauth_active) { 2328 modifier = cpu_X[31]; 2329 if (op3 == 2) { 2330 gen_helper_autia(dst, cpu_env, dst, modifier); 2331 } else { 2332 gen_helper_autib(dst, cpu_env, dst, modifier); 2333 } 2334 } 2335 break; 2336 2337 default: 2338 goto do_unallocated; 2339 } 2340 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 2341 gen_io_start(); 2342 } 2343 2344 gen_helper_exception_return(cpu_env, dst); 2345 /* Must exit loop to check un-masked IRQs */ 2346 s->base.is_jmp = DISAS_EXIT; 2347 return; 2348 2349 case 5: /* DRPS */ 2350 if (op3 != 0 || op4 != 0 || rn != 0x1f) { 2351 goto do_unallocated; 2352 } else { 2353 unallocated_encoding(s); 2354 } 2355 return; 2356 2357 default: 2358 do_unallocated: 2359 unallocated_encoding(s); 2360 return; 2361 } 2362 2363 switch (btype_mod) { 2364 case 0: /* BR */ 2365 if (dc_isar_feature(aa64_bti, s)) { 2366 /* BR to {x16,x17} or !guard -> 1, else 3. */ 2367 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 2368 } 2369 break; 2370 2371 case 1: /* BLR */ 2372 if (dc_isar_feature(aa64_bti, s)) { 2373 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 2374 set_btype(s, 2); 2375 } 2376 break; 2377 2378 default: /* RET or none of the above. */ 2379 /* BTYPE will be set to 0 by normal end-of-insn processing. */ 2380 break; 2381 } 2382 2383 s->base.is_jmp = DISAS_JUMP; 2384 } 2385 2386 /* Branches, exception generating and system instructions */ 2387 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2388 { 2389 switch (extract32(insn, 25, 7)) { 2390 case 0x0a: case 0x0b: 2391 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ 2392 disas_uncond_b_imm(s, insn); 2393 break; 2394 case 0x1a: case 0x5a: /* Compare & branch (immediate) */ 2395 disas_comp_b_imm(s, insn); 2396 break; 2397 case 0x1b: case 0x5b: /* Test & branch (immediate) */ 2398 disas_test_b_imm(s, insn); 2399 break; 2400 case 0x2a: /* Conditional branch (immediate) */ 2401 disas_cond_b_imm(s, insn); 2402 break; 2403 case 0x6a: /* Exception generation / System */ 2404 if (insn & (1 << 24)) { 2405 if (extract32(insn, 22, 2) == 0) { 2406 disas_system(s, insn); 2407 } else { 2408 unallocated_encoding(s); 2409 } 2410 } else { 2411 disas_exc(s, insn); 2412 } 2413 break; 2414 case 0x6b: /* Unconditional branch (register) */ 2415 disas_uncond_b_reg(s, insn); 2416 break; 2417 default: 2418 unallocated_encoding(s); 2419 break; 2420 } 2421 } 2422 2423 /* 2424 * Load/Store exclusive instructions are implemented by remembering 2425 * the value/address loaded, and seeing if these are the same 2426 * when the store is performed. This is not actually the architecturally 2427 * mandated semantics, but it works for typical guest code sequences 2428 * and avoids having to monitor regular stores. 2429 * 2430 * The store exclusive uses the atomic cmpxchg primitives to avoid 2431 * races in multi-threaded linux-user and when MTTCG softmmu is 2432 * enabled. 2433 */ 2434 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2435 TCGv_i64 addr, int size, bool is_pair) 2436 { 2437 int idx = get_mem_index(s); 2438 MemOp memop = s->be_data; 2439 2440 g_assert(size <= 3); 2441 if (is_pair) { 2442 g_assert(size >= 2); 2443 if (size == 2) { 2444 /* The pair must be single-copy atomic for the doubleword. */ 2445 memop |= MO_64 | MO_ALIGN; 2446 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2447 if (s->be_data == MO_LE) { 2448 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2449 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2450 } else { 2451 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2452 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2453 } 2454 } else { 2455 /* The pair must be single-copy atomic for *each* doubleword, not 2456 the entire quadword, however it must be quadword aligned. */ 2457 memop |= MO_64; 2458 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, 2459 memop | MO_ALIGN_16); 2460 2461 TCGv_i64 addr2 = tcg_temp_new_i64(); 2462 tcg_gen_addi_i64(addr2, addr, 8); 2463 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); 2464 2465 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2466 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2467 } 2468 } else { 2469 memop |= size | MO_ALIGN; 2470 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2471 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2472 } 2473 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2474 } 2475 2476 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2477 TCGv_i64 addr, int size, int is_pair) 2478 { 2479 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2480 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2481 * [addr] = {Rt}; 2482 * if (is_pair) { 2483 * [addr + datasize] = {Rt2}; 2484 * } 2485 * {Rd} = 0; 2486 * } else { 2487 * {Rd} = 1; 2488 * } 2489 * env->exclusive_addr = -1; 2490 */ 2491 TCGLabel *fail_label = gen_new_label(); 2492 TCGLabel *done_label = gen_new_label(); 2493 TCGv_i64 tmp; 2494 2495 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2496 2497 tmp = tcg_temp_new_i64(); 2498 if (is_pair) { 2499 if (size == 2) { 2500 if (s->be_data == MO_LE) { 2501 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2502 } else { 2503 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2504 } 2505 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2506 cpu_exclusive_val, tmp, 2507 get_mem_index(s), 2508 MO_64 | MO_ALIGN | s->be_data); 2509 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2510 } else { 2511 TCGv_i128 t16 = tcg_temp_new_i128(); 2512 TCGv_i128 c16 = tcg_temp_new_i128(); 2513 TCGv_i64 a, b; 2514 2515 if (s->be_data == MO_LE) { 2516 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2517 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2518 cpu_exclusive_high); 2519 } else { 2520 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2521 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2522 cpu_exclusive_val); 2523 } 2524 2525 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2526 get_mem_index(s), 2527 MO_128 | MO_ALIGN | s->be_data); 2528 2529 a = tcg_temp_new_i64(); 2530 b = tcg_temp_new_i64(); 2531 if (s->be_data == MO_LE) { 2532 tcg_gen_extr_i128_i64(a, b, t16); 2533 } else { 2534 tcg_gen_extr_i128_i64(b, a, t16); 2535 } 2536 2537 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2538 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2539 tcg_gen_or_i64(tmp, a, b); 2540 2541 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2542 } 2543 } else { 2544 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2545 cpu_reg(s, rt), get_mem_index(s), 2546 size | MO_ALIGN | s->be_data); 2547 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2548 } 2549 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2550 tcg_gen_br(done_label); 2551 2552 gen_set_label(fail_label); 2553 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2554 gen_set_label(done_label); 2555 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2556 } 2557 2558 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2559 int rn, int size) 2560 { 2561 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2562 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2563 int memidx = get_mem_index(s); 2564 TCGv_i64 clean_addr; 2565 2566 if (rn == 31) { 2567 gen_check_sp_alignment(s); 2568 } 2569 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2570 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2571 size | MO_ALIGN | s->be_data); 2572 } 2573 2574 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2575 int rn, int size) 2576 { 2577 TCGv_i64 s1 = cpu_reg(s, rs); 2578 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2579 TCGv_i64 t1 = cpu_reg(s, rt); 2580 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2581 TCGv_i64 clean_addr; 2582 int memidx = get_mem_index(s); 2583 2584 if (rn == 31) { 2585 gen_check_sp_alignment(s); 2586 } 2587 2588 /* This is a single atomic access, despite the "pair". */ 2589 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2590 2591 if (size == 2) { 2592 TCGv_i64 cmp = tcg_temp_new_i64(); 2593 TCGv_i64 val = tcg_temp_new_i64(); 2594 2595 if (s->be_data == MO_LE) { 2596 tcg_gen_concat32_i64(val, t1, t2); 2597 tcg_gen_concat32_i64(cmp, s1, s2); 2598 } else { 2599 tcg_gen_concat32_i64(val, t2, t1); 2600 tcg_gen_concat32_i64(cmp, s2, s1); 2601 } 2602 2603 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2604 MO_64 | MO_ALIGN | s->be_data); 2605 2606 if (s->be_data == MO_LE) { 2607 tcg_gen_extr32_i64(s1, s2, cmp); 2608 } else { 2609 tcg_gen_extr32_i64(s2, s1, cmp); 2610 } 2611 } else { 2612 TCGv_i128 cmp = tcg_temp_new_i128(); 2613 TCGv_i128 val = tcg_temp_new_i128(); 2614 2615 if (s->be_data == MO_LE) { 2616 tcg_gen_concat_i64_i128(val, t1, t2); 2617 tcg_gen_concat_i64_i128(cmp, s1, s2); 2618 } else { 2619 tcg_gen_concat_i64_i128(val, t2, t1); 2620 tcg_gen_concat_i64_i128(cmp, s2, s1); 2621 } 2622 2623 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2624 MO_128 | MO_ALIGN | s->be_data); 2625 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extr_i128_i64(s1, s2, cmp); 2628 } else { 2629 tcg_gen_extr_i128_i64(s2, s1, cmp); 2630 } 2631 } 2632 } 2633 2634 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2635 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2636 */ 2637 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2638 { 2639 int opc0 = extract32(opc, 0, 1); 2640 int regsize; 2641 2642 if (is_signed) { 2643 regsize = opc0 ? 32 : 64; 2644 } else { 2645 regsize = size == 3 ? 64 : 32; 2646 } 2647 return regsize == 64; 2648 } 2649 2650 /* Load/store exclusive 2651 * 2652 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2653 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2654 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2655 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2656 * 2657 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2658 * L: 0 -> store, 1 -> load 2659 * o2: 0 -> exclusive, 1 -> not 2660 * o1: 0 -> single register, 1 -> register pair 2661 * o0: 1 -> load-acquire/store-release, 0 -> not 2662 */ 2663 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2664 { 2665 int rt = extract32(insn, 0, 5); 2666 int rn = extract32(insn, 5, 5); 2667 int rt2 = extract32(insn, 10, 5); 2668 int rs = extract32(insn, 16, 5); 2669 int is_lasr = extract32(insn, 15, 1); 2670 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2671 int size = extract32(insn, 30, 2); 2672 TCGv_i64 clean_addr; 2673 2674 switch (o2_L_o1_o0) { 2675 case 0x0: /* STXR */ 2676 case 0x1: /* STLXR */ 2677 if (rn == 31) { 2678 gen_check_sp_alignment(s); 2679 } 2680 if (is_lasr) { 2681 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2682 } 2683 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2684 true, rn != 31, size); 2685 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2686 return; 2687 2688 case 0x4: /* LDXR */ 2689 case 0x5: /* LDAXR */ 2690 if (rn == 31) { 2691 gen_check_sp_alignment(s); 2692 } 2693 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2694 false, rn != 31, size); 2695 s->is_ldex = true; 2696 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2697 if (is_lasr) { 2698 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2699 } 2700 return; 2701 2702 case 0x8: /* STLLR */ 2703 if (!dc_isar_feature(aa64_lor, s)) { 2704 break; 2705 } 2706 /* StoreLORelease is the same as Store-Release for QEMU. */ 2707 /* fall through */ 2708 case 0x9: /* STLR */ 2709 /* Generate ISS for non-exclusive accesses including LASR. */ 2710 if (rn == 31) { 2711 gen_check_sp_alignment(s); 2712 } 2713 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2714 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2715 true, rn != 31, size); 2716 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2717 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2718 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2719 return; 2720 2721 case 0xc: /* LDLAR */ 2722 if (!dc_isar_feature(aa64_lor, s)) { 2723 break; 2724 } 2725 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2726 /* fall through */ 2727 case 0xd: /* LDAR */ 2728 /* Generate ISS for non-exclusive accesses including LASR. */ 2729 if (rn == 31) { 2730 gen_check_sp_alignment(s); 2731 } 2732 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2733 false, rn != 31, size); 2734 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2735 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2736 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2737 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2738 return; 2739 2740 case 0x2: case 0x3: /* CASP / STXP */ 2741 if (size & 2) { /* STXP / STLXP */ 2742 if (rn == 31) { 2743 gen_check_sp_alignment(s); 2744 } 2745 if (is_lasr) { 2746 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2747 } 2748 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2749 true, rn != 31, size); 2750 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2751 return; 2752 } 2753 if (rt2 == 31 2754 && ((rt | rs) & 1) == 0 2755 && dc_isar_feature(aa64_atomics, s)) { 2756 /* CASP / CASPL */ 2757 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2758 return; 2759 } 2760 break; 2761 2762 case 0x6: case 0x7: /* CASPA / LDXP */ 2763 if (size & 2) { /* LDXP / LDAXP */ 2764 if (rn == 31) { 2765 gen_check_sp_alignment(s); 2766 } 2767 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2768 false, rn != 31, size); 2769 s->is_ldex = true; 2770 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2771 if (is_lasr) { 2772 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2773 } 2774 return; 2775 } 2776 if (rt2 == 31 2777 && ((rt | rs) & 1) == 0 2778 && dc_isar_feature(aa64_atomics, s)) { 2779 /* CASPA / CASPAL */ 2780 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2781 return; 2782 } 2783 break; 2784 2785 case 0xa: /* CAS */ 2786 case 0xb: /* CASL */ 2787 case 0xe: /* CASA */ 2788 case 0xf: /* CASAL */ 2789 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2790 gen_compare_and_swap(s, rs, rt, rn, size); 2791 return; 2792 } 2793 break; 2794 } 2795 unallocated_encoding(s); 2796 } 2797 2798 /* 2799 * Load register (literal) 2800 * 2801 * 31 30 29 27 26 25 24 23 5 4 0 2802 * +-----+-------+---+-----+-------------------+-------+ 2803 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2804 * +-----+-------+---+-----+-------------------+-------+ 2805 * 2806 * V: 1 -> vector (simd/fp) 2807 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2808 * 10-> 32 bit signed, 11 -> prefetch 2809 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2810 */ 2811 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2812 { 2813 int rt = extract32(insn, 0, 5); 2814 int64_t imm = sextract32(insn, 5, 19) << 2; 2815 bool is_vector = extract32(insn, 26, 1); 2816 int opc = extract32(insn, 30, 2); 2817 bool is_signed = false; 2818 int size = 2; 2819 TCGv_i64 tcg_rt, clean_addr; 2820 2821 if (is_vector) { 2822 if (opc == 3) { 2823 unallocated_encoding(s); 2824 return; 2825 } 2826 size = 2 + opc; 2827 if (!fp_access_check(s)) { 2828 return; 2829 } 2830 } else { 2831 if (opc == 3) { 2832 /* PRFM (literal) : prefetch */ 2833 return; 2834 } 2835 size = 2 + extract32(opc, 0, 1); 2836 is_signed = extract32(opc, 1, 1); 2837 } 2838 2839 tcg_rt = cpu_reg(s, rt); 2840 2841 clean_addr = tcg_temp_new_i64(); 2842 gen_pc_plus_diff(s, clean_addr, imm); 2843 if (is_vector) { 2844 do_fp_ld(s, rt, clean_addr, size); 2845 } else { 2846 /* Only unsigned 32bit loads target 32bit registers. */ 2847 bool iss_sf = opc != 0; 2848 2849 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2850 false, true, rt, iss_sf, false); 2851 } 2852 } 2853 2854 /* 2855 * LDNP (Load Pair - non-temporal hint) 2856 * LDP (Load Pair - non vector) 2857 * LDPSW (Load Pair Signed Word - non vector) 2858 * STNP (Store Pair - non-temporal hint) 2859 * STP (Store Pair - non vector) 2860 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2861 * LDP (Load Pair of SIMD&FP) 2862 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2863 * STP (Store Pair of SIMD&FP) 2864 * 2865 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2866 * +-----+-------+---+---+-------+---+-----------------------------+ 2867 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2868 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2869 * 2870 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2871 * LDPSW/STGP 01 2872 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2873 * V: 0 -> GPR, 1 -> Vector 2874 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2875 * 10 -> signed offset, 11 -> pre-index 2876 * L: 0 -> Store 1 -> Load 2877 * 2878 * Rt, Rt2 = GPR or SIMD registers to be stored 2879 * Rn = general purpose register containing address 2880 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2881 */ 2882 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2883 { 2884 int rt = extract32(insn, 0, 5); 2885 int rn = extract32(insn, 5, 5); 2886 int rt2 = extract32(insn, 10, 5); 2887 uint64_t offset = sextract64(insn, 15, 7); 2888 int index = extract32(insn, 23, 2); 2889 bool is_vector = extract32(insn, 26, 1); 2890 bool is_load = extract32(insn, 22, 1); 2891 int opc = extract32(insn, 30, 2); 2892 2893 bool is_signed = false; 2894 bool postindex = false; 2895 bool wback = false; 2896 bool set_tag = false; 2897 2898 TCGv_i64 clean_addr, dirty_addr; 2899 2900 int size; 2901 2902 if (opc == 3) { 2903 unallocated_encoding(s); 2904 return; 2905 } 2906 2907 if (is_vector) { 2908 size = 2 + opc; 2909 } else if (opc == 1 && !is_load) { 2910 /* STGP */ 2911 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2912 unallocated_encoding(s); 2913 return; 2914 } 2915 size = 3; 2916 set_tag = true; 2917 } else { 2918 size = 2 + extract32(opc, 1, 1); 2919 is_signed = extract32(opc, 0, 1); 2920 if (!is_load && is_signed) { 2921 unallocated_encoding(s); 2922 return; 2923 } 2924 } 2925 2926 switch (index) { 2927 case 1: /* post-index */ 2928 postindex = true; 2929 wback = true; 2930 break; 2931 case 0: 2932 /* signed offset with "non-temporal" hint. Since we don't emulate 2933 * caches we don't care about hints to the cache system about 2934 * data access patterns, and handle this identically to plain 2935 * signed offset. 2936 */ 2937 if (is_signed) { 2938 /* There is no non-temporal-hint version of LDPSW */ 2939 unallocated_encoding(s); 2940 return; 2941 } 2942 postindex = false; 2943 break; 2944 case 2: /* signed offset, rn not updated */ 2945 postindex = false; 2946 break; 2947 case 3: /* pre-index */ 2948 postindex = false; 2949 wback = true; 2950 break; 2951 } 2952 2953 if (is_vector && !fp_access_check(s)) { 2954 return; 2955 } 2956 2957 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2958 2959 if (rn == 31) { 2960 gen_check_sp_alignment(s); 2961 } 2962 2963 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2964 if (!postindex) { 2965 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2966 } 2967 2968 if (set_tag) { 2969 if (!s->ata) { 2970 /* 2971 * TODO: We could rely on the stores below, at least for 2972 * system mode, if we arrange to add MO_ALIGN_16. 2973 */ 2974 gen_helper_stg_stub(cpu_env, dirty_addr); 2975 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2976 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2977 } else { 2978 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2979 } 2980 } 2981 2982 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2983 (wback || rn != 31) && !set_tag, 2 << size); 2984 2985 if (is_vector) { 2986 if (is_load) { 2987 do_fp_ld(s, rt, clean_addr, size); 2988 } else { 2989 do_fp_st(s, rt, clean_addr, size); 2990 } 2991 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2992 if (is_load) { 2993 do_fp_ld(s, rt2, clean_addr, size); 2994 } else { 2995 do_fp_st(s, rt2, clean_addr, size); 2996 } 2997 } else { 2998 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2999 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3000 3001 if (is_load) { 3002 TCGv_i64 tmp = tcg_temp_new_i64(); 3003 3004 /* Do not modify tcg_rt before recognizing any exception 3005 * from the second load. 3006 */ 3007 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 3008 false, false, 0, false, false); 3009 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3010 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 3011 false, false, 0, false, false); 3012 3013 tcg_gen_mov_i64(tcg_rt, tmp); 3014 } else { 3015 do_gpr_st(s, tcg_rt, clean_addr, size, 3016 false, 0, false, false); 3017 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3018 do_gpr_st(s, tcg_rt2, clean_addr, size, 3019 false, 0, false, false); 3020 } 3021 } 3022 3023 if (wback) { 3024 if (postindex) { 3025 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3026 } 3027 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3028 } 3029 } 3030 3031 /* 3032 * Load/store (immediate post-indexed) 3033 * Load/store (immediate pre-indexed) 3034 * Load/store (unscaled immediate) 3035 * 3036 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3037 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3038 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3039 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3040 * 3041 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3042 10 -> unprivileged 3043 * V = 0 -> non-vector 3044 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3045 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3046 */ 3047 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3048 int opc, 3049 int size, 3050 int rt, 3051 bool is_vector) 3052 { 3053 int rn = extract32(insn, 5, 5); 3054 int imm9 = sextract32(insn, 12, 9); 3055 int idx = extract32(insn, 10, 2); 3056 bool is_signed = false; 3057 bool is_store = false; 3058 bool is_extended = false; 3059 bool is_unpriv = (idx == 2); 3060 bool iss_valid; 3061 bool post_index; 3062 bool writeback; 3063 int memidx; 3064 3065 TCGv_i64 clean_addr, dirty_addr; 3066 3067 if (is_vector) { 3068 size |= (opc & 2) << 1; 3069 if (size > 4 || is_unpriv) { 3070 unallocated_encoding(s); 3071 return; 3072 } 3073 is_store = ((opc & 1) == 0); 3074 if (!fp_access_check(s)) { 3075 return; 3076 } 3077 } else { 3078 if (size == 3 && opc == 2) { 3079 /* PRFM - prefetch */ 3080 if (idx != 0) { 3081 unallocated_encoding(s); 3082 return; 3083 } 3084 return; 3085 } 3086 if (opc == 3 && size > 1) { 3087 unallocated_encoding(s); 3088 return; 3089 } 3090 is_store = (opc == 0); 3091 is_signed = extract32(opc, 1, 1); 3092 is_extended = (size < 3) && extract32(opc, 0, 1); 3093 } 3094 3095 switch (idx) { 3096 case 0: 3097 case 2: 3098 post_index = false; 3099 writeback = false; 3100 break; 3101 case 1: 3102 post_index = true; 3103 writeback = true; 3104 break; 3105 case 3: 3106 post_index = false; 3107 writeback = true; 3108 break; 3109 default: 3110 g_assert_not_reached(); 3111 } 3112 3113 iss_valid = !is_vector && !writeback; 3114 3115 if (rn == 31) { 3116 gen_check_sp_alignment(s); 3117 } 3118 3119 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3120 if (!post_index) { 3121 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3122 } 3123 3124 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3125 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3126 writeback || rn != 31, 3127 size, is_unpriv, memidx); 3128 3129 if (is_vector) { 3130 if (is_store) { 3131 do_fp_st(s, rt, clean_addr, size); 3132 } else { 3133 do_fp_ld(s, rt, clean_addr, size); 3134 } 3135 } else { 3136 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3137 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3138 3139 if (is_store) { 3140 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3141 iss_valid, rt, iss_sf, false); 3142 } else { 3143 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3144 is_extended, memidx, 3145 iss_valid, rt, iss_sf, false); 3146 } 3147 } 3148 3149 if (writeback) { 3150 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3151 if (post_index) { 3152 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3153 } 3154 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3155 } 3156 } 3157 3158 /* 3159 * Load/store (register offset) 3160 * 3161 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3162 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3163 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3164 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3165 * 3166 * For non-vector: 3167 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3168 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3169 * For vector: 3170 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3171 * opc<0>: 0 -> store, 1 -> load 3172 * V: 1 -> vector/simd 3173 * opt: extend encoding (see DecodeRegExtend) 3174 * S: if S=1 then scale (essentially index by sizeof(size)) 3175 * Rt: register to transfer into/out of 3176 * Rn: address register or SP for base 3177 * Rm: offset register or ZR for offset 3178 */ 3179 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3180 int opc, 3181 int size, 3182 int rt, 3183 bool is_vector) 3184 { 3185 int rn = extract32(insn, 5, 5); 3186 int shift = extract32(insn, 12, 1); 3187 int rm = extract32(insn, 16, 5); 3188 int opt = extract32(insn, 13, 3); 3189 bool is_signed = false; 3190 bool is_store = false; 3191 bool is_extended = false; 3192 3193 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3194 3195 if (extract32(opt, 1, 1) == 0) { 3196 unallocated_encoding(s); 3197 return; 3198 } 3199 3200 if (is_vector) { 3201 size |= (opc & 2) << 1; 3202 if (size > 4) { 3203 unallocated_encoding(s); 3204 return; 3205 } 3206 is_store = !extract32(opc, 0, 1); 3207 if (!fp_access_check(s)) { 3208 return; 3209 } 3210 } else { 3211 if (size == 3 && opc == 2) { 3212 /* PRFM - prefetch */ 3213 return; 3214 } 3215 if (opc == 3 && size > 1) { 3216 unallocated_encoding(s); 3217 return; 3218 } 3219 is_store = (opc == 0); 3220 is_signed = extract32(opc, 1, 1); 3221 is_extended = (size < 3) && extract32(opc, 0, 1); 3222 } 3223 3224 if (rn == 31) { 3225 gen_check_sp_alignment(s); 3226 } 3227 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3228 3229 tcg_rm = read_cpu_reg(s, rm, 1); 3230 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3231 3232 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3233 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3234 3235 if (is_vector) { 3236 if (is_store) { 3237 do_fp_st(s, rt, clean_addr, size); 3238 } else { 3239 do_fp_ld(s, rt, clean_addr, size); 3240 } 3241 } else { 3242 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3243 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3244 if (is_store) { 3245 do_gpr_st(s, tcg_rt, clean_addr, size, 3246 true, rt, iss_sf, false); 3247 } else { 3248 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3249 is_extended, true, rt, iss_sf, false); 3250 } 3251 } 3252 } 3253 3254 /* 3255 * Load/store (unsigned immediate) 3256 * 3257 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3258 * +----+-------+---+-----+-----+------------+-------+------+ 3259 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3260 * +----+-------+---+-----+-----+------------+-------+------+ 3261 * 3262 * For non-vector: 3263 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3264 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3265 * For vector: 3266 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3267 * opc<0>: 0 -> store, 1 -> load 3268 * Rn: base address register (inc SP) 3269 * Rt: target register 3270 */ 3271 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3272 int opc, 3273 int size, 3274 int rt, 3275 bool is_vector) 3276 { 3277 int rn = extract32(insn, 5, 5); 3278 unsigned int imm12 = extract32(insn, 10, 12); 3279 unsigned int offset; 3280 3281 TCGv_i64 clean_addr, dirty_addr; 3282 3283 bool is_store; 3284 bool is_signed = false; 3285 bool is_extended = false; 3286 3287 if (is_vector) { 3288 size |= (opc & 2) << 1; 3289 if (size > 4) { 3290 unallocated_encoding(s); 3291 return; 3292 } 3293 is_store = !extract32(opc, 0, 1); 3294 if (!fp_access_check(s)) { 3295 return; 3296 } 3297 } else { 3298 if (size == 3 && opc == 2) { 3299 /* PRFM - prefetch */ 3300 return; 3301 } 3302 if (opc == 3 && size > 1) { 3303 unallocated_encoding(s); 3304 return; 3305 } 3306 is_store = (opc == 0); 3307 is_signed = extract32(opc, 1, 1); 3308 is_extended = (size < 3) && extract32(opc, 0, 1); 3309 } 3310 3311 if (rn == 31) { 3312 gen_check_sp_alignment(s); 3313 } 3314 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3315 offset = imm12 << size; 3316 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3317 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3318 3319 if (is_vector) { 3320 if (is_store) { 3321 do_fp_st(s, rt, clean_addr, size); 3322 } else { 3323 do_fp_ld(s, rt, clean_addr, size); 3324 } 3325 } else { 3326 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3327 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3328 if (is_store) { 3329 do_gpr_st(s, tcg_rt, clean_addr, size, 3330 true, rt, iss_sf, false); 3331 } else { 3332 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3333 is_extended, true, rt, iss_sf, false); 3334 } 3335 } 3336 } 3337 3338 /* Atomic memory operations 3339 * 3340 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3341 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3342 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3343 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3344 * 3345 * Rt: the result register 3346 * Rn: base address or SP 3347 * Rs: the source register for the operation 3348 * V: vector flag (always 0 as of v8.3) 3349 * A: acquire flag 3350 * R: release flag 3351 */ 3352 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3353 int size, int rt, bool is_vector) 3354 { 3355 int rs = extract32(insn, 16, 5); 3356 int rn = extract32(insn, 5, 5); 3357 int o3_opc = extract32(insn, 12, 4); 3358 bool r = extract32(insn, 22, 1); 3359 bool a = extract32(insn, 23, 1); 3360 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3361 AtomicThreeOpFn *fn = NULL; 3362 MemOp mop = s->be_data | size | MO_ALIGN; 3363 3364 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3365 unallocated_encoding(s); 3366 return; 3367 } 3368 switch (o3_opc) { 3369 case 000: /* LDADD */ 3370 fn = tcg_gen_atomic_fetch_add_i64; 3371 break; 3372 case 001: /* LDCLR */ 3373 fn = tcg_gen_atomic_fetch_and_i64; 3374 break; 3375 case 002: /* LDEOR */ 3376 fn = tcg_gen_atomic_fetch_xor_i64; 3377 break; 3378 case 003: /* LDSET */ 3379 fn = tcg_gen_atomic_fetch_or_i64; 3380 break; 3381 case 004: /* LDSMAX */ 3382 fn = tcg_gen_atomic_fetch_smax_i64; 3383 mop |= MO_SIGN; 3384 break; 3385 case 005: /* LDSMIN */ 3386 fn = tcg_gen_atomic_fetch_smin_i64; 3387 mop |= MO_SIGN; 3388 break; 3389 case 006: /* LDUMAX */ 3390 fn = tcg_gen_atomic_fetch_umax_i64; 3391 break; 3392 case 007: /* LDUMIN */ 3393 fn = tcg_gen_atomic_fetch_umin_i64; 3394 break; 3395 case 010: /* SWP */ 3396 fn = tcg_gen_atomic_xchg_i64; 3397 break; 3398 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3399 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3400 rs != 31 || a != 1 || r != 0) { 3401 unallocated_encoding(s); 3402 return; 3403 } 3404 break; 3405 default: 3406 unallocated_encoding(s); 3407 return; 3408 } 3409 3410 if (rn == 31) { 3411 gen_check_sp_alignment(s); 3412 } 3413 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3414 3415 if (o3_opc == 014) { 3416 /* 3417 * LDAPR* are a special case because they are a simple load, not a 3418 * fetch-and-do-something op. 3419 * The architectural consistency requirements here are weaker than 3420 * full load-acquire (we only need "load-acquire processor consistent"), 3421 * but we choose to implement them as full LDAQ. 3422 */ 3423 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3424 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3425 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3426 return; 3427 } 3428 3429 tcg_rs = read_cpu_reg(s, rs, true); 3430 tcg_rt = cpu_reg(s, rt); 3431 3432 if (o3_opc == 1) { /* LDCLR */ 3433 tcg_gen_not_i64(tcg_rs, tcg_rs); 3434 } 3435 3436 /* The tcg atomic primitives are all full barriers. Therefore we 3437 * can ignore the Acquire and Release bits of this instruction. 3438 */ 3439 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3440 3441 if ((mop & MO_SIGN) && size != MO_64) { 3442 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3443 } 3444 } 3445 3446 /* 3447 * PAC memory operations 3448 * 3449 * 31 30 27 26 24 22 21 12 11 10 5 0 3450 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3451 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3452 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3453 * 3454 * Rt: the result register 3455 * Rn: base address or SP 3456 * V: vector flag (always 0 as of v8.3) 3457 * M: clear for key DA, set for key DB 3458 * W: pre-indexing flag 3459 * S: sign for imm9. 3460 */ 3461 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3462 int size, int rt, bool is_vector) 3463 { 3464 int rn = extract32(insn, 5, 5); 3465 bool is_wback = extract32(insn, 11, 1); 3466 bool use_key_a = !extract32(insn, 23, 1); 3467 int offset; 3468 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3469 3470 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3471 unallocated_encoding(s); 3472 return; 3473 } 3474 3475 if (rn == 31) { 3476 gen_check_sp_alignment(s); 3477 } 3478 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3479 3480 if (s->pauth_active) { 3481 if (use_key_a) { 3482 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3483 tcg_constant_i64(0)); 3484 } else { 3485 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3486 tcg_constant_i64(0)); 3487 } 3488 } 3489 3490 /* Form the 10-bit signed, scaled offset. */ 3491 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3492 offset = sextract32(offset << size, 0, 10 + size); 3493 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3494 3495 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3496 clean_addr = gen_mte_check1(s, dirty_addr, false, 3497 is_wback || rn != 31, size); 3498 3499 tcg_rt = cpu_reg(s, rt); 3500 do_gpr_ld(s, tcg_rt, clean_addr, size, 3501 /* extend */ false, /* iss_valid */ !is_wback, 3502 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3503 3504 if (is_wback) { 3505 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3506 } 3507 } 3508 3509 /* 3510 * LDAPR/STLR (unscaled immediate) 3511 * 3512 * 31 30 24 22 21 12 10 5 0 3513 * +------+-------------+-----+---+--------+-----+----+-----+ 3514 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3515 * +------+-------------+-----+---+--------+-----+----+-----+ 3516 * 3517 * Rt: source or destination register 3518 * Rn: base register 3519 * imm9: unscaled immediate offset 3520 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3521 * size: size of load/store 3522 */ 3523 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3524 { 3525 int rt = extract32(insn, 0, 5); 3526 int rn = extract32(insn, 5, 5); 3527 int offset = sextract32(insn, 12, 9); 3528 int opc = extract32(insn, 22, 2); 3529 int size = extract32(insn, 30, 2); 3530 TCGv_i64 clean_addr, dirty_addr; 3531 bool is_store = false; 3532 bool extend = false; 3533 bool iss_sf; 3534 MemOp mop; 3535 3536 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3537 unallocated_encoding(s); 3538 return; 3539 } 3540 3541 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3542 mop = size | MO_ALIGN; 3543 3544 switch (opc) { 3545 case 0: /* STLURB */ 3546 is_store = true; 3547 break; 3548 case 1: /* LDAPUR* */ 3549 break; 3550 case 2: /* LDAPURS* 64-bit variant */ 3551 if (size == 3) { 3552 unallocated_encoding(s); 3553 return; 3554 } 3555 mop |= MO_SIGN; 3556 break; 3557 case 3: /* LDAPURS* 32-bit variant */ 3558 if (size > 1) { 3559 unallocated_encoding(s); 3560 return; 3561 } 3562 mop |= MO_SIGN; 3563 extend = true; /* zero-extend 32->64 after signed load */ 3564 break; 3565 default: 3566 g_assert_not_reached(); 3567 } 3568 3569 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3570 3571 if (rn == 31) { 3572 gen_check_sp_alignment(s); 3573 } 3574 3575 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3576 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3577 clean_addr = clean_data_tbi(s, dirty_addr); 3578 3579 if (is_store) { 3580 /* Store-Release semantics */ 3581 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3582 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3583 } else { 3584 /* 3585 * Load-AcquirePC semantics; we implement as the slightly more 3586 * restrictive Load-Acquire. 3587 */ 3588 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3589 extend, true, rt, iss_sf, true); 3590 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3591 } 3592 } 3593 3594 /* Load/store register (all forms) */ 3595 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3596 { 3597 int rt = extract32(insn, 0, 5); 3598 int opc = extract32(insn, 22, 2); 3599 bool is_vector = extract32(insn, 26, 1); 3600 int size = extract32(insn, 30, 2); 3601 3602 switch (extract32(insn, 24, 2)) { 3603 case 0: 3604 if (extract32(insn, 21, 1) == 0) { 3605 /* Load/store register (unscaled immediate) 3606 * Load/store immediate pre/post-indexed 3607 * Load/store register unprivileged 3608 */ 3609 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3610 return; 3611 } 3612 switch (extract32(insn, 10, 2)) { 3613 case 0: 3614 disas_ldst_atomic(s, insn, size, rt, is_vector); 3615 return; 3616 case 2: 3617 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3618 return; 3619 default: 3620 disas_ldst_pac(s, insn, size, rt, is_vector); 3621 return; 3622 } 3623 break; 3624 case 1: 3625 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3626 return; 3627 } 3628 unallocated_encoding(s); 3629 } 3630 3631 /* AdvSIMD load/store multiple structures 3632 * 3633 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3634 * +---+---+---------------+---+-------------+--------+------+------+------+ 3635 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3636 * +---+---+---------------+---+-------------+--------+------+------+------+ 3637 * 3638 * AdvSIMD load/store multiple structures (post-indexed) 3639 * 3640 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3641 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3642 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3643 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3644 * 3645 * Rt: first (or only) SIMD&FP register to be transferred 3646 * Rn: base address or SP 3647 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3648 */ 3649 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3650 { 3651 int rt = extract32(insn, 0, 5); 3652 int rn = extract32(insn, 5, 5); 3653 int rm = extract32(insn, 16, 5); 3654 int size = extract32(insn, 10, 2); 3655 int opcode = extract32(insn, 12, 4); 3656 bool is_store = !extract32(insn, 22, 1); 3657 bool is_postidx = extract32(insn, 23, 1); 3658 bool is_q = extract32(insn, 30, 1); 3659 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3660 MemOp endian, align, mop; 3661 3662 int total; /* total bytes */ 3663 int elements; /* elements per vector */ 3664 int rpt; /* num iterations */ 3665 int selem; /* structure elements */ 3666 int r; 3667 3668 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3669 unallocated_encoding(s); 3670 return; 3671 } 3672 3673 if (!is_postidx && rm != 0) { 3674 unallocated_encoding(s); 3675 return; 3676 } 3677 3678 /* From the shared decode logic */ 3679 switch (opcode) { 3680 case 0x0: 3681 rpt = 1; 3682 selem = 4; 3683 break; 3684 case 0x2: 3685 rpt = 4; 3686 selem = 1; 3687 break; 3688 case 0x4: 3689 rpt = 1; 3690 selem = 3; 3691 break; 3692 case 0x6: 3693 rpt = 3; 3694 selem = 1; 3695 break; 3696 case 0x7: 3697 rpt = 1; 3698 selem = 1; 3699 break; 3700 case 0x8: 3701 rpt = 1; 3702 selem = 2; 3703 break; 3704 case 0xa: 3705 rpt = 2; 3706 selem = 1; 3707 break; 3708 default: 3709 unallocated_encoding(s); 3710 return; 3711 } 3712 3713 if (size == 3 && !is_q && selem != 1) { 3714 /* reserved */ 3715 unallocated_encoding(s); 3716 return; 3717 } 3718 3719 if (!fp_access_check(s)) { 3720 return; 3721 } 3722 3723 if (rn == 31) { 3724 gen_check_sp_alignment(s); 3725 } 3726 3727 /* For our purposes, bytes are always little-endian. */ 3728 endian = s->be_data; 3729 if (size == 0) { 3730 endian = MO_LE; 3731 } 3732 3733 total = rpt * selem * (is_q ? 16 : 8); 3734 tcg_rn = cpu_reg_sp(s, rn); 3735 3736 /* 3737 * Issue the MTE check vs the logical repeat count, before we 3738 * promote consecutive little-endian elements below. 3739 */ 3740 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3741 total); 3742 3743 /* 3744 * Consecutive little-endian elements from a single register 3745 * can be promoted to a larger little-endian operation. 3746 */ 3747 align = MO_ALIGN; 3748 if (selem == 1 && endian == MO_LE) { 3749 align = pow2_align(size); 3750 size = 3; 3751 } 3752 if (!s->align_mem) { 3753 align = 0; 3754 } 3755 mop = endian | size | align; 3756 3757 elements = (is_q ? 16 : 8) >> size; 3758 tcg_ebytes = tcg_constant_i64(1 << size); 3759 for (r = 0; r < rpt; r++) { 3760 int e; 3761 for (e = 0; e < elements; e++) { 3762 int xs; 3763 for (xs = 0; xs < selem; xs++) { 3764 int tt = (rt + r + xs) % 32; 3765 if (is_store) { 3766 do_vec_st(s, tt, e, clean_addr, mop); 3767 } else { 3768 do_vec_ld(s, tt, e, clean_addr, mop); 3769 } 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (!is_store) { 3776 /* For non-quad operations, setting a slice of the low 3777 * 64 bits of the register clears the high 64 bits (in 3778 * the ARM ARM pseudocode this is implicit in the fact 3779 * that 'rval' is a 64 bit wide variable). 