1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmax = { 4919 gen_helper_advsimd_maxh, 4920 gen_helper_vfp_maxs, 4921 gen_helper_vfp_maxd, 4922 }; 4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4924 4925 static const FPScalar f_scalar_fmin = { 4926 gen_helper_advsimd_minh, 4927 gen_helper_vfp_mins, 4928 gen_helper_vfp_mind, 4929 }; 4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4931 4932 static const FPScalar f_scalar_fmaxnm = { 4933 gen_helper_advsimd_maxnumh, 4934 gen_helper_vfp_maxnums, 4935 gen_helper_vfp_maxnumd, 4936 }; 4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4938 4939 static const FPScalar f_scalar_fminnm = { 4940 gen_helper_advsimd_minnumh, 4941 gen_helper_vfp_minnums, 4942 gen_helper_vfp_minnumd, 4943 }; 4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4945 4946 static const FPScalar f_scalar_fmulx = { 4947 gen_helper_advsimd_mulxh, 4948 gen_helper_vfp_mulxs, 4949 gen_helper_vfp_mulxd, 4950 }; 4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4952 4953 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 4954 gen_helper_gvec_3_ptr * const fns[3]) 4955 { 4956 MemOp esz = a->esz; 4957 4958 switch (esz) { 4959 case MO_64: 4960 if (!a->q) { 4961 return false; 4962 } 4963 break; 4964 case MO_32: 4965 break; 4966 case MO_16: 4967 if (!dc_isar_feature(aa64_fp16, s)) { 4968 return false; 4969 } 4970 break; 4971 default: 4972 return false; 4973 } 4974 if (fp_access_check(s)) { 4975 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 4976 esz == MO_16, 0, fns[esz - 1]); 4977 } 4978 return true; 4979 } 4980 4981 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 4982 gen_helper_gvec_fadd_h, 4983 gen_helper_gvec_fadd_s, 4984 gen_helper_gvec_fadd_d, 4985 }; 4986 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 4987 4988 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 4989 gen_helper_gvec_fsub_h, 4990 gen_helper_gvec_fsub_s, 4991 gen_helper_gvec_fsub_d, 4992 }; 4993 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 4994 4995 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 4996 gen_helper_gvec_fdiv_h, 4997 gen_helper_gvec_fdiv_s, 4998 gen_helper_gvec_fdiv_d, 4999 }; 5000 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5001 5002 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5003 gen_helper_gvec_fmul_h, 5004 gen_helper_gvec_fmul_s, 5005 gen_helper_gvec_fmul_d, 5006 }; 5007 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5008 5009 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5010 gen_helper_gvec_fmax_h, 5011 gen_helper_gvec_fmax_s, 5012 gen_helper_gvec_fmax_d, 5013 }; 5014 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5015 5016 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5017 gen_helper_gvec_fmin_h, 5018 gen_helper_gvec_fmin_s, 5019 gen_helper_gvec_fmin_d, 5020 }; 5021 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5022 5023 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5024 gen_helper_gvec_fmaxnum_h, 5025 gen_helper_gvec_fmaxnum_s, 5026 gen_helper_gvec_fmaxnum_d, 5027 }; 5028 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5029 5030 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5031 gen_helper_gvec_fminnum_h, 5032 gen_helper_gvec_fminnum_s, 5033 gen_helper_gvec_fminnum_d, 5034 }; 5035 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5036 5037 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5038 gen_helper_gvec_fmulx_h, 5039 gen_helper_gvec_fmulx_s, 5040 gen_helper_gvec_fmulx_d, 5041 }; 5042 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5043 5044 /* 5045 * Advanced SIMD scalar/vector x indexed element 5046 */ 5047 5048 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5049 { 5050 switch (a->esz) { 5051 case MO_64: 5052 if (fp_access_check(s)) { 5053 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5054 TCGv_i64 t1 = tcg_temp_new_i64(); 5055 5056 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5057 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5058 write_fp_dreg(s, a->rd, t0); 5059 } 5060 break; 5061 case MO_32: 5062 if (fp_access_check(s)) { 5063 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5064 TCGv_i32 t1 = tcg_temp_new_i32(); 5065 5066 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5067 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5068 write_fp_sreg(s, a->rd, t0); 5069 } 5070 break; 5071 case MO_16: 5072 if (!dc_isar_feature(aa64_fp16, s)) { 5073 return false; 5074 } 5075 if (fp_access_check(s)) { 5076 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5077 TCGv_i32 t1 = tcg_temp_new_i32(); 5078 5079 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5080 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5081 write_fp_sreg(s, a->rd, t0); 5082 } 5083 break; 5084 default: 5085 g_assert_not_reached(); 5086 } 5087 return true; 5088 } 5089 5090 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5091 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5092 5093 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5094 gen_helper_gvec_3_ptr * const fns[3]) 5095 { 5096 MemOp esz = a->esz; 5097 5098 switch (esz) { 5099 case MO_64: 5100 if (!a->q) { 5101 return false; 5102 } 5103 break; 5104 case MO_32: 5105 break; 5106 case MO_16: 5107 if (!dc_isar_feature(aa64_fp16, s)) { 5108 return false; 5109 } 5110 break; 5111 default: 5112 g_assert_not_reached(); 5113 } 5114 if (fp_access_check(s)) { 5115 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5116 esz == MO_16, a->idx, fns[esz - 1]); 5117 } 5118 return true; 5119 } 5120 5121 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5122 gen_helper_gvec_fmul_idx_h, 5123 gen_helper_gvec_fmul_idx_s, 5124 gen_helper_gvec_fmul_idx_d, 5125 }; 5126 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5127 5128 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5129 gen_helper_gvec_fmulx_idx_h, 5130 gen_helper_gvec_fmulx_idx_s, 5131 gen_helper_gvec_fmulx_idx_d, 5132 }; 5133 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5134 5135 5136 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5137 * Note that it is the caller's responsibility to ensure that the 5138 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5139 * mandated semantics for out of range shifts. 5140 */ 5141 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5142 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5143 { 5144 switch (shift_type) { 5145 case A64_SHIFT_TYPE_LSL: 5146 tcg_gen_shl_i64(dst, src, shift_amount); 5147 break; 5148 case A64_SHIFT_TYPE_LSR: 5149 tcg_gen_shr_i64(dst, src, shift_amount); 5150 break; 5151 case A64_SHIFT_TYPE_ASR: 5152 if (!sf) { 5153 tcg_gen_ext32s_i64(dst, src); 5154 } 5155 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5156 break; 5157 case A64_SHIFT_TYPE_ROR: 5158 if (sf) { 5159 tcg_gen_rotr_i64(dst, src, shift_amount); 5160 } else { 5161 TCGv_i32 t0, t1; 5162 t0 = tcg_temp_new_i32(); 5163 t1 = tcg_temp_new_i32(); 5164 tcg_gen_extrl_i64_i32(t0, src); 5165 tcg_gen_extrl_i64_i32(t1, shift_amount); 5166 tcg_gen_rotr_i32(t0, t0, t1); 5167 tcg_gen_extu_i32_i64(dst, t0); 5168 } 5169 break; 5170 default: 5171 assert(FALSE); /* all shift types should be handled */ 5172 break; 5173 } 5174 5175 if (!sf) { /* zero extend final result */ 5176 tcg_gen_ext32u_i64(dst, dst); 5177 } 5178 } 5179 5180 /* Shift a TCGv src by immediate, put result in dst. 5181 * The shift amount must be in range (this should always be true as the 5182 * relevant instructions will UNDEF on bad shift immediates). 