xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision a1e250fc)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1356 {
1357     if (!a->q && a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 /*
1367  * This utility function is for doing register extension with an
1368  * optional shift. You will likely want to pass a temporary for the
1369  * destination register. See DecodeRegExtend() in the ARM ARM.
1370  */
1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1372                               int option, unsigned int shift)
1373 {
1374     int extsize = extract32(option, 0, 2);
1375     bool is_signed = extract32(option, 2, 1);
1376 
1377     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1378     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1379 }
1380 
1381 static inline void gen_check_sp_alignment(DisasContext *s)
1382 {
1383     /* The AArch64 architecture mandates that (if enabled via PSTATE
1384      * or SCTLR bits) there is a check that SP is 16-aligned on every
1385      * SP-relative load or store (with an exception generated if it is not).
1386      * In line with general QEMU practice regarding misaligned accesses,
1387      * we omit these checks for the sake of guest program performance.
1388      * This function is provided as a hook so we can more easily add these
1389      * checks in future (possibly as a "favour catching guest program bugs
1390      * over speed" user selectable option).
1391      */
1392 }
1393 
1394 /*
1395  * This provides a simple table based table lookup decoder. It is
1396  * intended to be used when the relevant bits for decode are too
1397  * awkwardly placed and switch/if based logic would be confusing and
1398  * deeply nested. Since it's a linear search through the table, tables
1399  * should be kept small.
1400  *
1401  * It returns the first handler where insn & mask == pattern, or
1402  * NULL if there is no match.
1403  * The table is terminated by an empty mask (i.e. 0)
1404  */
1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1406                                                uint32_t insn)
1407 {
1408     const AArch64DecodeTable *tptr = table;
1409 
1410     while (tptr->mask) {
1411         if ((insn & tptr->mask) == tptr->pattern) {
1412             return tptr->disas_fn;
1413         }
1414         tptr++;
1415     }
1416     return NULL;
1417 }
1418 
1419 /*
1420  * The instruction disassembly implemented here matches
1421  * the instruction encoding classifications in chapter C4
1422  * of the ARM Architecture Reference Manual (DDI0487B_a);
1423  * classification names and decode diagrams here should generally
1424  * match up with those in the manual.
1425  */
1426 
1427 static bool trans_B(DisasContext *s, arg_i *a)
1428 {
1429     reset_btype(s);
1430     gen_goto_tb(s, 0, a->imm);
1431     return true;
1432 }
1433 
1434 static bool trans_BL(DisasContext *s, arg_i *a)
1435 {
1436     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1437     reset_btype(s);
1438     gen_goto_tb(s, 0, a->imm);
1439     return true;
1440 }
1441 
1442 
1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1444 {
1445     DisasLabel match;
1446     TCGv_i64 tcg_cmp;
1447 
1448     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1449     reset_btype(s);
1450 
1451     match = gen_disas_label(s);
1452     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1453                         tcg_cmp, 0, match.label);
1454     gen_goto_tb(s, 0, 4);
1455     set_disas_label(s, match);
1456     gen_goto_tb(s, 1, a->imm);
1457     return true;
1458 }
1459 
1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1461 {
1462     DisasLabel match;
1463     TCGv_i64 tcg_cmp;
1464 
1465     tcg_cmp = tcg_temp_new_i64();
1466     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1467 
1468     reset_btype(s);
1469 
1470     match = gen_disas_label(s);
1471     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1472                         tcg_cmp, 0, match.label);
1473     gen_goto_tb(s, 0, 4);
1474     set_disas_label(s, match);
1475     gen_goto_tb(s, 1, a->imm);
1476     return true;
1477 }
1478 
1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1480 {
1481     /* BC.cond is only present with FEAT_HBC */
1482     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1483         return false;
1484     }
1485     reset_btype(s);
1486     if (a->cond < 0x0e) {
1487         /* genuinely conditional branches */
1488         DisasLabel match = gen_disas_label(s);
1489         arm_gen_test_cc(a->cond, match.label);
1490         gen_goto_tb(s, 0, 4);
1491         set_disas_label(s, match);
1492         gen_goto_tb(s, 1, a->imm);
1493     } else {
1494         /* 0xe and 0xf are both "always" conditions */
1495         gen_goto_tb(s, 0, a->imm);
1496     }
1497     return true;
1498 }
1499 
1500 static void set_btype_for_br(DisasContext *s, int rn)
1501 {
1502     if (dc_isar_feature(aa64_bti, s)) {
1503         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1504         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1505     }
1506 }
1507 
1508 static void set_btype_for_blr(DisasContext *s)
1509 {
1510     if (dc_isar_feature(aa64_bti, s)) {
1511         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1512         set_btype(s, 2);
1513     }
1514 }
1515 
1516 static bool trans_BR(DisasContext *s, arg_r *a)
1517 {
1518     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1519     set_btype_for_br(s, a->rn);
1520     s->base.is_jmp = DISAS_JUMP;
1521     return true;
1522 }
1523 
1524 static bool trans_BLR(DisasContext *s, arg_r *a)
1525 {
1526     TCGv_i64 dst = cpu_reg(s, a->rn);
1527     TCGv_i64 lr = cpu_reg(s, 30);
1528     if (dst == lr) {
1529         TCGv_i64 tmp = tcg_temp_new_i64();
1530         tcg_gen_mov_i64(tmp, dst);
1531         dst = tmp;
1532     }
1533     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1534     gen_a64_set_pc(s, dst);
1535     set_btype_for_blr(s);
1536     s->base.is_jmp = DISAS_JUMP;
1537     return true;
1538 }
1539 
1540 static bool trans_RET(DisasContext *s, arg_r *a)
1541 {
1542     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1543     s->base.is_jmp = DISAS_JUMP;
1544     return true;
1545 }
1546 
1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1548                                    TCGv_i64 modifier, bool use_key_a)
1549 {
1550     TCGv_i64 truedst;
1551     /*
1552      * Return the branch target for a BRAA/RETA/etc, which is either
1553      * just the destination dst, or that value with the pauth check
1554      * done and the code removed from the high bits.
1555      */
1556     if (!s->pauth_active) {
1557         return dst;
1558     }
1559 
1560     truedst = tcg_temp_new_i64();
1561     if (use_key_a) {
1562         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1563     } else {
1564         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1565     }
1566     return truedst;
1567 }
1568 
1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1570 {
1571     TCGv_i64 dst;
1572 
1573     if (!dc_isar_feature(aa64_pauth, s)) {
1574         return false;
1575     }
1576 
1577     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1578     gen_a64_set_pc(s, dst);
1579     set_btype_for_br(s, a->rn);
1580     s->base.is_jmp = DISAS_JUMP;
1581     return true;
1582 }
1583 
1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1585 {
1586     TCGv_i64 dst, lr;
1587 
1588     if (!dc_isar_feature(aa64_pauth, s)) {
1589         return false;
1590     }
1591 
1592     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1593     lr = cpu_reg(s, 30);
1594     if (dst == lr) {
1595         TCGv_i64 tmp = tcg_temp_new_i64();
1596         tcg_gen_mov_i64(tmp, dst);
1597         dst = tmp;
1598     }
1599     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1600     gen_a64_set_pc(s, dst);
1601     set_btype_for_blr(s);
1602     s->base.is_jmp = DISAS_JUMP;
1603     return true;
1604 }
1605 
1606 static bool trans_RETA(DisasContext *s, arg_reta *a)
1607 {
1608     TCGv_i64 dst;
1609 
1610     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1611     gen_a64_set_pc(s, dst);
1612     s->base.is_jmp = DISAS_JUMP;
1613     return true;
1614 }
1615 
1616 static bool trans_BRA(DisasContext *s, arg_bra *a)
1617 {
1618     TCGv_i64 dst;
1619 
1620     if (!dc_isar_feature(aa64_pauth, s)) {
1621         return false;
1622     }
1623     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1624     gen_a64_set_pc(s, dst);
1625     set_btype_for_br(s, a->rn);
1626     s->base.is_jmp = DISAS_JUMP;
1627     return true;
1628 }
1629 
1630 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1631 {
1632     TCGv_i64 dst, lr;
1633 
1634     if (!dc_isar_feature(aa64_pauth, s)) {
1635         return false;
1636     }
1637     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1638     lr = cpu_reg(s, 30);
1639     if (dst == lr) {
1640         TCGv_i64 tmp = tcg_temp_new_i64();
1641         tcg_gen_mov_i64(tmp, dst);
1642         dst = tmp;
1643     }
1644     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1645     gen_a64_set_pc(s, dst);
1646     set_btype_for_blr(s);
1647     s->base.is_jmp = DISAS_JUMP;
1648     return true;
1649 }
1650 
1651 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1652 {
1653     TCGv_i64 dst;
1654 
1655     if (s->current_el == 0) {
1656         return false;
1657     }
1658     if (s->trap_eret) {
1659         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1660         return true;
1661     }
1662     dst = tcg_temp_new_i64();
1663     tcg_gen_ld_i64(dst, tcg_env,
1664                    offsetof(CPUARMState, elr_el[s->current_el]));
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(tcg_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1675 {
1676     TCGv_i64 dst;
1677 
1678     if (!dc_isar_feature(aa64_pauth, s)) {
1679         return false;
1680     }
1681     if (s->current_el == 0) {
1682         return false;
1683     }
1684     /* The FGT trap takes precedence over an auth trap. */
1685     if (s->trap_eret) {
1686         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1687         return true;
1688     }
1689     dst = tcg_temp_new_i64();
1690     tcg_gen_ld_i64(dst, tcg_env,
1691                    offsetof(CPUARMState, elr_el[s->current_el]));
1692 
1693     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1694 
1695     translator_io_start(&s->base);
1696 
1697     gen_helper_exception_return(tcg_env, dst);
1698     /* Must exit loop to check un-masked IRQs */
1699     s->base.is_jmp = DISAS_EXIT;
1700     return true;
1701 }
1702 
1703 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1704 {
1705     return true;
1706 }
1707 
1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1709 {
1710     /*
1711      * When running in MTTCG we don't generate jumps to the yield and
1712      * WFE helpers as it won't affect the scheduling of other vCPUs.
1713      * If we wanted to more completely model WFE/SEV so we don't busy
1714      * spin unnecessarily we would need to do something more involved.
1715      */
1716     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1717         s->base.is_jmp = DISAS_YIELD;
1718     }
1719     return true;
1720 }
1721 
1722 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1723 {
1724     s->base.is_jmp = DISAS_WFI;
1725     return true;
1726 }
1727 
1728 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1729 {
1730     /*
1731      * When running in MTTCG we don't generate jumps to the yield and
1732      * WFE helpers as it won't affect the scheduling of other vCPUs.
1733      * If we wanted to more completely model WFE/SEV so we don't busy
1734      * spin unnecessarily we would need to do something more involved.
1735      */
1736     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1737         s->base.is_jmp = DISAS_WFE;
1738     }
1739     return true;
1740 }
1741 
1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1743 {
1744     if (s->pauth_active) {
1745         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1746     }
1747     return true;
1748 }
1749 
1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1751 {
1752     if (s->pauth_active) {
1753         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1754     }
1755     return true;
1756 }
1757 
1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1759 {
1760     if (s->pauth_active) {
1761         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1762     }
1763     return true;
1764 }
1765 
1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1767 {
1768     if (s->pauth_active) {
1769         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1770     }
1771     return true;
1772 }
1773 
1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1775 {
1776     if (s->pauth_active) {
1777         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1778     }
1779     return true;
1780 }
1781 
1782 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1783 {
1784     /* Without RAS, we must implement this as NOP. */
1785     if (dc_isar_feature(aa64_ras, s)) {
1786         /*
1787          * QEMU does not have a source of physical SErrors,
1788          * so we are only concerned with virtual SErrors.
1789          * The pseudocode in the ARM for this case is
1790          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1791          *      AArch64.vESBOperation();
1792          * Most of the condition can be evaluated at translation time.
1793          * Test for EL2 present, and defer test for SEL2 to runtime.
1794          */
1795         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1796             gen_helper_vesb(tcg_env);
1797         }
1798     }
1799     return true;
1800 }
1801 
1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1803 {
1804     if (s->pauth_active) {
1805         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1806     }
1807     return true;
1808 }
1809 
1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1811 {
1812     if (s->pauth_active) {
1813         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1814     }
1815     return true;
1816 }
1817 
1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1819 {
1820     if (s->pauth_active) {
1821         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1822     }
1823     return true;
1824 }
1825 
1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1827 {
1828     if (s->pauth_active) {
1829         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1830     }
1831     return true;
1832 }
1833 
1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1835 {
1836     if (s->pauth_active) {
1837         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1838     }
1839     return true;
1840 }
1841 
1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1843 {
1844     if (s->pauth_active) {
1845         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1846     }
1847     return true;
1848 }
1849 
1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1851 {
1852     if (s->pauth_active) {
1853         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854     }
1855     return true;
1856 }
1857 
1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1859 {
1860     if (s->pauth_active) {
1861         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862     }
1863     return true;
1864 }
1865 
1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1867 {
1868     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1869     return true;
1870 }
1871 
1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1873 {
1874     /* We handle DSB and DMB the same way */
1875     TCGBar bar;
1876 
1877     switch (a->types) {
1878     case 1: /* MBReqTypes_Reads */
1879         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1880         break;
1881     case 2: /* MBReqTypes_Writes */
1882         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1883         break;
1884     default: /* MBReqTypes_All */
1885         bar = TCG_BAR_SC | TCG_MO_ALL;
1886         break;
1887     }
1888     tcg_gen_mb(bar);
1889     return true;
1890 }
1891 
1892 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1893 {
1894     /*
1895      * We need to break the TB after this insn to execute
1896      * self-modifying code correctly and also to take
1897      * any pending interrupts immediately.
1898      */
1899     reset_btype(s);
1900     gen_goto_tb(s, 0, 4);
1901     return true;
1902 }
1903 
1904 static bool trans_SB(DisasContext *s, arg_SB *a)
1905 {
1906     if (!dc_isar_feature(aa64_sb, s)) {
1907         return false;
1908     }
1909     /*
1910      * TODO: There is no speculation barrier opcode for TCG;
1911      * MB and end the TB instead.
1912      */
1913     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1914     gen_goto_tb(s, 0, 4);
1915     return true;
1916 }
1917 
1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1919 {
1920     if (!dc_isar_feature(aa64_condm_4, s)) {
1921         return false;
1922     }
1923     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1924     return true;
1925 }
1926 
1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1928 {
1929     TCGv_i32 z;
1930 
1931     if (!dc_isar_feature(aa64_condm_5, s)) {
1932         return false;
1933     }
1934 
1935     z = tcg_temp_new_i32();
1936 
1937     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1938 
1939     /*
1940      * (!C & !Z) << 31
1941      * (!(C | Z)) << 31
1942      * ~((C | Z) << 31)
1943      * ~-(C | Z)
1944      * (C | Z) - 1
1945      */
1946     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1947     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1948 
1949     /* !(Z & C) */
1950     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1951     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1952 
1953     /* (!C & Z) << 31 -> -(Z & ~C) */
1954     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1955     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1956 
1957     /* C | Z */
1958     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1959 
1960     return true;
1961 }
1962 
1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1964 {
1965     if (!dc_isar_feature(aa64_condm_5, s)) {
1966         return false;
1967     }
1968 
1969     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1970     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1971 
1972     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1973     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1974 
1975     tcg_gen_movi_i32(cpu_NF, 0);
1976     tcg_gen_movi_i32(cpu_VF, 0);
1977 
1978     return true;
1979 }
1980 
1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1982 {
1983     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1984         return false;
1985     }
1986     if (a->imm & 1) {
1987         set_pstate_bits(PSTATE_UAO);
1988     } else {
1989         clear_pstate_bits(PSTATE_UAO);
1990     }
1991     gen_rebuild_hflags(s);
1992     s->base.is_jmp = DISAS_TOO_MANY;
1993     return true;
1994 }
1995 
1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1997 {
1998     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1999         return false;
2000     }
2001     if (a->imm & 1) {
2002         set_pstate_bits(PSTATE_PAN);
2003     } else {
2004         clear_pstate_bits(PSTATE_PAN);
2005     }
2006     gen_rebuild_hflags(s);
2007     s->base.is_jmp = DISAS_TOO_MANY;
2008     return true;
2009 }
2010 
2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2012 {
2013     if (s->current_el == 0) {
2014         return false;
2015     }
2016     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2017     s->base.is_jmp = DISAS_TOO_MANY;
2018     return true;
2019 }
2020 
2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2022 {
2023     if (!dc_isar_feature(aa64_ssbs, s)) {
2024         return false;
2025     }
2026     if (a->imm & 1) {
2027         set_pstate_bits(PSTATE_SSBS);
2028     } else {
2029         clear_pstate_bits(PSTATE_SSBS);
2030     }
2031     /* Don't need to rebuild hflags since SSBS is a nop */
2032     s->base.is_jmp = DISAS_TOO_MANY;
2033     return true;
2034 }
2035 
2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2037 {
2038     if (!dc_isar_feature(aa64_dit, s)) {
2039         return false;
2040     }
2041     if (a->imm & 1) {
2042         set_pstate_bits(PSTATE_DIT);
2043     } else {
2044         clear_pstate_bits(PSTATE_DIT);
2045     }
2046     /* There's no need to rebuild hflags because DIT is a nop */
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2052 {
2053     if (dc_isar_feature(aa64_mte, s)) {
2054         /* Full MTE is enabled -- set the TCO bit as directed. */
2055         if (a->imm & 1) {
2056             set_pstate_bits(PSTATE_TCO);
2057         } else {
2058             clear_pstate_bits(PSTATE_TCO);
2059         }
2060         gen_rebuild_hflags(s);
2061         /* Many factors, including TCO, go into MTE_ACTIVE. */
2062         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2063         return true;
2064     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2065         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2066         return true;
2067     } else {
2068         /* Insn not present */
2069         return false;
2070     }
2071 }
2072 
2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2074 {
2075     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2076     s->base.is_jmp = DISAS_TOO_MANY;
2077     return true;
2078 }
2079 
2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2081 {
2082     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2083     /* Exit the cpu loop to re-evaluate pending IRQs. */
2084     s->base.is_jmp = DISAS_UPDATE_EXIT;
2085     return true;
2086 }
2087 
2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2089 {
2090     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2091         return false;
2092     }
2093 
2094     if (a->imm == 0) {
2095         clear_pstate_bits(PSTATE_ALLINT);
2096     } else if (s->current_el > 1) {
2097         set_pstate_bits(PSTATE_ALLINT);
2098     } else {
2099         gen_helper_msr_set_allint_el1(tcg_env);
2100     }
2101 
2102     /* Exit the cpu loop to re-evaluate pending IRQs. */
2103     s->base.is_jmp = DISAS_UPDATE_EXIT;
2104     return true;
2105 }
2106 
2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2108 {
2109     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2110         return false;
2111     }
2112     if (sme_access_check(s)) {
2113         int old = s->pstate_sm | (s->pstate_za << 1);
2114         int new = a->imm * 3;
2115 
2116         if ((old ^ new) & a->mask) {
2117             /* At least one bit changes. */
2118             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2119                                 tcg_constant_i32(a->mask));
2120             s->base.is_jmp = DISAS_TOO_MANY;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2127 {
2128     TCGv_i32 tmp = tcg_temp_new_i32();
2129     TCGv_i32 nzcv = tcg_temp_new_i32();
2130 
2131     /* build bit 31, N */
2132     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2133     /* build bit 30, Z */
2134     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2135     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2136     /* build bit 29, C */
2137     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2138     /* build bit 28, V */
2139     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2140     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2141     /* generate result */
2142     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2143 }
2144 
2145 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2146 {
2147     TCGv_i32 nzcv = tcg_temp_new_i32();
2148 
2149     /* take NZCV from R[t] */
2150     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2151 
2152     /* bit 31, N */
2153     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2154     /* bit 30, Z */
2155     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2156     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2157     /* bit 29, C */
2158     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2159     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2160     /* bit 28, V */
2161     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2162     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2163 }
2164 
2165 static void gen_sysreg_undef(DisasContext *s, bool isread,
2166                              uint8_t op0, uint8_t op1, uint8_t op2,
2167                              uint8_t crn, uint8_t crm, uint8_t rt)
2168 {
2169     /*
2170      * Generate code to emit an UNDEF with correct syndrome
2171      * information for a failed system register access.
2172      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2173      * but if FEAT_IDST is implemented then read accesses to registers
2174      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2175      * syndrome.
2176      */
2177     uint32_t syndrome;
2178 
2179     if (isread && dc_isar_feature(aa64_ids, s) &&
2180         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182     } else {
2183         syndrome = syn_uncategorized();
2184     }
2185     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2186 }
2187 
2188 /* MRS - move from system register
2189  * MSR (register) - move to system register
2190  * SYS
2191  * SYSL
2192  * These are all essentially the same insn in 'read' and 'write'
2193  * versions, with varying op0 fields.
2194  */
2195 static void handle_sys(DisasContext *s, bool isread,
2196                        unsigned int op0, unsigned int op1, unsigned int op2,
2197                        unsigned int crn, unsigned int crm, unsigned int rt)
2198 {
2199     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2200                                       crn, crm, op0, op1, op2);
2201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2202     bool need_exit_tb = false;
2203     bool nv_trap_to_el2 = false;
2204     bool nv_redirect_reg = false;
2205     bool skip_fp_access_checks = false;
2206     bool nv2_mem_redirect = false;
2207     TCGv_ptr tcg_ri = NULL;
2208     TCGv_i64 tcg_rt;
2209     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2210 
2211     if (crn == 11 || crn == 15) {
2212         /*
2213          * Check for TIDCP trap, which must take precedence over
2214          * the UNDEF for "no such register" etc.
2215          */
2216         switch (s->current_el) {
2217         case 0:
2218             if (dc_isar_feature(aa64_tidcp1, s)) {
2219                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2220             }
2221             break;
2222         case 1:
2223             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2224             break;
2225         }
2226     }
2227 
2228     if (!ri) {
2229         /* Unknown register; this might be a guest error or a QEMU
2230          * unimplemented feature.
2231          */
2232         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2233                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2234                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2235         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2236         return;
2237     }
2238 
2239     if (s->nv2 && ri->nv2_redirect_offset) {
2240         /*
2241          * Some registers always redirect to memory; some only do so if
2242          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2243          * pairs which share an offset; see the table in R_CSRPQ).
2244          */
2245         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2246             nv2_mem_redirect = s->nv1;
2247         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2248             nv2_mem_redirect = !s->nv1;
2249         } else {
2250             nv2_mem_redirect = true;
2251         }
2252     }
2253 
2254     /* Check access permissions */
2255     if (!cp_access_ok(s->current_el, ri, isread)) {
2256         /*
2257          * FEAT_NV/NV2 handling does not do the usual FP access checks
2258          * for registers only accessible at EL2 (though it *does* do them
2259          * for registers accessible at EL1).
2260          */
2261         skip_fp_access_checks = true;
2262         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2263             /*
2264              * This is one of the few EL2 registers which should redirect
2265              * to the equivalent EL1 register. We do that after running
2266              * the EL2 register's accessfn.
2267              */
2268             nv_redirect_reg = true;
2269             assert(!nv2_mem_redirect);
2270         } else if (nv2_mem_redirect) {
2271             /*
2272              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2273              * UNDEF to EL1.
2274              */
2275         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2276             /*
2277              * This register / instruction exists and is an EL2 register, so
2278              * we must trap to EL2 if accessed in nested virtualization EL1
2279              * instead of UNDEFing. We'll do that after the usual access checks.
2280              * (This makes a difference only for a couple of registers like
2281              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2282              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2283              * an accessfn which does nothing when called from EL1, because
2284              * the trap-to-EL3 controls which would apply to that register
2285              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2286              */
2287             nv_trap_to_el2 = true;
2288         } else {
2289             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290             return;
2291         }
2292     }
2293 
2294     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2295         /* Emit code to perform further access permissions checks at
2296          * runtime; this may result in an exception.
2297          */
2298         gen_a64_update_pc(s, 0);
2299         tcg_ri = tcg_temp_new_ptr();
2300         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2301                                        tcg_constant_i32(key),
2302                                        tcg_constant_i32(syndrome),
2303                                        tcg_constant_i32(isread));
2304     } else if (ri->type & ARM_CP_RAISES_EXC) {
2305         /*
2306          * The readfn or writefn might raise an exception;
2307          * synchronize the CPU state in case it does.
2308          */
2309         gen_a64_update_pc(s, 0);
2310     }
2311 
2312     if (!skip_fp_access_checks) {
2313         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2314             return;
2315         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2316             return;
2317         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2318             return;
2319         }
2320     }
2321 
2322     if (nv_trap_to_el2) {
2323         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2324         return;
2325     }
2326 
2327     if (nv_redirect_reg) {
2328         /*
2329          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2330          * Conveniently in all cases the encoding of the EL1 register is
2331          * identical to the EL2 register except that opc1 is 0.
2332          * Get the reginfo for the EL1 register to use for the actual access.
2333          * We don't use the EL1 register's access function, and
2334          * fine-grained-traps on EL1 also do not apply here.
2335          */
2336         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2337                                  crn, crm, op0, 0, op2);
2338         ri = get_arm_cp_reginfo(s->cp_regs, key);
2339         assert(ri);
2340         assert(cp_access_ok(s->current_el, ri, isread));
2341         /*
2342          * We might not have done an update_pc earlier, so check we don't
2343          * need it. We could support this in future if necessary.
2344          */
2345         assert(!(ri->type & ARM_CP_RAISES_EXC));
2346     }
2347 
2348     if (nv2_mem_redirect) {
2349         /*
2350          * This system register is being redirected into an EL2 memory access.
2351          * This means it is not an IO operation, doesn't change hflags,
2352          * and need not end the TB, because it has no side effects.
2353          *
2354          * The access is 64-bit single copy atomic, guaranteed aligned because
2355          * of the definition of VCNR_EL2. Its endianness depends on
2356          * SCTLR_EL2.EE, not on the data endianness of EL1.
2357          * It is done under either the EL2 translation regime or the EL2&0
2358          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2359          * PSTATE.PAN is 0.
2360          */
2361         TCGv_i64 ptr = tcg_temp_new_i64();
2362         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2363         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2364         int memidx = arm_to_core_mmu_idx(armmemidx);
2365         uint32_t syn;
2366 
2367         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2368 
2369         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2370         tcg_gen_addi_i64(ptr, ptr,
2371                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2372         tcg_rt = cpu_reg(s, rt);
2373 
2374         syn = syn_data_abort_vncr(0, !isread, 0);
2375         disas_set_insn_syndrome(s, syn);
2376         if (isread) {
2377             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2378         } else {
2379             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2380         }
2381         return;
2382     }
2383 
2384     /* Handle special cases first */
2385     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2386     case 0:
2387         break;
2388     case ARM_CP_NOP:
2389         return;
2390     case ARM_CP_NZCV:
2391         tcg_rt = cpu_reg(s, rt);
2392         if (isread) {
2393             gen_get_nzcv(tcg_rt);
2394         } else {
2395             gen_set_nzcv(tcg_rt);
2396         }
2397         return;
2398     case ARM_CP_CURRENTEL:
2399     {
2400         /*
2401          * Reads as current EL value from pstate, which is
2402          * guaranteed to be constant by the tb flags.
2403          * For nested virt we should report EL2.
2404          */
2405         int el = s->nv ? 2 : s->current_el;
2406         tcg_rt = cpu_reg(s, rt);
2407         tcg_gen_movi_i64(tcg_rt, el << 2);
2408         return;
2409     }
2410     case ARM_CP_DC_ZVA:
2411         /* Writes clear the aligned block of memory which rt points into. */
2412         if (s->mte_active[0]) {
2413             int desc = 0;
2414 
2415             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2416             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2417             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2418 
2419             tcg_rt = tcg_temp_new_i64();
2420             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2421                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2422         } else {
2423             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2424         }
2425         gen_helper_dc_zva(tcg_env, tcg_rt);
2426         return;
2427     case ARM_CP_DC_GVA:
2428         {
2429             TCGv_i64 clean_addr, tag;
2430 
2431             /*
2432              * DC_GVA, like DC_ZVA, requires that we supply the original
2433              * pointer for an invalid page.  Probe that address first.
2434              */
2435             tcg_rt = cpu_reg(s, rt);
2436             clean_addr = clean_data_tbi(s, tcg_rt);
2437             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2438 
2439             if (s->ata[0]) {
2440                 /* Extract the tag from the register to match STZGM.  */
2441                 tag = tcg_temp_new_i64();
2442                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2443                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2444             }
2445         }
2446         return;
2447     case ARM_CP_DC_GZVA:
2448         {
2449             TCGv_i64 clean_addr, tag;
2450 
2451             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2452             tcg_rt = cpu_reg(s, rt);
2453             clean_addr = clean_data_tbi(s, tcg_rt);
2454             gen_helper_dc_zva(tcg_env, clean_addr);
2455 
2456             if (s->ata[0]) {
2457                 /* Extract the tag from the register to match STZGM.  */
2458                 tag = tcg_temp_new_i64();
2459                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2460                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2461             }
2462         }
2463         return;
2464     default:
2465         g_assert_not_reached();
2466     }
2467 
2468     if (ri->type & ARM_CP_IO) {
2469         /* I/O operations must end the TB here (whether read or write) */
2470         need_exit_tb = translator_io_start(&s->base);
2471     }
2472 
2473     tcg_rt = cpu_reg(s, rt);
2474 
2475     if (isread) {
2476         if (ri->type & ARM_CP_CONST) {
2477             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2478         } else if (ri->readfn) {
2479             if (!tcg_ri) {
2480                 tcg_ri = gen_lookup_cp_reg(key);
2481             }
2482             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2483         } else {
2484             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2485         }
2486     } else {
2487         if (ri->type & ARM_CP_CONST) {
2488             /* If not forbidden by access permissions, treat as WI */
2489             return;
2490         } else if (ri->writefn) {
2491             if (!tcg_ri) {
2492                 tcg_ri = gen_lookup_cp_reg(key);
2493             }
2494             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2495         } else {
2496             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497         }
2498     }
2499 
2500     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2501         /*
2502          * A write to any coprocessor register that ends a TB
2503          * must rebuild the hflags for the next TB.
2504          */
2505         gen_rebuild_hflags(s);
2506         /*
2507          * We default to ending the TB on a coprocessor register write,
2508          * but allow this to be suppressed by the register definition
2509          * (usually only necessary to work around guest bugs).
2510          */
2511         need_exit_tb = true;
2512     }
2513     if (need_exit_tb) {
2514         s->base.is_jmp = DISAS_UPDATE_EXIT;
2515     }
2516 }
2517 
2518 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2519 {
2520     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2521     return true;
2522 }
2523 
2524 static bool trans_SVC(DisasContext *s, arg_i *a)
2525 {
2526     /*
2527      * For SVC, HVC and SMC we advance the single-step state
2528      * machine before taking the exception. This is architecturally
2529      * mandated, to ensure that single-stepping a system call
2530      * instruction works properly.
2531      */
2532     uint32_t syndrome = syn_aa64_svc(a->imm);
2533     if (s->fgt_svc) {
2534         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2535         return true;
2536     }
2537     gen_ss_advance(s);
2538     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2539     return true;
2540 }
2541 
2542 static bool trans_HVC(DisasContext *s, arg_i *a)
2543 {
2544     int target_el = s->current_el == 3 ? 3 : 2;
2545 
2546     if (s->current_el == 0) {
2547         unallocated_encoding(s);
2548         return true;
2549     }
2550     /*
2551      * The pre HVC helper handles cases when HVC gets trapped
2552      * as an undefined insn by runtime configuration.
2553      */
2554     gen_a64_update_pc(s, 0);
2555     gen_helper_pre_hvc(tcg_env);
2556     /* Architecture requires ss advance before we do the actual work */
2557     gen_ss_advance(s);
2558     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2559     return true;
2560 }
2561 
2562 static bool trans_SMC(DisasContext *s, arg_i *a)
2563 {
2564     if (s->current_el == 0) {
2565         unallocated_encoding(s);
2566         return true;
2567     }
2568     gen_a64_update_pc(s, 0);
2569     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2570     /* Architecture requires ss advance before we do the actual work */
2571     gen_ss_advance(s);
2572     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2573     return true;
2574 }
2575 
2576 static bool trans_BRK(DisasContext *s, arg_i *a)
2577 {
2578     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2579     return true;
2580 }
2581 
2582 static bool trans_HLT(DisasContext *s, arg_i *a)
2583 {
2584     /*
2585      * HLT. This has two purposes.
2586      * Architecturally, it is an external halting debug instruction.
2587      * Since QEMU doesn't implement external debug, we treat this as
2588      * it is required for halting debug disabled: it will UNDEF.
2589      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2590      */
2591     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2592         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2593     } else {
2594         unallocated_encoding(s);
2595     }
2596     return true;
2597 }
2598 
2599 /*
2600  * Load/Store exclusive instructions are implemented by remembering
2601  * the value/address loaded, and seeing if these are the same
2602  * when the store is performed. This is not actually the architecturally
2603  * mandated semantics, but it works for typical guest code sequences
2604  * and avoids having to monitor regular stores.
2605  *
2606  * The store exclusive uses the atomic cmpxchg primitives to avoid
2607  * races in multi-threaded linux-user and when MTTCG softmmu is
2608  * enabled.
2609  */
2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2611                                int size, bool is_pair)
2612 {
2613     int idx = get_mem_index(s);
2614     TCGv_i64 dirty_addr, clean_addr;
2615     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2616 
2617     s->is_ldex = true;
2618     dirty_addr = cpu_reg_sp(s, rn);
2619     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2620 
2621     g_assert(size <= 3);
2622     if (is_pair) {
2623         g_assert(size >= 2);
2624         if (size == 2) {
2625             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2626             if (s->be_data == MO_LE) {
2627                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2628                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2629             } else {
2630                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2631                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2632             }
2633         } else {
2634             TCGv_i128 t16 = tcg_temp_new_i128();
2635 
2636             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2637 
2638             if (s->be_data == MO_LE) {
2639                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2640                                       cpu_exclusive_high, t16);
2641             } else {
2642                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2643                                       cpu_exclusive_val, t16);
2644             }
2645             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2646             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2647         }
2648     } else {
2649         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2650         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2651     }
2652     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2653 }
2654 
2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2656                                 int rn, int size, int is_pair)
2657 {
2658     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2659      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2660      *     [addr] = {Rt};
2661      *     if (is_pair) {
2662      *         [addr + datasize] = {Rt2};
2663      *     }
2664      *     {Rd} = 0;
2665      * } else {
2666      *     {Rd} = 1;
2667      * }
2668      * env->exclusive_addr = -1;
2669      */
2670     TCGLabel *fail_label = gen_new_label();
2671     TCGLabel *done_label = gen_new_label();
2672     TCGv_i64 tmp, clean_addr;
2673     MemOp memop;
2674 
2675     /*
2676      * FIXME: We are out of spec here.  We have recorded only the address
2677      * from load_exclusive, not the entire range, and we assume that the
2678      * size of the access on both sides match.  The architecture allows the
2679      * store to be smaller than the load, so long as the stored bytes are
2680      * within the range recorded by the load.
2681      */
2682 
2683     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2684     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2685     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2686 
2687     /*
2688      * The write, and any associated faults, only happen if the virtual
2689      * and physical addresses pass the exclusive monitor check.  These
2690      * faults are exceedingly unlikely, because normally the guest uses
2691      * the exact same address register for the load_exclusive, and we
2692      * would have recognized these faults there.
2693      *
2694      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2695      * unaligned 4-byte write within the range of an aligned 8-byte load.
2696      * With LSE2, the store would need to cross a 16-byte boundary when the
2697      * load did not, which would mean the store is outside the range
2698      * recorded for the monitor, which would have failed a corrected monitor
2699      * check above.  For now, we assume no size change and retain the
2700      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2701      *
2702      * It is possible to trigger an MTE fault, by performing the load with
2703      * a virtual address with a valid tag and performing the store with the
2704      * same virtual address and a different invalid tag.
2705      */
2706     memop = size + is_pair;
2707     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2708         memop |= MO_ALIGN;
2709     }
2710     memop = finalize_memop(s, memop);
2711     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2712 
2713     tmp = tcg_temp_new_i64();
2714     if (is_pair) {
2715         if (size == 2) {
2716             if (s->be_data == MO_LE) {
2717                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2718             } else {
2719                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2720             }
2721             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2722                                        cpu_exclusive_val, tmp,
2723                                        get_mem_index(s), memop);
2724             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2725         } else {
2726             TCGv_i128 t16 = tcg_temp_new_i128();
2727             TCGv_i128 c16 = tcg_temp_new_i128();
2728             TCGv_i64 a, b;
2729 
2730             if (s->be_data == MO_LE) {
2731                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2732                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2733                                         cpu_exclusive_high);
2734             } else {
2735                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2736                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2737                                         cpu_exclusive_val);
2738             }
2739 
2740             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2741                                         get_mem_index(s), memop);
2742 
2743             a = tcg_temp_new_i64();
2744             b = tcg_temp_new_i64();
2745             if (s->be_data == MO_LE) {
2746                 tcg_gen_extr_i128_i64(a, b, t16);
2747             } else {
2748                 tcg_gen_extr_i128_i64(b, a, t16);
2749             }
2750 
2751             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2752             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2753             tcg_gen_or_i64(tmp, a, b);
2754 
2755             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2756         }
2757     } else {
2758         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2759                                    cpu_reg(s, rt), get_mem_index(s), memop);
2760         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2761     }
2762     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2763     tcg_gen_br(done_label);
2764 
2765     gen_set_label(fail_label);
2766     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2767     gen_set_label(done_label);
2768     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2769 }
2770 
2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2772                                  int rn, int size)
2773 {
2774     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2775     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776     int memidx = get_mem_index(s);
2777     TCGv_i64 clean_addr;
2778     MemOp memop;
2779 
2780     if (rn == 31) {
2781         gen_check_sp_alignment(s);
2782     }
2783     memop = check_atomic_align(s, rn, size);
2784     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2785     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2786                                memidx, memop);
2787 }
2788 
2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2790                                       int rn, int size)
2791 {
2792     TCGv_i64 s1 = cpu_reg(s, rs);
2793     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2794     TCGv_i64 t1 = cpu_reg(s, rt);
2795     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2796     TCGv_i64 clean_addr;
2797     int memidx = get_mem_index(s);
2798     MemOp memop;
2799 
2800     if (rn == 31) {
2801         gen_check_sp_alignment(s);
2802     }
2803 
2804     /* This is a single atomic access, despite the "pair". */
2805     memop = check_atomic_align(s, rn, size + 1);
2806     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2807 
2808     if (size == 2) {
2809         TCGv_i64 cmp = tcg_temp_new_i64();
2810         TCGv_i64 val = tcg_temp_new_i64();
2811 
2812         if (s->be_data == MO_LE) {
2813             tcg_gen_concat32_i64(val, t1, t2);
2814             tcg_gen_concat32_i64(cmp, s1, s2);
2815         } else {
2816             tcg_gen_concat32_i64(val, t2, t1);
2817             tcg_gen_concat32_i64(cmp, s2, s1);
2818         }
2819 
2820         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2821 
2822         if (s->be_data == MO_LE) {
2823             tcg_gen_extr32_i64(s1, s2, cmp);
2824         } else {
2825             tcg_gen_extr32_i64(s2, s1, cmp);
2826         }
2827     } else {
2828         TCGv_i128 cmp = tcg_temp_new_i128();
2829         TCGv_i128 val = tcg_temp_new_i128();
2830 
2831         if (s->be_data == MO_LE) {
2832             tcg_gen_concat_i64_i128(val, t1, t2);
2833             tcg_gen_concat_i64_i128(cmp, s1, s2);
2834         } else {
2835             tcg_gen_concat_i64_i128(val, t2, t1);
2836             tcg_gen_concat_i64_i128(cmp, s2, s1);
2837         }
2838 
2839         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2840 
2841         if (s->be_data == MO_LE) {
2842             tcg_gen_extr_i128_i64(s1, s2, cmp);
2843         } else {
2844             tcg_gen_extr_i128_i64(s2, s1, cmp);
2845         }
2846     }
2847 }
2848 
2849 /*
2850  * Compute the ISS.SF bit for syndrome information if an exception
2851  * is taken on a load or store. This indicates whether the instruction
2852  * is accessing a 32-bit or 64-bit register. This logic is derived
2853  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2854  */
2855 static bool ldst_iss_sf(int size, bool sign, bool ext)
2856 {
2857 
2858     if (sign) {
2859         /*
2860          * Signed loads are 64 bit results if we are not going to
2861          * do a zero-extend from 32 to 64 after the load.
2862          * (For a store, sign and ext are always false.)
2863          */
2864         return !ext;
2865     } else {
2866         /* Unsigned loads/stores work at the specified size */
2867         return size == MO_64;
2868     }
2869 }
2870 
2871 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2872 {
2873     if (a->rn == 31) {
2874         gen_check_sp_alignment(s);
2875     }
2876     if (a->lasr) {
2877         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2878     }
2879     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2880     return true;
2881 }
2882 
2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2884 {
2885     if (a->rn == 31) {
2886         gen_check_sp_alignment(s);
2887     }
2888     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2889     if (a->lasr) {
2890         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2891     }
2892     return true;
2893 }
2894 
2895 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2896 {
2897     TCGv_i64 clean_addr;
2898     MemOp memop;
2899     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2900 
2901     /*
2902      * StoreLORelease is the same as Store-Release for QEMU, but
2903      * needs the feature-test.
2904      */
2905     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2906         return false;
2907     }
2908     /* Generate ISS for non-exclusive accesses including LASR.  */
2909     if (a->rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2913     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2914     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2915                                 true, a->rn != 31, memop);
2916     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2917               iss_sf, a->lasr);
2918     return true;
2919 }
2920 
2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2922 {
2923     TCGv_i64 clean_addr;
2924     MemOp memop;
2925     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2926 
2927     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2928     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2929         return false;
2930     }
2931     /* Generate ISS for non-exclusive accesses including LASR.  */
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2936     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2937                                 false, a->rn != 31, memop);
2938     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2939               a->rt, iss_sf, a->lasr);
2940     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2941     return true;
2942 }
2943 
2944 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2945 {
2946     if (a->rn == 31) {
2947         gen_check_sp_alignment(s);
2948     }
2949     if (a->lasr) {
2950         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2951     }
2952     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2953     return true;
2954 }
2955 
2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2957 {
2958     if (a->rn == 31) {
2959         gen_check_sp_alignment(s);
2960     }
2961     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2962     if (a->lasr) {
2963         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2964     }
2965     return true;
2966 }
2967 
2968 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2969 {
2970     if (!dc_isar_feature(aa64_atomics, s)) {
2971         return false;
2972     }
2973     if (((a->rt | a->rs) & 1) != 0) {
2974         return false;
2975     }
2976 
2977     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2978     return true;
2979 }
2980 
2981 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2982 {
2983     if (!dc_isar_feature(aa64_atomics, s)) {
2984         return false;
2985     }
2986     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2987     return true;
2988 }
2989 
2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2991 {
2992     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2993     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2994     TCGv_i64 clean_addr = tcg_temp_new_i64();
2995     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2996 
2997     gen_pc_plus_diff(s, clean_addr, a->imm);
2998     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2999               false, true, a->rt, iss_sf, false);
3000     return true;
3001 }
3002 
3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3004 {
3005     /* Load register (literal), vector version */
3006     TCGv_i64 clean_addr;
3007     MemOp memop;
3008 
3009     if (!fp_access_check(s)) {
3010         return true;
3011     }
3012     memop = finalize_memop_asimd(s, a->sz);
3013     clean_addr = tcg_temp_new_i64();
3014     gen_pc_plus_diff(s, clean_addr, a->imm);
3015     do_fp_ld(s, a->rt, clean_addr, memop);
3016     return true;
3017 }
3018 
3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3020                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3021                                  uint64_t offset, bool is_store, MemOp mop)
3022 {
3023     if (a->rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3028     if (!a->p) {
3029         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3030     }
3031 
3032     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3033                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3034 }
3035 
3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3037                                   TCGv_i64 dirty_addr, uint64_t offset)
3038 {
3039     if (a->w) {
3040         if (a->p) {
3041             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3042         }
3043         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3044     }
3045 }
3046 
3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3048 {
3049     uint64_t offset = a->imm << a->sz;
3050     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3051     MemOp mop = finalize_memop(s, a->sz);
3052 
3053     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3054     tcg_rt = cpu_reg(s, a->rt);
3055     tcg_rt2 = cpu_reg(s, a->rt2);
3056     /*
3057      * We built mop above for the single logical access -- rebuild it
3058      * now for the paired operation.