3780 * For quad operations, we might still need to zero the 3781 * high bits of SVE. 3782 */ 3783 for (r = 0; r < rpt * selem; r++) { 3784 int tt = (rt + r) % 32; 3785 clear_vec_high(s, is_q, tt); 3786 } 3787 } 3788 3789 if (is_postidx) { 3790 if (rm == 31) { 3791 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3792 } else { 3793 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3794 } 3795 } 3796 } 3797 3798 /* AdvSIMD load/store single structure 3799 * 3800 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3801 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3802 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3803 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3804 * 3805 * AdvSIMD load/store single structure (post-indexed) 3806 * 3807 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3808 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3809 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3810 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3811 * 3812 * Rt: first (or only) SIMD&FP register to be transferred 3813 * Rn: base address or SP 3814 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3815 * index = encoded in Q:S:size dependent on size 3816 * 3817 * lane_size = encoded in R, opc 3818 * transfer width = encoded in opc, S, size 3819 */ 3820 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3821 { 3822 int rt = extract32(insn, 0, 5); 3823 int rn = extract32(insn, 5, 5); 3824 int rm = extract32(insn, 16, 5); 3825 int size = extract32(insn, 10, 2); 3826 int S = extract32(insn, 12, 1); 3827 int opc = extract32(insn, 13, 3); 3828 int R = extract32(insn, 21, 1); 3829 int is_load = extract32(insn, 22, 1); 3830 int is_postidx = extract32(insn, 23, 1); 3831 int is_q = extract32(insn, 30, 1); 3832 3833 int scale = extract32(opc, 1, 2); 3834 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3835 bool replicate = false; 3836 int index = is_q << 3 | S << 2 | size; 3837 int xs, total; 3838 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3839 MemOp mop; 3840 3841 if (extract32(insn, 31, 1)) { 3842 unallocated_encoding(s); 3843 return; 3844 } 3845 if (!is_postidx && rm != 0) { 3846 unallocated_encoding(s); 3847 return; 3848 } 3849 3850 switch (scale) { 3851 case 3: 3852 if (!is_load || S) { 3853 unallocated_encoding(s); 3854 return; 3855 } 3856 scale = size; 3857 replicate = true; 3858 break; 3859 case 0: 3860 break; 3861 case 1: 3862 if (extract32(size, 0, 1)) { 3863 unallocated_encoding(s); 3864 return; 3865 } 3866 index >>= 1; 3867 break; 3868 case 2: 3869 if (extract32(size, 1, 1)) { 3870 unallocated_encoding(s); 3871 return; 3872 } 3873 if (!extract32(size, 0, 1)) { 3874 index >>= 2; 3875 } else { 3876 if (S) { 3877 unallocated_encoding(s); 3878 return; 3879 } 3880 index >>= 3; 3881 scale = 3; 3882 } 3883 break; 3884 default: 3885 g_assert_not_reached(); 3886 } 3887 3888 if (!fp_access_check(s)) { 3889 return; 3890 } 3891 3892 if (rn == 31) { 3893 gen_check_sp_alignment(s); 3894 } 3895 3896 total = selem << scale; 3897 tcg_rn = cpu_reg_sp(s, rn); 3898 3899 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3900 total); 3901 mop = finalize_memop(s, scale); 3902 3903 tcg_ebytes = tcg_constant_i64(1 << scale); 3904 for (xs = 0; xs < selem; xs++) { 3905 if (replicate) { 3906 /* Load and replicate to all elements */ 3907 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3908 3909 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3910 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3911 (is_q + 1) * 8, vec_full_reg_size(s), 3912 tcg_tmp); 3913 } else { 3914 /* Load/store one element per register */ 3915 if (is_load) { 3916 do_vec_ld(s, rt, index, clean_addr, mop); 3917 } else { 3918 do_vec_st(s, rt, index, clean_addr, mop); 3919 } 3920 } 3921 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3922 rt = (rt + 1) % 32; 3923 } 3924 3925 if (is_postidx) { 3926 if (rm == 31) { 3927 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3928 } else { 3929 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3930 } 3931 } 3932 } 3933 3934 /* 3935 * Load/Store memory tags 3936 * 3937 * 31 30 29 24 22 21 12 10 5 0 3938 * +-----+-------------+-----+---+------+-----+------+------+ 3939 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3940 * +-----+-------------+-----+---+------+-----+------+------+ 3941 */ 3942 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3943 { 3944 int rt = extract32(insn, 0, 5); 3945 int rn = extract32(insn, 5, 5); 3946 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3947 int op2 = extract32(insn, 10, 2); 3948 int op1 = extract32(insn, 22, 2); 3949 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3950 int index = 0; 3951 TCGv_i64 addr, clean_addr, tcg_rt; 3952 3953 /* We checked insn bits [29:24,21] in the caller. */ 3954 if (extract32(insn, 30, 2) != 3) { 3955 goto do_unallocated; 3956 } 3957 3958 /* 3959 * @index is a tri-state variable which has 3 states: 3960 * < 0 : post-index, writeback 3961 * = 0 : signed offset 3962 * > 0 : pre-index, writeback 3963 */ 3964 switch (op1) { 3965 case 0: 3966 if (op2 != 0) { 3967 /* STG */ 3968 index = op2 - 2; 3969 } else { 3970 /* STZGM */ 3971 if (s->current_el == 0 || offset != 0) { 3972 goto do_unallocated; 3973 } 3974 is_mult = is_zero = true; 3975 } 3976 break; 3977 case 1: 3978 if (op2 != 0) { 3979 /* STZG */ 3980 is_zero = true; 3981 index = op2 - 2; 3982 } else { 3983 /* LDG */ 3984 is_load = true; 3985 } 3986 break; 3987 case 2: 3988 if (op2 != 0) { 3989 /* ST2G */ 3990 is_pair = true; 3991 index = op2 - 2; 3992 } else { 3993 /* STGM */ 3994 if (s->current_el == 0 || offset != 0) { 3995 goto do_unallocated; 3996 } 3997 is_mult = true; 3998 } 3999 break; 4000 case 3: 4001 if (op2 != 0) { 4002 /* STZ2G */ 4003 is_pair = is_zero = true; 4004 index = op2 - 2; 4005 } else { 4006 /* LDGM */ 4007 if (s->current_el == 0 || offset != 0) { 4008 goto do_unallocated; 4009 } 4010 is_mult = is_load = true; 4011 } 4012 break; 4013 4014 default: 4015 do_unallocated: 4016 unallocated_encoding(s); 4017 return; 4018 } 4019 4020 if (is_mult 4021 ? !dc_isar_feature(aa64_mte, s) 4022 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4023 goto do_unallocated; 4024 } 4025 4026 if (rn == 31) { 4027 gen_check_sp_alignment(s); 4028 } 4029 4030 addr = read_cpu_reg_sp(s, rn, true); 4031 if (index >= 0) { 4032 /* pre-index or signed offset */ 4033 tcg_gen_addi_i64(addr, addr, offset); 4034 } 4035 4036 if (is_mult) { 4037 tcg_rt = cpu_reg(s, rt); 4038 4039 if (is_zero) { 4040 int size = 4 << s->dcz_blocksize; 4041 4042 if (s->ata) { 4043 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4044 } 4045 /* 4046 * The non-tags portion of STZGM is mostly like DC_ZVA, 4047 * except the alignment happens before the access. 4048 */ 4049 clean_addr = clean_data_tbi(s, addr); 4050 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4051 gen_helper_dc_zva(cpu_env, clean_addr); 4052 } else if (s->ata) { 4053 if (is_load) { 4054 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4055 } else { 4056 gen_helper_stgm(cpu_env, addr, tcg_rt); 4057 } 4058 } else { 4059 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4060 int size = 4 << GMID_EL1_BS; 4061 4062 clean_addr = clean_data_tbi(s, addr); 4063 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4064 gen_probe_access(s, clean_addr, acc, size); 4065 4066 if (is_load) { 4067 /* The result tags are zeros. */ 4068 tcg_gen_movi_i64(tcg_rt, 0); 4069 } 4070 } 4071 return; 4072 } 4073 4074 if (is_load) { 4075 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4076 tcg_rt = cpu_reg(s, rt); 4077 if (s->ata) { 4078 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4079 } else { 4080 clean_addr = clean_data_tbi(s, addr); 4081 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4082 gen_address_with_allocation_tag0(tcg_rt, addr); 4083 } 4084 } else { 4085 tcg_rt = cpu_reg_sp(s, rt); 4086 if (!s->ata) { 4087 /* 4088 * For STG and ST2G, we need to check alignment and probe memory. 4089 * TODO: For STZG and STZ2G, we could rely on the stores below, 4090 * at least for system mode; user-only won't enforce alignment. 4091 */ 4092 if (is_pair) { 4093 gen_helper_st2g_stub(cpu_env, addr); 4094 } else { 4095 gen_helper_stg_stub(cpu_env, addr); 4096 } 4097 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4098 if (is_pair) { 4099 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4100 } else { 4101 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4102 } 4103 } else { 4104 if (is_pair) { 4105 gen_helper_st2g(cpu_env, addr, tcg_rt); 4106 } else { 4107 gen_helper_stg(cpu_env, addr, tcg_rt); 4108 } 4109 } 4110 } 4111 4112 if (is_zero) { 4113 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4114 TCGv_i64 tcg_zero = tcg_constant_i64(0); 4115 int mem_index = get_mem_index(s); 4116 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE; 4117 4118 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, 4119 MO_UQ | MO_ALIGN_16); 4120 for (i = 8; i < n; i += 8) { 4121 tcg_gen_addi_i64(clean_addr, clean_addr, 8); 4122 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ); 4123 } 4124 } 4125 4126 if (index != 0) { 4127 /* pre-index or post-index */ 4128 if (index < 0) { 4129 /* post-index */ 4130 tcg_gen_addi_i64(addr, addr, offset); 4131 } 4132 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4133 } 4134 } 4135 4136 /* Loads and stores */ 4137 static void disas_ldst(DisasContext *s, uint32_t insn) 4138 { 4139 switch (extract32(insn, 24, 6)) { 4140 case 0x08: /* Load/store exclusive */ 4141 disas_ldst_excl(s, insn); 4142 break; 4143 case 0x18: case 0x1c: /* Load register (literal) */ 4144 disas_ld_lit(s, insn); 4145 break; 4146 case 0x28: case 0x29: 4147 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4148 disas_ldst_pair(s, insn); 4149 break; 4150 case 0x38: case 0x39: 4151 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4152 disas_ldst_reg(s, insn); 4153 break; 4154 case 0x0c: /* AdvSIMD load/store multiple structures */ 4155 disas_ldst_multiple_struct(s, insn); 4156 break; 4157 case 0x0d: /* AdvSIMD load/store single structure */ 4158 disas_ldst_single_struct(s, insn); 4159 break; 4160 case 0x19: 4161 if (extract32(insn, 21, 1) != 0) { 4162 disas_ldst_tag(s, insn); 4163 } else if (extract32(insn, 10, 2) == 0) { 4164 disas_ldst_ldapr_stlr(s, insn); 4165 } else { 4166 unallocated_encoding(s); 4167 } 4168 break; 4169 default: 4170 unallocated_encoding(s); 4171 break; 4172 } 4173 } 4174 4175 /* PC-rel. addressing 4176 * 31 30 29 28 24 23 5 4 0 4177 * +----+-------+-----------+-------------------+------+ 4178 * | op | immlo | 1 0 0 0 0 | immhi | Rd | 4179 * +----+-------+-----------+-------------------+------+ 4180 */ 4181 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn) 4182 { 4183 unsigned int page, rd; 4184 int64_t offset; 4185 4186 page = extract32(insn, 31, 1); 4187 /* SignExtend(immhi:immlo) -> offset */ 4188 offset = sextract64(insn, 5, 19); 4189 offset = offset << 2 | extract32(insn, 29, 2); 4190 rd = extract32(insn, 0, 5); 4191 4192 if (page) { 4193 /* ADRP (page based) */ 4194 offset <<= 12; 4195 /* The page offset is ok for CF_PCREL. */ 4196 offset -= s->pc_curr & 0xfff; 4197 } 4198 4199 gen_pc_plus_diff(s, cpu_reg(s, rd), offset); 4200 } 4201 4202 /* 4203 * Add/subtract (immediate) 4204 * 4205 * 31 30 29 28 23 22 21 10 9 5 4 0 4206 * +--+--+--+-------------+--+-------------+-----+-----+ 4207 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd | 4208 * +--+--+--+-------------+--+-------------+-----+-----+ 4209 * 4210 * sf: 0 -> 32bit, 1 -> 64bit 4211 * op: 0 -> add , 1 -> sub 4212 * S: 1 -> set flags 4213 * sh: 1 -> LSL imm by 12 4214 */ 4215 static void disas_add_sub_imm(DisasContext *s, uint32_t insn) 4216 { 4217 int rd = extract32(insn, 0, 5); 4218 int rn = extract32(insn, 5, 5); 4219 uint64_t imm = extract32(insn, 10, 12); 4220 bool shift = extract32(insn, 22, 1); 4221 bool setflags = extract32(insn, 29, 1); 4222 bool sub_op = extract32(insn, 30, 1); 4223 bool is_64bit = extract32(insn, 31, 1); 4224 4225 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 4226 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd); 4227 TCGv_i64 tcg_result; 4228 4229 if (shift) { 4230 imm <<= 12; 4231 } 4232 4233 tcg_result = tcg_temp_new_i64(); 4234 if (!setflags) { 4235 if (sub_op) { 4236 tcg_gen_subi_i64(tcg_result, tcg_rn, imm); 4237 } else { 4238 tcg_gen_addi_i64(tcg_result, tcg_rn, imm); 4239 } 4240 } else { 4241 TCGv_i64 tcg_imm = tcg_constant_i64(imm); 4242 if (sub_op) { 4243 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4244 } else { 4245 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4246 } 4247 } 4248 4249 if (is_64bit) { 4250 tcg_gen_mov_i64(tcg_rd, tcg_result); 4251 } else { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4253 } 4254 } 4255 4256 /* 4257 * Add/subtract (immediate, with tags) 4258 * 4259 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0 4260 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4261 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd | 4262 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4263 * 4264 * op: 0 -> add, 1 -> sub 4265 */ 4266 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn) 4267 { 4268 int rd = extract32(insn, 0, 5); 4269 int rn = extract32(insn, 5, 5); 4270 int uimm4 = extract32(insn, 10, 4); 4271 int uimm6 = extract32(insn, 16, 6); 4272 bool sub_op = extract32(insn, 30, 1); 4273 TCGv_i64 tcg_rn, tcg_rd; 4274 int imm; 4275 4276 /* Test all of sf=1, S=0, o2=0, o3=0. */ 4277 if ((insn & 0xa040c000u) != 0x80000000u || 4278 !dc_isar_feature(aa64_mte_insn_reg, s)) { 4279 unallocated_encoding(s); 4280 return; 4281 } 4282 4283 imm = uimm6 << LOG2_TAG_GRANULE; 4284 if (sub_op) { 4285 imm = -imm; 4286 } 4287 4288 tcg_rn = cpu_reg_sp(s, rn); 4289 tcg_rd = cpu_reg_sp(s, rd); 4290 4291 if (s->ata) { 4292 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4293 tcg_constant_i32(imm), 4294 tcg_constant_i32(uimm4)); 4295 } else { 4296 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4297 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4298 } 4299 } 4300 4301 /* The input should be a value in the bottom e bits (with higher 4302 * bits zero); returns that value replicated into every element 4303 * of size e in a 64 bit integer. 4304 */ 4305 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4306 { 4307 assert(e != 0); 4308 while (e < 64) { 4309 mask |= mask << e; 4310 e *= 2; 4311 } 4312 return mask; 4313 } 4314 4315 /* Return a value with the bottom len bits set (where 0 < len <= 64) */ 4316 static inline uint64_t bitmask64(unsigned int length) 4317 { 4318 assert(length > 0 && length <= 64); 4319 return ~0ULL >> (64 - length); 4320 } 4321 4322 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we 4323 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4324 * value (ie should cause a guest UNDEF exception), and true if they are 4325 * valid, in which case the decoded bit pattern is written to result. 4326 */ 4327 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4328 unsigned int imms, unsigned int immr) 4329 { 4330 uint64_t mask; 4331 unsigned e, levels, s, r; 4332 int len; 4333 4334 assert(immn < 2 && imms < 64 && immr < 64); 4335 4336 /* The bit patterns we create here are 64 bit patterns which 4337 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4338 * 64 bits each. Each element contains the same value: a run 4339 * of between 1 and e-1 non-zero bits, rotated within the 4340 * element by between 0 and e-1 bits. 4341 * 4342 * The element size and run length are encoded into immn (1 bit) 4343 * and imms (6 bits) as follows: 4344 * 64 bit elements: immn = 1, imms = <length of run - 1> 4345 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4346 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4347 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4348 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4349 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4350 * Notice that immn = 0, imms = 11111x is the only combination 4351 * not covered by one of the above options; this is reserved. 4352 * Further, <length of run - 1> all-ones is a reserved pattern. 4353 * 4354 * In all cases the rotation is by immr % e (and immr is 6 bits). 4355 */ 4356 4357 /* First determine the element size */ 4358 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4359 if (len < 1) { 4360 /* This is the immn == 0, imms == 0x11111x case */ 4361 return false; 4362 } 4363 e = 1 << len; 4364 4365 levels = e - 1; 4366 s = imms & levels; 4367 r = immr & levels; 4368 4369 if (s == levels) { 4370 /* <length of run - 1> mustn't be all-ones. */ 4371 return false; 4372 } 4373 4374 /* Create the value of one element: s+1 set bits rotated 4375 * by r within the element (which is e bits wide)... 4376 */ 4377 mask = bitmask64(s + 1); 4378 if (r) { 4379 mask = (mask >> r) | (mask << (e - r)); 4380 mask &= bitmask64(e); 4381 } 4382 /* ...then replicate the element over the whole 64 bit value */ 4383 mask = bitfield_replicate(mask, e); 4384 *result = mask; 4385 return true; 4386 } 4387 4388 /* Logical (immediate) 4389 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4390 * +----+-----+-------------+---+------+------+------+------+ 4391 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd | 4392 * +----+-----+-------------+---+------+------+------+------+ 4393 */ 4394 static void disas_logic_imm(DisasContext *s, uint32_t insn) 4395 { 4396 unsigned int sf, opc, is_n, immr, imms, rn, rd; 4397 TCGv_i64 tcg_rd, tcg_rn; 4398 uint64_t wmask; 4399 bool is_and = false; 4400 4401 sf = extract32(insn, 31, 1); 4402 opc = extract32(insn, 29, 2); 4403 is_n = extract32(insn, 22, 1); 4404 immr = extract32(insn, 16, 6); 4405 imms = extract32(insn, 10, 6); 4406 rn = extract32(insn, 5, 5); 4407 rd = extract32(insn, 0, 5); 4408 4409 if (!sf && is_n) { 4410 unallocated_encoding(s); 4411 return; 4412 } 4413 4414 if (opc == 0x3) { /* ANDS */ 4415 tcg_rd = cpu_reg(s, rd); 4416 } else { 4417 tcg_rd = cpu_reg_sp(s, rd); 4418 } 4419 tcg_rn = cpu_reg(s, rn); 4420 4421 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) { 4422 /* some immediate field values are reserved */ 4423 unallocated_encoding(s); 4424 return; 4425 } 4426 4427 if (!sf) { 4428 wmask &= 0xffffffff; 4429 } 4430 4431 switch (opc) { 4432 case 0x3: /* ANDS */ 4433 case 0x0: /* AND */ 4434 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask); 4435 is_and = true; 4436 break; 4437 case 0x1: /* ORR */ 4438 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask); 4439 break; 4440 case 0x2: /* EOR */ 4441 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask); 4442 break; 4443 default: 4444 assert(FALSE); /* must handle all above */ 4445 break; 4446 } 4447 4448 if (!sf && !is_and) { 4449 /* zero extend final result; we know we can skip this for AND 4450 * since the immediate had the high 32 bits clear. 4451 */ 4452 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4453 } 4454 4455 if (opc == 3) { /* ANDS */ 4456 gen_logic_CC(sf, tcg_rd); 4457 } 4458 } 4459 4460 /* 4461 * Move wide (immediate) 4462 * 4463 * 31 30 29 28 23 22 21 20 5 4 0 4464 * +--+-----+-------------+-----+----------------+------+ 4465 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd | 4466 * +--+-----+-------------+-----+----------------+------+ 4467 * 4468 * sf: 0 -> 32 bit, 1 -> 64 bit 4469 * opc: 00 -> N, 10 -> Z, 11 -> K 4470 * hw: shift/16 (0,16, and sf only 32, 48) 4471 */ 4472 static void disas_movw_imm(DisasContext *s, uint32_t insn) 4473 { 4474 int rd = extract32(insn, 0, 5); 4475 uint64_t imm = extract32(insn, 5, 16); 4476 int sf = extract32(insn, 31, 1); 4477 int opc = extract32(insn, 29, 2); 4478 int pos = extract32(insn, 21, 2) << 4; 4479 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4480 4481 if (!sf && (pos >= 32)) { 4482 unallocated_encoding(s); 4483 return; 4484 } 4485 4486 switch (opc) { 4487 case 0: /* MOVN */ 4488 case 2: /* MOVZ */ 4489 imm <<= pos; 4490 if (opc == 0) { 4491 imm = ~imm; 4492 } 4493 if (!sf) { 4494 imm &= 0xffffffffu; 4495 } 4496 tcg_gen_movi_i64(tcg_rd, imm); 4497 break; 4498 case 3: /* MOVK */ 4499 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16); 4500 if (!sf) { 4501 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4502 } 4503 break; 4504 default: 4505 unallocated_encoding(s); 4506 break; 4507 } 4508 } 4509 4510 /* Bitfield 4511 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4512 * +----+-----+-------------+---+------+------+------+------+ 4513 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd | 4514 * +----+-----+-------------+---+------+------+------+------+ 4515 */ 4516 static void disas_bitfield(DisasContext *s, uint32_t insn) 4517 { 4518 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len; 4519 TCGv_i64 tcg_rd, tcg_tmp; 4520 4521 sf = extract32(insn, 31, 1); 4522 opc = extract32(insn, 29, 2); 4523 n = extract32(insn, 22, 1); 4524 ri = extract32(insn, 16, 6); 4525 si = extract32(insn, 10, 6); 4526 rn = extract32(insn, 5, 5); 4527 rd = extract32(insn, 0, 5); 4528 bitsize = sf ? 64 : 32; 4529 4530 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) { 4531 unallocated_encoding(s); 4532 return; 4533 } 4534 4535 tcg_rd = cpu_reg(s, rd); 4536 4537 /* Suppress the zero-extend for !sf. Since RI and SI are constrained 4538 to be smaller than bitsize, we'll never reference data outside the 4539 low 32-bits anyway. */ 4540 tcg_tmp = read_cpu_reg(s, rn, 1); 4541 4542 /* Recognize simple(r) extractions. */ 4543 if (si >= ri) { 4544 /* Wd<s-r:0> = Wn<s:r> */ 4545 len = (si - ri) + 1; 4546 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */ 4547 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4548 goto done; 4549 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */ 4550 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4551 return; 4552 } 4553 /* opc == 1, BFXIL fall through to deposit */ 4554 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4555 pos = 0; 4556 } else { 4557 /* Handle the ri > si case with a deposit 4558 * Wd<32+s-r,32-r> = Wn<s:0> 4559 */ 4560 len = si + 1; 4561 pos = (bitsize - ri) & (bitsize - 1); 4562 } 4563 4564 if (opc == 0 && len < ri) { 4565 /* SBFM: sign extend the destination field from len to fill 4566 the balance of the word. Let the deposit below insert all 4567 of those sign bits. */ 4568 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4569 len = ri; 4570 } 4571 4572 if (opc == 1) { /* BFM, BFXIL */ 4573 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4574 } else { 4575 /* SBFM or UBFM: We start with zero, and we haven't modified 4576 any bits outside bitsize, therefore the zero-extension 4577 below is unneeded. */ 4578 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4579 return; 4580 } 4581 4582 done: 4583 if (!sf) { /* zero extend final result */ 4584 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4585 } 4586 } 4587 4588 /* Extract 4589 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0 4590 * +----+------+-------------+---+----+------+--------+------+------+ 4591 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd | 4592 * +----+------+-------------+---+----+------+--------+------+------+ 4593 */ 4594 static void disas_extract(DisasContext *s, uint32_t insn) 4595 { 4596 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0; 4597 4598 sf = extract32(insn, 31, 1); 4599 n = extract32(insn, 22, 1); 4600 rm = extract32(insn, 16, 5); 4601 imm = extract32(insn, 10, 6); 4602 rn = extract32(insn, 5, 5); 4603 rd = extract32(insn, 0, 5); 4604 op21 = extract32(insn, 29, 2); 4605 op0 = extract32(insn, 21, 1); 4606 bitsize = sf ? 64 : 32; 4607 4608 if (sf != n || op21 || op0 || imm >= bitsize) { 4609 unallocated_encoding(s); 4610 } else { 4611 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4612 4613 tcg_rd = cpu_reg(s, rd); 4614 4615 if (unlikely(imm == 0)) { 4616 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4617 * so an extract from bit 0 is a special case. 4618 */ 4619 if (sf) { 4620 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm)); 4621 } else { 4622 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm)); 4623 } 4624 } else { 4625 tcg_rm = cpu_reg(s, rm); 4626 tcg_rn = cpu_reg(s, rn); 4627 4628 if (sf) { 4629 /* Specialization to ROR happens in EXTRACT2. */ 4630 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm); 4631 } else { 4632 TCGv_i32 t0 = tcg_temp_new_i32(); 4633 4634 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4635 if (rm == rn) { 4636 tcg_gen_rotri_i32(t0, t0, imm); 4637 } else { 4638 TCGv_i32 t1 = tcg_temp_new_i32(); 4639 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4640 tcg_gen_extract2_i32(t0, t0, t1, imm); 4641 } 4642 tcg_gen_extu_i32_i64(tcg_rd, t0); 4643 } 4644 } 4645 } 4646 } 4647 4648 /* Data processing - immediate */ 4649 static void disas_data_proc_imm(DisasContext *s, uint32_t insn) 4650 { 4651 switch (extract32(insn, 23, 6)) { 4652 case 0x20: case 0x21: /* PC-rel. addressing */ 4653 disas_pc_rel_adr(s, insn); 4654 break; 4655 case 0x22: /* Add/subtract (immediate) */ 4656 disas_add_sub_imm(s, insn); 4657 break; 4658 case 0x23: /* Add/subtract (immediate, with tags) */ 4659 disas_add_sub_imm_with_tags(s, insn); 4660 break; 4661 case 0x24: /* Logical (immediate) */ 4662 disas_logic_imm(s, insn); 4663 break; 4664 case 0x25: /* Move wide (immediate) */ 4665 disas_movw_imm(s, insn); 4666 break; 4667 case 0x26: /* Bitfield */ 4668 disas_bitfield(s, insn); 4669 break; 4670 case 0x27: /* Extract */ 4671 disas_extract(s, insn); 4672 break; 4673 default: 4674 unallocated_encoding(s); 4675 break; 4676 } 4677 } 4678 4679 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4680 * Note that it is the caller's responsibility to ensure that the 4681 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4682 * mandated semantics for out of range shifts. 4683 */ 4684 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4685 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4686 { 4687 switch (shift_type) { 4688 case A64_SHIFT_TYPE_LSL: 4689 tcg_gen_shl_i64(dst, src, shift_amount); 4690 break; 4691 case A64_SHIFT_TYPE_LSR: 4692 tcg_gen_shr_i64(dst, src, shift_amount); 4693 break; 4694 case A64_SHIFT_TYPE_ASR: 4695 if (!sf) { 4696 tcg_gen_ext32s_i64(dst, src); 4697 } 4698 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4699 break; 4700 case A64_SHIFT_TYPE_ROR: 4701 if (sf) { 4702 tcg_gen_rotr_i64(dst, src, shift_amount); 4703 } else { 4704 TCGv_i32 t0, t1; 4705 t0 = tcg_temp_new_i32(); 4706 t1 = tcg_temp_new_i32(); 4707 tcg_gen_extrl_i64_i32(t0, src); 4708 tcg_gen_extrl_i64_i32(t1, shift_amount); 4709 tcg_gen_rotr_i32(t0, t0, t1); 4710 tcg_gen_extu_i32_i64(dst, t0); 4711 } 4712 break; 4713 default: 4714 assert(FALSE); /* all shift types should be handled */ 4715 break; 4716 } 4717 4718 if (!sf) { /* zero extend final result */ 4719 tcg_gen_ext32u_i64(dst, dst); 4720 } 4721 } 4722 4723 /* Shift a TCGv src by immediate, put result in dst. 4724 * The shift amount must be in range (this should always be true as the 4725 * relevant instructions will UNDEF on bad shift immediates). 4726 */ 4727 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4728 enum a64_shift_type shift_type, unsigned int shift_i) 4729 { 4730 assert(shift_i < (sf ? 64 : 32)); 4731 4732 if (shift_i == 0) { 4733 tcg_gen_mov_i64(dst, src); 4734 } else { 4735 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4736 } 4737 } 4738 4739 /* Logical (shifted register) 4740 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4741 * +----+-----+-----------+-------+---+------+--------+------+------+ 4742 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4743 * +----+-----+-----------+-------+---+------+--------+------+------+ 4744 */ 4745 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4746 { 4747 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4748 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4749 4750 sf = extract32(insn, 31, 1); 4751 opc = extract32(insn, 29, 2); 4752 shift_type = extract32(insn, 22, 2); 4753 invert = extract32(insn, 21, 1); 4754 rm = extract32(insn, 16, 5); 4755 shift_amount = extract32(insn, 10, 6); 4756 rn = extract32(insn, 5, 5); 4757 rd = extract32(insn, 0, 5); 4758 4759 if (!sf && (shift_amount & (1 << 5))) { 4760 unallocated_encoding(s); 4761 return; 4762 } 4763 4764 tcg_rd = cpu_reg(s, rd); 4765 4766 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4767 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4768 * register-register MOV and MVN, so it is worth special casing. 4769 */ 4770 tcg_rm = cpu_reg(s, rm); 4771 if (invert) { 4772 tcg_gen_not_i64(tcg_rd, tcg_rm); 4773 if (!sf) { 4774 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4775 } 4776 } else { 4777 if (sf) { 4778 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4779 } else { 4780 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4781 } 4782 } 4783 return; 4784 } 4785 4786 tcg_rm = read_cpu_reg(s, rm, sf); 4787 4788 if (shift_amount) { 4789 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4790 } 4791 4792 tcg_rn = cpu_reg(s, rn); 4793 4794 switch (opc | (invert << 2)) { 4795 case 0: /* AND */ 4796 case 3: /* ANDS */ 4797 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4798 break; 4799 case 1: /* ORR */ 4800 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4801 break; 4802 case 2: /* EOR */ 4803 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4804 break; 4805 case 4: /* BIC */ 4806 case 7: /* BICS */ 4807 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4808 break; 4809 case 5: /* ORN */ 4810 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4811 break; 4812 case 6: /* EON */ 4813 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4814 break; 4815 default: 4816 assert(FALSE); 4817 break; 4818 } 4819 4820 if (!sf) { 4821 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4822 } 4823 4824 if (opc == 3) { 4825 gen_logic_CC(sf, tcg_rd); 4826 } 4827 } 4828 4829 /* 4830 * Add/subtract (extended register) 4831 * 4832 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4833 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4834 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4835 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4836 * 4837 * sf: 0 -> 32bit, 1 -> 64bit 4838 * op: 0 -> add , 1 -> sub 4839 * S: 1 -> set flags 4840 * opt: 00 4841 * option: extension type (see DecodeRegExtend) 4842 * imm3: optional shift to Rm 4843 * 4844 * Rd = Rn + LSL(extend(Rm), amount) 4845 */ 4846 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4847 { 4848 int rd = extract32(insn, 0, 5); 4849 int rn = extract32(insn, 5, 5); 4850 int imm3 = extract32(insn, 10, 3); 4851 int option = extract32(insn, 13, 3); 4852 int rm = extract32(insn, 16, 5); 4853 int opt = extract32(insn, 22, 2); 4854 bool setflags = extract32(insn, 29, 1); 4855 bool sub_op = extract32(insn, 30, 1); 4856 bool sf = extract32(insn, 31, 1); 4857 4858 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4859 TCGv_i64 tcg_rd; 4860 TCGv_i64 tcg_result; 4861 4862 if (imm3 > 4 || opt != 0) { 4863 unallocated_encoding(s); 4864 return; 4865 } 4866 4867 /* non-flag setting ops may use SP */ 4868 if (!setflags) { 4869 tcg_rd = cpu_reg_sp(s, rd); 4870 } else { 4871 tcg_rd = cpu_reg(s, rd); 4872 } 4873 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4874 4875 tcg_rm = read_cpu_reg(s, rm, sf); 4876 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4877 4878 tcg_result = tcg_temp_new_i64(); 4879 4880 if (!setflags) { 4881 if (sub_op) { 4882 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4883 } else { 4884 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4885 } 4886 } else { 4887 if (sub_op) { 4888 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4889 } else { 4890 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4891 } 4892 } 4893 4894 if (sf) { 4895 tcg_gen_mov_i64(tcg_rd, tcg_result); 4896 } else { 4897 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4898 } 4899 } 4900 4901 /* 4902 * Add/subtract (shifted register) 4903 * 4904 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4905 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4906 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4907 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4908 * 4909 * sf: 0 -> 32bit, 1 -> 64bit 4910 * op: 0 -> add , 1 -> sub 4911 * S: 1 -> set flags 4912 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4913 * imm6: Shift amount to apply to Rm before the add/sub 4914 */ 4915 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4916 { 4917 int rd = extract32(insn, 0, 5); 4918 int rn = extract32(insn, 5, 5); 4919 int imm6 = extract32(insn, 10, 6); 4920 int rm = extract32(insn, 16, 5); 4921 int shift_type = extract32(insn, 22, 2); 4922 bool setflags = extract32(insn, 29, 1); 4923 bool sub_op = extract32(insn, 30, 1); 4924 bool sf = extract32(insn, 31, 1); 4925 4926 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4927 TCGv_i64 tcg_rn, tcg_rm; 4928 TCGv_i64 tcg_result; 4929 4930 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4931 unallocated_encoding(s); 4932 return; 4933 } 4934 4935 tcg_rn = read_cpu_reg(s, rn, sf); 4936 tcg_rm = read_cpu_reg(s, rm, sf); 4937 4938 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4939 4940 tcg_result = tcg_temp_new_i64(); 4941 4942 if (!setflags) { 4943 if (sub_op) { 4944 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4945 } else { 4946 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4947 } 4948 } else { 4949 if (sub_op) { 4950 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4951 } else { 4952 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4953 } 4954 } 4955 4956 if (sf) { 4957 tcg_gen_mov_i64(tcg_rd, tcg_result); 4958 } else { 4959 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4960 } 4961 } 4962 4963 /* Data-processing (3 source) 4964 * 4965 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4966 * +--+------+-----------+------+------+----+------+------+------+ 4967 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4968 * +--+------+-----------+------+------+----+------+------+------+ 4969 */ 4970 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4971 { 4972 int rd = extract32(insn, 0, 5); 4973 int rn = extract32(insn, 5, 5); 4974 int ra = extract32(insn, 10, 5); 4975 int rm = extract32(insn, 16, 5); 4976 int op_id = (extract32(insn, 29, 3) << 4) | 4977 (extract32(insn, 21, 3) << 1) | 4978 extract32(insn, 15, 1); 4979 bool sf = extract32(insn, 31, 1); 4980 bool is_sub = extract32(op_id, 0, 1); 4981 bool is_high = extract32(op_id, 2, 1); 4982 bool is_signed = false; 4983 TCGv_i64 tcg_op1; 4984 TCGv_i64 tcg_op2; 4985 TCGv_i64 tcg_tmp; 4986 4987 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4988 switch (op_id) { 4989 case 0x42: /* SMADDL */ 4990 case 0x43: /* SMSUBL */ 4991 case 0x44: /* SMULH */ 4992 is_signed = true; 4993 break; 4994 case 0x0: /* MADD (32bit) */ 4995 case 0x1: /* MSUB (32bit) */ 4996 case 0x40: /* MADD (64bit) */ 4997 case 0x41: /* MSUB (64bit) */ 4998 case 0x4a: /* UMADDL */ 4999 case 0x4b: /* UMSUBL */ 5000 case 0x4c: /* UMULH */ 5001 break; 5002 default: 5003 unallocated_encoding(s); 5004 return; 5005 } 5006 5007 if (is_high) { 5008 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5009 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5010 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5011 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5012 5013 if (is_signed) { 5014 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5015 } else { 5016 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5017 } 5018 return; 5019 } 5020 5021 tcg_op1 = tcg_temp_new_i64(); 5022 tcg_op2 = tcg_temp_new_i64(); 5023 tcg_tmp = tcg_temp_new_i64(); 5024 5025 if (op_id < 0x42) { 5026 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5027 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5028 } else { 5029 if (is_signed) { 5030 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5031 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5032 } else { 5033 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5034 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5035 } 5036 } 5037 5038 if (ra == 31 && !is_sub) { 5039 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5040 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5041 } else { 5042 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5043 if (is_sub) { 5044 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5045 } else { 5046 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5047 } 5048 } 5049 5050 if (!sf) { 5051 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5052 } 5053 } 5054 5055 /* Add/subtract (with carry) 5056 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5057 * +--+--+--+------------------------+------+-------------+------+-----+ 5058 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5059 * +--+--+--+------------------------+------+-------------+------+-----+ 5060 */ 5061 5062 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5063 { 5064 unsigned int sf, op, setflags, rm, rn, rd; 5065 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5066 5067 sf = extract32(insn, 31, 1); 5068 op = extract32(insn, 30, 1); 5069 setflags = extract32(insn, 29, 1); 5070 rm = extract32(insn, 16, 5); 5071 rn = extract32(insn, 5, 5); 5072 rd = extract32(insn, 0, 5); 5073 5074 tcg_rd = cpu_reg(s, rd); 5075 tcg_rn = cpu_reg(s, rn); 5076 5077 if (op) { 5078 tcg_y = tcg_temp_new_i64(); 5079 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5080 } else { 5081 tcg_y = cpu_reg(s, rm); 5082 } 5083 5084 if (setflags) { 5085 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5086 } else { 5087 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5088 } 5089 } 5090 5091 /* 5092 * Rotate right into flags 5093 * 31 30 29 21 15 10 5 4 0 5094 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5095 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5096 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5097 */ 5098 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5099 { 5100 int mask = extract32(insn, 0, 4); 5101 int o2 = extract32(insn, 4, 1); 5102 int rn = extract32(insn, 5, 5); 5103 int imm6 = extract32(insn, 15, 6); 5104 int sf_op_s = extract32(insn, 29, 3); 5105 TCGv_i64 tcg_rn; 5106 TCGv_i32 nzcv; 5107 5108 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5109 unallocated_encoding(s); 5110 return; 5111 } 5112 5113 tcg_rn = read_cpu_reg(s, rn, 1); 5114 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5115 5116 nzcv = tcg_temp_new_i32(); 5117 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5118 5119 if (mask & 8) { /* N */ 5120 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5121 } 5122 if (mask & 4) { /* Z */ 5123 tcg_gen_not_i32(cpu_ZF, nzcv); 5124 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5125 } 5126 if (mask & 2) { /* C */ 5127 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5128 } 5129 if (mask & 1) { /* V */ 5130 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5131 } 5132 } 5133 5134 /* 5135 * Evaluate into flags 5136 * 31 30 29 21 15 14 10 5 4 0 5137 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5138 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5139 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5140 */ 5141 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5142 { 5143 int o3_mask = extract32(insn, 0, 5); 5144 int rn = extract32(insn, 5, 5); 5145 int o2 = extract32(insn, 15, 6); 5146 int sz = extract32(insn, 14, 1); 5147 int sf_op_s = extract32(insn, 29, 3); 5148 TCGv_i32 tmp; 5149 int shift; 5150 5151 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5152 !dc_isar_feature(aa64_condm_4, s)) { 5153 unallocated_encoding(s); 5154 return; 5155 } 5156 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5157 5158 tmp = tcg_temp_new_i32(); 5159 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5160 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5161 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5162 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5163 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5164 } 5165 5166 /* Conditional compare (immediate / register) 5167 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5168 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5169 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5170 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5171 * [1] y [0] [0] 5172 */ 5173 static void disas_cc(DisasContext *s, uint32_t insn) 5174 { 5175 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5176 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5177 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5178 DisasCompare c; 5179 5180 if (!extract32(insn, 29, 1)) { 5181 unallocated_encoding(s); 5182 return; 5183 } 5184 if (insn & (1 << 10 | 1 << 4)) { 5185 unallocated_encoding(s); 5186 return; 5187 } 5188 sf = extract32(insn, 31, 1); 5189 op = extract32(insn, 30, 1); 5190 is_imm = extract32(insn, 11, 1); 5191 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5192 cond = extract32(insn, 12, 4); 5193 rn = extract32(insn, 5, 5); 5194 nzcv = extract32(insn, 0, 4); 5195 5196 /* Set T0 = !COND. */ 5197 tcg_t0 = tcg_temp_new_i32(); 5198 arm_test_cc(&c, cond); 5199 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5200 5201 /* Load the arguments for the new comparison. */ 5202 if (is_imm) { 5203 tcg_y = tcg_temp_new_i64(); 5204 tcg_gen_movi_i64(tcg_y, y); 5205 } else { 5206 tcg_y = cpu_reg(s, y); 5207 } 5208 tcg_rn = cpu_reg(s, rn); 5209 5210 /* Set the flags for the new comparison. */ 5211 tcg_tmp = tcg_temp_new_i64(); 5212 if (op) { 5213 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5214 } else { 5215 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5216 } 5217 5218 /* If COND was false, force the flags to #nzcv. Compute two masks 5219 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5220 * For tcg hosts that support ANDC, we can make do with just T1. 