5183 */ 5184 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5185 enum a64_shift_type shift_type, unsigned int shift_i) 5186 { 5187 assert(shift_i < (sf ? 64 : 32)); 5188 5189 if (shift_i == 0) { 5190 tcg_gen_mov_i64(dst, src); 5191 } else { 5192 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5193 } 5194 } 5195 5196 /* Logical (shifted register) 5197 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5198 * +----+-----+-----------+-------+---+------+--------+------+------+ 5199 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5200 * +----+-----+-----------+-------+---+------+--------+------+------+ 5201 */ 5202 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5203 { 5204 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5205 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5206 5207 sf = extract32(insn, 31, 1); 5208 opc = extract32(insn, 29, 2); 5209 shift_type = extract32(insn, 22, 2); 5210 invert = extract32(insn, 21, 1); 5211 rm = extract32(insn, 16, 5); 5212 shift_amount = extract32(insn, 10, 6); 5213 rn = extract32(insn, 5, 5); 5214 rd = extract32(insn, 0, 5); 5215 5216 if (!sf && (shift_amount & (1 << 5))) { 5217 unallocated_encoding(s); 5218 return; 5219 } 5220 5221 tcg_rd = cpu_reg(s, rd); 5222 5223 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5224 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5225 * register-register MOV and MVN, so it is worth special casing. 5226 */ 5227 tcg_rm = cpu_reg(s, rm); 5228 if (invert) { 5229 tcg_gen_not_i64(tcg_rd, tcg_rm); 5230 if (!sf) { 5231 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5232 } 5233 } else { 5234 if (sf) { 5235 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5236 } else { 5237 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5238 } 5239 } 5240 return; 5241 } 5242 5243 tcg_rm = read_cpu_reg(s, rm, sf); 5244 5245 if (shift_amount) { 5246 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5247 } 5248 5249 tcg_rn = cpu_reg(s, rn); 5250 5251 switch (opc | (invert << 2)) { 5252 case 0: /* AND */ 5253 case 3: /* ANDS */ 5254 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5255 break; 5256 case 1: /* ORR */ 5257 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5258 break; 5259 case 2: /* EOR */ 5260 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5261 break; 5262 case 4: /* BIC */ 5263 case 7: /* BICS */ 5264 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5265 break; 5266 case 5: /* ORN */ 5267 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5268 break; 5269 case 6: /* EON */ 5270 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5271 break; 5272 default: 5273 assert(FALSE); 5274 break; 5275 } 5276 5277 if (!sf) { 5278 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5279 } 5280 5281 if (opc == 3) { 5282 gen_logic_CC(sf, tcg_rd); 5283 } 5284 } 5285 5286 /* 5287 * Add/subtract (extended register) 5288 * 5289 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5290 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5291 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5292 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5293 * 5294 * sf: 0 -> 32bit, 1 -> 64bit 5295 * op: 0 -> add , 1 -> sub 5296 * S: 1 -> set flags 5297 * opt: 00 5298 * option: extension type (see DecodeRegExtend) 5299 * imm3: optional shift to Rm 5300 * 5301 * Rd = Rn + LSL(extend(Rm), amount) 5302 */ 5303 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5304 { 5305 int rd = extract32(insn, 0, 5); 5306 int rn = extract32(insn, 5, 5); 5307 int imm3 = extract32(insn, 10, 3); 5308 int option = extract32(insn, 13, 3); 5309 int rm = extract32(insn, 16, 5); 5310 int opt = extract32(insn, 22, 2); 5311 bool setflags = extract32(insn, 29, 1); 5312 bool sub_op = extract32(insn, 30, 1); 5313 bool sf = extract32(insn, 31, 1); 5314 5315 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5316 TCGv_i64 tcg_rd; 5317 TCGv_i64 tcg_result; 5318 5319 if (imm3 > 4 || opt != 0) { 5320 unallocated_encoding(s); 5321 return; 5322 } 5323 5324 /* non-flag setting ops may use SP */ 5325 if (!setflags) { 5326 tcg_rd = cpu_reg_sp(s, rd); 5327 } else { 5328 tcg_rd = cpu_reg(s, rd); 5329 } 5330 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5331 5332 tcg_rm = read_cpu_reg(s, rm, sf); 5333 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5334 5335 tcg_result = tcg_temp_new_i64(); 5336 5337 if (!setflags) { 5338 if (sub_op) { 5339 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5340 } else { 5341 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5342 } 5343 } else { 5344 if (sub_op) { 5345 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5346 } else { 5347 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5348 } 5349 } 5350 5351 if (sf) { 5352 tcg_gen_mov_i64(tcg_rd, tcg_result); 5353 } else { 5354 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5355 } 5356 } 5357 5358 /* 5359 * Add/subtract (shifted register) 5360 * 5361 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5362 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5363 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5364 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5365 * 5366 * sf: 0 -> 32bit, 1 -> 64bit 5367 * op: 0 -> add , 1 -> sub 5368 * S: 1 -> set flags 5369 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5370 * imm6: Shift amount to apply to Rm before the add/sub 5371 */ 5372 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5373 { 5374 int rd = extract32(insn, 0, 5); 5375 int rn = extract32(insn, 5, 5); 5376 int imm6 = extract32(insn, 10, 6); 5377 int rm = extract32(insn, 16, 5); 5378 int shift_type = extract32(insn, 22, 2); 5379 bool setflags = extract32(insn, 29, 1); 5380 bool sub_op = extract32(insn, 30, 1); 5381 bool sf = extract32(insn, 31, 1); 5382 5383 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5384 TCGv_i64 tcg_rn, tcg_rm; 5385 TCGv_i64 tcg_result; 5386 5387 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5388 unallocated_encoding(s); 5389 return; 5390 } 5391 5392 tcg_rn = read_cpu_reg(s, rn, sf); 5393 tcg_rm = read_cpu_reg(s, rm, sf); 5394 5395 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5396 5397 tcg_result = tcg_temp_new_i64(); 5398 5399 if (!setflags) { 5400 if (sub_op) { 5401 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5402 } else { 5403 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5404 } 5405 } else { 5406 if (sub_op) { 5407 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5408 } else { 5409 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5410 } 5411 } 5412 5413 if (sf) { 5414 tcg_gen_mov_i64(tcg_rd, tcg_result); 5415 } else { 5416 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5417 } 5418 } 5419 5420 /* Data-processing (3 source) 5421 * 5422 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5423 * +--+------+-----------+------+------+----+------+------+------+ 5424 