3059      *
3060      * With LSE2, non-sign-extending pairs are treated atomically if
3061      * aligned, and if unaligned one of the pair will be completely
3062      * within a 16-byte block and that element will be atomic.
3063      * Otherwise each element is separately atomic.
3064      * In all cases, issue one operation with the correct atomicity.
3065      */
3066     mop = a->sz + 1;
3067     if (s->align_mem) {
3068         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3069     }
3070     mop = finalize_memop_pair(s, mop);
3071     if (a->sz == 2) {
3072         TCGv_i64 tmp = tcg_temp_new_i64();
3073 
3074         if (s->be_data == MO_LE) {
3075             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3076         } else {
3077             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3078         }
3079         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3080     } else {
3081         TCGv_i128 tmp = tcg_temp_new_i128();
3082 
3083         if (s->be_data == MO_LE) {
3084             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3085         } else {
3086             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3087         }
3088         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3089     }
3090     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3091     return true;
3092 }
3093 
3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103 
3104     /*
3105      * We built mop above for the single logical access -- rebuild it
3106      * now for the paired operation.
3107      *
3108      * With LSE2, non-sign-extending pairs are treated atomically if
3109      * aligned, and if unaligned one of the pair will be completely
3110      * within a 16-byte block and that element will be atomic.
3111      * Otherwise each element is separately atomic.
3112      * In all cases, issue one operation with the correct atomicity.
3113      *
3114      * This treats sign-extending loads like zero-extending loads,
3115      * since that reuses the most code below.
3116      */
3117     mop = a->sz + 1;
3118     if (s->align_mem) {
3119         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3120     }
3121     mop = finalize_memop_pair(s, mop);
3122     if (a->sz == 2) {
3123         int o2 = s->be_data == MO_LE ? 32 : 0;
3124         int o1 = o2 ^ 32;
3125 
3126         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3127         if (a->sign) {
3128             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3129             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3130         } else {
3131             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3132             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3133         }
3134     } else {
3135         TCGv_i128 tmp = tcg_temp_new_i128();
3136 
3137         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3138         if (s->be_data == MO_LE) {
3139             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3140         } else {
3141             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3142         }
3143     }
3144     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145     return true;
3146 }
3147 
3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3149 {
3150     uint64_t offset = a->imm << a->sz;
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157 
3158     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3159     mop = finalize_memop_asimd(s, a->sz);
3160     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3161     do_fp_st(s, a->rt, clean_addr, mop);
3162     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3163     do_fp_st(s, a->rt2, clean_addr, mop);
3164     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3165     return true;
3166 }
3167 
3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3169 {
3170     uint64_t offset = a->imm << a->sz;
3171     TCGv_i64 clean_addr, dirty_addr;
3172     MemOp mop;
3173 
3174     if (!fp_access_check(s)) {
3175         return true;
3176     }
3177 
3178     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3179     mop = finalize_memop_asimd(s, a->sz);
3180     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3181     do_fp_ld(s, a->rt, clean_addr, mop);
3182     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3183     do_fp_ld(s, a->rt2, clean_addr, mop);
3184     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3185     return true;
3186 }
3187 
3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3189 {
3190     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3191     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3192     MemOp mop;
3193     TCGv_i128 tmp;
3194 
3195     /* STGP only comes in one size. */
3196     tcg_debug_assert(a->sz == MO_64);
3197 
3198     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3199         return false;
3200     }
3201 
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205 
3206     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3207     if (!a->p) {
3208         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209     }
3210 
3211     clean_addr = clean_data_tbi(s, dirty_addr);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     tcg_rt2 = cpu_reg(s, a->rt2);
3214 
3215     /*
3216      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3217      * and one tag operation.  We implement it as one single aligned 16-byte
3218      * memory operation for convenience.  Note that the alignment ensures
3219      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3220      */
3221     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3222 
3223     tmp = tcg_temp_new_i128();
3224     if (s->be_data == MO_LE) {
3225         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3226     } else {
3227         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3228     }
3229     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3230 
3231     /* Perform the tag store, if tag access enabled. */
3232     if (s->ata[0]) {
3233         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3234             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3235         } else {
3236             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3237         }
3238     }
3239 
3240     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3241     return true;
3242 }
3243 
3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3245                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3246                                  uint64_t offset, bool is_store, MemOp mop)
3247 {
3248     int memidx;
3249 
3250     if (a->rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253 
3254     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3255     if (!a->p) {
3256         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3257     }
3258     memidx = get_a64_user_mem_index(s, a->unpriv);
3259     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3260                                         a->w || a->rn != 31,
3261                                         mop, a->unpriv, memidx);
3262 }
3263 
3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3265                                   TCGv_i64 dirty_addr, uint64_t offset)
3266 {
3267     if (a->w) {
3268         if (a->p) {
3269             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3270         }
3271         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3272     }
3273 }
3274 
3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3276 {
3277     bool iss_sf, iss_valid = !a->w;
3278     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3279     int memidx = get_a64_user_mem_index(s, a->unpriv);
3280     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3281 
3282     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3283 
3284     tcg_rt = cpu_reg(s, a->rt);
3285     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3286 
3287     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3288                      iss_valid, a->rt, iss_sf, false);
3289     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3290     return true;
3291 }
3292 
3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3294 {
3295     bool iss_sf, iss_valid = !a->w;
3296     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3297     int memidx = get_a64_user_mem_index(s, a->unpriv);
3298     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3299 
3300     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3301 
3302     tcg_rt = cpu_reg(s, a->rt);
3303     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3304 
3305     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3306                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3307     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3308     return true;
3309 }
3310 
3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3312 {
3313     TCGv_i64 clean_addr, dirty_addr;
3314     MemOp mop;
3315 
3316     if (!fp_access_check(s)) {
3317         return true;
3318     }
3319     mop = finalize_memop_asimd(s, a->sz);
3320     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3321     do_fp_st(s, a->rt, clean_addr, mop);
3322     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp mop;
3330 
3331     if (!fp_access_check(s)) {
3332         return true;
3333     }
3334     mop = finalize_memop_asimd(s, a->sz);
3335     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3336     do_fp_ld(s, a->rt, clean_addr, mop);
3337     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3338     return true;
3339 }
3340 
3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3342                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3343                              bool is_store, MemOp memop)
3344 {
3345     TCGv_i64 tcg_rm;
3346 
3347     if (a->rn == 31) {
3348         gen_check_sp_alignment(s);
3349     }
3350     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3351 
3352     tcg_rm = read_cpu_reg(s, a->rm, 1);
3353     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3354 
3355     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3356     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3357 }
3358 
3359 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3360 {
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3362     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3363     MemOp memop;
3364 
3365     if (extract32(a->opt, 1, 1) == 0) {
3366         return false;
3367     }
3368 
3369     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               a->ext, true, a->rt, iss_sf, false);
3374     return true;
3375 }
3376 
3377 static bool trans_STR(DisasContext *s, arg_ldst *a)
3378 {
3379     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3380     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3381     MemOp memop;
3382 
3383     if (extract32(a->opt, 1, 1) == 0) {
3384         return false;
3385     }
3386 
3387     memop = finalize_memop(s, a->sz);
3388     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3389     tcg_rt = cpu_reg(s, a->rt);
3390     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3391     return true;
3392 }
3393 
3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3395 {
3396     TCGv_i64 clean_addr, dirty_addr;
3397     MemOp memop;
3398 
3399     if (extract32(a->opt, 1, 1) == 0) {
3400         return false;
3401     }
3402 
3403     if (!fp_access_check(s)) {
3404         return true;
3405     }
3406 
3407     memop = finalize_memop_asimd(s, a->sz);
3408     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3409     do_fp_ld(s, a->rt, clean_addr, memop);
3410     return true;
3411 }
3412 
3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3414 {
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp memop;
3417 
3418     if (extract32(a->opt, 1, 1) == 0) {
3419         return false;
3420     }
3421 
3422     if (!fp_access_check(s)) {
3423         return true;
3424     }
3425 
3426     memop = finalize_memop_asimd(s, a->sz);
3427     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3428     do_fp_st(s, a->rt, clean_addr, memop);
3429     return true;
3430 }
3431 
3432 
3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3434                          int sign, bool invert)
3435 {
3436     MemOp mop = a->sz | sign;
3437     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3438 
3439     if (a->rn == 31) {
3440         gen_check_sp_alignment(s);
3441     }
3442     mop = check_atomic_align(s, a->rn, mop);
3443     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3444                                 a->rn != 31, mop);
3445     tcg_rs = read_cpu_reg(s, a->rs, true);
3446     tcg_rt = cpu_reg(s, a->rt);
3447     if (invert) {
3448         tcg_gen_not_i64(tcg_rs, tcg_rs);
3449     }
3450     /*
3451      * The tcg atomic primitives are all full barriers.  Therefore we
3452      * can ignore the Acquire and Release bits of this instruction.
3453      */
3454     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3455 
3456     if (mop & MO_SIGN) {
3457         switch (a->sz) {
3458         case MO_8:
3459             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3460             break;
3461         case MO_16:
3462             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3463             break;
3464         case MO_32:
3465             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3466             break;
3467         case MO_64:
3468             break;
3469         default:
3470             g_assert_not_reached();
3471         }
3472     }
3473     return true;
3474 }
3475 
3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3485 
3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3487 {
3488     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3489     TCGv_i64 clean_addr;
3490     MemOp mop;
3491 
3492     if (!dc_isar_feature(aa64_atomics, s) ||
3493         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3494         return false;
3495     }
3496     if (a->rn == 31) {
3497         gen_check_sp_alignment(s);
3498     }
3499     mop = check_atomic_align(s, a->rn, a->sz);
3500     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3501                                 a->rn != 31, mop);
3502     /*
3503      * LDAPR* are a special case because they are a simple load, not a
3504      * fetch-and-do-something op.
3505      * The architectural consistency requirements here are weaker than
3506      * full load-acquire (we only need "load-acquire processor consistent"),
3507      * but we choose to implement them as full LDAQ.
3508      */
3509     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3510               true, a->rt, iss_sf, true);
3511     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3512     return true;
3513 }
3514 
3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3516 {
3517     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3518     MemOp memop;
3519 
3520     /* Load with pointer authentication */
3521     if (!dc_isar_feature(aa64_pauth, s)) {
3522         return false;
3523     }
3524 
3525     if (a->rn == 31) {
3526         gen_check_sp_alignment(s);
3527     }
3528     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3529 
3530     if (s->pauth_active) {
3531         if (!a->m) {
3532             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3533                                       tcg_constant_i64(0));
3534         } else {
3535             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3536                                       tcg_constant_i64(0));
3537         }
3538     }
3539 
3540     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3541 
3542     memop = finalize_memop(s, MO_64);
3543 
3544     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3545     clean_addr = gen_mte_check1(s, dirty_addr, false,
3546                                 a->w || a->rn != 31, memop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3550               /* extend */ false, /* iss_valid */ !a->w,
3551               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3552 
3553     if (a->w) {
3554         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3555     }
3556     return true;
3557 }
3558 
3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3560 {
3561     TCGv_i64 clean_addr, dirty_addr;
3562     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3563     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3564 
3565     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3566         return false;
3567     }
3568 
3569     if (a->rn == 31) {
3570         gen_check_sp_alignment(s);
3571     }
3572 
3573     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3574     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3575     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3576     clean_addr = clean_data_tbi(s, dirty_addr);
3577 
3578     /*
3579      * Load-AcquirePC semantics; we implement as the slightly more
3580      * restrictive Load-Acquire.
3581      */
3582     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3583               a->rt, iss_sf, true);
3584     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3585     return true;
3586 }
3587 
3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3589 {
3590     TCGv_i64 clean_addr, dirty_addr;
3591     MemOp mop = a->sz;
3592     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3593 
3594     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3595         return false;
3596     }
3597 
3598     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3599 
3600     if (a->rn == 31) {
3601         gen_check_sp_alignment(s);
3602     }
3603 
3604     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3605     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3606     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3607     clean_addr = clean_data_tbi(s, dirty_addr);
3608 
3609     /* Store-Release semantics */
3610     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3611     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3612     return true;
3613 }
3614 
3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3616 {
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int r;
3623     int size = a->sz;
3624 
3625     if (!a->p && a->rm != 0) {
3626         /* For non-postindexed accesses the Rm field must be 0 */
3627         return false;
3628     }
3629     if (size == 3 && !a->q && a->selem != 1) {
3630         return false;
3631     }
3632     if (!fp_access_check(s)) {
3633         return true;
3634     }
3635 
3636     if (a->rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     /* For our purposes, bytes are always little-endian.  */
3641     endian = s->be_data;
3642     if (size == 0) {
3643         endian = MO_LE;
3644     }
3645 
3646     total = a->rpt * a->selem * (a->q ? 16 : 8);
3647     tcg_rn = cpu_reg_sp(s, a->rn);
3648 
3649     /*
3650      * Issue the MTE check vs the logical repeat count, before we
3651      * promote consecutive little-endian elements below.
3652      */
3653     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3654                                 finalize_memop_asimd(s, size));
3655 
3656     /*
3657      * Consecutive little-endian elements from a single register
3658      * can be promoted to a larger little-endian operation.
3659      */
3660     align = MO_ALIGN;
3661     if (a->selem == 1 && endian == MO_LE) {
3662         align = pow2_align(size);
3663         size = 3;
3664     }
3665     if (!s->align_mem) {
3666         align = 0;
3667     }
3668     mop = endian | size | align;
3669 
3670     elements = (a->q ? 16 : 8) >> size;
3671     tcg_ebytes = tcg_constant_i64(1 << size);
3672     for (r = 0; r < a->rpt; r++) {
3673         int e;
3674         for (e = 0; e < elements; e++) {
3675             int xs;
3676             for (xs = 0; xs < a->selem; xs++) {
3677                 int tt = (a->rt + r + xs) % 32;
3678                 do_vec_ld(s, tt, e, clean_addr, mop);
3679                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3680             }
3681         }
3682     }
3683 
3684     /*
3685      * For non-quad operations, setting a slice of the low 64 bits of
3686      * the register clears the high 64 bits (in the ARM ARM pseudocode
3687      * this is implicit in the fact that 'rval' is a 64 bit wide
3688      * variable).  For quad operations, we might still need to zero
3689      * the high bits of SVE.
3690      */
3691     for (r = 0; r < a->rpt * a->selem; r++) {
3692         int tt = (a->rt + r) % 32;
3693         clear_vec_high(s, a->q, tt);
3694     }
3695 
3696     if (a->p) {
3697         if (a->rm == 31) {
3698             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699         } else {
3700             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701         }
3702     }
3703     return true;
3704 }
3705 
3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3707 {
3708     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3709     MemOp endian, align, mop;
3710 
3711     int total;    /* total bytes */
3712     int elements; /* elements per vector */
3713     int r;
3714     int size = a->sz;
3715 
3716     if (!a->p && a->rm != 0) {
3717         /* For non-postindexed accesses the Rm field must be 0 */
3718         return false;
3719     }
3720     if (size == 3 && !a->q && a->selem != 1) {
3721         return false;
3722     }
3723     if (!fp_access_check(s)) {
3724         return true;
3725     }
3726 
3727     if (a->rn == 31) {
3728         gen_check_sp_alignment(s);
3729     }
3730 
3731     /* For our purposes, bytes are always little-endian.  */
3732     endian = s->be_data;
3733     if (size == 0) {
3734         endian = MO_LE;
3735     }
3736 
3737     total = a->rpt * a->selem * (a->q ? 16 : 8);
3738     tcg_rn = cpu_reg_sp(s, a->rn);
3739 
3740     /*
3741      * Issue the MTE check vs the logical repeat count, before we
3742      * promote consecutive little-endian elements below.
3743      */
3744     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3745                                 finalize_memop_asimd(s, size));
3746 
3747     /*
3748      * Consecutive little-endian elements from a single register
3749      * can be promoted to a larger little-endian operation.
3750      */
3751     align = MO_ALIGN;
3752     if (a->selem == 1 && endian == MO_LE) {
3753         align = pow2_align(size);
3754         size = 3;
3755     }
3756     if (!s->align_mem) {
3757         align = 0;
3758     }
3759     mop = endian | size | align;
3760 
3761     elements = (a->q ? 16 : 8) >> size;
3762     tcg_ebytes = tcg_constant_i64(1 << size);
3763     for (r = 0; r < a->rpt; r++) {
3764         int e;
3765         for (e = 0; e < elements; e++) {
3766             int xs;
3767             for (xs = 0; xs < a->selem; xs++) {
3768                 int tt = (a->rt + r + xs) % 32;
3769                 do_vec_st(s, tt, e, clean_addr, mop);
3770                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771             }
3772         }
3773     }
3774 
3775     if (a->p) {
3776         if (a->rm == 31) {
3777             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3778         } else {
3779             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3780         }
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3786 {
3787     int xs, total, rt;
3788     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3789     MemOp mop;
3790 
3791     if (!a->p && a->rm != 0) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     total = a->selem << a->scale;
3803     tcg_rn = cpu_reg_sp(s, a->rn);
3804 
3805     mop = finalize_memop_asimd(s, a->scale);
3806     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3807                                 total, mop);
3808 
3809     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3810     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3811         do_vec_st(s, rt, a->index, clean_addr, mop);
3812         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3813     }
3814 
3815     if (a->p) {
3816         if (a->rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3820         }
3821     }
3822     return true;
3823 }
3824 
3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3826 {
3827     int xs, total, rt;
3828     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3829     MemOp mop;
3830 
3831     if (!a->p && a->rm != 0) {
3832         return false;
3833     }
3834     if (!fp_access_check(s)) {
3835         return true;
3836     }
3837 
3838     if (a->rn == 31) {
3839         gen_check_sp_alignment(s);
3840     }
3841 
3842     total = a->selem << a->scale;
3843     tcg_rn = cpu_reg_sp(s, a->rn);
3844 
3845     mop = finalize_memop_asimd(s, a->scale);
3846     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3847                                 total, mop);
3848 
3849     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3850     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3851         do_vec_ld(s, rt, a->index, clean_addr, mop);
3852         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3853     }
3854 
3855     if (a->p) {
3856         if (a->rm == 31) {
3857             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3858         } else {
3859             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3860         }
3861     }
3862     return true;
3863 }
3864 
3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3866 {
3867     int xs, total, rt;
3868     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3869     MemOp mop;
3870 
3871     if (!a->p && a->rm != 0) {
3872         return false;
3873     }
3874     if (!fp_access_check(s)) {
3875         return true;
3876     }
3877 
3878     if (a->rn == 31) {
3879         gen_check_sp_alignment(s);
3880     }
3881 
3882     total = a->selem << a->scale;
3883     tcg_rn = cpu_reg_sp(s, a->rn);
3884 
3885     mop = finalize_memop_asimd(s, a->scale);
3886     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3887                                 total, mop);
3888 
3889     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3890     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3891         /* Load and replicate to all elements */
3892         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3893 
3894         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3895         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3896                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3897         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3898     }
3899 
3900     if (a->p) {
3901         if (a->rm == 31) {
3902             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3903         } else {
3904             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3905         }
3906     }
3907     return true;
3908 }
3909 
3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3911 {
3912     TCGv_i64 addr, clean_addr, tcg_rt;
3913     int size = 4 << s->dcz_blocksize;
3914 
3915     if (!dc_isar_feature(aa64_mte, s)) {
3916         return false;
3917     }
3918     if (s->current_el == 0) {
3919         return false;
3920     }
3921 
3922     if (a->rn == 31) {
3923         gen_check_sp_alignment(s);
3924     }
3925 
3926     addr = read_cpu_reg_sp(s, a->rn, true);
3927     tcg_gen_addi_i64(addr, addr, a->imm);
3928     tcg_rt = cpu_reg(s, a->rt);
3929 
3930     if (s->ata[0]) {
3931         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3932     }
3933     /*
3934      * The non-tags portion of STZGM is mostly like DC_ZVA,
3935      * except the alignment happens before the access.
3936      */
3937     clean_addr = clean_data_tbi(s, addr);
3938     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3939     gen_helper_dc_zva(tcg_env, clean_addr);
3940     return true;
3941 }
3942 
3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3944 {
3945     TCGv_i64 addr, clean_addr, tcg_rt;
3946 
3947     if (!dc_isar_feature(aa64_mte, s)) {
3948         return false;
3949     }
3950     if (s->current_el == 0) {
3951         return false;
3952     }
3953 
3954     if (a->rn == 31) {
3955         gen_check_sp_alignment(s);
3956     }
3957 
3958     addr = read_cpu_reg_sp(s, a->rn, true);
3959     tcg_gen_addi_i64(addr, addr, a->imm);
3960     tcg_rt = cpu_reg(s, a->rt);
3961 
3962     if (s->ata[0]) {
3963         gen_helper_stgm(tcg_env, addr, tcg_rt);
3964     } else {
3965         MMUAccessType acc = MMU_DATA_STORE;
3966         int size = 4 << s->gm_blocksize;
3967 
3968         clean_addr = clean_data_tbi(s, addr);
3969         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3970         gen_probe_access(s, clean_addr, acc, size);
3971     }
3972     return true;
3973 }
3974 
3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3976 {
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     if (!dc_isar_feature(aa64_mte, s)) {
3980         return false;
3981     }
3982     if (s->current_el == 0) {
3983         return false;
3984     }
3985 
3986     if (a->rn == 31) {
3987         gen_check_sp_alignment(s);
3988     }
3989 
3990     addr = read_cpu_reg_sp(s, a->rn, true);
3991     tcg_gen_addi_i64(addr, addr, a->imm);
3992     tcg_rt = cpu_reg(s, a->rt);
3993 
3994     if (s->ata[0]) {
3995         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3996     } else {
3997         MMUAccessType acc = MMU_DATA_LOAD;
3998         int size = 4 << s->gm_blocksize;
3999 
4000         clean_addr = clean_data_tbi(s, addr);
4001         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4002         gen_probe_access(s, clean_addr, acc, size);
4003         /* The result tags are zeros.  */
4004         tcg_gen_movi_i64(tcg_rt, 0);
4005     }
4006     return true;
4007 }
4008 
4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4010 {
4011     TCGv_i64 addr, clean_addr, tcg_rt;
4012 
4013     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4014         return false;
4015     }
4016 
4017     if (a->rn == 31) {
4018         gen_check_sp_alignment(s);
4019     }
4020 
4021     addr = read_cpu_reg_sp(s, a->rn, true);
4022     if (!a->p) {
4023         /* pre-index or signed offset */
4024         tcg_gen_addi_i64(addr, addr, a->imm);
4025     }
4026 
4027     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4028     tcg_rt = cpu_reg(s, a->rt);
4029     if (s->ata[0]) {
4030         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4031     } else {
4032         /*
4033          * Tag access disabled: we must check for aborts on the load
4034          * load from [rn+offset], and then insert a 0 tag into rt.
4035          */
4036         clean_addr = clean_data_tbi(s, addr);
4037         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4038         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4039     }
4040 
4041     if (a->w) {
4042         /* pre-index or post-index */
4043         if (a->p) {
4044             /* post-index */
4045             tcg_gen_addi_i64(addr, addr, a->imm);
4046         }
4047         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4048     }
4049     return true;
4050 }
4051 
4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4053 {
4054     TCGv_i64 addr, tcg_rt;
4055 
4056     if (a->rn == 31) {
4057         gen_check_sp_alignment(s);
4058     }
4059 
4060     addr = read_cpu_reg_sp(s, a->rn, true);
4061     if (!a->p) {
4062         /* pre-index or signed offset */
4063         tcg_gen_addi_i64(addr, addr, a->imm);
4064     }
4065     tcg_rt = cpu_reg_sp(s, a->rt);
4066     if (!s->ata[0]) {
4067         /*
4068          * For STG and ST2G, we need to check alignment and probe memory.
4069          * TODO: For STZG and STZ2G, we could rely on the stores below,
4070          * at least for system mode; user-only won't enforce alignment.
4071          */
4072         if (is_pair) {
4073             gen_helper_st2g_stub(tcg_env, addr);
4074         } else {
4075             gen_helper_stg_stub(tcg_env, addr);
4076         }
4077     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4078         if (is_pair) {
4079             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4080         } else {
4081             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4082         }
4083     } else {
4084         if (is_pair) {
4085             gen_helper_st2g(tcg_env, addr, tcg_rt);
4086         } else {
4087             gen_helper_stg(tcg_env, addr, tcg_rt);
4088         }
4089     }
4090 
4091     if (is_zero) {
4092         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4093         TCGv_i64 zero64 = tcg_constant_i64(0);
4094         TCGv_i128 zero128 = tcg_temp_new_i128();
4095         int mem_index = get_mem_index(s);
4096         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4097 
4098         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4099 
4100         /* This is 1 or 2 atomic 16-byte operations. */
4101         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4102         if (is_pair) {
4103             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4104             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4105         }
4106     }
4107 
4108     if (a->w) {
4109         /* pre-index or post-index */
4110         if (a->p) {
4111             /* post-index */
4112             tcg_gen_addi_i64(addr, addr, a->imm);
4113         }
4114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4115     }
4116     return true;
4117 }
4118 
4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4123 
4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4125 
4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4127                    bool is_setg, SetFn fn)
4128 {
4129     int memidx;
4130     uint32_t syndrome, desc = 0;
4131 
4132     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4133         return false;
4134     }
4135 
4136     /*
4137      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4138      * us to pull this check before the CheckMOPSEnabled() test
4139      * (which we do in the helper function)
4140      */
4141     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4142         a->rd == 31 || a->rn == 31) {
4143         return false;
4144     }
4145 
4146     memidx = get_a64_user_mem_index(s, a->unpriv);
4147 
4148     /*
4149      * We pass option_a == true, matching our implementation;
4150      * we pass wrong_option == false: helper function may set that bit.
4151      */
4152     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4153                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4154 
4155     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4156         /* We may need to do MTE tag checking, so assemble the descriptor */
4157         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4158         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4159         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4160         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4161     }
4162     /* The helper function always needs the memidx even with MTE disabled */
4163     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4164 
4165     /*
4166      * The helper needs the register numbers, but since they're in
4167      * the syndrome anyway, we let it extract them from there rather
4168      * than passing in an extra three integer arguments.
4169      */
4170     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4171     return true;
4172 }
4173 
4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4180 
4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4182 
4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4184 {
4185     int rmemidx, wmemidx;
4186     uint32_t syndrome, rdesc = 0, wdesc = 0;
4187     bool wunpriv = extract32(a->options, 0, 1);
4188     bool runpriv = extract32(a->options, 1, 1);
4189 
4190     /*
4191      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192      * us to pull this check before the CheckMOPSEnabled() test
4193      * (which we do in the helper function)
4194      */
4195     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4197         return false;
4198     }
4199 
4200     rmemidx = get_a64_user_mem_index(s, runpriv);
4201     wmemidx = get_a64_user_mem_index(s, wunpriv);
4202 
4203     /*
4204      * We pass option_a == true, matching our implementation;
4205      * we pass wrong_option == false: helper function may set that bit.
4206      */
4207     syndrome = syn_mop(false, false, a->options, is_epilogue,
4208                        false, true, a->rd, a->rs, a->rn);
4209 
4210     /* If we need to do MTE tag checking, assemble the descriptors */
4211     if (s->mte_active[runpriv]) {
4212         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4213         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4214     }
4215     if (s->mte_active[wunpriv]) {
4216         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4217         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4218         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4219     }
4220     /* The helper function needs these parts of the descriptor regardless */
4221     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4222     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4223 
4224     /*
4225      * The helper needs the register numbers, but since they're in
4226      * the syndrome anyway, we let it extract them from there rather
4227      * than passing in an extra three integer arguments.
4228      */
4229     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4230        tcg_constant_i32(rdesc));
4231     return true;
4232 }
4233 
4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4240 
4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4242 
4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4244                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4245 {
4246     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4247     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4248     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4249 
4250     fn(tcg_rd, tcg_rn, tcg_imm);
4251     if (!a->sf) {
4252         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4253     }
4254     return true;
4255 }
4256 
4257 /*
4258  * PC-rel. addressing
4259  */
4260 
4261 static bool trans_ADR(DisasContext *s, arg_ri *a)
4262 {
4263     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4264     return true;
4265 }
4266 
4267 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4268 {
4269     int64_t offset = (int64_t)a->imm << 12;
4270 
4271     /* The page offset is ok for CF_PCREL. */
4272     offset -= s->pc_curr & 0xfff;
4273     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4274     return true;
4275 }
4276 
4277 /*
4278  * Add/subtract (immediate)
4279  */
4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4284 
4285 /*
4286  * Add/subtract (immediate, with tags)
4287  */
4288 
4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4290                                       bool sub_op)
4291 {
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     imm = a->uimm6 << LOG2_TAG_GRANULE;
4296     if (sub_op) {
4297         imm = -imm;
4298     }
4299 
4300     tcg_rn = cpu_reg_sp(s, a->rn);
4301     tcg_rd = cpu_reg_sp(s, a->rd);
4302 
4303     if (s->ata[0]) {
4304         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4305                            tcg_constant_i32(imm),
4306                            tcg_constant_i32(a->uimm4));
4307     } else {
4308         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4309         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4310     }
4311     return true;
4312 }
4313 
4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4316 
4317 /* The input should be a value in the bottom e bits (with higher
4318  * bits zero); returns that value replicated into every element
4319  * of size e in a 64 bit integer.
4320  */
4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4322 {
4323     assert(e != 0);
4324     while (e < 64) {
4325         mask |= mask << e;
4326         e *= 2;
4327     }
4328     return mask;
4329 }
4330 
4331 /*
4332  * Logical (immediate)
4333  */
4334 
4335 /*
4336  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4337  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4338  * value (ie should cause a guest UNDEF exception), and true if they are
4339  * valid, in which case the decoded bit pattern is written to result.
4340  */
4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4342                             unsigned int imms, unsigned int immr)
4343 {
4344     uint64_t mask;
4345     unsigned e, levels, s, r;
4346     int len;
4347 
4348     assert(immn < 2 && imms < 64 && immr < 64);
4349 
4350     /* The bit patterns we create here are 64 bit patterns which
4351      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4352      * 64 bits each. Each element contains the same value: a run
4353      * of between 1 and e-1 non-zero bits, rotated within the
4354      * element by between 0 and e-1 bits.
4355      *
4356      * The element size and run length are encoded into immn (1 bit)
4357      * and imms (6 bits) as follows:
4358      * 64 bit elements: immn = 1, imms = <length of run - 1>
4359      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4360      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4361      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4362      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4363      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4364      * Notice that immn = 0, imms = 11111x is the only combination
4365      * not covered by one of the above options; this is reserved.
4366      * Further, <length of run - 1> all-ones is a reserved pattern.
4367      *
4368      * In all cases the rotation is by immr % e (and immr is 6 bits).
4369      */
4370 
4371     /* First determine the element size */
4372     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4373     if (len < 1) {
4374         /* This is the immn == 0, imms == 0x11111x case */
4375         return false;
4376     }
4377     e = 1 << len;
4378 
4379     levels = e - 1;
4380     s = imms & levels;
4381     r = immr & levels;
4382 
4383     if (s == levels) {
4384         /* <length of run - 1> mustn't be all-ones. */
4385         return false;
4386     }
4387 
4388     /* Create the value of one element: s+1 set bits rotated
4389      * by r within the element (which is e bits wide)...
4390      */
4391     mask = MAKE_64BIT_MASK(0, s + 1);
4392     if (r) {
4393         mask = (mask >> r) | (mask << (e - r));
4394         mask &= MAKE_64BIT_MASK(0, e);
4395     }
4396     /* ...then replicate the element over the whole 64 bit value */
4397     mask = bitfield_replicate(mask, e);
4398     *result = mask;
4399     return true;
4400 }
4401 
4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4403                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4404 {
4405     TCGv_i64 tcg_rd, tcg_rn;
4406     uint64_t imm;
4407 
4408     /* Some immediate field values are reserved. */
4409     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4410                                 extract32(a->dbm, 0, 6),
4411                                 extract32(a->dbm, 6, 6))) {
4412         return false;
4413     }
4414     if (!a->sf) {
4415         imm &= 0xffffffffull;
4416     }
4417 
4418     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4419     tcg_rn = cpu_reg(s, a->rn);
4420 
4421     fn(tcg_rd, tcg_rn, imm);
4422     if (set_cc) {
4423         gen_logic_CC(a->sf, tcg_rd);
4424     }
4425     if (!a->sf) {
4426         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4427     }
4428     return true;
4429 }
4430 
4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4435 
4436 /*
4437  * Move wide (immediate)
4438  */
4439 
4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4441 {
4442     int pos = a->hw << 4;
4443     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4444     return true;
4445 }
4446 
4447 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4448 {
4449     int pos = a->hw << 4;
4450     uint64_t imm = a->imm;
4451 
4452     imm = ~(imm << pos);
4453     if (!a->sf) {
4454         imm = (uint32_t)imm;
4455     }
4456     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4457     return true;
4458 }
4459 
4460 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4461 {
4462     int pos = a->hw << 4;
4463     TCGv_i64 tcg_rd, tcg_im;
4464 
4465     tcg_rd = cpu_reg(s, a->rd);
4466     tcg_im = tcg_constant_i64(a->imm);
4467     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4468     if (!a->sf) {
4469         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4470     }
4471     return true;
4472 }
4473 
4474 /*
4475  * Bitfield
4476  */
4477 
4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4479 {
4480     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4481     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482     unsigned int bitsize = a->sf ? 64 : 32;
4483     unsigned int ri = a->immr;
4484     unsigned int si = a->imms;
4485     unsigned int pos, len;
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         len = (si - ri) + 1;
4490         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4491         if (!a->sf) {
4492             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4493         }
4494     } else {
4495         /* Wd<32+s-r,32-r> = Wn<s:0> */
4496         len = si + 1;
4497         pos = (bitsize - ri) & (bitsize - 1);
4498 
4499         if (len < ri) {
4500             /*
4501              * Sign extend the destination field from len to fill the
4502              * balance of the word.  Let the deposit below insert all
4503              * of those sign bits.
4504              */
4505             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4506             len = ri;
4507         }
4508 
4509         /*
4510          * We start with zero, and we haven't modified any bits outside
4511          * bitsize, therefore no final zero-extension is unneeded for !sf.
4512          */
4513         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4514     }
4515     return true;
4516 }
4517 
4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4519 {
4520     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4521     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4522     unsigned int bitsize = a->sf ? 64 : 32;
4523     unsigned int ri = a->immr;
4524     unsigned int si = a->imms;
4525     unsigned int pos, len;
4526 
4527     tcg_rd = cpu_reg(s, a->rd);
4528     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 
4530     if (si >= ri) {
4531         /* Wd<s-r:0> = Wn<s:r> */
4532         len = (si - ri) + 1;
4533         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534     } else {
4535         /* Wd<32+s-r,32-r> = Wn<s:0> */
4536         len = si + 1;
4537         pos = (bitsize - ri) & (bitsize - 1);
4538         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4539     }
4540     return true;
4541 }
4542 
4543 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4544 {
4545     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4546     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4547     unsigned int bitsize = a->sf ? 64 : 32;
4548     unsigned int ri = a->immr;
4549     unsigned int si = a->imms;
4550     unsigned int pos, len;
4551 
4552     tcg_rd = cpu_reg(s, a->rd);
4553     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4554 
4555     if (si >= ri) {
4556         /* Wd<s-r:0> = Wn<s:r> */
4557         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4558         len = (si - ri) + 1;
4559         pos = 0;
4560     } else {
4561         /* Wd<32+s-r,32-r> = Wn<s:0> */
4562         len = si + 1;
4563         pos = (bitsize - ri) & (bitsize - 1);
4564     }
4565 
4566     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4567     if (!a->sf) {
4568         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4569     }
4570     return true;
4571 }
4572 
4573 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4574 {
4575     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4576 
4577     tcg_rd = cpu_reg(s, a->rd);
4578 
4579     if (unlikely(a->imm == 0)) {
4580         /*
4581          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4582          * so an extract from bit 0 is a special case.
4583          */
4584         if (a->sf) {
4585             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4586         } else {
4587             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4588         }
4589     } else {
4590         tcg_rm = cpu_reg(s, a->rm);
4591         tcg_rn = cpu_reg(s, a->rn);
4592 
4593         if (a->sf) {
4594             /* Specialization to ROR happens in EXTRACT2.  */
4595             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4596         } else {
4597             TCGv_i32 t0 = tcg_temp_new_i32();
4598 
4599             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4600             if (a->rm == a->rn) {
4601                 tcg_gen_rotri_i32(t0, t0, a->imm);
4602             } else {
4603                 TCGv_i32 t1 = tcg_temp_new_i32();
4604                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4605                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4606             }
4607             tcg_gen_extu_i32_i64(tcg_rd, t0);
4608         }
4609     }
4610     return true;
4611 }
4612 
4613 /*
4614  * Cryptographic AES, SHA, SHA512
4615  */
4616 
4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4621 
4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4626 
4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4630 
4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4634 
4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4642 
4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4645 
4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4648 
4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4650 {
4651     if (!dc_isar_feature(aa64_sm3, s)) {
4652         return false;
4653     }
4654     if (fp_access_check(s)) {
4655         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4656         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4657         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4658         TCGv_i32 tcg_res = tcg_temp_new_i32();
4659         unsigned vsz, dofs;
4660 
4661         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4662         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4663         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4664 
4665         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4666         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4667         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4668         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4669 
4670         /* Clear the whole register first, then store bits [127:96]. */
4671         vsz = vec_full_reg_size(s);
4672         dofs = vec_full_reg_offset(s, a->rd);
4673         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4674         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4675     }
4676     return true;
4677 }
4678 
4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4680 {
4681     if (fp_access_check(s)) {
4682         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4683     }
4684     return true;
4685 }
4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4690 
4691 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4692 {
4693     if (!dc_isar_feature(aa64_sha3, s)) {
4694         return false;
4695     }
4696     if (fp_access_check(s)) {
4697         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4698                      vec_full_reg_offset(s, a->rn),
4699                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4700                      vec_full_reg_size(s));
4701     }
4702     return true;
4703 }
4704 
4705 /*
4706  * Advanced SIMD copy
4707  */
4708 
4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4710 {
4711     unsigned esz = ctz32(imm);
4712     if (esz <= MO_64) {
4713         *pesz = esz;
4714         *pidx = imm >> (esz + 1);
4715         return true;
4716     }
4717     return false;
4718 }
4719 
4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4721 {
4722     MemOp esz;
4723     unsigned idx;
4724 
4725     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4726         return false;
4727     }
4728     if (fp_access_check(s)) {
4729         /*
4730          * This instruction just extracts the specified element and
4731          * zero-extends it into the bottom of the destination register.