5221 * In either case, allow the tcg optimizer to delete any unused mask. 5222 */ 5223 tcg_t1 = tcg_temp_new_i32(); 5224 tcg_t2 = tcg_temp_new_i32(); 5225 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5226 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5227 5228 if (nzcv & 8) { /* N */ 5229 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5230 } else { 5231 if (TCG_TARGET_HAS_andc_i32) { 5232 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5233 } else { 5234 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5235 } 5236 } 5237 if (nzcv & 4) { /* Z */ 5238 if (TCG_TARGET_HAS_andc_i32) { 5239 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5240 } else { 5241 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5242 } 5243 } else { 5244 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5245 } 5246 if (nzcv & 2) { /* C */ 5247 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5248 } else { 5249 if (TCG_TARGET_HAS_andc_i32) { 5250 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5251 } else { 5252 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5253 } 5254 } 5255 if (nzcv & 1) { /* V */ 5256 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5257 } else { 5258 if (TCG_TARGET_HAS_andc_i32) { 5259 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5260 } else { 5261 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5262 } 5263 } 5264 } 5265 5266 /* Conditional select 5267 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5268 * +----+----+---+-----------------+------+------+-----+------+------+ 5269 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5270 * +----+----+---+-----------------+------+------+-----+------+------+ 5271 */ 5272 static void disas_cond_select(DisasContext *s, uint32_t insn) 5273 { 5274 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5275 TCGv_i64 tcg_rd, zero; 5276 DisasCompare64 c; 5277 5278 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5279 /* S == 1 or op2<1> == 1 */ 5280 unallocated_encoding(s); 5281 return; 5282 } 5283 sf = extract32(insn, 31, 1); 5284 else_inv = extract32(insn, 30, 1); 5285 rm = extract32(insn, 16, 5); 5286 cond = extract32(insn, 12, 4); 5287 else_inc = extract32(insn, 10, 1); 5288 rn = extract32(insn, 5, 5); 5289 rd = extract32(insn, 0, 5); 5290 5291 tcg_rd = cpu_reg(s, rd); 5292 5293 a64_test_cc(&c, cond); 5294 zero = tcg_constant_i64(0); 5295 5296 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5297 /* CSET & CSETM. */ 5298 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5299 if (else_inv) { 5300 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5301 } 5302 } else { 5303 TCGv_i64 t_true = cpu_reg(s, rn); 5304 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5305 if (else_inv && else_inc) { 5306 tcg_gen_neg_i64(t_false, t_false); 5307 } else if (else_inv) { 5308 tcg_gen_not_i64(t_false, t_false); 5309 } else if (else_inc) { 5310 tcg_gen_addi_i64(t_false, t_false, 1); 5311 } 5312 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5313 } 5314 5315 if (!sf) { 5316 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5317 } 5318 } 5319 5320 static void handle_clz(DisasContext *s, unsigned int sf, 5321 unsigned int rn, unsigned int rd) 5322 { 5323 TCGv_i64 tcg_rd, tcg_rn; 5324 tcg_rd = cpu_reg(s, rd); 5325 tcg_rn = cpu_reg(s, rn); 5326 5327 if (sf) { 5328 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5329 } else { 5330 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5331 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5332 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5333 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5334 } 5335 } 5336 5337 static void handle_cls(DisasContext *s, unsigned int sf, 5338 unsigned int rn, unsigned int rd) 5339 { 5340 TCGv_i64 tcg_rd, tcg_rn; 5341 tcg_rd = cpu_reg(s, rd); 5342 tcg_rn = cpu_reg(s, rn); 5343 5344 if (sf) { 5345 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5346 } else { 5347 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5348 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5349 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5350 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5351 } 5352 } 5353 5354 static void handle_rbit(DisasContext *s, unsigned int sf, 5355 unsigned int rn, unsigned int rd) 5356 { 5357 TCGv_i64 tcg_rd, tcg_rn; 5358 tcg_rd = cpu_reg(s, rd); 5359 tcg_rn = cpu_reg(s, rn); 5360 5361 if (sf) { 5362 gen_helper_rbit64(tcg_rd, tcg_rn); 5363 } else { 5364 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5365 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5366 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5367 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5368 } 5369 } 5370 5371 /* REV with sf==1, opcode==3 ("REV64") */ 5372 static void handle_rev64(DisasContext *s, unsigned int sf, 5373 unsigned int rn, unsigned int rd) 5374 { 5375 if (!sf) { 5376 unallocated_encoding(s); 5377 return; 5378 } 5379 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5380 } 5381 5382 /* REV with sf==0, opcode==2 5383 * REV32 (sf==1, opcode==2) 5384 */ 5385 static void handle_rev32(DisasContext *s, unsigned int sf, 5386 unsigned int rn, unsigned int rd) 5387 { 5388 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5389 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5390 5391 if (sf) { 5392 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5393 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5394 } else { 5395 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5396 } 5397 } 5398 5399 /* REV16 (opcode==1) */ 5400 static void handle_rev16(DisasContext *s, unsigned int sf, 5401 unsigned int rn, unsigned int rd) 5402 { 5403 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5404 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5405 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5406 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5407 5408 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5409 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5410 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5411 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5412 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5413 } 5414 5415 /* Data-processing (1 source) 5416 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5417 * +----+---+---+-----------------+---------+--------+------+------+ 5418 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5419 * +----+---+---+-----------------+---------+--------+------+------+ 5420 */ 5421 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5422 { 5423 unsigned int sf, opcode, opcode2, rn, rd; 5424 TCGv_i64 tcg_rd; 5425 5426 if (extract32(insn, 29, 1)) { 5427 unallocated_encoding(s); 5428 return; 5429 } 5430 5431 sf = extract32(insn, 31, 1); 5432 opcode = extract32(insn, 10, 6); 5433 opcode2 = extract32(insn, 16, 5); 5434 rn = extract32(insn, 5, 5); 5435 rd = extract32(insn, 0, 5); 5436 5437 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5438 5439 switch (MAP(sf, opcode2, opcode)) { 5440 case MAP(0, 0x00, 0x00): /* RBIT */ 5441 case MAP(1, 0x00, 0x00): 5442 handle_rbit(s, sf, rn, rd); 5443 break; 5444 case MAP(0, 0x00, 0x01): /* REV16 */ 5445 case MAP(1, 0x00, 0x01): 5446 handle_rev16(s, sf, rn, rd); 5447 break; 5448 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5449 case MAP(1, 0x00, 0x02): 5450 handle_rev32(s, sf, rn, rd); 5451 break; 5452 case MAP(1, 0x00, 0x03): /* REV64 */ 5453 handle_rev64(s, sf, rn, rd); 5454 break; 5455 case MAP(0, 0x00, 0x04): /* CLZ */ 5456 case MAP(1, 0x00, 0x04): 5457 handle_clz(s, sf, rn, rd); 5458 break; 5459 case MAP(0, 0x00, 0x05): /* CLS */ 5460 case MAP(1, 0x00, 0x05): 5461 handle_cls(s, sf, rn, rd); 5462 break; 5463 case MAP(1, 0x01, 0x00): /* PACIA */ 5464 if (s->pauth_active) { 5465 tcg_rd = cpu_reg(s, rd); 5466 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5467 } else if (!dc_isar_feature(aa64_pauth, s)) { 5468 goto do_unallocated; 5469 } 5470 break; 5471 case MAP(1, 0x01, 0x01): /* PACIB */ 5472 if (s->pauth_active) { 5473 tcg_rd = cpu_reg(s, rd); 5474 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5475 } else if (!dc_isar_feature(aa64_pauth, s)) { 5476 goto do_unallocated; 5477 } 5478 break; 5479 case MAP(1, 0x01, 0x02): /* PACDA */ 5480 if (s->pauth_active) { 5481 tcg_rd = cpu_reg(s, rd); 5482 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5483 } else if (!dc_isar_feature(aa64_pauth, s)) { 5484 goto do_unallocated; 5485 } 5486 break; 5487 case MAP(1, 0x01, 0x03): /* PACDB */ 5488 if (s->pauth_active) { 5489 tcg_rd = cpu_reg(s, rd); 5490 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5491 } else if (!dc_isar_feature(aa64_pauth, s)) { 5492 goto do_unallocated; 5493 } 5494 break; 5495 case MAP(1, 0x01, 0x04): /* AUTIA */ 5496 if (s->pauth_active) { 5497 tcg_rd = cpu_reg(s, rd); 5498 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5499 } else if (!dc_isar_feature(aa64_pauth, s)) { 5500 goto do_unallocated; 5501 } 5502 break; 5503 case MAP(1, 0x01, 0x05): /* AUTIB */ 5504 if (s->pauth_active) { 5505 tcg_rd = cpu_reg(s, rd); 5506 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5507 } else if (!dc_isar_feature(aa64_pauth, s)) { 5508 goto do_unallocated; 5509 } 5510 break; 5511 case MAP(1, 0x01, 0x06): /* AUTDA */ 5512 if (s->pauth_active) { 5513 tcg_rd = cpu_reg(s, rd); 5514 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5515 } else if (!dc_isar_feature(aa64_pauth, s)) { 5516 goto do_unallocated; 5517 } 5518 break; 5519 case MAP(1, 0x01, 0x07): /* AUTDB */ 5520 if (s->pauth_active) { 5521 tcg_rd = cpu_reg(s, rd); 5522 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5523 } else if (!dc_isar_feature(aa64_pauth, s)) { 5524 goto do_unallocated; 5525 } 5526 break; 5527 case MAP(1, 0x01, 0x08): /* PACIZA */ 5528 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5529 goto do_unallocated; 5530 } else if (s->pauth_active) { 5531 tcg_rd = cpu_reg(s, rd); 5532 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5533 } 5534 break; 5535 case MAP(1, 0x01, 0x09): /* PACIZB */ 5536 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5537 goto do_unallocated; 5538 } else if (s->pauth_active) { 5539 tcg_rd = cpu_reg(s, rd); 5540 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5541 } 5542 break; 5543 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5544 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5545 goto do_unallocated; 5546 } else if (s->pauth_active) { 5547 tcg_rd = cpu_reg(s, rd); 5548 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5549 } 5550 break; 5551 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5552 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5553 goto do_unallocated; 5554 } else if (s->pauth_active) { 5555 tcg_rd = cpu_reg(s, rd); 5556 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5557 } 5558 break; 5559 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5560 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5561 goto do_unallocated; 5562 } else if (s->pauth_active) { 5563 tcg_rd = cpu_reg(s, rd); 5564 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5565 } 5566 break; 5567 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5568 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5569 goto do_unallocated; 5570 } else if (s->pauth_active) { 5571 tcg_rd = cpu_reg(s, rd); 5572 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5573 } 5574 break; 5575 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5576 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5577 goto do_unallocated; 5578 } else if (s->pauth_active) { 5579 tcg_rd = cpu_reg(s, rd); 5580 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5581 } 5582 break; 5583 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5584 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5585 goto do_unallocated; 5586 } else if (s->pauth_active) { 5587 tcg_rd = cpu_reg(s, rd); 5588 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5589 } 5590 break; 5591 case MAP(1, 0x01, 0x10): /* XPACI */ 5592 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5593 goto do_unallocated; 5594 } else if (s->pauth_active) { 5595 tcg_rd = cpu_reg(s, rd); 5596 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5597 } 5598 break; 5599 case MAP(1, 0x01, 0x11): /* XPACD */ 5600 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5601 goto do_unallocated; 5602 } else if (s->pauth_active) { 5603 tcg_rd = cpu_reg(s, rd); 5604 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5605 } 5606 break; 5607 default: 5608 do_unallocated: 5609 unallocated_encoding(s); 5610 break; 5611 } 5612 5613 #undef MAP 5614 } 5615 5616 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5617 unsigned int rm, unsigned int rn, unsigned int rd) 5618 { 5619 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5620 tcg_rd = cpu_reg(s, rd); 5621 5622 if (!sf && is_signed) { 5623 tcg_n = tcg_temp_new_i64(); 5624 tcg_m = tcg_temp_new_i64(); 5625 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5626 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5627 } else { 5628 tcg_n = read_cpu_reg(s, rn, sf); 5629 tcg_m = read_cpu_reg(s, rm, sf); 5630 } 5631 5632 if (is_signed) { 5633 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5634 } else { 5635 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5636 } 5637 5638 if (!sf) { /* zero extend final result */ 5639 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5640 } 5641 } 5642 5643 /* LSLV, LSRV, ASRV, RORV */ 5644 static void handle_shift_reg(DisasContext *s, 5645 enum a64_shift_type shift_type, unsigned int sf, 5646 unsigned int rm, unsigned int rn, unsigned int rd) 5647 { 5648 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5649 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5650 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5651 5652 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5653 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5654 } 5655 5656 /* CRC32[BHWX], CRC32C[BHWX] */ 5657 static void handle_crc32(DisasContext *s, 5658 unsigned int sf, unsigned int sz, bool crc32c, 5659 unsigned int rm, unsigned int rn, unsigned int rd) 5660 { 5661 TCGv_i64 tcg_acc, tcg_val; 5662 TCGv_i32 tcg_bytes; 5663 5664 if (!dc_isar_feature(aa64_crc32, s) 5665 || (sf == 1 && sz != 3) 5666 || (sf == 0 && sz == 3)) { 5667 unallocated_encoding(s); 5668 return; 5669 } 5670 5671 if (sz == 3) { 5672 tcg_val = cpu_reg(s, rm); 5673 } else { 5674 uint64_t mask; 5675 switch (sz) { 5676 case 0: 5677 mask = 0xFF; 5678 break; 5679 case 1: 5680 mask = 0xFFFF; 5681 break; 5682 case 2: 5683 mask = 0xFFFFFFFF; 5684 break; 5685 default: 5686 g_assert_not_reached(); 5687 } 5688 tcg_val = tcg_temp_new_i64(); 5689 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5690 } 5691 5692 tcg_acc = cpu_reg(s, rn); 5693 tcg_bytes = tcg_constant_i32(1 << sz); 5694 5695 if (crc32c) { 5696 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5697 } else { 5698 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5699 } 5700 } 5701 5702 /* Data-processing (2 source) 5703 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5704 * +----+---+---+-----------------+------+--------+------+------+ 5705 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5706 * +----+---+---+-----------------+------+--------+------+------+ 5707 */ 5708 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5709 { 5710 unsigned int sf, rm, opcode, rn, rd, setflag; 5711 sf = extract32(insn, 31, 1); 5712 setflag = extract32(insn, 29, 1); 5713 rm = extract32(insn, 16, 5); 5714 opcode = extract32(insn, 10, 6); 5715 rn = extract32(insn, 5, 5); 5716 rd = extract32(insn, 0, 5); 5717 5718 if (setflag && opcode != 0) { 5719 unallocated_encoding(s); 5720 return; 5721 } 5722 5723 switch (opcode) { 5724 case 0: /* SUBP(S) */ 5725 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5726 goto do_unallocated; 5727 } else { 5728 TCGv_i64 tcg_n, tcg_m, tcg_d; 5729 5730 tcg_n = read_cpu_reg_sp(s, rn, true); 5731 tcg_m = read_cpu_reg_sp(s, rm, true); 5732 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5733 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5734 tcg_d = cpu_reg(s, rd); 5735 5736 if (setflag) { 5737 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5738 } else { 5739 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5740 } 5741 } 5742 break; 5743 case 2: /* UDIV */ 5744 handle_div(s, false, sf, rm, rn, rd); 5745 break; 5746 case 3: /* SDIV */ 5747 handle_div(s, true, sf, rm, rn, rd); 5748 break; 5749 case 4: /* IRG */ 5750 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5751 goto do_unallocated; 5752 } 5753 if (s->ata) { 5754 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5755 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5756 } else { 5757 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5758 cpu_reg_sp(s, rn)); 5759 } 5760 break; 5761 case 5: /* GMI */ 5762 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5763 goto do_unallocated; 5764 } else { 5765 TCGv_i64 t = tcg_temp_new_i64(); 5766 5767 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5768 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5769 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5770 } 5771 break; 5772 case 8: /* LSLV */ 5773 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5774 break; 5775 case 9: /* LSRV */ 5776 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5777 break; 5778 case 10: /* ASRV */ 5779 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5780 break; 5781 case 11: /* RORV */ 5782 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5783 break; 5784 case 12: /* PACGA */ 5785 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5786 goto do_unallocated; 5787 } 5788 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5789 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5790 break; 5791 case 16: 5792 case 17: 5793 case 18: 5794 case 19: 5795 case 20: 5796 case 21: 5797 case 22: 5798 case 23: /* CRC32 */ 5799 { 5800 int sz = extract32(opcode, 0, 2); 5801 bool crc32c = extract32(opcode, 2, 1); 5802 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5803 break; 5804 } 5805 default: 5806 do_unallocated: 5807 unallocated_encoding(s); 5808 break; 5809 } 5810 } 5811 5812 /* 5813 * Data processing - register 5814 * 31 30 29 28 25 21 20 16 10 0 5815 * +--+---+--+---+-------+-----+-------+-------+---------+ 5816 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5817 * +--+---+--+---+-------+-----+-------+-------+---------+ 5818 */ 5819 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5820 { 5821 int op0 = extract32(insn, 30, 1); 5822 int op1 = extract32(insn, 28, 1); 5823 int op2 = extract32(insn, 21, 4); 5824 int op3 = extract32(insn, 10, 6); 5825 5826 if (!op1) { 5827 if (op2 & 8) { 5828 if (op2 & 1) { 5829 /* Add/sub (extended register) */ 5830 disas_add_sub_ext_reg(s, insn); 5831 } else { 5832 /* Add/sub (shifted register) */ 5833 disas_add_sub_reg(s, insn); 5834 } 5835 } else { 5836 /* Logical (shifted register) */ 5837 disas_logic_reg(s, insn); 5838 } 5839 return; 5840 } 5841 5842 switch (op2) { 5843 case 0x0: 5844 switch (op3) { 5845 case 0x00: /* Add/subtract (with carry) */ 5846 disas_adc_sbc(s, insn); 5847 break; 5848 5849 case 0x01: /* Rotate right into flags */ 5850 case 0x21: 5851 disas_rotate_right_into_flags(s, insn); 5852 break; 5853 5854 case 0x02: /* Evaluate into flags */ 5855 case 0x12: 5856 case 0x22: 5857 case 0x32: 5858 disas_evaluate_into_flags(s, insn); 5859 break; 5860 5861 default: 5862 goto do_unallocated; 5863 } 5864 break; 5865 5866 case 0x2: /* Conditional compare */ 5867 disas_cc(s, insn); /* both imm and reg forms */ 5868 break; 5869 5870 case 0x4: /* Conditional select */ 5871 disas_cond_select(s, insn); 5872 break; 5873 5874 case 0x6: /* Data-processing */ 5875 if (op0) { /* (1 source) */ 5876 disas_data_proc_1src(s, insn); 5877 } else { /* (2 source) */ 5878 disas_data_proc_2src(s, insn); 5879 } 5880 break; 5881 case 0x8 ... 0xf: /* (3 source) */ 5882 disas_data_proc_3src(s, insn); 5883 break; 5884 5885 default: 5886 do_unallocated: 5887 unallocated_encoding(s); 5888 break; 5889 } 5890 } 5891 5892 static void handle_fp_compare(DisasContext *s, int size, 5893 unsigned int rn, unsigned int rm, 5894 bool cmp_with_zero, bool signal_all_nans) 5895 { 5896 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5897 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5898 5899 if (size == MO_64) { 5900 TCGv_i64 tcg_vn, tcg_vm; 5901 5902 tcg_vn = read_fp_dreg(s, rn); 5903 if (cmp_with_zero) { 5904 tcg_vm = tcg_constant_i64(0); 5905 } else { 5906 tcg_vm = read_fp_dreg(s, rm); 5907 } 5908 if (signal_all_nans) { 5909 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5910 } else { 5911 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5912 } 5913 } else { 5914 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5915 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5916 5917 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5918 if (cmp_with_zero) { 5919 tcg_gen_movi_i32(tcg_vm, 0); 5920 } else { 5921 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5922 } 5923 5924 switch (size) { 5925 case MO_32: 5926 if (signal_all_nans) { 5927 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5928 } else { 5929 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5930 } 5931 break; 5932 case MO_16: 5933 if (signal_all_nans) { 5934 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5935 } else { 5936 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5937 } 5938 break; 5939 default: 5940 g_assert_not_reached(); 5941 } 5942 } 5943 5944 gen_set_nzcv(tcg_flags); 5945 } 5946 5947 /* Floating point compare 5948 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5949 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5950 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5951 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5952 */ 5953 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5954 { 5955 unsigned int mos, type, rm, op, rn, opc, op2r; 5956 int size; 5957 5958 mos = extract32(insn, 29, 3); 5959 type = extract32(insn, 22, 2); 5960 rm = extract32(insn, 16, 5); 5961 op = extract32(insn, 14, 2); 5962 rn = extract32(insn, 5, 5); 5963 opc = extract32(insn, 3, 2); 5964 op2r = extract32(insn, 0, 3); 5965 5966 if (mos || op || op2r) { 5967 unallocated_encoding(s); 5968 return; 5969 } 5970 5971 switch (type) { 5972 case 0: 5973 size = MO_32; 5974 break; 5975 case 1: 5976 size = MO_64; 5977 break; 5978 case 3: 5979 size = MO_16; 5980 if (dc_isar_feature(aa64_fp16, s)) { 5981 break; 5982 } 5983 /* fallthru */ 5984 default: 5985 unallocated_encoding(s); 5986 return; 5987 } 5988 5989 if (!fp_access_check(s)) { 5990 return; 5991 } 5992 5993 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5994 } 5995 5996 /* Floating point conditional compare 5997 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5998 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5999 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6000 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6001 */ 6002 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6003 { 6004 unsigned int mos, type, rm, cond, rn, op, nzcv; 6005 TCGLabel *label_continue = NULL; 6006 int size; 6007 6008 mos = extract32(insn, 29, 3); 6009 type = extract32(insn, 22, 2); 6010 rm = extract32(insn, 16, 5); 6011 cond = extract32(insn, 12, 4); 6012 rn = extract32(insn, 5, 5); 6013 op = extract32(insn, 4, 1); 6014 nzcv = extract32(insn, 0, 4); 6015 6016 if (mos) { 6017 unallocated_encoding(s); 6018 return; 6019 } 6020 6021 switch (type) { 6022 case 0: 6023 size = MO_32; 6024 break; 6025 case 1: 6026 size = MO_64; 6027 break; 6028 case 3: 6029 size = MO_16; 6030 if (dc_isar_feature(aa64_fp16, s)) { 6031 break; 6032 } 6033 /* fallthru */ 6034 default: 6035 unallocated_encoding(s); 6036 return; 6037 } 6038 6039 if (!fp_access_check(s)) { 6040 return; 6041 } 6042 6043 if (cond < 0x0e) { /* not always */ 6044 TCGLabel *label_match = gen_new_label(); 6045 label_continue = gen_new_label(); 6046 arm_gen_test_cc(cond, label_match); 6047 /* nomatch: */ 6048 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6049 tcg_gen_br(label_continue); 6050 gen_set_label(label_match); 6051 } 6052 6053 handle_fp_compare(s, size, rn, rm, false, op); 6054 6055 if (cond < 0x0e) { 6056 gen_set_label(label_continue); 6057 } 6058 } 6059 6060 /* Floating point conditional select 6061 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6062 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6063 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6064 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6065 */ 6066 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6067 { 6068 unsigned int mos, type, rm, cond, rn, rd; 6069 TCGv_i64 t_true, t_false; 6070 DisasCompare64 c; 6071 MemOp sz; 6072 6073 mos = extract32(insn, 29, 3); 6074 type = extract32(insn, 22, 2); 6075 rm = extract32(insn, 16, 5); 6076 cond = extract32(insn, 12, 4); 6077 rn = extract32(insn, 5, 5); 6078 rd = extract32(insn, 0, 5); 6079 6080 if (mos) { 6081 unallocated_encoding(s); 6082 return; 6083 } 6084 6085 switch (type) { 6086 case 0: 6087 sz = MO_32; 6088 break; 6089 case 1: 6090 sz = MO_64; 6091 break; 6092 case 3: 6093 sz = MO_16; 6094 if (dc_isar_feature(aa64_fp16, s)) { 6095 break; 6096 } 6097 /* fallthru */ 6098 default: 6099 unallocated_encoding(s); 6100 return; 6101 } 6102 6103 if (!fp_access_check(s)) { 6104 return; 6105 } 6106 6107 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6108 t_true = tcg_temp_new_i64(); 6109 t_false = tcg_temp_new_i64(); 6110 read_vec_element(s, t_true, rn, 0, sz); 6111 read_vec_element(s, t_false, rm, 0, sz); 6112 6113 a64_test_cc(&c, cond); 6114 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6115 t_true, t_false); 6116 6117 /* Note that sregs & hregs write back zeros to the high bits, 6118 and we've already done the zero-extension. */ 6119 write_fp_dreg(s, rd, t_true); 6120 } 6121 6122 /* Floating-point data-processing (1 source) - half precision */ 6123 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6124 { 6125 TCGv_ptr fpst = NULL; 6126 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6127 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6128 6129 switch (opcode) { 6130 case 0x0: /* FMOV */ 6131 tcg_gen_mov_i32(tcg_res, tcg_op); 6132 break; 6133 case 0x1: /* FABS */ 6134 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6135 break; 6136 case 0x2: /* FNEG */ 6137 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6138 break; 6139 case 0x3: /* FSQRT */ 6140 fpst = fpstatus_ptr(FPST_FPCR_F16); 6141 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6142 break; 6143 case 0x8: /* FRINTN */ 6144 case 0x9: /* FRINTP */ 6145 case 0xa: /* FRINTM */ 6146 case 0xb: /* FRINTZ */ 6147 case 0xc: /* FRINTA */ 6148 { 6149 TCGv_i32 tcg_rmode; 6150 6151 fpst = fpstatus_ptr(FPST_FPCR_F16); 6152 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6153 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6154 gen_restore_rmode(tcg_rmode, fpst); 6155 break; 6156 } 6157 case 0xe: /* FRINTX */ 6158 fpst = fpstatus_ptr(FPST_FPCR_F16); 6159 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6160 break; 6161 case 0xf: /* FRINTI */ 6162 fpst = fpstatus_ptr(FPST_FPCR_F16); 6163 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6164 break; 6165 default: 6166 g_assert_not_reached(); 6167 } 6168 6169 write_fp_sreg(s, rd, tcg_res); 6170 } 6171 6172 /* Floating-point data-processing (1 source) - single precision */ 6173 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6174 { 6175 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6176 TCGv_i32 tcg_op, tcg_res; 6177 TCGv_ptr fpst; 6178 int rmode = -1; 6179 6180 tcg_op = read_fp_sreg(s, rn); 6181 tcg_res = tcg_temp_new_i32(); 6182 6183 switch (opcode) { 6184 case 0x0: /* FMOV */ 6185 tcg_gen_mov_i32(tcg_res, tcg_op); 6186 goto done; 6187 case 0x1: /* FABS */ 6188 gen_helper_vfp_abss(tcg_res, tcg_op); 6189 goto done; 6190 case 0x2: /* FNEG */ 6191 gen_helper_vfp_negs(tcg_res, tcg_op); 6192 goto done; 6193 case 0x3: /* FSQRT */ 6194 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6195 goto done; 6196 case 0x6: /* BFCVT */ 6197 gen_fpst = gen_helper_bfcvt; 6198 break; 6199 case 0x8: /* FRINTN */ 6200 case 0x9: /* FRINTP */ 6201 case 0xa: /* FRINTM */ 6202 case 0xb: /* FRINTZ */ 6203 case 0xc: /* FRINTA */ 6204 rmode = opcode & 7; 6205 gen_fpst = gen_helper_rints; 6206 break; 6207 case 0xe: /* FRINTX */ 6208 gen_fpst = gen_helper_rints_exact; 6209 break; 6210 case 0xf: /* FRINTI */ 6211 gen_fpst = gen_helper_rints; 6212 break; 6213 case 0x10: /* FRINT32Z */ 6214 rmode = FPROUNDING_ZERO; 6215 gen_fpst = gen_helper_frint32_s; 6216 break; 6217 case 0x11: /* FRINT32X */ 6218 gen_fpst = gen_helper_frint32_s; 6219 break; 6220 case 0x12: /* FRINT64Z */ 6221 rmode = FPROUNDING_ZERO; 6222 gen_fpst = gen_helper_frint64_s; 6223 break; 6224 case 0x13: /* FRINT64X */ 6225 gen_fpst = gen_helper_frint64_s; 6226 break; 6227 default: 6228 g_assert_not_reached(); 6229 } 6230 6231 fpst = fpstatus_ptr(FPST_FPCR); 6232 if (rmode >= 0) { 6233 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6234 gen_fpst(tcg_res, tcg_op, fpst); 6235 gen_restore_rmode(tcg_rmode, fpst); 6236 } else { 6237 gen_fpst(tcg_res, tcg_op, fpst); 6238 } 6239 6240 done: 6241 write_fp_sreg(s, rd, tcg_res); 6242 } 6243 6244 /* Floating-point data-processing (1 source) - double precision */ 6245 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6246 { 6247 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6248 TCGv_i64 tcg_op, tcg_res; 6249 TCGv_ptr fpst; 6250 int rmode = -1; 6251 6252 switch (opcode) { 6253 case 0x0: /* FMOV */ 6254 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6255 return; 6256 } 6257 6258 tcg_op = read_fp_dreg(s, rn); 6259 tcg_res = tcg_temp_new_i64(); 6260 6261 switch (opcode) { 6262 case 0x1: /* FABS */ 6263 gen_helper_vfp_absd(tcg_res, tcg_op); 6264 goto done; 6265 case 0x2: /* FNEG */ 6266 gen_helper_vfp_negd(tcg_res, tcg_op); 6267 goto done; 6268 case 0x3: /* FSQRT */ 6269 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6270 goto done; 6271 case 0x8: /* FRINTN */ 6272 case 0x9: /* FRINTP */ 6273 case 0xa: /* FRINTM */ 6274 case 0xb: /* FRINTZ */ 6275 case 0xc: /* FRINTA */ 6276 rmode = opcode & 7; 6277 gen_fpst = gen_helper_rintd; 6278 break; 6279 case 0xe: /* FRINTX */ 6280 gen_fpst = gen_helper_rintd_exact; 6281 break; 6282 case 0xf: /* FRINTI */ 6283 gen_fpst = gen_helper_rintd; 6284 break; 6285 case 0x10: /* FRINT32Z */ 6286 rmode = FPROUNDING_ZERO; 6287 gen_fpst = gen_helper_frint32_d; 6288 break; 6289 case 0x11: /* FRINT32X */ 6290 gen_fpst = gen_helper_frint32_d; 6291 break; 6292 case 0x12: /* FRINT64Z */ 6293 rmode = FPROUNDING_ZERO; 6294 gen_fpst = gen_helper_frint64_d; 6295 break; 6296 case 0x13: /* FRINT64X */ 6297 gen_fpst = gen_helper_frint64_d; 6298 break; 6299 default: 6300 g_assert_not_reached(); 6301 } 6302 6303 fpst = fpstatus_ptr(FPST_FPCR); 6304 if (rmode >= 0) { 6305 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6306 gen_fpst(tcg_res, tcg_op, fpst); 6307 gen_restore_rmode(tcg_rmode, fpst); 6308 } else { 6309 gen_fpst(tcg_res, tcg_op, fpst); 6310 } 6311 6312 done: 6313 write_fp_dreg(s, rd, tcg_res); 6314 } 6315 6316 static void handle_fp_fcvt(DisasContext *s, int opcode, 6317 int rd, int rn, int dtype, int ntype) 6318 { 6319 switch (ntype) { 6320 case 0x0: 6321 { 6322 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6323 if (dtype == 1) { 6324 /* Single to double */ 6325 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6326 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6327 write_fp_dreg(s, rd, tcg_rd); 6328 } else { 6329 /* Single to half */ 6330 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6331 TCGv_i32 ahp = get_ahp_flag(); 6332 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6333 6334 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6335 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6336 write_fp_sreg(s, rd, tcg_rd); 6337 } 6338 break; 6339 } 6340 case 0x1: 6341 { 6342 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6343 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6344 if (dtype == 0) { 6345 /* Double to single */ 6346 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6347 } else { 6348 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6349 TCGv_i32 ahp = get_ahp_flag(); 6350 /* Double to half */ 6351 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6352 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6353 } 6354 write_fp_sreg(s, rd, tcg_rd); 6355 break; 6356 } 6357 case 0x3: 6358 { 6359 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6360 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6361 TCGv_i32 tcg_ahp = get_ahp_flag(); 6362 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6363 if (dtype == 0) { 6364 /* Half to single */ 6365 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6366 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6367 write_fp_sreg(s, rd, tcg_rd); 6368 } else { 6369 /* Half to double */ 6370 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6371 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6372 write_fp_dreg(s, rd, tcg_rd); 6373 } 6374 break; 6375 } 6376 default: 6377 g_assert_not_reached(); 6378 } 6379 } 6380 6381 /* Floating point data-processing (1 source) 6382 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6383 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6384 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6385 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6386 */ 6387 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6388 { 6389 int mos = extract32(insn, 29, 3); 6390 int type = extract32(insn, 22, 2); 6391 int opcode = extract32(insn, 15, 6); 6392 int rn = extract32(insn, 5, 5); 6393 int rd = extract32(insn, 0, 5); 6394 6395 if (mos) { 6396 goto do_unallocated; 6397 } 6398 6399 switch (opcode) { 6400 case 0x4: case 0x5: case 0x7: 6401 { 6402 /* FCVT between half, single and double precision */ 6403 int dtype = extract32(opcode, 0, 2); 6404 if (type == 2 || dtype == type) { 6405 goto do_unallocated; 6406 } 6407 if (!fp_access_check(s)) { 6408 return; 6409 } 6410 6411 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6412 break; 6413 } 6414 6415 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6416 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6417 goto do_unallocated; 6418 } 6419 /* fall through */ 6420 case 0x0 ... 0x3: 6421 case 0x8 ... 0xc: 6422 case 0xe ... 0xf: 6423 /* 32-to-32 and 64-to-64 ops */ 6424 switch (type) { 6425 case 0: 6426 if (!fp_access_check(s)) { 6427 return; 6428 } 6429 handle_fp_1src_single(s, opcode, rd, rn); 6430 break; 6431 case 1: 6432 if (!fp_access_check(s)) { 6433 return; 6434 } 6435 handle_fp_1src_double(s, opcode, rd, rn); 6436 break; 6437 case 3: 6438 if (!dc_isar_feature(aa64_fp16, s)) { 6439 goto do_unallocated; 6440 } 6441 6442 if (!fp_access_check(s)) { 6443 return; 6444 } 6445 handle_fp_1src_half(s, opcode, rd, rn); 6446 break; 6447 default: 6448 goto do_unallocated; 6449 } 6450 break; 6451 6452 case 0x6: 6453 switch (type) { 6454 case 1: /* BFCVT */ 6455 if (!dc_isar_feature(aa64_bf16, s)) { 6456 goto do_unallocated; 6457 } 6458 if (!fp_access_check(s)) { 6459 return; 6460 } 6461 handle_fp_1src_single(s, opcode, rd, rn); 6462 break; 6463 default: 6464 goto do_unallocated; 6465 } 6466 break; 6467 6468 default: 6469 do_unallocated: 6470 unallocated_encoding(s); 6471 break; 6472 } 6473 } 6474 6475 /* Floating-point data-processing (2 source) - single precision */ 6476 static void handle_fp_2src_single(DisasContext *s, int opcode, 6477 int rd, int rn, int rm) 6478 { 6479 TCGv_i32 tcg_op1; 6480 TCGv_i32 tcg_op2; 6481 TCGv_i32 tcg_res; 6482 TCGv_ptr fpst; 6483 6484 tcg_res = tcg_temp_new_i32(); 6485 fpst = fpstatus_ptr(FPST_FPCR); 6486 tcg_op1 = read_fp_sreg(s, rn); 6487 tcg_op2 = read_fp_sreg(s, rm); 6488 6489 switch (opcode) { 6490 case 0x0: /* FMUL */ 6491 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6492 break; 6493 case 0x1: /* FDIV */ 6494 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6495 break; 6496 case 0x2: /* FADD */ 6497 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6498 break; 6499 case 0x3: /* FSUB */ 6500 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6501 break; 6502 case 0x4: /* FMAX */ 6503 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6504 break; 6505 case 0x5: /* FMIN */ 6506 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6507 break; 6508 case 0x6: /* FMAXNM */ 6509 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6510 break; 6511 case 0x7: /* FMINNM */ 6512 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6513 break; 6514 case 0x8: /* FNMUL */ 6515 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6516 gen_helper_vfp_negs(tcg_res, tcg_res); 6517 break; 6518 } 6519 6520 write_fp_sreg(s, rd, tcg_res); 6521 } 6522 6523 /* Floating-point data-processing (2 source) - double precision */ 6524 static void handle_fp_2src_double(DisasContext *s, int opcode, 6525 int rd, int rn, int rm) 6526 { 6527 TCGv_i64 tcg_op1; 6528 TCGv_i64 tcg_op2; 6529 TCGv_i64 tcg_res; 6530 TCGv_ptr fpst; 6531 6532 tcg_res = tcg_temp_new_i64(); 6533 fpst = fpstatus_ptr(FPST_FPCR); 6534 tcg_op1 = read_fp_dreg(s, rn); 6535 tcg_op2 = read_fp_dreg(s, rm); 6536 6537 switch (opcode) { 6538 case 0x0: /* FMUL */ 6539 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6540 break; 6541 case 0x1: /* FDIV */ 6542 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6543 break; 6544 case 0x2: /* FADD */ 6545 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6546 break; 6547 case 0x3: /* FSUB */ 6548 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6549 break; 6550 case 0x4: /* FMAX */ 6551 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6552 break; 6553 case 0x5: /* FMIN */ 6554 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6555 break; 6556 case 0x6: /* FMAXNM */ 6557 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6558 break; 6559 case 0x7: /* FMINNM */ 6560 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6561 break; 6562 case 0x8: /* FNMUL */ 6563 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6564 gen_helper_vfp_negd(tcg_res, tcg_res); 6565 break; 6566 } 6567 6568 write_fp_dreg(s, rd, tcg_res); 6569 } 6570 6571 /* Floating-point data-processing (2 source) - half precision */ 6572 static void handle_fp_2src_half(DisasContext *s, int opcode, 6573 int rd, int rn, int rm) 6574 { 6575 TCGv_i32 tcg_op1; 6576 TCGv_i32 tcg_op2; 6577 TCGv_i32 tcg_res; 6578 TCGv_ptr fpst; 6579 6580 tcg_res = tcg_temp_new_i32(); 6581 fpst = fpstatus_ptr(FPST_FPCR_F16); 6582 tcg_op1 = read_fp_hreg(s, rn); 6583 tcg_op2 = read_fp_hreg(s, rm); 6584 6585 switch (opcode) { 6586 case 0x0: /* FMUL */ 6587 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6588 break; 6589 case 0x1: /* FDIV */ 6590 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6591 break; 6592 case 0x2: /* FADD */ 6593 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6594 break; 6595 case 0x3: /* FSUB */ 6596 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6597 break; 6598 case 0x4: /* FMAX */ 6599 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6600 break; 6601 case 0x5: /* FMIN */ 6602 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6603 break; 6604 case 0x6: /* FMAXNM */ 6605 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6606 break; 6607 case 0x7: /* FMINNM */ 6608 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6609 break; 6610 case 0x8: /* FNMUL */ 6611 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6612 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6613 break; 6614 default: 6615 g_assert_not_reached(); 6616 } 6617 6618 write_fp_sreg(s, rd, tcg_res); 6619 } 6620 6621 /* Floating point data-processing (2 source) 6622 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6623 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6624 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6625 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6626 */ 6627 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6628 { 6629 int mos = extract32(insn, 29, 3); 6630 int type = extract32(insn, 22, 2); 6631 int rd = extract32(insn, 0, 5); 6632 int rn = extract32(insn, 5, 5); 6633 int rm = extract32(insn, 16, 5); 6634 int opcode = extract32(insn, 12, 4); 6635 6636 if (opcode > 8 || mos) { 6637 unallocated_encoding(s); 6638 return; 6639 } 6640 6641 switch (type) { 6642 case 0: 6643 if (!fp_access_check(s)) { 6644 return; 6645 } 6646 handle_fp_2src_single(s, opcode, rd, rn, rm); 6647 break; 6648 case 1: 6649 if (!fp_access_check(s)) { 6650 return; 6651 } 6652 handle_fp_2src_double(s, opcode, rd, rn, rm); 6653 break; 6654 case 3: 6655 if (!dc_isar_feature(aa64_fp16, s)) { 6656 unallocated_encoding(s); 6657 return; 6658 } 6659 if (!fp_access_check(s)) { 6660 return; 6661 } 6662 handle_fp_2src_half(s, opcode, rd, rn, rm); 6663 break; 6664 default: 6665 unallocated_encoding(s); 6666 } 6667 } 6668 6669 /* Floating-point data-processing (3 source) - single precision */ 6670 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6671 int rd, int rn, int rm, int ra) 6672 { 6673 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6674 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6675 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6676 6677 tcg_op1 = read_fp_sreg(s, rn); 6678 tcg_op2 = read_fp_sreg(s, rm); 6679 tcg_op3 = read_fp_sreg(s, ra); 6680 6681 /* These are fused multiply-add, and must be done as one 6682 * floating point operation with no rounding between the 6683 * multiplication and addition steps. 6684 * NB that doing the negations here as separate steps is 6685 * correct : an input NaN should come out with its sign bit 6686 * flipped if it is a negated-input. 6687 */ 6688 if (o1 == true) { 6689 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6690 } 6691 6692 if (o0 != o1) { 6693 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6694 } 6695 6696 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6697 6698 write_fp_sreg(s, rd, tcg_res); 6699 } 6700 6701 /* Floating-point data-processing (3 source) - double precision */ 6702 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6703 int rd, int rn, int rm, int ra) 6704 { 6705 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6706 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6707 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6708 6709 tcg_op1 = read_fp_dreg(s, rn); 6710 tcg_op2 = read_fp_dreg(s, rm); 6711 tcg_op3 = read_fp_dreg(s, ra); 6712 6713 /* These are fused multiply-add, and must be done as one 6714 * floating point operation with no rounding between the 6715 * multiplication and addition steps. 6716 * NB that doing the negations here as separate steps is 6717 * correct : an input NaN should come out with its sign bit 6718 * flipped if it is a negated-input. 6719 */ 6720 if (o1 == true) { 6721 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6722 } 6723 6724 if (o0 != o1) { 6725 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6726 } 6727 6728 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6729 6730 write_fp_dreg(s, rd, tcg_res); 6731 } 6732 6733 /* Floating-point data-processing (3 source) - half precision */ 6734 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6735 int rd, int rn, int rm, int ra) 6736 { 6737 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6738 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6739 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6740 6741 tcg_op1 = read_fp_hreg(s, rn); 6742 tcg_op2 = read_fp_hreg(s, rm); 6743 tcg_op3 = read_fp_hreg(s, ra); 6744 6745 /* These are fused multiply-add, and must be done as one 6746 * floating point operation with no rounding between the 6747 * multiplication and addition steps. 6748 * NB that doing the negations here as separate steps is 6749 * correct : an input NaN should come out with its sign bit 6750 * flipped if it is a negated-input. 6751 */ 6752 if (o1 == true) { 6753 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6754 } 6755 6756 if (o0 != o1) { 6757 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6758 } 6759 6760 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6761 6762 write_fp_sreg(s, rd, tcg_res); 6763 } 6764 6765 /* Floating point data-processing (3 source) 6766 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6767 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6768 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6769 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6770 */ 6771 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6772 { 6773 int mos = extract32(insn, 29, 3); 6774 int type = extract32(insn, 22, 2); 6775 int rd = extract32(insn, 0, 5); 6776 int rn = extract32(insn, 5, 5); 6777 int ra = extract32(insn, 10, 5); 6778 int rm = extract32(insn, 16, 5); 6779 bool o0 = extract32(insn, 15, 1); 6780 bool o1 = extract32(insn, 21, 1); 6781 6782 if (mos) { 6783 unallocated_encoding(s); 6784 return; 6785 } 6786 6787 switch (type) { 6788 case 0: 6789 if (!fp_access_check(s)) { 6790 return; 6791 } 6792 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6793 break; 6794 case 1: 6795 if (!fp_access_check(s)) { 6796 return; 6797 } 6798 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6799 break; 6800 case 3: 6801 if (!dc_isar_feature(aa64_fp16, s)) { 6802 unallocated_encoding(s); 6803 return; 6804 } 6805 if (!fp_access_check(s)) { 6806 return; 6807 } 6808 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6809 break; 6810 default: 6811 unallocated_encoding(s); 6812 } 6813 } 6814 6815 /* Floating point immediate 6816 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6817 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6818 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6819 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6820 */ 6821 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6822 { 6823 int rd = extract32(insn, 0, 5); 6824 int imm5 = extract32(insn, 5, 5); 6825 int imm8 = extract32(insn, 13, 8); 6826 int type = extract32(insn, 22, 2); 6827 int mos = extract32(insn, 29, 3); 6828 uint64_t imm; 6829 MemOp sz; 6830 6831 if (mos || imm5) { 6832 unallocated_encoding(s); 6833 return; 6834 } 6835 6836 switch (type) { 6837 case 0: 6838 sz = MO_32; 6839 break; 6840 case 1: 6841 sz = MO_64; 6842 break; 6843 case 3: 6844 sz = MO_16; 6845 if (dc_isar_feature(aa64_fp16, s)) { 6846 break; 6847 } 6848 /* fallthru */ 6849 default: 6850 unallocated_encoding(s); 6851 return; 6852 } 6853 6854 if (!fp_access_check(s)) { 6855 return; 6856 } 6857 6858 imm = vfp_expand_imm(sz, imm8); 6859 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6860 } 6861 6862 /* Handle floating point <=> fixed point conversions. Note that we can 6863 * also deal with fp <=> integer conversions as a special case (scale == 64) 6864 * OPTME: consider handling that special case specially or at least skipping 6865 * the call to scalbn in the helpers for zero shifts. 6866 */ 6867 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6868 bool itof, int rmode, int scale, int sf, int type) 6869 { 6870 bool is_signed = !