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5425 * +--+------+-----------+------+------+----+------+------+------+ 5426 */ 5427 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5428 { 5429 int rd = extract32(insn, 0, 5); 5430 int rn = extract32(insn, 5, 5); 5431 int ra = extract32(insn, 10, 5); 5432 int rm = extract32(insn, 16, 5); 5433 int op_id = (extract32(insn, 29, 3) << 4) | 5434 (extract32(insn, 21, 3) << 1) | 5435 extract32(insn, 15, 1); 5436 bool sf = extract32(insn, 31, 1); 5437 bool is_sub = extract32(op_id, 0, 1); 5438 bool is_high = extract32(op_id, 2, 1); 5439 bool is_signed = false; 5440 TCGv_i64 tcg_op1; 5441 TCGv_i64 tcg_op2; 5442 TCGv_i64 tcg_tmp; 5443 5444 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5445 switch (op_id) { 5446 case 0x42: /* SMADDL */ 5447 case 0x43: /* SMSUBL */ 5448 case 0x44: /* SMULH */ 5449 is_signed = true; 5450 break; 5451 case 0x0: /* MADD (32bit) */ 5452 case 0x1: /* MSUB (32bit) */ 5453 case 0x40: /* MADD (64bit) */ 5454 case 0x41: /* MSUB (64bit) */ 5455 case 0x4a: /* UMADDL */ 5456 case 0x4b: /* UMSUBL */ 5457 case 0x4c: /* UMULH */ 5458 break; 5459 default: 5460 unallocated_encoding(s); 5461 return; 5462 } 5463 5464 if (is_high) { 5465 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5466 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5467 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5468 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5469 5470 if (is_signed) { 5471 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5472 } else { 5473 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5474 } 5475 return; 5476 } 5477 5478 tcg_op1 = tcg_temp_new_i64(); 5479 tcg_op2 = tcg_temp_new_i64(); 5480 tcg_tmp = tcg_temp_new_i64(); 5481 5482 if (op_id < 0x42) { 5483 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5484 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5485 } else { 5486 if (is_signed) { 5487 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5488 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5489 } else { 5490 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5491 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5492 } 5493 } 5494 5495 if (ra == 31 && !is_sub) { 5496 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5497 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5498 } else { 5499 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5500 if (is_sub) { 5501 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5502 } else { 5503 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5504 } 5505 } 5506 5507 if (!sf) { 5508 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5509 } 5510 } 5511 5512 /* Add/subtract (with carry) 5513 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5514 * +--+--+--+------------------------+------+-------------+------+-----+ 5515 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5516 * +--+--+--+------------------------+------+-------------+------+-----+ 5517 */ 5518 5519 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5520 { 5521 unsigned int sf, op, setflags, rm, rn, rd; 5522 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5523 5524 sf = extract32(insn, 31, 1); 5525 op = extract32(insn, 30, 1); 5526 setflags = extract32(insn, 29, 1); 5527 rm = extract32(insn, 16, 5); 5528 rn = extract32(insn, 5, 5); 5529 rd = extract32(insn, 0, 5); 5530 5531 tcg_rd = cpu_reg(s, rd); 5532 tcg_rn = cpu_reg(s, rn); 5533 5534 if (op) { 5535 tcg_y = tcg_temp_new_i64(); 5536 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5537 } else { 5538 tcg_y = cpu_reg(s, rm); 5539 } 5540 5541 if (setflags) { 5542 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5543 } else { 5544 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5545 } 5546 } 5547 5548 /* 5549 * Rotate right into flags 5550 * 31 30 29 21 15 10 5 4 0 5551 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5552 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5553 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5554 */ 5555 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5556 { 5557 int mask = extract32(insn, 0, 4); 5558 int o2 = extract32(insn, 4, 1); 5559 int rn = extract32(insn, 5, 5); 5560 int imm6 = extract32(insn, 15, 6); 5561 int sf_op_s = extract32(insn, 29, 3); 5562 TCGv_i64 tcg_rn; 5563 TCGv_i32 nzcv; 5564 5565 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5566 unallocated_encoding(s); 5567 return; 5568 } 5569 5570 tcg_rn = read_cpu_reg(s, rn, 1); 5571 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5572 5573 nzcv = tcg_temp_new_i32(); 5574 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5575 5576 if (mask & 8) { /* N */ 5577 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5578 } 5579 if (mask & 4) { /* Z */ 5580 tcg_gen_not_i32(cpu_ZF, nzcv); 5581 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5582 } 5583 if (mask & 2) { /* C */ 5584 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5585 } 5586 if (mask & 1) { /* V */ 5587 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5588 } 5589 } 5590 5591 /* 5592 * Evaluate into flags 5593 * 31 30 29 21 15 14 10 5 4 0 5594 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5595 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5596 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5597 */ 5598 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5599 { 5600 int o3_mask = extract32(insn, 0, 5); 5601 int rn = extract32(insn, 5, 5); 5602 int o2 = extract32(insn, 15, 6); 5603 int sz = extract32(insn, 14, 1); 5604 int sf_op_s = extract32(insn, 29, 3); 5605 TCGv_i32 tmp; 5606 int shift; 5607 5608 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5609 !dc_isar_feature(aa64_condm_4, s)) { 5610 unallocated_encoding(s); 5611 return; 5612 } 5613 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5614 5615 tmp = tcg_temp_new_i32(); 5616 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5617 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5618 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5619 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5620 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5621 } 5622 5623 /* Conditional compare (immediate / register) 5624 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5625 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5626 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5627 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5628 * [1] y [0] [0] 5629 */ 5630 static void disas_cc(DisasContext *s, uint32_t insn) 5631 { 5632 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5633 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5634 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5635 DisasCompare c; 5636 5637 if (!extract32(insn, 29, 1)) { 5638 unallocated_encoding(s); 5639 return; 5640 } 5641 if (insn & (1 << 10 | 1 << 4)) { 5642 unallocated_encoding(s); 5643 return; 5644 } 5645 sf = extract32(insn, 31, 1); 5646 op = extract32(insn, 30, 1); 5647 is_imm = extract32(insn, 11, 1); 5648 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5649 cond = extract32(insn, 12, 4); 5650 rn = extract32(insn, 5, 5); 5651 nzcv = extract32(insn, 0, 4); 5652 5653 /* Set T0 = !COND. */ 5654 tcg_t0 = tcg_temp_new_i32(); 5655 arm_test_cc(&c, cond); 5656 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5657 5658 /* Load the arguments for the new comparison. */ 5659 if (is_imm) { 5660 tcg_y = tcg_temp_new_i64(); 5661 tcg_gen_movi_i64(tcg_y, y); 5662 } else { 5663 tcg_y = cpu_reg(s, y); 5664 } 5665 tcg_rn = cpu_reg(s, rn); 5666 5667 /* Set the flags for the new comparison. */ 5668 tcg_tmp = tcg_temp_new_i64(); 5669 if (op) { 5670 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5671 } else { 5672 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5673 } 5674 5675 /* If COND was false, force the flags to #nzcv. Compute two masks 5676 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5677 * For tcg hosts that support ANDC, we can make do with just T1. 