4732          */
4733         TCGv_i64 tmp = tcg_temp_new_i64();
4734         read_vec_element(s, tmp, a->rn, idx, esz);
4735         write_fp_dreg(s, a->rd, tmp);
4736     }
4737     return true;
4738 }
4739 
4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4741 {
4742     MemOp esz;
4743     unsigned idx;
4744 
4745     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4746         return false;
4747     }
4748     if (esz == MO_64 && !a->q) {
4749         return false;
4750     }
4751     if (fp_access_check(s)) {
4752         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4753                              vec_reg_offset(s, a->rn, idx, esz),
4754                              a->q ? 16 : 8, vec_full_reg_size(s));
4755     }
4756     return true;
4757 }
4758 
4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4760 {
4761     MemOp esz;
4762     unsigned idx;
4763 
4764     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4765         return false;
4766     }
4767     if (esz == MO_64 && !a->q) {
4768         return false;
4769     }
4770     if (fp_access_check(s)) {
4771         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4772                              a->q ? 16 : 8, vec_full_reg_size(s),
4773                              cpu_reg(s, a->rn));
4774     }
4775     return true;
4776 }
4777 
4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4779 {
4780     MemOp esz;
4781     unsigned idx;
4782 
4783     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4784         return false;
4785     }
4786     if (is_signed) {
4787         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4788             return false;
4789         }
4790     } else {
4791         if (esz == MO_64 ? !a->q : a->q) {
4792             return false;
4793         }
4794     }
4795     if (fp_access_check(s)) {
4796         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4797         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4798         if (is_signed && !a->q) {
4799             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4800         }
4801     }
4802     return true;
4803 }
4804 
4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4806 TRANS(UMOV, do_smov_umov, a, 0)
4807 
4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4809 {
4810     MemOp esz;
4811     unsigned idx;
4812 
4813     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4814         return false;
4815     }
4816     if (fp_access_check(s)) {
4817         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4818         clear_vec_high(s, true, a->rd);
4819     }
4820     return true;
4821 }
4822 
4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4824 {
4825     MemOp esz;
4826     unsigned didx, sidx;
4827 
4828     if (!decode_esz_idx(a->di, &esz, &didx)) {
4829         return false;
4830     }
4831     sidx = a->si >> esz;
4832     if (fp_access_check(s)) {
4833         TCGv_i64 tmp = tcg_temp_new_i64();
4834 
4835         read_vec_element(s, tmp, a->rn, sidx, esz);
4836         write_vec_element(s, tmp, a->rd, didx, esz);
4837 
4838         /* INS is considered a 128-bit write for SVE. */
4839         clear_vec_high(s, true, a->rd);
4840     }
4841     return true;
4842 }
4843 
4844 /*
4845  * Advanced SIMD three same
4846  */
4847 
4848 typedef struct FPScalar {
4849     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4850     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4851     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4852 } FPScalar;
4853 
4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4855 {
4856     switch (a->esz) {
4857     case MO_64:
4858         if (fp_access_check(s)) {
4859             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4860             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4861             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4862             write_fp_dreg(s, a->rd, t0);
4863         }
4864         break;
4865     case MO_32:
4866         if (fp_access_check(s)) {
4867             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4868             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4869             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4870             write_fp_sreg(s, a->rd, t0);
4871         }
4872         break;
4873     case MO_16:
4874         if (!dc_isar_feature(aa64_fp16, s)) {
4875             return false;
4876         }
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     default:
4885         return false;
4886     }
4887     return true;
4888 }
4889 
4890 static const FPScalar f_scalar_fadd = {
4891     gen_helper_vfp_addh,
4892     gen_helper_vfp_adds,
4893     gen_helper_vfp_addd,
4894 };
4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4896 
4897 static const FPScalar f_scalar_fsub = {
4898     gen_helper_vfp_subh,
4899     gen_helper_vfp_subs,
4900     gen_helper_vfp_subd,
4901 };
4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4903 
4904 static const FPScalar f_scalar_fdiv = {
4905     gen_helper_vfp_divh,
4906     gen_helper_vfp_divs,
4907     gen_helper_vfp_divd,
4908 };
4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4910 
4911 static const FPScalar f_scalar_fmul = {
4912     gen_helper_vfp_mulh,
4913     gen_helper_vfp_muls,
4914     gen_helper_vfp_muld,
4915 };
4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4917 
4918 static const FPScalar f_scalar_fmax = {
4919     gen_helper_advsimd_maxh,
4920     gen_helper_vfp_maxs,
4921     gen_helper_vfp_maxd,
4922 };
4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4924 
4925 static const FPScalar f_scalar_fmin = {
4926     gen_helper_advsimd_minh,
4927     gen_helper_vfp_mins,
4928     gen_helper_vfp_mind,
4929 };
4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4931 
4932 static const FPScalar f_scalar_fmaxnm = {
4933     gen_helper_advsimd_maxnumh,
4934     gen_helper_vfp_maxnums,
4935     gen_helper_vfp_maxnumd,
4936 };
4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4938 
4939 static const FPScalar f_scalar_fminnm = {
4940     gen_helper_advsimd_minnumh,
4941     gen_helper_vfp_minnums,
4942     gen_helper_vfp_minnumd,
4943 };
4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4945 
4946 static const FPScalar f_scalar_fmulx = {
4947     gen_helper_advsimd_mulxh,
4948     gen_helper_vfp_mulxs,
4949     gen_helper_vfp_mulxd,
4950 };
4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4952 
4953 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
4954                           gen_helper_gvec_3_ptr * const fns[3])
4955 {
4956     MemOp esz = a->esz;
4957 
4958     switch (esz) {
4959     case MO_64:
4960         if (!a->q) {
4961             return false;
4962         }
4963         break;
4964     case MO_32:
4965         break;
4966     case MO_16:
4967         if (!dc_isar_feature(aa64_fp16, s)) {
4968             return false;
4969         }
4970         break;
4971     default:
4972         return false;
4973     }
4974     if (fp_access_check(s)) {
4975         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
4976                           esz == MO_16, 0, fns[esz - 1]);
4977     }
4978     return true;
4979 }
4980 
4981 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
4982     gen_helper_gvec_fadd_h,
4983     gen_helper_gvec_fadd_s,
4984     gen_helper_gvec_fadd_d,
4985 };
4986 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
4987 
4988 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
4989     gen_helper_gvec_fsub_h,
4990     gen_helper_gvec_fsub_s,
4991     gen_helper_gvec_fsub_d,
4992 };
4993 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
4994 
4995 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
4996     gen_helper_gvec_fdiv_h,
4997     gen_helper_gvec_fdiv_s,
4998     gen_helper_gvec_fdiv_d,
4999 };
5000 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5001 
5002 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5003     gen_helper_gvec_fmul_h,
5004     gen_helper_gvec_fmul_s,
5005     gen_helper_gvec_fmul_d,
5006 };
5007 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5008 
5009 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5010     gen_helper_gvec_fmax_h,
5011     gen_helper_gvec_fmax_s,
5012     gen_helper_gvec_fmax_d,
5013 };
5014 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5015 
5016 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5017     gen_helper_gvec_fmin_h,
5018     gen_helper_gvec_fmin_s,
5019     gen_helper_gvec_fmin_d,
5020 };
5021 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5022 
5023 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5024     gen_helper_gvec_fmaxnum_h,
5025     gen_helper_gvec_fmaxnum_s,
5026     gen_helper_gvec_fmaxnum_d,
5027 };
5028 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5029 
5030 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5031     gen_helper_gvec_fminnum_h,
5032     gen_helper_gvec_fminnum_s,
5033     gen_helper_gvec_fminnum_d,
5034 };
5035 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5036 
5037 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5038     gen_helper_gvec_fmulx_h,
5039     gen_helper_gvec_fmulx_s,
5040     gen_helper_gvec_fmulx_d,
5041 };
5042 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5043 
5044 /*
5045  * Advanced SIMD scalar/vector x indexed element
5046  */
5047 
5048 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5049 {
5050     switch (a->esz) {
5051     case MO_64:
5052         if (fp_access_check(s)) {
5053             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5054             TCGv_i64 t1 = tcg_temp_new_i64();
5055 
5056             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5057             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5058             write_fp_dreg(s, a->rd, t0);
5059         }
5060         break;
5061     case MO_32:
5062         if (fp_access_check(s)) {
5063             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5064             TCGv_i32 t1 = tcg_temp_new_i32();
5065 
5066             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5067             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5068             write_fp_sreg(s, a->rd, t0);
5069         }
5070         break;
5071     case MO_16:
5072         if (!dc_isar_feature(aa64_fp16, s)) {
5073             return false;
5074         }
5075         if (fp_access_check(s)) {
5076             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5077             TCGv_i32 t1 = tcg_temp_new_i32();
5078 
5079             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5080             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5081             write_fp_sreg(s, a->rd, t0);
5082         }
5083         break;
5084     default:
5085         g_assert_not_reached();
5086     }
5087     return true;
5088 }
5089 
5090 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5091 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5092 
5093 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5094                               gen_helper_gvec_3_ptr * const fns[3])
5095 {
5096     MemOp esz = a->esz;
5097 
5098     switch (esz) {
5099     case MO_64:
5100         if (!a->q) {
5101             return false;
5102         }
5103         break;
5104     case MO_32:
5105         break;
5106     case MO_16:
5107         if (!dc_isar_feature(aa64_fp16, s)) {
5108             return false;
5109         }
5110         break;
5111     default:
5112         g_assert_not_reached();
5113     }
5114     if (fp_access_check(s)) {
5115         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5116                           esz == MO_16, a->idx, fns[esz - 1]);
5117     }
5118     return true;
5119 }
5120 
5121 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5122     gen_helper_gvec_fmul_idx_h,
5123     gen_helper_gvec_fmul_idx_s,
5124     gen_helper_gvec_fmul_idx_d,
5125 };
5126 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5127 
5128 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5129     gen_helper_gvec_fmulx_idx_h,
5130     gen_helper_gvec_fmulx_idx_s,
5131     gen_helper_gvec_fmulx_idx_d,
5132 };
5133 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5134 
5135 
5136 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5137  * Note that it is the caller's responsibility to ensure that the
5138  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5139  * mandated semantics for out of range shifts.
5140  */
5141 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5142                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5143 {
5144     switch (shift_type) {
5145     case A64_SHIFT_TYPE_LSL:
5146         tcg_gen_shl_i64(dst, src, shift_amount);
5147         break;
5148     case A64_SHIFT_TYPE_LSR:
5149         tcg_gen_shr_i64(dst, src, shift_amount);
5150         break;
5151     case A64_SHIFT_TYPE_ASR:
5152         if (!sf) {
5153             tcg_gen_ext32s_i64(dst, src);
5154         }
5155         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5156         break;
5157     case A64_SHIFT_TYPE_ROR:
5158         if (sf) {
5159             tcg_gen_rotr_i64(dst, src, shift_amount);
5160         } else {
5161             TCGv_i32 t0, t1;
5162             t0 = tcg_temp_new_i32();
5163             t1 = tcg_temp_new_i32();
5164             tcg_gen_extrl_i64_i32(t0, src);
5165             tcg_gen_extrl_i64_i32(t1, shift_amount);
5166             tcg_gen_rotr_i32(t0, t0, t1);
5167             tcg_gen_extu_i32_i64(dst, t0);
5168         }
5169         break;
5170     default:
5171         assert(FALSE); /* all shift types should be handled */
5172         break;
5173     }
5174 
5175     if (!sf) { /* zero extend final result */
5176         tcg_gen_ext32u_i64(dst, dst);
5177     }
5178 }
5179 
5180 /* Shift a TCGv src by immediate, put result in dst.
5181  * The shift amount must be in range (this should always be true as the
5182  * relevant instructions will UNDEF on bad shift immediates).
5183  */
5184 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5185                           enum a64_shift_type shift_type, unsigned int shift_i)
5186 {
5187     assert(shift_i < (sf ? 64 : 32));
5188 
5189     if (shift_i == 0) {
5190         tcg_gen_mov_i64(dst, src);
5191     } else {
5192         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5193     }
5194 }
5195 
5196 /* Logical (shifted register)
5197  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5198  * +----+-----+-----------+-------+---+------+--------+------+------+
5199  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5200  * +----+-----+-----------+-------+---+------+--------+------+------+
5201  */
5202 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5203 {
5204     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5205     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5206 
5207     sf = extract32(insn, 31, 1);
5208     opc = extract32(insn, 29, 2);
5209     shift_type = extract32(insn, 22, 2);
5210     invert = extract32(insn, 21, 1);
5211     rm = extract32(insn, 16, 5);
5212     shift_amount = extract32(insn, 10, 6);
5213     rn = extract32(insn, 5, 5);
5214     rd = extract32(insn, 0, 5);
5215 
5216     if (!sf && (shift_amount & (1 << 5))) {
5217         unallocated_encoding(s);
5218         return;
5219     }
5220 
5221     tcg_rd = cpu_reg(s, rd);
5222 
5223     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5224         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5225          * register-register MOV and MVN, so it is worth special casing.
5226          */
5227         tcg_rm = cpu_reg(s, rm);
5228         if (invert) {
5229             tcg_gen_not_i64(tcg_rd, tcg_rm);
5230             if (!sf) {
5231                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5232             }
5233         } else {
5234             if (sf) {
5235                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5236             } else {
5237                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5238             }
5239         }
5240         return;
5241     }
5242 
5243     tcg_rm = read_cpu_reg(s, rm, sf);
5244 
5245     if (shift_amount) {
5246         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5247     }
5248 
5249     tcg_rn = cpu_reg(s, rn);
5250 
5251     switch (opc | (invert << 2)) {
5252     case 0: /* AND */
5253     case 3: /* ANDS */
5254         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5255         break;
5256     case 1: /* ORR */
5257         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5258         break;
5259     case 2: /* EOR */
5260         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5261         break;
5262     case 4: /* BIC */
5263     case 7: /* BICS */
5264         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5265         break;
5266     case 5: /* ORN */
5267         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5268         break;
5269     case 6: /* EON */
5270         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5271         break;
5272     default:
5273         assert(FALSE);
5274         break;
5275     }
5276 
5277     if (!sf) {
5278         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5279     }
5280 
5281     if (opc == 3) {
5282         gen_logic_CC(sf, tcg_rd);
5283     }
5284 }
5285 
5286 /*
5287  * Add/subtract (extended register)
5288  *
5289  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5290  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5291  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5292  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5293  *
5294  *  sf: 0 -> 32bit, 1 -> 64bit
5295  *  op: 0 -> add  , 1 -> sub
5296  *   S: 1 -> set flags
5297  * opt: 00
5298  * option: extension type (see DecodeRegExtend)
5299  * imm3: optional shift to Rm
5300  *
5301  * Rd = Rn + LSL(extend(Rm), amount)
5302  */
5303 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5304 {
5305     int rd = extract32(insn, 0, 5);
5306     int rn = extract32(insn, 5, 5);
5307     int imm3 = extract32(insn, 10, 3);
5308     int option = extract32(insn, 13, 3);
5309     int rm = extract32(insn, 16, 5);
5310     int opt = extract32(insn, 22, 2);
5311     bool setflags = extract32(insn, 29, 1);
5312     bool sub_op = extract32(insn, 30, 1);
5313     bool sf = extract32(insn, 31, 1);
5314 
5315     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5316     TCGv_i64 tcg_rd;
5317     TCGv_i64 tcg_result;
5318 
5319     if (imm3 > 4 || opt != 0) {
5320         unallocated_encoding(s);
5321         return;
5322     }
5323 
5324     /* non-flag setting ops may use SP */
5325     if (!setflags) {
5326         tcg_rd = cpu_reg_sp(s, rd);
5327     } else {
5328         tcg_rd = cpu_reg(s, rd);
5329     }
5330     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5331 
5332     tcg_rm = read_cpu_reg(s, rm, sf);
5333     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5334 
5335     tcg_result = tcg_temp_new_i64();
5336 
5337     if (!setflags) {
5338         if (sub_op) {
5339             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5340         } else {
5341             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5342         }
5343     } else {
5344         if (sub_op) {
5345             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5346         } else {
5347             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5348         }
5349     }
5350 
5351     if (sf) {
5352         tcg_gen_mov_i64(tcg_rd, tcg_result);
5353     } else {
5354         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5355     }
5356 }
5357 
5358 /*
5359  * Add/subtract (shifted register)
5360  *
5361  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5362  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5363  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5364  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5365  *
5366  *    sf: 0 -> 32bit, 1 -> 64bit
5367  *    op: 0 -> add  , 1 -> sub
5368  *     S: 1 -> set flags
5369  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5370  *  imm6: Shift amount to apply to Rm before the add/sub
5371  */
5372 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5373 {
5374     int rd = extract32(insn, 0, 5);
5375     int rn = extract32(insn, 5, 5);
5376     int imm6 = extract32(insn, 10, 6);
5377     int rm = extract32(insn, 16, 5);
5378     int shift_type = extract32(insn, 22, 2);
5379     bool setflags = extract32(insn, 29, 1);
5380     bool sub_op = extract32(insn, 30, 1);
5381     bool sf = extract32(insn, 31, 1);
5382 
5383     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5384     TCGv_i64 tcg_rn, tcg_rm;
5385     TCGv_i64 tcg_result;
5386 
5387     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5388         unallocated_encoding(s);
5389         return;
5390     }
5391 
5392     tcg_rn = read_cpu_reg(s, rn, sf);
5393     tcg_rm = read_cpu_reg(s, rm, sf);
5394 
5395     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5396 
5397     tcg_result = tcg_temp_new_i64();
5398 
5399     if (!setflags) {
5400         if (sub_op) {
5401             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5402         } else {
5403             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5404         }
5405     } else {
5406         if (sub_op) {
5407             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5408         } else {
5409             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5410         }
5411     }
5412 
5413     if (sf) {
5414         tcg_gen_mov_i64(tcg_rd, tcg_result);
5415     } else {
5416         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5417     }
5418 }
5419 
5420 /* Data-processing (3 source)
5421  *
5422  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5423  *  +--+------+-----------+------+------+----+------+------+------+
5424  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5425  *  +--+------+-----------+------+------+----+------+------+------+
5426  */
5427 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5428 {
5429     int rd = extract32(insn, 0, 5);
5430     int rn = extract32(insn, 5, 5);
5431     int ra = extract32(insn, 10, 5);
5432     int rm = extract32(insn, 16, 5);
5433     int op_id = (extract32(insn, 29, 3) << 4) |
5434         (extract32(insn, 21, 3) << 1) |
5435         extract32(insn, 15, 1);
5436     bool sf = extract32(insn, 31, 1);
5437     bool is_sub = extract32(op_id, 0, 1);
5438     bool is_high = extract32(op_id, 2, 1);
5439     bool is_signed = false;
5440     TCGv_i64 tcg_op1;
5441     TCGv_i64 tcg_op2;
5442     TCGv_i64 tcg_tmp;
5443 
5444     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5445     switch (op_id) {
5446     case 0x42: /* SMADDL */
5447     case 0x43: /* SMSUBL */
5448     case 0x44: /* SMULH */
5449         is_signed = true;
5450         break;
5451     case 0x0: /* MADD (32bit) */
5452     case 0x1: /* MSUB (32bit) */
5453     case 0x40: /* MADD (64bit) */
5454     case 0x41: /* MSUB (64bit) */
5455     case 0x4a: /* UMADDL */
5456     case 0x4b: /* UMSUBL */
5457     case 0x4c: /* UMULH */
5458         break;
5459     default:
5460         unallocated_encoding(s);
5461         return;
5462     }
5463 
5464     if (is_high) {
5465         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5466         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5467         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5468         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5469 
5470         if (is_signed) {
5471             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5472         } else {
5473             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5474         }
5475         return;
5476     }
5477 
5478     tcg_op1 = tcg_temp_new_i64();
5479     tcg_op2 = tcg_temp_new_i64();
5480     tcg_tmp = tcg_temp_new_i64();
5481 
5482     if (op_id < 0x42) {
5483         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5484         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5485     } else {
5486         if (is_signed) {
5487             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5488             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5489         } else {
5490             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5491             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5492         }
5493     }
5494 
5495     if (ra == 31 && !is_sub) {
5496         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5497         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5498     } else {
5499         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5500         if (is_sub) {
5501             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5502         } else {
5503             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5504         }
5505     }
5506 
5507     if (!sf) {
5508         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5509     }
5510 }
5511 
5512 /* Add/subtract (with carry)
5513  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5514  * +--+--+--+------------------------+------+-------------+------+-----+
5515  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5516  * +--+--+--+------------------------+------+-------------+------+-----+
5517  */
5518 
5519 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5520 {
5521     unsigned int sf, op, setflags, rm, rn, rd;
5522     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5523 
5524     sf = extract32(insn, 31, 1);
5525     op = extract32(insn, 30, 1);
5526     setflags = extract32(insn, 29, 1);
5527     rm = extract32(insn, 16, 5);
5528     rn = extract32(insn, 5, 5);
5529     rd = extract32(insn, 0, 5);
5530 
5531     tcg_rd = cpu_reg(s, rd);
5532     tcg_rn = cpu_reg(s, rn);
5533 
5534     if (op) {
5535         tcg_y = tcg_temp_new_i64();
5536         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5537     } else {
5538         tcg_y = cpu_reg(s, rm);
5539     }
5540 
5541     if (setflags) {
5542         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5543     } else {
5544         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5545     }
5546 }
5547 
5548 /*
5549  * Rotate right into flags
5550  *  31 30 29                21       15          10      5  4      0
5551  * +--+--+--+-----------------+--------+-----------+------+--+------+
5552  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5553  * +--+--+--+-----------------+--------+-----------+------+--+------+
5554  */
5555 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5556 {
5557     int mask = extract32(insn, 0, 4);
5558     int o2 = extract32(insn, 4, 1);
5559     int rn = extract32(insn, 5, 5);
5560     int imm6 = extract32(insn, 15, 6);
5561     int sf_op_s = extract32(insn, 29, 3);
5562     TCGv_i64 tcg_rn;
5563     TCGv_i32 nzcv;
5564 
5565     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5566         unallocated_encoding(s);
5567         return;
5568     }
5569 
5570     tcg_rn = read_cpu_reg(s, rn, 1);
5571     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5572 
5573     nzcv = tcg_temp_new_i32();
5574     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5575 
5576     if (mask & 8) { /* N */
5577         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5578     }
5579     if (mask & 4) { /* Z */
5580         tcg_gen_not_i32(cpu_ZF, nzcv);
5581         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5582     }
5583     if (mask & 2) { /* C */
5584         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5585     }
5586     if (mask & 1) { /* V */
5587         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5588     }
5589 }
5590 
5591 /*
5592  * Evaluate into flags
5593  *  31 30 29                21        15   14        10      5  4      0
5594  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5595  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5596  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5597  */
5598 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5599 {
5600     int o3_mask = extract32(insn, 0, 5);
5601     int rn = extract32(insn, 5, 5);
5602     int o2 = extract32(insn, 15, 6);
5603     int sz = extract32(insn, 14, 1);
5604     int sf_op_s = extract32(insn, 29, 3);
5605     TCGv_i32 tmp;
5606     int shift;
5607 
5608     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5609         !dc_isar_feature(aa64_condm_4, s)) {
5610         unallocated_encoding(s);
5611         return;
5612     }
5613     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5614 
5615     tmp = tcg_temp_new_i32();
5616     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5617     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5618     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5619     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5620     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5621 }
5622 
5623 /* Conditional compare (immediate / register)
5624  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5625  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5626  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5627  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5628  *        [1]                             y                [0]       [0]
5629  */
5630 static void disas_cc(DisasContext *s, uint32_t insn)
5631 {
5632     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5633     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5634     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5635     DisasCompare c;
5636 
5637     if (!extract32(insn, 29, 1)) {
5638         unallocated_encoding(s);
5639         return;
5640     }
5641     if (insn & (1 << 10 | 1 << 4)) {
5642         unallocated_encoding(s);
5643         return;
5644     }
5645     sf = extract32(insn, 31, 1);
5646     op = extract32(insn, 30, 1);
5647     is_imm = extract32(insn, 11, 1);
5648     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5649     cond = extract32(insn, 12, 4);
5650     rn = extract32(insn, 5, 5);
5651     nzcv = extract32(insn, 0, 4);
5652 
5653     /* Set T0 = !COND.  */
5654     tcg_t0 = tcg_temp_new_i32();
5655     arm_test_cc(&c, cond);
5656     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5657 
5658     /* Load the arguments for the new comparison.  */
5659     if (is_imm) {
5660         tcg_y = tcg_temp_new_i64();
5661         tcg_gen_movi_i64(tcg_y, y);
5662     } else {
5663         tcg_y = cpu_reg(s, y);
5664     }
5665     tcg_rn = cpu_reg(s, rn);
5666 
5667     /* Set the flags for the new comparison.  */
5668     tcg_tmp = tcg_temp_new_i64();
5669     if (op) {
5670         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5671     } else {
5672         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5673     }
5674 
5675     /* If COND was false, force the flags to #nzcv.  Compute two masks
5676      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5677      * For tcg hosts that support ANDC, we can make do with just T1.
5678      * In either case, allow the tcg optimizer to delete any unused mask.
5679      */
5680     tcg_t1 = tcg_temp_new_i32();
5681     tcg_t2 = tcg_temp_new_i32();
5682     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5683     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5684 
5685     if (nzcv & 8) { /* N */
5686         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5687     } else {
5688         if (TCG_TARGET_HAS_andc_i32) {
5689             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5690         } else {
5691             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5692         }
5693     }
5694     if (nzcv & 4) { /* Z */
5695         if (TCG_TARGET_HAS_andc_i32) {
5696             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5697         } else {
5698             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5699         }
5700     } else {
5701         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5702     }
5703     if (nzcv & 2) { /* C */
5704         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5705     } else {
5706         if (TCG_TARGET_HAS_andc_i32) {
5707             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5708         } else {
5709             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5710         }
5711     }
5712     if (nzcv & 1) { /* V */
5713         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5714     } else {
5715         if (TCG_TARGET_HAS_andc_i32) {
5716             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5717         } else {
5718             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5719         }
5720     }
5721 }
5722 
5723 /* Conditional select
5724  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5725  * +----+----+---+-----------------+------+------+-----+------+------+
5726  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5727  * +----+----+---+-----------------+------+------+-----+------+------+
5728  */
5729 static void disas_cond_select(DisasContext *s, uint32_t insn)
5730 {
5731     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5732     TCGv_i64 tcg_rd, zero;
5733     DisasCompare64 c;
5734 
5735     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5736         /* S == 1 or op2<1> == 1 */
5737         unallocated_encoding(s);
5738         return;
5739     }
5740     sf = extract32(insn, 31, 1);
5741     else_inv = extract32(insn, 30, 1);
5742     rm = extract32(insn, 16, 5);
5743     cond = extract32(insn, 12, 4);
5744     else_inc = extract32(insn, 10, 1);
5745     rn = extract32(insn, 5, 5);
5746     rd = extract32(insn, 0, 5);
5747 
5748     tcg_rd = cpu_reg(s, rd);
5749 
5750     a64_test_cc(&c, cond);
5751     zero = tcg_constant_i64(0);
5752 
5753     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5754         /* CSET & CSETM.  */
5755         if (else_inv) {
5756             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5757                                    tcg_rd, c.value, zero);
5758         } else {
5759             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5760                                 tcg_rd, c.value, zero);
5761         }
5762     } else {
5763         TCGv_i64 t_true = cpu_reg(s, rn);
5764         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5765         if (else_inv && else_inc) {
5766             tcg_gen_neg_i64(t_false, t_false);
5767         } else if (else_inv) {
5768             tcg_gen_not_i64(t_false, t_false);
5769         } else if (else_inc) {
5770             tcg_gen_addi_i64(t_false, t_false, 1);
5771         }
5772         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5773     }
5774 
5775     if (!sf) {
5776         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5777     }
5778 }
5779 
5780 static void handle_clz(DisasContext *s, unsigned int sf,
5781                        unsigned int rn, unsigned int rd)
5782 {
5783     TCGv_i64 tcg_rd, tcg_rn;
5784     tcg_rd = cpu_reg(s, rd);
5785     tcg_rn = cpu_reg(s, rn);
5786 
5787     if (sf) {
5788         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5789     } else {
5790         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5791         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5792         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5793         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5794     }
5795 }
5796 
5797 static void handle_cls(DisasContext *s, unsigned int sf,
5798                        unsigned int rn, unsigned int rd)
5799 {
5800     TCGv_i64 tcg_rd, tcg_rn;
5801     tcg_rd = cpu_reg(s, rd);
5802     tcg_rn = cpu_reg(s, rn);
5803 
5804     if (sf) {
5805         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5806     } else {
5807         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5808         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5809         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5810         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5811     }
5812 }
5813 
5814 static void handle_rbit(DisasContext *s, unsigned int sf,
5815                         unsigned int rn, unsigned int rd)
5816 {
5817     TCGv_i64 tcg_rd, tcg_rn;
5818     tcg_rd = cpu_reg(s, rd);
5819     tcg_rn = cpu_reg(s, rn);
5820 
5821     if (sf) {
5822         gen_helper_rbit64(tcg_rd, tcg_rn);
5823     } else {
5824         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5825         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5826         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5827         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5828     }
5829 }
5830 
5831 /* REV with sf==1, opcode==3 ("REV64") */
5832 static void handle_rev64(DisasContext *s, unsigned int sf,
5833                          unsigned int rn, unsigned int rd)
5834 {
5835     if (!sf) {
5836         unallocated_encoding(s);
5837         return;
5838     }
5839     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5840 }
5841 
5842 /* REV with sf==0, opcode==2
5843  * REV32 (sf==1, opcode==2)
5844  */
5845 static void handle_rev32(DisasContext *s, unsigned int sf,
5846                          unsigned int rn, unsigned int rd)
5847 {
5848     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5849     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5850 
5851     if (sf) {
5852         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5853         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5854     } else {
5855         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5856     }
5857 }
5858 
5859 /* REV16 (opcode==1) */
5860 static void handle_rev16(DisasContext *s, unsigned int sf,
5861                          unsigned int rn, unsigned int rd)
5862 {
5863     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5864     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5865     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5866     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5867 
5868     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5869     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5870     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5871     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5872     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5873 }
5874 
5875 /* Data-processing (1 source)
5876  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5877  * +----+---+---+-----------------+---------+--------+------+------+
5878  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5879  * +----+---+---+-----------------+---------+--------+------+------+
5880  */
5881 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5882 {
5883     unsigned int sf, opcode, opcode2, rn, rd;
5884     TCGv_i64 tcg_rd;
5885 
5886     if (extract32(insn, 29, 1)) {
5887         unallocated_encoding(s);
5888         return;
5889     }
5890 
5891     sf = extract32(insn, 31, 1);
5892     opcode = extract32(insn, 10, 6);
5893     opcode2 = extract32(insn, 16, 5);
5894     rn = extract32(insn, 5, 5);
5895     rd = extract32(insn, 0, 5);
5896 
5897 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5898 
5899     switch (MAP(sf, opcode2, opcode)) {
5900     case MAP(0, 0x00, 0x00): /* RBIT */
5901     case MAP(1, 0x00, 0x00):
5902         handle_rbit(s, sf, rn, rd);
5903         break;
5904     case MAP(0, 0x00, 0x01): /* REV16 */
5905     case MAP(1, 0x00, 0x01):
5906         handle_rev16(s, sf, rn, rd);
5907         break;
5908     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5909     case MAP(1, 0x00, 0x02):
5910         handle_rev32(s, sf, rn, rd);
5911         break;
5912     case MAP(1, 0x00, 0x03): /* REV64 */
5913         handle_rev64(s, sf, rn, rd);
5914         break;
5915     case MAP(0, 0x00, 0x04): /* CLZ */
5916     case MAP(1, 0x00, 0x04):
5917         handle_clz(s, sf, rn, rd);
5918         break;
5919     case MAP(0, 0x00, 0x05): /* CLS */
5920     case MAP(1, 0x00, 0x05):
5921         handle_cls(s, sf, rn, rd);
5922         break;
5923     case MAP(1, 0x01, 0x00): /* PACIA */
5924         if (s->pauth_active) {
5925             tcg_rd = cpu_reg(s, rd);
5926             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5927         } else if (!dc_isar_feature(aa64_pauth, s)) {
5928             goto do_unallocated;
5929         }
5930         break;
5931     case MAP(1, 0x01, 0x01): /* PACIB */
5932         if (s->pauth_active) {
5933             tcg_rd = cpu_reg(s, rd);
5934             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5935         } else if (!dc_isar_feature(aa64_pauth, s)) {
5936             goto do_unallocated;
5937         }
5938         break;
5939     case MAP(1, 0x01, 0x02): /* PACDA */
5940         if (s->pauth_active) {
5941             tcg_rd = cpu_reg(s, rd);
5942             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5943         } else if (!dc_isar_feature(aa64_pauth, s)) {
5944             goto do_unallocated;
5945         }
5946         break;
5947     case MAP(1, 0x01, 0x03): /* PACDB */
5948         if (s->pauth_active) {
5949             tcg_rd = cpu_reg(s, rd);
5950             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5951         } else if (!dc_isar_feature(aa64_pauth, s)) {
5952             goto do_unallocated;
5953         }
5954         break;
5955     case MAP(1, 0x01, 0x04): /* AUTIA */
5956         if (s->pauth_active) {
5957             tcg_rd = cpu_reg(s, rd);
5958             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5959         } else if (!dc_isar_feature(aa64_pauth, s)) {
5960             goto do_unallocated;
5961         }
5962         break;
5963     case MAP(1, 0x01, 0x05): /* AUTIB */
5964         if (s->pauth_active) {
5965             tcg_rd = cpu_reg(s, rd);
5966             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5967         } else if (!dc_isar_feature(aa64_pauth, s)) {
5968             goto do_unallocated;
5969         }
5970         break;
5971     case MAP(1, 0x01, 0x06): /* AUTDA */
5972         if (s->pauth_active) {
5973             tcg_rd = cpu_reg(s, rd);
5974             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5975         } else if (!dc_isar_feature(aa64_pauth, s)) {
5976             goto do_unallocated;
5977         }
5978         break;
5979     case MAP(1, 0x01, 0x07): /* AUTDB */
5980         if (s->pauth_active) {
5981             tcg_rd = cpu_reg(s, rd);
5982             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5983         } else if (!dc_isar_feature(aa64_pauth, s)) {
5984             goto do_unallocated;
5985         }
5986         break;
5987     case MAP(1, 0x01, 0x08): /* PACIZA */
5988         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5989             goto do_unallocated;
5990         } else if (s->pauth_active) {
5991             tcg_rd = cpu_reg(s, rd);
5992             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5993         }
5994         break;
5995     case MAP(1, 0x01, 0x09): /* PACIZB */
5996         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5997             goto do_unallocated;
5998         } else if (s->pauth_active) {
5999             tcg_rd = cpu_reg(s, rd);
6000             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6001         }
6002         break;
6003     case MAP(1, 0x01, 0x0a): /* PACDZA */
6004         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6005             goto do_unallocated;
6006         } else if (s->pauth_active) {
6007             tcg_rd = cpu_reg(s, rd);
6008             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6009         }
6010         break;
6011     case MAP(1, 0x01, 0x0b): /* PACDZB */
6012         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6013             goto do_unallocated;
6014         } else if (s->pauth_active) {
6015             tcg_rd = cpu_reg(s, rd);
6016             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6017         }
6018         break;
6019     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6020         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6021             goto do_unallocated;
6022         } else if (s->pauth_active) {
6023             tcg_rd = cpu_reg(s, rd);
6024             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6025         }
6026         break;
6027     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6028         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6029             goto do_unallocated;
6030         } else if (s->pauth_active) {
6031             tcg_rd = cpu_reg(s, rd);
6032             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6033         }
6034         break;
6035     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6036         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6037             goto do_unallocated;
6038         } else if (s->pauth_active) {
6039             tcg_rd = cpu_reg(s, rd);
6040             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6041         }
6042         break;
6043     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6044         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6045             goto do_unallocated;
6046         } else if (s->pauth_active) {
6047             tcg_rd = cpu_reg(s, rd);
6048             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6049         }
6050         break;
6051     case MAP(1, 0x01, 0x10): /* XPACI */
6052         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6053             goto do_unallocated;
6054         } else if (s->pauth_active) {
6055             tcg_rd = cpu_reg(s, rd);
6056             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6057         }
6058         break;
6059     case MAP(1, 0x01, 0x11): /* XPACD */
6060         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6061             goto do_unallocated;
6062         } else if (s->pauth_active) {
6063             tcg_rd = cpu_reg(s, rd);
6064             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6065         }
6066         break;
6067     default:
6068     do_unallocated:
6069         unallocated_encoding(s);
6070         break;
6071     }
6072 
6073 #undef MAP
6074 }
6075 
6076 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6077                        unsigned int rm, unsigned int rn, unsigned int rd)
6078 {
6079     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6080     tcg_rd = cpu_reg(s, rd);
6081 
6082     if (!sf && is_signed) {
6083         tcg_n = tcg_temp_new_i64();
6084         tcg_m = tcg_temp_new_i64();
6085         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6086         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6087     } else {
6088         tcg_n = read_cpu_reg(s, rn, sf);
6089         tcg_m = read_cpu_reg(s, rm, sf);
6090     }
6091 
6092     if (is_signed) {
6093         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6094     } else {
6095         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6096     }
6097 
6098     if (!sf) { /* zero extend final result */
6099         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6100     }
6101 }
6102 
6103 /* LSLV, LSRV, ASRV, RORV */
6104 static void handle_shift_reg(DisasContext *s,
6105                              enum a64_shift_type shift_type, unsigned int sf,
6106                              unsigned int rm, unsigned int rn, unsigned int rd)
6107 {
6108     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6109     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6110     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6111 
6112     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6113     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6114 }
6115 
6116 /* CRC32[BHWX], CRC32C[BHWX] */
6117 static void handle_crc32(DisasContext *s,
6118                          unsigned int sf, unsigned int sz, bool crc32c,
6119                          unsigned int rm, unsigned int rn, unsigned int rd)
6120 {
6121     TCGv_i64 tcg_acc, tcg_val;
6122     TCGv_i32 tcg_bytes;
6123 
6124     if (!dc_isar_feature(aa64_crc32, s)
6125         || (sf == 1 && sz != 3)
6126         || (sf == 0 && sz == 3)) {
6127         unallocated_encoding(s);
6128         return;
6129     }
6130 
6131     if (sz == 3) {
6132         tcg_val = cpu_reg(s, rm);
6133     } else {
6134         uint64_t mask;
6135         switch (sz) {
6136         case 0:
6137             mask = 0xFF;
6138             break;
6139         case 1:
6140             mask = 0xFFFF;
6141             break;
6142         case 2:
6143             mask = 0xFFFFFFFF;
6144             break;
6145         default:
6146             g_assert_not_reached();
6147         }
6148         tcg_val = tcg_temp_new_i64();
6149         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6150     }
6151 
6152     tcg_acc = cpu_reg(s, rn);
6153     tcg_bytes = tcg_constant_i32(1 << sz);
6154 
6155     if (crc32c) {
6156         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6157     } else {
6158         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6159     }
6160 }
6161 
6162 /* Data-processing (2 source)
6163  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6164  * +----+---+---+-----------------+------+--------+------+------+
6165  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6166  * +----+---+---+-----------------+------+--------+------+------+
6167  */
6168 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6169 {
6170     unsigned int sf, rm, opcode, rn, rd, setflag;
6171     sf = extract32(insn, 31, 1);
6172     setflag = extract32(insn, 29, 1);
6173     rm = extract32(insn, 16, 5);
6174     opcode = extract32(insn, 10, 6);
6175     rn = extract32(insn, 5, 5);
6176     rd = extract32(insn, 0, 5);
6177 
6178     if (setflag && opcode != 0) {
6179         unallocated_encoding(s);
6180         return;
6181     }
6182 
6183     switch (opcode) {
6184     case 0: /* SUBP(S) */
6185         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6186             goto do_unallocated;
6187         } else {
6188             TCGv_i64 tcg_n, tcg_m, tcg_d;
6189 
6190             tcg_n = read_cpu_reg_sp(s, rn, true);
6191             tcg_m = read_cpu_reg_sp(s, rm, true);
6192             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6193             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6194             tcg_d = cpu_reg(s, rd);
6195 
6196             if (setflag) {
6197                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6198             } else {
6199                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6200             }
6201         }
6202         break;
6203     case 2: /* UDIV */
6204         handle_div(s, false, sf, rm, rn, rd);
6205         break;
6206     case 3: /* SDIV */
6207         handle_div(s, true, sf, rm, rn, rd);
6208         break;
6209     case 4: /* IRG */
6210         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6211             goto do_unallocated;
6212         }
6213         if (s->ata[0]) {
6214             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6215                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6216         } else {
6217             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6218                                              cpu_reg_sp(s, rn));
6219         }
6220         break;
6221     case 5: /* GMI */
6222         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6223             goto do_unallocated;
6224         } else {
6225             TCGv_i64 t = tcg_temp_new_i64();
6226 
6227             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6228             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6229             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6230         }
6231         break;
6232     case 8: /* LSLV */
6233         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6234         break;
6235     case 9: /* LSRV */
6236         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6237         break;
6238     case 10: /* ASRV */
6239         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6240         break;
6241     case 11: /* RORV */
6242         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6243         break;
6244     case 12: /* PACGA */
6245         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6246             goto do_unallocated;
6247         }
6248         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6249                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6250         break;
6251     case 16:
6252     case 17:
6253     case 18:
6254     case 19:
6255     case 20:
6256     case 21:
6257     case 22:
6258     case 23: /* CRC32 */
6259     {
6260         int sz = extract32(opcode, 0, 2);
6261         bool crc32c = extract32(opcode, 2, 1);
6262         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6263         break;
6264     }
6265     default:
6266     do_unallocated:
6267         unallocated_encoding(s);
6268         break;
6269     }
6270 }
6271 
6272 /*
6273  * Data processing - register
6274  *  31  30 29  28      25    21  20  16      10         0
6275  * +--+---+--+---+-------+-----+-------+-------+---------+
6276  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6277  * +--+---+--+---+-------+-----+-------+-------+---------+
6278  */
6279 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6280 {
6281     int op0 = extract32(insn, 30, 1);
6282     int op1 = extract32(insn, 28, 1);
6283     int op2 = extract32(insn, 21, 4);
6284     int op3 = extract32(insn, 10, 6);
6285 
6286     if (!op1) {
6287         if (op2 & 8) {
6288             if (op2 & 1) {
6289                 /* Add/sub (extended register) */
6290                 disas_add_sub_ext_reg(s, insn);
6291             } else {
6292                 /* Add/sub (shifted register) */
6293                 disas_add_sub_reg(s, insn);
6294             }
6295         } else {
6296             /* Logical (shifted register) */
6297             disas_logic_reg(s, insn);
6298         }
6299         return;
6300     }
6301 
6302     switch (op2) {
6303     case 0x0:
6304         switch (op3) {
6305         case 0x00: /* Add/subtract (with carry) */
6306             disas_adc_sbc(s, insn);
6307             break;
6308 
6309         case 0x01: /* Rotate right into flags */
6310         case 0x21:
6311             disas_rotate_right_into_flags(s, insn);
6312             break;
6313 
6314         case 0x02: /* Evaluate into flags */