(opcode & 1); 6871 TCGv_ptr tcg_fpstatus; 6872 TCGv_i32 tcg_shift, tcg_single; 6873 TCGv_i64 tcg_double; 6874 6875 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6876 6877 tcg_shift = tcg_constant_i32(64 - scale); 6878 6879 if (itof) { 6880 TCGv_i64 tcg_int = cpu_reg(s, rn); 6881 if (!sf) { 6882 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6883 6884 if (is_signed) { 6885 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6886 } else { 6887 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6888 } 6889 6890 tcg_int = tcg_extend; 6891 } 6892 6893 switch (type) { 6894 case 1: /* float64 */ 6895 tcg_double = tcg_temp_new_i64(); 6896 if (is_signed) { 6897 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6898 tcg_shift, tcg_fpstatus); 6899 } else { 6900 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6901 tcg_shift, tcg_fpstatus); 6902 } 6903 write_fp_dreg(s, rd, tcg_double); 6904 break; 6905 6906 case 0: /* float32 */ 6907 tcg_single = tcg_temp_new_i32(); 6908 if (is_signed) { 6909 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6910 tcg_shift, tcg_fpstatus); 6911 } else { 6912 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6913 tcg_shift, tcg_fpstatus); 6914 } 6915 write_fp_sreg(s, rd, tcg_single); 6916 break; 6917 6918 case 3: /* float16 */ 6919 tcg_single = tcg_temp_new_i32(); 6920 if (is_signed) { 6921 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6922 tcg_shift, tcg_fpstatus); 6923 } else { 6924 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6925 tcg_shift, tcg_fpstatus); 6926 } 6927 write_fp_sreg(s, rd, tcg_single); 6928 break; 6929 6930 default: 6931 g_assert_not_reached(); 6932 } 6933 } else { 6934 TCGv_i64 tcg_int = cpu_reg(s, rd); 6935 TCGv_i32 tcg_rmode; 6936 6937 if (extract32(opcode, 2, 1)) { 6938 /* There are too many rounding modes to all fit into rmode, 6939 * so FCVTA[US] is a special case. 6940 */ 6941 rmode = FPROUNDING_TIEAWAY; 6942 } 6943 6944 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6945 6946 switch (type) { 6947 case 1: /* float64 */ 6948 tcg_double = read_fp_dreg(s, rn); 6949 if (is_signed) { 6950 if (!sf) { 6951 gen_helper_vfp_tosld(tcg_int, tcg_double, 6952 tcg_shift, tcg_fpstatus); 6953 } else { 6954 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6955 tcg_shift, tcg_fpstatus); 6956 } 6957 } else { 6958 if (!sf) { 6959 gen_helper_vfp_tould(tcg_int, tcg_double, 6960 tcg_shift, tcg_fpstatus); 6961 } else { 6962 gen_helper_vfp_touqd(tcg_int, tcg_double, 6963 tcg_shift, tcg_fpstatus); 6964 } 6965 } 6966 if (!sf) { 6967 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6968 } 6969 break; 6970 6971 case 0: /* float32 */ 6972 tcg_single = read_fp_sreg(s, rn); 6973 if (sf) { 6974 if (is_signed) { 6975 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6976 tcg_shift, tcg_fpstatus); 6977 } else { 6978 gen_helper_vfp_touqs(tcg_int, tcg_single, 6979 tcg_shift, tcg_fpstatus); 6980 } 6981 } else { 6982 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6983 if (is_signed) { 6984 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6985 tcg_shift, tcg_fpstatus); 6986 } else { 6987 gen_helper_vfp_touls(tcg_dest, tcg_single, 6988 tcg_shift, tcg_fpstatus); 6989 } 6990 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6991 } 6992 break; 6993 6994 case 3: /* float16 */ 6995 tcg_single = read_fp_sreg(s, rn); 6996 if (sf) { 6997 if (is_signed) { 6998 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6999 tcg_shift, tcg_fpstatus); 7000 } else { 7001 gen_helper_vfp_touqh(tcg_int, tcg_single, 7002 tcg_shift, tcg_fpstatus); 7003 } 7004 } else { 7005 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7006 if (is_signed) { 7007 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7008 tcg_shift, tcg_fpstatus); 7009 } else { 7010 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7011 tcg_shift, tcg_fpstatus); 7012 } 7013 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7014 } 7015 break; 7016 7017 default: 7018 g_assert_not_reached(); 7019 } 7020 7021 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7022 } 7023 } 7024 7025 /* Floating point <-> fixed point conversions 7026 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7027 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7028 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7029 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7030 */ 7031 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7032 { 7033 int rd = extract32(insn, 0, 5); 7034 int rn = extract32(insn, 5, 5); 7035 int scale = extract32(insn, 10, 6); 7036 int opcode = extract32(insn, 16, 3); 7037 int rmode = extract32(insn, 19, 2); 7038 int type = extract32(insn, 22, 2); 7039 bool sbit = extract32(insn, 29, 1); 7040 bool sf = extract32(insn, 31, 1); 7041 bool itof; 7042 7043 if (sbit || (!sf && scale < 32)) { 7044 unallocated_encoding(s); 7045 return; 7046 } 7047 7048 switch (type) { 7049 case 0: /* float32 */ 7050 case 1: /* float64 */ 7051 break; 7052 case 3: /* float16 */ 7053 if (dc_isar_feature(aa64_fp16, s)) { 7054 break; 7055 } 7056 /* fallthru */ 7057 default: 7058 unallocated_encoding(s); 7059 return; 7060 } 7061 7062 switch ((rmode << 3) | opcode) { 7063 case 0x2: /* SCVTF */ 7064 case 0x3: /* UCVTF */ 7065 itof = true; 7066 break; 7067 case 0x18: /* FCVTZS */ 7068 case 0x19: /* FCVTZU */ 7069 itof = false; 7070 break; 7071 default: 7072 unallocated_encoding(s); 7073 return; 7074 } 7075 7076 if (!fp_access_check(s)) { 7077 return; 7078 } 7079 7080 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7081 } 7082 7083 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7084 { 7085 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7086 * without conversion. 7087 */ 7088 7089 if (itof) { 7090 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7091 TCGv_i64 tmp; 7092 7093 switch (type) { 7094 case 0: 7095 /* 32 bit */ 7096 tmp = tcg_temp_new_i64(); 7097 tcg_gen_ext32u_i64(tmp, tcg_rn); 7098 write_fp_dreg(s, rd, tmp); 7099 break; 7100 case 1: 7101 /* 64 bit */ 7102 write_fp_dreg(s, rd, tcg_rn); 7103 break; 7104 case 2: 7105 /* 64 bit to top half. */ 7106 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7107 clear_vec_high(s, true, rd); 7108 break; 7109 case 3: 7110 /* 16 bit */ 7111 tmp = tcg_temp_new_i64(); 7112 tcg_gen_ext16u_i64(tmp, tcg_rn); 7113 write_fp_dreg(s, rd, tmp); 7114 break; 7115 default: 7116 g_assert_not_reached(); 7117 } 7118 } else { 7119 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7120 7121 switch (type) { 7122 case 0: 7123 /* 32 bit */ 7124 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7125 break; 7126 case 1: 7127 /* 64 bit */ 7128 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7129 break; 7130 case 2: 7131 /* 64 bits from top half */ 7132 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7133 break; 7134 case 3: 7135 /* 16 bit */ 7136 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7137 break; 7138 default: 7139 g_assert_not_reached(); 7140 } 7141 } 7142 } 7143 7144 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7145 { 7146 TCGv_i64 t = read_fp_dreg(s, rn); 7147 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7148 7149 gen_helper_fjcvtzs(t, t, fpstatus); 7150 7151 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7152 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7153 tcg_gen_movi_i32(cpu_CF, 0); 7154 tcg_gen_movi_i32(cpu_NF, 0); 7155 tcg_gen_movi_i32(cpu_VF, 0); 7156 } 7157 7158 /* Floating point <-> integer conversions 7159 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7160 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7161 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7162 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7163 */ 7164 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7165 { 7166 int rd = extract32(insn, 0, 5); 7167 int rn = extract32(insn, 5, 5); 7168 int opcode = extract32(insn, 16, 3); 7169 int rmode = extract32(insn, 19, 2); 7170 int type = extract32(insn, 22, 2); 7171 bool sbit = extract32(insn, 29, 1); 7172 bool sf = extract32(insn, 31, 1); 7173 bool itof = false; 7174 7175 if (sbit) { 7176 goto do_unallocated; 7177 } 7178 7179 switch (opcode) { 7180 case 2: /* SCVTF */ 7181 case 3: /* UCVTF */ 7182 itof = true; 7183 /* fallthru */ 7184 case 4: /* FCVTAS */ 7185 case 5: /* FCVTAU */ 7186 if (rmode != 0) { 7187 goto do_unallocated; 7188 } 7189 /* fallthru */ 7190 case 0: /* FCVT[NPMZ]S */ 7191 case 1: /* FCVT[NPMZ]U */ 7192 switch (type) { 7193 case 0: /* float32 */ 7194 case 1: /* float64 */ 7195 break; 7196 case 3: /* float16 */ 7197 if (!dc_isar_feature(aa64_fp16, s)) { 7198 goto do_unallocated; 7199 } 7200 break; 7201 default: 7202 goto do_unallocated; 7203 } 7204 if (!fp_access_check(s)) { 7205 return; 7206 } 7207 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7208 break; 7209 7210 default: 7211 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7212 case 0b01100110: /* FMOV half <-> 32-bit int */ 7213 case 0b01100111: 7214 case 0b11100110: /* FMOV half <-> 64-bit int */ 7215 case 0b11100111: 7216 if (!dc_isar_feature(aa64_fp16, s)) { 7217 goto do_unallocated; 7218 } 7219 /* fallthru */ 7220 case 0b00000110: /* FMOV 32-bit */ 7221 case 0b00000111: 7222 case 0b10100110: /* FMOV 64-bit */ 7223 case 0b10100111: 7224 case 0b11001110: /* FMOV top half of 128-bit */ 7225 case 0b11001111: 7226 if (!fp_access_check(s)) { 7227 return; 7228 } 7229 itof = opcode & 1; 7230 handle_fmov(s, rd, rn, type, itof); 7231 break; 7232 7233 case 0b00111110: /* FJCVTZS */ 7234 if (!dc_isar_feature(aa64_jscvt, s)) { 7235 goto do_unallocated; 7236 } else if (fp_access_check(s)) { 7237 handle_fjcvtzs(s, rd, rn); 7238 } 7239 break; 7240 7241 default: 7242 do_unallocated: 7243 unallocated_encoding(s); 7244 return; 7245 } 7246 break; 7247 } 7248 } 7249 7250 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7251 * 31 30 29 28 25 24 0 7252 * +---+---+---+---------+-----------------------------+ 7253 * | | 0 | | 1 1 1 1 | | 7254 * +---+---+---+---------+-----------------------------+ 7255 */ 7256 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7257 { 7258 if (extract32(insn, 24, 1)) { 7259 /* Floating point data-processing (3 source) */ 7260 disas_fp_3src(s, insn); 7261 } else if (extract32(insn, 21, 1) == 0) { 7262 /* Floating point to fixed point conversions */ 7263 disas_fp_fixed_conv(s, insn); 7264 } else { 7265 switch (extract32(insn, 10, 2)) { 7266 case 1: 7267 /* Floating point conditional compare */ 7268 disas_fp_ccomp(s, insn); 7269 break; 7270 case 2: 7271 /* Floating point data-processing (2 source) */ 7272 disas_fp_2src(s, insn); 7273 break; 7274 case 3: 7275 /* Floating point conditional select */ 7276 disas_fp_csel(s, insn); 7277 break; 7278 case 0: 7279 switch (ctz32(extract32(insn, 12, 4))) { 7280 case 0: /* [15:12] == xxx1 */ 7281 /* Floating point immediate */ 7282 disas_fp_imm(s, insn); 7283 break; 7284 case 1: /* [15:12] == xx10 */ 7285 /* Floating point compare */ 7286 disas_fp_compare(s, insn); 7287 break; 7288 case 2: /* [15:12] == x100 */ 7289 /* Floating point data-processing (1 source) */ 7290 disas_fp_1src(s, insn); 7291 break; 7292 case 3: /* [15:12] == 1000 */ 7293 unallocated_encoding(s); 7294 break; 7295 default: /* [15:12] == 0000 */ 7296 /* Floating point <-> integer conversions */ 7297 disas_fp_int_conv(s, insn); 7298 break; 7299 } 7300 break; 7301 } 7302 } 7303 } 7304 7305 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7306 int pos) 7307 { 7308 /* Extract 64 bits from the middle of two concatenated 64 bit 7309 * vector register slices left:right. The extracted bits start 7310 * at 'pos' bits into the right (least significant) side. 7311 * We return the result in tcg_right, and guarantee not to 7312 * trash tcg_left. 7313 */ 7314 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7315 assert(pos > 0 && pos < 64); 7316 7317 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7318 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7319 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7320 } 7321 7322 /* EXT 7323 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7324 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7325 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7326 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7327 */ 7328 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7329 { 7330 int is_q = extract32(insn, 30, 1); 7331 int op2 = extract32(insn, 22, 2); 7332 int imm4 = extract32(insn, 11, 4); 7333 int rm = extract32(insn, 16, 5); 7334 int rn = extract32(insn, 5, 5); 7335 int rd = extract32(insn, 0, 5); 7336 int pos = imm4 << 3; 7337 TCGv_i64 tcg_resl, tcg_resh; 7338 7339 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7340 unallocated_encoding(s); 7341 return; 7342 } 7343 7344 if (!fp_access_check(s)) { 7345 return; 7346 } 7347 7348 tcg_resh = tcg_temp_new_i64(); 7349 tcg_resl = tcg_temp_new_i64(); 7350 7351 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7352 * either extracting 128 bits from a 128:128 concatenation, or 7353 * extracting 64 bits from a 64:64 concatenation. 7354 */ 7355 if (!is_q) { 7356 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7357 if (pos != 0) { 7358 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7359 do_ext64(s, tcg_resh, tcg_resl, pos); 7360 } 7361 } else { 7362 TCGv_i64 tcg_hh; 7363 typedef struct { 7364 int reg; 7365 int elt; 7366 } EltPosns; 7367 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7368 EltPosns *elt = eltposns; 7369 7370 if (pos >= 64) { 7371 elt++; 7372 pos -= 64; 7373 } 7374 7375 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7376 elt++; 7377 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7378 elt++; 7379 if (pos != 0) { 7380 do_ext64(s, tcg_resh, tcg_resl, pos); 7381 tcg_hh = tcg_temp_new_i64(); 7382 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7383 do_ext64(s, tcg_hh, tcg_resh, pos); 7384 } 7385 } 7386 7387 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7388 if (is_q) { 7389 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7390 } 7391 clear_vec_high(s, is_q, rd); 7392 } 7393 7394 /* TBL/TBX 7395 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7396 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7397 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7398 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7399 */ 7400 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7401 { 7402 int op2 = extract32(insn, 22, 2); 7403 int is_q = extract32(insn, 30, 1); 7404 int rm = extract32(insn, 16, 5); 7405 int rn = extract32(insn, 5, 5); 7406 int rd = extract32(insn, 0, 5); 7407 int is_tbx = extract32(insn, 12, 1); 7408 int len = (extract32(insn, 13, 2) + 1) * 16; 7409 7410 if (op2 != 0) { 7411 unallocated_encoding(s); 7412 return; 7413 } 7414 7415 if (!fp_access_check(s)) { 7416 return; 7417 } 7418 7419 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7420 vec_full_reg_offset(s, rm), cpu_env, 7421 is_q ? 16 : 8, vec_full_reg_size(s), 7422 (len << 6) | (is_tbx << 5) | rn, 7423 gen_helper_simd_tblx); 7424 } 7425 7426 /* ZIP/UZP/TRN 7427 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7428 * +---+---+-------------+------+---+------+---+------------------+------+ 7429 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7430 * +---+---+-------------+------+---+------+---+------------------+------+ 7431 */ 7432 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7433 { 7434 int rd = extract32(insn, 0, 5); 7435 int rn = extract32(insn, 5, 5); 7436 int rm = extract32(insn, 16, 5); 7437 int size = extract32(insn, 22, 2); 7438 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7439 * bit 2 indicates 1 vs 2 variant of the insn. 7440 */ 7441 int opcode = extract32(insn, 12, 2); 7442 bool part = extract32(insn, 14, 1); 7443 bool is_q = extract32(insn, 30, 1); 7444 int esize = 8 << size; 7445 int i; 7446 int datasize = is_q ? 128 : 64; 7447 int elements = datasize / esize; 7448 TCGv_i64 tcg_res[2], tcg_ele; 7449 7450 if (opcode == 0 || (size == 3 && !is_q)) { 7451 unallocated_encoding(s); 7452 return; 7453 } 7454 7455 if (!fp_access_check(s)) { 7456 return; 7457 } 7458 7459 tcg_res[0] = tcg_temp_new_i64(); 7460 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7461 tcg_ele = tcg_temp_new_i64(); 7462 7463 for (i = 0; i < elements; i++) { 7464 int o, w; 7465 7466 switch (opcode) { 7467 case 1: /* UZP1/2 */ 7468 { 7469 int midpoint = elements / 2; 7470 if (i < midpoint) { 7471 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7472 } else { 7473 read_vec_element(s, tcg_ele, rm, 7474 2 * (i - midpoint) + part, size); 7475 } 7476 break; 7477 } 7478 case 2: /* TRN1/2 */ 7479 if (i & 1) { 7480 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7481 } else { 7482 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7483 } 7484 break; 7485 case 3: /* ZIP1/2 */ 7486 { 7487 int base = part * elements / 2; 7488 if (i & 1) { 7489 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7490 } else { 7491 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7492 } 7493 break; 7494 } 7495 default: 7496 g_assert_not_reached(); 7497 } 7498 7499 w = (i * esize) / 64; 7500 o = (i * esize) % 64; 7501 if (o == 0) { 7502 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7503 } else { 7504 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7505 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7506 } 7507 } 7508 7509 for (i = 0; i <= is_q; ++i) { 7510 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7511 } 7512 clear_vec_high(s, is_q, rd); 7513 } 7514 7515 /* 7516 * do_reduction_op helper 7517 * 7518 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7519 * important for correct NaN propagation that we do these 7520 * operations in exactly the order specified by the pseudocode. 7521 * 7522 * This is a recursive function, TCG temps should be freed by the 7523 * calling function once it is done with the values. 7524 */ 7525 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7526 int esize, int size, int vmap, TCGv_ptr fpst) 7527 { 7528 if (esize == size) { 7529 int element; 7530 MemOp msize = esize == 16 ? MO_16 : MO_32; 7531 TCGv_i32 tcg_elem; 7532 7533 /* We should have one register left here */ 7534 assert(ctpop8(vmap) == 1); 7535 element = ctz32(vmap); 7536 assert(element < 8); 7537 7538 tcg_elem = tcg_temp_new_i32(); 7539 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7540 return tcg_elem; 7541 } else { 7542 int bits = size / 2; 7543 int shift = ctpop8(vmap) / 2; 7544 int vmap_lo = (vmap >> shift) & vmap; 7545 int vmap_hi = (vmap & ~vmap_lo); 7546 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7547 7548 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7549 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7550 tcg_res = tcg_temp_new_i32(); 7551 7552 switch (fpopcode) { 7553 case 0x0c: /* fmaxnmv half-precision */ 7554 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7555 break; 7556 case 0x0f: /* fmaxv half-precision */ 7557 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7558 break; 7559 case 0x1c: /* fminnmv half-precision */ 7560 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7561 break; 7562 case 0x1f: /* fminv half-precision */ 7563 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7564 break; 7565 case 0x2c: /* fmaxnmv */ 7566 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7567 break; 7568 case 0x2f: /* fmaxv */ 7569 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7570 break; 7571 case 0x3c: /* fminnmv */ 7572 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7573 break; 7574 case 0x3f: /* fminv */ 7575 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7576 break; 7577 default: 7578 g_assert_not_reached(); 7579 } 7580 return tcg_res; 7581 } 7582 } 7583 7584 /* AdvSIMD across lanes 7585 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7586 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7587 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7588 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7589 */ 7590 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7591 { 7592 int rd = extract32(insn, 0, 5); 7593 int rn = extract32(insn, 5, 5); 7594 int size = extract32(insn, 22, 2); 7595 int opcode = extract32(insn, 12, 5); 7596 bool is_q = extract32(insn, 30, 1); 7597 bool is_u = extract32(insn, 29, 1); 7598 bool is_fp = false; 7599 bool is_min = false; 7600 int esize; 7601 int elements; 7602 int i; 7603 TCGv_i64 tcg_res, tcg_elt; 7604 7605 switch (opcode) { 7606 case 0x1b: /* ADDV */ 7607 if (is_u) { 7608 unallocated_encoding(s); 7609 return; 7610 } 7611 /* fall through */ 7612 case 0x3: /* SADDLV, UADDLV */ 7613 case 0xa: /* SMAXV, UMAXV */ 7614 case 0x1a: /* SMINV, UMINV */ 7615 if (size == 3 || (size == 2 && !is_q)) { 7616 unallocated_encoding(s); 7617 return; 7618 } 7619 break; 7620 case 0xc: /* FMAXNMV, FMINNMV */ 7621 case 0xf: /* FMAXV, FMINV */ 7622 /* Bit 1 of size field encodes min vs max and the actual size 7623 * depends on the encoding of the U bit. If not set (and FP16 7624 * enabled) then we do half-precision float instead of single 7625 * precision. 7626 */ 7627 is_min = extract32(size, 1, 1); 7628 is_fp = true; 7629 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7630 size = 1; 7631 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7632 unallocated_encoding(s); 7633 return; 7634 } else { 7635 size = 2; 7636 } 7637 break; 7638 default: 7639 unallocated_encoding(s); 7640 return; 7641 } 7642 7643 if (!fp_access_check(s)) { 7644 return; 7645 } 7646 7647 esize = 8 << size; 7648 elements = (is_q ? 128 : 64) / esize; 7649 7650 tcg_res = tcg_temp_new_i64(); 7651 tcg_elt = tcg_temp_new_i64(); 7652 7653 /* These instructions operate across all lanes of a vector 7654 * to produce a single result. We can guarantee that a 64 7655 * bit intermediate is sufficient: 7656 * + for [US]ADDLV the maximum element size is 32 bits, and 7657 * the result type is 64 bits 7658 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7659 * same as the element size, which is 32 bits at most 7660 * For the integer operations we can choose to work at 64 7661 * or 32 bits and truncate at the end; for simplicity 7662 * we use 64 bits always. The floating point 7663 * ops do require 32 bit intermediates, though. 7664 */ 7665 if (!is_fp) { 7666 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7667 7668 for (i = 1; i < elements; i++) { 7669 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7670 7671 switch (opcode) { 7672 case 0x03: /* SADDLV / UADDLV */ 7673 case 0x1b: /* ADDV */ 7674 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7675 break; 7676 case 0x0a: /* SMAXV / UMAXV */ 7677 if (is_u) { 7678 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7679 } else { 7680 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7681 } 7682 break; 7683 case 0x1a: /* SMINV / UMINV */ 7684 if (is_u) { 7685 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7686 } else { 7687 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7688 } 7689 break; 7690 default: 7691 g_assert_not_reached(); 7692 } 7693 7694 } 7695 } else { 7696 /* Floating point vector reduction ops which work across 32 7697 * bit (single) or 16 bit (half-precision) intermediates. 7698 * Note that correct NaN propagation requires that we do these 7699 * operations in exactly the order specified by the pseudocode. 7700 */ 7701 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7702 int fpopcode = opcode | is_min << 4 | is_u << 5; 7703 int vmap = (1 << elements) - 1; 7704 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7705 (is_q ? 128 : 64), vmap, fpst); 7706 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7707 } 7708 7709 /* Now truncate the result to the width required for the final output */ 7710 if (opcode == 0x03) { 7711 /* SADDLV, UADDLV: result is 2*esize */ 7712 size++; 7713 } 7714 7715 switch (size) { 7716 case 0: 7717 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7718 break; 7719 case 1: 7720 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7721 break; 7722 case 2: 7723 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7724 break; 7725 case 3: 7726 break; 7727 default: 7728 g_assert_not_reached(); 7729 } 7730 7731 write_fp_dreg(s, rd, tcg_res); 7732 } 7733 7734 /* DUP (Element, Vector) 7735 * 7736 * 31 30 29 21 20 16 15 10 9 5 4 0 7737 * +---+---+-------------------+--------+-------------+------+------+ 7738 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7739 * +---+---+-------------------+--------+-------------+------+------+ 7740 * 7741 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7742 */ 7743 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7744 int imm5) 7745 { 7746 int size = ctz32(imm5); 7747 int index; 7748 7749 if (size > 3 || (size == 3 && !is_q)) { 7750 unallocated_encoding(s); 7751 return; 7752 } 7753 7754 if (!fp_access_check(s)) { 7755 return; 7756 } 7757 7758 index = imm5 >> (size + 1); 7759 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7760 vec_reg_offset(s, rn, index, size), 7761 is_q ? 16 : 8, vec_full_reg_size(s)); 7762 } 7763 7764 /* DUP (element, scalar) 7765 * 31 21 20 16 15 10 9 5 4 0 7766 * +-----------------------+--------+-------------+------+------+ 7767 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7768 * +-----------------------+--------+-------------+------+------+ 7769 */ 7770 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7771 int imm5) 7772 { 7773 int size = ctz32(imm5); 7774 int index; 7775 TCGv_i64 tmp; 7776 7777 if (size > 3) { 7778 unallocated_encoding(s); 7779 return; 7780 } 7781 7782 if (!fp_access_check(s)) { 7783 return; 7784 } 7785 7786 index = imm5 >> (size + 1); 7787 7788 /* This instruction just extracts the specified element and 7789 * zero-extends it into the bottom of the destination register. 7790 */ 7791 tmp = tcg_temp_new_i64(); 7792 read_vec_element(s, tmp, rn, index, size); 7793 write_fp_dreg(s, rd, tmp); 7794 } 7795 7796 /* DUP (General) 7797 * 7798 * 31 30 29 21 20 16 15 10 9 5 4 0 7799 * +---+---+-------------------+--------+-------------+------+------+ 7800 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7801 * +---+---+-------------------+--------+-------------+------+------+ 7802 * 7803 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7804 */ 7805 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7806 int imm5) 7807 { 7808 int size = ctz32(imm5); 7809 uint32_t dofs, oprsz, maxsz; 7810 7811 if (size > 3 || ((size == 3) && !is_q)) { 7812 unallocated_encoding(s); 7813 return; 7814 } 7815 7816 if (!fp_access_check(s)) { 7817 return; 7818 } 7819 7820 dofs = vec_full_reg_offset(s, rd); 7821 oprsz = is_q ? 16 : 8; 7822 maxsz = vec_full_reg_size(s); 7823 7824 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7825 } 7826 7827 /* INS (Element) 7828 * 7829 * 31 21 20 16 15 14 11 10 9 5 4 0 7830 * +-----------------------+--------+------------+---+------+------+ 7831 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7832 * +-----------------------+--------+------------+---+------+------+ 7833 * 7834 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7835 * index: encoded in imm5<4:size+1> 7836 */ 7837 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7838 int imm4, int imm5) 7839 { 7840 int size = ctz32(imm5); 7841 int src_index, dst_index; 7842 TCGv_i64 tmp; 7843 7844 if (size > 3) { 7845 unallocated_encoding(s); 7846 return; 7847 } 7848 7849 if (!fp_access_check(s)) { 7850 return; 7851 } 7852 7853 dst_index = extract32(imm5, 1+size, 5); 7854 src_index = extract32(imm4, size, 4); 7855 7856 tmp = tcg_temp_new_i64(); 7857 7858 read_vec_element(s, tmp, rn, src_index, size); 7859 write_vec_element(s, tmp, rd, dst_index, size); 7860 7861 /* INS is considered a 128-bit write for SVE. */ 7862 clear_vec_high(s, true, rd); 7863 } 7864 7865 7866 /* INS (General) 7867 * 7868 * 31 21 20 16 15 10 9 5 4 0 7869 * +-----------------------+--------+-------------+------+------+ 7870 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7871 * +-----------------------+--------+-------------+------+------+ 7872 * 7873 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7874 * index: encoded in imm5<4:size+1> 7875 */ 7876 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7877 { 7878 int size = ctz32(imm5); 7879 int idx; 7880 7881 if (size > 3) { 7882 unallocated_encoding(s); 7883 return; 7884 } 7885 7886 if (!fp_access_check(s)) { 7887 return; 7888 } 7889 7890 idx = extract32(imm5, 1 + size, 4 - size); 7891 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7892 7893 /* INS is considered a 128-bit write for SVE. */ 7894 clear_vec_high(s, true, rd); 7895 } 7896 7897 /* 7898 * UMOV (General) 7899 * SMOV (General) 7900 * 7901 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7902 * +---+---+-------------------+--------+-------------+------+------+ 7903 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7904 * +---+---+-------------------+--------+-------------+------+------+ 7905 * 7906 * U: unsigned when set 7907 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7908 */ 7909 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7910 int rn, int rd, int imm5) 7911 { 7912 int size = ctz32(imm5); 7913 int element; 7914 TCGv_i64 tcg_rd; 7915 7916 /* Check for UnallocatedEncodings */ 7917 if (is_signed) { 7918 if (size > 2 || (size == 2 && !is_q)) { 7919 unallocated_encoding(s); 7920 return; 7921 } 7922 } else { 7923 if (size > 3 7924 || (size < 3 && is_q) 7925 || (size == 3 && !is_q)) { 7926 unallocated_encoding(s); 7927 return; 7928 } 7929 } 7930 7931 if (!fp_access_check(s)) { 7932 return; 7933 } 7934 7935 element = extract32(imm5, 1+size, 4); 7936 7937 tcg_rd = cpu_reg(s, rd); 7938 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7939 if (is_signed && !is_q) { 7940 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7941 } 7942 } 7943 7944 /* AdvSIMD copy 7945 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7946 * +---+---+----+-----------------+------+---+------+---+------+------+ 7947 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7948 * +---+---+----+-----------------+------+---+------+---+------+------+ 7949 */ 7950 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7951 { 7952 int rd = extract32(insn, 0, 5); 7953 int rn = extract32(insn, 5, 5); 7954 int imm4 = extract32(insn, 11, 4); 7955 int op = extract32(insn, 29, 1); 7956 int is_q = extract32(insn, 30, 1); 7957 int imm5 = extract32(insn, 16, 5); 7958 7959 if (op) { 7960 if (is_q) { 7961 /* INS (element) */ 7962 handle_simd_inse(s, rd, rn, imm4, imm5); 7963 } else { 7964 unallocated_encoding(s); 7965 } 7966 } else { 7967 switch (imm4) { 7968 case 0: 7969 /* DUP (element - vector) */ 7970 handle_simd_dupe(s, is_q, rd, rn, imm5); 7971 break; 7972 case 1: 7973 /* DUP (general) */ 7974 handle_simd_dupg(s, is_q, rd, rn, imm5); 7975 break; 7976 case 3: 7977 if (is_q) { 7978 /* INS (general) */ 7979 handle_simd_insg(s, rd, rn, imm5); 7980 } else { 7981 unallocated_encoding(s); 7982 } 7983 break; 7984 case 5: 7985 case 7: 7986 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7987 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7988 break; 7989 default: 7990 unallocated_encoding(s); 7991 break; 7992 } 7993 } 7994 } 7995 7996 /* AdvSIMD modified immediate 7997 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7998 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7999 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8000 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8001 * 8002 * There are a number of operations that can be carried out here: 8003 * MOVI - move (shifted) imm into register 8004 * MVNI - move inverted (shifted) imm into register 8005 * ORR - bitwise OR of (shifted) imm with register 8006 * BIC - bitwise clear of (shifted) imm with register 8007 * With ARMv8.2 we also have: 8008 * FMOV half-precision 8009 */ 8010 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8011 { 8012 int rd = extract32(insn, 0, 5); 8013 int cmode = extract32(insn, 12, 4); 8014 int o2 = extract32(insn, 11, 1); 8015 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8016 bool is_neg = extract32(insn, 29, 1); 8017 bool is_q = extract32(insn, 30, 1); 8018 uint64_t imm = 0; 8019 8020 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8021 /* Check for FMOV (vector, immediate) - half-precision */ 8022 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8023 unallocated_encoding(s); 8024 return; 8025 } 8026 } 8027 8028 if (!fp_access_check(s)) { 8029 return; 8030 } 8031 8032 if (cmode == 15 && o2 && !is_neg) { 8033 /* FMOV (vector, immediate) - half-precision */ 8034 imm = vfp_expand_imm(MO_16, abcdefgh); 8035 /* now duplicate across the lanes */ 8036 imm = dup_const(MO_16, imm); 8037 } else { 8038 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8039 } 8040 8041 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8042 /* MOVI or MVNI, with MVNI negation handled above. */ 8043 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8044 vec_full_reg_size(s), imm); 8045 } else { 8046 /* ORR or BIC, with BIC negation to AND handled above. */ 8047 if (is_neg) { 8048 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8049 } else { 8050 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8051 } 8052 } 8053 } 8054 8055 /* AdvSIMD scalar copy 8056 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8057 * +-----+----+-----------------+------+---+------+---+------+------+ 8058 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8059 * +-----+----+-----------------+------+---+------+---+------+------+ 8060 */ 8061 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8062 { 8063 int rd = extract32(insn, 0, 5); 8064 int rn = extract32(insn, 5, 5); 8065 int imm4 = extract32(insn, 11, 4); 8066 int imm5 = extract32(insn, 16, 5); 8067 int op = extract32(insn, 29, 1); 8068 8069 if (op != 0 || imm4 != 0) { 8070 unallocated_encoding(s); 8071 return; 8072 } 8073 8074 /* DUP (element, scalar) */ 8075 handle_simd_dupes(s, rd, rn, imm5); 8076 } 8077 8078 /* AdvSIMD scalar pairwise 8079 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8080 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8081 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8082 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8083 */ 8084 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8085 { 8086 int u = extract32(insn, 29, 1); 8087 int size = extract32(insn, 22, 2); 8088 int opcode = extract32(insn, 12, 5); 8089 int rn = extract32(insn, 5, 5); 8090 int rd = extract32(insn, 0, 5); 8091 TCGv_ptr fpst; 8092 8093 /* For some ops (the FP ones), size[1] is part of the encoding. 8094 * For ADDP strictly it is not but size[1] is always 1 for valid 8095 * encodings. 8096 */ 8097 opcode |= (extract32(size, 1, 1) << 5); 8098 8099 switch (opcode) { 8100 case 0x3b: /* ADDP */ 8101 if (u || size != 3) { 8102 unallocated_encoding(s); 8103 return; 8104 } 8105 if (!fp_access_check(s)) { 8106 return; 8107 } 8108 8109 fpst = NULL; 8110 break; 8111 case 0xc: /* FMAXNMP */ 8112 case 0xd: /* FADDP */ 8113 case 0xf: /* FMAXP */ 8114 case 0x2c: /* FMINNMP */ 8115 case 0x2f: /* FMINP */ 8116 /* FP op, size[0] is 32 or 64 bit*/ 8117 if (!u) { 8118 if (!dc_isar_feature(aa64_fp16, s)) { 8119 unallocated_encoding(s); 8120 return; 8121 } else { 8122 size = MO_16; 8123 } 8124 } else { 8125 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8126 } 8127 8128 if (!fp_access_check(s)) { 8129 return; 8130 } 8131 8132 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8133 break; 8134 default: 8135 unallocated_encoding(s); 8136 return; 8137 } 8138 8139 if (size == MO_64) { 8140 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8141 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8142 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8143 8144 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8145 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8146 8147 switch (opcode) { 8148 case 0x3b: /* ADDP */ 8149 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8150 break; 8151 case 0xc: /* FMAXNMP */ 8152 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8153 break; 8154 case 0xd: /* FADDP */ 8155 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8156 break; 8157 case 0xf: /* FMAXP */ 8158 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8159 break; 8160 case 0x2c: /* FMINNMP */ 8161 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8162 break; 8163 case 0x2f: /* FMINP */ 8164 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8165 break; 8166 default: 8167 g_assert_not_reached(); 8168 } 8169 8170 write_fp_dreg(s, rd, tcg_res); 8171 } else { 8172 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8173 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8174 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8175 8176 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8177 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8178 8179 if (size == MO_16) { 8180 switch (opcode) { 8181 case 0xc: /* FMAXNMP */ 8182 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8183 break; 8184 case 0xd: /* FADDP */ 8185 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8186 break; 8187 case 0xf: /* FMAXP */ 8188 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8189 break; 8190 case 0x2c: /* FMINNMP */ 8191 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8192 break; 8193 case 0x2f: /* FMINP */ 8194 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8195 break; 8196 default: 8197 g_assert_not_reached(); 8198 } 8199 } else { 8200 switch (opcode) { 8201 case 0xc: /* FMAXNMP */ 8202 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8203 break; 8204 case 0xd: /* FADDP */ 8205 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8206 break; 8207 case 0xf: /* FMAXP */ 8208 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8209 break; 8210 case 0x2c: /* FMINNMP */ 8211 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8212 break; 8213 case 0x2f: /* FMINP */ 8214 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8215 break; 8216 default: 8217 g_assert_not_reached(); 8218 } 8219 } 8220 8221 write_fp_sreg(s, rd, tcg_res); 8222 } 8223 } 8224 8225 /* 8226 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8227 * 8228 * This code is handles the common shifting code and is used by both 8229 * the vector and scalar code. 8230 */ 8231 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8232 TCGv_i64 tcg_rnd, bool accumulate, 8233 bool is_u, int size, int shift) 8234 { 8235 bool extended_result = false; 8236 bool round = tcg_rnd != NULL; 8237 int ext_lshift = 0; 8238 TCGv_i64 tcg_src_hi; 8239 8240 if (round && size == 3) { 8241 extended_result = true; 8242 ext_lshift = 64 - shift; 8243 tcg_src_hi = tcg_temp_new_i64(); 8244 } else if (shift == 64) { 8245 if (!accumulate && is_u) { 8246 /* result is zero */ 8247 tcg_gen_movi_i64(tcg_res, 0); 8248 return; 8249 } 8250 } 8251 8252 /* Deal with the rounding step */ 8253 if (round) { 8254 if (extended_result) { 8255 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8256 if (!is_u) { 8257 /* take care of sign extending tcg_res */ 8258 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8259 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8260 tcg_src, tcg_src_hi, 8261 tcg_rnd, tcg_zero); 8262 } else { 8263 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8264 tcg_src, tcg_zero, 8265 tcg_rnd, tcg_zero); 8266 } 8267 } else { 8268 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8269 } 8270 } 8271 8272 /* Now do the shift right */ 8273 if (round && extended_result) { 8274 /* extended case, >64 bit precision required */ 8275 if (ext_lshift == 0) { 8276 /* special case, only high bits matter */ 8277 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8278 } else { 8279 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8280 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8281 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8282 } 8283 } else { 8284 if (is_u) { 8285 if (shift == 64) { 8286 /* essentially shifting in 64 zeros */ 8287 tcg_gen_movi_i64(tcg_src, 0); 8288 } else { 8289 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8290 } 8291 } else { 8292 if (shift == 64) { 8293 /* effectively extending the sign-bit */ 8294 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8295 } else { 8296 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8297 } 8298 } 8299 } 8300 8301 if (accumulate) { 8302 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8303 } else { 8304 tcg_gen_mov_i64(tcg_res, tcg_src); 8305 } 8306 } 8307 8308 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8309 static void handle_scalar_simd_shri(DisasContext *s, 8310 bool is_u, int immh, int immb, 8311 int opcode, int rn, int rd) 8312 { 8313 const int size = 3; 8314 int immhb = immh << 3 | immb; 8315 int shift = 2 * (8 << size) - immhb; 8316 bool accumulate = false; 8317 bool round = false; 8318 bool insert = false; 8319 TCGv_i64 tcg_rn; 8320 TCGv_i64 tcg_rd; 8321 TCGv_i64 tcg_round; 8322 8323 if (!extract32(immh, 3, 1)) { 8324 unallocated_encoding(s); 8325 return; 8326 } 8327 8328 if (!fp_access_check(s)) { 8329 return; 8330 } 8331 8332 switch (opcode) { 8333 case 0x02: /* SSRA / USRA (accumulate) */ 8334 accumulate = true; 8335 break; 8336 case 0x04: /* SRSHR / URSHR (rounding) */ 8337 round = true; 8338 break; 8339 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8340 accumulate = round = true; 8341 break; 8342 case 0x08: /* SRI */ 8343 insert = true; 8344 break; 8345 } 8346 8347 if (round) { 8348 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8349 } else { 8350 tcg_round = NULL; 8351 } 8352 8353 tcg_rn = read_fp_dreg(s, rn); 8354 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8355 8356 if (insert) { 8357 /* shift count same as element size is valid but does nothing; 8358 * special case to avoid potential shift by 64. 8359 */ 8360 int esize = 8 << size; 8361 if (shift != esize) { 8362 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8363 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8364 } 8365 } else { 8366 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8367 accumulate, is_u, size, shift); 8368 } 8369 8370 write_fp_dreg(s, rd, tcg_rd); 8371 } 8372 8373 /* SHL/SLI - Scalar shift left */ 8374 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8375 int immh, int immb, int opcode, 8376 int rn, int rd) 8377 { 8378 int size = 32 - clz32(immh) - 1; 8379 int immhb = immh << 3 | immb; 8380 int shift = immhb - (8 << size); 8381 TCGv_i64 tcg_rn; 8382 TCGv_i64 tcg_rd; 8383 8384 if (!extract32(immh, 3, 1)) { 8385 unallocated_encoding(s); 8386 return; 8387 } 8388 8389 if (!fp_access_check(s)) { 8390 return; 8391 } 8392 8393 tcg_rn = read_fp_dreg(s, rn); 8394 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8395 8396 if (insert) { 8397 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8398 } else { 8399 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8400 } 8401 8402 write_fp_dreg(s, rd, tcg_rd); 8403 } 8404 8405 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8406 * (signed/unsigned) narrowing */ 8407 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8408 bool is_u_shift, bool is_u_narrow, 8409 int immh, int immb, int opcode, 8410 int rn, int rd) 8411 { 8412 int immhb = immh << 3 | immb; 8413 int size = 32 - clz32(immh) - 1; 8414 int esize = 8 << size; 8415 int shift = (2 * esize) - immhb; 8416 int elements = is_scalar ? 1 : (64 / esize); 8417 bool round = extract32(opcode, 0, 1); 8418 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8419 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8420 TCGv_i32 tcg_rd_narrowed; 8421 TCGv_i64 tcg_final; 8422 8423 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8424 { gen_helper_neon_narrow_sat_s8, 8425 gen_helper_neon_unarrow_sat8 }, 8426 { gen_helper_neon_narrow_sat_s16, 8427 gen_helper_neon_unarrow_sat16 }, 8428 { gen_helper_neon_narrow_sat_s32, 8429 gen_helper_neon_unarrow_sat32 }, 8430 { NULL, NULL }, 8431 }; 8432 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8433 gen_helper_neon_narrow_sat_u8, 8434 gen_helper_neon_narrow_sat_u16, 8435 gen_helper_neon_narrow_sat_u32, 8436 NULL 8437 }; 8438 NeonGenNarrowEnvFn *narrowfn; 8439 8440 int i; 8441 8442 assert(size < 4); 8443 8444 if (extract32(immh, 3, 1)) { 8445 unallocated_encoding(s); 8446 return; 8447 } 8448 8449 if (!fp_access_check(s)) { 8450 return; 8451 } 8452 8453 if (is_u_shift) { 8454 narrowfn = unsigned_narrow_fns[size]; 8455 } else { 8456 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8457 } 8458 8459 tcg_rn = tcg_temp_new_i64(); 8460 tcg_rd = tcg_temp_new_i64(); 8461 tcg_rd_narrowed = tcg_temp_new_i32(); 8462 tcg_final = tcg_const_i64(0); 8463 8464 if (round) { 8465 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8466 } else { 8467 tcg_round = NULL; 8468 } 8469 8470 for (i = 0; i < elements; i++) { 8471 read_vec_element(s, tcg_rn, rn, i, ldop); 8472 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8473 false, is_u_shift, size+1, shift); 8474 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8475 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8476 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8477 } 8478 8479 if (!is_q) { 8480 write_vec_element(s, tcg_final, rd, 0, MO_64); 8481 } else { 8482 write_vec_element(s, tcg_final, rd, 1, MO_64); 8483 } 8484 clear_vec_high(s, is_q, rd); 8485 } 8486 8487 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8488 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8489 bool src_unsigned, bool dst_unsigned, 8490 int immh, int immb, int rn, int rd) 8491 { 8492 int immhb = immh << 3 | immb; 8493 int size = 32 - clz32(immh) - 1; 8494 int shift = immhb - (8 << size); 8495 int pass; 8496 8497 assert(immh != 0); 8498 assert(!(scalar && is_q)); 8499 8500 if (!scalar) { 8501 if (!is_q && extract32(immh, 3, 1)) { 8502 unallocated_encoding(s); 8503 return; 8504 } 8505 8506 /* Since we use the variable-shift helpers we must 8507 * replicate the shift count into each element of 8508 * the tcg_shift value. 8509 */ 8510 switch (size) { 8511 case 0: 8512 shift |= shift << 8; 8513 /* fall through */ 8514 case 1: 8515 shift |= shift << 16; 8516 break; 8517 case 2: 8518 case 3: 8519 break; 8520 default: 8521 g_assert_not_reached(); 8522 } 8523 } 8524 8525 if (!fp_access_check(s)) { 8526 return; 8527 } 8528 8529 if (size == 3) { 8530 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8531 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8532 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8533 { NULL, gen_helper_neon_qshl_u64 }, 8534 }; 8535 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8536 int maxpass = is_q ? 