5678 * In either case, allow the tcg optimizer to delete any unused mask. 5679 */ 5680 tcg_t1 = tcg_temp_new_i32(); 5681 tcg_t2 = tcg_temp_new_i32(); 5682 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5683 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5684 5685 if (nzcv & 8) { /* N */ 5686 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5687 } else { 5688 if (TCG_TARGET_HAS_andc_i32) { 5689 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5690 } else { 5691 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5692 } 5693 } 5694 if (nzcv & 4) { /* Z */ 5695 if (TCG_TARGET_HAS_andc_i32) { 5696 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5697 } else { 5698 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5699 } 5700 } else { 5701 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5702 } 5703 if (nzcv & 2) { /* C */ 5704 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5705 } else { 5706 if (TCG_TARGET_HAS_andc_i32) { 5707 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5708 } else { 5709 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5710 } 5711 } 5712 if (nzcv & 1) { /* V */ 5713 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5714 } else { 5715 if (TCG_TARGET_HAS_andc_i32) { 5716 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5717 } else { 5718 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5719 } 5720 } 5721 } 5722 5723 /* Conditional select 5724 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5725 * +----+----+---+-----------------+------+------+-----+------+------+ 5726 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5727 * +----+----+---+-----------------+------+------+-----+------+------+ 5728 */ 5729 static void disas_cond_select(DisasContext *s, uint32_t insn) 5730 { 5731 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5732 TCGv_i64 tcg_rd, zero; 5733 DisasCompare64 c; 5734 5735 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5736 /* S == 1 or op2<1> == 1 */ 5737 unallocated_encoding(s); 5738 return; 5739 } 5740 sf = extract32(insn, 31, 1); 5741 else_inv = extract32(insn, 30, 1); 5742 rm = extract32(insn, 16, 5); 5743 cond = extract32(insn, 12, 4); 5744 else_inc = extract32(insn, 10, 1); 5745 rn = extract32(insn, 5, 5); 5746 rd = extract32(insn, 0, 5); 5747 5748 tcg_rd = cpu_reg(s, rd); 5749 5750 a64_test_cc(&c, cond); 5751 zero = tcg_constant_i64(0); 5752 5753 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5754 /* CSET & CSETM. */ 5755 if (else_inv) { 5756 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5757 tcg_rd, c.value, zero); 5758 } else { 5759 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5760 tcg_rd, c.value, zero); 5761 } 5762 } else { 5763 TCGv_i64 t_true = cpu_reg(s, rn); 5764 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5765 if (else_inv && else_inc) { 5766 tcg_gen_neg_i64(t_false, t_false); 5767 } else if (else_inv) { 5768 tcg_gen_not_i64(t_false, t_false); 5769 } else if (else_inc) { 5770 tcg_gen_addi_i64(t_false, t_false, 1); 5771 } 5772 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5773 } 5774 5775 if (!sf) { 5776 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5777 } 5778 } 5779 5780 static void handle_clz(DisasContext *s, unsigned int sf, 5781 unsigned int rn, unsigned int rd) 5782 { 5783 TCGv_i64 tcg_rd, tcg_rn; 5784 tcg_rd = cpu_reg(s, rd); 5785 tcg_rn = cpu_reg(s, rn); 5786 5787 if (sf) { 5788 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5789 } else { 5790 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5791 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5792 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5793 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5794 } 5795 } 5796 5797 static void handle_cls(DisasContext *s, unsigned int sf, 5798 unsigned int rn, unsigned int rd) 5799 { 5800 TCGv_i64 tcg_rd, tcg_rn; 5801 tcg_rd = cpu_reg(s, rd); 5802 tcg_rn = cpu_reg(s, rn); 5803 5804 if (sf) { 5805 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5806 } else { 5807 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5808 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5809 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5810 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5811 } 5812 } 5813 5814 static void handle_rbit(DisasContext *s, unsigned int sf, 5815 unsigned int rn, unsigned int rd) 5816 { 5817 TCGv_i64 tcg_rd, tcg_rn; 5818 tcg_rd = cpu_reg(s, rd); 5819 tcg_rn = cpu_reg(s, rn); 5820 5821 if (sf) { 5822 gen_helper_rbit64(tcg_rd, tcg_rn); 5823 } else { 5824 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5825 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5826 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5827 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5828 } 5829 } 5830 5831 /* REV with sf==1, opcode==3 ("REV64") */ 5832 static void handle_rev64(DisasContext *s, unsigned int sf, 5833 unsigned int rn, unsigned int rd) 5834 { 5835 if (!sf) { 5836 unallocated_encoding(s); 5837 return; 5838 } 5839 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5840 } 5841 5842 /* REV with sf==0, opcode==2 5843 * REV32 (sf==1, opcode==2) 5844 */ 5845 static void handle_rev32(DisasContext *s, unsigned int sf, 5846 unsigned int rn, unsigned int rd) 5847 { 5848 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5849 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5850 5851 if (sf) { 5852 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5853 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5854 } else { 5855 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5856 } 5857 } 5858 5859 /* REV16 (opcode==1) */ 5860 static void handle_rev16(DisasContext *s, unsigned int sf, 5861 unsigned int rn, unsigned int rd) 5862 { 5863 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5864 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5865 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5866 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5867 5868 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5869 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5870 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5871 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5872 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5873 } 5874 5875 /* Data-processing (1 source) 5876 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5877 * +----+---+---+-----------------+---------+--------+------+------+ 5878 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5879 * +----+---+---+-----------------+---------+--------+------+------+ 5880 */ 5881 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5882 { 5883 unsigned int sf, opcode, opcode2, rn, rd; 5884 TCGv_i64 tcg_rd; 5885 5886 if (extract32(insn, 29, 1)) { 5887 unallocated_encoding(s); 5888 return; 5889 } 5890 5891 sf = extract32(insn, 31, 1); 5892 opcode = extract32(insn, 10, 6); 5893 opcode2 = extract32(insn, 16, 5); 5894 rn = extract32(insn, 5, 5); 5895 rd = extract32(insn, 0, 5); 5896 5897 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5898 5899 switch (MAP(sf, opcode2, opcode)) { 5900 case MAP(0, 0x00, 0x00): /* RBIT */ 5901 case MAP(1, 0x00, 0x00): 5902 handle_rbit(s, sf, rn, rd); 5903 break; 5904 case MAP(0, 0x00, 0x01): /* REV16 */ 5905 case MAP(1, 0x00, 0x01): 5906 handle_rev16(s, sf, rn, rd); 5907 break; 5908 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5909 case MAP(1, 0x00, 0x02): 5910 handle_rev32(s, sf, rn, rd); 5911 break; 5912 case MAP(1, 0x00, 0x03): /* REV64 */ 5913 handle_rev64(s, sf, rn, rd); 5914 break; 5915 case MAP(0, 0x00, 0x04): /* CLZ */ 5916 case MAP(1, 0x00, 0x04): 5917 handle_clz(s, sf, rn, rd); 5918 break; 5919 case MAP(0, 0x00, 0x05): /* CLS */ 5920 case MAP(1, 0x00, 0x05): 5921 handle_cls(s, sf, rn, rd); 5922 break; 5923 case MAP(1, 0x01, 0x00): /* PACIA */ 5924 if (s->pauth_active) { 5925 tcg_rd = cpu_reg(s, rd); 5926 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5927 } else if (!dc_isar_feature(aa64_pauth, s)) { 5928 goto do_unallocated; 5929 } 5930 break; 5931 case MAP(1, 0x01, 0x01): /* PACIB */ 5932 if (s->pauth_active) { 5933 tcg_rd = cpu_reg(s, rd); 5934 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5935 } else if (!dc_isar_feature(aa64_pauth, s)) { 5936 goto do_unallocated; 5937 } 5938 break; 5939 case MAP(1, 0x01, 0x02): /* PACDA */ 5940 if (s->pauth_active) { 5941 tcg_rd = cpu_reg(s, rd); 5942 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5943 } else if (!dc_isar_feature(aa64_pauth, s)) { 5944 goto do_unallocated; 5945 } 5946 break; 5947 case MAP(1, 0x01, 0x03): /* PACDB */ 5948 if (s->pauth_active) { 5949 tcg_rd = cpu_reg(s, rd); 5950 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5951 } else if (!dc_isar_feature(aa64_pauth, s)) { 5952 goto do_unallocated; 5953 } 5954 break; 5955 case MAP(1, 0x01, 0x04): /* AUTIA */ 5956 if (s->pauth_active) { 5957 tcg_rd = cpu_reg(s, rd); 5958 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5959 } else if (!dc_isar_feature(aa64_pauth, s)) { 5960 goto do_unallocated; 5961 } 5962 break; 5963 case MAP(1, 0x01, 0x05): /* AUTIB */ 5964 if (s->pauth_active) { 5965 tcg_rd = cpu_reg(s, rd); 5966 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5967 } else if (!dc_isar_feature(aa64_pauth, s)) { 5968 goto do_unallocated; 5969 } 5970 break; 5971 case MAP(1, 0x01, 0x06): /* AUTDA */ 5972 if (s->pauth_active) { 5973 tcg_rd = cpu_reg(s, rd); 5974 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5975 } else if (!dc_isar_feature(aa64_pauth, s)) { 5976 goto do_unallocated; 5977 } 5978 break; 5979 case MAP(1, 0x01, 0x07): /* AUTDB */ 5980 if (s->pauth_active) { 5981 tcg_rd = cpu_reg(s, rd); 5982 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5983 } else if (!dc_isar_feature(aa64_pauth, s)) { 5984 goto do_unallocated; 5985 } 5986 break; 5987 case MAP(1, 0x01, 0x08): /* PACIZA */ 5988 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5989 goto do_unallocated; 5990 } else if (s->pauth_active) { 5991 tcg_rd = cpu_reg(s, rd); 5992 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5993 } 5994 break; 5995 case MAP(1, 0x01, 0x09): /* PACIZB */ 5996 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5997 goto do_unallocated; 5998 } else if (s->pauth_active) { 5999 tcg_rd = cpu_reg(s, rd); 6000 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6001 } 6002 break; 6003 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6004 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6005 goto do_unallocated; 6006 } else if (s->pauth_active) { 6007 tcg_rd = cpu_reg(s, rd); 6008 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6009 } 6010 break; 6011 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6012 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6013 goto do_unallocated; 6014 } else if (s->pauth_active) { 6015 tcg_rd = cpu_reg(s, rd); 6016 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6017 } 6018 break; 6019 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6020 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6021 goto do_unallocated; 6022 } else if (s->pauth_active) { 6023 tcg_rd = cpu_reg(s, rd); 6024 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6025 } 6026 break; 6027 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6028 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6029 goto do_unallocated; 6030 } else if (s->pauth_active) { 6031 tcg_rd = cpu_reg(s, rd); 6032 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6033 } 6034 break; 6035 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6036 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6037 goto do_unallocated; 6038 } else if (s->pauth_active) { 6039 tcg_rd = cpu_reg(s, rd); 6040 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6041 } 6042 break; 6043 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6044 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6045 goto do_unallocated; 6046 } else if (s->pauth_active) { 6047 tcg_rd = cpu_reg(s, rd); 6048 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6049 } 6050 break; 6051 case MAP(1, 0x01, 0x10): /* XPACI */ 6052 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6053 goto do_unallocated; 6054 } else if (s->pauth_active) { 6055 tcg_rd = cpu_reg(s, rd); 6056 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6057 } 6058 break; 6059 case MAP(1, 0x01, 0x11): /* XPACD */ 6060 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6061 goto do_unallocated; 6062 } else if (s->pauth_active) { 6063 tcg_rd = cpu_reg(s, rd); 6064 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6065 } 6066 break; 6067 default: 6068 do_unallocated: 6069 unallocated_encoding(s); 6070 break; 6071 } 6072 6073 #undef MAP 6074 } 6075 6076 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6077 unsigned int rm, unsigned int rn, unsigned int rd) 6078 { 6079 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6080 tcg_rd = cpu_reg(s, rd); 6081 6082 if (!sf && is_signed) { 6083 tcg_n = tcg_temp_new_i64(); 6084 tcg_m = tcg_temp_new_i64(); 6085 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6086 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6087 } else { 6088 tcg_n = read_cpu_reg(s, rn, sf); 6089 tcg_m = read_cpu_reg(s, rm, sf); 6090 } 6091 6092 if (is_signed) { 6093 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6094 } else { 6095 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6096 } 6097 6098 if (!sf) { /* zero extend final result */ 6099 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6100 } 6101 } 6102 6103 /* LSLV, LSRV, ASRV, RORV */ 6104 static void handle_shift_reg(DisasContext *s, 6105 enum a64_shift_type shift_type, unsigned int sf, 6106 unsigned int rm, unsigned int rn, unsigned int rd) 6107 { 6108 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6109 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6110 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6111 6112 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6113 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6114 } 6115 6116 /* CRC32[BHWX], CRC32C[BHWX] */ 6117 static void handle_crc32(DisasContext *s, 6118 unsigned int sf, unsigned int sz, bool crc32c, 6119 unsigned int rm, unsigned int rn, unsigned int rd) 6120 { 6121 TCGv_i64 tcg_acc, tcg_val; 6122 TCGv_i32 tcg_bytes; 6123 6124 if (!dc_isar_feature(aa64_crc32, s) 6125 || (sf == 1 && sz != 3) 6126 || (sf == 0 && sz == 3)) { 6127 unallocated_encoding(s); 6128 return; 6129 } 6130 6131 if (sz == 3) { 6132 tcg_val = cpu_reg(s, rm); 6133 } else { 6134 uint64_t mask; 6135 switch (sz) { 6136 case 0: 6137 mask = 0xFF; 6138 break; 6139 case 1: 6140 mask = 0xFFFF; 6141 break; 6142 case 2: 6143 mask = 0xFFFFFFFF; 6144 break; 6145 default: 6146 g_assert_not_reached(); 6147 } 6148 tcg_val = tcg_temp_new_i64(); 6149 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6150 } 6151 6152 tcg_acc = cpu_reg(s, rn); 6153 tcg_bytes = tcg_constant_i32(1 << sz); 6154 6155 if (crc32c) { 6156 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6157 } else { 6158 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6159 } 6160 } 6161 6162 /* Data-processing (2 source) 6163 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6164 * +----+---+---+-----------------+------+--------+------+------+ 6165 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6166 * +----+---+---+-----------------+------+--------+------+------+ 6167 */ 6168 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6169 { 6170 unsigned int sf, rm, opcode, rn, rd, setflag; 6171 sf = extract32(insn, 31, 1); 6172 setflag = extract32(insn, 29, 1); 6173 rm = extract32(insn, 16, 5); 6174 opcode = extract32(insn, 10, 6); 6175 rn = extract32(insn, 5, 5); 6176 rd = extract32(insn, 0, 5); 6177 6178 if (setflag && opcode != 0) { 6179 unallocated_encoding(s); 6180 return; 6181 } 6182 6183 switch (opcode) { 6184 case 0: /* SUBP(S) */ 6185 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6186 goto do_unallocated; 6187 } else { 6188 TCGv_i64 tcg_n, tcg_m, tcg_d; 6189 6190 tcg_n = read_cpu_reg_sp(s, rn, true); 6191 tcg_m = read_cpu_reg_sp(s, rm, true); 6192 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6193 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6194 tcg_d = cpu_reg(s, rd); 6195 6196 if (setflag) { 6197 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6198 } else { 6199 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6200 } 6201 } 6202 break; 6203 case 2: /* UDIV */ 6204 handle_div(s, false, sf, rm, rn, rd); 6205 break; 6206 case 3: /* SDIV */ 6207 handle_div(s, true, sf, rm, rn, rd); 6208 break; 6209 case 4: /* IRG */ 6210 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6211 goto do_unallocated; 6212 } 6213 if (s->ata[0]) { 6214 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6215 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6216 } else { 6217 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6218 cpu_reg_sp(s, rn)); 6219 } 6220 break; 6221 case 5: /* GMI */ 6222 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6223 goto do_unallocated; 6224 } else { 6225 TCGv_i64 t = tcg_temp_new_i64(); 6226 6227 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6228 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6229 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6230 } 6231 break; 6232 case 8: /* LSLV */ 6233 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6234 break; 6235 case 9: /* LSRV */ 6236 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6237 break; 6238 case 10: /* ASRV */ 6239 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6240 break; 6241 case 11: /* RORV */ 6242 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6243 break; 6244 case 12: /* PACGA */ 6245 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6246 goto do_unallocated; 6247 } 6248 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6249 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6250 break; 6251 case 16: 6252 case 17: 6253 case 18: 6254 case 19: 6255 case 20: 6256 case 21: 6257 case 22: 6258 case 23: /* CRC32 */ 6259 { 6260 int sz = extract32(opcode, 0, 2); 6261 bool crc32c = extract32(opcode, 2, 1); 6262 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6263 break; 6264 } 6265 default: 6266 do_unallocated: 6267 unallocated_encoding(s); 6268 break; 6269 } 6270 } 6271 6272 /* 6273 * Data processing - register 6274 * 31 30 29 28 25 21 20 16 10 0 6275 * +--+---+--+---+-------+-----+-------+-------+---------+ 6276 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6277 * +--+---+--+---+-------+-----+-------+-------+---------+ 6278 */ 6279 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6280 { 6281 int op0 = extract32(insn, 30, 1); 6282 int op1 = extract32(insn, 28, 1); 6283 int op2 = extract32(insn, 21, 4); 6284 int op3 = extract32(insn, 10, 6); 6285 6286 if (!op1) { 6287 if (op2 & 8) { 6288 if (op2 & 1) { 6289 /* Add/sub (extended register) */ 6290 disas_add_sub_ext_reg(s, insn); 6291 } else { 6292 /* Add/sub (shifted register) */ 6293 disas_add_sub_reg(s, insn); 6294 } 6295 } else { 6296 /* Logical (shifted register) */ 6297 disas_logic_reg(s, insn); 6298 } 6299 return; 6300 } 6301 6302 switch (op2) { 6303 case 0x0: 6304 switch (op3) { 6305 case 0x00: /* Add/subtract (with carry) */ 6306 disas_adc_sbc(s, insn); 6307 break; 6308 6309 case 0x01: /* Rotate right into flags */ 6310 case 0x21: 6311 disas_rotate_right_into_flags(s, insn); 6312 break; 6313 6314 case 0x02: /* Evaluate into flags */ 6315 case 0x12: 6316 case 0x22: 6317 case 0x32: 6318 disas_evaluate_into_flags(s, insn); 6319 break; 6320 6321 default: 6322 goto do_unallocated; 6323 } 6324 break; 6325 6326 case 0x2: /* Conditional compare */ 6327 disas_cc(s, insn); /* both imm and reg forms */ 6328 break; 6329 6330 case 0x4: /* Conditional select */ 6331 disas_cond_select(s, insn); 6332 break; 6333 6334 case 0x6: /* Data-processing */ 6335 if (op0) { /* (1 source) */ 6336 disas_data_proc_1src(s, insn); 6337 } else { /* (2 source) */ 6338 disas_data_proc_2src(s, insn); 6339 } 6340 break; 6341 case 0x8 ... 