6315         case 0x12:
6316         case 0x22:
6317         case 0x32:
6318             disas_evaluate_into_flags(s, insn);
6319             break;
6320 
6321         default:
6322             goto do_unallocated;
6323         }
6324         break;
6325 
6326     case 0x2: /* Conditional compare */
6327         disas_cc(s, insn); /* both imm and reg forms */
6328         break;
6329 
6330     case 0x4: /* Conditional select */
6331         disas_cond_select(s, insn);
6332         break;
6333 
6334     case 0x6: /* Data-processing */
6335         if (op0) {    /* (1 source) */
6336             disas_data_proc_1src(s, insn);
6337         } else {      /* (2 source) */
6338             disas_data_proc_2src(s, insn);
6339         }
6340         break;
6341     case 0x8 ... 0xf: /* (3 source) */
6342         disas_data_proc_3src(s, insn);
6343         break;
6344 
6345     default:
6346     do_unallocated:
6347         unallocated_encoding(s);
6348         break;
6349     }
6350 }
6351 
6352 static void handle_fp_compare(DisasContext *s, int size,
6353                               unsigned int rn, unsigned int rm,
6354                               bool cmp_with_zero, bool signal_all_nans)
6355 {
6356     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6357     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6358 
6359     if (size == MO_64) {
6360         TCGv_i64 tcg_vn, tcg_vm;
6361 
6362         tcg_vn = read_fp_dreg(s, rn);
6363         if (cmp_with_zero) {
6364             tcg_vm = tcg_constant_i64(0);
6365         } else {
6366             tcg_vm = read_fp_dreg(s, rm);
6367         }
6368         if (signal_all_nans) {
6369             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6370         } else {
6371             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6372         }
6373     } else {
6374         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6375         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6376 
6377         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6378         if (cmp_with_zero) {
6379             tcg_gen_movi_i32(tcg_vm, 0);
6380         } else {
6381             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6382         }
6383 
6384         switch (size) {
6385         case MO_32:
6386             if (signal_all_nans) {
6387                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6388             } else {
6389                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6390             }
6391             break;
6392         case MO_16:
6393             if (signal_all_nans) {
6394                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6395             } else {
6396                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6397             }
6398             break;
6399         default:
6400             g_assert_not_reached();
6401         }
6402     }
6403 
6404     gen_set_nzcv(tcg_flags);
6405 }
6406 
6407 /* Floating point compare
6408  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6409  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6410  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6411  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6412  */
6413 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6414 {
6415     unsigned int mos, type, rm, op, rn, opc, op2r;
6416     int size;
6417 
6418     mos = extract32(insn, 29, 3);
6419     type = extract32(insn, 22, 2);
6420     rm = extract32(insn, 16, 5);
6421     op = extract32(insn, 14, 2);
6422     rn = extract32(insn, 5, 5);
6423     opc = extract32(insn, 3, 2);
6424     op2r = extract32(insn, 0, 3);
6425 
6426     if (mos || op || op2r) {
6427         unallocated_encoding(s);
6428         return;
6429     }
6430 
6431     switch (type) {
6432     case 0:
6433         size = MO_32;
6434         break;
6435     case 1:
6436         size = MO_64;
6437         break;
6438     case 3:
6439         size = MO_16;
6440         if (dc_isar_feature(aa64_fp16, s)) {
6441             break;
6442         }
6443         /* fallthru */
6444     default:
6445         unallocated_encoding(s);
6446         return;
6447     }
6448 
6449     if (!fp_access_check(s)) {
6450         return;
6451     }
6452 
6453     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6454 }
6455 
6456 /* Floating point conditional compare
6457  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6458  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6459  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6460  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6461  */
6462 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6463 {
6464     unsigned int mos, type, rm, cond, rn, op, nzcv;
6465     TCGLabel *label_continue = NULL;
6466     int size;
6467 
6468     mos = extract32(insn, 29, 3);
6469     type = extract32(insn, 22, 2);
6470     rm = extract32(insn, 16, 5);
6471     cond = extract32(insn, 12, 4);
6472     rn = extract32(insn, 5, 5);
6473     op = extract32(insn, 4, 1);
6474     nzcv = extract32(insn, 0, 4);
6475 
6476     if (mos) {
6477         unallocated_encoding(s);
6478         return;
6479     }
6480 
6481     switch (type) {
6482     case 0:
6483         size = MO_32;
6484         break;
6485     case 1:
6486         size = MO_64;
6487         break;
6488     case 3:
6489         size = MO_16;
6490         if (dc_isar_feature(aa64_fp16, s)) {
6491             break;
6492         }
6493         /* fallthru */
6494     default:
6495         unallocated_encoding(s);
6496         return;
6497     }
6498 
6499     if (!fp_access_check(s)) {
6500         return;
6501     }
6502 
6503     if (cond < 0x0e) { /* not always */
6504         TCGLabel *label_match = gen_new_label();
6505         label_continue = gen_new_label();
6506         arm_gen_test_cc(cond, label_match);
6507         /* nomatch: */
6508         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6509         tcg_gen_br(label_continue);
6510         gen_set_label(label_match);
6511     }
6512 
6513     handle_fp_compare(s, size, rn, rm, false, op);
6514 
6515     if (cond < 0x0e) {
6516         gen_set_label(label_continue);
6517     }
6518 }
6519 
6520 /* Floating point conditional select
6521  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6522  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6523  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6524  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6525  */
6526 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6527 {
6528     unsigned int mos, type, rm, cond, rn, rd;
6529     TCGv_i64 t_true, t_false;
6530     DisasCompare64 c;
6531     MemOp sz;
6532 
6533     mos = extract32(insn, 29, 3);
6534     type = extract32(insn, 22, 2);
6535     rm = extract32(insn, 16, 5);
6536     cond = extract32(insn, 12, 4);
6537     rn = extract32(insn, 5, 5);
6538     rd = extract32(insn, 0, 5);
6539 
6540     if (mos) {
6541         unallocated_encoding(s);
6542         return;
6543     }
6544 
6545     switch (type) {
6546     case 0:
6547         sz = MO_32;
6548         break;
6549     case 1:
6550         sz = MO_64;
6551         break;
6552     case 3:
6553         sz = MO_16;
6554         if (dc_isar_feature(aa64_fp16, s)) {
6555             break;
6556         }
6557         /* fallthru */
6558     default:
6559         unallocated_encoding(s);
6560         return;
6561     }
6562 
6563     if (!fp_access_check(s)) {
6564         return;
6565     }
6566 
6567     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6568     t_true = tcg_temp_new_i64();
6569     t_false = tcg_temp_new_i64();
6570     read_vec_element(s, t_true, rn, 0, sz);
6571     read_vec_element(s, t_false, rm, 0, sz);
6572 
6573     a64_test_cc(&c, cond);
6574     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6575                         t_true, t_false);
6576 
6577     /* Note that sregs & hregs write back zeros to the high bits,
6578        and we've already done the zero-extension.  */
6579     write_fp_dreg(s, rd, t_true);
6580 }
6581 
6582 /* Floating-point data-processing (1 source) - half precision */
6583 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6584 {
6585     TCGv_ptr fpst = NULL;
6586     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6587     TCGv_i32 tcg_res = tcg_temp_new_i32();
6588 
6589     switch (opcode) {
6590     case 0x0: /* FMOV */
6591         tcg_gen_mov_i32(tcg_res, tcg_op);
6592         break;
6593     case 0x1: /* FABS */
6594         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6595         break;
6596     case 0x2: /* FNEG */
6597         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6598         break;
6599     case 0x3: /* FSQRT */
6600         fpst = fpstatus_ptr(FPST_FPCR_F16);
6601         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6602         break;
6603     case 0x8: /* FRINTN */
6604     case 0x9: /* FRINTP */
6605     case 0xa: /* FRINTM */
6606     case 0xb: /* FRINTZ */
6607     case 0xc: /* FRINTA */
6608     {
6609         TCGv_i32 tcg_rmode;
6610 
6611         fpst = fpstatus_ptr(FPST_FPCR_F16);
6612         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6613         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6614         gen_restore_rmode(tcg_rmode, fpst);
6615         break;
6616     }
6617     case 0xe: /* FRINTX */
6618         fpst = fpstatus_ptr(FPST_FPCR_F16);
6619         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6620         break;
6621     case 0xf: /* FRINTI */
6622         fpst = fpstatus_ptr(FPST_FPCR_F16);
6623         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6624         break;
6625     default:
6626         g_assert_not_reached();
6627     }
6628 
6629     write_fp_sreg(s, rd, tcg_res);
6630 }
6631 
6632 /* Floating-point data-processing (1 source) - single precision */
6633 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6634 {
6635     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6636     TCGv_i32 tcg_op, tcg_res;
6637     TCGv_ptr fpst;
6638     int rmode = -1;
6639 
6640     tcg_op = read_fp_sreg(s, rn);
6641     tcg_res = tcg_temp_new_i32();
6642 
6643     switch (opcode) {
6644     case 0x0: /* FMOV */
6645         tcg_gen_mov_i32(tcg_res, tcg_op);
6646         goto done;
6647     case 0x1: /* FABS */
6648         gen_helper_vfp_abss(tcg_res, tcg_op);
6649         goto done;
6650     case 0x2: /* FNEG */
6651         gen_helper_vfp_negs(tcg_res, tcg_op);
6652         goto done;
6653     case 0x3: /* FSQRT */
6654         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6655         goto done;
6656     case 0x6: /* BFCVT */
6657         gen_fpst = gen_helper_bfcvt;
6658         break;
6659     case 0x8: /* FRINTN */
6660     case 0x9: /* FRINTP */
6661     case 0xa: /* FRINTM */
6662     case 0xb: /* FRINTZ */
6663     case 0xc: /* FRINTA */
6664         rmode = opcode & 7;
6665         gen_fpst = gen_helper_rints;
6666         break;
6667     case 0xe: /* FRINTX */
6668         gen_fpst = gen_helper_rints_exact;
6669         break;
6670     case 0xf: /* FRINTI */
6671         gen_fpst = gen_helper_rints;
6672         break;
6673     case 0x10: /* FRINT32Z */
6674         rmode = FPROUNDING_ZERO;
6675         gen_fpst = gen_helper_frint32_s;
6676         break;
6677     case 0x11: /* FRINT32X */
6678         gen_fpst = gen_helper_frint32_s;
6679         break;
6680     case 0x12: /* FRINT64Z */
6681         rmode = FPROUNDING_ZERO;
6682         gen_fpst = gen_helper_frint64_s;
6683         break;
6684     case 0x13: /* FRINT64X */
6685         gen_fpst = gen_helper_frint64_s;
6686         break;
6687     default:
6688         g_assert_not_reached();
6689     }
6690 
6691     fpst = fpstatus_ptr(FPST_FPCR);
6692     if (rmode >= 0) {
6693         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6694         gen_fpst(tcg_res, tcg_op, fpst);
6695         gen_restore_rmode(tcg_rmode, fpst);
6696     } else {
6697         gen_fpst(tcg_res, tcg_op, fpst);
6698     }
6699 
6700  done:
6701     write_fp_sreg(s, rd, tcg_res);
6702 }
6703 
6704 /* Floating-point data-processing (1 source) - double precision */
6705 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6706 {
6707     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6708     TCGv_i64 tcg_op, tcg_res;
6709     TCGv_ptr fpst;
6710     int rmode = -1;
6711 
6712     switch (opcode) {
6713     case 0x0: /* FMOV */
6714         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6715         return;
6716     }
6717 
6718     tcg_op = read_fp_dreg(s, rn);
6719     tcg_res = tcg_temp_new_i64();
6720 
6721     switch (opcode) {
6722     case 0x1: /* FABS */
6723         gen_helper_vfp_absd(tcg_res, tcg_op);
6724         goto done;
6725     case 0x2: /* FNEG */
6726         gen_helper_vfp_negd(tcg_res, tcg_op);
6727         goto done;
6728     case 0x3: /* FSQRT */
6729         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6730         goto done;
6731     case 0x8: /* FRINTN */
6732     case 0x9: /* FRINTP */
6733     case 0xa: /* FRINTM */
6734     case 0xb: /* FRINTZ */
6735     case 0xc: /* FRINTA */
6736         rmode = opcode & 7;
6737         gen_fpst = gen_helper_rintd;
6738         break;
6739     case 0xe: /* FRINTX */
6740         gen_fpst = gen_helper_rintd_exact;
6741         break;
6742     case 0xf: /* FRINTI */
6743         gen_fpst = gen_helper_rintd;
6744         break;
6745     case 0x10: /* FRINT32Z */
6746         rmode = FPROUNDING_ZERO;
6747         gen_fpst = gen_helper_frint32_d;
6748         break;
6749     case 0x11: /* FRINT32X */
6750         gen_fpst = gen_helper_frint32_d;
6751         break;
6752     case 0x12: /* FRINT64Z */
6753         rmode = FPROUNDING_ZERO;
6754         gen_fpst = gen_helper_frint64_d;
6755         break;
6756     case 0x13: /* FRINT64X */
6757         gen_fpst = gen_helper_frint64_d;
6758         break;
6759     default:
6760         g_assert_not_reached();
6761     }
6762 
6763     fpst = fpstatus_ptr(FPST_FPCR);
6764     if (rmode >= 0) {
6765         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6766         gen_fpst(tcg_res, tcg_op, fpst);
6767         gen_restore_rmode(tcg_rmode, fpst);
6768     } else {
6769         gen_fpst(tcg_res, tcg_op, fpst);
6770     }
6771 
6772  done:
6773     write_fp_dreg(s, rd, tcg_res);
6774 }
6775 
6776 static void handle_fp_fcvt(DisasContext *s, int opcode,
6777                            int rd, int rn, int dtype, int ntype)
6778 {
6779     switch (ntype) {
6780     case 0x0:
6781     {
6782         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6783         if (dtype == 1) {
6784             /* Single to double */
6785             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6786             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6787             write_fp_dreg(s, rd, tcg_rd);
6788         } else {
6789             /* Single to half */
6790             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6791             TCGv_i32 ahp = get_ahp_flag();
6792             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6793 
6794             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6795             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6796             write_fp_sreg(s, rd, tcg_rd);
6797         }
6798         break;
6799     }
6800     case 0x1:
6801     {
6802         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6803         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6804         if (dtype == 0) {
6805             /* Double to single */
6806             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
6807         } else {
6808             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6809             TCGv_i32 ahp = get_ahp_flag();
6810             /* Double to half */
6811             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6812             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6813         }
6814         write_fp_sreg(s, rd, tcg_rd);
6815         break;
6816     }
6817     case 0x3:
6818     {
6819         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6820         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6821         TCGv_i32 tcg_ahp = get_ahp_flag();
6822         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6823         if (dtype == 0) {
6824             /* Half to single */
6825             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6826             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6827             write_fp_sreg(s, rd, tcg_rd);
6828         } else {
6829             /* Half to double */
6830             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6831             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6832             write_fp_dreg(s, rd, tcg_rd);
6833         }
6834         break;
6835     }
6836     default:
6837         g_assert_not_reached();
6838     }
6839 }
6840 
6841 /* Floating point data-processing (1 source)
6842  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6843  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6844  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6845  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6846  */
6847 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6848 {
6849     int mos = extract32(insn, 29, 3);
6850     int type = extract32(insn, 22, 2);
6851     int opcode = extract32(insn, 15, 6);
6852     int rn = extract32(insn, 5, 5);
6853     int rd = extract32(insn, 0, 5);
6854 
6855     if (mos) {
6856         goto do_unallocated;
6857     }
6858 
6859     switch (opcode) {
6860     case 0x4: case 0x5: case 0x7:
6861     {
6862         /* FCVT between half, single and double precision */
6863         int dtype = extract32(opcode, 0, 2);
6864         if (type == 2 || dtype == type) {
6865             goto do_unallocated;
6866         }
6867         if (!fp_access_check(s)) {
6868             return;
6869         }
6870 
6871         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6872         break;
6873     }
6874 
6875     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6876         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6877             goto do_unallocated;
6878         }
6879         /* fall through */
6880     case 0x0 ... 0x3:
6881     case 0x8 ... 0xc:
6882     case 0xe ... 0xf:
6883         /* 32-to-32 and 64-to-64 ops */
6884         switch (type) {
6885         case 0:
6886             if (!fp_access_check(s)) {
6887                 return;
6888             }
6889             handle_fp_1src_single(s, opcode, rd, rn);
6890             break;
6891         case 1:
6892             if (!fp_access_check(s)) {
6893                 return;
6894             }
6895             handle_fp_1src_double(s, opcode, rd, rn);
6896             break;
6897         case 3:
6898             if (!dc_isar_feature(aa64_fp16, s)) {
6899                 goto do_unallocated;
6900             }
6901 
6902             if (!fp_access_check(s)) {
6903                 return;
6904             }
6905             handle_fp_1src_half(s, opcode, rd, rn);
6906             break;
6907         default:
6908             goto do_unallocated;
6909         }
6910         break;
6911 
6912     case 0x6:
6913         switch (type) {
6914         case 1: /* BFCVT */
6915             if (!dc_isar_feature(aa64_bf16, s)) {
6916                 goto do_unallocated;
6917             }
6918             if (!fp_access_check(s)) {
6919                 return;
6920             }
6921             handle_fp_1src_single(s, opcode, rd, rn);
6922             break;
6923         default:
6924             goto do_unallocated;
6925         }
6926         break;
6927 
6928     default:
6929     do_unallocated:
6930         unallocated_encoding(s);
6931         break;
6932     }
6933 }
6934 
6935 /* Floating-point data-processing (2 source) - single precision */
6936 static void handle_fp_2src_single(DisasContext *s, int opcode,
6937                                   int rd, int rn, int rm)
6938 {
6939     TCGv_i32 tcg_op1;
6940     TCGv_i32 tcg_op2;
6941     TCGv_i32 tcg_res;
6942     TCGv_ptr fpst;
6943 
6944     tcg_res = tcg_temp_new_i32();
6945     fpst = fpstatus_ptr(FPST_FPCR);
6946     tcg_op1 = read_fp_sreg(s, rn);
6947     tcg_op2 = read_fp_sreg(s, rm);
6948 
6949     switch (opcode) {
6950     case 0x8: /* FNMUL */
6951         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6952         gen_helper_vfp_negs(tcg_res, tcg_res);
6953         break;
6954     default:
6955     case 0x0: /* FMUL */
6956     case 0x1: /* FDIV */
6957     case 0x2: /* FADD */
6958     case 0x3: /* FSUB */
6959     case 0x4: /* FMAX */
6960     case 0x5: /* FMIN */
6961     case 0x6: /* FMAXNM */
6962     case 0x7: /* FMINNM */
6963         g_assert_not_reached();
6964     }
6965 
6966     write_fp_sreg(s, rd, tcg_res);
6967 }
6968 
6969 /* Floating-point data-processing (2 source) - double precision */
6970 static void handle_fp_2src_double(DisasContext *s, int opcode,
6971                                   int rd, int rn, int rm)
6972 {
6973     TCGv_i64 tcg_op1;
6974     TCGv_i64 tcg_op2;
6975     TCGv_i64 tcg_res;
6976     TCGv_ptr fpst;
6977 
6978     tcg_res = tcg_temp_new_i64();
6979     fpst = fpstatus_ptr(FPST_FPCR);
6980     tcg_op1 = read_fp_dreg(s, rn);
6981     tcg_op2 = read_fp_dreg(s, rm);
6982 
6983     switch (opcode) {
6984     case 0x8: /* FNMUL */
6985         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6986         gen_helper_vfp_negd(tcg_res, tcg_res);
6987         break;
6988     default:
6989     case 0x0: /* FMUL */
6990     case 0x1: /* FDIV */
6991     case 0x2: /* FADD */
6992     case 0x3: /* FSUB */
6993     case 0x4: /* FMAX */
6994     case 0x5: /* FMIN */
6995     case 0x6: /* FMAXNM */
6996     case 0x7: /* FMINNM */
6997         g_assert_not_reached();
6998     }
6999 
7000     write_fp_dreg(s, rd, tcg_res);
7001 }
7002 
7003 /* Floating-point data-processing (2 source) - half precision */
7004 static void handle_fp_2src_half(DisasContext *s, int opcode,
7005                                 int rd, int rn, int rm)
7006 {
7007     TCGv_i32 tcg_op1;
7008     TCGv_i32 tcg_op2;
7009     TCGv_i32 tcg_res;
7010     TCGv_ptr fpst;
7011 
7012     tcg_res = tcg_temp_new_i32();
7013     fpst = fpstatus_ptr(FPST_FPCR_F16);
7014     tcg_op1 = read_fp_hreg(s, rn);
7015     tcg_op2 = read_fp_hreg(s, rm);
7016 
7017     switch (opcode) {
7018     case 0x8: /* FNMUL */
7019         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
7020         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
7021         break;
7022     default:
7023     case 0x0: /* FMUL */
7024     case 0x1: /* FDIV */
7025     case 0x2: /* FADD */
7026     case 0x3: /* FSUB */
7027     case 0x4: /* FMAX */
7028     case 0x5: /* FMIN */
7029     case 0x6: /* FMAXNM */
7030     case 0x7: /* FMINNM */
7031         g_assert_not_reached();
7032     }
7033 
7034     write_fp_sreg(s, rd, tcg_res);
7035 }
7036 
7037 /* Floating point data-processing (2 source)
7038  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
7039  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
7040  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
7041  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
7042  */
7043 static void disas_fp_2src(DisasContext *s, uint32_t insn)
7044 {
7045     int mos = extract32(insn, 29, 3);
7046     int type = extract32(insn, 22, 2);
7047     int rd = extract32(insn, 0, 5);
7048     int rn = extract32(insn, 5, 5);
7049     int rm = extract32(insn, 16, 5);
7050     int opcode = extract32(insn, 12, 4);
7051 
7052     if (opcode > 8 || mos) {
7053         unallocated_encoding(s);
7054         return;
7055     }
7056 
7057     switch (type) {
7058     case 0:
7059         if (!fp_access_check(s)) {
7060             return;
7061         }
7062         handle_fp_2src_single(s, opcode, rd, rn, rm);
7063         break;
7064     case 1:
7065         if (!fp_access_check(s)) {
7066             return;
7067         }
7068         handle_fp_2src_double(s, opcode, rd, rn, rm);
7069         break;
7070     case 3:
7071         if (!dc_isar_feature(aa64_fp16, s)) {
7072             unallocated_encoding(s);
7073             return;
7074         }
7075         if (!fp_access_check(s)) {
7076             return;
7077         }
7078         handle_fp_2src_half(s, opcode, rd, rn, rm);
7079         break;
7080     default:
7081         unallocated_encoding(s);
7082     }
7083 }
7084 
7085 /* Floating-point data-processing (3 source) - single precision */
7086 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7087                                   int rd, int rn, int rm, int ra)
7088 {
7089     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7090     TCGv_i32 tcg_res = tcg_temp_new_i32();
7091     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7092 
7093     tcg_op1 = read_fp_sreg(s, rn);
7094     tcg_op2 = read_fp_sreg(s, rm);
7095     tcg_op3 = read_fp_sreg(s, ra);
7096 
7097     /* These are fused multiply-add, and must be done as one
7098      * floating point operation with no rounding between the
7099      * multiplication and addition steps.
7100      * NB that doing the negations here as separate steps is
7101      * correct : an input NaN should come out with its sign bit
7102      * flipped if it is a negated-input.
7103      */
7104     if (o1 == true) {
7105         gen_helper_vfp_negs(tcg_op3, tcg_op3);
7106     }
7107 
7108     if (o0 != o1) {
7109         gen_helper_vfp_negs(tcg_op1, tcg_op1);
7110     }
7111 
7112     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7113 
7114     write_fp_sreg(s, rd, tcg_res);
7115 }
7116 
7117 /* Floating-point data-processing (3 source) - double precision */
7118 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7119                                   int rd, int rn, int rm, int ra)
7120 {
7121     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7122     TCGv_i64 tcg_res = tcg_temp_new_i64();
7123     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7124 
7125     tcg_op1 = read_fp_dreg(s, rn);
7126     tcg_op2 = read_fp_dreg(s, rm);
7127     tcg_op3 = read_fp_dreg(s, ra);
7128 
7129     /* These are fused multiply-add, and must be done as one
7130      * floating point operation with no rounding between the
7131      * multiplication and addition steps.
7132      * NB that doing the negations here as separate steps is
7133      * correct : an input NaN should come out with its sign bit
7134      * flipped if it is a negated-input.
7135      */
7136     if (o1 == true) {
7137         gen_helper_vfp_negd(tcg_op3, tcg_op3);
7138     }
7139 
7140     if (o0 != o1) {
7141         gen_helper_vfp_negd(tcg_op1, tcg_op1);
7142     }
7143 
7144     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7145 
7146     write_fp_dreg(s, rd, tcg_res);
7147 }
7148 
7149 /* Floating-point data-processing (3 source) - half precision */
7150 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7151                                 int rd, int rn, int rm, int ra)
7152 {
7153     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7154     TCGv_i32 tcg_res = tcg_temp_new_i32();
7155     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7156 
7157     tcg_op1 = read_fp_hreg(s, rn);
7158     tcg_op2 = read_fp_hreg(s, rm);
7159     tcg_op3 = read_fp_hreg(s, ra);
7160 
7161     /* These are fused multiply-add, and must be done as one
7162      * floating point operation with no rounding between the
7163      * multiplication and addition steps.
7164      * NB that doing the negations here as separate steps is
7165      * correct : an input NaN should come out with its sign bit
7166      * flipped if it is a negated-input.
7167      */
7168     if (o1 == true) {
7169         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7170     }
7171 
7172     if (o0 != o1) {
7173         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7174     }
7175 
7176     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7177 
7178     write_fp_sreg(s, rd, tcg_res);
7179 }
7180 
7181 /* Floating point data-processing (3 source)
7182  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7183  * +---+---+---+-----------+------+----+------+----+------+------+------+
7184  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7185  * +---+---+---+-----------+------+----+------+----+------+------+------+
7186  */
7187 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7188 {
7189     int mos = extract32(insn, 29, 3);
7190     int type = extract32(insn, 22, 2);
7191     int rd = extract32(insn, 0, 5);
7192     int rn = extract32(insn, 5, 5);
7193     int ra = extract32(insn, 10, 5);
7194     int rm = extract32(insn, 16, 5);
7195     bool o0 = extract32(insn, 15, 1);
7196     bool o1 = extract32(insn, 21, 1);
7197 
7198     if (mos) {
7199         unallocated_encoding(s);
7200         return;
7201     }
7202 
7203     switch (type) {
7204     case 0:
7205         if (!fp_access_check(s)) {
7206             return;
7207         }
7208         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7209         break;
7210     case 1:
7211         if (!fp_access_check(s)) {
7212             return;
7213         }
7214         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7215         break;
7216     case 3:
7217         if (!dc_isar_feature(aa64_fp16, s)) {
7218             unallocated_encoding(s);
7219             return;
7220         }
7221         if (!fp_access_check(s)) {
7222             return;
7223         }
7224         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7225         break;
7226     default:
7227         unallocated_encoding(s);
7228     }
7229 }
7230 
7231 /* Floating point immediate
7232  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7233  * +---+---+---+-----------+------+---+------------+-------+------+------+
7234  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7235  * +---+---+---+-----------+------+---+------------+-------+------+------+
7236  */
7237 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7238 {
7239     int rd = extract32(insn, 0, 5);
7240     int imm5 = extract32(insn, 5, 5);
7241     int imm8 = extract32(insn, 13, 8);
7242     int type = extract32(insn, 22, 2);
7243     int mos = extract32(insn, 29, 3);
7244     uint64_t imm;
7245     MemOp sz;
7246 
7247     if (mos || imm5) {
7248         unallocated_encoding(s);
7249         return;
7250     }
7251 
7252     switch (type) {
7253     case 0:
7254         sz = MO_32;
7255         break;
7256     case 1:
7257         sz = MO_64;
7258         break;
7259     case 3:
7260         sz = MO_16;
7261         if (dc_isar_feature(aa64_fp16, s)) {
7262             break;
7263         }
7264         /* fallthru */
7265     default:
7266         unallocated_encoding(s);
7267         return;
7268     }
7269 
7270     if (!fp_access_check(s)) {
7271         return;
7272     }
7273 
7274     imm = vfp_expand_imm(sz, imm8);
7275     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7276 }
7277 
7278 /* Handle floating point <=> fixed point conversions. Note that we can
7279  * also deal with fp <=> integer conversions as a special case (scale == 64)
7280  * OPTME: consider handling that special case specially or at least skipping
7281  * the call to scalbn in the helpers for zero shifts.
7282  */
7283 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7284                            bool itof, int rmode, int scale, int sf, int type)
7285 {
7286     bool is_signed = !(opcode & 1);
7287     TCGv_ptr tcg_fpstatus;
7288     TCGv_i32 tcg_shift, tcg_single;
7289     TCGv_i64 tcg_double;
7290 
7291     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7292 
7293     tcg_shift = tcg_constant_i32(64 - scale);
7294 
7295     if (itof) {
7296         TCGv_i64 tcg_int = cpu_reg(s, rn);
7297         if (!sf) {
7298             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7299 
7300             if (is_signed) {
7301                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7302             } else {
7303                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7304             }
7305 
7306             tcg_int = tcg_extend;
7307         }
7308 
7309         switch (type) {
7310         case 1: /* float64 */
7311             tcg_double = tcg_temp_new_i64();
7312             if (is_signed) {
7313                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7314                                      tcg_shift, tcg_fpstatus);
7315             } else {
7316                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7317                                      tcg_shift, tcg_fpstatus);
7318             }
7319             write_fp_dreg(s, rd, tcg_double);
7320             break;
7321 
7322         case 0: /* float32 */
7323             tcg_single = tcg_temp_new_i32();
7324             if (is_signed) {
7325                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7326                                      tcg_shift, tcg_fpstatus);
7327             } else {
7328                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7329                                      tcg_shift, tcg_fpstatus);
7330             }
7331             write_fp_sreg(s, rd, tcg_single);
7332             break;
7333 
7334         case 3: /* float16 */
7335             tcg_single = tcg_temp_new_i32();
7336             if (is_signed) {
7337                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7338                                      tcg_shift, tcg_fpstatus);
7339             } else {
7340                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7341                                      tcg_shift, tcg_fpstatus);
7342             }
7343             write_fp_sreg(s, rd, tcg_single);
7344             break;
7345 
7346         default:
7347             g_assert_not_reached();
7348         }
7349     } else {
7350         TCGv_i64 tcg_int = cpu_reg(s, rd);
7351         TCGv_i32 tcg_rmode;
7352 
7353         if (extract32(opcode, 2, 1)) {
7354             /* There are too many rounding modes to all fit into rmode,
7355              * so FCVTA[US] is a special case.
7356              */
7357             rmode = FPROUNDING_TIEAWAY;
7358         }
7359 
7360         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7361 
7362         switch (type) {
7363         case 1: /* float64 */
7364             tcg_double = read_fp_dreg(s, rn);
7365             if (is_signed) {
7366                 if (!sf) {
7367                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7368                                          tcg_shift, tcg_fpstatus);
7369                 } else {
7370                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7371                                          tcg_shift, tcg_fpstatus);
7372                 }
7373             } else {
7374                 if (!sf) {
7375                     gen_helper_vfp_tould(tcg_int, tcg_double,
7376                                          tcg_shift, tcg_fpstatus);
7377                 } else {
7378                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7379                                          tcg_shift, tcg_fpstatus);
7380                 }
7381             }
7382             if (!sf) {
7383                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7384             }
7385             break;
7386 
7387         case 0: /* float32 */
7388             tcg_single = read_fp_sreg(s, rn);
7389             if (sf) {
7390                 if (is_signed) {
7391                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7392                                          tcg_shift, tcg_fpstatus);
7393                 } else {
7394                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7395                                          tcg_shift, tcg_fpstatus);
7396                 }
7397             } else {
7398                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7399                 if (is_signed) {
7400                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7401                                          tcg_shift, tcg_fpstatus);
7402                 } else {
7403                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7404                                          tcg_shift, tcg_fpstatus);
7405                 }
7406                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7407             }
7408             break;
7409 
7410         case 3: /* float16 */
7411             tcg_single = read_fp_sreg(s, rn);
7412             if (sf) {
7413                 if (is_signed) {
7414                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7415                                          tcg_shift, tcg_fpstatus);
7416                 } else {
7417                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7418                                          tcg_shift, tcg_fpstatus);
7419                 }
7420             } else {
7421                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7422                 if (is_signed) {
7423                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7424                                          tcg_shift, tcg_fpstatus);
7425                 } else {
7426                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7427                                          tcg_shift, tcg_fpstatus);
7428                 }
7429                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7430             }
7431             break;
7432 
7433         default:
7434             g_assert_not_reached();
7435         }
7436 
7437         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7438     }
7439 }
7440 
7441 /* Floating point <-> fixed point conversions
7442  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7443  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7444  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7445  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7446  */
7447 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7448 {
7449     int rd = extract32(insn, 0, 5);
7450     int rn = extract32(insn, 5, 5);
7451     int scale = extract32(insn, 10, 6);
7452     int opcode = extract32(insn, 16, 3);
7453     int rmode = extract32(insn, 19, 2);
7454     int type = extract32(insn, 22, 2);
7455     bool sbit = extract32(insn, 29, 1);
7456     bool sf = extract32(insn, 31, 1);
7457     bool itof;
7458 
7459     if (sbit || (!sf && scale < 32)) {
7460         unallocated_encoding(s);
7461         return;
7462     }
7463 
7464     switch (type) {
7465     case 0: /* float32 */
7466     case 1: /* float64 */
7467         break;
7468     case 3: /* float16 */
7469         if (dc_isar_feature(aa64_fp16, s)) {
7470             break;
7471         }
7472         /* fallthru */
7473     default:
7474         unallocated_encoding(s);
7475         return;
7476     }
7477 
7478     switch ((rmode << 3) | opcode) {
7479     case 0x2: /* SCVTF */
7480     case 0x3: /* UCVTF */
7481         itof = true;
7482         break;
7483     case 0x18: /* FCVTZS */
7484     case 0x19: /* FCVTZU */
7485         itof = false;
7486         break;
7487     default:
7488         unallocated_encoding(s);
7489         return;
7490     }
7491 
7492     if (!fp_access_check(s)) {
7493         return;
7494     }
7495 
7496     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7497 }
7498 
7499 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7500 {
7501     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7502      * without conversion.
7503      */
7504 
7505     if (itof) {
7506         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7507         TCGv_i64 tmp;
7508 
7509         switch (type) {
7510         case 0:
7511             /* 32 bit */
7512             tmp = tcg_temp_new_i64();
7513             tcg_gen_ext32u_i64(tmp, tcg_rn);
7514             write_fp_dreg(s, rd, tmp);
7515             break;
7516         case 1:
7517             /* 64 bit */
7518             write_fp_dreg(s, rd, tcg_rn);
7519             break;
7520         case 2:
7521             /* 64 bit to top half. */
7522             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7523             clear_vec_high(s, true, rd);
7524             break;
7525         case 3:
7526             /* 16 bit */
7527             tmp = tcg_temp_new_i64();
7528             tcg_gen_ext16u_i64(tmp, tcg_rn);
7529             write_fp_dreg(s, rd, tmp);
7530             break;
7531         default:
7532             g_assert_not_reached();
7533         }
7534     } else {
7535         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7536 
7537         switch (type) {
7538         case 0:
7539             /* 32 bit */
7540             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7541             break;
7542         case 1:
7543             /* 64 bit */
7544             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7545             break;
7546         case 2:
7547             /* 64 bits from top half */
7548             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7549             break;
7550         case 3:
7551             /* 16 bit */
7552             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7553             break;
7554         default:
7555             g_assert_not_reached();
7556         }
7557     }
7558 }
7559 
7560 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7561 {
7562     TCGv_i64 t = read_fp_dreg(s, rn);
7563     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7564 
7565     gen_helper_fjcvtzs(t, t, fpstatus);
7566 
7567     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7568     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7569     tcg_gen_movi_i32(cpu_CF, 0);
7570     tcg_gen_movi_i32(cpu_NF, 0);
7571     tcg_gen_movi_i32(cpu_VF, 0);
7572 }
7573 
7574 /* Floating point <-> integer conversions
7575  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7576  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7577  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7578  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7579  */
7580 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7581 {
7582     int rd = extract32(insn, 0, 5);
7583     int rn = extract32(insn, 5, 5);
7584     int opcode = extract32(insn, 16, 3);
7585     int rmode = extract32(insn, 19, 2);
7586     int type = extract32(insn, 22, 2);
7587     bool sbit = extract32(insn, 29, 1);
7588     bool sf = extract32(insn, 31, 1);
7589     bool itof = false;
7590 
7591     if (sbit) {
7592         goto do_unallocated;
7593     }
7594 
7595     switch (opcode) {
7596     case 2: /* SCVTF */
7597     case 3: /* UCVTF */
7598         itof = true;
7599         /* fallthru */
7600     case 4: /* FCVTAS */
7601     case 5: /* FCVTAU */
7602         if (rmode != 0) {
7603             goto do_unallocated;
7604         }
7605         /* fallthru */
7606     case 0: /* FCVT[NPMZ]S */
7607     case 1: /* FCVT[NPMZ]U */
7608         switch (type) {
7609         case 0: /* float32 */
7610         case 1: /* float64 */
7611             break;
7612         case 3: /* float16 */
7613             if (!dc_isar_feature(aa64_fp16, s)) {
7614                 goto do_unallocated;
7615             }
7616             break;
7617         default:
7618             goto do_unallocated;
7619         }
7620         if (!fp_access_check(s)) {
7621             return;
7622         }
7623         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7624         break;
7625 
7626     default:
7627         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7628         case 0b01100110: /* FMOV half <-> 32-bit int */
7629         case 0b01100111:
7630         case 0b11100110: /* FMOV half <-> 64-bit int */
7631         case 0b11100111:
7632             if (!dc_isar_feature(aa64_fp16, s)) {
7633                 goto do_unallocated;
7634             }
7635             /* fallthru */
7636         case 0b00000110: /* FMOV 32-bit */
7637         case 0b00000111:
7638         case 0b10100110: /* FMOV 64-bit */
7639         case 0b10100111:
7640         case 0b11001110: /* FMOV top half of 128-bit */
7641         case 0b11001111:
7642             if (!fp_access_check(s)) {
7643                 return;
7644             }
7645             itof = opcode & 1;
7646             handle_fmov(s, rd, rn, type, itof);
7647             break;
7648 
7649         case 0b00111110: /* FJCVTZS */
7650             if (!dc_isar_feature(aa64_jscvt, s)) {
7651                 goto do_unallocated;
7652             } else if (fp_access_check(s)) {
7653                 handle_fjcvtzs(s, rd, rn);
7654             }
7655             break;
7656 
7657         default:
7658         do_unallocated:
7659             unallocated_encoding(s);
7660             return;
7661         }
7662         break;
7663     }
7664 }
7665 
7666 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7667  *   31  30  29 28     25 24                          0
7668  * +---+---+---+---------+-----------------------------+
7669  * |   | 0 |   | 1 1 1 1 |                             |
7670  * +---+---+---+---------+-----------------------------+
7671  */
7672 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7673 {
7674     if (extract32(insn, 24, 1)) {
7675         /* Floating point data-processing (3 source) */
7676         disas_fp_3src(s, insn);
7677     } else if (extract32(insn, 21, 1) == 0) {
7678         /* Floating point to fixed point conversions */
7679         disas_fp_fixed_conv(s, insn);
7680     } else {
7681         switch (extract32(insn, 10, 2)) {
7682         case 1:
7683             /* Floating point conditional compare */
7684             disas_fp_ccomp(s, insn);
7685             break;
7686         case 2:
7687             /* Floating point data-processing (2 source) */
7688             disas_fp_2src(s, insn);
7689             break;
7690         case 3:
7691             /* Floating point conditional select */
7692             disas_fp_csel(s, insn);
7693             break;
7694         case 0:
7695             switch (ctz32(extract32(insn, 12, 4))) {
7696             case 0: /* [15:12] == xxx1 */
7697                 /* Floating point immediate */
7698                 disas_fp_imm(s, insn);
7699                 break;
7700             case 1: /* [15:12] == xx10 */
7701                 /* Floating point compare */
7702                 disas_fp_compare(s, insn);
7703                 break;
7704             case 2: /* [15:12] == x100 */
7705                 /* Floating point data-processing (1 source) */
7706                 disas_fp_1src(s, insn);
7707                 break;
7708             case 3: /* [15:12] == 1000 */
7709                 unallocated_encoding(s);
7710                 break;
7711             default: /* [15:12] == 0000 */
7712                 /* Floating point <-> integer conversions */
7713                 disas_fp_int_conv(s, insn);
7714                 break;
7715             }
7716             break;
7717         }
7718     }
7719 }
7720 
7721 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7722                      int pos)
7723 {
7724     /* Extract 64 bits from the middle of two concatenated 64 bit
7725      * vector register slices left:right. The extracted bits start
7726      * at 'pos' bits into the right (least significant) side.
7727      * We return the result in tcg_right, and guarantee not to
7728      * trash tcg_left.
7729      */
7730     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7731     assert(pos > 0 && pos < 64);
7732 
7733     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7734     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7735     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7736 }
7737 
7738 /* EXT
7739  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7740  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7741  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7742  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7743  */
7744 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7745 {
7746     int is_q = extract32(insn, 30, 1);
7747     int op2 = extract32(insn, 22, 2);
7748     int imm4 = extract32(insn, 11, 4);
7749     int rm = extract32(insn, 16, 5);
7750     int rn = extract32(insn, 5, 5);
7751     int rd = extract32(insn, 0, 5);
7752     int pos = imm4 << 3;
7753     TCGv_i64 tcg_resl, tcg_resh;
7754 
7755     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7756         unallocated_encoding(s);
7757         return;
7758     }
7759 
7760     if (!fp_access_check(s)) {
7761         return;
7762     }
7763 
7764     tcg_resh = tcg_temp_new_i64();
7765     tcg_resl = tcg_temp_new_i64();
7766 
7767     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7768      * either extracting 128 bits from a 128:128 concatenation, or
7769      * extracting 64 bits from a 64:64 concatenation.
7770      */
7771     if (!is_q) {
7772         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7773         if (pos != 0) {
7774             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7775             do_ext64(s, tcg_resh, tcg_resl, pos);
7776         }
7777     } else {
7778         TCGv_i64 tcg_hh;
7779         typedef struct {
7780             int reg;
7781             int elt;
7782         } EltPosns;
7783         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7784         EltPosns *elt = eltposns;
7785 
7786         if (pos >= 64) {
7787             elt++;
7788             pos -= 64;
7789         }
7790 
7791         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7792         elt++;
7793         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7794         elt++;
7795         if (pos != 0) {
7796             do_ext64(s, tcg_resh, tcg_resl, pos);
7797             tcg_hh = tcg_temp_new_i64();
7798             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7799             do_ext64(s, tcg_hh, tcg_resh, pos);
7800         }
7801     }
7802 
7803     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7804     if (is_q) {
7805         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7806     }
7807     clear_vec_high(s, is_q, rd);
7808 }
7809 
7810 /* TBL/TBX
7811  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7812  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7813  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7814  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7815  */
7816 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7817 {
7818     int op2 = extract32(insn, 22, 2);
7819     int is_q = extract32(insn, 30, 1);
7820     int rm = extract32(insn, 16, 5);
7821     int rn = extract32(insn, 5, 5);
7822     int rd = extract32(insn, 0, 5);
7823     int is_tbx = extract32(insn, 12, 1);
7824     int len = (extract32(insn, 13, 2) + 1) * 16;
7825 
7826     if (op2 != 0) {
7827         unallocated_encoding(s);
7828         return;
7829     }
7830 
7831     if (!fp_access_check(s)) {
7832         return;
7833     }
7834 
7835     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7836                        vec_full_reg_offset(s, rm), tcg_env,
7837                        is_q ? 16 : 8, vec_full_reg_size(s),
7838                        (len << 6) | (is_tbx << 5) | rn,
7839                        gen_helper_simd_tblx);
7840 }
7841 
7842 /* ZIP/UZP/TRN
7843  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7844  * +---+---+-------------+------+---+------+---+------------------+------+
7845  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7846  * +---+---+-------------+------+---+------+---+------------------+------+
7847  */
7848 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7849 {
7850     int rd = extract32(insn, 0, 5);
7851     int rn = extract32(insn, 5, 5);
7852     int rm = extract32(insn, 16, 5);
7853     int size = extract32(insn, 22, 2);
7854     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7855      * bit 2 indicates 1 vs 2 variant of the insn.
7856      */
7857     int opcode = extract32(insn, 12, 2);
7858     bool part = extract32(insn, 14, 1);
7859     bool is_q = extract32(insn, 30, 1);
7860     int esize = 8 << size;
7861     int i;
7862     int datasize = is_q ? 128 : 64;
7863     int elements = datasize / esize;
7864     TCGv_i64 tcg_res[2], tcg_ele;
7865 
7866     if (opcode == 0 || (size == 3 && !is_q)) {
7867         unallocated_encoding(s);
7868         return;
7869     }
7870 
7871     if (!fp_access_check(s)) {
7872         return;
7873     }
7874 
7875     tcg_res[0] = tcg_temp_new_i64();
7876     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7877     tcg_ele = tcg_temp_new_i64();
7878 
7879     for (i = 0; i < elements; i++) {
7880         int o, w;
7881 
7882         switch (opcode) {
7883         case 1: /* UZP1/2 */
7884         {
7885             int midpoint = elements / 2;
7886             if (i < midpoint) {
7887                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7888             } else {
7889                 read_vec_element(s, tcg_ele, rm,
7890                                  2 * (i - midpoint) + part, size);
7891             }
7892             break;
7893         }
7894         case 2: /* TRN1/2 */
7895             if (i & 1) {
7896                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7897             } else {
7898                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7899             }
7900             break;
7901         case 3: /* ZIP1/2 */
7902         {
7903             int base = part * elements / 2;
7904             if (i & 1) {
7905                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7906             } else {
7907                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7908             }
7909             break;
7910         }
7911         default:
7912             g_assert_not_reached();
7913         }
7914 
7915         w = (i * esize) / 64;
7916         o = (i * esize) % 64;
7917         if (o == 0) {
7918             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7919         } else {
7920             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7921             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7922         }
7923     }
7924 
7925     for (i = 0; i <= is_q; ++i) {
7926         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7927     }
7928     clear_vec_high(s, is_q, rd);
7929 }
7930 
7931 /*
7932  * do_reduction_op helper
7933  *
7934  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7935  * important for correct NaN propagation that we do these
7936  * operations in exactly the order specified by the pseudocode.