2 : 1; 8537 8538 for (pass = 0; pass < maxpass; pass++) { 8539 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8540 8541 read_vec_element(s, tcg_op, rn, pass, MO_64); 8542 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8543 write_vec_element(s, tcg_op, rd, pass, MO_64); 8544 } 8545 clear_vec_high(s, is_q, rd); 8546 } else { 8547 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8548 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8549 { 8550 { gen_helper_neon_qshl_s8, 8551 gen_helper_neon_qshl_s16, 8552 gen_helper_neon_qshl_s32 }, 8553 { gen_helper_neon_qshlu_s8, 8554 gen_helper_neon_qshlu_s16, 8555 gen_helper_neon_qshlu_s32 } 8556 }, { 8557 { NULL, NULL, NULL }, 8558 { gen_helper_neon_qshl_u8, 8559 gen_helper_neon_qshl_u16, 8560 gen_helper_neon_qshl_u32 } 8561 } 8562 }; 8563 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8564 MemOp memop = scalar ? size : MO_32; 8565 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8566 8567 for (pass = 0; pass < maxpass; pass++) { 8568 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8569 8570 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8571 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8572 if (scalar) { 8573 switch (size) { 8574 case 0: 8575 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8576 break; 8577 case 1: 8578 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8579 break; 8580 case 2: 8581 break; 8582 default: 8583 g_assert_not_reached(); 8584 } 8585 write_fp_sreg(s, rd, tcg_op); 8586 } else { 8587 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8588 } 8589 } 8590 8591 if (!scalar) { 8592 clear_vec_high(s, is_q, rd); 8593 } 8594 } 8595 } 8596 8597 /* Common vector code for handling integer to FP conversion */ 8598 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8599 int elements, int is_signed, 8600 int fracbits, int size) 8601 { 8602 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8603 TCGv_i32 tcg_shift = NULL; 8604 8605 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8606 int pass; 8607 8608 if (fracbits || size == MO_64) { 8609 tcg_shift = tcg_constant_i32(fracbits); 8610 } 8611 8612 if (size == MO_64) { 8613 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8614 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8615 8616 for (pass = 0; pass < elements; pass++) { 8617 read_vec_element(s, tcg_int64, rn, pass, mop); 8618 8619 if (is_signed) { 8620 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8621 tcg_shift, tcg_fpst); 8622 } else { 8623 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8624 tcg_shift, tcg_fpst); 8625 } 8626 if (elements == 1) { 8627 write_fp_dreg(s, rd, tcg_double); 8628 } else { 8629 write_vec_element(s, tcg_double, rd, pass, MO_64); 8630 } 8631 } 8632 } else { 8633 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8634 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8635 8636 for (pass = 0; pass < elements; pass++) { 8637 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8638 8639 switch (size) { 8640 case MO_32: 8641 if (fracbits) { 8642 if (is_signed) { 8643 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8644 tcg_shift, tcg_fpst); 8645 } else { 8646 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8647 tcg_shift, tcg_fpst); 8648 } 8649 } else { 8650 if (is_signed) { 8651 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8652 } else { 8653 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8654 } 8655 } 8656 break; 8657 case MO_16: 8658 if (fracbits) { 8659 if (is_signed) { 8660 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8661 tcg_shift, tcg_fpst); 8662 } else { 8663 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8664 tcg_shift, tcg_fpst); 8665 } 8666 } else { 8667 if (is_signed) { 8668 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8669 } else { 8670 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8671 } 8672 } 8673 break; 8674 default: 8675 g_assert_not_reached(); 8676 } 8677 8678 if (elements == 1) { 8679 write_fp_sreg(s, rd, tcg_float); 8680 } else { 8681 write_vec_element_i32(s, tcg_float, rd, pass, size); 8682 } 8683 } 8684 } 8685 8686 clear_vec_high(s, elements << size == 16, rd); 8687 } 8688 8689 /* UCVTF/SCVTF - Integer to FP conversion */ 8690 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8691 bool is_q, bool is_u, 8692 int immh, int immb, int opcode, 8693 int rn, int rd) 8694 { 8695 int size, elements, fracbits; 8696 int immhb = immh << 3 | immb; 8697 8698 if (immh & 8) { 8699 size = MO_64; 8700 if (!is_scalar && !is_q) { 8701 unallocated_encoding(s); 8702 return; 8703 } 8704 } else if (immh & 4) { 8705 size = MO_32; 8706 } else if (immh & 2) { 8707 size = MO_16; 8708 if (!dc_isar_feature(aa64_fp16, s)) { 8709 unallocated_encoding(s); 8710 return; 8711 } 8712 } else { 8713 /* immh == 0 would be a failure of the decode logic */ 8714 g_assert(immh == 1); 8715 unallocated_encoding(s); 8716 return; 8717 } 8718 8719 if (is_scalar) { 8720 elements = 1; 8721 } else { 8722 elements = (8 << is_q) >> size; 8723 } 8724 fracbits = (16 << size) - immhb; 8725 8726 if (!fp_access_check(s)) { 8727 return; 8728 } 8729 8730 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8731 } 8732 8733 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8734 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8735 bool is_q, bool is_u, 8736 int immh, int immb, int rn, int rd) 8737 { 8738 int immhb = immh << 3 | immb; 8739 int pass, size, fracbits; 8740 TCGv_ptr tcg_fpstatus; 8741 TCGv_i32 tcg_rmode, tcg_shift; 8742 8743 if (immh & 0x8) { 8744 size = MO_64; 8745 if (!is_scalar && !is_q) { 8746 unallocated_encoding(s); 8747 return; 8748 } 8749 } else if (immh & 0x4) { 8750 size = MO_32; 8751 } else if (immh & 0x2) { 8752 size = MO_16; 8753 if (!dc_isar_feature(aa64_fp16, s)) { 8754 unallocated_encoding(s); 8755 return; 8756 } 8757 } else { 8758 /* Should have split out AdvSIMD modified immediate earlier. */ 8759 assert(immh == 1); 8760 unallocated_encoding(s); 8761 return; 8762 } 8763 8764 if (!fp_access_check(s)) { 8765 return; 8766 } 8767 8768 assert(!(is_scalar && is_q)); 8769 8770 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8771 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8772 fracbits = (16 << size) - immhb; 8773 tcg_shift = tcg_constant_i32(fracbits); 8774 8775 if (size == MO_64) { 8776 int maxpass = is_scalar ? 1 : 2; 8777 8778 for (pass = 0; pass < maxpass; pass++) { 8779 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8780 8781 read_vec_element(s, tcg_op, rn, pass, MO_64); 8782 if (is_u) { 8783 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8784 } else { 8785 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8786 } 8787 write_vec_element(s, tcg_op, rd, pass, MO_64); 8788 } 8789 clear_vec_high(s, is_q, rd); 8790 } else { 8791 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8792 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8793 8794 switch (size) { 8795 case MO_16: 8796 if (is_u) { 8797 fn = gen_helper_vfp_touhh; 8798 } else { 8799 fn = gen_helper_vfp_toshh; 8800 } 8801 break; 8802 case MO_32: 8803 if (is_u) { 8804 fn = gen_helper_vfp_touls; 8805 } else { 8806 fn = gen_helper_vfp_tosls; 8807 } 8808 break; 8809 default: 8810 g_assert_not_reached(); 8811 } 8812 8813 for (pass = 0; pass < maxpass; pass++) { 8814 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8815 8816 read_vec_element_i32(s, tcg_op, rn, pass, size); 8817 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8818 if (is_scalar) { 8819 write_fp_sreg(s, rd, tcg_op); 8820 } else { 8821 write_vec_element_i32(s, tcg_op, rd, pass, size); 8822 } 8823 } 8824 if (!is_scalar) { 8825 clear_vec_high(s, is_q, rd); 8826 } 8827 } 8828 8829 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8830 } 8831 8832 /* AdvSIMD scalar shift by immediate 8833 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8834 * +-----+---+-------------+------+------+--------+---+------+------+ 8835 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8836 * +-----+---+-------------+------+------+--------+---+------+------+ 8837 * 8838 * This is the scalar version so it works on a fixed sized registers 8839 */ 8840 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8841 { 8842 int rd = extract32(insn, 0, 5); 8843 int rn = extract32(insn, 5, 5); 8844 int opcode = extract32(insn, 11, 5); 8845 int immb = extract32(insn, 16, 3); 8846 int immh = extract32(insn, 19, 4); 8847 bool is_u = extract32(insn, 29, 1); 8848 8849 if (immh == 0) { 8850 unallocated_encoding(s); 8851 return; 8852 } 8853 8854 switch (opcode) { 8855 case 0x08: /* SRI */ 8856 if (!is_u) { 8857 unallocated_encoding(s); 8858 return; 8859 } 8860 /* fall through */ 8861 case 0x00: /* SSHR / USHR */ 8862 case 0x02: /* SSRA / USRA */ 8863 case 0x04: /* SRSHR / URSHR */ 8864 case 0x06: /* SRSRA / URSRA */ 8865 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8866 break; 8867 case 0x0a: /* SHL / SLI */ 8868 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8869 break; 8870 case 0x1c: /* SCVTF, UCVTF */ 8871 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8872 opcode, rn, rd); 8873 break; 8874 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8875 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8876 if (!is_u) { 8877 unallocated_encoding(s); 8878 return; 8879 } 8880 handle_vec_simd_sqshrn(s, true, false, false, true, 8881 immh, immb, opcode, rn, rd); 8882 break; 8883 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8884 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8885 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8886 immh, immb, opcode, rn, rd); 8887 break; 8888 case 0xc: /* SQSHLU */ 8889 if (!is_u) { 8890 unallocated_encoding(s); 8891 return; 8892 } 8893 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8894 break; 8895 case 0xe: /* SQSHL, UQSHL */ 8896 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8897 break; 8898 case 0x1f: /* FCVTZS, FCVTZU */ 8899 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8900 break; 8901 default: 8902 unallocated_encoding(s); 8903 break; 8904 } 8905 } 8906 8907 /* AdvSIMD scalar three different 8908 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8909 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8910 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8911 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8912 */ 8913 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8914 { 8915 bool is_u = extract32(insn, 29, 1); 8916 int size = extract32(insn, 22, 2); 8917 int opcode = extract32(insn, 12, 4); 8918 int rm = extract32(insn, 16, 5); 8919 int rn = extract32(insn, 5, 5); 8920 int rd = extract32(insn, 0, 5); 8921 8922 if (is_u) { 8923 unallocated_encoding(s); 8924 return; 8925 } 8926 8927 switch (opcode) { 8928 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8929 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8930 case 0xd: /* SQDMULL, SQDMULL2 */ 8931 if (size == 0 || size == 3) { 8932 unallocated_encoding(s); 8933 return; 8934 } 8935 break; 8936 default: 8937 unallocated_encoding(s); 8938 return; 8939 } 8940 8941 if (!fp_access_check(s)) { 8942 return; 8943 } 8944 8945 if (size == 2) { 8946 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8947 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8948 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8949 8950 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8951 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8952 8953 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8954 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8955 8956 switch (opcode) { 8957 case 0xd: /* SQDMULL, SQDMULL2 */ 8958 break; 8959 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8960 tcg_gen_neg_i64(tcg_res, tcg_res); 8961 /* fall through */ 8962 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8963 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8964 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8965 tcg_res, tcg_op1); 8966 break; 8967 default: 8968 g_assert_not_reached(); 8969 } 8970 8971 write_fp_dreg(s, rd, tcg_res); 8972 } else { 8973 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8974 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8975 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8976 8977 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8978 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8979 8980 switch (opcode) { 8981 case 0xd: /* SQDMULL, SQDMULL2 */ 8982 break; 8983 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8984 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8985 /* fall through */ 8986 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8987 { 8988 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8989 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8990 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8991 tcg_res, tcg_op3); 8992 break; 8993 } 8994 default: 8995 g_assert_not_reached(); 8996 } 8997 8998 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8999 write_fp_dreg(s, rd, tcg_res); 9000 } 9001 } 9002 9003 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9004 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9005 { 9006 /* Handle 64x64->64 opcodes which are shared between the scalar 9007 * and vector 3-same groups. We cover every opcode where size == 3 9008 * is valid in either the three-reg-same (integer, not pairwise) 9009 * or scalar-three-reg-same groups. 9010 */ 9011 TCGCond cond; 9012 9013 switch (opcode) { 9014 case 0x1: /* SQADD */ 9015 if (u) { 9016 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9017 } else { 9018 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9019 } 9020 break; 9021 case 0x5: /* SQSUB */ 9022 if (u) { 9023 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9024 } else { 9025 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9026 } 9027 break; 9028 case 0x6: /* CMGT, CMHI */ 9029 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9030 * We implement this using setcond (test) and then negating. 9031 */ 9032 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9033 do_cmop: 9034 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9035 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9036 break; 9037 case 0x7: /* CMGE, CMHS */ 9038 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9039 goto do_cmop; 9040 case 0x11: /* CMTST, CMEQ */ 9041 if (u) { 9042 cond = TCG_COND_EQ; 9043 goto do_cmop; 9044 } 9045 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9046 break; 9047 case 0x8: /* SSHL, USHL */ 9048 if (u) { 9049 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9050 } else { 9051 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9052 } 9053 break; 9054 case 0x9: /* SQSHL, UQSHL */ 9055 if (u) { 9056 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9057 } else { 9058 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9059 } 9060 break; 9061 case 0xa: /* SRSHL, URSHL */ 9062 if (u) { 9063 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9064 } else { 9065 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9066 } 9067 break; 9068 case 0xb: /* SQRSHL, UQRSHL */ 9069 if (u) { 9070 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9071 } else { 9072 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9073 } 9074 break; 9075 case 0x10: /* ADD, SUB */ 9076 if (u) { 9077 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9078 } else { 9079 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9080 } 9081 break; 9082 default: 9083 g_assert_not_reached(); 9084 } 9085 } 9086 9087 /* Handle the 3-same-operands float operations; shared by the scalar 9088 * and vector encodings. The caller must filter out any encodings 9089 * not allocated for the encoding it is dealing with. 9090 */ 9091 static void handle_3same_float(DisasContext *s, int size, int elements, 9092 int fpopcode, int rd, int rn, int rm) 9093 { 9094 int pass; 9095 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9096 9097 for (pass = 0; pass < elements; pass++) { 9098 if (size) { 9099 /* Double */ 9100 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9101 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9102 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9103 9104 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9105 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9106 9107 switch (fpopcode) { 9108 case 0x39: /* FMLS */ 9109 /* As usual for ARM, separate negation for fused multiply-add */ 9110 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9111 /* fall through */ 9112 case 0x19: /* FMLA */ 9113 read_vec_element(s, tcg_res, rd, pass, MO_64); 9114 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9115 tcg_res, fpst); 9116 break; 9117 case 0x18: /* FMAXNM */ 9118 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9119 break; 9120 case 0x1a: /* FADD */ 9121 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9122 break; 9123 case 0x1b: /* FMULX */ 9124 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9125 break; 9126 case 0x1c: /* FCMEQ */ 9127 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9128 break; 9129 case 0x1e: /* FMAX */ 9130 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9131 break; 9132 case 0x1f: /* FRECPS */ 9133 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9134 break; 9135 case 0x38: /* FMINNM */ 9136 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9137 break; 9138 case 0x3a: /* FSUB */ 9139 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9140 break; 9141 case 0x3e: /* FMIN */ 9142 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9143 break; 9144 case 0x3f: /* FRSQRTS */ 9145 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9146 break; 9147 case 0x5b: /* FMUL */ 9148 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9149 break; 9150 case 0x5c: /* FCMGE */ 9151 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9152 break; 9153 case 0x5d: /* FACGE */ 9154 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9155 break; 9156 case 0x5f: /* FDIV */ 9157 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9158 break; 9159 case 0x7a: /* FABD */ 9160 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9161 gen_helper_vfp_absd(tcg_res, tcg_res); 9162 break; 9163 case 0x7c: /* FCMGT */ 9164 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9165 break; 9166 case 0x7d: /* FACGT */ 9167 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9168 break; 9169 default: 9170 g_assert_not_reached(); 9171 } 9172 9173 write_vec_element(s, tcg_res, rd, pass, MO_64); 9174 } else { 9175 /* Single */ 9176 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9177 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9178 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9179 9180 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9181 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9182 9183 switch (fpopcode) { 9184 case 0x39: /* FMLS */ 9185 /* As usual for ARM, separate negation for fused multiply-add */ 9186 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9187 /* fall through */ 9188 case 0x19: /* FMLA */ 9189 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9190 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9191 tcg_res, fpst); 9192 break; 9193 case 0x1a: /* FADD */ 9194 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9195 break; 9196 case 0x1b: /* FMULX */ 9197 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9198 break; 9199 case 0x1c: /* FCMEQ */ 9200 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9201 break; 9202 case 0x1e: /* FMAX */ 9203 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9204 break; 9205 case 0x1f: /* FRECPS */ 9206 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9207 break; 9208 case 0x18: /* FMAXNM */ 9209 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9210 break; 9211 case 0x38: /* FMINNM */ 9212 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9213 break; 9214 case 0x3a: /* FSUB */ 9215 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9216 break; 9217 case 0x3e: /* FMIN */ 9218 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9219 break; 9220 case 0x3f: /* FRSQRTS */ 9221 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9222 break; 9223 case 0x5b: /* FMUL */ 9224 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9225 break; 9226 case 0x5c: /* FCMGE */ 9227 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9228 break; 9229 case 0x5d: /* FACGE */ 9230 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9231 break; 9232 case 0x5f: /* FDIV */ 9233 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9234 break; 9235 case 0x7a: /* FABD */ 9236 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9237 gen_helper_vfp_abss(tcg_res, tcg_res); 9238 break; 9239 case 0x7c: /* FCMGT */ 9240 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9241 break; 9242 case 0x7d: /* FACGT */ 9243 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9244 break; 9245 default: 9246 g_assert_not_reached(); 9247 } 9248 9249 if (elements == 1) { 9250 /* scalar single so clear high part */ 9251 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9252 9253 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9254 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9255 } else { 9256 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9257 } 9258 } 9259 } 9260 9261 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9262 } 9263 9264 /* AdvSIMD scalar three same 9265 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9266 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9267 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9268 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9269 */ 9270 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9271 { 9272 int rd = extract32(insn, 0, 5); 9273 int rn = extract32(insn, 5, 5); 9274 int opcode = extract32(insn, 11, 5); 9275 int rm = extract32(insn, 16, 5); 9276 int size = extract32(insn, 22, 2); 9277 bool u = extract32(insn, 29, 1); 9278 TCGv_i64 tcg_rd; 9279 9280 if (opcode >= 0x18) { 9281 /* Floating point: U, size[1] and opcode indicate operation */ 9282 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9283 switch (fpopcode) { 9284 case 0x1b: /* FMULX */ 9285 case 0x1f: /* FRECPS */ 9286 case 0x3f: /* FRSQRTS */ 9287 case 0x5d: /* FACGE */ 9288 case 0x7d: /* FACGT */ 9289 case 0x1c: /* FCMEQ */ 9290 case 0x5c: /* FCMGE */ 9291 case 0x7c: /* FCMGT */ 9292 case 0x7a: /* FABD */ 9293 break; 9294 default: 9295 unallocated_encoding(s); 9296 return; 9297 } 9298 9299 if (!fp_access_check(s)) { 9300 return; 9301 } 9302 9303 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9304 return; 9305 } 9306 9307 switch (opcode) { 9308 case 0x1: /* SQADD, UQADD */ 9309 case 0x5: /* SQSUB, UQSUB */ 9310 case 0x9: /* SQSHL, UQSHL */ 9311 case 0xb: /* SQRSHL, UQRSHL */ 9312 break; 9313 case 0x8: /* SSHL, USHL */ 9314 case 0xa: /* SRSHL, URSHL */ 9315 case 0x6: /* CMGT, CMHI */ 9316 case 0x7: /* CMGE, CMHS */ 9317 case 0x11: /* CMTST, CMEQ */ 9318 case 0x10: /* ADD, SUB (vector) */ 9319 if (size != 3) { 9320 unallocated_encoding(s); 9321 return; 9322 } 9323 break; 9324 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9325 if (size != 1 && size != 2) { 9326 unallocated_encoding(s); 9327 return; 9328 } 9329 break; 9330 default: 9331 unallocated_encoding(s); 9332 return; 9333 } 9334 9335 if (!fp_access_check(s)) { 9336 return; 9337 } 9338 9339 tcg_rd = tcg_temp_new_i64(); 9340 9341 if (size == 3) { 9342 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9343 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9344 9345 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9346 } else { 9347 /* Do a single operation on the lowest element in the vector. 9348 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9349 * no side effects for all these operations. 9350 * OPTME: special-purpose helpers would avoid doing some 9351 * unnecessary work in the helper for the 8 and 16 bit cases. 9352 */ 9353 NeonGenTwoOpEnvFn *genenvfn; 9354 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9355 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9356 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9357 9358 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9359 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9360 9361 switch (opcode) { 9362 case 0x1: /* SQADD, UQADD */ 9363 { 9364 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9365 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9366 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9367 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9368 }; 9369 genenvfn = fns[size][u]; 9370 break; 9371 } 9372 case 0x5: /* SQSUB, UQSUB */ 9373 { 9374 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9375 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9376 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9377 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9378 }; 9379 genenvfn = fns[size][u]; 9380 break; 9381 } 9382 case 0x9: /* SQSHL, UQSHL */ 9383 { 9384 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9385 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9386 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9387 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9388 }; 9389 genenvfn = fns[size][u]; 9390 break; 9391 } 9392 case 0xb: /* SQRSHL, UQRSHL */ 9393 { 9394 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9395 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9396 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9397 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9398 }; 9399 genenvfn = fns[size][u]; 9400 break; 9401 } 9402 case 0x16: /* SQDMULH, SQRDMULH */ 9403 { 9404 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9405 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9406 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9407 }; 9408 assert(size == 1 || size == 2); 9409 genenvfn = fns[size - 1][u]; 9410 break; 9411 } 9412 default: 9413 g_assert_not_reached(); 9414 } 9415 9416 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9417 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9418 } 9419 9420 write_fp_dreg(s, rd, tcg_rd); 9421 } 9422 9423 /* AdvSIMD scalar three same FP16 9424 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9425 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9426 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9427 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9428 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9429 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9430 */ 9431 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9432 uint32_t insn) 9433 { 9434 int rd = extract32(insn, 0, 5); 9435 int rn = extract32(insn, 5, 5); 9436 int opcode = extract32(insn, 11, 3); 9437 int rm = extract32(insn, 16, 5); 9438 bool u = extract32(insn, 29, 1); 9439 bool a = extract32(insn, 23, 1); 9440 int fpopcode = opcode | (a << 3) | (u << 4); 9441 TCGv_ptr fpst; 9442 TCGv_i32 tcg_op1; 9443 TCGv_i32 tcg_op2; 9444 TCGv_i32 tcg_res; 9445 9446 switch (fpopcode) { 9447 case 0x03: /* FMULX */ 9448 case 0x04: /* FCMEQ (reg) */ 9449 case 0x07: /* FRECPS */ 9450 case 0x0f: /* FRSQRTS */ 9451 case 0x14: /* FCMGE (reg) */ 9452 case 0x15: /* FACGE */ 9453 case 0x1a: /* FABD */ 9454 case 0x1c: /* FCMGT (reg) */ 9455 case 0x1d: /* FACGT */ 9456 break; 9457 default: 9458 unallocated_encoding(s); 9459 return; 9460 } 9461 9462 if (!dc_isar_feature(aa64_fp16, s)) { 9463 unallocated_encoding(s); 9464 } 9465 9466 if (!fp_access_check(s)) { 9467 return; 9468 } 9469 9470 fpst = fpstatus_ptr(FPST_FPCR_F16); 9471 9472 tcg_op1 = read_fp_hreg(s, rn); 9473 tcg_op2 = read_fp_hreg(s, rm); 9474 tcg_res = tcg_temp_new_i32(); 9475 9476 switch (fpopcode) { 9477 case 0x03: /* FMULX */ 9478 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9479 break; 9480 case 0x04: /* FCMEQ (reg) */ 9481 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9482 break; 9483 case 0x07: /* FRECPS */ 9484 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9485 break; 9486 case 0x0f: /* FRSQRTS */ 9487 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9488 break; 9489 case 0x14: /* FCMGE (reg) */ 9490 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9491 break; 9492 case 0x15: /* FACGE */ 9493 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9494 break; 9495 case 0x1a: /* FABD */ 9496 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9497 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9498 break; 9499 case 0x1c: /* FCMGT (reg) */ 9500 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9501 break; 9502 case 0x1d: /* FACGT */ 9503 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9504 break; 9505 default: 9506 g_assert_not_reached(); 9507 } 9508 9509 write_fp_sreg(s, rd, tcg_res); 9510 } 9511 9512 /* AdvSIMD scalar three same extra 9513 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9514 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9515 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9516 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9517 */ 9518 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9519 uint32_t insn) 9520 { 9521 int rd = extract32(insn, 0, 5); 9522 int rn = extract32(insn, 5, 5); 9523 int opcode = extract32(insn, 11, 4); 9524 int rm = extract32(insn, 16, 5); 9525 int size = extract32(insn, 22, 2); 9526 bool u = extract32(insn, 29, 1); 9527 TCGv_i32 ele1, ele2, ele3; 9528 TCGv_i64 res; 9529 bool feature; 9530 9531 switch (u * 16 + opcode) { 9532 case 0x10: /* SQRDMLAH (vector) */ 9533 case 0x11: /* SQRDMLSH (vector) */ 9534 if (size != 1 && size != 2) { 9535 unallocated_encoding(s); 9536 return; 9537 } 9538 feature = dc_isar_feature(aa64_rdm, s); 9539 break; 9540 default: 9541 unallocated_encoding(s); 9542 return; 9543 } 9544 if (!feature) { 9545 unallocated_encoding(s); 9546 return; 9547 } 9548 if (!fp_access_check(s)) { 9549 return; 9550 } 9551 9552 /* Do a single operation on the lowest element in the vector. 9553 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9554 * with no side effects for all these operations. 9555 * OPTME: special-purpose helpers would avoid doing some 9556 * unnecessary work in the helper for the 16 bit cases. 9557 */ 9558 ele1 = tcg_temp_new_i32(); 9559 ele2 = tcg_temp_new_i32(); 9560 ele3 = tcg_temp_new_i32(); 9561 9562 read_vec_element_i32(s, ele1, rn, 0, size); 9563 read_vec_element_i32(s, ele2, rm, 0, size); 9564 read_vec_element_i32(s, ele3, rd, 0, size); 9565 9566 switch (opcode) { 9567 case 0x0: /* SQRDMLAH */ 9568 if (size == 1) { 9569 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9570 } else { 9571 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9572 } 9573 break; 9574 case 0x1: /* SQRDMLSH */ 9575 if (size == 1) { 9576 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9577 } else { 9578 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9579 } 9580 break; 9581 default: 9582 g_assert_not_reached(); 9583 } 9584 9585 res = tcg_temp_new_i64(); 9586 tcg_gen_extu_i32_i64(res, ele3); 9587 write_fp_dreg(s, rd, res); 9588 } 9589 9590 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9591 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9592 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9593 { 9594 /* Handle 64->64 opcodes which are shared between the scalar and 9595 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9596 * is valid in either group and also the double-precision fp ops. 9597 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9598 * requires them. 9599 */ 9600 TCGCond cond; 9601 9602 switch (opcode) { 9603 case 0x4: /* CLS, CLZ */ 9604 if (u) { 9605 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9606 } else { 9607 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9608 } 9609 break; 9610 case 0x5: /* NOT */ 9611 /* This opcode is shared with CNT and RBIT but we have earlier 9612 * enforced that size == 3 if and only if this is the NOT insn. 9613 */ 9614 tcg_gen_not_i64(tcg_rd, tcg_rn); 9615 break; 9616 case 0x7: /* SQABS, SQNEG */ 9617 if (u) { 9618 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9619 } else { 9620 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9621 } 9622 break; 9623 case 0xa: /* CMLT */ 9624 /* 64 bit integer comparison against zero, result is 9625 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9626 * subtracting 1. 9627 */ 9628 cond = TCG_COND_LT; 9629 do_cmop: 9630 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9631 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9632 break; 9633 case 0x8: /* CMGT, CMGE */ 9634 cond = u ? TCG_COND_GE : TCG_COND_GT; 9635 goto do_cmop; 9636 case 0x9: /* CMEQ, CMLE */ 9637 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9638 goto do_cmop; 9639 case 0xb: /* ABS, NEG */ 9640 if (u) { 9641 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9642 } else { 9643 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9644 } 9645 break; 9646 case 0x2f: /* FABS */ 9647 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9648 break; 9649 case 0x6f: /* FNEG */ 9650 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9651 break; 9652 case 0x7f: /* FSQRT */ 9653 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9654 break; 9655 case 0x1a: /* FCVTNS */ 9656 case 0x1b: /* FCVTMS */ 9657 case 0x1c: /* FCVTAS */ 9658 case 0x3a: /* FCVTPS */ 9659 case 0x3b: /* FCVTZS */ 9660 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9661 break; 9662 case 0x5a: /* FCVTNU */ 9663 case 0x5b: /* FCVTMU */ 9664 case 0x5c: /* FCVTAU */ 9665 case 0x7a: /* FCVTPU */ 9666 case 0x7b: /* FCVTZU */ 9667 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9668 break; 9669 case 0x18: /* FRINTN */ 9670 case 0x19: /* FRINTM */ 9671 case 0x38: /* FRINTP */ 9672 case 0x39: /* FRINTZ */ 9673 case 0x58: /* FRINTA */ 9674 case 0x79: /* FRINTI */ 9675 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9676 break; 9677 case 0x59: /* FRINTX */ 9678 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9679 break; 9680 case 0x1e: /* FRINT32Z */ 9681 case 0x5e: /* FRINT32X */ 9682 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9683 break; 9684 case 0x1f: /* FRINT64Z */ 9685 case 0x5f: /* FRINT64X */ 9686 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9687 break; 9688 default: 9689 g_assert_not_reached(); 9690 } 9691 } 9692 9693 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9694 bool is_scalar, bool is_u, bool is_q, 9695 int size, int rn, int rd) 9696 { 9697 bool is_double = (size == MO_64); 9698 TCGv_ptr fpst; 9699 9700 if (!fp_access_check(s)) { 9701 return; 9702 } 9703 9704 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9705 9706 if (is_double) { 9707 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9708 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9709 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9710 NeonGenTwoDoubleOpFn *genfn; 9711 bool swap = false; 9712 int pass; 9713 9714 switch (opcode) { 9715 case 0x2e: /* FCMLT (zero) */ 9716 swap = true; 9717 /* fallthrough */ 9718 case 0x2c: /* FCMGT (zero) */ 9719 genfn = gen_helper_neon_cgt_f64; 9720 break; 9721 case 0x2d: /* FCMEQ (zero) */ 9722 genfn = gen_helper_neon_ceq_f64; 9723 break; 9724 case 0x6d: /* FCMLE (zero) */ 9725 swap = true; 9726 /* fall through */ 9727 case 0x6c: /* FCMGE (zero) */ 9728 genfn = gen_helper_neon_cge_f64; 9729 break; 9730 default: 9731 g_assert_not_reached(); 9732 } 9733 9734 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9735 read_vec_element(s, tcg_op, rn, pass, MO_64); 9736 if (swap) { 9737 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9738 } else { 9739 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9740 } 9741 write_vec_element(s, tcg_res, rd, pass, MO_64); 9742 } 9743 9744 clear_vec_high(s, !is_scalar, rd); 9745 } else { 9746 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9747 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9748 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9749 NeonGenTwoSingleOpFn *genfn; 9750 bool swap = false; 9751 int pass, maxpasses; 9752 9753 if (size == MO_16) { 9754 switch (opcode) { 9755 case 0x2e: /* FCMLT (zero) */ 9756 swap = true; 9757 /* fall through */ 9758 case 0x2c: /* FCMGT (zero) */ 9759 genfn = gen_helper_advsimd_cgt_f16; 9760 break; 9761 case 0x2d: /* FCMEQ (zero) */ 9762 genfn = gen_helper_advsimd_ceq_f16; 9763 break; 9764 case 0x6d: /* FCMLE (zero) */ 9765 swap = true; 9766 /* fall through */ 9767 case 0x6c: /* FCMGE (zero) */ 9768 genfn = gen_helper_advsimd_cge_f16; 9769 break; 9770 default: 9771 g_assert_not_reached(); 9772 } 9773 } else { 9774 switch (opcode) { 9775 case 0x2e: /* FCMLT (zero) */ 9776 swap = true; 9777 /* fall through */ 9778 case 0x2c: /* FCMGT (zero) */ 9779 genfn = gen_helper_neon_cgt_f32; 9780 break; 9781 case 0x2d: /* FCMEQ (zero) */ 9782 genfn = gen_helper_neon_ceq_f32; 9783 break; 9784 case 0x6d: /* FCMLE (zero) */ 9785 swap = true; 9786 /* fall through */ 9787 case 0x6c: /* FCMGE (zero) */ 9788 genfn = gen_helper_neon_cge_f32; 9789 break; 9790 default: 9791 g_assert_not_reached(); 9792 } 9793 } 9794 9795 if (is_scalar) { 9796 maxpasses = 1; 9797 } else { 9798 int vector_size = 8 << is_q; 9799 maxpasses = vector_size >> size; 9800 } 9801 9802 for (pass = 0; pass < maxpasses; pass++) { 9803 read_vec_element_i32(s, tcg_op, rn, pass, size); 9804 if (swap) { 9805 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9806 } else { 9807 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9808 } 9809 if (is_scalar) { 9810 write_fp_sreg(s, rd, tcg_res); 9811 } else { 9812 write_vec_element_i32(s, tcg_res, rd, pass, size); 9813 } 9814 } 9815 9816 if (!is_scalar) { 9817 clear_vec_high(s, is_q, rd); 9818 } 9819 } 9820 } 9821 9822 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9823 bool is_scalar, bool is_u, bool is_q, 9824 int size, int rn, int rd) 9825 { 9826 bool is_double = (size == 3); 9827 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9828 9829 if (is_double) { 9830 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9831 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9832 int pass; 9833 9834 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9835 read_vec_element(s, tcg_op, rn, pass, MO_64); 9836 switch (opcode) { 9837 case 0x3d: /* FRECPE */ 9838 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9839 break; 9840 case 0x3f: /* FRECPX */ 9841 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9842 break; 9843 case 0x7d: /* FRSQRTE */ 9844 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9845 break; 9846 default: 9847 g_assert_not_reached(); 9848 } 9849 write_vec_element(s, tcg_res, rd, pass, MO_64); 9850 } 9851 clear_vec_high(s, !is_scalar, rd); 9852 } else { 9853 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9854 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9855 int pass, maxpasses; 9856 9857 if (is_scalar) { 9858 maxpasses = 1; 9859 } else { 9860 maxpasses = is_q ? 4 : 2; 9861 } 9862 9863 for (pass = 0; pass < maxpasses; pass++) { 9864 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9865 9866 switch (opcode) { 9867 case 0x3c: /* URECPE */ 9868 gen_helper_recpe_u32(tcg_res, tcg_op); 9869 break; 9870 case 0x3d: /* FRECPE */ 9871 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9872 break; 9873 case 0x3f: /* FRECPX */ 9874 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9875 break; 9876 case 0x7d: /* FRSQRTE */ 9877 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9878 break; 9879 default: 9880 g_assert_not_reached(); 9881 } 9882 9883 if (is_scalar) { 9884 write_fp_sreg(s, rd, tcg_res); 9885 } else { 9886 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9887 } 9888 } 9889 if (!is_scalar) { 9890 clear_vec_high(s, is_q, rd); 9891 } 9892 } 9893 } 9894 9895 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9896 int opcode, bool u, bool is_q, 9897 int size, int rn, int rd) 9898 { 9899 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9900 * in the source becomes a size element in the destination). 9901 */ 9902 int pass; 9903 TCGv_i32 tcg_res[2]; 9904 int destelt = is_q ? 2 : 0; 9905 int passes = scalar ? 1 : 2; 9906 9907 if (scalar) { 9908 tcg_res[1] = tcg_constant_i32(0); 9909 } 9910 9911 for (pass = 0; pass < passes; pass++) { 9912 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9913 NeonGenNarrowFn *genfn = NULL; 9914 NeonGenNarrowEnvFn *genenvfn = NULL; 9915 9916 if (scalar) { 9917 read_vec_element(s, tcg_op, rn, pass, size + 1); 9918 } else { 9919 read_vec_element(s, tcg_op, rn, pass, MO_64); 9920 } 9921 tcg_res[pass] = tcg_temp_new_i32(); 9922 9923 switch (opcode) { 9924 case 0x12: /* XTN, SQXTUN */ 9925 { 9926 static NeonGenNarrowFn * const xtnfns[3] = { 9927 gen_helper_neon_narrow_u8, 9928 gen_helper_neon_narrow_u16, 9929 tcg_gen_extrl_i64_i32, 9930 }; 9931 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9932 gen_helper_neon_unarrow_sat8, 9933 gen_helper_neon_unarrow_sat16, 9934 gen_helper_neon_unarrow_sat32, 9935 }; 9936 if (u) { 9937 genenvfn = sqxtunfns[size]; 9938 } else { 9939 genfn = xtnfns[size]; 9940 } 9941 break; 9942 } 9943 case 0x14: /* SQXTN, UQXTN */ 9944 { 9945 static NeonGenNarrowEnvFn * const fns[3][2] = { 9946 { gen_helper_neon_narrow_sat_s8, 9947 gen_helper_neon_narrow_sat_u8 }, 9948 { gen_helper_neon_narrow_sat_s16, 9949 gen_helper_neon_narrow_sat_u16 }, 9950 { gen_helper_neon_narrow_sat_s32, 9951 gen_helper_neon_narrow_sat_u32 }, 9952 }; 9953 genenvfn = fns[size][u]; 9954 break; 9955 } 9956 case 0x16: /* FCVTN, FCVTN2 */ 9957 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9958 if (size == 2) { 9959 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9960 } else { 9961 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9962 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9963 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9964 TCGv_i32 ahp = get_ahp_flag(); 9965 9966 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9967 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9968 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9969 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9970 } 9971 break; 9972 case 0x36: /* BFCVTN, BFCVTN2 */ 9973 { 9974 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9975 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9976 } 9977 break; 9978 case 0x56: /* FCVTXN, FCVTXN2 */ 9979 /* 64 bit to 32 bit float conversion 9980 * with von Neumann rounding (round to odd) 9981 */ 9982 assert(size == 2); 9983 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9984 break; 9985 default: 9986 g_assert_not_reached(); 9987 } 9988 9989 if (genfn) { 9990 genfn(tcg_res[pass], tcg_op); 9991 } else if (genenvfn) { 9992 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9993 } 9994 } 9995 9996 for (pass = 0; pass < 2; pass++) { 9997 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9998 } 9999 clear_vec_high(s, is_q, rd); 10000 } 10001 10002 /* Remaining saturating accumulating ops */ 10003 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10004 bool is_q, int size, int rn, int rd) 10005 { 10006 bool is_double = (size == 3); 10007 10008 if (is_double) { 10009 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10010 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10011 int pass; 10012 10013 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10014 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10015 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10016 10017 if (is_u) { /* USQADD */ 10018 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10019 } else { /* SUQADD */ 10020 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10021 } 10022 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10023 } 10024 clear_vec_high(s, !is_scalar, rd); 10025 } else { 10026 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10027 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10028 int pass, maxpasses; 10029 10030 if (is_scalar) { 10031 maxpasses = 1; 10032 } else { 10033 maxpasses = is_q ? 