7937  *
7938  * This is a recursive function, TCG temps should be freed by the
7939  * calling function once it is done with the values.
7940  */
7941 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7942                                 int esize, int size, int vmap, TCGv_ptr fpst)
7943 {
7944     if (esize == size) {
7945         int element;
7946         MemOp msize = esize == 16 ? MO_16 : MO_32;
7947         TCGv_i32 tcg_elem;
7948 
7949         /* We should have one register left here */
7950         assert(ctpop8(vmap) == 1);
7951         element = ctz32(vmap);
7952         assert(element < 8);
7953 
7954         tcg_elem = tcg_temp_new_i32();
7955         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7956         return tcg_elem;
7957     } else {
7958         int bits = size / 2;
7959         int shift = ctpop8(vmap) / 2;
7960         int vmap_lo = (vmap >> shift) & vmap;
7961         int vmap_hi = (vmap & ~vmap_lo);
7962         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7963 
7964         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7965         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7966         tcg_res = tcg_temp_new_i32();
7967 
7968         switch (fpopcode) {
7969         case 0x0c: /* fmaxnmv half-precision */
7970             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7971             break;
7972         case 0x0f: /* fmaxv half-precision */
7973             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7974             break;
7975         case 0x1c: /* fminnmv half-precision */
7976             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7977             break;
7978         case 0x1f: /* fminv half-precision */
7979             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7980             break;
7981         case 0x2c: /* fmaxnmv */
7982             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7983             break;
7984         case 0x2f: /* fmaxv */
7985             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7986             break;
7987         case 0x3c: /* fminnmv */
7988             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7989             break;
7990         case 0x3f: /* fminv */
7991             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7992             break;
7993         default:
7994             g_assert_not_reached();
7995         }
7996         return tcg_res;
7997     }
7998 }
7999 
8000 /* AdvSIMD across lanes
8001  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8002  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8003  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8004  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8005  */
8006 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8007 {
8008     int rd = extract32(insn, 0, 5);
8009     int rn = extract32(insn, 5, 5);
8010     int size = extract32(insn, 22, 2);
8011     int opcode = extract32(insn, 12, 5);
8012     bool is_q = extract32(insn, 30, 1);
8013     bool is_u = extract32(insn, 29, 1);
8014     bool is_fp = false;
8015     bool is_min = false;
8016     int esize;
8017     int elements;
8018     int i;
8019     TCGv_i64 tcg_res, tcg_elt;
8020 
8021     switch (opcode) {
8022     case 0x1b: /* ADDV */
8023         if (is_u) {
8024             unallocated_encoding(s);
8025             return;
8026         }
8027         /* fall through */
8028     case 0x3: /* SADDLV, UADDLV */
8029     case 0xa: /* SMAXV, UMAXV */
8030     case 0x1a: /* SMINV, UMINV */
8031         if (size == 3 || (size == 2 && !is_q)) {
8032             unallocated_encoding(s);
8033             return;
8034         }
8035         break;
8036     case 0xc: /* FMAXNMV, FMINNMV */
8037     case 0xf: /* FMAXV, FMINV */
8038         /* Bit 1 of size field encodes min vs max and the actual size
8039          * depends on the encoding of the U bit. If not set (and FP16
8040          * enabled) then we do half-precision float instead of single
8041          * precision.
8042          */
8043         is_min = extract32(size, 1, 1);
8044         is_fp = true;
8045         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8046             size = 1;
8047         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8048             unallocated_encoding(s);
8049             return;
8050         } else {
8051             size = 2;
8052         }
8053         break;
8054     default:
8055         unallocated_encoding(s);
8056         return;
8057     }
8058 
8059     if (!fp_access_check(s)) {
8060         return;
8061     }
8062 
8063     esize = 8 << size;
8064     elements = (is_q ? 128 : 64) / esize;
8065 
8066     tcg_res = tcg_temp_new_i64();
8067     tcg_elt = tcg_temp_new_i64();
8068 
8069     /* These instructions operate across all lanes of a vector
8070      * to produce a single result. We can guarantee that a 64
8071      * bit intermediate is sufficient:
8072      *  + for [US]ADDLV the maximum element size is 32 bits, and
8073      *    the result type is 64 bits
8074      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8075      *    same as the element size, which is 32 bits at most
8076      * For the integer operations we can choose to work at 64
8077      * or 32 bits and truncate at the end; for simplicity
8078      * we use 64 bits always. The floating point
8079      * ops do require 32 bit intermediates, though.
8080      */
8081     if (!is_fp) {
8082         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8083 
8084         for (i = 1; i < elements; i++) {
8085             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8086 
8087             switch (opcode) {
8088             case 0x03: /* SADDLV / UADDLV */
8089             case 0x1b: /* ADDV */
8090                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8091                 break;
8092             case 0x0a: /* SMAXV / UMAXV */
8093                 if (is_u) {
8094                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8095                 } else {
8096                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8097                 }
8098                 break;
8099             case 0x1a: /* SMINV / UMINV */
8100                 if (is_u) {
8101                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8102                 } else {
8103                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8104                 }
8105                 break;
8106             default:
8107                 g_assert_not_reached();
8108             }
8109 
8110         }
8111     } else {
8112         /* Floating point vector reduction ops which work across 32
8113          * bit (single) or 16 bit (half-precision) intermediates.
8114          * Note that correct NaN propagation requires that we do these
8115          * operations in exactly the order specified by the pseudocode.
8116          */
8117         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8118         int fpopcode = opcode | is_min << 4 | is_u << 5;
8119         int vmap = (1 << elements) - 1;
8120         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8121                                              (is_q ? 128 : 64), vmap, fpst);
8122         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8123     }
8124 
8125     /* Now truncate the result to the width required for the final output */
8126     if (opcode == 0x03) {
8127         /* SADDLV, UADDLV: result is 2*esize */
8128         size++;
8129     }
8130 
8131     switch (size) {
8132     case 0:
8133         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8134         break;
8135     case 1:
8136         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8137         break;
8138     case 2:
8139         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8140         break;
8141     case 3:
8142         break;
8143     default:
8144         g_assert_not_reached();
8145     }
8146 
8147     write_fp_dreg(s, rd, tcg_res);
8148 }
8149 
8150 /* AdvSIMD modified immediate
8151  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8152  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8153  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8154  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8155  *
8156  * There are a number of operations that can be carried out here:
8157  *   MOVI - move (shifted) imm into register
8158  *   MVNI - move inverted (shifted) imm into register
8159  *   ORR  - bitwise OR of (shifted) imm with register
8160  *   BIC  - bitwise clear of (shifted) imm with register
8161  * With ARMv8.2 we also have:
8162  *   FMOV half-precision
8163  */
8164 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8165 {
8166     int rd = extract32(insn, 0, 5);
8167     int cmode = extract32(insn, 12, 4);
8168     int o2 = extract32(insn, 11, 1);
8169     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8170     bool is_neg = extract32(insn, 29, 1);
8171     bool is_q = extract32(insn, 30, 1);
8172     uint64_t imm = 0;
8173 
8174     if (o2) {
8175         if (cmode != 0xf || is_neg) {
8176             unallocated_encoding(s);
8177             return;
8178         }
8179         /* FMOV (vector, immediate) - half-precision */
8180         if (!dc_isar_feature(aa64_fp16, s)) {
8181             unallocated_encoding(s);
8182             return;
8183         }
8184         imm = vfp_expand_imm(MO_16, abcdefgh);
8185         /* now duplicate across the lanes */
8186         imm = dup_const(MO_16, imm);
8187     } else {
8188         if (cmode == 0xf && is_neg && !is_q) {
8189             unallocated_encoding(s);
8190             return;
8191         }
8192         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8193     }
8194 
8195     if (!fp_access_check(s)) {
8196         return;
8197     }
8198 
8199     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8200         /* MOVI or MVNI, with MVNI negation handled above.  */
8201         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8202                              vec_full_reg_size(s), imm);
8203     } else {
8204         /* ORR or BIC, with BIC negation to AND handled above.  */
8205         if (is_neg) {
8206             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8207         } else {
8208             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8209         }
8210     }
8211 }
8212 
8213 /* AdvSIMD scalar pairwise
8214  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8215  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8216  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8217  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8218  */
8219 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8220 {
8221     int u = extract32(insn, 29, 1);
8222     int size = extract32(insn, 22, 2);
8223     int opcode = extract32(insn, 12, 5);
8224     int rn = extract32(insn, 5, 5);
8225     int rd = extract32(insn, 0, 5);
8226     TCGv_ptr fpst;
8227 
8228     /* For some ops (the FP ones), size[1] is part of the encoding.
8229      * For ADDP strictly it is not but size[1] is always 1 for valid
8230      * encodings.
8231      */
8232     opcode |= (extract32(size, 1, 1) << 5);
8233 
8234     switch (opcode) {
8235     case 0x3b: /* ADDP */
8236         if (u || size != 3) {
8237             unallocated_encoding(s);
8238             return;
8239         }
8240         if (!fp_access_check(s)) {
8241             return;
8242         }
8243 
8244         fpst = NULL;
8245         break;
8246     case 0xc: /* FMAXNMP */
8247     case 0xd: /* FADDP */
8248     case 0xf: /* FMAXP */
8249     case 0x2c: /* FMINNMP */
8250     case 0x2f: /* FMINP */
8251         /* FP op, size[0] is 32 or 64 bit*/
8252         if (!u) {
8253             if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) {
8254                 unallocated_encoding(s);
8255                 return;
8256             } else {
8257                 size = MO_16;
8258             }
8259         } else {
8260             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8261         }
8262 
8263         if (!fp_access_check(s)) {
8264             return;
8265         }
8266 
8267         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8268         break;
8269     default:
8270         unallocated_encoding(s);
8271         return;
8272     }
8273 
8274     if (size == MO_64) {
8275         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8276         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8277         TCGv_i64 tcg_res = tcg_temp_new_i64();
8278 
8279         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8280         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8281 
8282         switch (opcode) {
8283         case 0x3b: /* ADDP */
8284             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8285             break;
8286         case 0xc: /* FMAXNMP */
8287             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8288             break;
8289         case 0xd: /* FADDP */
8290             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8291             break;
8292         case 0xf: /* FMAXP */
8293             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8294             break;
8295         case 0x2c: /* FMINNMP */
8296             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8297             break;
8298         case 0x2f: /* FMINP */
8299             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8300             break;
8301         default:
8302             g_assert_not_reached();
8303         }
8304 
8305         write_fp_dreg(s, rd, tcg_res);
8306     } else {
8307         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8308         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8309         TCGv_i32 tcg_res = tcg_temp_new_i32();
8310 
8311         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8312         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8313 
8314         if (size == MO_16) {
8315             switch (opcode) {
8316             case 0xc: /* FMAXNMP */
8317                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8318                 break;
8319             case 0xd: /* FADDP */
8320                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8321                 break;
8322             case 0xf: /* FMAXP */
8323                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8324                 break;
8325             case 0x2c: /* FMINNMP */
8326                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8327                 break;
8328             case 0x2f: /* FMINP */
8329                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8330                 break;
8331             default:
8332                 g_assert_not_reached();
8333             }
8334         } else {
8335             switch (opcode) {
8336             case 0xc: /* FMAXNMP */
8337                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8338                 break;
8339             case 0xd: /* FADDP */
8340                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8341                 break;
8342             case 0xf: /* FMAXP */
8343                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8344                 break;
8345             case 0x2c: /* FMINNMP */
8346                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8347                 break;
8348             case 0x2f: /* FMINP */
8349                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8350                 break;
8351             default:
8352                 g_assert_not_reached();
8353             }
8354         }
8355 
8356         write_fp_sreg(s, rd, tcg_res);
8357     }
8358 }
8359 
8360 /*
8361  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8362  *
8363  * This code is handles the common shifting code and is used by both
8364  * the vector and scalar code.
8365  */
8366 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8367                                     TCGv_i64 tcg_rnd, bool accumulate,
8368                                     bool is_u, int size, int shift)
8369 {
8370     bool extended_result = false;
8371     bool round = tcg_rnd != NULL;
8372     int ext_lshift = 0;
8373     TCGv_i64 tcg_src_hi;
8374 
8375     if (round && size == 3) {
8376         extended_result = true;
8377         ext_lshift = 64 - shift;
8378         tcg_src_hi = tcg_temp_new_i64();
8379     } else if (shift == 64) {
8380         if (!accumulate && is_u) {
8381             /* result is zero */
8382             tcg_gen_movi_i64(tcg_res, 0);
8383             return;
8384         }
8385     }
8386 
8387     /* Deal with the rounding step */
8388     if (round) {
8389         if (extended_result) {
8390             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8391             if (!is_u) {
8392                 /* take care of sign extending tcg_res */
8393                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8394                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8395                                  tcg_src, tcg_src_hi,
8396                                  tcg_rnd, tcg_zero);
8397             } else {
8398                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8399                                  tcg_src, tcg_zero,
8400                                  tcg_rnd, tcg_zero);
8401             }
8402         } else {
8403             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8404         }
8405     }
8406 
8407     /* Now do the shift right */
8408     if (round && extended_result) {
8409         /* extended case, >64 bit precision required */
8410         if (ext_lshift == 0) {
8411             /* special case, only high bits matter */
8412             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8413         } else {
8414             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8415             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8416             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8417         }
8418     } else {
8419         if (is_u) {
8420             if (shift == 64) {
8421                 /* essentially shifting in 64 zeros */
8422                 tcg_gen_movi_i64(tcg_src, 0);
8423             } else {
8424                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8425             }
8426         } else {
8427             if (shift == 64) {
8428                 /* effectively extending the sign-bit */
8429                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8430             } else {
8431                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8432             }
8433         }
8434     }
8435 
8436     if (accumulate) {
8437         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8438     } else {
8439         tcg_gen_mov_i64(tcg_res, tcg_src);
8440     }
8441 }
8442 
8443 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8444 static void handle_scalar_simd_shri(DisasContext *s,
8445                                     bool is_u, int immh, int immb,
8446                                     int opcode, int rn, int rd)
8447 {
8448     const int size = 3;
8449     int immhb = immh << 3 | immb;
8450     int shift = 2 * (8 << size) - immhb;
8451     bool accumulate = false;
8452     bool round = false;
8453     bool insert = false;
8454     TCGv_i64 tcg_rn;
8455     TCGv_i64 tcg_rd;
8456     TCGv_i64 tcg_round;
8457 
8458     if (!extract32(immh, 3, 1)) {
8459         unallocated_encoding(s);
8460         return;
8461     }
8462 
8463     if (!fp_access_check(s)) {
8464         return;
8465     }
8466 
8467     switch (opcode) {
8468     case 0x02: /* SSRA / USRA (accumulate) */
8469         accumulate = true;
8470         break;
8471     case 0x04: /* SRSHR / URSHR (rounding) */
8472         round = true;
8473         break;
8474     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8475         accumulate = round = true;
8476         break;
8477     case 0x08: /* SRI */
8478         insert = true;
8479         break;
8480     }
8481 
8482     if (round) {
8483         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8484     } else {
8485         tcg_round = NULL;
8486     }
8487 
8488     tcg_rn = read_fp_dreg(s, rn);
8489     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8490 
8491     if (insert) {
8492         /* shift count same as element size is valid but does nothing;
8493          * special case to avoid potential shift by 64.
8494          */
8495         int esize = 8 << size;
8496         if (shift != esize) {
8497             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8498             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8499         }
8500     } else {
8501         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8502                                 accumulate, is_u, size, shift);
8503     }
8504 
8505     write_fp_dreg(s, rd, tcg_rd);
8506 }
8507 
8508 /* SHL/SLI - Scalar shift left */
8509 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8510                                     int immh, int immb, int opcode,
8511                                     int rn, int rd)
8512 {
8513     int size = 32 - clz32(immh) - 1;
8514     int immhb = immh << 3 | immb;
8515     int shift = immhb - (8 << size);
8516     TCGv_i64 tcg_rn;
8517     TCGv_i64 tcg_rd;
8518 
8519     if (!extract32(immh, 3, 1)) {
8520         unallocated_encoding(s);
8521         return;
8522     }
8523 
8524     if (!fp_access_check(s)) {
8525         return;
8526     }
8527 
8528     tcg_rn = read_fp_dreg(s, rn);
8529     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8530 
8531     if (insert) {
8532         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8533     } else {
8534         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8535     }
8536 
8537     write_fp_dreg(s, rd, tcg_rd);
8538 }
8539 
8540 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8541  * (signed/unsigned) narrowing */
8542 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8543                                    bool is_u_shift, bool is_u_narrow,
8544                                    int immh, int immb, int opcode,
8545                                    int rn, int rd)
8546 {
8547     int immhb = immh << 3 | immb;
8548     int size = 32 - clz32(immh) - 1;
8549     int esize = 8 << size;
8550     int shift = (2 * esize) - immhb;
8551     int elements = is_scalar ? 1 : (64 / esize);
8552     bool round = extract32(opcode, 0, 1);
8553     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8554     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8555     TCGv_i32 tcg_rd_narrowed;
8556     TCGv_i64 tcg_final;
8557 
8558     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8559         { gen_helper_neon_narrow_sat_s8,
8560           gen_helper_neon_unarrow_sat8 },
8561         { gen_helper_neon_narrow_sat_s16,
8562           gen_helper_neon_unarrow_sat16 },
8563         { gen_helper_neon_narrow_sat_s32,
8564           gen_helper_neon_unarrow_sat32 },
8565         { NULL, NULL },
8566     };
8567     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8568         gen_helper_neon_narrow_sat_u8,
8569         gen_helper_neon_narrow_sat_u16,
8570         gen_helper_neon_narrow_sat_u32,
8571         NULL
8572     };
8573     NeonGenNarrowEnvFn *narrowfn;
8574 
8575     int i;
8576 
8577     assert(size < 4);
8578 
8579     if (extract32(immh, 3, 1)) {
8580         unallocated_encoding(s);
8581         return;
8582     }
8583 
8584     if (!fp_access_check(s)) {
8585         return;
8586     }
8587 
8588     if (is_u_shift) {
8589         narrowfn = unsigned_narrow_fns[size];
8590     } else {
8591         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8592     }
8593 
8594     tcg_rn = tcg_temp_new_i64();
8595     tcg_rd = tcg_temp_new_i64();
8596     tcg_rd_narrowed = tcg_temp_new_i32();
8597     tcg_final = tcg_temp_new_i64();
8598 
8599     if (round) {
8600         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8601     } else {
8602         tcg_round = NULL;
8603     }
8604 
8605     for (i = 0; i < elements; i++) {
8606         read_vec_element(s, tcg_rn, rn, i, ldop);
8607         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8608                                 false, is_u_shift, size+1, shift);
8609         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8610         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8611         if (i == 0) {
8612             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8613         } else {
8614             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8615         }
8616     }
8617 
8618     if (!is_q) {
8619         write_vec_element(s, tcg_final, rd, 0, MO_64);
8620     } else {
8621         write_vec_element(s, tcg_final, rd, 1, MO_64);
8622     }
8623     clear_vec_high(s, is_q, rd);
8624 }
8625 
8626 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8627 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8628                              bool src_unsigned, bool dst_unsigned,
8629                              int immh, int immb, int rn, int rd)
8630 {
8631     int immhb = immh << 3 | immb;
8632     int size = 32 - clz32(immh) - 1;
8633     int shift = immhb - (8 << size);
8634     int pass;
8635 
8636     assert(immh != 0);
8637     assert(!(scalar && is_q));
8638 
8639     if (!scalar) {
8640         if (!is_q && extract32(immh, 3, 1)) {
8641             unallocated_encoding(s);
8642             return;
8643         }
8644 
8645         /* Since we use the variable-shift helpers we must
8646          * replicate the shift count into each element of
8647          * the tcg_shift value.
8648          */
8649         switch (size) {
8650         case 0:
8651             shift |= shift << 8;
8652             /* fall through */
8653         case 1:
8654             shift |= shift << 16;
8655             break;
8656         case 2:
8657         case 3:
8658             break;
8659         default:
8660             g_assert_not_reached();
8661         }
8662     }
8663 
8664     if (!fp_access_check(s)) {
8665         return;
8666     }
8667 
8668     if (size == 3) {
8669         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8670         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8671             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8672             { NULL, gen_helper_neon_qshl_u64 },
8673         };
8674         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8675         int maxpass = is_q ? 2 : 1;
8676 
8677         for (pass = 0; pass < maxpass; pass++) {
8678             TCGv_i64 tcg_op = tcg_temp_new_i64();
8679 
8680             read_vec_element(s, tcg_op, rn, pass, MO_64);
8681             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8682             write_vec_element(s, tcg_op, rd, pass, MO_64);
8683         }
8684         clear_vec_high(s, is_q, rd);
8685     } else {
8686         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8687         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8688             {
8689                 { gen_helper_neon_qshl_s8,
8690                   gen_helper_neon_qshl_s16,
8691                   gen_helper_neon_qshl_s32 },
8692                 { gen_helper_neon_qshlu_s8,
8693                   gen_helper_neon_qshlu_s16,
8694                   gen_helper_neon_qshlu_s32 }
8695             }, {
8696                 { NULL, NULL, NULL },
8697                 { gen_helper_neon_qshl_u8,
8698                   gen_helper_neon_qshl_u16,
8699                   gen_helper_neon_qshl_u32 }
8700             }
8701         };
8702         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8703         MemOp memop = scalar ? size : MO_32;
8704         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8705 
8706         for (pass = 0; pass < maxpass; pass++) {
8707             TCGv_i32 tcg_op = tcg_temp_new_i32();
8708 
8709             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8710             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8711             if (scalar) {
8712                 switch (size) {
8713                 case 0:
8714                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8715                     break;
8716                 case 1:
8717                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8718                     break;
8719                 case 2:
8720                     break;
8721                 default:
8722                     g_assert_not_reached();
8723                 }
8724                 write_fp_sreg(s, rd, tcg_op);
8725             } else {
8726                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8727             }
8728         }
8729 
8730         if (!scalar) {
8731             clear_vec_high(s, is_q, rd);
8732         }
8733     }
8734 }
8735 
8736 /* Common vector code for handling integer to FP conversion */
8737 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8738                                    int elements, int is_signed,
8739                                    int fracbits, int size)
8740 {
8741     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8742     TCGv_i32 tcg_shift = NULL;
8743 
8744     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8745     int pass;
8746 
8747     if (fracbits || size == MO_64) {
8748         tcg_shift = tcg_constant_i32(fracbits);
8749     }
8750 
8751     if (size == MO_64) {
8752         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8753         TCGv_i64 tcg_double = tcg_temp_new_i64();
8754 
8755         for (pass = 0; pass < elements; pass++) {
8756             read_vec_element(s, tcg_int64, rn, pass, mop);
8757 
8758             if (is_signed) {
8759                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8760                                      tcg_shift, tcg_fpst);
8761             } else {
8762                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8763                                      tcg_shift, tcg_fpst);
8764             }
8765             if (elements == 1) {
8766                 write_fp_dreg(s, rd, tcg_double);
8767             } else {
8768                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8769             }
8770         }
8771     } else {
8772         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8773         TCGv_i32 tcg_float = tcg_temp_new_i32();
8774 
8775         for (pass = 0; pass < elements; pass++) {
8776             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8777 
8778             switch (size) {
8779             case MO_32:
8780                 if (fracbits) {
8781                     if (is_signed) {
8782                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8783                                              tcg_shift, tcg_fpst);
8784                     } else {
8785                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8786                                              tcg_shift, tcg_fpst);
8787                     }
8788                 } else {
8789                     if (is_signed) {
8790                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8791                     } else {
8792                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8793                     }
8794                 }
8795                 break;
8796             case MO_16:
8797                 if (fracbits) {
8798                     if (is_signed) {
8799                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8800                                              tcg_shift, tcg_fpst);
8801                     } else {
8802                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8803                                              tcg_shift, tcg_fpst);
8804                     }
8805                 } else {
8806                     if (is_signed) {
8807                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8808                     } else {
8809                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8810                     }
8811                 }
8812                 break;
8813             default:
8814                 g_assert_not_reached();
8815             }
8816 
8817             if (elements == 1) {
8818                 write_fp_sreg(s, rd, tcg_float);
8819             } else {
8820                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8821             }
8822         }
8823     }
8824 
8825     clear_vec_high(s, elements << size == 16, rd);
8826 }
8827 
8828 /* UCVTF/SCVTF - Integer to FP conversion */
8829 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8830                                          bool is_q, bool is_u,
8831                                          int immh, int immb, int opcode,
8832                                          int rn, int rd)
8833 {
8834     int size, elements, fracbits;
8835     int immhb = immh << 3 | immb;
8836 
8837     if (immh & 8) {
8838         size = MO_64;
8839         if (!is_scalar && !is_q) {
8840             unallocated_encoding(s);
8841             return;
8842         }
8843     } else if (immh & 4) {
8844         size = MO_32;
8845     } else if (immh & 2) {
8846         size = MO_16;
8847         if (!dc_isar_feature(aa64_fp16, s)) {
8848             unallocated_encoding(s);
8849             return;
8850         }
8851     } else {
8852         /* immh == 0 would be a failure of the decode logic */
8853         g_assert(immh == 1);
8854         unallocated_encoding(s);
8855         return;
8856     }
8857 
8858     if (is_scalar) {
8859         elements = 1;
8860     } else {
8861         elements = (8 << is_q) >> size;
8862     }
8863     fracbits = (16 << size) - immhb;
8864 
8865     if (!fp_access_check(s)) {
8866         return;
8867     }
8868 
8869     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8870 }
8871 
8872 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8873 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8874                                          bool is_q, bool is_u,
8875                                          int immh, int immb, int rn, int rd)
8876 {
8877     int immhb = immh << 3 | immb;
8878     int pass, size, fracbits;
8879     TCGv_ptr tcg_fpstatus;
8880     TCGv_i32 tcg_rmode, tcg_shift;
8881 
8882     if (immh & 0x8) {
8883         size = MO_64;
8884         if (!is_scalar && !is_q) {
8885             unallocated_encoding(s);
8886             return;
8887         }
8888     } else if (immh & 0x4) {
8889         size = MO_32;
8890     } else if (immh & 0x2) {
8891         size = MO_16;
8892         if (!dc_isar_feature(aa64_fp16, s)) {
8893             unallocated_encoding(s);
8894             return;
8895         }
8896     } else {
8897         /* Should have split out AdvSIMD modified immediate earlier.  */
8898         assert(immh == 1);
8899         unallocated_encoding(s);
8900         return;
8901     }
8902 
8903     if (!fp_access_check(s)) {
8904         return;
8905     }
8906 
8907     assert(!(is_scalar && is_q));
8908 
8909     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8910     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8911     fracbits = (16 << size) - immhb;
8912     tcg_shift = tcg_constant_i32(fracbits);
8913 
8914     if (size == MO_64) {
8915         int maxpass = is_scalar ? 1 : 2;
8916 
8917         for (pass = 0; pass < maxpass; pass++) {
8918             TCGv_i64 tcg_op = tcg_temp_new_i64();
8919 
8920             read_vec_element(s, tcg_op, rn, pass, MO_64);
8921             if (is_u) {
8922                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8923             } else {
8924                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8925             }
8926             write_vec_element(s, tcg_op, rd, pass, MO_64);
8927         }
8928         clear_vec_high(s, is_q, rd);
8929     } else {
8930         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8931         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8932 
8933         switch (size) {
8934         case MO_16:
8935             if (is_u) {
8936                 fn = gen_helper_vfp_touhh;
8937             } else {
8938                 fn = gen_helper_vfp_toshh;
8939             }
8940             break;
8941         case MO_32:
8942             if (is_u) {
8943                 fn = gen_helper_vfp_touls;
8944             } else {
8945                 fn = gen_helper_vfp_tosls;
8946             }
8947             break;
8948         default:
8949             g_assert_not_reached();
8950         }
8951 
8952         for (pass = 0; pass < maxpass; pass++) {
8953             TCGv_i32 tcg_op = tcg_temp_new_i32();
8954 
8955             read_vec_element_i32(s, tcg_op, rn, pass, size);
8956             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8957             if (is_scalar) {
8958                 if (size == MO_16 && !is_u) {
8959                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8960                 }
8961                 write_fp_sreg(s, rd, tcg_op);
8962             } else {
8963                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8964             }
8965         }
8966         if (!is_scalar) {
8967             clear_vec_high(s, is_q, rd);
8968         }
8969     }
8970 
8971     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8972 }
8973 
8974 /* AdvSIMD scalar shift by immediate
8975  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8976  * +-----+---+-------------+------+------+--------+---+------+------+
8977  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8978  * +-----+---+-------------+------+------+--------+---+------+------+
8979  *
8980  * This is the scalar version so it works on a fixed sized registers
8981  */
8982 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8983 {
8984     int rd = extract32(insn, 0, 5);
8985     int rn = extract32(insn, 5, 5);
8986     int opcode = extract32(insn, 11, 5);
8987     int immb = extract32(insn, 16, 3);
8988     int immh = extract32(insn, 19, 4);
8989     bool is_u = extract32(insn, 29, 1);
8990 
8991     if (immh == 0) {
8992         unallocated_encoding(s);
8993         return;
8994     }
8995 
8996     switch (opcode) {
8997     case 0x08: /* SRI */
8998         if (!is_u) {
8999             unallocated_encoding(s);
9000             return;
9001         }
9002         /* fall through */
9003     case 0x00: /* SSHR / USHR */
9004     case 0x02: /* SSRA / USRA */
9005     case 0x04: /* SRSHR / URSHR */
9006     case 0x06: /* SRSRA / URSRA */
9007         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9008         break;
9009     case 0x0a: /* SHL / SLI */
9010         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9011         break;
9012     case 0x1c: /* SCVTF, UCVTF */
9013         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9014                                      opcode, rn, rd);
9015         break;
9016     case 0x10: /* SQSHRUN, SQSHRUN2 */
9017     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9018         if (!is_u) {
9019             unallocated_encoding(s);
9020             return;
9021         }
9022         handle_vec_simd_sqshrn(s, true, false, false, true,
9023                                immh, immb, opcode, rn, rd);
9024         break;
9025     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9026     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9027         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9028                                immh, immb, opcode, rn, rd);
9029         break;
9030     case 0xc: /* SQSHLU */
9031         if (!is_u) {
9032             unallocated_encoding(s);
9033             return;
9034         }
9035         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9036         break;
9037     case 0xe: /* SQSHL, UQSHL */
9038         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9039         break;
9040     case 0x1f: /* FCVTZS, FCVTZU */
9041         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9042         break;
9043     default:
9044         unallocated_encoding(s);
9045         break;
9046     }
9047 }
9048 
9049 /* AdvSIMD scalar three different
9050  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9051  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9052  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9053  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9054  */
9055 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9056 {
9057     bool is_u = extract32(insn, 29, 1);
9058     int size = extract32(insn, 22, 2);
9059     int opcode = extract32(insn, 12, 4);
9060     int rm = extract32(insn, 16, 5);
9061     int rn = extract32(insn, 5, 5);
9062     int rd = extract32(insn, 0, 5);
9063 
9064     if (is_u) {
9065         unallocated_encoding(s);
9066         return;
9067     }
9068 
9069     switch (opcode) {
9070     case 0x9: /* SQDMLAL, SQDMLAL2 */
9071     case 0xb: /* SQDMLSL, SQDMLSL2 */
9072     case 0xd: /* SQDMULL, SQDMULL2 */
9073         if (size == 0 || size == 3) {
9074             unallocated_encoding(s);
9075             return;
9076         }
9077         break;
9078     default:
9079         unallocated_encoding(s);
9080         return;
9081     }
9082 
9083     if (!fp_access_check(s)) {
9084         return;
9085     }
9086 
9087     if (size == 2) {
9088         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9089         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9090         TCGv_i64 tcg_res = tcg_temp_new_i64();
9091 
9092         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9093         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9094 
9095         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9096         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9097 
9098         switch (opcode) {
9099         case 0xd: /* SQDMULL, SQDMULL2 */
9100             break;
9101         case 0xb: /* SQDMLSL, SQDMLSL2 */
9102             tcg_gen_neg_i64(tcg_res, tcg_res);
9103             /* fall through */
9104         case 0x9: /* SQDMLAL, SQDMLAL2 */
9105             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9106             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9107                                               tcg_res, tcg_op1);
9108             break;
9109         default:
9110             g_assert_not_reached();
9111         }
9112 
9113         write_fp_dreg(s, rd, tcg_res);
9114     } else {
9115         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9116         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9117         TCGv_i64 tcg_res = tcg_temp_new_i64();
9118 
9119         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9120         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9121 
9122         switch (opcode) {
9123         case 0xd: /* SQDMULL, SQDMULL2 */
9124             break;
9125         case 0xb: /* SQDMLSL, SQDMLSL2 */
9126             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9127             /* fall through */
9128         case 0x9: /* SQDMLAL, SQDMLAL2 */
9129         {
9130             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9131             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9132             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9133                                               tcg_res, tcg_op3);
9134             break;
9135         }
9136         default:
9137             g_assert_not_reached();
9138         }
9139 
9140         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9141         write_fp_dreg(s, rd, tcg_res);
9142     }
9143 }
9144 
9145 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9146                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9147 {
9148     /* Handle 64x64->64 opcodes which are shared between the scalar
9149      * and vector 3-same groups. We cover every opcode where size == 3
9150      * is valid in either the three-reg-same (integer, not pairwise)
9151      * or scalar-three-reg-same groups.
9152      */
9153     TCGCond cond;
9154 
9155     switch (opcode) {
9156     case 0x1: /* SQADD */
9157         if (u) {
9158             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9159         } else {
9160             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9161         }
9162         break;
9163     case 0x5: /* SQSUB */
9164         if (u) {
9165             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9166         } else {
9167             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9168         }
9169         break;
9170     case 0x6: /* CMGT, CMHI */
9171         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9172     do_cmop:
9173         /* 64 bit integer comparison, result = test ? -1 : 0. */
9174         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9175         break;
9176     case 0x7: /* CMGE, CMHS */
9177         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9178         goto do_cmop;
9179     case 0x11: /* CMTST, CMEQ */
9180         if (u) {
9181             cond = TCG_COND_EQ;
9182             goto do_cmop;
9183         }
9184         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9185         break;
9186     case 0x8: /* SSHL, USHL */
9187         if (u) {
9188             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9189         } else {
9190             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9191         }
9192         break;
9193     case 0x9: /* SQSHL, UQSHL */
9194         if (u) {
9195             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9196         } else {
9197             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9198         }
9199         break;
9200     case 0xa: /* SRSHL, URSHL */
9201         if (u) {
9202             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9203         } else {
9204             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9205         }
9206         break;
9207     case 0xb: /* SQRSHL, UQRSHL */
9208         if (u) {
9209             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9210         } else {
9211             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9212         }
9213         break;
9214     case 0x10: /* ADD, SUB */
9215         if (u) {
9216             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9217         } else {
9218             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9219         }
9220         break;
9221     default:
9222         g_assert_not_reached();
9223     }
9224 }
9225 
9226 /* Handle the 3-same-operands float operations; shared by the scalar
9227  * and vector encodings. The caller must filter out any encodings
9228  * not allocated for the encoding it is dealing with.
9229  */
9230 static void handle_3same_float(DisasContext *s, int size, int elements,
9231                                int fpopcode, int rd, int rn, int rm)
9232 {
9233     int pass;
9234     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9235 
9236     for (pass = 0; pass < elements; pass++) {
9237         if (size) {
9238             /* Double */
9239             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9240             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9241             TCGv_i64 tcg_res = tcg_temp_new_i64();
9242 
9243             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9244             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9245 
9246             switch (fpopcode) {
9247             case 0x39: /* FMLS */
9248                 /* As usual for ARM, separate negation for fused multiply-add */
9249                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9250                 /* fall through */
9251             case 0x19: /* FMLA */
9252                 read_vec_element(s, tcg_res, rd, pass, MO_64);
9253                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9254                                        tcg_res, fpst);
9255                 break;
9256             case 0x1c: /* FCMEQ */
9257                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9258                 break;
9259             case 0x1f: /* FRECPS */
9260                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9261                 break;
9262             case 0x3f: /* FRSQRTS */
9263                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9264                 break;
9265             case 0x5c: /* FCMGE */
9266                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9267                 break;
9268             case 0x5d: /* FACGE */
9269                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9270                 break;
9271             case 0x7a: /* FABD */
9272                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9273                 gen_helper_vfp_absd(tcg_res, tcg_res);
9274                 break;
9275             case 0x7c: /* FCMGT */
9276                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9277                 break;
9278             case 0x7d: /* FACGT */
9279                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9280                 break;
9281             default:
9282             case 0x18: /* FMAXNM */
9283             case 0x1a: /* FADD */
9284             case 0x1b: /* FMULX */
9285             case 0x1e: /* FMAX */
9286             case 0x38: /* FMINNM */
9287             case 0x3a: /* FSUB */
9288             case 0x3e: /* FMIN */
9289             case 0x5b: /* FMUL */
9290             case 0x5f: /* FDIV */
9291                 g_assert_not_reached();
9292             }
9293 
9294             write_vec_element(s, tcg_res, rd, pass, MO_64);
9295         } else {
9296             /* Single */
9297             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9298             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9299             TCGv_i32 tcg_res = tcg_temp_new_i32();
9300 
9301             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9302             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9303 
9304             switch (fpopcode) {
9305             case 0x39: /* FMLS */
9306                 /* As usual for ARM, separate negation for fused multiply-add */
9307                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9308                 /* fall through */
9309             case 0x19: /* FMLA */
9310                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9311                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9312                                        tcg_res, fpst);
9313                 break;
9314             case 0x1c: /* FCMEQ */
9315                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9316                 break;
9317             case 0x1f: /* FRECPS */
9318                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9319                 break;
9320             case 0x3f: /* FRSQRTS */
9321                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9322                 break;
9323             case 0x5c: /* FCMGE */
9324                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9325                 break;
9326             case 0x5d: /* FACGE */
9327                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9328                 break;
9329             case 0x7a: /* FABD */
9330                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9331                 gen_helper_vfp_abss(tcg_res, tcg_res);
9332                 break;
9333             case 0x7c: /* FCMGT */
9334                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9335                 break;
9336             case 0x7d: /* FACGT */
9337                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9338                 break;
9339             default:
9340             case 0x18: /* FMAXNM */
9341             case 0x1a: /* FADD */
9342             case 0x1b: /* FMULX */
9343             case 0x1e: /* FMAX */
9344             case 0x38: /* FMINNM */
9345             case 0x3a: /* FSUB */
9346             case 0x3e: /* FMIN */
9347             case 0x5b: /* FMUL */
9348             case 0x5f: /* FDIV */
9349                 g_assert_not_reached();
9350             }
9351 
9352             if (elements == 1) {
9353                 /* scalar single so clear high part */
9354                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9355 
9356                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9357                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9358             } else {
9359                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9360             }
9361         }
9362     }
9363 
9364     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9365 }
9366 
9367 /* AdvSIMD scalar three same
9368  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9369  * +-----+---+-----------+------+---+------+--------+---+------+------+
9370  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9371  * +-----+---+-----------+------+---+------+--------+---+------+------+
9372  */
9373 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9374 {
9375     int rd = extract32(insn, 0, 5);
9376     int rn = extract32(insn, 5, 5);
9377     int opcode = extract32(insn, 11, 5);
9378     int rm = extract32(insn, 16, 5);
9379     int size = extract32(insn, 22, 2);
9380     bool u = extract32(insn, 29, 1);
9381     TCGv_i64 tcg_rd;
9382 
9383     if (opcode >= 0x18) {
9384         /* Floating point: U, size[1] and opcode indicate operation */
9385         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9386         switch (fpopcode) {
9387         case 0x1f: /* FRECPS */
9388         case 0x3f: /* FRSQRTS */
9389         case 0x5d: /* FACGE */
9390         case 0x7d: /* FACGT */
9391         case 0x1c: /* FCMEQ */
9392         case 0x5c: /* FCMGE */
9393         case 0x7c: /* FCMGT */
9394         case 0x7a: /* FABD */
9395             break;
9396         default:
9397         case 0x1b: /* FMULX */
9398             unallocated_encoding(s);
9399             return;
9400         }
9401 
9402         if (!fp_access_check(s)) {
9403             return;
9404         }
9405 
9406         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9407         return;
9408     }
9409 
9410     switch (opcode) {
9411     case 0x1: /* SQADD, UQADD */
9412     case 0x5: /* SQSUB, UQSUB */
9413     case 0x9: /* SQSHL, UQSHL */
9414     case 0xb: /* SQRSHL, UQRSHL */
9415         break;
9416     case 0x8: /* SSHL, USHL */
9417     case 0xa: /* SRSHL, URSHL */
9418     case 0x6: /* CMGT, CMHI */
9419     case 0x7: /* CMGE, CMHS */
9420     case 0x11: /* CMTST, CMEQ */
9421     case 0x10: /* ADD, SUB (vector) */
9422         if (size != 3) {
9423             unallocated_encoding(s);
9424             return;
9425         }
9426         break;
9427     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9428         if (size != 1 && size != 2) {
9429             unallocated_encoding(s);
9430             return;
9431         }
9432         break;
9433     default:
9434         unallocated_encoding(s);
9435         return;
9436     }
9437 
9438     if (!fp_access_check(s)) {
9439         return;
9440     }
9441 
9442     tcg_rd = tcg_temp_new_i64();
9443 
9444     if (size == 3) {
9445         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9446         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9447 
9448         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9449     } else {
9450         /* Do a single operation on the lowest element in the vector.
9451          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9452          * no side effects for all these operations.
9453          * OPTME: special-purpose helpers would avoid doing some
9454          * unnecessary work in the helper for the 8 and 16 bit cases.