4 : 2; 10034 } 10035 10036 for (pass = 0; pass < maxpasses; pass++) { 10037 if (is_scalar) { 10038 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10039 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10040 } else { 10041 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10042 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10043 } 10044 10045 if (is_u) { /* USQADD */ 10046 switch (size) { 10047 case 0: 10048 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10049 break; 10050 case 1: 10051 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10052 break; 10053 case 2: 10054 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10055 break; 10056 default: 10057 g_assert_not_reached(); 10058 } 10059 } else { /* SUQADD */ 10060 switch (size) { 10061 case 0: 10062 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10063 break; 10064 case 1: 10065 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10066 break; 10067 case 2: 10068 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10069 break; 10070 default: 10071 g_assert_not_reached(); 10072 } 10073 } 10074 10075 if (is_scalar) { 10076 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10077 } 10078 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10079 } 10080 clear_vec_high(s, is_q, rd); 10081 } 10082 } 10083 10084 /* AdvSIMD scalar two reg misc 10085 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10086 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10087 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10088 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10089 */ 10090 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10091 { 10092 int rd = extract32(insn, 0, 5); 10093 int rn = extract32(insn, 5, 5); 10094 int opcode = extract32(insn, 12, 5); 10095 int size = extract32(insn, 22, 2); 10096 bool u = extract32(insn, 29, 1); 10097 bool is_fcvt = false; 10098 int rmode; 10099 TCGv_i32 tcg_rmode; 10100 TCGv_ptr tcg_fpstatus; 10101 10102 switch (opcode) { 10103 case 0x3: /* USQADD / SUQADD*/ 10104 if (!fp_access_check(s)) { 10105 return; 10106 } 10107 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10108 return; 10109 case 0x7: /* SQABS / SQNEG */ 10110 break; 10111 case 0xa: /* CMLT */ 10112 if (u) { 10113 unallocated_encoding(s); 10114 return; 10115 } 10116 /* fall through */ 10117 case 0x8: /* CMGT, CMGE */ 10118 case 0x9: /* CMEQ, CMLE */ 10119 case 0xb: /* ABS, NEG */ 10120 if (size != 3) { 10121 unallocated_encoding(s); 10122 return; 10123 } 10124 break; 10125 case 0x12: /* SQXTUN */ 10126 if (!u) { 10127 unallocated_encoding(s); 10128 return; 10129 } 10130 /* fall through */ 10131 case 0x14: /* SQXTN, UQXTN */ 10132 if (size == 3) { 10133 unallocated_encoding(s); 10134 return; 10135 } 10136 if (!fp_access_check(s)) { 10137 return; 10138 } 10139 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10140 return; 10141 case 0xc ... 0xf: 10142 case 0x16 ... 0x1d: 10143 case 0x1f: 10144 /* Floating point: U, size[1] and opcode indicate operation; 10145 * size[0] indicates single or double precision. 10146 */ 10147 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10148 size = extract32(size, 0, 1) ? 3 : 2; 10149 switch (opcode) { 10150 case 0x2c: /* FCMGT (zero) */ 10151 case 0x2d: /* FCMEQ (zero) */ 10152 case 0x2e: /* FCMLT (zero) */ 10153 case 0x6c: /* FCMGE (zero) */ 10154 case 0x6d: /* FCMLE (zero) */ 10155 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10156 return; 10157 case 0x1d: /* SCVTF */ 10158 case 0x5d: /* UCVTF */ 10159 { 10160 bool is_signed = (opcode == 0x1d); 10161 if (!fp_access_check(s)) { 10162 return; 10163 } 10164 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10165 return; 10166 } 10167 case 0x3d: /* FRECPE */ 10168 case 0x3f: /* FRECPX */ 10169 case 0x7d: /* FRSQRTE */ 10170 if (!fp_access_check(s)) { 10171 return; 10172 } 10173 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10174 return; 10175 case 0x1a: /* FCVTNS */ 10176 case 0x1b: /* FCVTMS */ 10177 case 0x3a: /* FCVTPS */ 10178 case 0x3b: /* FCVTZS */ 10179 case 0x5a: /* FCVTNU */ 10180 case 0x5b: /* FCVTMU */ 10181 case 0x7a: /* FCVTPU */ 10182 case 0x7b: /* FCVTZU */ 10183 is_fcvt = true; 10184 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10185 break; 10186 case 0x1c: /* FCVTAS */ 10187 case 0x5c: /* FCVTAU */ 10188 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10189 is_fcvt = true; 10190 rmode = FPROUNDING_TIEAWAY; 10191 break; 10192 case 0x56: /* FCVTXN, FCVTXN2 */ 10193 if (size == 2) { 10194 unallocated_encoding(s); 10195 return; 10196 } 10197 if (!fp_access_check(s)) { 10198 return; 10199 } 10200 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10201 return; 10202 default: 10203 unallocated_encoding(s); 10204 return; 10205 } 10206 break; 10207 default: 10208 unallocated_encoding(s); 10209 return; 10210 } 10211 10212 if (!fp_access_check(s)) { 10213 return; 10214 } 10215 10216 if (is_fcvt) { 10217 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10218 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10219 } else { 10220 tcg_fpstatus = NULL; 10221 tcg_rmode = NULL; 10222 } 10223 10224 if (size == 3) { 10225 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10226 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10227 10228 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10229 write_fp_dreg(s, rd, tcg_rd); 10230 } else { 10231 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10232 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10233 10234 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10235 10236 switch (opcode) { 10237 case 0x7: /* SQABS, SQNEG */ 10238 { 10239 NeonGenOneOpEnvFn *genfn; 10240 static NeonGenOneOpEnvFn * const fns[3][2] = { 10241 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10242 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10243 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10244 }; 10245 genfn = fns[size][u]; 10246 genfn(tcg_rd, cpu_env, tcg_rn); 10247 break; 10248 } 10249 case 0x1a: /* FCVTNS */ 10250 case 0x1b: /* FCVTMS */ 10251 case 0x1c: /* FCVTAS */ 10252 case 0x3a: /* FCVTPS */ 10253 case 0x3b: /* FCVTZS */ 10254 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10255 tcg_fpstatus); 10256 break; 10257 case 0x5a: /* FCVTNU */ 10258 case 0x5b: /* FCVTMU */ 10259 case 0x5c: /* FCVTAU */ 10260 case 0x7a: /* FCVTPU */ 10261 case 0x7b: /* FCVTZU */ 10262 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10263 tcg_fpstatus); 10264 break; 10265 default: 10266 g_assert_not_reached(); 10267 } 10268 10269 write_fp_sreg(s, rd, tcg_rd); 10270 } 10271 10272 if (is_fcvt) { 10273 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10274 } 10275 } 10276 10277 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10278 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10279 int immh, int immb, int opcode, int rn, int rd) 10280 { 10281 int size = 32 - clz32(immh) - 1; 10282 int immhb = immh << 3 | immb; 10283 int shift = 2 * (8 << size) - immhb; 10284 GVecGen2iFn *gvec_fn; 10285 10286 if (extract32(immh, 3, 1) && !is_q) { 10287 unallocated_encoding(s); 10288 return; 10289 } 10290 tcg_debug_assert(size <= 3); 10291 10292 if (!fp_access_check(s)) { 10293 return; 10294 } 10295 10296 switch (opcode) { 10297 case 0x02: /* SSRA / USRA (accumulate) */ 10298 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10299 break; 10300 10301 case 0x08: /* SRI */ 10302 gvec_fn = gen_gvec_sri; 10303 break; 10304 10305 case 0x00: /* SSHR / USHR */ 10306 if (is_u) { 10307 if (shift == 8 << size) { 10308 /* Shift count the same size as element size produces zero. */ 10309 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10310 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10311 return; 10312 } 10313 gvec_fn = tcg_gen_gvec_shri; 10314 } else { 10315 /* Shift count the same size as element size produces all sign. */ 10316 if (shift == 8 << size) { 10317 shift -= 1; 10318 } 10319 gvec_fn = tcg_gen_gvec_sari; 10320 } 10321 break; 10322 10323 case 0x04: /* SRSHR / URSHR (rounding) */ 10324 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10325 break; 10326 10327 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10328 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10329 break; 10330 10331 default: 10332 g_assert_not_reached(); 10333 } 10334 10335 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10336 } 10337 10338 /* SHL/SLI - Vector shift left */ 10339 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10340 int immh, int immb, int opcode, int rn, int rd) 10341 { 10342 int size = 32 - clz32(immh) - 1; 10343 int immhb = immh << 3 | immb; 10344 int shift = immhb - (8 << size); 10345 10346 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10347 assert(size >= 0 && size <= 3); 10348 10349 if (extract32(immh, 3, 1) && !is_q) { 10350 unallocated_encoding(s); 10351 return; 10352 } 10353 10354 if (!fp_access_check(s)) { 10355 return; 10356 } 10357 10358 if (insert) { 10359 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10360 } else { 10361 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10362 } 10363 } 10364 10365 /* USHLL/SHLL - Vector shift left with widening */ 10366 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10367 int immh, int immb, int opcode, int rn, int rd) 10368 { 10369 int size = 32 - clz32(immh) - 1; 10370 int immhb = immh << 3 | immb; 10371 int shift = immhb - (8 << size); 10372 int dsize = 64; 10373 int esize = 8 << size; 10374 int elements = dsize/esize; 10375 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10376 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10377 int i; 10378 10379 if (size >= 3) { 10380 unallocated_encoding(s); 10381 return; 10382 } 10383 10384 if (!fp_access_check(s)) { 10385 return; 10386 } 10387 10388 /* For the LL variants the store is larger than the load, 10389 * so if rd == rn we would overwrite parts of our input. 10390 * So load everything right now and use shifts in the main loop. 10391 */ 10392 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10393 10394 for (i = 0; i < elements; i++) { 10395 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10396 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10397 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10398 write_vec_element(s, tcg_rd, rd, i, size + 1); 10399 } 10400 } 10401 10402 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10403 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10404 int immh, int immb, int opcode, int rn, int rd) 10405 { 10406 int immhb = immh << 3 | immb; 10407 int size = 32 - clz32(immh) - 1; 10408 int dsize = 64; 10409 int esize = 8 << size; 10410 int elements = dsize/esize; 10411 int shift = (2 * esize) - immhb; 10412 bool round = extract32(opcode, 0, 1); 10413 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10414 TCGv_i64 tcg_round; 10415 int i; 10416 10417 if (extract32(immh, 3, 1)) { 10418 unallocated_encoding(s); 10419 return; 10420 } 10421 10422 if (!fp_access_check(s)) { 10423 return; 10424 } 10425 10426 tcg_rn = tcg_temp_new_i64(); 10427 tcg_rd = tcg_temp_new_i64(); 10428 tcg_final = tcg_temp_new_i64(); 10429 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10430 10431 if (round) { 10432 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10433 } else { 10434 tcg_round = NULL; 10435 } 10436 10437 for (i = 0; i < elements; i++) { 10438 read_vec_element(s, tcg_rn, rn, i, size+1); 10439 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10440 false, true, size+1, shift); 10441 10442 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10443 } 10444 10445 if (!is_q) { 10446 write_vec_element(s, tcg_final, rd, 0, MO_64); 10447 } else { 10448 write_vec_element(s, tcg_final, rd, 1, MO_64); 10449 } 10450 10451 clear_vec_high(s, is_q, rd); 10452 } 10453 10454 10455 /* AdvSIMD shift by immediate 10456 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10457 * +---+---+---+-------------+------+------+--------+---+------+------+ 10458 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10459 * +---+---+---+-------------+------+------+--------+---+------+------+ 10460 */ 10461 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10462 { 10463 int rd = extract32(insn, 0, 5); 10464 int rn = extract32(insn, 5, 5); 10465 int opcode = extract32(insn, 11, 5); 10466 int immb = extract32(insn, 16, 3); 10467 int immh = extract32(insn, 19, 4); 10468 bool is_u = extract32(insn, 29, 1); 10469 bool is_q = extract32(insn, 30, 1); 10470 10471 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10472 assert(immh != 0); 10473 10474 switch (opcode) { 10475 case 0x08: /* SRI */ 10476 if (!is_u) { 10477 unallocated_encoding(s); 10478 return; 10479 } 10480 /* fall through */ 10481 case 0x00: /* SSHR / USHR */ 10482 case 0x02: /* SSRA / USRA (accumulate) */ 10483 case 0x04: /* SRSHR / URSHR (rounding) */ 10484 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10485 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10486 break; 10487 case 0x0a: /* SHL / SLI */ 10488 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10489 break; 10490 case 0x10: /* SHRN */ 10491 case 0x11: /* RSHRN / SQRSHRUN */ 10492 if (is_u) { 10493 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10494 opcode, rn, rd); 10495 } else { 10496 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10497 } 10498 break; 10499 case 0x12: /* SQSHRN / UQSHRN */ 10500 case 0x13: /* SQRSHRN / UQRSHRN */ 10501 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10502 opcode, rn, rd); 10503 break; 10504 case 0x14: /* SSHLL / USHLL */ 10505 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10506 break; 10507 case 0x1c: /* SCVTF / UCVTF */ 10508 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10509 opcode, rn, rd); 10510 break; 10511 case 0xc: /* SQSHLU */ 10512 if (!is_u) { 10513 unallocated_encoding(s); 10514 return; 10515 } 10516 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10517 break; 10518 case 0xe: /* SQSHL, UQSHL */ 10519 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10520 break; 10521 case 0x1f: /* FCVTZS/ FCVTZU */ 10522 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10523 return; 10524 default: 10525 unallocated_encoding(s); 10526 return; 10527 } 10528 } 10529 10530 /* Generate code to do a "long" addition or subtraction, ie one done in 10531 * TCGv_i64 on vector lanes twice the width specified by size. 10532 */ 10533 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10534 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10535 { 10536 static NeonGenTwo64OpFn * const fns[3][2] = { 10537 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10538 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10539 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10540 }; 10541 NeonGenTwo64OpFn *genfn; 10542 assert(size < 3); 10543 10544 genfn = fns[size][is_sub]; 10545 genfn(tcg_res, tcg_op1, tcg_op2); 10546 } 10547 10548 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10549 int opcode, int rd, int rn, int rm) 10550 { 10551 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10552 TCGv_i64 tcg_res[2]; 10553 int pass, accop; 10554 10555 tcg_res[0] = tcg_temp_new_i64(); 10556 tcg_res[1] = tcg_temp_new_i64(); 10557 10558 /* Does this op do an adding accumulate, a subtracting accumulate, 10559 * or no accumulate at all? 10560 */ 10561 switch (opcode) { 10562 case 5: 10563 case 8: 10564 case 9: 10565 accop = 1; 10566 break; 10567 case 10: 10568 case 11: 10569 accop = -1; 10570 break; 10571 default: 10572 accop = 0; 10573 break; 10574 } 10575 10576 if (accop != 0) { 10577 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10578 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10579 } 10580 10581 /* size == 2 means two 32x32->64 operations; this is worth special 10582 * casing because we can generally handle it inline. 10583 */ 10584 if (size == 2) { 10585 for (pass = 0; pass < 2; pass++) { 10586 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10587 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10588 TCGv_i64 tcg_passres; 10589 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10590 10591 int elt = pass + is_q * 2; 10592 10593 read_vec_element(s, tcg_op1, rn, elt, memop); 10594 read_vec_element(s, tcg_op2, rm, elt, memop); 10595 10596 if (accop == 0) { 10597 tcg_passres = tcg_res[pass]; 10598 } else { 10599 tcg_passres = tcg_temp_new_i64(); 10600 } 10601 10602 switch (opcode) { 10603 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10604 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10605 break; 10606 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10607 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10608 break; 10609 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10610 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10611 { 10612 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10613 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10614 10615 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10616 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10617 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10618 tcg_passres, 10619 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10620 break; 10621 } 10622 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10623 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10624 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10625 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10626 break; 10627 case 9: /* SQDMLAL, SQDMLAL2 */ 10628 case 11: /* SQDMLSL, SQDMLSL2 */ 10629 case 13: /* SQDMULL, SQDMULL2 */ 10630 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10631 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10632 tcg_passres, tcg_passres); 10633 break; 10634 default: 10635 g_assert_not_reached(); 10636 } 10637 10638 if (opcode == 9 || opcode == 11) { 10639 /* saturating accumulate ops */ 10640 if (accop < 0) { 10641 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10642 } 10643 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10644 tcg_res[pass], tcg_passres); 10645 } else if (accop > 0) { 10646 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10647 } else if (accop < 0) { 10648 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10649 } 10650 } 10651 } else { 10652 /* size 0 or 1, generally helper functions */ 10653 for (pass = 0; pass < 2; pass++) { 10654 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10655 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10656 TCGv_i64 tcg_passres; 10657 int elt = pass + is_q * 2; 10658 10659 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10660 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10661 10662 if (accop == 0) { 10663 tcg_passres = tcg_res[pass]; 10664 } else { 10665 tcg_passres = tcg_temp_new_i64(); 10666 } 10667 10668 switch (opcode) { 10669 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10670 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10671 { 10672 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10673 static NeonGenWidenFn * const widenfns[2][2] = { 10674 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10675 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10676 }; 10677 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10678 10679 widenfn(tcg_op2_64, tcg_op2); 10680 widenfn(tcg_passres, tcg_op1); 10681 gen_neon_addl(size, (opcode == 2), tcg_passres, 10682 tcg_passres, tcg_op2_64); 10683 break; 10684 } 10685 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10686 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10687 if (size == 0) { 10688 if (is_u) { 10689 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10690 } else { 10691 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10692 } 10693 } else { 10694 if (is_u) { 10695 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10696 } else { 10697 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10698 } 10699 } 10700 break; 10701 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10702 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10703 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10704 if (size == 0) { 10705 if (is_u) { 10706 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10707 } else { 10708 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10709 } 10710 } else { 10711 if (is_u) { 10712 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10713 } else { 10714 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10715 } 10716 } 10717 break; 10718 case 9: /* SQDMLAL, SQDMLAL2 */ 10719 case 11: /* SQDMLSL, SQDMLSL2 */ 10720 case 13: /* SQDMULL, SQDMULL2 */ 10721 assert(size == 1); 10722 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10723 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10724 tcg_passres, tcg_passres); 10725 break; 10726 default: 10727 g_assert_not_reached(); 10728 } 10729 10730 if (accop != 0) { 10731 if (opcode == 9 || opcode == 11) { 10732 /* saturating accumulate ops */ 10733 if (accop < 0) { 10734 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10735 } 10736 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10737 tcg_res[pass], 10738 tcg_passres); 10739 } else { 10740 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10741 tcg_res[pass], tcg_passres); 10742 } 10743 } 10744 } 10745 } 10746 10747 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10748 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10749 } 10750 10751 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10752 int opcode, int rd, int rn, int rm) 10753 { 10754 TCGv_i64 tcg_res[2]; 10755 int part = is_q ? 2 : 0; 10756 int pass; 10757 10758 for (pass = 0; pass < 2; pass++) { 10759 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10760 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10761 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10762 static NeonGenWidenFn * const widenfns[3][2] = { 10763 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10764 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10765 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10766 }; 10767 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10768 10769 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10770 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10771 widenfn(tcg_op2_wide, tcg_op2); 10772 tcg_res[pass] = tcg_temp_new_i64(); 10773 gen_neon_addl(size, (opcode == 3), 10774 tcg_res[pass], tcg_op1, tcg_op2_wide); 10775 } 10776 10777 for (pass = 0; pass < 2; pass++) { 10778 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10779 } 10780 } 10781 10782 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10783 { 10784 tcg_gen_addi_i64(in, in, 1U << 31); 10785 tcg_gen_extrh_i64_i32(res, in); 10786 } 10787 10788 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10789 int opcode, int rd, int rn, int rm) 10790 { 10791 TCGv_i32 tcg_res[2]; 10792 int part = is_q ? 2 : 0; 10793 int pass; 10794 10795 for (pass = 0; pass < 2; pass++) { 10796 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10797 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10798 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10799 static NeonGenNarrowFn * const narrowfns[3][2] = { 10800 { gen_helper_neon_narrow_high_u8, 10801 gen_helper_neon_narrow_round_high_u8 }, 10802 { gen_helper_neon_narrow_high_u16, 10803 gen_helper_neon_narrow_round_high_u16 }, 10804 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10805 }; 10806 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10807 10808 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10809 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10810 10811 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10812 10813 tcg_res[pass] = tcg_temp_new_i32(); 10814 gennarrow(tcg_res[pass], tcg_wideres); 10815 } 10816 10817 for (pass = 0; pass < 2; pass++) { 10818 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10819 } 10820 clear_vec_high(s, is_q, rd); 10821 } 10822 10823 /* AdvSIMD three different 10824 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10825 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10826 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10827 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10828 */ 10829 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10830 { 10831 /* Instructions in this group fall into three basic classes 10832 * (in each case with the operation working on each element in 10833 * the input vectors): 10834 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10835 * 128 bit input) 10836 * (2) wide 64 x 128 -> 128 10837 * (3) narrowing 128 x 128 -> 64 10838 * Here we do initial decode, catch unallocated cases and 10839 * dispatch to separate functions for each class. 10840 */ 10841 int is_q = extract32(insn, 30, 1); 10842 int is_u = extract32(insn, 29, 1); 10843 int size = extract32(insn, 22, 2); 10844 int opcode = extract32(insn, 12, 4); 10845 int rm = extract32(insn, 16, 5); 10846 int rn = extract32(insn, 5, 5); 10847 int rd = extract32(insn, 0, 5); 10848 10849 switch (opcode) { 10850 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10851 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10852 /* 64 x 128 -> 128 */ 10853 if (size == 3) { 10854 unallocated_encoding(s); 10855 return; 10856 } 10857 if (!fp_access_check(s)) { 10858 return; 10859 } 10860 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10861 break; 10862 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10863 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10864 /* 128 x 128 -> 64 */ 10865 if (size == 3) { 10866 unallocated_encoding(s); 10867 return; 10868 } 10869 if (!fp_access_check(s)) { 10870 return; 10871 } 10872 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10873 break; 10874 case 14: /* PMULL, PMULL2 */ 10875 if (is_u) { 10876 unallocated_encoding(s); 10877 return; 10878 } 10879 switch (size) { 10880 case 0: /* PMULL.P8 */ 10881 if (!fp_access_check(s)) { 10882 return; 10883 } 10884 /* The Q field specifies lo/hi half input for this insn. */ 10885 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10886 gen_helper_neon_pmull_h); 10887 break; 10888 10889 case 3: /* PMULL.P64 */ 10890 if (!dc_isar_feature(aa64_pmull, s)) { 10891 unallocated_encoding(s); 10892 return; 10893 } 10894 if (!fp_access_check(s)) { 10895 return; 10896 } 10897 /* The Q field specifies lo/hi half input for this insn. */ 10898 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10899 gen_helper_gvec_pmull_q); 10900 break; 10901 10902 default: 10903 unallocated_encoding(s); 10904 break; 10905 } 10906 return; 10907 case 9: /* SQDMLAL, SQDMLAL2 */ 10908 case 11: /* SQDMLSL, SQDMLSL2 */ 10909 case 13: /* SQDMULL, SQDMULL2 */ 10910 if (is_u || size == 0) { 10911 unallocated_encoding(s); 10912 return; 10913 } 10914 /* fall through */ 10915 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10916 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10917 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10918 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10919 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10920 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10921 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10922 /* 64 x 64 -> 128 */ 10923 if (size == 3) { 10924 unallocated_encoding(s); 10925 return; 10926 } 10927 if (!fp_access_check(s)) { 10928 return; 10929 } 10930 10931 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10932 break; 10933 default: 10934 /* opcode 15 not allocated */ 10935 unallocated_encoding(s); 10936 break; 10937 } 10938 } 10939 10940 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10941 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10942 { 10943 int rd = extract32(insn, 0, 5); 10944 int rn = extract32(insn, 5, 5); 10945 int rm = extract32(insn, 16, 5); 10946 int size = extract32(insn, 22, 2); 10947 bool is_u = extract32(insn, 29, 1); 10948 bool is_q = extract32(insn, 30, 1); 10949 10950 if (!fp_access_check(s)) { 10951 return; 10952 } 10953 10954 switch (size + 4 * is_u) { 10955 case 0: /* AND */ 10956 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10957 return; 10958 case 1: /* BIC */ 10959 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10960 return; 10961 case 2: /* ORR */ 10962 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10963 return; 10964 case 3: /* ORN */ 10965 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10966 return; 10967 case 4: /* EOR */ 10968 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10969 return; 10970 10971 case 5: /* BSL bitwise select */ 10972 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10973 return; 10974 case 6: /* BIT, bitwise insert if true */ 10975 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10976 return; 10977 case 7: /* BIF, bitwise insert if false */ 10978 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10979 return; 10980 10981 default: 10982 g_assert_not_reached(); 10983 } 10984 } 10985 10986 /* Pairwise op subgroup of C3.6.16. 10987 * 10988 * This is called directly or via the handle_3same_float for float pairwise 10989 * operations where the opcode and size are calculated differently. 10990 */ 10991 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10992 int size, int rn, int rm, int rd) 10993 { 10994 TCGv_ptr fpst; 10995 int pass; 10996 10997 /* Floating point operations need fpst */ 10998 if (opcode >= 0x58) { 10999 fpst = fpstatus_ptr(FPST_FPCR); 11000 } else { 11001 fpst = NULL; 11002 } 11003 11004 if (!fp_access_check(s)) { 11005 return; 11006 } 11007 11008 /* These operations work on the concatenated rm:rn, with each pair of 11009 * adjacent elements being operated on to produce an element in the result. 11010 */ 11011 if (size == 3) { 11012 TCGv_i64 tcg_res[2]; 11013 11014 for (pass = 0; pass < 2; pass++) { 11015 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11016 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11017 int passreg = (pass == 0) ? rn : rm; 11018 11019 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11020 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11021 tcg_res[pass] = tcg_temp_new_i64(); 11022 11023 switch (opcode) { 11024 case 0x17: /* ADDP */ 11025 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11026 break; 11027 case 0x58: /* FMAXNMP */ 11028 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11029 break; 11030 case 0x5a: /* FADDP */ 11031 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11032 break; 11033 case 0x5e: /* FMAXP */ 11034 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11035 break; 11036 case 0x78: /* FMINNMP */ 11037 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11038 break; 11039 case 0x7e: /* FMINP */ 11040 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11041 break; 11042 default: 11043 g_assert_not_reached(); 11044 } 11045 } 11046 11047 for (pass = 0; pass < 2; pass++) { 11048 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11049 } 11050 } else { 11051 int maxpass = is_q ? 4 : 2; 11052 TCGv_i32 tcg_res[4]; 11053 11054 for (pass = 0; pass < maxpass; pass++) { 11055 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11056 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11057 NeonGenTwoOpFn *genfn = NULL; 11058 int passreg = pass < (maxpass / 2) ? rn : rm; 11059 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11060 11061 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11062 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11063 tcg_res[pass] = tcg_temp_new_i32(); 11064 11065 switch (opcode) { 11066 case 0x17: /* ADDP */ 11067 { 11068 static NeonGenTwoOpFn * const fns[3] = { 11069 gen_helper_neon_padd_u8, 11070 gen_helper_neon_padd_u16, 11071 tcg_gen_add_i32, 11072 }; 11073 genfn = fns[size]; 11074 break; 11075 } 11076 case 0x14: /* SMAXP, UMAXP */ 11077 { 11078 static NeonGenTwoOpFn * const fns[3][2] = { 11079 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11080 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11081 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11082 }; 11083 genfn = fns[size][u]; 11084 break; 11085 } 11086 case 0x15: /* SMINP, UMINP */ 11087 { 11088 static NeonGenTwoOpFn * const fns[3][2] = { 11089 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11090 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11091 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11092 }; 11093 genfn = fns[size][u]; 11094 break; 11095 } 11096 /* The FP operations are all on single floats (32 bit) */ 11097 case 0x58: /* FMAXNMP */ 11098 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11099 break; 11100 case 0x5a: /* FADDP */ 11101 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11102 break; 11103 case 0x5e: /* FMAXP */ 11104 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11105 break; 11106 case 0x78: /* FMINNMP */ 11107 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11108 break; 11109 case 0x7e: /* FMINP */ 11110 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11111 break; 11112 default: 11113 g_assert_not_reached(); 11114 } 11115 11116 /* FP ops called directly, otherwise call now */ 11117 if (genfn) { 11118 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11119 } 11120 } 11121 11122 for (pass = 0; pass < maxpass; pass++) { 11123 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11124 } 11125 clear_vec_high(s, is_q, rd); 11126 } 11127 } 11128 11129 /* Floating point op subgroup of C3.6.16. */ 11130 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11131 { 11132 /* For floating point ops, the U, size[1] and opcode bits 11133 * together indicate the operation. size[0] indicates single 11134 * or double. 11135 */ 11136 int fpopcode = extract32(insn, 11, 5) 11137 | (extract32(insn, 23, 1) << 5) 11138 | (extract32(insn, 29, 1) << 6); 11139 int is_q = extract32(insn, 30, 1); 11140 int size = extract32(insn, 22, 1); 11141 int rm = extract32(insn, 16, 5); 11142 int rn = extract32(insn, 5, 5); 11143 int rd = extract32(insn, 0, 5); 11144 11145 int datasize = is_q ? 128 : 64; 11146 int esize = 32 << size; 11147 int elements = datasize / esize; 11148 11149 if (size == 1 && !is_q) { 11150 unallocated_encoding(s); 11151 return; 11152 } 11153 11154 switch (fpopcode) { 11155 case 0x58: /* FMAXNMP */ 11156 case 0x5a: /* FADDP */ 11157 case 0x5e: /* FMAXP */ 11158 case 0x78: /* FMINNMP */ 11159 case 0x7e: /* FMINP */ 11160 if (size && !is_q) { 11161 unallocated_encoding(s); 11162 return; 11163 } 11164 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11165 rn, rm, rd); 11166 return; 11167 case 0x1b: /* FMULX */ 11168 case 0x1f: /* FRECPS */ 11169 case 0x3f: /* FRSQRTS */ 11170 case 0x5d: /* FACGE */ 11171 case 0x7d: /* FACGT */ 11172 case 0x19: /* FMLA */ 11173 case 0x39: /* FMLS */ 11174 case 0x18: /* FMAXNM */ 11175 case 0x1a: /* FADD */ 11176 case 0x1c: /* FCMEQ */ 11177 case 0x1e: /* FMAX */ 11178 case 0x38: /* FMINNM */ 11179 case 0x3a: /* FSUB */ 11180 case 0x3e: /* FMIN */ 11181 case 0x5b: /* FMUL */ 11182 case 0x5c: /* FCMGE */ 11183 case 0x5f: /* FDIV */ 11184 case 0x7a: /* FABD */ 11185 case 0x7c: /* FCMGT */ 11186 if (!fp_access_check(s)) { 11187 return; 11188 } 11189 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11190 return; 11191 11192 case 0x1d: /* FMLAL */ 11193 case 0x3d: /* FMLSL */ 11194 case 0x59: /* FMLAL2 */ 11195 case 0x79: /* FMLSL2 */ 11196 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11197 unallocated_encoding(s); 11198 return; 11199 } 11200 if (fp_access_check(s)) { 11201 int is_s = extract32(insn, 23, 1); 11202 int is_2 = extract32(insn, 29, 1); 11203 int data = (is_2 << 1) | is_s; 11204 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11205 vec_full_reg_offset(s, rn), 11206 vec_full_reg_offset(s, rm), cpu_env, 11207 is_q ? 16 : 8, vec_full_reg_size(s), 11208 data, gen_helper_gvec_fmlal_a64); 11209 } 11210 return; 11211 11212 default: 11213 unallocated_encoding(s); 11214 return; 11215 } 11216 } 11217 11218 /* Integer op subgroup of C3.6.16. */ 11219 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11220 { 11221 int is_q = extract32(insn, 30, 1); 11222 int u = extract32(insn, 29, 1); 11223 int size = extract32(insn, 22, 2); 11224 int opcode = extract32(insn, 11, 5); 11225 int rm = extract32(insn, 16, 5); 11226 int rn = extract32(insn, 5, 5); 11227 int rd = extract32(insn, 0, 5); 11228 int pass; 11229 TCGCond cond; 11230 11231 switch (opcode) { 11232 case 0x13: /* MUL, PMUL */ 11233 if (u && size != 0) { 11234 unallocated_encoding(s); 11235 return; 11236 } 11237 /* fall through */ 11238 case 0x0: /* SHADD, UHADD */ 11239 case 0x2: /* SRHADD, URHADD */ 11240 case 0x4: /* SHSUB, UHSUB */ 11241 case 0xc: /* SMAX, UMAX */ 11242 case 0xd: /* SMIN, UMIN */ 11243 case 0xe: /* SABD, UABD */ 11244 case 0xf: /* SABA, UABA */ 11245 case 0x12: /* MLA, MLS */ 11246 if (size == 3) { 11247 unallocated_encoding(s); 11248 return; 11249 } 11250 break; 11251 case 0x16: /* SQDMULH, SQRDMULH */ 11252 if (size == 0 || size == 3) { 11253 unallocated_encoding(s); 11254 return; 11255 } 11256 break; 11257 default: 11258 if (size == 3 && !is_q) { 11259 unallocated_encoding(s); 11260 return; 11261 } 11262 break; 11263 } 11264 11265 if (!fp_access_check(s)) { 11266 return; 11267 } 11268 11269 switch (opcode) { 11270 case 0x01: /* SQADD, UQADD */ 11271 if (u) { 11272 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11273 } else { 11274 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11275 } 11276 return; 11277 case 0x05: /* SQSUB, UQSUB */ 11278 if (u) { 11279 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11280 } else { 11281 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11282 } 11283 return; 11284 case 0x08: /* SSHL, USHL */ 11285 if (u) { 11286 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11287 } else { 11288 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11289 } 11290 return; 11291 case 0x0c: /* SMAX, UMAX */ 11292 if (u) { 11293 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11294 } else { 11295 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11296 } 11297 return; 11298 case 0x0d: /* SMIN, UMIN */ 11299 if (u) { 11300 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11301 } else { 11302 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11303 } 11304 return; 11305 case 0xe: /* SABD, UABD */ 11306 if (u) { 11307 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11308 } else { 11309 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11310 } 11311 return; 11312 case 0xf: /* SABA, UABA */ 11313 if (u) { 11314 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11315 } else { 11316 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11317 } 11318 return; 11319 case 0x10: /* ADD, SUB */ 11320 if (u) { 11321 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11322 } else { 11323 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11324 } 11325 return; 11326 case 0x13: /* MUL, PMUL */ 11327 if (!u) { /* MUL */ 11328 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11329 } else { /* PMUL */ 11330 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11331 } 11332 return; 11333 case 0x12: /* MLA, MLS */ 11334 if (u) { 11335 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11336 } else { 11337 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11338 } 11339 return; 11340 case 0x16: /* SQDMULH, SQRDMULH */ 11341 { 11342 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11343 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11344 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11345 }; 11346 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11347 } 11348 return; 11349 case 0x11: 11350 if (!u) { /* CMTST */ 11351 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11352 return; 11353 } 11354 /* else CMEQ */ 11355 cond = TCG_COND_EQ; 11356 goto do_gvec_cmp; 11357 case 0x06: /* CMGT, CMHI */ 11358 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11359 goto do_gvec_cmp; 11360 case 0x07: /* CMGE, CMHS */ 11361 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11362 do_gvec_cmp: 11363 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11364 vec_full_reg_offset(s, rn), 11365 vec_full_reg_offset(s, rm), 11366 is_q ? 16 : 8, vec_full_reg_size(s)); 11367 return; 11368 } 11369 11370 if (size == 3) { 11371 assert(is_q); 11372 for (pass = 0; pass < 2; pass++) { 11373 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11374 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11375 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11376 11377 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11378 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11379 11380 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11381 11382 write_vec_element(s, tcg_res, rd, pass, MO_64); 11383 } 11384 } else { 11385 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11386 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11387 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11388 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11389 NeonGenTwoOpFn *genfn = NULL; 11390 NeonGenTwoOpEnvFn *genenvfn = NULL; 11391 11392 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11393 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11394 11395 switch (opcode) { 11396 case 0x0: /* SHADD, UHADD */ 11397 { 11398 static NeonGenTwoOpFn * const fns[3][2] = { 11399 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11400 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11401 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11402 }; 11403 genfn = fns[size][u]; 11404 break; 11405 } 11406 case 0x2: /* SRHADD, URHADD */ 11407 { 11408 static NeonGenTwoOpFn * const fns[3][2] = { 11409 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11410 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11411 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11412 }; 11413 genfn = fns[size][u]; 11414 break; 11415 } 11416 case 0x4: /* SHSUB, UHSUB */ 11417 { 11418 static NeonGenTwoOpFn * const fns[3][2] = { 11419 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11420 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11421 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11422 }; 11423 genfn = fns[size][u]; 11424 break; 11425 } 11426 case 0x9: /* SQSHL, UQSHL */ 11427 { 11428 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11429 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11430 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11431 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11432 }; 11433 genenvfn = fns[size][u]; 11434 break; 11435 } 11436 case 0xa: /* SRSHL, URSHL */ 11437 { 11438 static NeonGenTwoOpFn * const fns[3][2] = { 11439 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11440 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11441 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11442 }; 11443 genfn = fns[size][u]; 11444 break; 11445 } 11446 case 0xb: /* SQRSHL, UQRSHL */ 11447 { 11448 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11449 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11450 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11451 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11452 }; 11453 genenvfn = fns[size][u]; 11454 break; 11455 } 11456 default: 11457 g_assert_not_reached(); 11458 } 11459 11460 if (genenvfn) { 11461 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11462 } else { 11463 genfn(tcg_res, tcg_op1, tcg_op2); 11464 } 11465 11466 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11467 } 11468 } 11469 clear_vec_high(s, is_q, rd); 11470 } 11471 11472 /* AdvSIMD three same 11473 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11474 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11475 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11476 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11477 */ 11478 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11479 { 11480 int opcode = extract32(insn, 11, 5); 11481 11482 switch (opcode) { 11483 case 0x3: /* logic ops */ 11484 disas_simd_3same_logic(s, insn); 11485 break; 11486 case 0x17: /* ADDP */ 11487 case 0x14: /* SMAXP, UMAXP */ 11488 case 0x15: /* SMINP, UMINP */ 11489 { 11490 /* Pairwise operations */ 11491 int is_q = extract32(insn, 30, 1); 11492 int u = extract32(insn, 29, 1); 11493 int size = extract32(insn, 22, 2); 11494 int rm = extract32(insn, 16, 5); 11495 int rn = extract32(insn, 5, 5); 11496 int rd = extract32(insn, 0, 5); 11497 if (opcode == 0x17) { 11498 if (u || (size == 3 && !is_q)) { 11499 unallocated_encoding(s); 11500 return; 11501 } 11502 } else { 11503 if (size == 3) { 11504 unallocated_encoding(s); 11505 return; 11506 } 11507 } 11508 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11509 break; 11510 } 11511 case 0x18 ... 