9455          */
9456         NeonGenTwoOpEnvFn *genenvfn;
9457         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9458         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9459         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9460 
9461         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9462         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9463 
9464         switch (opcode) {
9465         case 0x1: /* SQADD, UQADD */
9466         {
9467             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9468                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9469                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9470                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9471             };
9472             genenvfn = fns[size][u];
9473             break;
9474         }
9475         case 0x5: /* SQSUB, UQSUB */
9476         {
9477             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9478                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9479                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9480                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9481             };
9482             genenvfn = fns[size][u];
9483             break;
9484         }
9485         case 0x9: /* SQSHL, UQSHL */
9486         {
9487             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9488                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9489                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9490                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9491             };
9492             genenvfn = fns[size][u];
9493             break;
9494         }
9495         case 0xb: /* SQRSHL, UQRSHL */
9496         {
9497             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9498                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9499                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9500                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9501             };
9502             genenvfn = fns[size][u];
9503             break;
9504         }
9505         case 0x16: /* SQDMULH, SQRDMULH */
9506         {
9507             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9508                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9509                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9510             };
9511             assert(size == 1 || size == 2);
9512             genenvfn = fns[size - 1][u];
9513             break;
9514         }
9515         default:
9516             g_assert_not_reached();
9517         }
9518 
9519         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9520         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9521     }
9522 
9523     write_fp_dreg(s, rd, tcg_rd);
9524 }
9525 
9526 /* AdvSIMD scalar three same FP16
9527  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9528  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9529  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9530  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9531  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9532  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9533  */
9534 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9535                                                   uint32_t insn)
9536 {
9537     int rd = extract32(insn, 0, 5);
9538     int rn = extract32(insn, 5, 5);
9539     int opcode = extract32(insn, 11, 3);
9540     int rm = extract32(insn, 16, 5);
9541     bool u = extract32(insn, 29, 1);
9542     bool a = extract32(insn, 23, 1);
9543     int fpopcode = opcode | (a << 3) |  (u << 4);
9544     TCGv_ptr fpst;
9545     TCGv_i32 tcg_op1;
9546     TCGv_i32 tcg_op2;
9547     TCGv_i32 tcg_res;
9548 
9549     switch (fpopcode) {
9550     case 0x04: /* FCMEQ (reg) */
9551     case 0x07: /* FRECPS */
9552     case 0x0f: /* FRSQRTS */
9553     case 0x14: /* FCMGE (reg) */
9554     case 0x15: /* FACGE */
9555     case 0x1a: /* FABD */
9556     case 0x1c: /* FCMGT (reg) */
9557     case 0x1d: /* FACGT */
9558         break;
9559     default:
9560     case 0x03: /* FMULX */
9561         unallocated_encoding(s);
9562         return;
9563     }
9564 
9565     if (!dc_isar_feature(aa64_fp16, s)) {
9566         unallocated_encoding(s);
9567     }
9568 
9569     if (!fp_access_check(s)) {
9570         return;
9571     }
9572 
9573     fpst = fpstatus_ptr(FPST_FPCR_F16);
9574 
9575     tcg_op1 = read_fp_hreg(s, rn);
9576     tcg_op2 = read_fp_hreg(s, rm);
9577     tcg_res = tcg_temp_new_i32();
9578 
9579     switch (fpopcode) {
9580     case 0x04: /* FCMEQ (reg) */
9581         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9582         break;
9583     case 0x07: /* FRECPS */
9584         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9585         break;
9586     case 0x0f: /* FRSQRTS */
9587         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9588         break;
9589     case 0x14: /* FCMGE (reg) */
9590         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9591         break;
9592     case 0x15: /* FACGE */
9593         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9594         break;
9595     case 0x1a: /* FABD */
9596         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9597         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9598         break;
9599     case 0x1c: /* FCMGT (reg) */
9600         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9601         break;
9602     case 0x1d: /* FACGT */
9603         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9604         break;
9605     default:
9606     case 0x03: /* FMULX */
9607         g_assert_not_reached();
9608     }
9609 
9610     write_fp_sreg(s, rd, tcg_res);
9611 }
9612 
9613 /* AdvSIMD scalar three same extra
9614  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9615  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9616  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9617  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9618  */
9619 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9620                                                    uint32_t insn)
9621 {
9622     int rd = extract32(insn, 0, 5);
9623     int rn = extract32(insn, 5, 5);
9624     int opcode = extract32(insn, 11, 4);
9625     int rm = extract32(insn, 16, 5);
9626     int size = extract32(insn, 22, 2);
9627     bool u = extract32(insn, 29, 1);
9628     TCGv_i32 ele1, ele2, ele3;
9629     TCGv_i64 res;
9630     bool feature;
9631 
9632     switch (u * 16 + opcode) {
9633     case 0x10: /* SQRDMLAH (vector) */
9634     case 0x11: /* SQRDMLSH (vector) */
9635         if (size != 1 && size != 2) {
9636             unallocated_encoding(s);
9637             return;
9638         }
9639         feature = dc_isar_feature(aa64_rdm, s);
9640         break;
9641     default:
9642         unallocated_encoding(s);
9643         return;
9644     }
9645     if (!feature) {
9646         unallocated_encoding(s);
9647         return;
9648     }
9649     if (!fp_access_check(s)) {
9650         return;
9651     }
9652 
9653     /* Do a single operation on the lowest element in the vector.
9654      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9655      * with no side effects for all these operations.
9656      * OPTME: special-purpose helpers would avoid doing some
9657      * unnecessary work in the helper for the 16 bit cases.
9658      */
9659     ele1 = tcg_temp_new_i32();
9660     ele2 = tcg_temp_new_i32();
9661     ele3 = tcg_temp_new_i32();
9662 
9663     read_vec_element_i32(s, ele1, rn, 0, size);
9664     read_vec_element_i32(s, ele2, rm, 0, size);
9665     read_vec_element_i32(s, ele3, rd, 0, size);
9666 
9667     switch (opcode) {
9668     case 0x0: /* SQRDMLAH */
9669         if (size == 1) {
9670             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9671         } else {
9672             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9673         }
9674         break;
9675     case 0x1: /* SQRDMLSH */
9676         if (size == 1) {
9677             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9678         } else {
9679             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9680         }
9681         break;
9682     default:
9683         g_assert_not_reached();
9684     }
9685 
9686     res = tcg_temp_new_i64();
9687     tcg_gen_extu_i32_i64(res, ele3);
9688     write_fp_dreg(s, rd, res);
9689 }
9690 
9691 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9692                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9693                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9694 {
9695     /* Handle 64->64 opcodes which are shared between the scalar and
9696      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9697      * is valid in either group and also the double-precision fp ops.
9698      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9699      * requires them.
9700      */
9701     TCGCond cond;
9702 
9703     switch (opcode) {
9704     case 0x4: /* CLS, CLZ */
9705         if (u) {
9706             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9707         } else {
9708             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9709         }
9710         break;
9711     case 0x5: /* NOT */
9712         /* This opcode is shared with CNT and RBIT but we have earlier
9713          * enforced that size == 3 if and only if this is the NOT insn.
9714          */
9715         tcg_gen_not_i64(tcg_rd, tcg_rn);
9716         break;
9717     case 0x7: /* SQABS, SQNEG */
9718         if (u) {
9719             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9720         } else {
9721             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9722         }
9723         break;
9724     case 0xa: /* CMLT */
9725         cond = TCG_COND_LT;
9726     do_cmop:
9727         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9728         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9729         break;
9730     case 0x8: /* CMGT, CMGE */
9731         cond = u ? TCG_COND_GE : TCG_COND_GT;
9732         goto do_cmop;
9733     case 0x9: /* CMEQ, CMLE */
9734         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9735         goto do_cmop;
9736     case 0xb: /* ABS, NEG */
9737         if (u) {
9738             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9739         } else {
9740             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9741         }
9742         break;
9743     case 0x2f: /* FABS */
9744         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9745         break;
9746     case 0x6f: /* FNEG */
9747         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9748         break;
9749     case 0x7f: /* FSQRT */
9750         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9751         break;
9752     case 0x1a: /* FCVTNS */
9753     case 0x1b: /* FCVTMS */
9754     case 0x1c: /* FCVTAS */
9755     case 0x3a: /* FCVTPS */
9756     case 0x3b: /* FCVTZS */
9757         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9758         break;
9759     case 0x5a: /* FCVTNU */
9760     case 0x5b: /* FCVTMU */
9761     case 0x5c: /* FCVTAU */
9762     case 0x7a: /* FCVTPU */
9763     case 0x7b: /* FCVTZU */
9764         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9765         break;
9766     case 0x18: /* FRINTN */
9767     case 0x19: /* FRINTM */
9768     case 0x38: /* FRINTP */
9769     case 0x39: /* FRINTZ */
9770     case 0x58: /* FRINTA */
9771     case 0x79: /* FRINTI */
9772         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9773         break;
9774     case 0x59: /* FRINTX */
9775         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9776         break;
9777     case 0x1e: /* FRINT32Z */
9778     case 0x5e: /* FRINT32X */
9779         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9780         break;
9781     case 0x1f: /* FRINT64Z */
9782     case 0x5f: /* FRINT64X */
9783         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9784         break;
9785     default:
9786         g_assert_not_reached();
9787     }
9788 }
9789 
9790 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9791                                    bool is_scalar, bool is_u, bool is_q,
9792                                    int size, int rn, int rd)
9793 {
9794     bool is_double = (size == MO_64);
9795     TCGv_ptr fpst;
9796 
9797     if (!fp_access_check(s)) {
9798         return;
9799     }
9800 
9801     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9802 
9803     if (is_double) {
9804         TCGv_i64 tcg_op = tcg_temp_new_i64();
9805         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9806         TCGv_i64 tcg_res = tcg_temp_new_i64();
9807         NeonGenTwoDoubleOpFn *genfn;
9808         bool swap = false;
9809         int pass;
9810 
9811         switch (opcode) {
9812         case 0x2e: /* FCMLT (zero) */
9813             swap = true;
9814             /* fallthrough */
9815         case 0x2c: /* FCMGT (zero) */
9816             genfn = gen_helper_neon_cgt_f64;
9817             break;
9818         case 0x2d: /* FCMEQ (zero) */
9819             genfn = gen_helper_neon_ceq_f64;
9820             break;
9821         case 0x6d: /* FCMLE (zero) */
9822             swap = true;
9823             /* fall through */
9824         case 0x6c: /* FCMGE (zero) */
9825             genfn = gen_helper_neon_cge_f64;
9826             break;
9827         default:
9828             g_assert_not_reached();
9829         }
9830 
9831         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9832             read_vec_element(s, tcg_op, rn, pass, MO_64);
9833             if (swap) {
9834                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9835             } else {
9836                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9837             }
9838             write_vec_element(s, tcg_res, rd, pass, MO_64);
9839         }
9840 
9841         clear_vec_high(s, !is_scalar, rd);
9842     } else {
9843         TCGv_i32 tcg_op = tcg_temp_new_i32();
9844         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9845         TCGv_i32 tcg_res = tcg_temp_new_i32();
9846         NeonGenTwoSingleOpFn *genfn;
9847         bool swap = false;
9848         int pass, maxpasses;
9849 
9850         if (size == MO_16) {
9851             switch (opcode) {
9852             case 0x2e: /* FCMLT (zero) */
9853                 swap = true;
9854                 /* fall through */
9855             case 0x2c: /* FCMGT (zero) */
9856                 genfn = gen_helper_advsimd_cgt_f16;
9857                 break;
9858             case 0x2d: /* FCMEQ (zero) */
9859                 genfn = gen_helper_advsimd_ceq_f16;
9860                 break;
9861             case 0x6d: /* FCMLE (zero) */
9862                 swap = true;
9863                 /* fall through */
9864             case 0x6c: /* FCMGE (zero) */
9865                 genfn = gen_helper_advsimd_cge_f16;
9866                 break;
9867             default:
9868                 g_assert_not_reached();
9869             }
9870         } else {
9871             switch (opcode) {
9872             case 0x2e: /* FCMLT (zero) */
9873                 swap = true;
9874                 /* fall through */
9875             case 0x2c: /* FCMGT (zero) */
9876                 genfn = gen_helper_neon_cgt_f32;
9877                 break;
9878             case 0x2d: /* FCMEQ (zero) */
9879                 genfn = gen_helper_neon_ceq_f32;
9880                 break;
9881             case 0x6d: /* FCMLE (zero) */
9882                 swap = true;
9883                 /* fall through */
9884             case 0x6c: /* FCMGE (zero) */
9885                 genfn = gen_helper_neon_cge_f32;
9886                 break;
9887             default:
9888                 g_assert_not_reached();
9889             }
9890         }
9891 
9892         if (is_scalar) {
9893             maxpasses = 1;
9894         } else {
9895             int vector_size = 8 << is_q;
9896             maxpasses = vector_size >> size;
9897         }
9898 
9899         for (pass = 0; pass < maxpasses; pass++) {
9900             read_vec_element_i32(s, tcg_op, rn, pass, size);
9901             if (swap) {
9902                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9903             } else {
9904                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9905             }
9906             if (is_scalar) {
9907                 write_fp_sreg(s, rd, tcg_res);
9908             } else {
9909                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9910             }
9911         }
9912 
9913         if (!is_scalar) {
9914             clear_vec_high(s, is_q, rd);
9915         }
9916     }
9917 }
9918 
9919 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9920                                     bool is_scalar, bool is_u, bool is_q,
9921                                     int size, int rn, int rd)
9922 {
9923     bool is_double = (size == 3);
9924     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9925 
9926     if (is_double) {
9927         TCGv_i64 tcg_op = tcg_temp_new_i64();
9928         TCGv_i64 tcg_res = tcg_temp_new_i64();
9929         int pass;
9930 
9931         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9932             read_vec_element(s, tcg_op, rn, pass, MO_64);
9933             switch (opcode) {
9934             case 0x3d: /* FRECPE */
9935                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9936                 break;
9937             case 0x3f: /* FRECPX */
9938                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9939                 break;
9940             case 0x7d: /* FRSQRTE */
9941                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9942                 break;
9943             default:
9944                 g_assert_not_reached();
9945             }
9946             write_vec_element(s, tcg_res, rd, pass, MO_64);
9947         }
9948         clear_vec_high(s, !is_scalar, rd);
9949     } else {
9950         TCGv_i32 tcg_op = tcg_temp_new_i32();
9951         TCGv_i32 tcg_res = tcg_temp_new_i32();
9952         int pass, maxpasses;
9953 
9954         if (is_scalar) {
9955             maxpasses = 1;
9956         } else {
9957             maxpasses = is_q ? 4 : 2;
9958         }
9959 
9960         for (pass = 0; pass < maxpasses; pass++) {
9961             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9962 
9963             switch (opcode) {
9964             case 0x3c: /* URECPE */
9965                 gen_helper_recpe_u32(tcg_res, tcg_op);
9966                 break;
9967             case 0x3d: /* FRECPE */
9968                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9969                 break;
9970             case 0x3f: /* FRECPX */
9971                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9972                 break;
9973             case 0x7d: /* FRSQRTE */
9974                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9975                 break;
9976             default:
9977                 g_assert_not_reached();
9978             }
9979 
9980             if (is_scalar) {
9981                 write_fp_sreg(s, rd, tcg_res);
9982             } else {
9983                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9984             }
9985         }
9986         if (!is_scalar) {
9987             clear_vec_high(s, is_q, rd);
9988         }
9989     }
9990 }
9991 
9992 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9993                                 int opcode, bool u, bool is_q,
9994                                 int size, int rn, int rd)
9995 {
9996     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9997      * in the source becomes a size element in the destination).
9998      */
9999     int pass;
10000     TCGv_i32 tcg_res[2];
10001     int destelt = is_q ? 2 : 0;
10002     int passes = scalar ? 1 : 2;
10003 
10004     if (scalar) {
10005         tcg_res[1] = tcg_constant_i32(0);
10006     }
10007 
10008     for (pass = 0; pass < passes; pass++) {
10009         TCGv_i64 tcg_op = tcg_temp_new_i64();
10010         NeonGenNarrowFn *genfn = NULL;
10011         NeonGenNarrowEnvFn *genenvfn = NULL;
10012 
10013         if (scalar) {
10014             read_vec_element(s, tcg_op, rn, pass, size + 1);
10015         } else {
10016             read_vec_element(s, tcg_op, rn, pass, MO_64);
10017         }
10018         tcg_res[pass] = tcg_temp_new_i32();
10019 
10020         switch (opcode) {
10021         case 0x12: /* XTN, SQXTUN */
10022         {
10023             static NeonGenNarrowFn * const xtnfns[3] = {
10024                 gen_helper_neon_narrow_u8,
10025                 gen_helper_neon_narrow_u16,
10026                 tcg_gen_extrl_i64_i32,
10027             };
10028             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10029                 gen_helper_neon_unarrow_sat8,
10030                 gen_helper_neon_unarrow_sat16,
10031                 gen_helper_neon_unarrow_sat32,
10032             };
10033             if (u) {
10034                 genenvfn = sqxtunfns[size];
10035             } else {
10036                 genfn = xtnfns[size];
10037             }
10038             break;
10039         }
10040         case 0x14: /* SQXTN, UQXTN */
10041         {
10042             static NeonGenNarrowEnvFn * const fns[3][2] = {
10043                 { gen_helper_neon_narrow_sat_s8,
10044                   gen_helper_neon_narrow_sat_u8 },
10045                 { gen_helper_neon_narrow_sat_s16,
10046                   gen_helper_neon_narrow_sat_u16 },
10047                 { gen_helper_neon_narrow_sat_s32,
10048                   gen_helper_neon_narrow_sat_u32 },
10049             };
10050             genenvfn = fns[size][u];
10051             break;
10052         }
10053         case 0x16: /* FCVTN, FCVTN2 */
10054             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10055             if (size == 2) {
10056                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10057             } else {
10058                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10059                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10060                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10061                 TCGv_i32 ahp = get_ahp_flag();
10062 
10063                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10064                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10065                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10066                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10067             }
10068             break;
10069         case 0x36: /* BFCVTN, BFCVTN2 */
10070             {
10071                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10072                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10073             }
10074             break;
10075         case 0x56:  /* FCVTXN, FCVTXN2 */
10076             /* 64 bit to 32 bit float conversion
10077              * with von Neumann rounding (round to odd)
10078              */
10079             assert(size == 2);
10080             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10081             break;
10082         default:
10083             g_assert_not_reached();
10084         }
10085 
10086         if (genfn) {
10087             genfn(tcg_res[pass], tcg_op);
10088         } else if (genenvfn) {
10089             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10090         }
10091     }
10092 
10093     for (pass = 0; pass < 2; pass++) {
10094         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10095     }
10096     clear_vec_high(s, is_q, rd);
10097 }
10098 
10099 /* Remaining saturating accumulating ops */
10100 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10101                                 bool is_q, int size, int rn, int rd)
10102 {
10103     bool is_double = (size == 3);
10104 
10105     if (is_double) {
10106         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10107         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10108         int pass;
10109 
10110         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10111             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10112             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10113 
10114             if (is_u) { /* USQADD */
10115                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10116             } else { /* SUQADD */
10117                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10118             }
10119             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10120         }
10121         clear_vec_high(s, !is_scalar, rd);
10122     } else {
10123         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10124         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10125         int pass, maxpasses;
10126 
10127         if (is_scalar) {
10128             maxpasses = 1;
10129         } else {
10130             maxpasses = is_q ? 4 : 2;
10131         }
10132 
10133         for (pass = 0; pass < maxpasses; pass++) {
10134             if (is_scalar) {
10135                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10136                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10137             } else {
10138                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10139                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10140             }
10141 
10142             if (is_u) { /* USQADD */
10143                 switch (size) {
10144                 case 0:
10145                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10146                     break;
10147                 case 1:
10148                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10149                     break;
10150                 case 2:
10151                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10152                     break;
10153                 default:
10154                     g_assert_not_reached();
10155                 }
10156             } else { /* SUQADD */
10157                 switch (size) {
10158                 case 0:
10159                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10160                     break;
10161                 case 1:
10162                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10163                     break;
10164                 case 2:
10165                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10166                     break;
10167                 default:
10168                     g_assert_not_reached();
10169                 }
10170             }
10171 
10172             if (is_scalar) {
10173                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10174             }
10175             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10176         }
10177         clear_vec_high(s, is_q, rd);
10178     }
10179 }
10180 
10181 /* AdvSIMD scalar two reg misc
10182  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10183  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10184  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10185  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10186  */
10187 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10188 {
10189     int rd = extract32(insn, 0, 5);
10190     int rn = extract32(insn, 5, 5);
10191     int opcode = extract32(insn, 12, 5);
10192     int size = extract32(insn, 22, 2);
10193     bool u = extract32(insn, 29, 1);
10194     bool is_fcvt = false;
10195     int rmode;
10196     TCGv_i32 tcg_rmode;
10197     TCGv_ptr tcg_fpstatus;
10198 
10199     switch (opcode) {
10200     case 0x3: /* USQADD / SUQADD*/
10201         if (!fp_access_check(s)) {
10202             return;
10203         }
10204         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10205         return;
10206     case 0x7: /* SQABS / SQNEG */
10207         break;
10208     case 0xa: /* CMLT */
10209         if (u) {
10210             unallocated_encoding(s);
10211             return;
10212         }
10213         /* fall through */
10214     case 0x8: /* CMGT, CMGE */
10215     case 0x9: /* CMEQ, CMLE */
10216     case 0xb: /* ABS, NEG */
10217         if (size != 3) {
10218             unallocated_encoding(s);
10219             return;
10220         }
10221         break;
10222     case 0x12: /* SQXTUN */
10223         if (!u) {
10224             unallocated_encoding(s);
10225             return;
10226         }
10227         /* fall through */
10228     case 0x14: /* SQXTN, UQXTN */
10229         if (size == 3) {
10230             unallocated_encoding(s);
10231             return;
10232         }
10233         if (!fp_access_check(s)) {
10234             return;
10235         }
10236         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10237         return;
10238     case 0xc ... 0xf:
10239     case 0x16 ... 0x1d:
10240     case 0x1f:
10241         /* Floating point: U, size[1] and opcode indicate operation;
10242          * size[0] indicates single or double precision.
10243          */
10244         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10245         size = extract32(size, 0, 1) ? 3 : 2;
10246         switch (opcode) {
10247         case 0x2c: /* FCMGT (zero) */
10248         case 0x2d: /* FCMEQ (zero) */
10249         case 0x2e: /* FCMLT (zero) */
10250         case 0x6c: /* FCMGE (zero) */
10251         case 0x6d: /* FCMLE (zero) */
10252             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10253             return;
10254         case 0x1d: /* SCVTF */
10255         case 0x5d: /* UCVTF */
10256         {
10257             bool is_signed = (opcode == 0x1d);
10258             if (!fp_access_check(s)) {
10259                 return;
10260             }
10261             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10262             return;
10263         }
10264         case 0x3d: /* FRECPE */
10265         case 0x3f: /* FRECPX */
10266         case 0x7d: /* FRSQRTE */
10267             if (!fp_access_check(s)) {
10268                 return;
10269             }
10270             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10271             return;
10272         case 0x1a: /* FCVTNS */
10273         case 0x1b: /* FCVTMS */
10274         case 0x3a: /* FCVTPS */
10275         case 0x3b: /* FCVTZS */
10276         case 0x5a: /* FCVTNU */
10277         case 0x5b: /* FCVTMU */
10278         case 0x7a: /* FCVTPU */
10279         case 0x7b: /* FCVTZU */
10280             is_fcvt = true;
10281             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10282             break;
10283         case 0x1c: /* FCVTAS */
10284         case 0x5c: /* FCVTAU */
10285             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10286             is_fcvt = true;
10287             rmode = FPROUNDING_TIEAWAY;
10288             break;
10289         case 0x56: /* FCVTXN, FCVTXN2 */
10290             if (size == 2) {
10291                 unallocated_encoding(s);
10292                 return;
10293             }
10294             if (!fp_access_check(s)) {
10295                 return;
10296             }
10297             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10298             return;
10299         default:
10300             unallocated_encoding(s);
10301             return;
10302         }
10303         break;
10304     default:
10305         unallocated_encoding(s);
10306         return;
10307     }
10308 
10309     if (!fp_access_check(s)) {
10310         return;
10311     }
10312 
10313     if (is_fcvt) {
10314         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10315         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10316     } else {
10317         tcg_fpstatus = NULL;
10318         tcg_rmode = NULL;
10319     }
10320 
10321     if (size == 3) {
10322         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10323         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10324 
10325         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10326         write_fp_dreg(s, rd, tcg_rd);
10327     } else {
10328         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10329         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10330 
10331         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10332 
10333         switch (opcode) {
10334         case 0x7: /* SQABS, SQNEG */
10335         {
10336             NeonGenOneOpEnvFn *genfn;
10337             static NeonGenOneOpEnvFn * const fns[3][2] = {
10338                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10339                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10340                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10341             };
10342             genfn = fns[size][u];
10343             genfn(tcg_rd, tcg_env, tcg_rn);
10344             break;
10345         }
10346         case 0x1a: /* FCVTNS */
10347         case 0x1b: /* FCVTMS */
10348         case 0x1c: /* FCVTAS */
10349         case 0x3a: /* FCVTPS */
10350         case 0x3b: /* FCVTZS */
10351             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10352                                  tcg_fpstatus);
10353             break;
10354         case 0x5a: /* FCVTNU */
10355         case 0x5b: /* FCVTMU */
10356         case 0x5c: /* FCVTAU */
10357         case 0x7a: /* FCVTPU */
10358         case 0x7b: /* FCVTZU */
10359             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10360                                  tcg_fpstatus);
10361             break;
10362         default:
10363             g_assert_not_reached();
10364         }
10365 
10366         write_fp_sreg(s, rd, tcg_rd);
10367     }
10368 
10369     if (is_fcvt) {
10370         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10371     }
10372 }
10373 
10374 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10375 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10376                                  int immh, int immb, int opcode, int rn, int rd)
10377 {
10378     int size = 32 - clz32(immh) - 1;
10379     int immhb = immh << 3 | immb;
10380     int shift = 2 * (8 << size) - immhb;
10381     GVecGen2iFn *gvec_fn;
10382 
10383     if (extract32(immh, 3, 1) && !is_q) {
10384         unallocated_encoding(s);
10385         return;
10386     }
10387     tcg_debug_assert(size <= 3);
10388 
10389     if (!fp_access_check(s)) {
10390         return;
10391     }
10392 
10393     switch (opcode) {
10394     case 0x02: /* SSRA / USRA (accumulate) */
10395         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10396         break;
10397 
10398     case 0x08: /* SRI */
10399         gvec_fn = gen_gvec_sri;
10400         break;
10401 
10402     case 0x00: /* SSHR / USHR */
10403         if (is_u) {
10404             if (shift == 8 << size) {
10405                 /* Shift count the same size as element size produces zero.  */
10406                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10407                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10408                 return;
10409             }
10410             gvec_fn = tcg_gen_gvec_shri;
10411         } else {
10412             /* Shift count the same size as element size produces all sign.  */
10413             if (shift == 8 << size) {
10414                 shift -= 1;
10415             }
10416             gvec_fn = tcg_gen_gvec_sari;
10417         }
10418         break;
10419 
10420     case 0x04: /* SRSHR / URSHR (rounding) */
10421         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10422         break;
10423 
10424     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10425         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10426         break;
10427 
10428     default:
10429         g_assert_not_reached();
10430     }
10431 
10432     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10433 }
10434 
10435 /* SHL/SLI - Vector shift left */
10436 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10437                                  int immh, int immb, int opcode, int rn, int rd)
10438 {
10439     int size = 32 - clz32(immh) - 1;
10440     int immhb = immh << 3 | immb;
10441     int shift = immhb - (8 << size);
10442 
10443     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10444     assert(size >= 0 && size <= 3);
10445 
10446     if (extract32(immh, 3, 1) && !is_q) {
10447         unallocated_encoding(s);
10448         return;
10449     }
10450 
10451     if (!fp_access_check(s)) {
10452         return;
10453     }
10454 
10455     if (insert) {
10456         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10457     } else {
10458         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10459     }
10460 }
10461 
10462 /* USHLL/SHLL - Vector shift left with widening */
10463 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10464                                  int immh, int immb, int opcode, int rn, int rd)
10465 {
10466     int size = 32 - clz32(immh) - 1;
10467     int immhb = immh << 3 | immb;
10468     int shift = immhb - (8 << size);
10469     int dsize = 64;
10470     int esize = 8 << size;
10471     int elements = dsize/esize;
10472     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10473     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10474     int i;
10475 
10476     if (size >= 3) {
10477         unallocated_encoding(s);
10478         return;
10479     }
10480 
10481     if (!fp_access_check(s)) {
10482         return;
10483     }
10484 
10485     /* For the LL variants the store is larger than the load,
10486      * so if rd == rn we would overwrite parts of our input.
10487      * So load everything right now and use shifts in the main loop.
10488      */
10489     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10490 
10491     for (i = 0; i < elements; i++) {
10492         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10493         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10494         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10495         write_vec_element(s, tcg_rd, rd, i, size + 1);
10496     }
10497 }
10498 
10499 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10500 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10501                                  int immh, int immb, int opcode, int rn, int rd)
10502 {
10503     int immhb = immh << 3 | immb;
10504     int size = 32 - clz32(immh) - 1;
10505     int dsize = 64;
10506     int esize = 8 << size;
10507     int elements = dsize/esize;
10508     int shift = (2 * esize) - immhb;
10509     bool round = extract32(opcode, 0, 1);
10510     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10511     TCGv_i64 tcg_round;
10512     int i;
10513 
10514     if (extract32(immh, 3, 1)) {
10515         unallocated_encoding(s);
10516         return;
10517     }
10518 
10519     if (!fp_access_check(s)) {
10520         return;
10521     }
10522 
10523     tcg_rn = tcg_temp_new_i64();
10524     tcg_rd = tcg_temp_new_i64();
10525     tcg_final = tcg_temp_new_i64();
10526     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10527 
10528     if (round) {
10529         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10530     } else {
10531         tcg_round = NULL;
10532     }
10533 
10534     for (i = 0; i < elements; i++) {
10535         read_vec_element(s, tcg_rn, rn, i, size+1);
10536         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10537                                 false, true, size+1, shift);
10538 
10539         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10540     }
10541 
10542     if (!is_q) {
10543         write_vec_element(s, tcg_final, rd, 0, MO_64);
10544     } else {
10545         write_vec_element(s, tcg_final, rd, 1, MO_64);
10546     }
10547 
10548     clear_vec_high(s, is_q, rd);
10549 }
10550 
10551 
10552 /* AdvSIMD shift by immediate
10553  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10554  * +---+---+---+-------------+------+------+--------+---+------+------+
10555  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10556  * +---+---+---+-------------+------+------+--------+---+------+------+
10557  */
10558 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10559 {
10560     int rd = extract32(insn, 0, 5);
10561     int rn = extract32(insn, 5, 5);
10562     int opcode = extract32(insn, 11, 5);
10563     int immb = extract32(insn, 16, 3);
10564     int immh = extract32(insn, 19, 4);
10565     bool is_u = extract32(insn, 29, 1);
10566     bool is_q = extract32(insn, 30, 1);
10567 
10568     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10569     assert(immh != 0);
10570 
10571     switch (opcode) {
10572     case 0x08: /* SRI */
10573         if (!is_u) {
10574             unallocated_encoding(s);
10575             return;
10576         }
10577         /* fall through */
10578     case 0x00: /* SSHR / USHR */
10579     case 0x02: /* SSRA / USRA (accumulate) */
10580     case 0x04: /* SRSHR / URSHR (rounding) */
10581     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10582         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10583         break;
10584     case 0x0a: /* SHL / SLI */
10585         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10586         break;
10587     case 0x10: /* SHRN */
10588     case 0x11: /* RSHRN / SQRSHRUN */
10589         if (is_u) {
10590             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10591                                    opcode, rn, rd);
10592         } else {
10593             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10594         }
10595         break;
10596     case 0x12: /* SQSHRN / UQSHRN */
10597     case 0x13: /* SQRSHRN / UQRSHRN */
10598         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10599                                opcode, rn, rd);
10600         break;
10601     case 0x14: /* SSHLL / USHLL */
10602         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10603         break;
10604     case 0x1c: /* SCVTF / UCVTF */
10605         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10606                                      opcode, rn, rd);
10607         break;
10608     case 0xc: /* SQSHLU */
10609         if (!is_u) {
10610             unallocated_encoding(s);
10611             return;
10612         }
10613         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10614         break;
10615     case 0xe: /* SQSHL, UQSHL */
10616         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10617         break;
10618     case 0x1f: /* FCVTZS/ FCVTZU */
10619         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10620         return;
10621     default:
10622         unallocated_encoding(s);
10623         return;
10624     }
10625 }
10626 
10627 /* Generate code to do a "long" addition or subtraction, ie one done in
10628  * TCGv_i64 on vector lanes twice the width specified by size.
10629  */
10630 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10631                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10632 {
10633     static NeonGenTwo64OpFn * const fns[3][2] = {
10634         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10635         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10636         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10637     };
10638     NeonGenTwo64OpFn *genfn;
10639     assert(size < 3);
10640 
10641     genfn = fns[size][is_sub];
10642     genfn(tcg_res, tcg_op1, tcg_op2);
10643 }
10644 
10645 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10646                                 int opcode, int rd, int rn, int rm)
10647 {
10648     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10649     TCGv_i64 tcg_res[2];
10650     int pass, accop;
10651 
10652     tcg_res[0] = tcg_temp_new_i64();
10653     tcg_res[1] = tcg_temp_new_i64();
10654 
10655     /* Does this op do an adding accumulate, a subtracting accumulate,
10656      * or no accumulate at all?
10657      */
10658     switch (opcode) {
10659     case 5:
10660     case 8:
10661     case 9:
10662         accop = 1;
10663         break;
10664     case 10:
10665     case 11:
10666         accop = -1;
10667         break;
10668     default:
10669         accop = 0;
10670         break;
10671     }
10672 
10673     if (accop != 0) {
10674         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10675         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10676     }
10677 
10678     /* size == 2 means two 32x32->64 operations; this is worth special
10679      * casing because we can generally handle it inline.
10680      */
10681     if (size == 2) {
10682         for (pass = 0; pass < 2; pass++) {
10683             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10684             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10685             TCGv_i64 tcg_passres;
10686             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10687 
10688             int elt = pass + is_q * 2;
10689 
10690             read_vec_element(s, tcg_op1, rn, elt, memop);
10691             read_vec_element(s, tcg_op2, rm, elt, memop);
10692 
10693             if (accop == 0) {
10694                 tcg_passres = tcg_res[pass];
10695             } else {
10696                 tcg_passres = tcg_temp_new_i64();
10697             }
10698 
10699             switch (opcode) {
10700             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10701                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10702                 break;
10703             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10704                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10705                 break;
10706             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10707             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10708             {
10709                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10710                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10711 
10712                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10713                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10714                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10715                                     tcg_passres,
10716                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10717                 break;
10718             }
10719             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10720             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10721             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10722                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10723                 break;
10724             case 9: /* SQDMLAL, SQDMLAL2 */
10725             case 11: /* SQDMLSL, SQDMLSL2 */
10726             case 13: /* SQDMULL, SQDMULL2 */
10727                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10728                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10729                                                   tcg_passres, tcg_passres);
10730                 break;
10731             default:
10732                 g_assert_not_reached();
10733             }
10734 
10735             if (opcode == 9 || opcode == 11) {
10736                 /* saturating accumulate ops */
10737                 if (accop < 0) {
10738                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10739                 }
10740                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10741                                                   tcg_res[pass], tcg_passres);
10742             } else if (accop > 0) {
10743                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10744             } else if (accop < 0) {
10745                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10746             }
10747         }
10748     } else {
10749         /* size 0 or 1, generally helper functions */
10750         for (pass = 0; pass < 2; pass++) {
10751             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10752             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10753             TCGv_i64 tcg_passres;
10754             int elt = pass + is_q * 2;
10755 
10756             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10757             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10758 
10759             if (accop == 0) {
10760                 tcg_passres = tcg_res[pass];
10761             } else {
10762                 tcg_passres = tcg_temp_new_i64();
10763             }
10764 
10765             switch (opcode) {
10766             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10767             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10768             {
10769                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10770                 static NeonGenWidenFn * const widenfns[2][2] = {
10771                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10772                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10773                 };
10774                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10775 
10776                 widenfn(tcg_op2_64, tcg_op2);
10777                 widenfn(tcg_passres, tcg_op1);
10778                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10779                               tcg_passres, tcg_op2_64);
10780                 break;
10781             }
10782             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10783             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10784                 if (size == 0) {
10785                     if (is_u) {
10786                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10787                     } else {
10788                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10789                     }
10790                 } else {
10791                     if (is_u) {
10792                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10793                     } else {
10794                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10795                     }
10796                 }
10797                 break;
10798             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10799             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10800             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10801                 if (size == 0) {
10802                     if (is_u) {
10803                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10804                     } else {
10805                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10806                     }
10807                 } else {
10808                     if (is_u) {
10809                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10810                     } else {
10811                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10812                     }
10813                 }
10814                 break;
10815             case 9: /* SQDMLAL, SQDMLAL2 */
10816             case 11: /* SQDMLSL, SQDMLSL2 */
10817             case 13: /* SQDMULL, SQDMULL2 */
10818                 assert(size == 1);
10819                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10820                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10821                                                   tcg_passres, tcg_passres);
10822                 break;
10823             default:
10824                 g_assert_not_reached();
10825             }
10826 
10827             if (accop != 0) {
10828                 if (opcode == 9 || opcode == 11) {
10829                     /* saturating accumulate ops */
10830                     if (accop < 0) {
10831                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10832                     }
10833                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10834                                                       tcg_res[pass],
10835                                                       tcg_passres);
10836                 } else {
10837                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10838                                   tcg_res[pass], tcg_passres);
10839                 }
10840             }
10841         }
10842     }
10843 
10844     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10845     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10846 }
10847 
10848 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10849                             int opcode, int rd, int rn, int rm)
10850 {
10851     TCGv_i64 tcg_res[2];
10852     int part = is_q ? 2 : 0;
10853     int pass;
10854 
10855     for (pass = 0; pass < 2; pass++) {
10856         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10857         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10858         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10859         static NeonGenWidenFn * const widenfns[3][2] = {
10860             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10861             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10862             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10863         };
10864         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10865 
10866         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10867         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10868         widenfn(tcg_op2_wide, tcg_op2);
10869         tcg_res[pass] = tcg_temp_new_i64();
10870         gen_neon_addl(size, (opcode == 3),
10871                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10872     }
10873 
10874     for (pass = 0; pass < 2; pass++) {
10875         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10876     }
10877 }
10878 
10879 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10880 {
10881     tcg_gen_addi_i64(in, in, 1U << 31);
10882     tcg_gen_extrh_i64_i32(res, in);
10883 }
10884 
10885 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10886                                  int opcode, int rd, int rn, int rm)
10887 {
10888     TCGv_i32 tcg_res[2];
10889     int part = is_q ? 2 : 0;
10890     int pass;
10891 
10892     for (pass = 0; pass < 2; pass++) {
10893         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10894         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10895         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10896         static NeonGenNarrowFn * const narrowfns[3][2] = {
10897             { gen_helper_neon_narrow_high_u8,
10898               gen_helper_neon_narrow_round_high_u8 },
10899             { gen_helper_neon_narrow_high_u16,
10900               gen_helper_neon_narrow_round_high_u16 },
10901             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10902         };
10903         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10904 
10905         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10906         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10907 
10908         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10909 
10910         tcg_res[pass] = tcg_temp_new_i32();
10911         gennarrow(tcg_res[pass], tcg_wideres);
10912     }
10913 
10914     for (pass = 0; pass < 2; pass++) {
10915         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10916     }
10917     clear_vec_high(s, is_q, rd);
10918 }
10919 
10920 /* AdvSIMD three different
10921  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10922  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10923  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10924  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10925  */
10926 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10927 {
10928     /* Instructions in this group fall into three basic classes
10929      * (in each case with the operation working on each element in
10930      * the input vectors):
10931      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10932      *     128 bit input)
10933      * (2) wide 64 x 128 -> 128
10934      * (3) narrowing 128 x 128 -> 64
10935      * Here we do initial decode, catch unallocated cases and
10936      * dispatch to separate functions for each class.
10937      */
10938     int is_q = extract32(insn, 30, 1);
10939     int is_u = extract32(insn, 29, 1);
10940     int size = extract32(insn, 22, 2);
10941     int opcode = extract32(insn, 12, 4);
10942     int rm = extract32(insn, 16, 5);
10943     int rn = extract32(insn, 5, 5);
10944     int rd = extract32(insn, 0, 5);
10945 
10946     switch (opcode) {
10947     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10948     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10949         /* 64 x 128 -> 128 */
10950         if (size == 3) {
10951             unallocated_encoding(s);
10952             return;
10953         }
10954         if (!fp_access_check(s)) {
10955             return;
10956         }
10957         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10958         break;
10959     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10960     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10961         /* 128 x 128 -> 64 */
10962         if (size == 3) {
10963             unallocated_encoding(s);
10964             return;
10965         }
10966         if (!fp_access_check(s)) {
10967             return;
10968         }
10969         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10970         break;
10971     case 14: /* PMULL, PMULL2 */
10972         if (is_u) {
10973             unallocated_encoding(s);
10974             return;
10975         }
10976         switch (size) {
10977         case 0: /* PMULL.P8 */
10978             if (!fp_access_check(s)) {
10979                 return;
10980             }
10981             /* The Q field specifies lo/hi half input for this insn.  */
10982             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10983                              gen_helper_neon_pmull_h);
10984             break;
10985 
10986         case 3: /* PMULL.P64 */
10987             if (!dc_isar_feature(aa64_pmull, s)) {
10988                 unallocated_encoding(s);
10989                 return;
10990             }
10991             if (!fp_access_check(s)) {
10992                 return;
10993             }
10994             /* The Q field specifies lo/hi half input for this insn.  */
10995             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10996                              gen_helper_gvec_pmull_q);
10997             break;
10998 
10999         default:
11000             unallocated_encoding(s);
11001             break;
11002         }
11003         return;
11004     case 9: /* SQDMLAL, SQDMLAL2 */
11005     case 11: /* SQDMLSL, SQDMLSL2 */
11006     case 13: /* SQDMULL, SQDMULL2 */
11007         if (is_u || size == 0) {
11008             unallocated_encoding(s);
11009             return;
11010         }
11011         /* fall through */
11012     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11013     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11014     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11015     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11016     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11017     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11018     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11019         /* 64 x 64 -> 128 */
11020         if (size == 3) {
11021             unallocated_encoding(s);
11022             return;
11023         }
11024         if (!fp_access_check(s)) {
11025             return;
11026         }
11027 
11028         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11029         break;
11030     default:
11031         /* opcode 15 not allocated */
11032         unallocated_encoding(s);
11033         break;
11034     }
11035 }
11036 
11037 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11038 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11039 {
11040     int rd = extract32(insn, 0, 5);
11041     int rn = extract32(insn, 5, 5);
11042     int rm = extract32(insn, 16, 5);
11043     int size = extract32(insn, 22, 2);
11044     bool is_u = extract32(insn, 29, 1);
11045     bool is_q = extract32(insn, 30, 1);
11046 
11047     if (!fp_access_check(s)) {
11048         return;
11049     }
11050 
11051     switch (size + 4 * is_u) {
11052     case 0: /* AND */
11053         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11054         return;
11055     case 1: /* BIC */
11056         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11057         return;
11058     case 2: /* ORR */
11059         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11060         return;
11061     case 3: /* ORN */
11062         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11063         return;
11064     case 4: /* EOR */
11065         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11066         return;
11067 
11068     case 5: /* BSL bitwise select */
11069         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11070         return;
11071     case 6: /* BIT, bitwise insert if true */
11072         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11073         return;
11074     case 7: /* BIF, bitwise insert if false */
11075         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11076         return;
11077 
11078     default:
11079         g_assert_not_reached();
11080     }
11081 }
11082 
11083 /* Pairwise op subgroup of C3.6.16.
11084  *
11085  * This is called directly or via the handle_3same_float for float pairwise
11086  * operations where the opcode and size are calculated differently.
11087  */
11088 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11089                                    int size, int rn, int rm, int rd)
11090 {
11091     TCGv_ptr fpst;
11092     int pass;
11093 
11094     /* Floating point operations need fpst */
11095     if (opcode >= 0x58) {
11096         fpst = fpstatus_ptr(FPST_FPCR);
11097     } else {
11098         fpst = NULL;
11099     }
11100 
11101     if (!fp_access_check(s)) {
11102         return;
11103     }
11104 
11105     /* These operations work on the concatenated rm:rn, with each pair of
11106      * adjacent elements being operated on to produce an element in the result.