0x31: 11512 /* floating point ops, sz[1] and U are part of opcode */ 11513 disas_simd_3same_float(s, insn); 11514 break; 11515 default: 11516 disas_simd_3same_int(s, insn); 11517 break; 11518 } 11519 } 11520 11521 /* 11522 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11523 * 11524 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11525 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11526 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11527 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11528 * 11529 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11530 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11531 * 11532 */ 11533 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11534 { 11535 int opcode = extract32(insn, 11, 3); 11536 int u = extract32(insn, 29, 1); 11537 int a = extract32(insn, 23, 1); 11538 int is_q = extract32(insn, 30, 1); 11539 int rm = extract32(insn, 16, 5); 11540 int rn = extract32(insn, 5, 5); 11541 int rd = extract32(insn, 0, 5); 11542 /* 11543 * For these floating point ops, the U, a and opcode bits 11544 * together indicate the operation. 11545 */ 11546 int fpopcode = opcode | (a << 3) | (u << 4); 11547 int datasize = is_q ? 128 : 64; 11548 int elements = datasize / 16; 11549 bool pairwise; 11550 TCGv_ptr fpst; 11551 int pass; 11552 11553 switch (fpopcode) { 11554 case 0x0: /* FMAXNM */ 11555 case 0x1: /* FMLA */ 11556 case 0x2: /* FADD */ 11557 case 0x3: /* FMULX */ 11558 case 0x4: /* FCMEQ */ 11559 case 0x6: /* FMAX */ 11560 case 0x7: /* FRECPS */ 11561 case 0x8: /* FMINNM */ 11562 case 0x9: /* FMLS */ 11563 case 0xa: /* FSUB */ 11564 case 0xe: /* FMIN */ 11565 case 0xf: /* FRSQRTS */ 11566 case 0x13: /* FMUL */ 11567 case 0x14: /* FCMGE */ 11568 case 0x15: /* FACGE */ 11569 case 0x17: /* FDIV */ 11570 case 0x1a: /* FABD */ 11571 case 0x1c: /* FCMGT */ 11572 case 0x1d: /* FACGT */ 11573 pairwise = false; 11574 break; 11575 case 0x10: /* FMAXNMP */ 11576 case 0x12: /* FADDP */ 11577 case 0x16: /* FMAXP */ 11578 case 0x18: /* FMINNMP */ 11579 case 0x1e: /* FMINP */ 11580 pairwise = true; 11581 break; 11582 default: 11583 unallocated_encoding(s); 11584 return; 11585 } 11586 11587 if (!dc_isar_feature(aa64_fp16, s)) { 11588 unallocated_encoding(s); 11589 return; 11590 } 11591 11592 if (!fp_access_check(s)) { 11593 return; 11594 } 11595 11596 fpst = fpstatus_ptr(FPST_FPCR_F16); 11597 11598 if (pairwise) { 11599 int maxpass = is_q ? 8 : 4; 11600 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11601 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11602 TCGv_i32 tcg_res[8]; 11603 11604 for (pass = 0; pass < maxpass; pass++) { 11605 int passreg = pass < (maxpass / 2) ? rn : rm; 11606 int passelt = (pass << 1) & (maxpass - 1); 11607 11608 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11609 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11610 tcg_res[pass] = tcg_temp_new_i32(); 11611 11612 switch (fpopcode) { 11613 case 0x10: /* FMAXNMP */ 11614 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11615 fpst); 11616 break; 11617 case 0x12: /* FADDP */ 11618 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11619 break; 11620 case 0x16: /* FMAXP */ 11621 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11622 break; 11623 case 0x18: /* FMINNMP */ 11624 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11625 fpst); 11626 break; 11627 case 0x1e: /* FMINP */ 11628 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11629 break; 11630 default: 11631 g_assert_not_reached(); 11632 } 11633 } 11634 11635 for (pass = 0; pass < maxpass; pass++) { 11636 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11637 } 11638 } else { 11639 for (pass = 0; pass < elements; pass++) { 11640 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11641 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11642 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11643 11644 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11645 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11646 11647 switch (fpopcode) { 11648 case 0x0: /* FMAXNM */ 11649 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11650 break; 11651 case 0x1: /* FMLA */ 11652 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11653 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11654 fpst); 11655 break; 11656 case 0x2: /* FADD */ 11657 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11658 break; 11659 case 0x3: /* FMULX */ 11660 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11661 break; 11662 case 0x4: /* FCMEQ */ 11663 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11664 break; 11665 case 0x6: /* FMAX */ 11666 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11667 break; 11668 case 0x7: /* FRECPS */ 11669 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11670 break; 11671 case 0x8: /* FMINNM */ 11672 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11673 break; 11674 case 0x9: /* FMLS */ 11675 /* As usual for ARM, separate negation for fused multiply-add */ 11676 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11677 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11678 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11679 fpst); 11680 break; 11681 case 0xa: /* FSUB */ 11682 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11683 break; 11684 case 0xe: /* FMIN */ 11685 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11686 break; 11687 case 0xf: /* FRSQRTS */ 11688 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11689 break; 11690 case 0x13: /* FMUL */ 11691 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11692 break; 11693 case 0x14: /* FCMGE */ 11694 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11695 break; 11696 case 0x15: /* FACGE */ 11697 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11698 break; 11699 case 0x17: /* FDIV */ 11700 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11701 break; 11702 case 0x1a: /* FABD */ 11703 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11704 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11705 break; 11706 case 0x1c: /* FCMGT */ 11707 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11708 break; 11709 case 0x1d: /* FACGT */ 11710 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11711 break; 11712 default: 11713 g_assert_not_reached(); 11714 } 11715 11716 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11717 } 11718 } 11719 11720 clear_vec_high(s, is_q, rd); 11721 } 11722 11723 /* AdvSIMD three same extra 11724 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11725 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11726 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11727 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11728 */ 11729 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11730 { 11731 int rd = extract32(insn, 0, 5); 11732 int rn = extract32(insn, 5, 5); 11733 int opcode = extract32(insn, 11, 4); 11734 int rm = extract32(insn, 16, 5); 11735 int size = extract32(insn, 22, 2); 11736 bool u = extract32(insn, 29, 1); 11737 bool is_q = extract32(insn, 30, 1); 11738 bool feature; 11739 int rot; 11740 11741 switch (u * 16 + opcode) { 11742 case 0x10: /* SQRDMLAH (vector) */ 11743 case 0x11: /* SQRDMLSH (vector) */ 11744 if (size != 1 && size != 2) { 11745 unallocated_encoding(s); 11746 return; 11747 } 11748 feature = dc_isar_feature(aa64_rdm, s); 11749 break; 11750 case 0x02: /* SDOT (vector) */ 11751 case 0x12: /* UDOT (vector) */ 11752 if (size != MO_32) { 11753 unallocated_encoding(s); 11754 return; 11755 } 11756 feature = dc_isar_feature(aa64_dp, s); 11757 break; 11758 case 0x03: /* USDOT */ 11759 if (size != MO_32) { 11760 unallocated_encoding(s); 11761 return; 11762 } 11763 feature = dc_isar_feature(aa64_i8mm, s); 11764 break; 11765 case 0x04: /* SMMLA */ 11766 case 0x14: /* UMMLA */ 11767 case 0x05: /* USMMLA */ 11768 if (!is_q || size != MO_32) { 11769 unallocated_encoding(s); 11770 return; 11771 } 11772 feature = dc_isar_feature(aa64_i8mm, s); 11773 break; 11774 case 0x18: /* FCMLA, #0 */ 11775 case 0x19: /* FCMLA, #90 */ 11776 case 0x1a: /* FCMLA, #180 */ 11777 case 0x1b: /* FCMLA, #270 */ 11778 case 0x1c: /* FCADD, #90 */ 11779 case 0x1e: /* FCADD, #270 */ 11780 if (size == 0 11781 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11782 || (size == 3 && !is_q)) { 11783 unallocated_encoding(s); 11784 return; 11785 } 11786 feature = dc_isar_feature(aa64_fcma, s); 11787 break; 11788 case 0x1d: /* BFMMLA */ 11789 if (size != MO_16 || !is_q) { 11790 unallocated_encoding(s); 11791 return; 11792 } 11793 feature = dc_isar_feature(aa64_bf16, s); 11794 break; 11795 case 0x1f: 11796 switch (size) { 11797 case 1: /* BFDOT */ 11798 case 3: /* BFMLAL{B,T} */ 11799 feature = dc_isar_feature(aa64_bf16, s); 11800 break; 11801 default: 11802 unallocated_encoding(s); 11803 return; 11804 } 11805 break; 11806 default: 11807 unallocated_encoding(s); 11808 return; 11809 } 11810 if (!feature) { 11811 unallocated_encoding(s); 11812 return; 11813 } 11814 if (!fp_access_check(s)) { 11815 return; 11816 } 11817 11818 switch (opcode) { 11819 case 0x0: /* SQRDMLAH (vector) */ 11820 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11821 return; 11822 11823 case 0x1: /* SQRDMLSH (vector) */ 11824 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11825 return; 11826 11827 case 0x2: /* SDOT / UDOT */ 11828 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11829 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11830 return; 11831 11832 case 0x3: /* USDOT */ 11833 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11834 return; 11835 11836 case 0x04: /* SMMLA, UMMLA */ 11837 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11838 u ? gen_helper_gvec_ummla_b 11839 : gen_helper_gvec_smmla_b); 11840 return; 11841 case 0x05: /* USMMLA */ 11842 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11843 return; 11844 11845 case 0x8: /* FCMLA, #0 */ 11846 case 0x9: /* FCMLA, #90 */ 11847 case 0xa: /* FCMLA, #180 */ 11848 case 0xb: /* FCMLA, #270 */ 11849 rot = extract32(opcode, 0, 2); 11850 switch (size) { 11851 case 1: 11852 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11853 gen_helper_gvec_fcmlah); 11854 break; 11855 case 2: 11856 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11857 gen_helper_gvec_fcmlas); 11858 break; 11859 case 3: 11860 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11861 gen_helper_gvec_fcmlad); 11862 break; 11863 default: 11864 g_assert_not_reached(); 11865 } 11866 return; 11867 11868 case 0xc: /* FCADD, #90 */ 11869 case 0xe: /* FCADD, #270 */ 11870 rot = extract32(opcode, 1, 1); 11871 switch (size) { 11872 case 1: 11873 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11874 gen_helper_gvec_fcaddh); 11875 break; 11876 case 2: 11877 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11878 gen_helper_gvec_fcadds); 11879 break; 11880 case 3: 11881 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11882 gen_helper_gvec_fcaddd); 11883 break; 11884 default: 11885 g_assert_not_reached(); 11886 } 11887 return; 11888 11889 case 0xd: /* BFMMLA */ 11890 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11891 return; 11892 case 0xf: 11893 switch (size) { 11894 case 1: /* BFDOT */ 11895 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11896 break; 11897 case 3: /* BFMLAL{B,T} */ 11898 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11899 gen_helper_gvec_bfmlal); 11900 break; 11901 default: 11902 g_assert_not_reached(); 11903 } 11904 return; 11905 11906 default: 11907 g_assert_not_reached(); 11908 } 11909 } 11910 11911 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11912 int size, int rn, int rd) 11913 { 11914 /* Handle 2-reg-misc ops which are widening (so each size element 11915 * in the source becomes a 2*size element in the destination. 11916 * The only instruction like this is FCVTL. 11917 */ 11918 int pass; 11919 11920 if (size == 3) { 11921 /* 32 -> 64 bit fp conversion */ 11922 TCGv_i64 tcg_res[2]; 11923 int srcelt = is_q ? 2 : 0; 11924 11925 for (pass = 0; pass < 2; pass++) { 11926 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11927 tcg_res[pass] = tcg_temp_new_i64(); 11928 11929 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11930 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11931 } 11932 for (pass = 0; pass < 2; pass++) { 11933 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11934 } 11935 } else { 11936 /* 16 -> 32 bit fp conversion */ 11937 int srcelt = is_q ? 4 : 0; 11938 TCGv_i32 tcg_res[4]; 11939 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11940 TCGv_i32 ahp = get_ahp_flag(); 11941 11942 for (pass = 0; pass < 4; pass++) { 11943 tcg_res[pass] = tcg_temp_new_i32(); 11944 11945 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11946 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11947 fpst, ahp); 11948 } 11949 for (pass = 0; pass < 4; pass++) { 11950 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11951 } 11952 } 11953 } 11954 11955 static void handle_rev(DisasContext *s, int opcode, bool u, 11956 bool is_q, int size, int rn, int rd) 11957 { 11958 int op = (opcode << 1) | u; 11959 int opsz = op + size; 11960 int grp_size = 3 - opsz; 11961 int dsize = is_q ? 128 : 64; 11962 int i; 11963 11964 if (opsz >= 3) { 11965 unallocated_encoding(s); 11966 return; 11967 } 11968 11969 if (!fp_access_check(s)) { 11970 return; 11971 } 11972 11973 if (size == 0) { 11974 /* Special case bytes, use bswap op on each group of elements */ 11975 int groups = dsize / (8 << grp_size); 11976 11977 for (i = 0; i < groups; i++) { 11978 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11979 11980 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11981 switch (grp_size) { 11982 case MO_16: 11983 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11984 break; 11985 case MO_32: 11986 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11987 break; 11988 case MO_64: 11989 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11990 break; 11991 default: 11992 g_assert_not_reached(); 11993 } 11994 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11995 } 11996 clear_vec_high(s, is_q, rd); 11997 } else { 11998 int revmask = (1 << grp_size) - 1; 11999 int esize = 8 << size; 12000 int elements = dsize / esize; 12001 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12002 TCGv_i64 tcg_rd = tcg_const_i64(0); 12003 TCGv_i64 tcg_rd_hi = tcg_const_i64(0); 12004 12005 for (i = 0; i < elements; i++) { 12006 int e_rev = (i & 0xf) ^ revmask; 12007 int off = e_rev * esize; 12008 read_vec_element(s, tcg_rn, rn, i, size); 12009 if (off >= 64) { 12010 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi, 12011 tcg_rn, off - 64, esize); 12012 } else { 12013 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize); 12014 } 12015 } 12016 write_vec_element(s, tcg_rd, rd, 0, MO_64); 12017 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64); 12018 } 12019 } 12020 12021 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12022 bool is_q, int size, int rn, int rd) 12023 { 12024 /* Implement the pairwise operations from 2-misc: 12025 * SADDLP, UADDLP, SADALP, UADALP. 12026 * These all add pairs of elements in the input to produce a 12027 * double-width result element in the output (possibly accumulating). 12028 */ 12029 bool accum = (opcode == 0x6); 12030 int maxpass = is_q ? 2 : 1; 12031 int pass; 12032 TCGv_i64 tcg_res[2]; 12033 12034 if (size == 2) { 12035 /* 32 + 32 -> 64 op */ 12036 MemOp memop = size + (u ? 0 : MO_SIGN); 12037 12038 for (pass = 0; pass < maxpass; pass++) { 12039 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12040 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12041 12042 tcg_res[pass] = tcg_temp_new_i64(); 12043 12044 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12045 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12046 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12047 if (accum) { 12048 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12049 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12050 } 12051 } 12052 } else { 12053 for (pass = 0; pass < maxpass; pass++) { 12054 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12055 NeonGenOne64OpFn *genfn; 12056 static NeonGenOne64OpFn * const fns[2][2] = { 12057 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12058 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12059 }; 12060 12061 genfn = fns[size][u]; 12062 12063 tcg_res[pass] = tcg_temp_new_i64(); 12064 12065 read_vec_element(s, tcg_op, rn, pass, MO_64); 12066 genfn(tcg_res[pass], tcg_op); 12067 12068 if (accum) { 12069 read_vec_element(s, tcg_op, rd, pass, MO_64); 12070 if (size == 0) { 12071 gen_helper_neon_addl_u16(tcg_res[pass], 12072 tcg_res[pass], tcg_op); 12073 } else { 12074 gen_helper_neon_addl_u32(tcg_res[pass], 12075 tcg_res[pass], tcg_op); 12076 } 12077 } 12078 } 12079 } 12080 if (!is_q) { 12081 tcg_res[1] = tcg_constant_i64(0); 12082 } 12083 for (pass = 0; pass < 2; pass++) { 12084 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12085 } 12086 } 12087 12088 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12089 { 12090 /* Implement SHLL and SHLL2 */ 12091 int pass; 12092 int part = is_q ? 2 : 0; 12093 TCGv_i64 tcg_res[2]; 12094 12095 for (pass = 0; pass < 2; pass++) { 12096 static NeonGenWidenFn * const widenfns[3] = { 12097 gen_helper_neon_widen_u8, 12098 gen_helper_neon_widen_u16, 12099 tcg_gen_extu_i32_i64, 12100 }; 12101 NeonGenWidenFn *widenfn = widenfns[size]; 12102 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12103 12104 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12105 tcg_res[pass] = tcg_temp_new_i64(); 12106 widenfn(tcg_res[pass], tcg_op); 12107 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12108 } 12109 12110 for (pass = 0; pass < 2; pass++) { 12111 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12112 } 12113 } 12114 12115 /* AdvSIMD two reg misc 12116 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12117 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12118 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12119 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12120 */ 12121 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12122 { 12123 int size = extract32(insn, 22, 2); 12124 int opcode = extract32(insn, 12, 5); 12125 bool u = extract32(insn, 29, 1); 12126 bool is_q = extract32(insn, 30, 1); 12127 int rn = extract32(insn, 5, 5); 12128 int rd = extract32(insn, 0, 5); 12129 bool need_fpstatus = false; 12130 int rmode = -1; 12131 TCGv_i32 tcg_rmode; 12132 TCGv_ptr tcg_fpstatus; 12133 12134 switch (opcode) { 12135 case 0x0: /* REV64, REV32 */ 12136 case 0x1: /* REV16 */ 12137 handle_rev(s, opcode, u, is_q, size, rn, rd); 12138 return; 12139 case 0x5: /* CNT, NOT, RBIT */ 12140 if (u && size == 0) { 12141 /* NOT */ 12142 break; 12143 } else if (u && size == 1) { 12144 /* RBIT */ 12145 break; 12146 } else if (!u && size == 0) { 12147 /* CNT */ 12148 break; 12149 } 12150 unallocated_encoding(s); 12151 return; 12152 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12153 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12154 if (size == 3) { 12155 unallocated_encoding(s); 12156 return; 12157 } 12158 if (!fp_access_check(s)) { 12159 return; 12160 } 12161 12162 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12163 return; 12164 case 0x4: /* CLS, CLZ */ 12165 if (size == 3) { 12166 unallocated_encoding(s); 12167 return; 12168 } 12169 break; 12170 case 0x2: /* SADDLP, UADDLP */ 12171 case 0x6: /* SADALP, UADALP */ 12172 if (size == 3) { 12173 unallocated_encoding(s); 12174 return; 12175 } 12176 if (!fp_access_check(s)) { 12177 return; 12178 } 12179 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12180 return; 12181 case 0x13: /* SHLL, SHLL2 */ 12182 if (u == 0 || size == 3) { 12183 unallocated_encoding(s); 12184 return; 12185 } 12186 if (!fp_access_check(s)) { 12187 return; 12188 } 12189 handle_shll(s, is_q, size, rn, rd); 12190 return; 12191 case 0xa: /* CMLT */ 12192 if (u == 1) { 12193 unallocated_encoding(s); 12194 return; 12195 } 12196 /* fall through */ 12197 case 0x8: /* CMGT, CMGE */ 12198 case 0x9: /* CMEQ, CMLE */ 12199 case 0xb: /* ABS, NEG */ 12200 if (size == 3 && !is_q) { 12201 unallocated_encoding(s); 12202 return; 12203 } 12204 break; 12205 case 0x3: /* SUQADD, USQADD */ 12206 if (size == 3 && !is_q) { 12207 unallocated_encoding(s); 12208 return; 12209 } 12210 if (!fp_access_check(s)) { 12211 return; 12212 } 12213 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12214 return; 12215 case 0x7: /* SQABS, SQNEG */ 12216 if (size == 3 && !is_q) { 12217 unallocated_encoding(s); 12218 return; 12219 } 12220 break; 12221 case 0xc ... 0xf: 12222 case 0x16 ... 0x1f: 12223 { 12224 /* Floating point: U, size[1] and opcode indicate operation; 12225 * size[0] indicates single or double precision. 12226 */ 12227 int is_double = extract32(size, 0, 1); 12228 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12229 size = is_double ? 3 : 2; 12230 switch (opcode) { 12231 case 0x2f: /* FABS */ 12232 case 0x6f: /* FNEG */ 12233 if (size == 3 && !is_q) { 12234 unallocated_encoding(s); 12235 return; 12236 } 12237 break; 12238 case 0x1d: /* SCVTF */ 12239 case 0x5d: /* UCVTF */ 12240 { 12241 bool is_signed = (opcode == 0x1d) ? true : false; 12242 int elements = is_double ? 2 : is_q ? 4 : 2; 12243 if (is_double && !is_q) { 12244 unallocated_encoding(s); 12245 return; 12246 } 12247 if (!fp_access_check(s)) { 12248 return; 12249 } 12250 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12251 return; 12252 } 12253 case 0x2c: /* FCMGT (zero) */ 12254 case 0x2d: /* FCMEQ (zero) */ 12255 case 0x2e: /* FCMLT (zero) */ 12256 case 0x6c: /* FCMGE (zero) */ 12257 case 0x6d: /* FCMLE (zero) */ 12258 if (size == 3 && !is_q) { 12259 unallocated_encoding(s); 12260 return; 12261 } 12262 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12263 return; 12264 case 0x7f: /* FSQRT */ 12265 if (size == 3 && !is_q) { 12266 unallocated_encoding(s); 12267 return; 12268 } 12269 break; 12270 case 0x1a: /* FCVTNS */ 12271 case 0x1b: /* FCVTMS */ 12272 case 0x3a: /* FCVTPS */ 12273 case 0x3b: /* FCVTZS */ 12274 case 0x5a: /* FCVTNU */ 12275 case 0x5b: /* FCVTMU */ 12276 case 0x7a: /* FCVTPU */ 12277 case 0x7b: /* FCVTZU */ 12278 need_fpstatus = true; 12279 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12280 if (size == 3 && !is_q) { 12281 unallocated_encoding(s); 12282 return; 12283 } 12284 break; 12285 case 0x5c: /* FCVTAU */ 12286 case 0x1c: /* FCVTAS */ 12287 need_fpstatus = true; 12288 rmode = FPROUNDING_TIEAWAY; 12289 if (size == 3 && !is_q) { 12290 unallocated_encoding(s); 12291 return; 12292 } 12293 break; 12294 case 0x3c: /* URECPE */ 12295 if (size == 3) { 12296 unallocated_encoding(s); 12297 return; 12298 } 12299 /* fall through */ 12300 case 0x3d: /* FRECPE */ 12301 case 0x7d: /* FRSQRTE */ 12302 if (size == 3 && !is_q) { 12303 unallocated_encoding(s); 12304 return; 12305 } 12306 if (!fp_access_check(s)) { 12307 return; 12308 } 12309 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12310 return; 12311 case 0x56: /* FCVTXN, FCVTXN2 */ 12312 if (size == 2) { 12313 unallocated_encoding(s); 12314 return; 12315 } 12316 /* fall through */ 12317 case 0x16: /* FCVTN, FCVTN2 */ 12318 /* handle_2misc_narrow does a 2*size -> size operation, but these 12319 * instructions encode the source size rather than dest size. 12320 */ 12321 if (!fp_access_check(s)) { 12322 return; 12323 } 12324 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12325 return; 12326 case 0x36: /* BFCVTN, BFCVTN2 */ 12327 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12328 unallocated_encoding(s); 12329 return; 12330 } 12331 if (!fp_access_check(s)) { 12332 return; 12333 } 12334 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12335 return; 12336 case 0x17: /* FCVTL, FCVTL2 */ 12337 if (!fp_access_check(s)) { 12338 return; 12339 } 12340 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12341 return; 12342 case 0x18: /* FRINTN */ 12343 case 0x19: /* FRINTM */ 12344 case 0x38: /* FRINTP */ 12345 case 0x39: /* FRINTZ */ 12346 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12347 /* fall through */ 12348 case 0x59: /* FRINTX */ 12349 case 0x79: /* FRINTI */ 12350 need_fpstatus = true; 12351 if (size == 3 && !is_q) { 12352 unallocated_encoding(s); 12353 return; 12354 } 12355 break; 12356 case 0x58: /* FRINTA */ 12357 rmode = FPROUNDING_TIEAWAY; 12358 need_fpstatus = true; 12359 if (size == 3 && !is_q) { 12360 unallocated_encoding(s); 12361 return; 12362 } 12363 break; 12364 case 0x7c: /* URSQRTE */ 12365 if (size == 3) { 12366 unallocated_encoding(s); 12367 return; 12368 } 12369 break; 12370 case 0x1e: /* FRINT32Z */ 12371 case 0x1f: /* FRINT64Z */ 12372 rmode = FPROUNDING_ZERO; 12373 /* fall through */ 12374 case 0x5e: /* FRINT32X */ 12375 case 0x5f: /* FRINT64X */ 12376 need_fpstatus = true; 12377 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12378 unallocated_encoding(s); 12379 return; 12380 } 12381 break; 12382 default: 12383 unallocated_encoding(s); 12384 return; 12385 } 12386 break; 12387 } 12388 default: 12389 unallocated_encoding(s); 12390 return; 12391 } 12392 12393 if (!fp_access_check(s)) { 12394 return; 12395 } 12396 12397 if (need_fpstatus || rmode >= 0) { 12398 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12399 } else { 12400 tcg_fpstatus = NULL; 12401 } 12402 if (rmode >= 0) { 12403 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12404 } else { 12405 tcg_rmode = NULL; 12406 } 12407 12408 switch (opcode) { 12409 case 0x5: 12410 if (u && size == 0) { /* NOT */ 12411 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12412 return; 12413 } 12414 break; 12415 case 0x8: /* CMGT, CMGE */ 12416 if (u) { 12417 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12418 } else { 12419 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12420 } 12421 return; 12422 case 0x9: /* CMEQ, CMLE */ 12423 if (u) { 12424 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12425 } else { 12426 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12427 } 12428 return; 12429 case 0xa: /* CMLT */ 12430 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12431 return; 12432 case 0xb: 12433 if (u) { /* ABS, NEG */ 12434 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12435 } else { 12436 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12437 } 12438 return; 12439 } 12440 12441 if (size == 3) { 12442 /* All 64-bit element operations can be shared with scalar 2misc */ 12443 int pass; 12444 12445 /* Coverity claims (size == 3 && !is_q) has been eliminated 12446 * from all paths leading to here. 12447 */ 12448 tcg_debug_assert(is_q); 12449 for (pass = 0; pass < 2; pass++) { 12450 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12451 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12452 12453 read_vec_element(s, tcg_op, rn, pass, MO_64); 12454 12455 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12456 tcg_rmode, tcg_fpstatus); 12457 12458 write_vec_element(s, tcg_res, rd, pass, MO_64); 12459 } 12460 } else { 12461 int pass; 12462 12463 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12464 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12465 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12466 12467 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12468 12469 if (size == 2) { 12470 /* Special cases for 32 bit elements */ 12471 switch (opcode) { 12472 case 0x4: /* CLS */ 12473 if (u) { 12474 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12475 } else { 12476 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12477 } 12478 break; 12479 case 0x7: /* SQABS, SQNEG */ 12480 if (u) { 12481 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12482 } else { 12483 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12484 } 12485 break; 12486 case 0x2f: /* FABS */ 12487 gen_helper_vfp_abss(tcg_res, tcg_op); 12488 break; 12489 case 0x6f: /* FNEG */ 12490 gen_helper_vfp_negs(tcg_res, tcg_op); 12491 break; 12492 case 0x7f: /* FSQRT */ 12493 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12494 break; 12495 case 0x1a: /* FCVTNS */ 12496 case 0x1b: /* FCVTMS */ 12497 case 0x1c: /* FCVTAS */ 12498 case 0x3a: /* FCVTPS */ 12499 case 0x3b: /* FCVTZS */ 12500 gen_helper_vfp_tosls(tcg_res, tcg_op, 12501 tcg_constant_i32(0), tcg_fpstatus); 12502 break; 12503 case 0x5a: /* FCVTNU */ 12504 case 0x5b: /* FCVTMU */ 12505 case 0x5c: /* FCVTAU */ 12506 case 0x7a: /* FCVTPU */ 12507 case 0x7b: /* FCVTZU */ 12508 gen_helper_vfp_touls(tcg_res, tcg_op, 12509 tcg_constant_i32(0), tcg_fpstatus); 12510 break; 12511 case 0x18: /* FRINTN */ 12512 case 0x19: /* FRINTM */ 12513 case 0x38: /* FRINTP */ 12514 case 0x39: /* FRINTZ */ 12515 case 0x58: /* FRINTA */ 12516 case 0x79: /* FRINTI */ 12517 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12518 break; 12519 case 0x59: /* FRINTX */ 12520 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12521 break; 12522 case 0x7c: /* URSQRTE */ 12523 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12524 break; 12525 case 0x1e: /* FRINT32Z */ 12526 case 0x5e: /* FRINT32X */ 12527 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12528 break; 12529 case 0x1f: /* FRINT64Z */ 12530 case 0x5f: /* FRINT64X */ 12531 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12532 break; 12533 default: 12534 g_assert_not_reached(); 12535 } 12536 } else { 12537 /* Use helpers for 8 and 16 bit elements */ 12538 switch (opcode) { 12539 case 0x5: /* CNT, RBIT */ 12540 /* For these two insns size is part of the opcode specifier 12541 * (handled earlier); they always operate on byte elements. 12542 */ 12543 if (u) { 12544 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12545 } else { 12546 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12547 } 12548 break; 12549 case 0x7: /* SQABS, SQNEG */ 12550 { 12551 NeonGenOneOpEnvFn *genfn; 12552 static NeonGenOneOpEnvFn * const fns[2][2] = { 12553 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12554 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12555 }; 12556 genfn = fns[size][u]; 12557 genfn(tcg_res, cpu_env, tcg_op); 12558 break; 12559 } 12560 case 0x4: /* CLS, CLZ */ 12561 if (u) { 12562 if (size == 0) { 12563 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12564 } else { 12565 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12566 } 12567 } else { 12568 if (size == 0) { 12569 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12570 } else { 12571 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12572 } 12573 } 12574 break; 12575 default: 12576 g_assert_not_reached(); 12577 } 12578 } 12579 12580 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12581 } 12582 } 12583 clear_vec_high(s, is_q, rd); 12584 12585 if (tcg_rmode) { 12586 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12587 } 12588 } 12589 12590 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12591 * 12592 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12593 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12594 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12595 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12596 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12597 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12598 * 12599 * This actually covers two groups where scalar access is governed by 12600 * bit 28. A bunch of the instructions (float to integral) only exist 12601 * in the vector form and are un-allocated for the scalar decode. Also 12602 * in the scalar decode Q is always 1. 12603 */ 12604 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12605 { 12606 int fpop, opcode, a, u; 12607 int rn, rd; 12608 bool is_q; 12609 bool is_scalar; 12610 bool only_in_vector = false; 12611 12612 int pass; 12613 TCGv_i32 tcg_rmode = NULL; 12614 TCGv_ptr tcg_fpstatus = NULL; 12615 bool need_fpst = true; 12616 int rmode = -1; 12617 12618 if (!dc_isar_feature(aa64_fp16, s)) { 12619 unallocated_encoding(s); 12620 return; 12621 } 12622 12623 rd = extract32(insn, 0, 5); 12624 rn = extract32(insn, 5, 5); 12625 12626 a = extract32(insn, 23, 1); 12627 u = extract32(insn, 29, 1); 12628 is_scalar = extract32(insn, 28, 1); 12629 is_q = extract32(insn, 30, 1); 12630 12631 opcode = extract32(insn, 12, 5); 12632 fpop = deposit32(opcode, 5, 1, a); 12633 fpop = deposit32(fpop, 6, 1, u); 12634 12635 switch (fpop) { 12636 case 0x1d: /* SCVTF */ 12637 case 0x5d: /* UCVTF */ 12638 { 12639 int elements; 12640 12641 if (is_scalar) { 12642 elements = 1; 12643 } else { 12644 elements = (is_q ? 8 : 4); 12645 } 12646 12647 if (!fp_access_check(s)) { 12648 return; 12649 } 12650 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12651 return; 12652 } 12653 break; 12654 case 0x2c: /* FCMGT (zero) */ 12655 case 0x2d: /* FCMEQ (zero) */ 12656 case 0x2e: /* FCMLT (zero) */ 12657 case 0x6c: /* FCMGE (zero) */ 12658 case 0x6d: /* FCMLE (zero) */ 12659 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12660 return; 12661 case 0x3d: /* FRECPE */ 12662 case 0x3f: /* FRECPX */ 12663 break; 12664 case 0x18: /* FRINTN */ 12665 only_in_vector = true; 12666 rmode = FPROUNDING_TIEEVEN; 12667 break; 12668 case 0x19: /* FRINTM */ 12669 only_in_vector = true; 12670 rmode = FPROUNDING_NEGINF; 12671 break; 12672 case 0x38: /* FRINTP */ 12673 only_in_vector = true; 12674 rmode = FPROUNDING_POSINF; 12675 break; 12676 case 0x39: /* FRINTZ */ 12677 only_in_vector = true; 12678 rmode = FPROUNDING_ZERO; 12679 break; 12680 case 0x58: /* FRINTA */ 12681 only_in_vector = true; 12682 rmode = FPROUNDING_TIEAWAY; 12683 break; 12684 case 0x59: /* FRINTX */ 12685 case 0x79: /* FRINTI */ 12686 only_in_vector = true; 12687 /* current rounding mode */ 12688 break; 12689 case 0x1a: /* FCVTNS */ 12690 rmode = FPROUNDING_TIEEVEN; 12691 break; 12692 case 0x1b: /* FCVTMS */ 12693 rmode = FPROUNDING_NEGINF; 12694 break; 12695 case 0x1c: /* FCVTAS */ 12696 rmode = FPROUNDING_TIEAWAY; 12697 break; 12698 case 0x3a: /* FCVTPS */ 12699 rmode = FPROUNDING_POSINF; 12700 break; 12701 case 0x3b: /* FCVTZS */ 12702 rmode = FPROUNDING_ZERO; 12703 break; 12704 case 0x5a: /* FCVTNU */ 12705 rmode = FPROUNDING_TIEEVEN; 12706 break; 12707 case 0x5b: /* FCVTMU */ 12708 rmode = FPROUNDING_NEGINF; 12709 break; 12710 case 0x5c: /* FCVTAU */ 12711 rmode = FPROUNDING_TIEAWAY; 12712 break; 12713 case 0x7a: /* FCVTPU */ 12714 rmode = FPROUNDING_POSINF; 12715 break; 12716 case 0x7b: /* FCVTZU */ 12717 rmode = FPROUNDING_ZERO; 12718 break; 12719 case 0x2f: /* FABS */ 12720 case 0x6f: /* FNEG */ 12721 need_fpst = false; 12722 break; 12723 case 0x7d: /* FRSQRTE */ 12724 case 0x7f: /* FSQRT (vector) */ 12725 break; 12726 default: 12727 unallocated_encoding(s); 12728 return; 12729 } 12730 12731 12732 /* Check additional constraints for the scalar encoding */ 12733 if (is_scalar) { 12734 if (!is_q) { 12735 unallocated_encoding(s); 12736 return; 12737 } 12738 /* FRINTxx is only in the vector form */ 12739 if (only_in_vector) { 12740 unallocated_encoding(s); 12741 return; 12742 } 12743 } 12744 12745 if (!fp_access_check(s)) { 12746 return; 12747 } 12748 12749 if (rmode >= 0 || need_fpst) { 12750 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12751 } 12752 12753 if (rmode >= 0) { 12754 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12755 } 12756 12757 if (is_scalar) { 12758 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12759 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12760 12761 switch (fpop) { 12762 case 0x1a: /* FCVTNS */ 12763 case 0x1b: /* FCVTMS */ 12764 case 0x1c: /* FCVTAS */ 12765 case 0x3a: /* FCVTPS */ 12766 case 0x3b: /* FCVTZS */ 12767 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12768 break; 12769 case 0x3d: /* FRECPE */ 12770 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12771 break; 12772 case 0x3f: /* FRECPX */ 12773 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12774 break; 12775 case 0x5a: /* FCVTNU */ 12776 case 0x5b: /* FCVTMU */ 12777 case 0x5c: /* FCVTAU */ 12778 case 0x7a: /* FCVTPU */ 12779 case 0x7b: /* FCVTZU */ 12780 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12781 break; 12782 case 0x6f: /* FNEG */ 12783 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12784 break; 12785 case 0x7d: /* FRSQRTE */ 12786 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12787 break; 12788 default: 12789 g_assert_not_reached(); 12790 } 12791 12792 /* limit any sign extension going on */ 12793 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12794 write_fp_sreg(s, rd, tcg_res); 12795 } else { 12796 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12797 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12798 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12799 12800 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12801 12802 switch (fpop) { 12803 case 0x1a: /* FCVTNS */ 12804 case 0x1b: /* FCVTMS */ 12805 case 0x1c: /* FCVTAS */ 12806 case 0x3a: /* FCVTPS */ 12807 case 0x3b: /* FCVTZS */ 12808 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12809 break; 12810 case 0x3d: /* FRECPE */ 12811 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12812 break; 12813 case 0x5a: /* FCVTNU */ 12814 case 0x5b: /* FCVTMU */ 12815 case 0x5c: /* FCVTAU */ 12816 case 0x7a: /* FCVTPU */ 12817 case 0x7b: /* FCVTZU */ 12818 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12819 break; 12820 case 0x18: /* FRINTN */ 12821 case 0x19: /* FRINTM */ 12822 case 0x38: /* FRINTP */ 12823 case 0x39: /* FRINTZ */ 12824 case 0x58: /* FRINTA */ 12825 case 0x79: /* FRINTI */ 12826 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12827 break; 12828 case 0x59: /* FRINTX */ 12829 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12830 break; 12831 case 0x2f: /* FABS */ 12832 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12833 break; 12834 case 0x6f: /* FNEG */ 12835 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12836 break; 12837 case 0x7d: /* FRSQRTE */ 12838 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12839 break; 12840 case 0x7f: /* FSQRT */ 12841 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12842 break; 12843 default: 12844 g_assert_not_reached(); 12845 } 12846 12847 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12848 } 12849 12850 clear_vec_high(s, is_q, rd); 12851 } 12852 12853 if (tcg_rmode) { 12854 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12855 } 12856 } 12857 12858 /* AdvSIMD scalar x indexed element 12859 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12860 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12861 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12862 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12863 * AdvSIMD vector x indexed element 12864 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12865 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12866 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12867 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12868 */ 12869 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12870 { 12871 /* This encoding has two kinds of instruction: 12872 * normal, where we perform elt x idxelt => elt for each 12873 * element in the vector 12874 * long, where we perform elt x idxelt and generate a result of 12875 * double the width of the input element 12876 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12877 */ 12878 bool is_scalar = extract32(insn, 28, 1); 12879 bool is_q = extract32(insn, 30, 1); 12880 bool u = extract32(insn, 29, 1); 12881 int size = extract32(insn, 22, 2); 12882 int l = extract32(insn, 21, 1); 12883 int m = extract32(insn, 20, 1); 12884 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12885 int rm = extract32(insn, 16, 4); 12886 int opcode = extract32(insn, 12, 4); 12887 int h = extract32(insn, 11, 1); 12888 int rn = extract32(insn, 5, 5); 12889 int rd = extract32(insn, 0, 5); 12890 bool is_long = false; 12891 int is_fp = 0; 12892 bool is_fp16 = false; 12893 int index; 12894 TCGv_ptr fpst; 12895 12896 switch (16 * u + opcode) { 12897 case 0x08: /* MUL */ 12898 case 0x10: /* MLA */ 12899 case 0x14: /* MLS */ 12900 if (is_scalar) { 12901 unallocated_encoding(s); 12902 return; 12903 } 12904 break; 12905 case 0x02: /* SMLAL, SMLAL2 */ 12906 case 0x12: /* UMLAL, UMLAL2 */ 12907 case 0x06: /* SMLSL, SMLSL2 */ 12908 case 0x16: /* UMLSL, UMLSL2 */ 12909 case 0x0a: /* SMULL, SMULL2 */ 12910 case 0x1a: /* UMULL, UMULL2 */ 12911 if (is_scalar) { 12912 unallocated_encoding(s); 12913 return; 12914 } 12915 is_long = true; 12916 break; 12917 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12918 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12919 case 0x0b: /* SQDMULL, SQDMULL2 */ 12920 is_long = true; 12921 break; 12922 case 0x0c: /* SQDMULH */ 12923 case 0x0d: /* SQRDMULH */ 12924 break; 12925 case 0x01: /* FMLA */ 12926 case 0x05: /* FMLS */ 12927 case 0x09: /* FMUL */ 12928 case 0x19: /* FMULX */ 12929 is_fp = 1; 12930 break; 12931 case 0x1d: /* SQRDMLAH */ 12932 case 0x1f: /* SQRDMLSH */ 12933 if (!dc_isar_feature(aa64_rdm, s)) { 12934 unallocated_encoding(s); 12935 return; 12936 } 12937 break; 12938 case 0x0e: /* SDOT */ 12939 case 0x1e: /* UDOT */ 12940 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12941 unallocated_encoding(s); 12942 return; 12943 } 12944 break; 12945 case 0x0f: 12946 switch (size) { 12947 case 0: /* SUDOT */ 12948 case 2: /* USDOT */ 12949 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12950 unallocated_encoding(s); 12951 return; 12952 } 12953 size = MO_32; 12954 break; 12955 case 1: /* BFDOT */ 12956 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12957 unallocated_encoding(s); 12958 return; 12959 } 12960 size = MO_32; 12961 break; 12962 case 3: /* BFMLAL{B,T} */ 12963 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12964 unallocated_encoding(s); 12965 return; 12966 } 12967 /* can't set is_fp without other incorrect size checks */ 12968 size = MO_16; 12969 break; 12970 default: 12971 unallocated_encoding(s); 12972 return; 12973 } 12974 break; 12975 case 0x11: /* FCMLA #0 */ 12976 case 0x13: /* FCMLA #90 */ 12977 case 0x15: /* FCMLA #180 */ 12978 case 0x17: /* FCMLA #270 */ 12979 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12980 unallocated_encoding(s); 12981 return; 12982 } 12983 is_fp = 2; 12984 break; 12985 case 0x00: /* FMLAL */ 12986 case 0x04: /* FMLSL */ 12987 case 0x18: /* FMLAL2 */ 12988 case 0x1c: /* FMLSL2 */ 12989 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12990 unallocated_encoding(s); 12991 return; 12992 } 12993 size = MO_16; 12994 /* is_fp, but we pass cpu_env not fp_status. */ 12995 break; 12996 default: 12997 unallocated_encoding(s); 12998 return; 12999 } 13000 13001 switch (is_fp) { 13002 case 1: /* normal fp */ 13003 /* convert insn encoded size to MemOp size */ 13004 switch (size) { 13005 case 0: /* half-precision */ 13006 size = MO_16; 13007 is_fp16 = true; 13008 break; 13009 case MO_32: /* single precision */ 13010 case MO_64: /* double precision */ 13011 break; 13012 default: 13013 unallocated_encoding(s); 13014 return; 13015 } 13016 break; 13017 13018 case 2: /* complex fp */ 13019 /* Each indexable element is a complex pair. */ 13020 size += 1; 13021 switch (size) { 13022 case MO_32: 13023 if (h && !is_q) { 13024 unallocated_encoding(s); 13025 return; 13026 } 13027 is_fp16 = true; 13028 break; 13029 case MO_64: 13030 break; 13031 default: 13032 unallocated_encoding(s); 13033 return; 13034 } 13035 break; 13036 13037 default: /* integer */ 13038 switch (size) { 13039 case MO_8: 13040 case MO_64: 13041 unallocated_encoding(s); 13042 return; 13043 } 13044 break; 13045 } 13046 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13047 unallocated_encoding(s); 13048 return; 13049 } 13050 13051 /* Given MemOp size, adjust register and indexing. */ 13052 switch (size) { 13053 case MO_16: 13054 index = h << 2 | l << 1 | m; 13055 break; 13056 case MO_32: 13057 index = h << 1 | l; 13058 rm |= m << 4; 13059 break; 13060 case MO_64: 13061 if (l || !is_q) { 13062 unallocated_encoding(s); 13063 return; 13064 } 13065 index = h; 13066 rm |= m << 4; 13067 break; 13068 default: 13069 g_assert_not_reached(); 13070 } 13071 13072 if (!fp_access_check(s)) { 13073 return; 13074 } 13075 13076 if (is_fp) { 13077 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13078 } else { 13079 fpst = NULL; 13080 } 13081 13082 switch (16 * u + opcode) { 13083 case 0x0e: /* SDOT */ 13084 case 0x1e: /* UDOT */ 13085 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13086 u ? gen_helper_gvec_udot_idx_b 13087 : gen_helper_gvec_sdot_idx_b); 13088 return; 13089 case 0x0f: 13090 switch (extract32(insn, 22, 2)) { 13091 case 0: /* SUDOT */ 13092 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13093 gen_helper_gvec_sudot_idx_b); 13094 return; 13095 case 1: /* BFDOT */ 13096 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13097 gen_helper_gvec_bfdot_idx); 13098 return; 13099 case 2: /* USDOT */ 13100 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13101 gen_helper_gvec_usdot_idx_b); 13102 return; 13103 case 3: /* BFMLAL{B,T} */ 13104 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13105 gen_helper_gvec_bfmlal_idx); 13106 return; 13107 } 13108 g_assert_not_reached(); 13109 case 0x11: /* FCMLA #0 */ 13110 case 0x13: /* FCMLA #90 */ 13111 case 0x15: /* FCMLA #180 */ 13112 case 0x17: /* FCMLA #270 */ 13113 { 13114 int rot = extract32(insn, 13, 2); 13115 int data = (index << 2) | rot; 13116 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13117 vec_full_reg_offset(s, rn), 13118 vec_full_reg_offset(s, rm), 13119 vec_full_reg_offset(s, rd), fpst, 13120 is_q ? 