11107      */
11108     if (size == 3) {
11109         TCGv_i64 tcg_res[2];
11110 
11111         for (pass = 0; pass < 2; pass++) {
11112             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11113             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11114             int passreg = (pass == 0) ? rn : rm;
11115 
11116             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11117             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11118             tcg_res[pass] = tcg_temp_new_i64();
11119 
11120             switch (opcode) {
11121             case 0x17: /* ADDP */
11122                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11123                 break;
11124             case 0x58: /* FMAXNMP */
11125                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11126                 break;
11127             case 0x5a: /* FADDP */
11128                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11129                 break;
11130             case 0x5e: /* FMAXP */
11131                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11132                 break;
11133             case 0x78: /* FMINNMP */
11134                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11135                 break;
11136             case 0x7e: /* FMINP */
11137                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11138                 break;
11139             default:
11140                 g_assert_not_reached();
11141             }
11142         }
11143 
11144         for (pass = 0; pass < 2; pass++) {
11145             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11146         }
11147     } else {
11148         int maxpass = is_q ? 4 : 2;
11149         TCGv_i32 tcg_res[4];
11150 
11151         for (pass = 0; pass < maxpass; pass++) {
11152             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11153             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11154             NeonGenTwoOpFn *genfn = NULL;
11155             int passreg = pass < (maxpass / 2) ? rn : rm;
11156             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11157 
11158             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11159             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11160             tcg_res[pass] = tcg_temp_new_i32();
11161 
11162             switch (opcode) {
11163             case 0x17: /* ADDP */
11164             {
11165                 static NeonGenTwoOpFn * const fns[3] = {
11166                     gen_helper_neon_padd_u8,
11167                     gen_helper_neon_padd_u16,
11168                     tcg_gen_add_i32,
11169                 };
11170                 genfn = fns[size];
11171                 break;
11172             }
11173             case 0x14: /* SMAXP, UMAXP */
11174             {
11175                 static NeonGenTwoOpFn * const fns[3][2] = {
11176                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11177                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11178                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11179                 };
11180                 genfn = fns[size][u];
11181                 break;
11182             }
11183             case 0x15: /* SMINP, UMINP */
11184             {
11185                 static NeonGenTwoOpFn * const fns[3][2] = {
11186                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11187                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11188                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11189                 };
11190                 genfn = fns[size][u];
11191                 break;
11192             }
11193             /* The FP operations are all on single floats (32 bit) */
11194             case 0x58: /* FMAXNMP */
11195                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11196                 break;
11197             case 0x5a: /* FADDP */
11198                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11199                 break;
11200             case 0x5e: /* FMAXP */
11201                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11202                 break;
11203             case 0x78: /* FMINNMP */
11204                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11205                 break;
11206             case 0x7e: /* FMINP */
11207                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11208                 break;
11209             default:
11210                 g_assert_not_reached();
11211             }
11212 
11213             /* FP ops called directly, otherwise call now */
11214             if (genfn) {
11215                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11216             }
11217         }
11218 
11219         for (pass = 0; pass < maxpass; pass++) {
11220             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11221         }
11222         clear_vec_high(s, is_q, rd);
11223     }
11224 }
11225 
11226 /* Floating point op subgroup of C3.6.16. */
11227 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11228 {
11229     /* For floating point ops, the U, size[1] and opcode bits
11230      * together indicate the operation. size[0] indicates single
11231      * or double.
11232      */
11233     int fpopcode = extract32(insn, 11, 5)
11234         | (extract32(insn, 23, 1) << 5)
11235         | (extract32(insn, 29, 1) << 6);
11236     int is_q = extract32(insn, 30, 1);
11237     int size = extract32(insn, 22, 1);
11238     int rm = extract32(insn, 16, 5);
11239     int rn = extract32(insn, 5, 5);
11240     int rd = extract32(insn, 0, 5);
11241 
11242     int datasize = is_q ? 128 : 64;
11243     int esize = 32 << size;
11244     int elements = datasize / esize;
11245 
11246     if (size == 1 && !is_q) {
11247         unallocated_encoding(s);
11248         return;
11249     }
11250 
11251     switch (fpopcode) {
11252     case 0x58: /* FMAXNMP */
11253     case 0x5a: /* FADDP */
11254     case 0x5e: /* FMAXP */
11255     case 0x78: /* FMINNMP */
11256     case 0x7e: /* FMINP */
11257         if (size && !is_q) {
11258             unallocated_encoding(s);
11259             return;
11260         }
11261         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11262                                rn, rm, rd);
11263         return;
11264     case 0x1f: /* FRECPS */
11265     case 0x3f: /* FRSQRTS */
11266     case 0x5d: /* FACGE */
11267     case 0x7d: /* FACGT */
11268     case 0x19: /* FMLA */
11269     case 0x39: /* FMLS */
11270     case 0x1c: /* FCMEQ */
11271     case 0x5c: /* FCMGE */
11272     case 0x7a: /* FABD */
11273     case 0x7c: /* FCMGT */
11274         if (!fp_access_check(s)) {
11275             return;
11276         }
11277         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11278         return;
11279 
11280     case 0x1d: /* FMLAL  */
11281     case 0x3d: /* FMLSL  */
11282     case 0x59: /* FMLAL2 */
11283     case 0x79: /* FMLSL2 */
11284         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11285             unallocated_encoding(s);
11286             return;
11287         }
11288         if (fp_access_check(s)) {
11289             int is_s = extract32(insn, 23, 1);
11290             int is_2 = extract32(insn, 29, 1);
11291             int data = (is_2 << 1) | is_s;
11292             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11293                                vec_full_reg_offset(s, rn),
11294                                vec_full_reg_offset(s, rm), tcg_env,
11295                                is_q ? 16 : 8, vec_full_reg_size(s),
11296                                data, gen_helper_gvec_fmlal_a64);
11297         }
11298         return;
11299 
11300     default:
11301     case 0x18: /* FMAXNM */
11302     case 0x1a: /* FADD */
11303     case 0x1b: /* FMULX */
11304     case 0x1e: /* FMAX */
11305     case 0x38: /* FMINNM */
11306     case 0x3a: /* FSUB */
11307     case 0x3e: /* FMIN */
11308     case 0x5b: /* FMUL */
11309     case 0x5f: /* FDIV */
11310         unallocated_encoding(s);
11311         return;
11312     }
11313 }
11314 
11315 /* Integer op subgroup of C3.6.16. */
11316 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11317 {
11318     int is_q = extract32(insn, 30, 1);
11319     int u = extract32(insn, 29, 1);
11320     int size = extract32(insn, 22, 2);
11321     int opcode = extract32(insn, 11, 5);
11322     int rm = extract32(insn, 16, 5);
11323     int rn = extract32(insn, 5, 5);
11324     int rd = extract32(insn, 0, 5);
11325     int pass;
11326     TCGCond cond;
11327 
11328     switch (opcode) {
11329     case 0x13: /* MUL, PMUL */
11330         if (u && size != 0) {
11331             unallocated_encoding(s);
11332             return;
11333         }
11334         /* fall through */
11335     case 0x0: /* SHADD, UHADD */
11336     case 0x2: /* SRHADD, URHADD */
11337     case 0x4: /* SHSUB, UHSUB */
11338     case 0xc: /* SMAX, UMAX */
11339     case 0xd: /* SMIN, UMIN */
11340     case 0xe: /* SABD, UABD */
11341     case 0xf: /* SABA, UABA */
11342     case 0x12: /* MLA, MLS */
11343         if (size == 3) {
11344             unallocated_encoding(s);
11345             return;
11346         }
11347         break;
11348     case 0x16: /* SQDMULH, SQRDMULH */
11349         if (size == 0 || size == 3) {
11350             unallocated_encoding(s);
11351             return;
11352         }
11353         break;
11354     default:
11355         if (size == 3 && !is_q) {
11356             unallocated_encoding(s);
11357             return;
11358         }
11359         break;
11360     }
11361 
11362     if (!fp_access_check(s)) {
11363         return;
11364     }
11365 
11366     switch (opcode) {
11367     case 0x01: /* SQADD, UQADD */
11368         if (u) {
11369             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11370         } else {
11371             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11372         }
11373         return;
11374     case 0x05: /* SQSUB, UQSUB */
11375         if (u) {
11376             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11377         } else {
11378             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11379         }
11380         return;
11381     case 0x08: /* SSHL, USHL */
11382         if (u) {
11383             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11384         } else {
11385             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11386         }
11387         return;
11388     case 0x0c: /* SMAX, UMAX */
11389         if (u) {
11390             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11391         } else {
11392             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11393         }
11394         return;
11395     case 0x0d: /* SMIN, UMIN */
11396         if (u) {
11397             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11398         } else {
11399             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11400         }
11401         return;
11402     case 0xe: /* SABD, UABD */
11403         if (u) {
11404             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11405         } else {
11406             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11407         }
11408         return;
11409     case 0xf: /* SABA, UABA */
11410         if (u) {
11411             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11412         } else {
11413             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11414         }
11415         return;
11416     case 0x10: /* ADD, SUB */
11417         if (u) {
11418             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11419         } else {
11420             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11421         }
11422         return;
11423     case 0x13: /* MUL, PMUL */
11424         if (!u) { /* MUL */
11425             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11426         } else {  /* PMUL */
11427             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11428         }
11429         return;
11430     case 0x12: /* MLA, MLS */
11431         if (u) {
11432             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11433         } else {
11434             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11435         }
11436         return;
11437     case 0x16: /* SQDMULH, SQRDMULH */
11438         {
11439             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11440                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11441                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11442             };
11443             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11444         }
11445         return;
11446     case 0x11:
11447         if (!u) { /* CMTST */
11448             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11449             return;
11450         }
11451         /* else CMEQ */
11452         cond = TCG_COND_EQ;
11453         goto do_gvec_cmp;
11454     case 0x06: /* CMGT, CMHI */
11455         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11456         goto do_gvec_cmp;
11457     case 0x07: /* CMGE, CMHS */
11458         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11459     do_gvec_cmp:
11460         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11461                          vec_full_reg_offset(s, rn),
11462                          vec_full_reg_offset(s, rm),
11463                          is_q ? 16 : 8, vec_full_reg_size(s));
11464         return;
11465     }
11466 
11467     if (size == 3) {
11468         assert(is_q);
11469         for (pass = 0; pass < 2; pass++) {
11470             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11471             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11472             TCGv_i64 tcg_res = tcg_temp_new_i64();
11473 
11474             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11475             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11476 
11477             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11478 
11479             write_vec_element(s, tcg_res, rd, pass, MO_64);
11480         }
11481     } else {
11482         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11483             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11484             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11485             TCGv_i32 tcg_res = tcg_temp_new_i32();
11486             NeonGenTwoOpFn *genfn = NULL;
11487             NeonGenTwoOpEnvFn *genenvfn = NULL;
11488 
11489             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11490             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11491 
11492             switch (opcode) {
11493             case 0x0: /* SHADD, UHADD */
11494             {
11495                 static NeonGenTwoOpFn * const fns[3][2] = {
11496                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11497                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11498                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11499                 };
11500                 genfn = fns[size][u];
11501                 break;
11502             }
11503             case 0x2: /* SRHADD, URHADD */
11504             {
11505                 static NeonGenTwoOpFn * const fns[3][2] = {
11506                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11507                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11508                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11509                 };
11510                 genfn = fns[size][u];
11511                 break;
11512             }
11513             case 0x4: /* SHSUB, UHSUB */
11514             {
11515                 static NeonGenTwoOpFn * const fns[3][2] = {
11516                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11517                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11518                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11519                 };
11520                 genfn = fns[size][u];
11521                 break;
11522             }
11523             case 0x9: /* SQSHL, UQSHL */
11524             {
11525                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11526                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11527                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11528                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11529                 };
11530                 genenvfn = fns[size][u];
11531                 break;
11532             }
11533             case 0xa: /* SRSHL, URSHL */
11534             {
11535                 static NeonGenTwoOpFn * const fns[3][2] = {
11536                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11537                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11538                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11539                 };
11540                 genfn = fns[size][u];
11541                 break;
11542             }
11543             case 0xb: /* SQRSHL, UQRSHL */
11544             {
11545                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11546                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11547                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11548                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11549                 };
11550                 genenvfn = fns[size][u];
11551                 break;
11552             }
11553             default:
11554                 g_assert_not_reached();
11555             }
11556 
11557             if (genenvfn) {
11558                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11559             } else {
11560                 genfn(tcg_res, tcg_op1, tcg_op2);
11561             }
11562 
11563             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11564         }
11565     }
11566     clear_vec_high(s, is_q, rd);
11567 }
11568 
11569 /* AdvSIMD three same
11570  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11571  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11572  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11573  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11574  */
11575 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11576 {
11577     int opcode = extract32(insn, 11, 5);
11578 
11579     switch (opcode) {
11580     case 0x3: /* logic ops */
11581         disas_simd_3same_logic(s, insn);
11582         break;
11583     case 0x17: /* ADDP */
11584     case 0x14: /* SMAXP, UMAXP */
11585     case 0x15: /* SMINP, UMINP */
11586     {
11587         /* Pairwise operations */
11588         int is_q = extract32(insn, 30, 1);
11589         int u = extract32(insn, 29, 1);
11590         int size = extract32(insn, 22, 2);
11591         int rm = extract32(insn, 16, 5);
11592         int rn = extract32(insn, 5, 5);
11593         int rd = extract32(insn, 0, 5);
11594         if (opcode == 0x17) {
11595             if (u || (size == 3 && !is_q)) {
11596                 unallocated_encoding(s);
11597                 return;
11598             }
11599         } else {
11600             if (size == 3) {
11601                 unallocated_encoding(s);
11602                 return;
11603             }
11604         }
11605         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11606         break;
11607     }
11608     case 0x18 ... 0x31:
11609         /* floating point ops, sz[1] and U are part of opcode */
11610         disas_simd_3same_float(s, insn);
11611         break;
11612     default:
11613         disas_simd_3same_int(s, insn);
11614         break;
11615     }
11616 }
11617 
11618 /*
11619  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11620  *
11621  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11622  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11623  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11624  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11625  *
11626  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11627  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11628  *
11629  */
11630 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11631 {
11632     int opcode = extract32(insn, 11, 3);
11633     int u = extract32(insn, 29, 1);
11634     int a = extract32(insn, 23, 1);
11635     int is_q = extract32(insn, 30, 1);
11636     int rm = extract32(insn, 16, 5);
11637     int rn = extract32(insn, 5, 5);
11638     int rd = extract32(insn, 0, 5);
11639     /*
11640      * For these floating point ops, the U, a and opcode bits
11641      * together indicate the operation.
11642      */
11643     int fpopcode = opcode | (a << 3) | (u << 4);
11644     int datasize = is_q ? 128 : 64;
11645     int elements = datasize / 16;
11646     bool pairwise;
11647     TCGv_ptr fpst;
11648     int pass;
11649 
11650     switch (fpopcode) {
11651     case 0x1: /* FMLA */
11652     case 0x4: /* FCMEQ */
11653     case 0x7: /* FRECPS */
11654     case 0x9: /* FMLS */
11655     case 0xf: /* FRSQRTS */
11656     case 0x14: /* FCMGE */
11657     case 0x15: /* FACGE */
11658     case 0x1a: /* FABD */
11659     case 0x1c: /* FCMGT */
11660     case 0x1d: /* FACGT */
11661         pairwise = false;
11662         break;
11663     case 0x10: /* FMAXNMP */
11664     case 0x12: /* FADDP */
11665     case 0x16: /* FMAXP */
11666     case 0x18: /* FMINNMP */
11667     case 0x1e: /* FMINP */
11668         pairwise = true;
11669         break;
11670     default:
11671     case 0x0: /* FMAXNM */
11672     case 0x2: /* FADD */
11673     case 0x3: /* FMULX */
11674     case 0x6: /* FMAX */
11675     case 0x8: /* FMINNM */
11676     case 0xa: /* FSUB */
11677     case 0xe: /* FMIN */
11678     case 0x13: /* FMUL */
11679     case 0x17: /* FDIV */
11680         unallocated_encoding(s);
11681         return;
11682     }
11683 
11684     if (!dc_isar_feature(aa64_fp16, s)) {
11685         unallocated_encoding(s);
11686         return;
11687     }
11688 
11689     if (!fp_access_check(s)) {
11690         return;
11691     }
11692 
11693     fpst = fpstatus_ptr(FPST_FPCR_F16);
11694 
11695     if (pairwise) {
11696         int maxpass = is_q ? 8 : 4;
11697         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11698         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11699         TCGv_i32 tcg_res[8];
11700 
11701         for (pass = 0; pass < maxpass; pass++) {
11702             int passreg = pass < (maxpass / 2) ? rn : rm;
11703             int passelt = (pass << 1) & (maxpass - 1);
11704 
11705             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11706             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11707             tcg_res[pass] = tcg_temp_new_i32();
11708 
11709             switch (fpopcode) {
11710             case 0x10: /* FMAXNMP */
11711                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11712                                            fpst);
11713                 break;
11714             case 0x12: /* FADDP */
11715                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11716                 break;
11717             case 0x16: /* FMAXP */
11718                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11719                 break;
11720             case 0x18: /* FMINNMP */
11721                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11722                                            fpst);
11723                 break;
11724             case 0x1e: /* FMINP */
11725                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11726                 break;
11727             default:
11728                 g_assert_not_reached();
11729             }
11730         }
11731 
11732         for (pass = 0; pass < maxpass; pass++) {
11733             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11734         }
11735     } else {
11736         for (pass = 0; pass < elements; pass++) {
11737             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11738             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11739             TCGv_i32 tcg_res = tcg_temp_new_i32();
11740 
11741             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11742             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11743 
11744             switch (fpopcode) {
11745             case 0x1: /* FMLA */
11746                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11747                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11748                                            fpst);
11749                 break;
11750             case 0x4: /* FCMEQ */
11751                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11752                 break;
11753             case 0x7: /* FRECPS */
11754                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11755                 break;
11756             case 0x9: /* FMLS */
11757                 /* As usual for ARM, separate negation for fused multiply-add */
11758                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11759                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11760                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11761                                            fpst);
11762                 break;
11763             case 0xf: /* FRSQRTS */
11764                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11765                 break;
11766             case 0x14: /* FCMGE */
11767                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11768                 break;
11769             case 0x15: /* FACGE */
11770                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11771                 break;
11772             case 0x1a: /* FABD */
11773                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11774                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11775                 break;
11776             case 0x1c: /* FCMGT */
11777                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11778                 break;
11779             case 0x1d: /* FACGT */
11780                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11781                 break;
11782             default:
11783             case 0x0: /* FMAXNM */
11784             case 0x2: /* FADD */
11785             case 0x3: /* FMULX */
11786             case 0x6: /* FMAX */
11787             case 0x8: /* FMINNM */
11788             case 0xa: /* FSUB */
11789             case 0xe: /* FMIN */
11790             case 0x13: /* FMUL */
11791             case 0x17: /* FDIV */
11792                 g_assert_not_reached();
11793             }
11794 
11795             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11796         }
11797     }
11798 
11799     clear_vec_high(s, is_q, rd);
11800 }
11801 
11802 /* AdvSIMD three same extra
11803  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11804  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11805  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11806  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11807  */
11808 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11809 {
11810     int rd = extract32(insn, 0, 5);
11811     int rn = extract32(insn, 5, 5);
11812     int opcode = extract32(insn, 11, 4);
11813     int rm = extract32(insn, 16, 5);
11814     int size = extract32(insn, 22, 2);
11815     bool u = extract32(insn, 29, 1);
11816     bool is_q = extract32(insn, 30, 1);
11817     bool feature;
11818     int rot;
11819 
11820     switch (u * 16 + opcode) {
11821     case 0x10: /* SQRDMLAH (vector) */
11822     case 0x11: /* SQRDMLSH (vector) */
11823         if (size != 1 && size != 2) {
11824             unallocated_encoding(s);
11825             return;
11826         }
11827         feature = dc_isar_feature(aa64_rdm, s);
11828         break;
11829     case 0x02: /* SDOT (vector) */
11830     case 0x12: /* UDOT (vector) */
11831         if (size != MO_32) {
11832             unallocated_encoding(s);
11833             return;
11834         }
11835         feature = dc_isar_feature(aa64_dp, s);
11836         break;
11837     case 0x03: /* USDOT */
11838         if (size != MO_32) {
11839             unallocated_encoding(s);
11840             return;
11841         }
11842         feature = dc_isar_feature(aa64_i8mm, s);
11843         break;
11844     case 0x04: /* SMMLA */
11845     case 0x14: /* UMMLA */
11846     case 0x05: /* USMMLA */
11847         if (!is_q || size != MO_32) {
11848             unallocated_encoding(s);
11849             return;
11850         }
11851         feature = dc_isar_feature(aa64_i8mm, s);
11852         break;
11853     case 0x18: /* FCMLA, #0 */
11854     case 0x19: /* FCMLA, #90 */
11855     case 0x1a: /* FCMLA, #180 */
11856     case 0x1b: /* FCMLA, #270 */
11857     case 0x1c: /* FCADD, #90 */
11858     case 0x1e: /* FCADD, #270 */
11859         if (size == 0
11860             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11861             || (size == 3 && !is_q)) {
11862             unallocated_encoding(s);
11863             return;
11864         }
11865         feature = dc_isar_feature(aa64_fcma, s);
11866         break;
11867     case 0x1d: /* BFMMLA */
11868         if (size != MO_16 || !is_q) {
11869             unallocated_encoding(s);
11870             return;
11871         }
11872         feature = dc_isar_feature(aa64_bf16, s);
11873         break;
11874     case 0x1f:
11875         switch (size) {
11876         case 1: /* BFDOT */
11877         case 3: /* BFMLAL{B,T} */
11878             feature = dc_isar_feature(aa64_bf16, s);
11879             break;
11880         default:
11881             unallocated_encoding(s);
11882             return;
11883         }
11884         break;
11885     default:
11886         unallocated_encoding(s);
11887         return;
11888     }
11889     if (!feature) {
11890         unallocated_encoding(s);
11891         return;
11892     }
11893     if (!fp_access_check(s)) {
11894         return;
11895     }
11896 
11897     switch (opcode) {
11898     case 0x0: /* SQRDMLAH (vector) */
11899         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11900         return;
11901 
11902     case 0x1: /* SQRDMLSH (vector) */
11903         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11904         return;
11905 
11906     case 0x2: /* SDOT / UDOT */
11907         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11908                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11909         return;
11910 
11911     case 0x3: /* USDOT */
11912         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11913         return;
11914 
11915     case 0x04: /* SMMLA, UMMLA */
11916         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11917                          u ? gen_helper_gvec_ummla_b
11918                          : gen_helper_gvec_smmla_b);
11919         return;
11920     case 0x05: /* USMMLA */
11921         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11922         return;
11923 
11924     case 0x8: /* FCMLA, #0 */
11925     case 0x9: /* FCMLA, #90 */
11926     case 0xa: /* FCMLA, #180 */
11927     case 0xb: /* FCMLA, #270 */
11928         rot = extract32(opcode, 0, 2);
11929         switch (size) {
11930         case 1:
11931             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11932                               gen_helper_gvec_fcmlah);
11933             break;
11934         case 2:
11935             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11936                               gen_helper_gvec_fcmlas);
11937             break;
11938         case 3:
11939             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11940                               gen_helper_gvec_fcmlad);
11941             break;
11942         default:
11943             g_assert_not_reached();
11944         }
11945         return;
11946 
11947     case 0xc: /* FCADD, #90 */
11948     case 0xe: /* FCADD, #270 */
11949         rot = extract32(opcode, 1, 1);
11950         switch (size) {
11951         case 1:
11952             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11953                               gen_helper_gvec_fcaddh);
11954             break;
11955         case 2:
11956             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11957                               gen_helper_gvec_fcadds);
11958             break;
11959         case 3:
11960             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11961                               gen_helper_gvec_fcaddd);
11962             break;
11963         default:
11964             g_assert_not_reached();
11965         }
11966         return;
11967 
11968     case 0xd: /* BFMMLA */
11969         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11970         return;
11971     case 0xf:
11972         switch (size) {
11973         case 1: /* BFDOT */
11974             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11975             break;
11976         case 3: /* BFMLAL{B,T} */
11977             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11978                               gen_helper_gvec_bfmlal);
11979             break;
11980         default:
11981             g_assert_not_reached();
11982         }
11983         return;
11984 
11985     default:
11986         g_assert_not_reached();
11987     }
11988 }
11989 
11990 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11991                                   int size, int rn, int rd)
11992 {
11993     /* Handle 2-reg-misc ops which are widening (so each size element
11994      * in the source becomes a 2*size element in the destination.
11995      * The only instruction like this is FCVTL.
11996      */
11997     int pass;
11998 
11999     if (size == 3) {
12000         /* 32 -> 64 bit fp conversion */
12001         TCGv_i64 tcg_res[2];
12002         int srcelt = is_q ? 2 : 0;
12003 
12004         for (pass = 0; pass < 2; pass++) {
12005             TCGv_i32 tcg_op = tcg_temp_new_i32();
12006             tcg_res[pass] = tcg_temp_new_i64();
12007 
12008             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12009             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
12010         }
12011         for (pass = 0; pass < 2; pass++) {
12012             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12013         }
12014     } else {
12015         /* 16 -> 32 bit fp conversion */
12016         int srcelt = is_q ? 4 : 0;
12017         TCGv_i32 tcg_res[4];
12018         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12019         TCGv_i32 ahp = get_ahp_flag();
12020 
12021         for (pass = 0; pass < 4; pass++) {
12022             tcg_res[pass] = tcg_temp_new_i32();
12023 
12024             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12025             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12026                                            fpst, ahp);
12027         }
12028         for (pass = 0; pass < 4; pass++) {
12029             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12030         }
12031     }
12032 }
12033 
12034 static void handle_rev(DisasContext *s, int opcode, bool u,
12035                        bool is_q, int size, int rn, int rd)
12036 {
12037     int op = (opcode << 1) | u;
12038     int opsz = op + size;
12039     int grp_size = 3 - opsz;
12040     int dsize = is_q ? 128 : 64;
12041     int i;
12042 
12043     if (opsz >= 3) {
12044         unallocated_encoding(s);
12045         return;
12046     }
12047 
12048     if (!fp_access_check(s)) {
12049         return;
12050     }
12051 
12052     if (size == 0) {
12053         /* Special case bytes, use bswap op on each group of elements */
12054         int groups = dsize / (8 << grp_size);
12055 
12056         for (i = 0; i < groups; i++) {
12057             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12058 
12059             read_vec_element(s, tcg_tmp, rn, i, grp_size);
12060             switch (grp_size) {
12061             case MO_16:
12062                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12063                 break;
12064             case MO_32:
12065                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12066                 break;
12067             case MO_64:
12068                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12069                 break;
12070             default:
12071                 g_assert_not_reached();
12072             }
12073             write_vec_element(s, tcg_tmp, rd, i, grp_size);
12074         }
12075         clear_vec_high(s, is_q, rd);
12076     } else {
12077         int revmask = (1 << grp_size) - 1;
12078         int esize = 8 << size;
12079         int elements = dsize / esize;
12080         TCGv_i64 tcg_rn = tcg_temp_new_i64();
12081         TCGv_i64 tcg_rd[2];
12082 
12083         for (i = 0; i < 2; i++) {
12084             tcg_rd[i] = tcg_temp_new_i64();
12085             tcg_gen_movi_i64(tcg_rd[i], 0);
12086         }
12087 
12088         for (i = 0; i < elements; i++) {
12089             int e_rev = (i & 0xf) ^ revmask;
12090             int w = (e_rev * esize) / 64;
12091             int o = (e_rev * esize) % 64;
12092 
12093             read_vec_element(s, tcg_rn, rn, i, size);
12094             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
12095         }
12096 
12097         for (i = 0; i < 2; i++) {
12098             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
12099         }
12100         clear_vec_high(s, true, rd);
12101     }
12102 }
12103 
12104 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12105                                   bool is_q, int size, int rn, int rd)
12106 {
12107     /* Implement the pairwise operations from 2-misc:
12108      * SADDLP, UADDLP, SADALP, UADALP.
12109      * These all add pairs of elements in the input to produce a
12110      * double-width result element in the output (possibly accumulating).
12111      */
12112     bool accum = (opcode == 0x6);
12113     int maxpass = is_q ? 2 : 1;
12114     int pass;
12115     TCGv_i64 tcg_res[2];
12116 
12117     if (size == 2) {
12118         /* 32 + 32 -> 64 op */
12119         MemOp memop = size + (u ? 0 : MO_SIGN);
12120 
12121         for (pass = 0; pass < maxpass; pass++) {
12122             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12123             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12124 
12125             tcg_res[pass] = tcg_temp_new_i64();
12126 
12127             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12128             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12129             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12130             if (accum) {
12131                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12132                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12133             }
12134         }
12135     } else {
12136         for (pass = 0; pass < maxpass; pass++) {
12137             TCGv_i64 tcg_op = tcg_temp_new_i64();
12138             NeonGenOne64OpFn *genfn;
12139             static NeonGenOne64OpFn * const fns[2][2] = {
12140                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12141                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12142             };
12143 
12144             genfn = fns[size][u];
12145 
12146             tcg_res[pass] = tcg_temp_new_i64();
12147 
12148             read_vec_element(s, tcg_op, rn, pass, MO_64);
12149             genfn(tcg_res[pass], tcg_op);
12150 
12151             if (accum) {
12152                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12153                 if (size == 0) {
12154                     gen_helper_neon_addl_u16(tcg_res[pass],
12155                                              tcg_res[pass], tcg_op);
12156                 } else {
12157                     gen_helper_neon_addl_u32(tcg_res[pass],
12158                                              tcg_res[pass], tcg_op);
12159                 }
12160             }
12161         }
12162     }
12163     if (!is_q) {
12164         tcg_res[1] = tcg_constant_i64(0);
12165     }
12166     for (pass = 0; pass < 2; pass++) {
12167         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12168     }
12169 }
12170 
12171 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12172 {
12173     /* Implement SHLL and SHLL2 */
12174     int pass;
12175     int part = is_q ? 2 : 0;
12176     TCGv_i64 tcg_res[2];
12177 
12178     for (pass = 0; pass < 2; pass++) {
12179         static NeonGenWidenFn * const widenfns[3] = {
12180             gen_helper_neon_widen_u8,
12181             gen_helper_neon_widen_u16,
12182             tcg_gen_extu_i32_i64,
12183         };
12184         NeonGenWidenFn *widenfn = widenfns[size];
12185         TCGv_i32 tcg_op = tcg_temp_new_i32();
12186 
12187         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12188         tcg_res[pass] = tcg_temp_new_i64();
12189         widenfn(tcg_res[pass], tcg_op);
12190         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12191     }
12192 
12193     for (pass = 0; pass < 2; pass++) {
12194         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12195     }
12196 }
12197 
12198 /* AdvSIMD two reg misc
12199  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12200  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12201  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12202  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12203  */
12204 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12205 {
12206     int size = extract32(insn, 22, 2);
12207     int opcode = extract32(insn, 12, 5);
12208     bool u = extract32(insn, 29, 1);
12209     bool is_q = extract32(insn, 30, 1);
12210     int rn = extract32(insn, 5, 5);
12211     int rd = extract32(insn, 0, 5);
12212     bool need_fpstatus = false;
12213     int rmode = -1;
12214     TCGv_i32 tcg_rmode;
12215     TCGv_ptr tcg_fpstatus;
12216 
12217     switch (opcode) {
12218     case 0x0: /* REV64, REV32 */
12219     case 0x1: /* REV16 */
12220         handle_rev(s, opcode, u, is_q, size, rn, rd);
12221         return;
12222     case 0x5: /* CNT, NOT, RBIT */
12223         if (u && size == 0) {
12224             /* NOT */
12225             break;
12226         } else if (u && size == 1) {
12227             /* RBIT */
12228             break;
12229         } else if (!u && size == 0) {
12230             /* CNT */
12231             break;
12232         }
12233         unallocated_encoding(s);
12234         return;
12235     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12236     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12237         if (size == 3) {
12238             unallocated_encoding(s);
12239             return;
12240         }
12241         if (!fp_access_check(s)) {
12242             return;
12243         }
12244 
12245         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12246         return;
12247     case 0x4: /* CLS, CLZ */
12248         if (size == 3) {
12249             unallocated_encoding(s);
12250             return;
12251         }
12252         break;
12253     case 0x2: /* SADDLP, UADDLP */
12254     case 0x6: /* SADALP, UADALP */
12255         if (size == 3) {
12256             unallocated_encoding(s);
12257             return;
12258         }
12259         if (!fp_access_check(s)) {
12260             return;
12261         }
12262         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12263         return;
12264     case 0x13: /* SHLL, SHLL2 */
12265         if (u == 0 || size == 3) {
12266             unallocated_encoding(s);
12267             return;
12268         }
12269         if (!fp_access_check(s)) {
12270             return;
12271         }
12272         handle_shll(s, is_q, size, rn, rd);
12273         return;
12274     case 0xa: /* CMLT */
12275         if (u == 1) {
12276             unallocated_encoding(s);
12277             return;
12278         }
12279         /* fall through */
12280     case 0x8: /* CMGT, CMGE */
12281     case 0x9: /* CMEQ, CMLE */
12282     case 0xb: /* ABS, NEG */
12283         if (size == 3 && !is_q) {
12284             unallocated_encoding(s);
12285             return;
12286         }
12287         break;
12288     case 0x3: /* SUQADD, USQADD */
12289         if (size == 3 && !is_q) {
12290             unallocated_encoding(s);
12291             return;
12292         }
12293         if (!fp_access_check(s)) {
12294             return;
12295         }
12296         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12297         return;
12298     case 0x7: /* SQABS, SQNEG */
12299         if (size == 3 && !is_q) {
12300             unallocated_encoding(s);
12301             return;
12302         }
12303         break;
12304     case 0xc ... 0xf:
12305     case 0x16 ... 0x1f:
12306     {
12307         /* Floating point: U, size[1] and opcode indicate operation;
12308          * size[0] indicates single or double precision.
12309          */
12310         int is_double = extract32(size, 0, 1);
12311         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12312         size = is_double ? 3 : 2;
12313         switch (opcode) {
12314         case 0x2f: /* FABS */
12315         case 0x6f: /* FNEG */
12316             if (size == 3 && !is_q) {
12317                 unallocated_encoding(s);
12318                 return;
12319             }
12320             break;
12321         case 0x1d: /* SCVTF */
12322         case 0x5d: /* UCVTF */
12323         {
12324             bool is_signed = (opcode == 0x1d) ? true : false;
12325             int elements = is_double ? 2 : is_q ? 4 : 2;
12326             if (is_double && !is_q) {
12327                 unallocated_encoding(s);
12328                 return;
12329             }
12330             if (!fp_access_check(s)) {
12331                 return;
12332             }
12333             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12334             return;
12335         }
12336         case 0x2c: /* FCMGT (zero) */
12337         case 0x2d: /* FCMEQ (zero) */
12338         case 0x2e: /* FCMLT (zero) */
12339         case 0x6c: /* FCMGE (zero) */
12340         case 0x6d: /* FCMLE (zero) */
12341             if (size == 3 && !is_q) {
12342                 unallocated_encoding(s);
12343                 return;
12344             }
12345             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12346             return;
12347         case 0x7f: /* FSQRT */
12348             if (size == 3 && !is_q) {
12349                 unallocated_encoding(s);
12350                 return;
12351             }
12352             break;
12353         case 0x1a: /* FCVTNS */
12354         case 0x1b: /* FCVTMS */
12355         case 0x3a: /* FCVTPS */
12356         case 0x3b: /* FCVTZS */
12357         case 0x5a: /* FCVTNU */
12358         case 0x5b: /* FCVTMU */
12359         case 0x7a: /* FCVTPU */
12360         case 0x7b: /* FCVTZU */
12361             need_fpstatus = true;
12362             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12363             if (size == 3 && !is_q) {
12364                 unallocated_encoding(s);
12365                 return;
12366             }
12367             break;
12368         case 0x5c: /* FCVTAU */
12369         case 0x1c: /* FCVTAS */
12370             need_fpstatus = true;
12371             rmode = FPROUNDING_TIEAWAY;
12372             if (size == 3 && !is_q) {
12373                 unallocated_encoding(s);
12374                 return;
12375             }
12376             break;
12377         case 0x3c: /* URECPE */
12378             if (size == 3) {
12379                 unallocated_encoding(s);
12380                 return;
12381             }
12382             /* fall through */
12383         case 0x3d: /* FRECPE */
12384         case 0x7d: /* FRSQRTE */
12385             if (size == 3 && !is_q) {
12386                 unallocated_encoding(s);
12387                 return;
12388             }
12389             if (!fp_access_check(s)) {
12390                 return;
12391             }
12392             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12393             return;
12394         case 0x56: /* FCVTXN, FCVTXN2 */
12395             if (size == 2) {
12396                 unallocated_encoding(s);
12397                 return;
12398             }
12399             /* fall through */
12400         case 0x16: /* FCVTN, FCVTN2 */
12401             /* handle_2misc_narrow does a 2*size -> size operation, but these
12402              * instructions encode the source size rather than dest size.
12403              */
12404             if (!fp_access_check(s)) {
12405                 return;
12406             }
12407             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12408             return;
12409         case 0x36: /* BFCVTN, BFCVTN2 */
12410             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12411                 unallocated_encoding(s);
12412                 return;
12413             }
12414             if (!fp_access_check(s)) {
12415                 return;
12416             }
12417             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12418             return;
12419         case 0x17: /* FCVTL, FCVTL2 */
12420             if (!fp_access_check(s)) {
12421                 return;
12422             }
12423             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12424             return;
12425         case 0x18: /* FRINTN */
12426         case 0x19: /* FRINTM */
12427         case 0x38: /* FRINTP */
12428         case 0x39: /* FRINTZ */
12429             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12430             /* fall through */
12431         case 0x59: /* FRINTX */
12432         case 0x79: /* FRINTI */
12433             need_fpstatus = true;
12434             if (size == 3 && !is_q) {
12435                 unallocated_encoding(s);
12436                 return;
12437             }
12438             break;
12439         case 0x58: /* FRINTA */
12440             rmode = FPROUNDING_TIEAWAY;
12441             need_fpstatus = true;
12442             if (size == 3 && !is_q) {
12443                 unallocated_encoding(s);
12444                 return;
12445             }
12446             break;
12447         case 0x7c: /* URSQRTE */
12448             if (size == 3) {
12449                 unallocated_encoding(s);
12450                 return;
12451             }
12452             break;
12453         case 0x1e: /* FRINT32Z */
12454         case 0x1f: /* FRINT64Z */
12455             rmode = FPROUNDING_ZERO;
12456             /* fall through */
12457         case 0x5e: /* FRINT32X */
12458         case 0x5f: /* FRINT64X */
12459             need_fpstatus = true;
12460             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12461                 unallocated_encoding(s);
12462                 return;
12463             }
12464             break;
12465         default:
12466             unallocated_encoding(s);
12467             return;
12468         }
12469         break;
12470     }
12471     default:
12472         unallocated_encoding(s);
12473         return;
12474     }
12475 
12476     if (!fp_access_check(s)) {
12477         return;
12478     }
12479 
12480     if (need_fpstatus || rmode >= 0) {
12481         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12482     } else {
12483         tcg_fpstatus = NULL;
12484     }
12485     if (rmode >= 0) {
12486         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12487     } else {
12488         tcg_rmode = NULL;
12489     }
12490 
12491     switch (opcode) {
12492     case 0x5:
12493         if (u && size == 0) { /* NOT */
12494             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12495             return;
12496         }
12497         break;
12498     case 0x8: /* CMGT, CMGE */
12499         if (u) {
12500             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12501         } else {
12502             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12503         }
12504         return;
12505     case 0x9: /* CMEQ, CMLE */
12506         if (u) {
12507             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12508         } else {
12509             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12510         }
12511         return;
12512     case 0xa: /* CMLT */
12513         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12514         return;
12515     case 0xb:
12516         if (u) { /* ABS, NEG */
12517             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12518         } else {
12519             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12520         }
12521         return;
12522     }
12523 
12524     if (size == 3) {
12525         /* All 64-bit element operations can be shared with scalar 2misc */
12526         int pass;
12527 
12528         /* Coverity claims (size == 3 && !is_q) has been eliminated
12529          * from all paths leading to here.
12530          */
12531         tcg_debug_assert(is_q);
12532         for (pass = 0; pass < 2; pass++) {
12533             TCGv_i64 tcg_op = tcg_temp_new_i64();
12534             TCGv_i64 tcg_res = tcg_temp_new_i64();
12535 
12536             read_vec_element(s, tcg_op, rn, pass, MO_64);
12537 
12538             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12539                             tcg_rmode, tcg_fpstatus);
12540 
12541             write_vec_element(s, tcg_res, rd, pass, MO_64);
12542         }
12543     } else {
12544         int pass;
12545 
12546         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12547             TCGv_i32 tcg_op = tcg_temp_new_i32();
12548             TCGv_i32 tcg_res = tcg_temp_new_i32();
12549 
12550             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12551 
12552             if (size == 2) {
12553                 /* Special cases for 32 bit elements */
12554                 switch (opcode) {
12555                 case 0x4: /* CLS */
12556                     if (u) {
12557                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12558                     } else {
12559                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12560                     }
12561                     break;
12562                 case 0x7: /* SQABS, SQNEG */
12563                     if (u) {
12564                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12565                     } else {
12566                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12567                     }
12568                     break;
12569                 case 0x2f: /* FABS */
12570                     gen_helper_vfp_abss(tcg_res, tcg_op);
12571                     break;
12572                 case 0x6f: /* FNEG */
12573                     gen_helper_vfp_negs(tcg_res, tcg_op);
12574                     break;
12575                 case 0x7f: /* FSQRT */
12576                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12577                     break;
12578                 case 0x1a: /* FCVTNS */
12579                 case 0x1b: /* FCVTMS */
12580                 case 0x1c: /* FCVTAS */
12581                 case 0x3a: /* FCVTPS */
12582                 case 0x3b: /* FCVTZS */
12583                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12584                                          tcg_constant_i32(0), tcg_fpstatus);
12585                     break;
12586                 case 0x5a: /* FCVTNU */
12587                 case 0x5b: /* FCVTMU */
12588                 case 0x5c: /* FCVTAU */
12589                 case 0x7a: /* FCVTPU */
12590                 case 0x7b: /* FCVTZU */
12591                     gen_helper_vfp_touls(tcg_res, tcg_op,
12592                                          tcg_constant_i32(0), tcg_fpstatus);
12593                     break;
12594                 case 0x18: /* FRINTN */
12595                 case 0x19: /* FRINTM */
12596                 case 0x38: /* FRINTP */
12597                 case 0x39: /* FRINTZ */
12598                 case 0x58: /* FRINTA */
12599                 case 0x79: /* FRINTI */
12600                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12601                     break;
12602                 case 0x59: /* FRINTX */
12603                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12604                     break;
12605                 case 0x7c: /* URSQRTE */
12606                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12607                     break;
12608                 case 0x1e: /* FRINT32Z */
12609                 case 0x5e: /* FRINT32X */
12610                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12611                     break;
12612                 case 0x1f: /* FRINT64Z */
12613                 case 0x5f: /* FRINT64X */
12614                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12615                     break;
12616                 default:
12617                     g_assert_not_reached();
12618                 }
12619             } else {
12620                 /* Use helpers for 8 and 16 bit elements */
12621                 switch (opcode) {
12622                 case 0x5: /* CNT, RBIT */
12623                     /* For these two insns size is part of the opcode specifier
12624                      * (handled earlier); they always operate on byte elements.