16 : 8, vec_full_reg_size(s), data, 13121 size == MO_64 13122 ? gen_helper_gvec_fcmlas_idx 13123 : gen_helper_gvec_fcmlah_idx); 13124 } 13125 return; 13126 13127 case 0x00: /* FMLAL */ 13128 case 0x04: /* FMLSL */ 13129 case 0x18: /* FMLAL2 */ 13130 case 0x1c: /* FMLSL2 */ 13131 { 13132 int is_s = extract32(opcode, 2, 1); 13133 int is_2 = u; 13134 int data = (index << 2) | (is_2 << 1) | is_s; 13135 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13136 vec_full_reg_offset(s, rn), 13137 vec_full_reg_offset(s, rm), cpu_env, 13138 is_q ? 16 : 8, vec_full_reg_size(s), 13139 data, gen_helper_gvec_fmlal_idx_a64); 13140 } 13141 return; 13142 13143 case 0x08: /* MUL */ 13144 if (!is_long && !is_scalar) { 13145 static gen_helper_gvec_3 * const fns[3] = { 13146 gen_helper_gvec_mul_idx_h, 13147 gen_helper_gvec_mul_idx_s, 13148 gen_helper_gvec_mul_idx_d, 13149 }; 13150 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13151 vec_full_reg_offset(s, rn), 13152 vec_full_reg_offset(s, rm), 13153 is_q ? 16 : 8, vec_full_reg_size(s), 13154 index, fns[size - 1]); 13155 return; 13156 } 13157 break; 13158 13159 case 0x10: /* MLA */ 13160 if (!is_long && !is_scalar) { 13161 static gen_helper_gvec_4 * const fns[3] = { 13162 gen_helper_gvec_mla_idx_h, 13163 gen_helper_gvec_mla_idx_s, 13164 gen_helper_gvec_mla_idx_d, 13165 }; 13166 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13167 vec_full_reg_offset(s, rn), 13168 vec_full_reg_offset(s, rm), 13169 vec_full_reg_offset(s, rd), 13170 is_q ? 16 : 8, vec_full_reg_size(s), 13171 index, fns[size - 1]); 13172 return; 13173 } 13174 break; 13175 13176 case 0x14: /* MLS */ 13177 if (!is_long && !is_scalar) { 13178 static gen_helper_gvec_4 * const fns[3] = { 13179 gen_helper_gvec_mls_idx_h, 13180 gen_helper_gvec_mls_idx_s, 13181 gen_helper_gvec_mls_idx_d, 13182 }; 13183 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13184 vec_full_reg_offset(s, rn), 13185 vec_full_reg_offset(s, rm), 13186 vec_full_reg_offset(s, rd), 13187 is_q ? 16 : 8, vec_full_reg_size(s), 13188 index, fns[size - 1]); 13189 return; 13190 } 13191 break; 13192 } 13193 13194 if (size == 3) { 13195 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13196 int pass; 13197 13198 assert(is_fp && is_q && !is_long); 13199 13200 read_vec_element(s, tcg_idx, rm, index, MO_64); 13201 13202 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13203 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13204 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13205 13206 read_vec_element(s, tcg_op, rn, pass, MO_64); 13207 13208 switch (16 * u + opcode) { 13209 case 0x05: /* FMLS */ 13210 /* As usual for ARM, separate negation for fused multiply-add */ 13211 gen_helper_vfp_negd(tcg_op, tcg_op); 13212 /* fall through */ 13213 case 0x01: /* FMLA */ 13214 read_vec_element(s, tcg_res, rd, pass, MO_64); 13215 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13216 break; 13217 case 0x09: /* FMUL */ 13218 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13219 break; 13220 case 0x19: /* FMULX */ 13221 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13222 break; 13223 default: 13224 g_assert_not_reached(); 13225 } 13226 13227 write_vec_element(s, tcg_res, rd, pass, MO_64); 13228 } 13229 13230 clear_vec_high(s, !is_scalar, rd); 13231 } else if (!is_long) { 13232 /* 32 bit floating point, or 16 or 32 bit integer. 13233 * For the 16 bit scalar case we use the usual Neon helpers and 13234 * rely on the fact that 0 op 0 == 0 with no side effects. 13235 */ 13236 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13237 int pass, maxpasses; 13238 13239 if (is_scalar) { 13240 maxpasses = 1; 13241 } else { 13242 maxpasses = is_q ? 4 : 2; 13243 } 13244 13245 read_vec_element_i32(s, tcg_idx, rm, index, size); 13246 13247 if (size == 1 && !is_scalar) { 13248 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13249 * the index into both halves of the 32 bit tcg_idx and then use 13250 * the usual Neon helpers. 13251 */ 13252 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13253 } 13254 13255 for (pass = 0; pass < maxpasses; pass++) { 13256 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13257 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13258 13259 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13260 13261 switch (16 * u + opcode) { 13262 case 0x08: /* MUL */ 13263 case 0x10: /* MLA */ 13264 case 0x14: /* MLS */ 13265 { 13266 static NeonGenTwoOpFn * const fns[2][2] = { 13267 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13268 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13269 }; 13270 NeonGenTwoOpFn *genfn; 13271 bool is_sub = opcode == 0x4; 13272 13273 if (size == 1) { 13274 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13275 } else { 13276 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13277 } 13278 if (opcode == 0x8) { 13279 break; 13280 } 13281 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13282 genfn = fns[size - 1][is_sub]; 13283 genfn(tcg_res, tcg_op, tcg_res); 13284 break; 13285 } 13286 case 0x05: /* FMLS */ 13287 case 0x01: /* FMLA */ 13288 read_vec_element_i32(s, tcg_res, rd, pass, 13289 is_scalar ? size : MO_32); 13290 switch (size) { 13291 case 1: 13292 if (opcode == 0x5) { 13293 /* As usual for ARM, separate negation for fused 13294 * multiply-add */ 13295 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13296 } 13297 if (is_scalar) { 13298 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13299 tcg_res, fpst); 13300 } else { 13301 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13302 tcg_res, fpst); 13303 } 13304 break; 13305 case 2: 13306 if (opcode == 0x5) { 13307 /* As usual for ARM, separate negation for 13308 * fused multiply-add */ 13309 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13310 } 13311 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13312 tcg_res, fpst); 13313 break; 13314 default: 13315 g_assert_not_reached(); 13316 } 13317 break; 13318 case 0x09: /* FMUL */ 13319 switch (size) { 13320 case 1: 13321 if (is_scalar) { 13322 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13323 tcg_idx, fpst); 13324 } else { 13325 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13326 tcg_idx, fpst); 13327 } 13328 break; 13329 case 2: 13330 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13331 break; 13332 default: 13333 g_assert_not_reached(); 13334 } 13335 break; 13336 case 0x19: /* FMULX */ 13337 switch (size) { 13338 case 1: 13339 if (is_scalar) { 13340 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13341 tcg_idx, fpst); 13342 } else { 13343 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13344 tcg_idx, fpst); 13345 } 13346 break; 13347 case 2: 13348 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13349 break; 13350 default: 13351 g_assert_not_reached(); 13352 } 13353 break; 13354 case 0x0c: /* SQDMULH */ 13355 if (size == 1) { 13356 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13357 tcg_op, tcg_idx); 13358 } else { 13359 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13360 tcg_op, tcg_idx); 13361 } 13362 break; 13363 case 0x0d: /* SQRDMULH */ 13364 if (size == 1) { 13365 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13366 tcg_op, tcg_idx); 13367 } else { 13368 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13369 tcg_op, tcg_idx); 13370 } 13371 break; 13372 case 0x1d: /* SQRDMLAH */ 13373 read_vec_element_i32(s, tcg_res, rd, pass, 13374 is_scalar ? size : MO_32); 13375 if (size == 1) { 13376 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13377 tcg_op, tcg_idx, tcg_res); 13378 } else { 13379 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13380 tcg_op, tcg_idx, tcg_res); 13381 } 13382 break; 13383 case 0x1f: /* SQRDMLSH */ 13384 read_vec_element_i32(s, tcg_res, rd, pass, 13385 is_scalar ? size : MO_32); 13386 if (size == 1) { 13387 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13388 tcg_op, tcg_idx, tcg_res); 13389 } else { 13390 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13391 tcg_op, tcg_idx, tcg_res); 13392 } 13393 break; 13394 default: 13395 g_assert_not_reached(); 13396 } 13397 13398 if (is_scalar) { 13399 write_fp_sreg(s, rd, tcg_res); 13400 } else { 13401 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13402 } 13403 } 13404 13405 clear_vec_high(s, is_q, rd); 13406 } else { 13407 /* long ops: 16x16->32 or 32x32->64 */ 13408 TCGv_i64 tcg_res[2]; 13409 int pass; 13410 bool satop = extract32(opcode, 0, 1); 13411 MemOp memop = MO_32; 13412 13413 if (satop || !u) { 13414 memop |= MO_SIGN; 13415 } 13416 13417 if (size == 2) { 13418 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13419 13420 read_vec_element(s, tcg_idx, rm, index, memop); 13421 13422 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13423 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13424 TCGv_i64 tcg_passres; 13425 int passelt; 13426 13427 if (is_scalar) { 13428 passelt = 0; 13429 } else { 13430 passelt = pass + (is_q * 2); 13431 } 13432 13433 read_vec_element(s, tcg_op, rn, passelt, memop); 13434 13435 tcg_res[pass] = tcg_temp_new_i64(); 13436 13437 if (opcode == 0xa || opcode == 0xb) { 13438 /* Non-accumulating ops */ 13439 tcg_passres = tcg_res[pass]; 13440 } else { 13441 tcg_passres = tcg_temp_new_i64(); 13442 } 13443 13444 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13445 13446 if (satop) { 13447 /* saturating, doubling */ 13448 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13449 tcg_passres, tcg_passres); 13450 } 13451 13452 if (opcode == 0xa || opcode == 0xb) { 13453 continue; 13454 } 13455 13456 /* Accumulating op: handle accumulate step */ 13457 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13458 13459 switch (opcode) { 13460 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13461 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13462 break; 13463 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13464 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13465 break; 13466 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13467 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13468 /* fall through */ 13469 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13470 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13471 tcg_res[pass], 13472 tcg_passres); 13473 break; 13474 default: 13475 g_assert_not_reached(); 13476 } 13477 } 13478 13479 clear_vec_high(s, !is_scalar, rd); 13480 } else { 13481 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13482 13483 assert(size == 1); 13484 read_vec_element_i32(s, tcg_idx, rm, index, size); 13485 13486 if (!is_scalar) { 13487 /* The simplest way to handle the 16x16 indexed ops is to 13488 * duplicate the index into both halves of the 32 bit tcg_idx 13489 * and then use the usual Neon helpers. 13490 */ 13491 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13492 } 13493 13494 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13495 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13496 TCGv_i64 tcg_passres; 13497 13498 if (is_scalar) { 13499 read_vec_element_i32(s, tcg_op, rn, pass, size); 13500 } else { 13501 read_vec_element_i32(s, tcg_op, rn, 13502 pass + (is_q * 2), MO_32); 13503 } 13504 13505 tcg_res[pass] = tcg_temp_new_i64(); 13506 13507 if (opcode == 0xa || opcode == 0xb) { 13508 /* Non-accumulating ops */ 13509 tcg_passres = tcg_res[pass]; 13510 } else { 13511 tcg_passres = tcg_temp_new_i64(); 13512 } 13513 13514 if (memop & MO_SIGN) { 13515 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13516 } else { 13517 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13518 } 13519 if (satop) { 13520 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13521 tcg_passres, tcg_passres); 13522 } 13523 13524 if (opcode == 0xa || opcode == 0xb) { 13525 continue; 13526 } 13527 13528 /* Accumulating op: handle accumulate step */ 13529 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13530 13531 switch (opcode) { 13532 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13533 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13534 tcg_passres); 13535 break; 13536 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13537 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13538 tcg_passres); 13539 break; 13540 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13541 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13542 /* fall through */ 13543 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13544 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13545 tcg_res[pass], 13546 tcg_passres); 13547 break; 13548 default: 13549 g_assert_not_reached(); 13550 } 13551 } 13552 13553 if (is_scalar) { 13554 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13555 } 13556 } 13557 13558 if (is_scalar) { 13559 tcg_res[1] = tcg_constant_i64(0); 13560 } 13561 13562 for (pass = 0; pass < 2; pass++) { 13563 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13564 } 13565 } 13566 } 13567 13568 /* Crypto AES 13569 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13570 * +-----------------+------+-----------+--------+-----+------+------+ 13571 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13572 * +-----------------+------+-----------+--------+-----+------+------+ 13573 */ 13574 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13575 { 13576 int size = extract32(insn, 22, 2); 13577 int opcode = extract32(insn, 12, 5); 13578 int rn = extract32(insn, 5, 5); 13579 int rd = extract32(insn, 0, 5); 13580 int decrypt; 13581 gen_helper_gvec_2 *genfn2 = NULL; 13582 gen_helper_gvec_3 *genfn3 = NULL; 13583 13584 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13585 unallocated_encoding(s); 13586 return; 13587 } 13588 13589 switch (opcode) { 13590 case 0x4: /* AESE */ 13591 decrypt = 0; 13592 genfn3 = gen_helper_crypto_aese; 13593 break; 13594 case 0x6: /* AESMC */ 13595 decrypt = 0; 13596 genfn2 = gen_helper_crypto_aesmc; 13597 break; 13598 case 0x5: /* AESD */ 13599 decrypt = 1; 13600 genfn3 = gen_helper_crypto_aese; 13601 break; 13602 case 0x7: /* AESIMC */ 13603 decrypt = 1; 13604 genfn2 = gen_helper_crypto_aesmc; 13605 break; 13606 default: 13607 unallocated_encoding(s); 13608 return; 13609 } 13610 13611 if (!fp_access_check(s)) { 13612 return; 13613 } 13614 if (genfn2) { 13615 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13616 } else { 13617 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13618 } 13619 } 13620 13621 /* Crypto three-reg SHA 13622 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13623 * +-----------------+------+---+------+---+--------+-----+------+------+ 13624 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13625 * +-----------------+------+---+------+---+--------+-----+------+------+ 13626 */ 13627 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13628 { 13629 int size = extract32(insn, 22, 2); 13630 int opcode = extract32(insn, 12, 3); 13631 int rm = extract32(insn, 16, 5); 13632 int rn = extract32(insn, 5, 5); 13633 int rd = extract32(insn, 0, 5); 13634 gen_helper_gvec_3 *genfn; 13635 bool feature; 13636 13637 if (size != 0) { 13638 unallocated_encoding(s); 13639 return; 13640 } 13641 13642 switch (opcode) { 13643 case 0: /* SHA1C */ 13644 genfn = gen_helper_crypto_sha1c; 13645 feature = dc_isar_feature(aa64_sha1, s); 13646 break; 13647 case 1: /* SHA1P */ 13648 genfn = gen_helper_crypto_sha1p; 13649 feature = dc_isar_feature(aa64_sha1, s); 13650 break; 13651 case 2: /* SHA1M */ 13652 genfn = gen_helper_crypto_sha1m; 13653 feature = dc_isar_feature(aa64_sha1, s); 13654 break; 13655 case 3: /* SHA1SU0 */ 13656 genfn = gen_helper_crypto_sha1su0; 13657 feature = dc_isar_feature(aa64_sha1, s); 13658 break; 13659 case 4: /* SHA256H */ 13660 genfn = gen_helper_crypto_sha256h; 13661 feature = dc_isar_feature(aa64_sha256, s); 13662 break; 13663 case 5: /* SHA256H2 */ 13664 genfn = gen_helper_crypto_sha256h2; 13665 feature = dc_isar_feature(aa64_sha256, s); 13666 break; 13667 case 6: /* SHA256SU1 */ 13668 genfn = gen_helper_crypto_sha256su1; 13669 feature = dc_isar_feature(aa64_sha256, s); 13670 break; 13671 default: 13672 unallocated_encoding(s); 13673 return; 13674 } 13675 13676 if (!feature) { 13677 unallocated_encoding(s); 13678 return; 13679 } 13680 13681 if (!fp_access_check(s)) { 13682 return; 13683 } 13684 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13685 } 13686 13687 /* Crypto two-reg SHA 13688 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13689 * +-----------------+------+-----------+--------+-----+------+------+ 13690 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13691 * +-----------------+------+-----------+--------+-----+------+------+ 13692 */ 13693 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13694 { 13695 int size = extract32(insn, 22, 2); 13696 int opcode = extract32(insn, 12, 5); 13697 int rn = extract32(insn, 5, 5); 13698 int rd = extract32(insn, 0, 5); 13699 gen_helper_gvec_2 *genfn; 13700 bool feature; 13701 13702 if (size != 0) { 13703 unallocated_encoding(s); 13704 return; 13705 } 13706 13707 switch (opcode) { 13708 case 0: /* SHA1H */ 13709 feature = dc_isar_feature(aa64_sha1, s); 13710 genfn = gen_helper_crypto_sha1h; 13711 break; 13712 case 1: /* SHA1SU1 */ 13713 feature = dc_isar_feature(aa64_sha1, s); 13714 genfn = gen_helper_crypto_sha1su1; 13715 break; 13716 case 2: /* SHA256SU0 */ 13717 feature = dc_isar_feature(aa64_sha256, s); 13718 genfn = gen_helper_crypto_sha256su0; 13719 break; 13720 default: 13721 unallocated_encoding(s); 13722 return; 13723 } 13724 13725 if (!feature) { 13726 unallocated_encoding(s); 13727 return; 13728 } 13729 13730 if (!fp_access_check(s)) { 13731 return; 13732 } 13733 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13734 } 13735 13736 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13737 { 13738 tcg_gen_rotli_i64(d, m, 1); 13739 tcg_gen_xor_i64(d, d, n); 13740 } 13741 13742 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13743 { 13744 tcg_gen_rotli_vec(vece, d, m, 1); 13745 tcg_gen_xor_vec(vece, d, d, n); 13746 } 13747 13748 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13749 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13750 { 13751 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13752 static const GVecGen3 op = { 13753 .fni8 = gen_rax1_i64, 13754 .fniv = gen_rax1_vec, 13755 .opt_opc = vecop_list, 13756 .fno = gen_helper_crypto_rax1, 13757 .vece = MO_64, 13758 }; 13759 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13760 } 13761 13762 /* Crypto three-reg SHA512 13763 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13764 * +-----------------------+------+---+---+-----+--------+------+------+ 13765 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13766 * +-----------------------+------+---+---+-----+--------+------+------+ 13767 */ 13768 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13769 { 13770 int opcode = extract32(insn, 10, 2); 13771 int o = extract32(insn, 14, 1); 13772 int rm = extract32(insn, 16, 5); 13773 int rn = extract32(insn, 5, 5); 13774 int rd = extract32(insn, 0, 5); 13775 bool feature; 13776 gen_helper_gvec_3 *oolfn = NULL; 13777 GVecGen3Fn *gvecfn = NULL; 13778 13779 if (o == 0) { 13780 switch (opcode) { 13781 case 0: /* SHA512H */ 13782 feature = dc_isar_feature(aa64_sha512, s); 13783 oolfn = gen_helper_crypto_sha512h; 13784 break; 13785 case 1: /* SHA512H2 */ 13786 feature = dc_isar_feature(aa64_sha512, s); 13787 oolfn = gen_helper_crypto_sha512h2; 13788 break; 13789 case 2: /* SHA512SU1 */ 13790 feature = dc_isar_feature(aa64_sha512, s); 13791 oolfn = gen_helper_crypto_sha512su1; 13792 break; 13793 case 3: /* RAX1 */ 13794 feature = dc_isar_feature(aa64_sha3, s); 13795 gvecfn = gen_gvec_rax1; 13796 break; 13797 default: 13798 g_assert_not_reached(); 13799 } 13800 } else { 13801 switch (opcode) { 13802 case 0: /* SM3PARTW1 */ 13803 feature = dc_isar_feature(aa64_sm3, s); 13804 oolfn = gen_helper_crypto_sm3partw1; 13805 break; 13806 case 1: /* SM3PARTW2 */ 13807 feature = dc_isar_feature(aa64_sm3, s); 13808 oolfn = gen_helper_crypto_sm3partw2; 13809 break; 13810 case 2: /* SM4EKEY */ 13811 feature = dc_isar_feature(aa64_sm4, s); 13812 oolfn = gen_helper_crypto_sm4ekey; 13813 break; 13814 default: 13815 unallocated_encoding(s); 13816 return; 13817 } 13818 } 13819 13820 if (!feature) { 13821 unallocated_encoding(s); 13822 return; 13823 } 13824 13825 if (!fp_access_check(s)) { 13826 return; 13827 } 13828 13829 if (oolfn) { 13830 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13831 } else { 13832 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13833 } 13834 } 13835 13836 /* Crypto two-reg SHA512 13837 * 31 12 11 10 9 5 4 0 13838 * +-----------------------------------------+--------+------+------+ 13839 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13840 * +-----------------------------------------+--------+------+------+ 13841 */ 13842 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13843 { 13844 int opcode = extract32(insn, 10, 2); 13845 int rn = extract32(insn, 5, 5); 13846 int rd = extract32(insn, 0, 5); 13847 bool feature; 13848 13849 switch (opcode) { 13850 case 0: /* SHA512SU0 */ 13851 feature = dc_isar_feature(aa64_sha512, s); 13852 break; 13853 case 1: /* SM4E */ 13854 feature = dc_isar_feature(aa64_sm4, s); 13855 break; 13856 default: 13857 unallocated_encoding(s); 13858 return; 13859 } 13860 13861 if (!feature) { 13862 unallocated_encoding(s); 13863 return; 13864 } 13865 13866 if (!fp_access_check(s)) { 13867 return; 13868 } 13869 13870 switch (opcode) { 13871 case 0: /* SHA512SU0 */ 13872 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13873 break; 13874 case 1: /* SM4E */ 13875 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13876 break; 13877 default: 13878 g_assert_not_reached(); 13879 } 13880 } 13881 13882 /* Crypto four-register 13883 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13884 * +-------------------+-----+------+---+------+------+------+ 13885 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13886 * +-------------------+-----+------+---+------+------+------+ 13887 */ 13888 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13889 { 13890 int op0 = extract32(insn, 21, 2); 13891 int rm = extract32(insn, 16, 5); 13892 int ra = extract32(insn, 10, 5); 13893 int rn = extract32(insn, 5, 5); 13894 int rd = extract32(insn, 0, 5); 13895 bool feature; 13896 13897 switch (op0) { 13898 case 0: /* EOR3 */ 13899 case 1: /* BCAX */ 13900 feature = dc_isar_feature(aa64_sha3, s); 13901 break; 13902 case 2: /* SM3SS1 */ 13903 feature = dc_isar_feature(aa64_sm3, s); 13904 break; 13905 default: 13906 unallocated_encoding(s); 13907 return; 13908 } 13909 13910 if (!feature) { 13911 unallocated_encoding(s); 13912 return; 13913 } 13914 13915 if (!fp_access_check(s)) { 13916 return; 13917 } 13918 13919 if (op0 < 2) { 13920 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13921 int pass; 13922 13923 tcg_op1 = tcg_temp_new_i64(); 13924 tcg_op2 = tcg_temp_new_i64(); 13925 tcg_op3 = tcg_temp_new_i64(); 13926 tcg_res[0] = tcg_temp_new_i64(); 13927 tcg_res[1] = tcg_temp_new_i64(); 13928 13929 for (pass = 0; pass < 2; pass++) { 13930 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13931 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13932 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13933 13934 if (op0 == 0) { 13935 /* EOR3 */ 13936 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13937 } else { 13938 /* BCAX */ 13939 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13940 } 13941 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13942 } 13943 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13944 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13945 } else { 13946 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13947 13948 tcg_op1 = tcg_temp_new_i32(); 13949 tcg_op2 = tcg_temp_new_i32(); 13950 tcg_op3 = tcg_temp_new_i32(); 13951 tcg_res = tcg_temp_new_i32(); 13952 tcg_zero = tcg_constant_i32(0); 13953 13954 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13955 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13956 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13957 13958 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13959 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13960 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13961 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13962 13963 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13964 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13965 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13966 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13967 } 13968 } 13969 13970 /* Crypto XAR 13971 * 31 21 20 16 15 10 9 5 4 0 13972 * +-----------------------+------+--------+------+------+ 13973 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13974 * +-----------------------+------+--------+------+------+ 13975 */ 13976 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13977 { 13978 int rm = extract32(insn, 16, 5); 13979 int imm6 = extract32(insn, 10, 6); 13980 int rn = extract32(insn, 5, 5); 13981 int rd = extract32(insn, 0, 5); 13982 13983 if (!dc_isar_feature(aa64_sha3, s)) { 13984 unallocated_encoding(s); 13985 return; 13986 } 13987 13988 if (!fp_access_check(s)) { 13989 return; 13990 } 13991 13992 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13993 vec_full_reg_offset(s, rn), 13994 vec_full_reg_offset(s, rm), imm6, 16, 13995 vec_full_reg_size(s)); 13996 } 13997 13998 /* Crypto three-reg imm2 13999 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14000 * +-----------------------+------+-----+------+--------+------+------+ 14001 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14002 * +-----------------------+------+-----+------+--------+------+------+ 14003 */ 14004 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14005 { 14006 static gen_helper_gvec_3 * const fns[4] = { 14007 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14008 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14009 }; 14010 int opcode = extract32(insn, 10, 2); 14011 int imm2 = extract32(insn, 12, 2); 14012 int rm = extract32(insn, 16, 5); 14013 int rn = extract32(insn, 5, 5); 14014 int rd = extract32(insn, 0, 5); 14015 14016 if (!dc_isar_feature(aa64_sm3, s)) { 14017 unallocated_encoding(s); 14018 return; 14019 } 14020 14021 if (!fp_access_check(s)) { 14022 return; 14023 } 14024 14025 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14026 } 14027 14028 /* C3.6 Data processing - SIMD, inc Crypto 14029 * 14030 * As the decode gets a little complex we are using a table based 14031 * approach for this part of the decode. 14032 */ 14033 static const AArch64DecodeTable data_proc_simd[] = { 14034 /* pattern , mask , fn */ 14035 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14036 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14037 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14038 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14039 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14040 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14041 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14042 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14043 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14044 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14045 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14046 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14047 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14048 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14049 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14050 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14051 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14052 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14053 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14054 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14055 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14056 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14057 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14058 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14059 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14060 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14061 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14062 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14063 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14064 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14065 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14066 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14067 { 0x00000000, 0x00000000, NULL } 14068 }; 14069 14070 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14071 { 14072 /* Note that this is called with all non-FP cases from 14073 * table C3-6 so it must UNDEF for entries not specifically 14074 * allocated to instructions in that table. 14075 */ 14076 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14077 if (fn) { 14078 fn(s, insn); 14079 } else { 14080 unallocated_encoding(s); 14081 } 14082 } 14083 14084 /* C3.6 Data processing - SIMD and floating point */ 14085 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14086 { 14087 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14088 disas_data_proc_fp(s, insn); 14089 } else { 14090 /* SIMD, including crypto */ 14091 disas_data_proc_simd(s, insn); 14092 } 14093 } 14094 14095 /* 14096 * Include the generated SME FA64 decoder. 14097 */ 14098 14099 #include "decode-sme-fa64.c.inc" 14100 14101 static bool trans_OK(DisasContext *s, arg_OK *a) 14102 { 14103 return true; 14104 } 14105 14106 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14107 { 14108 s->is_nonstreaming = true; 14109 return true; 14110 } 14111 14112 /** 14113 * is_guarded_page: 14114 * @env: The cpu environment 14115 * @s: The DisasContext 14116 * 14117 * Return true if the page is guarded. 14118 */ 14119 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14120 { 14121 uint64_t addr = s->base.pc_first; 14122 #ifdef CONFIG_USER_ONLY 14123 return page_get_flags(addr) & PAGE_BTI; 14124 #else 14125 CPUTLBEntryFull *full; 14126 void *host; 14127 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14128 int flags; 14129 14130 /* 14131 * We test this immediately after reading an insn, which means 14132 * that the TLB entry must be present and valid, and thus this 14133 * access will never raise an exception. 14134 */ 14135 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14136 false, &host, &full, 0); 14137 assert(!(flags & TLB_INVALID_MASK)); 14138 14139 return full->guarded; 14140 #endif 14141 } 14142 14143 /** 14144 * btype_destination_ok: 14145 * @insn: The instruction at the branch destination 14146 * @bt: SCTLR_ELx.BT 14147 * @btype: PSTATE.BTYPE, and is non-zero 14148 * 14149 * On a guarded page, there are a limited number of insns 14150 * that may be present at the branch target: 14151 * - branch target identifiers, 14152 * - paciasp, pacibsp, 14153 * - BRK insn 14154 * - HLT insn 14155 * Anything else causes a Branch Target Exception. 14156 * 14157 * Return true if the branch is compatible, false to raise BTITRAP. 14158 */ 14159 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14160 { 14161 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14162 /* HINT space */ 14163 switch (extract32(insn, 5, 7)) { 14164 case 0b011001: /* PACIASP */ 14165 case 0b011011: /* PACIBSP */ 14166 /* 14167 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14168 * with btype == 3. Otherwise all btype are ok. 14169 */ 14170 return !bt || btype != 3; 14171 case 0b100000: /* BTI */ 14172 /* Not compatible with any btype. */ 14173 return false; 14174 case 0b100010: /* BTI c */ 14175 /* Not compatible with btype == 3 */ 14176 return btype != 3; 14177 case 0b100100: /* BTI j */ 14178 /* Not compatible with btype == 2 */ 14179 return btype != 2; 14180 case 0b100110: /* BTI jc */ 14181 /* Compatible with any btype. */ 14182 return true; 14183 } 14184 } else { 14185 switch (insn & 0xffe0001fu) { 14186 case 0xd4200000u: /* BRK */ 14187 case 0xd4400000u: /* HLT */ 14188 /* Give priority to the breakpoint exception. */ 14189 return true; 14190 } 14191 } 14192 return false; 14193 } 14194 14195 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14196 CPUState *cpu) 14197 { 14198 DisasContext *dc = container_of(dcbase, DisasContext, base); 14199 CPUARMState *env = cpu->env_ptr; 14200 ARMCPU *arm_cpu = env_archcpu(env); 14201 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14202 int bound, core_mmu_idx; 14203 14204 dc->isar = &arm_cpu->isar; 14205 dc->condjmp = 0; 14206 dc->pc_save = dc->base.pc_first; 14207 dc->aarch64 = true; 14208 dc->thumb = false; 14209 dc->sctlr_b = 0; 14210 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14211 dc->condexec_mask = 0; 14212 dc->condexec_cond = 0; 14213 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14214 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14215 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14216 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14217 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14218 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14219 #if !defined(CONFIG_USER_ONLY) 14220 dc->user = (dc->current_el == 0); 14221 #endif 14222 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14223 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14224 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14225 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14226 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14227 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14228 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14229 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14230 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14231 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14232 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14233 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14234 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14235 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14236 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14237 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14238 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14239 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14240 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14241 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14242 dc->vec_len = 0; 14243 dc->vec_stride = 0; 14244 dc->cp_regs = arm_cpu->cp_regs; 14245 dc->features = env->features; 14246 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14247 14248 #ifdef CONFIG_USER_ONLY 14249 /* In sve_probe_page, we assume TBI is enabled. */ 14250 tcg_debug_assert(dc->tbid & 1); 14251 #endif 14252 14253 /* Single step state. The code-generation logic here is: 14254 * SS_ACTIVE == 0: 14255 * generate code with no special handling for single-stepping (except 14256 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14257 * this happens anyway because those changes are all system register or 14258 * PSTATE writes). 14259 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14260 * emit code for one insn 14261 * emit code to clear PSTATE.SS 14262 * emit code to generate software step exception for completed step 14263 * end TB (as usual for having generated an exception) 14264 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14265 * emit code to generate a software step exception 14266 * end the TB 14267 */ 14268 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14269 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14270 dc->is_ldex = false; 14271 14272 /* Bound the number of insns to execute to those left on the page. */ 14273 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14274 14275 /* If architectural single step active, limit to 1. */ 14276 if (dc->ss_active) { 14277 bound = 1; 14278 } 14279 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14280 } 14281 14282 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14283 { 14284 } 14285 14286 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14287 { 14288 DisasContext *dc = container_of(dcbase, DisasContext, base); 14289 target_ulong pc_arg = dc->base.pc_next; 14290 14291 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14292 pc_arg &= ~TARGET_PAGE_MASK; 14293 } 14294 tcg_gen_insn_start(pc_arg, 0, 0); 14295 dc->insn_start = tcg_last_op(); 14296 } 14297 14298 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14299 { 14300 DisasContext *s = container_of(dcbase, DisasContext, base); 14301 CPUARMState *env = cpu->env_ptr; 14302 uint64_t pc = s->base.pc_next; 14303 uint32_t insn; 14304 14305 /* Singlestep exceptions have the highest priority. */ 14306 if (s->ss_active && !s->pstate_ss) { 14307 /* Singlestep state is Active-pending. 14308 * If we're in this state at the start of a TB then either 14309 * a) we just took an exception to an EL which is being debugged 14310 * and this is the first insn in the exception handler 14311 * b) debug exceptions were masked and we just unmasked them 14312 * without changing EL (eg by clearing PSTATE.D) 14313 * In either case we're going to take a swstep exception in the 14314 * "did not step an insn" case, and so the syndrome ISV and EX 14315 * bits should be zero. 14316 */ 14317 assert(s->base.num_insns == 1); 14318 gen_swstep_exception(s, 0, 0); 14319 s->base.is_jmp = DISAS_NORETURN; 14320 s->base.pc_next = pc + 4; 14321 return; 14322 } 14323 14324 if (pc & 3) { 14325 /* 14326 * PC alignment fault. This has priority over the instruction abort 14327 * that we would receive from a translation fault via arm_ldl_code. 14328 * This should only be possible after an indirect branch, at the 14329 * start of the TB. 14330 */ 14331 assert(s->base.num_insns == 1); 14332 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14333 s->base.is_jmp = DISAS_NORETURN; 14334 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14335 return; 14336 } 14337 14338 s->pc_curr = pc; 14339 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14340 s->insn = insn; 14341 s->base.pc_next = pc + 4; 14342 14343 s->fp_access_checked = false; 14344 s->sve_access_checked = false; 14345 14346 if (s->pstate_il) { 14347 /* 14348 * Illegal execution state. This has priority over BTI 14349 * exceptions, but comes after instruction abort exceptions. 14350 */ 14351 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14352 return; 14353 } 14354 14355 if (dc_isar_feature(aa64_bti, s)) { 14356 if (s->base.num_insns == 1) { 14357 /* 14358 * At the first insn of the TB, compute s->guarded_page. 14359 * We delayed computing this until successfully reading 14360 * the first insn of the TB, above. This (mostly) ensures 14361 * that the softmmu tlb entry has been populated, and the 14362 * page table GP bit is available. 14363 * 14364 * Note that we need to compute this even if btype == 0, 14365 * because this value is used for BR instructions later 14366 * where ENV is not available. 14367 */ 14368 s->guarded_page = is_guarded_page(env, s); 14369 14370 /* First insn can have btype set to non-zero. */ 14371 tcg_debug_assert(s->btype >= 0); 14372 14373 /* 14374 * Note that the Branch Target Exception has fairly high 14375 * priority -- below debugging exceptions but above most 14376 * everything else. This allows us to handle this now 14377 * instead of waiting until the insn is otherwise decoded. 14378 */ 14379 if (s->btype != 0 14380 && s->guarded_page 14381 && !btype_destination_ok(insn, s->bt, s->btype)) { 14382 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14383 return; 14384 } 14385 } else { 14386 /* Not the first insn: btype must be 0. */ 14387 tcg_debug_assert(s->btype == 0); 14388 } 14389 } 14390 14391 s->is_nonstreaming = false; 14392 if (s->sme_trap_nonstreaming) { 14393 disas_sme_fa64(s, insn); 14394 } 14395 14396 switch (extract32(insn, 25, 4)) { 14397 case 0x0: 14398 if (!extract32(insn, 31, 1) || !disas_sme(s, insn)) { 14399 unallocated_encoding(s); 14400 } 14401 break; 14402 case 0x1: case 0x3: /* UNALLOCATED */ 14403 unallocated_encoding(s); 14404 break; 14405 case 0x2: 14406 if (!disas_sve(s, insn)) { 14407 unallocated_encoding(s); 14408 } 14409 break; 14410 case 0x8: case 0x9: /* Data processing - immediate */ 14411 disas_data_proc_imm(s, insn); 14412 break; 14413 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14414 disas_b_exc_sys(s, insn); 14415 break; 14416 case 0x4: 14417 case 0x6: 14418 case 0xc: 14419 case 0xe: /* Loads and stores */ 14420 disas_ldst(s, insn); 14421 break; 14422 case 0x5: 14423 case 0xd: /* Data processing - register */ 14424 disas_data_proc_reg(s, insn); 14425 break; 14426 case 0x7: 14427 case 0xf: /* Data processing - SIMD and floating point */ 14428 disas_data_proc_simd_fp(s, insn); 14429 break; 14430 default: 14431 assert(FALSE); /* all 15 cases should be handled above */ 14432 break; 14433 } 14434 14435 /* 14436 * After execution of most insns, btype is reset to 0. 14437 * Note that we set btype == -1 when the insn sets btype. 14438 */ 14439 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14440 reset_btype(s); 14441 } 14442 } 14443 14444 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14445 { 14446 DisasContext *dc = container_of(dcbase, DisasContext, base); 14447 14448 if (unlikely(dc->ss_active)) { 14449 /* Note that this means single stepping WFI doesn't halt the CPU. 14450 * For conditional branch insns this is harmless unreachable code as 14451 * gen_goto_tb() has already handled emitting the debug exception 14452 * (and thus a tb-jump is not possible when singlestepping). 14453 */ 14454 switch (dc->base.is_jmp) { 14455 default: 14456 gen_a64_update_pc(dc, 4); 14457 /* fall through */ 14458 case DISAS_EXIT: 14459 case DISAS_JUMP: 14460 gen_step_complete_exception(dc); 14461 break; 14462 case DISAS_NORETURN: 14463 break; 14464 } 14465 } else { 14466 switch (dc->base.is_jmp) { 14467 case DISAS_NEXT: 14468 case DISAS_TOO_MANY: 14469 gen_goto_tb(dc, 1, 4); 14470 break; 14471 default: 14472 case DISAS_UPDATE_EXIT: 14473 gen_a64_update_pc(dc, 4); 14474 /* fall through */ 14475 case DISAS_EXIT: 14476 tcg_gen_exit_tb(NULL, 0); 14477 break; 14478 case DISAS_UPDATE_NOCHAIN: 14479 gen_a64_update_pc(dc, 4); 14480 /* fall through */ 14481 case DISAS_JUMP: 14482 tcg_gen_lookup_and_goto_ptr(); 14483 break; 14484 case DISAS_NORETURN: 14485 case DISAS_SWI: 14486 break; 14487 case DISAS_WFE: 14488 gen_a64_update_pc(dc, 4); 14489 gen_helper_wfe(cpu_env); 14490 break; 14491 case DISAS_YIELD: 14492 gen_a64_update_pc(dc, 4); 14493 gen_helper_yield(cpu_env); 14494 break; 14495 case DISAS_WFI: 14496 /* 14497 * This is a special case because we don't want to just halt 14498 * the CPU if trying to debug across a WFI. 14499 */ 14500 gen_a64_update_pc(dc, 4); 14501 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14502 /* 14503 * The helper doesn't necessarily throw an exception, but we 14504 * must go back to the main loop to check for interrupts anyway. 14505 */ 14506 tcg_gen_exit_tb(NULL, 0); 14507 break; 14508 } 14509 } 14510 } 14511 14512 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14513 CPUState *cpu, FILE *logfile) 14514 { 14515 DisasContext *dc = container_of(dcbase, DisasContext, base); 14516 14517 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14518 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14519 } 14520 14521 const TranslatorOps aarch64_translator_ops = { 14522 .init_disas_context = aarch64_tr_init_disas_context, 14523 .tb_start = aarch64_tr_tb_start, 14524 .insn_start = aarch64_tr_insn_start, 14525 .translate_insn = aarch64_tr_translate_insn, 14526 .tb_stop = aarch64_tr_tb_stop, 14527 .disas_log = aarch64_tr_disas_log, 14528 }; 14529