12625                      */
12626                     if (u) {
12627                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12628                     } else {
12629                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12630                     }
12631                     break;
12632                 case 0x7: /* SQABS, SQNEG */
12633                 {
12634                     NeonGenOneOpEnvFn *genfn;
12635                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12636                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12637                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12638                     };
12639                     genfn = fns[size][u];
12640                     genfn(tcg_res, tcg_env, tcg_op);
12641                     break;
12642                 }
12643                 case 0x4: /* CLS, CLZ */
12644                     if (u) {
12645                         if (size == 0) {
12646                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12647                         } else {
12648                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12649                         }
12650                     } else {
12651                         if (size == 0) {
12652                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12653                         } else {
12654                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12655                         }
12656                     }
12657                     break;
12658                 default:
12659                     g_assert_not_reached();
12660                 }
12661             }
12662 
12663             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12664         }
12665     }
12666     clear_vec_high(s, is_q, rd);
12667 
12668     if (tcg_rmode) {
12669         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12670     }
12671 }
12672 
12673 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12674  *
12675  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12676  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12677  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12678  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12679  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12680  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12681  *
12682  * This actually covers two groups where scalar access is governed by
12683  * bit 28. A bunch of the instructions (float to integral) only exist
12684  * in the vector form and are un-allocated for the scalar decode. Also
12685  * in the scalar decode Q is always 1.
12686  */
12687 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12688 {
12689     int fpop, opcode, a, u;
12690     int rn, rd;
12691     bool is_q;
12692     bool is_scalar;
12693     bool only_in_vector = false;
12694 
12695     int pass;
12696     TCGv_i32 tcg_rmode = NULL;
12697     TCGv_ptr tcg_fpstatus = NULL;
12698     bool need_fpst = true;
12699     int rmode = -1;
12700 
12701     if (!dc_isar_feature(aa64_fp16, s)) {
12702         unallocated_encoding(s);
12703         return;
12704     }
12705 
12706     rd = extract32(insn, 0, 5);
12707     rn = extract32(insn, 5, 5);
12708 
12709     a = extract32(insn, 23, 1);
12710     u = extract32(insn, 29, 1);
12711     is_scalar = extract32(insn, 28, 1);
12712     is_q = extract32(insn, 30, 1);
12713 
12714     opcode = extract32(insn, 12, 5);
12715     fpop = deposit32(opcode, 5, 1, a);
12716     fpop = deposit32(fpop, 6, 1, u);
12717 
12718     switch (fpop) {
12719     case 0x1d: /* SCVTF */
12720     case 0x5d: /* UCVTF */
12721     {
12722         int elements;
12723 
12724         if (is_scalar) {
12725             elements = 1;
12726         } else {
12727             elements = (is_q ? 8 : 4);
12728         }
12729 
12730         if (!fp_access_check(s)) {
12731             return;
12732         }
12733         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12734         return;
12735     }
12736     break;
12737     case 0x2c: /* FCMGT (zero) */
12738     case 0x2d: /* FCMEQ (zero) */
12739     case 0x2e: /* FCMLT (zero) */
12740     case 0x6c: /* FCMGE (zero) */
12741     case 0x6d: /* FCMLE (zero) */
12742         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12743         return;
12744     case 0x3d: /* FRECPE */
12745     case 0x3f: /* FRECPX */
12746         break;
12747     case 0x18: /* FRINTN */
12748         only_in_vector = true;
12749         rmode = FPROUNDING_TIEEVEN;
12750         break;
12751     case 0x19: /* FRINTM */
12752         only_in_vector = true;
12753         rmode = FPROUNDING_NEGINF;
12754         break;
12755     case 0x38: /* FRINTP */
12756         only_in_vector = true;
12757         rmode = FPROUNDING_POSINF;
12758         break;
12759     case 0x39: /* FRINTZ */
12760         only_in_vector = true;
12761         rmode = FPROUNDING_ZERO;
12762         break;
12763     case 0x58: /* FRINTA */
12764         only_in_vector = true;
12765         rmode = FPROUNDING_TIEAWAY;
12766         break;
12767     case 0x59: /* FRINTX */
12768     case 0x79: /* FRINTI */
12769         only_in_vector = true;
12770         /* current rounding mode */
12771         break;
12772     case 0x1a: /* FCVTNS */
12773         rmode = FPROUNDING_TIEEVEN;
12774         break;
12775     case 0x1b: /* FCVTMS */
12776         rmode = FPROUNDING_NEGINF;
12777         break;
12778     case 0x1c: /* FCVTAS */
12779         rmode = FPROUNDING_TIEAWAY;
12780         break;
12781     case 0x3a: /* FCVTPS */
12782         rmode = FPROUNDING_POSINF;
12783         break;
12784     case 0x3b: /* FCVTZS */
12785         rmode = FPROUNDING_ZERO;
12786         break;
12787     case 0x5a: /* FCVTNU */
12788         rmode = FPROUNDING_TIEEVEN;
12789         break;
12790     case 0x5b: /* FCVTMU */
12791         rmode = FPROUNDING_NEGINF;
12792         break;
12793     case 0x5c: /* FCVTAU */
12794         rmode = FPROUNDING_TIEAWAY;
12795         break;
12796     case 0x7a: /* FCVTPU */
12797         rmode = FPROUNDING_POSINF;
12798         break;
12799     case 0x7b: /* FCVTZU */
12800         rmode = FPROUNDING_ZERO;
12801         break;
12802     case 0x2f: /* FABS */
12803     case 0x6f: /* FNEG */
12804         need_fpst = false;
12805         break;
12806     case 0x7d: /* FRSQRTE */
12807     case 0x7f: /* FSQRT (vector) */
12808         break;
12809     default:
12810         unallocated_encoding(s);
12811         return;
12812     }
12813 
12814 
12815     /* Check additional constraints for the scalar encoding */
12816     if (is_scalar) {
12817         if (!is_q) {
12818             unallocated_encoding(s);
12819             return;
12820         }
12821         /* FRINTxx is only in the vector form */
12822         if (only_in_vector) {
12823             unallocated_encoding(s);
12824             return;
12825         }
12826     }
12827 
12828     if (!fp_access_check(s)) {
12829         return;
12830     }
12831 
12832     if (rmode >= 0 || need_fpst) {
12833         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12834     }
12835 
12836     if (rmode >= 0) {
12837         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12838     }
12839 
12840     if (is_scalar) {
12841         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12842         TCGv_i32 tcg_res = tcg_temp_new_i32();
12843 
12844         switch (fpop) {
12845         case 0x1a: /* FCVTNS */
12846         case 0x1b: /* FCVTMS */
12847         case 0x1c: /* FCVTAS */
12848         case 0x3a: /* FCVTPS */
12849         case 0x3b: /* FCVTZS */
12850             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12851             break;
12852         case 0x3d: /* FRECPE */
12853             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12854             break;
12855         case 0x3f: /* FRECPX */
12856             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12857             break;
12858         case 0x5a: /* FCVTNU */
12859         case 0x5b: /* FCVTMU */
12860         case 0x5c: /* FCVTAU */
12861         case 0x7a: /* FCVTPU */
12862         case 0x7b: /* FCVTZU */
12863             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12864             break;
12865         case 0x6f: /* FNEG */
12866             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12867             break;
12868         case 0x7d: /* FRSQRTE */
12869             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12870             break;
12871         default:
12872             g_assert_not_reached();
12873         }
12874 
12875         /* limit any sign extension going on */
12876         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12877         write_fp_sreg(s, rd, tcg_res);
12878     } else {
12879         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12880             TCGv_i32 tcg_op = tcg_temp_new_i32();
12881             TCGv_i32 tcg_res = tcg_temp_new_i32();
12882 
12883             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12884 
12885             switch (fpop) {
12886             case 0x1a: /* FCVTNS */
12887             case 0x1b: /* FCVTMS */
12888             case 0x1c: /* FCVTAS */
12889             case 0x3a: /* FCVTPS */
12890             case 0x3b: /* FCVTZS */
12891                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12892                 break;
12893             case 0x3d: /* FRECPE */
12894                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12895                 break;
12896             case 0x5a: /* FCVTNU */
12897             case 0x5b: /* FCVTMU */
12898             case 0x5c: /* FCVTAU */
12899             case 0x7a: /* FCVTPU */
12900             case 0x7b: /* FCVTZU */
12901                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12902                 break;
12903             case 0x18: /* FRINTN */
12904             case 0x19: /* FRINTM */
12905             case 0x38: /* FRINTP */
12906             case 0x39: /* FRINTZ */
12907             case 0x58: /* FRINTA */
12908             case 0x79: /* FRINTI */
12909                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12910                 break;
12911             case 0x59: /* FRINTX */
12912                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12913                 break;
12914             case 0x2f: /* FABS */
12915                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12916                 break;
12917             case 0x6f: /* FNEG */
12918                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12919                 break;
12920             case 0x7d: /* FRSQRTE */
12921                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12922                 break;
12923             case 0x7f: /* FSQRT */
12924                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12925                 break;
12926             default:
12927                 g_assert_not_reached();
12928             }
12929 
12930             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12931         }
12932 
12933         clear_vec_high(s, is_q, rd);
12934     }
12935 
12936     if (tcg_rmode) {
12937         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12938     }
12939 }
12940 
12941 /* AdvSIMD scalar x indexed element
12942  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12943  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12944  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12945  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12946  * AdvSIMD vector x indexed element
12947  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12948  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12949  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12950  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12951  */
12952 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12953 {
12954     /* This encoding has two kinds of instruction:
12955      *  normal, where we perform elt x idxelt => elt for each
12956      *     element in the vector
12957      *  long, where we perform elt x idxelt and generate a result of
12958      *     double the width of the input element
12959      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12960      */
12961     bool is_scalar = extract32(insn, 28, 1);
12962     bool is_q = extract32(insn, 30, 1);
12963     bool u = extract32(insn, 29, 1);
12964     int size = extract32(insn, 22, 2);
12965     int l = extract32(insn, 21, 1);
12966     int m = extract32(insn, 20, 1);
12967     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12968     int rm = extract32(insn, 16, 4);
12969     int opcode = extract32(insn, 12, 4);
12970     int h = extract32(insn, 11, 1);
12971     int rn = extract32(insn, 5, 5);
12972     int rd = extract32(insn, 0, 5);
12973     bool is_long = false;
12974     int is_fp = 0;
12975     bool is_fp16 = false;
12976     int index;
12977     TCGv_ptr fpst;
12978 
12979     switch (16 * u + opcode) {
12980     case 0x08: /* MUL */
12981     case 0x10: /* MLA */
12982     case 0x14: /* MLS */
12983         if (is_scalar) {
12984             unallocated_encoding(s);
12985             return;
12986         }
12987         break;
12988     case 0x02: /* SMLAL, SMLAL2 */
12989     case 0x12: /* UMLAL, UMLAL2 */
12990     case 0x06: /* SMLSL, SMLSL2 */
12991     case 0x16: /* UMLSL, UMLSL2 */
12992     case 0x0a: /* SMULL, SMULL2 */
12993     case 0x1a: /* UMULL, UMULL2 */
12994         if (is_scalar) {
12995             unallocated_encoding(s);
12996             return;
12997         }
12998         is_long = true;
12999         break;
13000     case 0x03: /* SQDMLAL, SQDMLAL2 */
13001     case 0x07: /* SQDMLSL, SQDMLSL2 */
13002     case 0x0b: /* SQDMULL, SQDMULL2 */
13003         is_long = true;
13004         break;
13005     case 0x0c: /* SQDMULH */
13006     case 0x0d: /* SQRDMULH */
13007         break;
13008     case 0x01: /* FMLA */
13009     case 0x05: /* FMLS */
13010         is_fp = 1;
13011         break;
13012     case 0x1d: /* SQRDMLAH */
13013     case 0x1f: /* SQRDMLSH */
13014         if (!dc_isar_feature(aa64_rdm, s)) {
13015             unallocated_encoding(s);
13016             return;
13017         }
13018         break;
13019     case 0x0e: /* SDOT */
13020     case 0x1e: /* UDOT */
13021         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13022             unallocated_encoding(s);
13023             return;
13024         }
13025         break;
13026     case 0x0f:
13027         switch (size) {
13028         case 0: /* SUDOT */
13029         case 2: /* USDOT */
13030             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13031                 unallocated_encoding(s);
13032                 return;
13033             }
13034             size = MO_32;
13035             break;
13036         case 1: /* BFDOT */
13037             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13038                 unallocated_encoding(s);
13039                 return;
13040             }
13041             size = MO_32;
13042             break;
13043         case 3: /* BFMLAL{B,T} */
13044             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13045                 unallocated_encoding(s);
13046                 return;
13047             }
13048             /* can't set is_fp without other incorrect size checks */
13049             size = MO_16;
13050             break;
13051         default:
13052             unallocated_encoding(s);
13053             return;
13054         }
13055         break;
13056     case 0x11: /* FCMLA #0 */
13057     case 0x13: /* FCMLA #90 */
13058     case 0x15: /* FCMLA #180 */
13059     case 0x17: /* FCMLA #270 */
13060         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13061             unallocated_encoding(s);
13062             return;
13063         }
13064         is_fp = 2;
13065         break;
13066     case 0x00: /* FMLAL */
13067     case 0x04: /* FMLSL */
13068     case 0x18: /* FMLAL2 */
13069     case 0x1c: /* FMLSL2 */
13070         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13071             unallocated_encoding(s);
13072             return;
13073         }
13074         size = MO_16;
13075         /* is_fp, but we pass tcg_env not fp_status.  */
13076         break;
13077     default:
13078     case 0x09: /* FMUL */
13079     case 0x19: /* FMULX */
13080         unallocated_encoding(s);
13081         return;
13082     }
13083 
13084     switch (is_fp) {
13085     case 1: /* normal fp */
13086         /* convert insn encoded size to MemOp size */
13087         switch (size) {
13088         case 0: /* half-precision */
13089             size = MO_16;
13090             is_fp16 = true;
13091             break;
13092         case MO_32: /* single precision */
13093         case MO_64: /* double precision */
13094             break;
13095         default:
13096             unallocated_encoding(s);
13097             return;
13098         }
13099         break;
13100 
13101     case 2: /* complex fp */
13102         /* Each indexable element is a complex pair.  */
13103         size += 1;
13104         switch (size) {
13105         case MO_32:
13106             if (h && !is_q) {
13107                 unallocated_encoding(s);
13108                 return;
13109             }
13110             is_fp16 = true;
13111             break;
13112         case MO_64:
13113             break;
13114         default:
13115             unallocated_encoding(s);
13116             return;
13117         }
13118         break;
13119 
13120     default: /* integer */
13121         switch (size) {
13122         case MO_8:
13123         case MO_64:
13124             unallocated_encoding(s);
13125             return;
13126         }
13127         break;
13128     }
13129     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13130         unallocated_encoding(s);
13131         return;
13132     }
13133 
13134     /* Given MemOp size, adjust register and indexing.  */
13135     switch (size) {
13136     case MO_16:
13137         index = h << 2 | l << 1 | m;
13138         break;
13139     case MO_32:
13140         index = h << 1 | l;
13141         rm |= m << 4;
13142         break;
13143     case MO_64:
13144         if (l || !is_q) {
13145             unallocated_encoding(s);
13146             return;
13147         }
13148         index = h;
13149         rm |= m << 4;
13150         break;
13151     default:
13152         g_assert_not_reached();
13153     }
13154 
13155     if (!fp_access_check(s)) {
13156         return;
13157     }
13158 
13159     if (is_fp) {
13160         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13161     } else {
13162         fpst = NULL;
13163     }
13164 
13165     switch (16 * u + opcode) {
13166     case 0x0e: /* SDOT */
13167     case 0x1e: /* UDOT */
13168         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13169                          u ? gen_helper_gvec_udot_idx_b
13170                          : gen_helper_gvec_sdot_idx_b);
13171         return;
13172     case 0x0f:
13173         switch (extract32(insn, 22, 2)) {
13174         case 0: /* SUDOT */
13175             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13176                              gen_helper_gvec_sudot_idx_b);
13177             return;
13178         case 1: /* BFDOT */
13179             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13180                              gen_helper_gvec_bfdot_idx);
13181             return;
13182         case 2: /* USDOT */
13183             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13184                              gen_helper_gvec_usdot_idx_b);
13185             return;
13186         case 3: /* BFMLAL{B,T} */
13187             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13188                               gen_helper_gvec_bfmlal_idx);
13189             return;
13190         }
13191         g_assert_not_reached();
13192     case 0x11: /* FCMLA #0 */
13193     case 0x13: /* FCMLA #90 */
13194     case 0x15: /* FCMLA #180 */
13195     case 0x17: /* FCMLA #270 */
13196         {
13197             int rot = extract32(insn, 13, 2);
13198             int data = (index << 2) | rot;
13199             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13200                                vec_full_reg_offset(s, rn),
13201                                vec_full_reg_offset(s, rm),
13202                                vec_full_reg_offset(s, rd), fpst,
13203                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13204                                size == MO_64
13205                                ? gen_helper_gvec_fcmlas_idx
13206                                : gen_helper_gvec_fcmlah_idx);
13207         }
13208         return;
13209 
13210     case 0x00: /* FMLAL */
13211     case 0x04: /* FMLSL */
13212     case 0x18: /* FMLAL2 */
13213     case 0x1c: /* FMLSL2 */
13214         {
13215             int is_s = extract32(opcode, 2, 1);
13216             int is_2 = u;
13217             int data = (index << 2) | (is_2 << 1) | is_s;
13218             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13219                                vec_full_reg_offset(s, rn),
13220                                vec_full_reg_offset(s, rm), tcg_env,
13221                                is_q ? 16 : 8, vec_full_reg_size(s),
13222                                data, gen_helper_gvec_fmlal_idx_a64);
13223         }
13224         return;
13225 
13226     case 0x08: /* MUL */
13227         if (!is_long && !is_scalar) {
13228             static gen_helper_gvec_3 * const fns[3] = {
13229                 gen_helper_gvec_mul_idx_h,
13230                 gen_helper_gvec_mul_idx_s,
13231                 gen_helper_gvec_mul_idx_d,
13232             };
13233             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13234                                vec_full_reg_offset(s, rn),
13235                                vec_full_reg_offset(s, rm),
13236                                is_q ? 16 : 8, vec_full_reg_size(s),
13237                                index, fns[size - 1]);
13238             return;
13239         }
13240         break;
13241 
13242     case 0x10: /* MLA */
13243         if (!is_long && !is_scalar) {
13244             static gen_helper_gvec_4 * const fns[3] = {
13245                 gen_helper_gvec_mla_idx_h,
13246                 gen_helper_gvec_mla_idx_s,
13247                 gen_helper_gvec_mla_idx_d,
13248             };
13249             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13250                                vec_full_reg_offset(s, rn),
13251                                vec_full_reg_offset(s, rm),
13252                                vec_full_reg_offset(s, rd),
13253                                is_q ? 16 : 8, vec_full_reg_size(s),
13254                                index, fns[size - 1]);
13255             return;
13256         }
13257         break;
13258 
13259     case 0x14: /* MLS */
13260         if (!is_long && !is_scalar) {
13261             static gen_helper_gvec_4 * const fns[3] = {
13262                 gen_helper_gvec_mls_idx_h,
13263                 gen_helper_gvec_mls_idx_s,
13264                 gen_helper_gvec_mls_idx_d,
13265             };
13266             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13267                                vec_full_reg_offset(s, rn),
13268                                vec_full_reg_offset(s, rm),
13269                                vec_full_reg_offset(s, rd),
13270                                is_q ? 16 : 8, vec_full_reg_size(s),
13271                                index, fns[size - 1]);
13272             return;
13273         }
13274         break;
13275     }
13276 
13277     if (size == 3) {
13278         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13279         int pass;
13280 
13281         assert(is_fp && is_q && !is_long);
13282 
13283         read_vec_element(s, tcg_idx, rm, index, MO_64);
13284 
13285         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13286             TCGv_i64 tcg_op = tcg_temp_new_i64();
13287             TCGv_i64 tcg_res = tcg_temp_new_i64();
13288 
13289             read_vec_element(s, tcg_op, rn, pass, MO_64);
13290 
13291             switch (16 * u + opcode) {
13292             case 0x05: /* FMLS */
13293                 /* As usual for ARM, separate negation for fused multiply-add */
13294                 gen_helper_vfp_negd(tcg_op, tcg_op);
13295                 /* fall through */
13296             case 0x01: /* FMLA */
13297                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13298                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13299                 break;
13300             default:
13301             case 0x09: /* FMUL */
13302             case 0x19: /* FMULX */
13303                 g_assert_not_reached();
13304             }
13305 
13306             write_vec_element(s, tcg_res, rd, pass, MO_64);
13307         }
13308 
13309         clear_vec_high(s, !is_scalar, rd);
13310     } else if (!is_long) {
13311         /* 32 bit floating point, or 16 or 32 bit integer.
13312          * For the 16 bit scalar case we use the usual Neon helpers and
13313          * rely on the fact that 0 op 0 == 0 with no side effects.
13314          */
13315         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13316         int pass, maxpasses;
13317 
13318         if (is_scalar) {
13319             maxpasses = 1;
13320         } else {
13321             maxpasses = is_q ? 4 : 2;
13322         }
13323 
13324         read_vec_element_i32(s, tcg_idx, rm, index, size);
13325 
13326         if (size == 1 && !is_scalar) {
13327             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13328              * the index into both halves of the 32 bit tcg_idx and then use
13329              * the usual Neon helpers.
13330              */
13331             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13332         }
13333 
13334         for (pass = 0; pass < maxpasses; pass++) {
13335             TCGv_i32 tcg_op = tcg_temp_new_i32();
13336             TCGv_i32 tcg_res = tcg_temp_new_i32();
13337 
13338             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13339 
13340             switch (16 * u + opcode) {
13341             case 0x08: /* MUL */
13342             case 0x10: /* MLA */
13343             case 0x14: /* MLS */
13344             {
13345                 static NeonGenTwoOpFn * const fns[2][2] = {
13346                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13347                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13348                 };
13349                 NeonGenTwoOpFn *genfn;
13350                 bool is_sub = opcode == 0x4;
13351 
13352                 if (size == 1) {
13353                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13354                 } else {
13355                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13356                 }
13357                 if (opcode == 0x8) {
13358                     break;
13359                 }
13360                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13361                 genfn = fns[size - 1][is_sub];
13362                 genfn(tcg_res, tcg_op, tcg_res);
13363                 break;
13364             }
13365             case 0x05: /* FMLS */
13366             case 0x01: /* FMLA */
13367                 read_vec_element_i32(s, tcg_res, rd, pass,
13368                                      is_scalar ? size : MO_32);
13369                 switch (size) {
13370                 case 1:
13371                     if (opcode == 0x5) {
13372                         /* As usual for ARM, separate negation for fused
13373                          * multiply-add */
13374                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13375                     }
13376                     if (is_scalar) {
13377                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13378                                                    tcg_res, fpst);
13379                     } else {
13380                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13381                                                     tcg_res, fpst);
13382                     }
13383                     break;
13384                 case 2:
13385                     if (opcode == 0x5) {
13386                         /* As usual for ARM, separate negation for
13387                          * fused multiply-add */
13388                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13389                     }
13390                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13391                                            tcg_res, fpst);
13392                     break;
13393                 default:
13394                     g_assert_not_reached();
13395                 }
13396                 break;
13397             case 0x0c: /* SQDMULH */
13398                 if (size == 1) {
13399                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13400                                                tcg_op, tcg_idx);
13401                 } else {
13402                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13403                                                tcg_op, tcg_idx);
13404                 }
13405                 break;
13406             case 0x0d: /* SQRDMULH */
13407                 if (size == 1) {
13408                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13409                                                 tcg_op, tcg_idx);
13410                 } else {
13411                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13412                                                 tcg_op, tcg_idx);
13413                 }
13414                 break;
13415             case 0x1d: /* SQRDMLAH */
13416                 read_vec_element_i32(s, tcg_res, rd, pass,
13417                                      is_scalar ? size : MO_32);
13418                 if (size == 1) {
13419                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13420                                                 tcg_op, tcg_idx, tcg_res);
13421                 } else {
13422                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13423                                                 tcg_op, tcg_idx, tcg_res);
13424                 }
13425                 break;
13426             case 0x1f: /* SQRDMLSH */
13427                 read_vec_element_i32(s, tcg_res, rd, pass,
13428                                      is_scalar ? size : MO_32);
13429                 if (size == 1) {
13430                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13431                                                 tcg_op, tcg_idx, tcg_res);
13432                 } else {
13433                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13434                                                 tcg_op, tcg_idx, tcg_res);
13435                 }
13436                 break;
13437             default:
13438             case 0x09: /* FMUL */
13439             case 0x19: /* FMULX */
13440                 g_assert_not_reached();
13441             }
13442 
13443             if (is_scalar) {
13444                 write_fp_sreg(s, rd, tcg_res);
13445             } else {
13446                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13447             }
13448         }
13449 
13450         clear_vec_high(s, is_q, rd);
13451     } else {
13452         /* long ops: 16x16->32 or 32x32->64 */
13453         TCGv_i64 tcg_res[2];
13454         int pass;
13455         bool satop = extract32(opcode, 0, 1);
13456         MemOp memop = MO_32;
13457 
13458         if (satop || !u) {
13459             memop |= MO_SIGN;
13460         }
13461 
13462         if (size == 2) {
13463             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13464 
13465             read_vec_element(s, tcg_idx, rm, index, memop);
13466 
13467             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13468                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13469                 TCGv_i64 tcg_passres;
13470                 int passelt;
13471 
13472                 if (is_scalar) {
13473                     passelt = 0;
13474                 } else {
13475                     passelt = pass + (is_q * 2);
13476                 }
13477 
13478                 read_vec_element(s, tcg_op, rn, passelt, memop);
13479 
13480                 tcg_res[pass] = tcg_temp_new_i64();
13481 
13482                 if (opcode == 0xa || opcode == 0xb) {
13483                     /* Non-accumulating ops */
13484                     tcg_passres = tcg_res[pass];
13485                 } else {
13486                     tcg_passres = tcg_temp_new_i64();
13487                 }
13488 
13489                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13490 
13491                 if (satop) {
13492                     /* saturating, doubling */
13493                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13494                                                       tcg_passres, tcg_passres);
13495                 }
13496 
13497                 if (opcode == 0xa || opcode == 0xb) {
13498                     continue;
13499                 }
13500 
13501                 /* Accumulating op: handle accumulate step */
13502                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13503 
13504                 switch (opcode) {
13505                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13506                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13507                     break;
13508                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13509                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13510                     break;
13511                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13512                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13513                     /* fall through */
13514                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13515                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13516                                                       tcg_res[pass],
13517                                                       tcg_passres);
13518                     break;
13519                 default:
13520                     g_assert_not_reached();
13521                 }
13522             }
13523 
13524             clear_vec_high(s, !is_scalar, rd);
13525         } else {
13526             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13527 
13528             assert(size == 1);
13529             read_vec_element_i32(s, tcg_idx, rm, index, size);
13530 
13531             if (!is_scalar) {
13532                 /* The simplest way to handle the 16x16 indexed ops is to
13533                  * duplicate the index into both halves of the 32 bit tcg_idx
13534                  * and then use the usual Neon helpers.
13535                  */
13536                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13537             }
13538 
13539             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13540                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13541                 TCGv_i64 tcg_passres;
13542 
13543                 if (is_scalar) {
13544                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13545                 } else {
13546                     read_vec_element_i32(s, tcg_op, rn,
13547                                          pass + (is_q * 2), MO_32);
13548                 }
13549 
13550                 tcg_res[pass] = tcg_temp_new_i64();
13551 
13552                 if (opcode == 0xa || opcode == 0xb) {
13553                     /* Non-accumulating ops */
13554                     tcg_passres = tcg_res[pass];
13555                 } else {
13556                     tcg_passres = tcg_temp_new_i64();
13557                 }
13558 
13559                 if (memop & MO_SIGN) {
13560                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13561                 } else {
13562                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13563                 }
13564                 if (satop) {
13565                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13566                                                       tcg_passres, tcg_passres);
13567                 }
13568 
13569                 if (opcode == 0xa || opcode == 0xb) {
13570                     continue;
13571                 }
13572 
13573                 /* Accumulating op: handle accumulate step */
13574                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13575 
13576                 switch (opcode) {
13577                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13578                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13579                                              tcg_passres);
13580                     break;
13581                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13582                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13583                                              tcg_passres);
13584                     break;
13585                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13586                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13587                     /* fall through */
13588                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13589                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13590                                                       tcg_res[pass],
13591                                                       tcg_passres);
13592                     break;
13593                 default:
13594                     g_assert_not_reached();
13595                 }
13596             }
13597 
13598             if (is_scalar) {
13599                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13600             }
13601         }
13602 
13603         if (is_scalar) {
13604             tcg_res[1] = tcg_constant_i64(0);
13605         }
13606 
13607         for (pass = 0; pass < 2; pass++) {
13608             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13609         }
13610     }
13611 }
13612 
13613 /* C3.6 Data processing - SIMD, inc Crypto
13614  *
13615  * As the decode gets a little complex we are using a table based
13616  * approach for this part of the decode.
13617  */
13618 static const AArch64DecodeTable data_proc_simd[] = {
13619     /* pattern  ,  mask     ,  fn                        */
13620     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13621     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13622     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13623     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13624     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13625     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13626     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13627     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13628     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13629     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13630     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13631     { 0x2e000000, 0xbf208400, disas_simd_ext },
13632     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13633     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13634     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13635     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13636     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13637     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13638     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13639     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13640     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13641     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13642     { 0x00000000, 0x00000000, NULL }
13643 };
13644 
13645 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13646 {
13647     /* Note that this is called with all non-FP cases from
13648      * table C3-6 so it must UNDEF for entries not specifically
13649      * allocated to instructions in that table.
13650      */
13651     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13652     if (fn) {
13653         fn(s, insn);
13654     } else {
13655         unallocated_encoding(s);
13656     }
13657 }
13658 
13659 /* C3.6 Data processing - SIMD and floating point */
13660 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13661 {
13662     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13663         disas_data_proc_fp(s, insn);
13664     } else {
13665         /* SIMD, including crypto */
13666         disas_data_proc_simd(s, insn);
13667     }
13668 }
13669 
13670 static bool trans_OK(DisasContext *s, arg_OK *a)
13671 {
13672     return true;
13673 }
13674 
13675 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13676 {
13677     s->is_nonstreaming = true;
13678     return true;
13679 }
13680 
13681 /**
13682  * is_guarded_page:
13683  * @env: The cpu environment
13684  * @s: The DisasContext
13685  *
13686  * Return true if the page is guarded.
13687  */
13688 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13689 {
13690     uint64_t addr = s->base.pc_first;
13691 #ifdef CONFIG_USER_ONLY
13692     return page_get_flags(addr) & PAGE_BTI;
13693 #else
13694     CPUTLBEntryFull *full;
13695     void *host;
13696     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13697     int flags;
13698 
13699     /*
13700      * We test this immediately after reading an insn, which means
13701      * that the TLB entry must be present and valid, and thus this
13702      * access will never raise an exception.
13703      */
13704     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13705                               false, &host, &full, 0);
13706     assert(!(flags & TLB_INVALID_MASK));
13707 
13708     return full->extra.arm.guarded;
13709 #endif
13710 }
13711 
13712 /**
13713  * btype_destination_ok:
13714  * @insn: The instruction at the branch destination
13715  * @bt: SCTLR_ELx.BT
13716  * @btype: PSTATE.BTYPE, and is non-zero
13717  *
13718  * On a guarded page, there are a limited number of insns
13719  * that may be present at the branch target:
13720  *   - branch target identifiers,
13721  *   - paciasp, pacibsp,
13722  *   - BRK insn
13723  *   - HLT insn
13724  * Anything else causes a Branch Target Exception.
13725  *
13726  * Return true if the branch is compatible, false to raise BTITRAP.
13727  */
13728 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13729 {
13730     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13731         /* HINT space */
13732         switch (extract32(insn, 5, 7)) {
13733         case 0b011001: /* PACIASP */
13734         case 0b011011: /* PACIBSP */
13735             /*
13736              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13737              * with btype == 3.  Otherwise all btype are ok.
13738              */
13739             return !bt || btype != 3;
13740         case 0b100000: /* BTI */
13741             /* Not compatible with any btype.  */
13742             return false;
13743         case 0b100010: /* BTI c */
13744             /* Not compatible with btype == 3 */
13745             return btype != 3;
13746         case 0b100100: /* BTI j */
13747             /* Not compatible with btype == 2 */
13748             return btype != 2;
13749         case 0b100110: /* BTI jc */
13750             /* Compatible with any btype.  */
13751             return true;
13752         }
13753     } else {
13754         switch (insn & 0xffe0001fu) {
13755         case 0xd4200000u: /* BRK */
13756         case 0xd4400000u: /* HLT */
13757             /* Give priority to the breakpoint exception.  */
13758             return true;
13759         }
13760     }
13761     return false;
13762 }
13763 
13764 /* C3.1 A64 instruction index by encoding */
13765 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13766 {
13767     switch (extract32(insn, 25, 4)) {
13768     case 0x5:
13769     case 0xd:      /* Data processing - register */
13770         disas_data_proc_reg(s, insn);
13771         break;
13772     case 0x7:
13773     case 0xf:      /* Data processing - SIMD and floating point */
13774         disas_data_proc_simd_fp(s, insn);
13775         break;
13776     default:
13777         unallocated_encoding(s);
13778         break;
13779     }
13780 }
13781 
13782 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13783                                           CPUState *cpu)
13784 {
13785     DisasContext *dc = container_of(dcbase, DisasContext, base);
13786     CPUARMState *env = cpu_env(cpu);
13787     ARMCPU *arm_cpu = env_archcpu(env);
13788     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13789     int bound, core_mmu_idx;
13790 
13791     dc->isar = &arm_cpu->isar;
13792     dc->condjmp = 0;
13793     dc->pc_save = dc->base.pc_first;
13794     dc->aarch64 = true;
13795     dc->thumb = false;
13796     dc->sctlr_b = 0;
13797     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13798     dc->condexec_mask = 0;
13799     dc->condexec_cond = 0;
13800     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13801     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13802     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13803     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13804     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13805     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13806 #if !defined(CONFIG_USER_ONLY)
13807     dc->user = (dc->current_el == 0);
13808 #endif
13809     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13810     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13811     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13812     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13813     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13814     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13815     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13816     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13817     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13818     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13819     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13820     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13821     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13822     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13823     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13824     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13825     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13826     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13827     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13828     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13829     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13830     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13831     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13832     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13833     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13834     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13835     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13836     dc->vec_len = 0;
13837     dc->vec_stride = 0;
13838     dc->cp_regs = arm_cpu->cp_regs;
13839     dc->features = env->features;
13840     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13841     dc->gm_blocksize = arm_cpu->gm_blocksize;
13842 
13843 #ifdef CONFIG_USER_ONLY
13844     /* In sve_probe_page, we assume TBI is enabled. */
13845     tcg_debug_assert(dc->tbid & 1);
13846 #endif
13847 
13848     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13849 
13850     /* Single step state. The code-generation logic here is:
13851      *  SS_ACTIVE == 0:
13852      *   generate code with no special handling for single-stepping (except
13853      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13854      *   this happens anyway because those changes are all system register or
13855      *   PSTATE writes).
13856      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13857      *   emit code for one insn
13858      *   emit code to clear PSTATE.SS
13859      *   emit code to generate software step exception for completed step
13860      *   end TB (as usual for having generated an exception)
13861      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13862      *   emit code to generate a software step exception
13863      *   end the TB
13864      */
13865     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13866     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13867     dc->is_ldex = false;
13868 
13869     /* Bound the number of insns to execute to those left on the page.  */
13870     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13871 
13872     /* If architectural single step active, limit to 1.  */
13873     if (dc->ss_active) {
13874         bound = 1;
13875     }
13876     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13877 }
13878 
13879 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13880 {
13881 }
13882 
13883 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13884 {
13885     DisasContext *dc = container_of(dcbase, DisasContext, base);
13886     target_ulong pc_arg = dc->base.pc_next;
13887 
13888     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13889         pc_arg &= ~TARGET_PAGE_MASK;
13890     }
13891     tcg_gen_insn_start(pc_arg, 0, 0);
13892     dc->insn_start_updated = false;
13893 }
13894 
13895 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13896 {
13897     DisasContext *s = container_of(dcbase, DisasContext, base);
13898     CPUARMState *env = cpu_env(cpu);
13899     uint64_t pc = s->base.pc_next;
13900     uint32_t insn;
13901 
13902     /* Singlestep exceptions have the highest priority. */
13903     if (s->ss_active && !s->pstate_ss) {
13904         /* Singlestep state is Active-pending.
13905          * If we're in this state at the start of a TB then either
13906          *  a) we just took an exception to an EL which is being debugged
13907          *     and this is the first insn in the exception handler
13908          *  b) debug exceptions were masked and we just unmasked them
13909          *     without changing EL (eg by clearing PSTATE.D)
13910          * In either case we're going to take a swstep exception in the
13911          * "did not step an insn" case, and so the syndrome ISV and EX
13912          * bits should be zero.
13913          */
13914         assert(s->base.num_insns == 1);
13915         gen_swstep_exception(s, 0, 0);
13916         s->base.is_jmp = DISAS_NORETURN;
13917         s->base.pc_next = pc + 4;
13918         return;
13919     }
13920 
13921     if (pc & 3) {
13922         /*
13923          * PC alignment fault.  This has priority over the instruction abort
13924          * that we would receive from a translation fault via arm_ldl_code.
13925          * This should only be possible after an indirect branch, at the
13926          * start of the TB.
13927          */
13928         assert(s->base.num_insns == 1);
13929         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13930         s->base.is_jmp = DISAS_NORETURN;
13931         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13932         return;
13933     }
13934 
13935     s->pc_curr = pc;
13936     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13937     s->insn = insn;
13938     s->base.pc_next = pc + 4;
13939 
13940     s->fp_access_checked = false;
13941     s->sve_access_checked = false;
13942 
13943     if (s->pstate_il) {
13944         /*
13945          * Illegal execution state. This has priority over BTI
13946          * exceptions, but comes after instruction abort exceptions.
13947          */
13948         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13949         return;
13950     }
13951 
13952     if (dc_isar_feature(aa64_bti, s)) {
13953         if (s->base.num_insns == 1) {
13954             /*
13955              * At the first insn of the TB, compute s->guarded_page.
13956              * We delayed computing this until successfully reading
13957              * the first insn of the TB, above.  This (mostly) ensures
13958              * that the softmmu tlb entry has been populated, and the
13959              * page table GP bit is available.
13960              *
13961              * Note that we need to compute this even if btype == 0,
13962              * because this value is used for BR instructions later
13963              * where ENV is not available.
13964              */
13965             s->guarded_page = is_guarded_page(env, s);
13966 
13967             /* First insn can have btype set to non-zero.  */
13968             tcg_debug_assert(s->btype >= 0);
13969 
13970             /*
13971              * Note that the Branch Target Exception has fairly high
13972              * priority -- below debugging exceptions but above most
13973              * everything else.  This allows us to handle this now
13974              * instead of waiting until the insn is otherwise decoded.
13975              */
13976             if (s->btype != 0
13977                 && s->guarded_page
13978                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13979                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13980                 return;
13981             }
13982         } else {
13983             /* Not the first insn: btype must be 0.  */
13984             tcg_debug_assert(s->btype == 0);
13985         }
13986     }
13987 
13988     s->is_nonstreaming = false;
13989     if (s->sme_trap_nonstreaming) {
13990         disas_sme_fa64(s, insn);
13991     }
13992 
13993     if (!disas_a64(s, insn) &&
13994         !disas_sme(s, insn) &&
13995         !disas_sve(s, insn)) {
13996         disas_a64_legacy(s, insn);
13997     }
13998 
13999     /*
14000      * After execution of most insns, btype is reset to 0.
14001      * Note that we set btype == -1 when the insn sets btype.
14002      */
14003     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14004         reset_btype(s);
14005     }
14006 }
14007 
14008 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14009 {
14010     DisasContext *dc = container_of(dcbase, DisasContext, base);
14011 
14012     if (unlikely(dc->ss_active)) {
14013         /* Note that this means single stepping WFI doesn't halt the CPU.
14014          * For conditional branch insns this is harmless unreachable code as
14015          * gen_goto_tb() has already handled emitting the debug exception
14016          * (and thus a tb-jump is not possible when singlestepping).
14017          */
14018         switch (dc->base.is_jmp) {
14019         default:
14020             gen_a64_update_pc(dc, 4);
14021             /* fall through */
14022         case DISAS_EXIT:
14023         case DISAS_JUMP:
14024             gen_step_complete_exception(dc);
14025             break;
14026         case DISAS_NORETURN:
14027             break;
14028         }
14029     } else {
14030         switch (dc->base.is_jmp) {
14031         case DISAS_NEXT:
14032         case DISAS_TOO_MANY:
14033             gen_goto_tb(dc, 1, 4);
14034             break;
14035         default:
14036         case DISAS_UPDATE_EXIT:
14037             gen_a64_update_pc(dc, 4);
14038             /* fall through */
14039         case DISAS_EXIT:
14040             tcg_gen_exit_tb(NULL, 0);
14041             break;
14042         case DISAS_UPDATE_NOCHAIN:
14043             gen_a64_update_pc(dc, 4);
14044             /* fall through */
14045         case DISAS_JUMP:
14046             tcg_gen_lookup_and_goto_ptr();
14047             break;
14048         case DISAS_NORETURN:
14049         case DISAS_SWI:
14050             break;
14051         case DISAS_WFE:
14052             gen_a64_update_pc(dc, 4);
14053             gen_helper_wfe(tcg_env);
14054             break;
14055         case DISAS_YIELD:
14056             gen_a64_update_pc(dc, 4);
14057             gen_helper_yield(tcg_env);
14058             break;
14059         case DISAS_WFI:
14060             /*
14061              * This is a special case because we don't want to just halt
14062              * the CPU if trying to debug across a WFI.
14063              */
14064             gen_a64_update_pc(dc, 4);
14065             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
14066             /*
14067              * The helper doesn't necessarily throw an exception, but we
14068              * must go back to the main loop to check for interrupts anyway.
14069              */
14070             tcg_gen_exit_tb(NULL, 0);
14071             break;
14072         }
14073     }
14074 }
14075 
14076 const TranslatorOps aarch64_translator_ops = {
14077     .init_disas_context = aarch64_tr_init_disas_context,
14078     .tb_start           = aarch64_tr_tb_start,
14079     .insn_start         = aarch64_tr_insn_start,
14080     .translate_insn     = aarch64_tr_translate_insn,
14081     .tb_stop            = aarch64_tr_tb_stop,
14082 };
14083