0xf: /* (3 source) */ 6342 disas_data_proc_3src(s, insn); 6343 break; 6344 6345 default: 6346 do_unallocated: 6347 unallocated_encoding(s); 6348 break; 6349 } 6350 } 6351 6352 static void handle_fp_compare(DisasContext *s, int size, 6353 unsigned int rn, unsigned int rm, 6354 bool cmp_with_zero, bool signal_all_nans) 6355 { 6356 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6357 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6358 6359 if (size == MO_64) { 6360 TCGv_i64 tcg_vn, tcg_vm; 6361 6362 tcg_vn = read_fp_dreg(s, rn); 6363 if (cmp_with_zero) { 6364 tcg_vm = tcg_constant_i64(0); 6365 } else { 6366 tcg_vm = read_fp_dreg(s, rm); 6367 } 6368 if (signal_all_nans) { 6369 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6370 } else { 6371 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6372 } 6373 } else { 6374 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6375 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6376 6377 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6378 if (cmp_with_zero) { 6379 tcg_gen_movi_i32(tcg_vm, 0); 6380 } else { 6381 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6382 } 6383 6384 switch (size) { 6385 case MO_32: 6386 if (signal_all_nans) { 6387 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6388 } else { 6389 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6390 } 6391 break; 6392 case MO_16: 6393 if (signal_all_nans) { 6394 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6395 } else { 6396 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6397 } 6398 break; 6399 default: 6400 g_assert_not_reached(); 6401 } 6402 } 6403 6404 gen_set_nzcv(tcg_flags); 6405 } 6406 6407 /* Floating point compare 6408 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6409 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6410 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6411 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6412 */ 6413 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6414 { 6415 unsigned int mos, type, rm, op, rn, opc, op2r; 6416 int size; 6417 6418 mos = extract32(insn, 29, 3); 6419 type = extract32(insn, 22, 2); 6420 rm = extract32(insn, 16, 5); 6421 op = extract32(insn, 14, 2); 6422 rn = extract32(insn, 5, 5); 6423 opc = extract32(insn, 3, 2); 6424 op2r = extract32(insn, 0, 3); 6425 6426 if (mos || op || op2r) { 6427 unallocated_encoding(s); 6428 return; 6429 } 6430 6431 switch (type) { 6432 case 0: 6433 size = MO_32; 6434 break; 6435 case 1: 6436 size = MO_64; 6437 break; 6438 case 3: 6439 size = MO_16; 6440 if (dc_isar_feature(aa64_fp16, s)) { 6441 break; 6442 } 6443 /* fallthru */ 6444 default: 6445 unallocated_encoding(s); 6446 return; 6447 } 6448 6449 if (!fp_access_check(s)) { 6450 return; 6451 } 6452 6453 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6454 } 6455 6456 /* Floating point conditional compare 6457 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6458 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6459 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6460 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6461 */ 6462 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6463 { 6464 unsigned int mos, type, rm, cond, rn, op, nzcv; 6465 TCGLabel *label_continue = NULL; 6466 int size; 6467 6468 mos = extract32(insn, 29, 3); 6469 type = extract32(insn, 22, 2); 6470 rm = extract32(insn, 16, 5); 6471 cond = extract32(insn, 12, 4); 6472 rn = extract32(insn, 5, 5); 6473 op = extract32(insn, 4, 1); 6474 nzcv = extract32(insn, 0, 4); 6475 6476 if (mos) { 6477 unallocated_encoding(s); 6478 return; 6479 } 6480 6481 switch (type) { 6482 case 0: 6483 size = MO_32; 6484 break; 6485 case 1: 6486 size = MO_64; 6487 break; 6488 case 3: 6489 size = MO_16; 6490 if (dc_isar_feature(aa64_fp16, s)) { 6491 break; 6492 } 6493 /* fallthru */ 6494 default: 6495 unallocated_encoding(s); 6496 return; 6497 } 6498 6499 if (!fp_access_check(s)) { 6500 return; 6501 } 6502 6503 if (cond < 0x0e) { /* not always */ 6504 TCGLabel *label_match = gen_new_label(); 6505 label_continue = gen_new_label(); 6506 arm_gen_test_cc(cond, label_match); 6507 /* nomatch: */ 6508 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6509 tcg_gen_br(label_continue); 6510 gen_set_label(label_match); 6511 } 6512 6513 handle_fp_compare(s, size, rn, rm, false, op); 6514 6515 if (cond < 0x0e) { 6516 gen_set_label(label_continue); 6517 } 6518 } 6519 6520 /* Floating point conditional select 6521 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6522 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6523 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6524 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6525 */ 6526 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6527 { 6528 unsigned int mos, type, rm, cond, rn, rd; 6529 TCGv_i64 t_true, t_false; 6530 DisasCompare64 c; 6531 MemOp sz; 6532 6533 mos = extract32(insn, 29, 3); 6534 type = extract32(insn, 22, 2); 6535 rm = extract32(insn, 16, 5); 6536 cond = extract32(insn, 12, 4); 6537 rn = extract32(insn, 5, 5); 6538 rd = extract32(insn, 0, 5); 6539 6540 if (mos) { 6541 unallocated_encoding(s); 6542 return; 6543 } 6544 6545 switch (type) { 6546 case 0: 6547 sz = MO_32; 6548 break; 6549 case 1: 6550 sz = MO_64; 6551 break; 6552 case 3: 6553 sz = MO_16; 6554 if (dc_isar_feature(aa64_fp16, s)) { 6555 break; 6556 } 6557 /* fallthru */ 6558 default: 6559 unallocated_encoding(s); 6560 return; 6561 } 6562 6563 if (!fp_access_check(s)) { 6564 return; 6565 } 6566 6567 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6568 t_true = tcg_temp_new_i64(); 6569 t_false = tcg_temp_new_i64(); 6570 read_vec_element(s, t_true, rn, 0, sz); 6571 read_vec_element(s, t_false, rm, 0, sz); 6572 6573 a64_test_cc(&c, cond); 6574 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6575 t_true, t_false); 6576 6577 /* Note that sregs & hregs write back zeros to the high bits, 6578 and we've already done the zero-extension. */ 6579 write_fp_dreg(s, rd, t_true); 6580 } 6581 6582 /* Floating-point data-processing (1 source) - half precision */ 6583 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6584 { 6585 TCGv_ptr fpst = NULL; 6586 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6587 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6588 6589 switch (opcode) { 6590 case 0x0: /* FMOV */ 6591 tcg_gen_mov_i32(tcg_res, tcg_op); 6592 break; 6593 case 0x1: /* FABS */ 6594 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6595 break; 6596 case 0x2: /* FNEG */ 6597 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6598 break; 6599 case 0x3: /* FSQRT */ 6600 fpst = fpstatus_ptr(FPST_FPCR_F16); 6601 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6602 break; 6603 case 0x8: /* FRINTN */ 6604 case 0x9: /* FRINTP */ 6605 case 0xa: /* FRINTM */ 6606 case 0xb: /* FRINTZ */ 6607 case 0xc: /* FRINTA */ 6608 { 6609 TCGv_i32 tcg_rmode; 6610 6611 fpst = fpstatus_ptr(FPST_FPCR_F16); 6612 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6613 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6614 gen_restore_rmode(tcg_rmode, fpst); 6615 break; 6616 } 6617 case 0xe: /* FRINTX */ 6618 fpst = fpstatus_ptr(FPST_FPCR_F16); 6619 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6620 break; 6621 case 0xf: /* FRINTI */ 6622 fpst = fpstatus_ptr(FPST_FPCR_F16); 6623 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6624 break; 6625 default: 6626 g_assert_not_reached(); 6627 } 6628 6629 write_fp_sreg(s, rd, tcg_res); 6630 } 6631 6632 /* Floating-point data-processing (1 source) - single precision */ 6633 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6634 { 6635 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6636 TCGv_i32 tcg_op, tcg_res; 6637 TCGv_ptr fpst; 6638 int rmode = -1; 6639 6640 tcg_op = read_fp_sreg(s, rn); 6641 tcg_res = tcg_temp_new_i32(); 6642 6643 switch (opcode) { 6644 case 0x0: /* FMOV */ 6645 tcg_gen_mov_i32(tcg_res, tcg_op); 6646 goto done; 6647 case 0x1: /* FABS */ 6648 gen_helper_vfp_abss(tcg_res, tcg_op); 6649 goto done; 6650 case 0x2: /* FNEG */ 6651 gen_helper_vfp_negs(tcg_res, tcg_op); 6652 goto done; 6653 case 0x3: /* FSQRT */ 6654 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6655 goto done; 6656 case 0x6: /* BFCVT */ 6657 gen_fpst = gen_helper_bfcvt; 6658 break; 6659 case 0x8: /* FRINTN */ 6660 case 0x9: /* FRINTP */ 6661 case 0xa: /* FRINTM */ 6662 case 0xb: /* FRINTZ */ 6663 case 0xc: /* FRINTA */ 6664 rmode = opcode & 7; 6665 gen_fpst = gen_helper_rints; 6666 break; 6667 case 0xe: /* FRINTX */ 6668 gen_fpst = gen_helper_rints_exact; 6669 break; 6670 case 0xf: /* FRINTI */ 6671 gen_fpst = gen_helper_rints; 6672 break; 6673 case 0x10: /* FRINT32Z */ 6674 rmode = FPROUNDING_ZERO; 6675 gen_fpst = gen_helper_frint32_s; 6676 break; 6677 case 0x11: /* FRINT32X */ 6678 gen_fpst = gen_helper_frint32_s; 6679 break; 6680 case 0x12: /* FRINT64Z */ 6681 rmode = FPROUNDING_ZERO; 6682 gen_fpst = gen_helper_frint64_s; 6683 break; 6684 case 0x13: /* FRINT64X */ 6685 gen_fpst = gen_helper_frint64_s; 6686 break; 6687 default: 6688 g_assert_not_reached(); 6689 } 6690 6691 fpst = fpstatus_ptr(FPST_FPCR); 6692 if (rmode >= 0) { 6693 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6694 gen_fpst(tcg_res, tcg_op, fpst); 6695 gen_restore_rmode(tcg_rmode, fpst); 6696 } else { 6697 gen_fpst(tcg_res, tcg_op, fpst); 6698 } 6699 6700 done: 6701 write_fp_sreg(s, rd, tcg_res); 6702 } 6703 6704 /* Floating-point data-processing (1 source) - double precision */ 6705 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6706 { 6707 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6708 TCGv_i64 tcg_op, tcg_res; 6709 TCGv_ptr fpst; 6710 int rmode = -1; 6711 6712 switch (opcode) { 6713 case 0x0: /* FMOV */ 6714 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6715 return; 6716 } 6717 6718 tcg_op = read_fp_dreg(s, rn); 6719 tcg_res = tcg_temp_new_i64(); 6720 6721 switch (opcode) { 6722 case 0x1: /* FABS */ 6723 gen_helper_vfp_absd(tcg_res, tcg_op); 6724 goto done; 6725 case 0x2: /* FNEG */ 6726 gen_helper_vfp_negd(tcg_res, tcg_op); 6727 goto done; 6728 case 0x3: /* FSQRT */ 6729 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6730 goto done; 6731 case 0x8: /* FRINTN */ 6732 case 0x9: /* FRINTP */ 6733 case 0xa: /* FRINTM */ 6734 case 0xb: /* FRINTZ */ 6735 case 0xc: /* FRINTA */ 6736 rmode = opcode & 7; 6737 gen_fpst = gen_helper_rintd; 6738 break; 6739 case 0xe: /* FRINTX */ 6740 gen_fpst = gen_helper_rintd_exact; 6741 break; 6742 case 0xf: /* FRINTI */ 6743 gen_fpst = gen_helper_rintd; 6744 break; 6745 case 0x10: /* FRINT32Z */ 6746 rmode = FPROUNDING_ZERO; 6747 gen_fpst = gen_helper_frint32_d; 6748 break; 6749 case 0x11: /* FRINT32X */ 6750 gen_fpst = gen_helper_frint32_d; 6751 break; 6752 case 0x12: /* FRINT64Z */ 6753 rmode = FPROUNDING_ZERO; 6754 gen_fpst = gen_helper_frint64_d; 6755 break; 6756 case 0x13: /* FRINT64X */ 6757 gen_fpst = gen_helper_frint64_d; 6758 break; 6759 default: 6760 g_assert_not_reached(); 6761 } 6762 6763 fpst = fpstatus_ptr(FPST_FPCR); 6764 if (rmode >= 0) { 6765 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6766 gen_fpst(tcg_res, tcg_op, fpst); 6767 gen_restore_rmode(tcg_rmode, fpst); 6768 } else { 6769 gen_fpst(tcg_res, tcg_op, fpst); 6770 } 6771 6772 done: 6773 write_fp_dreg(s, rd, tcg_res); 6774 } 6775 6776 static void handle_fp_fcvt(DisasContext *s, int opcode, 6777 int rd, int rn, int dtype, int ntype) 6778 { 6779 switch (ntype) { 6780 case 0x0: 6781 { 6782 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6783 if (dtype == 1) { 6784 /* Single to double */ 6785 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6786 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6787 write_fp_dreg(s, rd, tcg_rd); 6788 } else { 6789 /* Single to half */ 6790 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6791 TCGv_i32 ahp = get_ahp_flag(); 6792 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6793 6794 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6795 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6796 write_fp_sreg(s, rd, tcg_rd); 6797 } 6798 break; 6799 } 6800 case 0x1: 6801 { 6802 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6803 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6804 if (dtype == 0) { 6805 /* Double to single */ 6806 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6807 } else { 6808 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6809 TCGv_i32 ahp = get_ahp_flag(); 6810 /* Double to half */ 6811 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6812 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6813 } 6814 write_fp_sreg(s, rd, tcg_rd); 6815 break; 6816 } 6817 case 0x3: 6818 { 6819 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6820 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6821 TCGv_i32 tcg_ahp = get_ahp_flag(); 6822 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6823 if (dtype == 0) { 6824 /* Half to single */ 6825 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6826 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6827 write_fp_sreg(s, rd, tcg_rd); 6828 } else { 6829 /* Half to double */ 6830 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6831 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6832 write_fp_dreg(s, rd, tcg_rd); 6833 } 6834 break; 6835 } 6836 default: 6837 g_assert_not_reached(); 6838 } 6839 } 6840 6841 /* Floating point data-processing (1 source) 6842 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6843 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6844 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6845 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6846 */ 6847 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6848 { 6849 int mos = extract32(insn, 29, 3); 6850 int type = extract32(insn, 22, 2); 6851 int opcode = extract32(insn, 15, 6); 6852 int rn = extract32(insn, 5, 5); 6853 int rd = extract32(insn, 0, 5); 6854 6855 if (mos) { 6856 goto do_unallocated; 6857 } 6858 6859 switch (opcode) { 6860 case 0x4: case 0x5: case 0x7: 6861 { 6862 /* FCVT between half, single and double precision */ 6863 int dtype = extract32(opcode, 0, 2); 6864 if (type == 2 || dtype == type) { 6865 goto do_unallocated; 6866 } 6867 if (!fp_access_check(s)) { 6868 return; 6869 } 6870 6871 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6872 break; 6873 } 6874 6875 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6876 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6877 goto do_unallocated; 6878 } 6879 /* fall through */ 6880 case 0x0 ... 0x3: 6881 case 0x8 ... 0xc: 6882 case 0xe ... 0xf: 6883 /* 32-to-32 and 64-to-64 ops */ 6884 switch (type) { 6885 case 0: 6886 if (!fp_access_check(s)) { 6887 return; 6888 } 6889 handle_fp_1src_single(s, opcode, rd, rn); 6890 break; 6891 case 1: 6892 if (!fp_access_check(s)) { 6893 return; 6894 } 6895 handle_fp_1src_double(s, opcode, rd, rn); 6896 break; 6897 case 3: 6898 if (!dc_isar_feature(aa64_fp16, s)) { 6899 goto do_unallocated; 6900 } 6901 6902 if (!fp_access_check(s)) { 6903 return; 6904 } 6905 handle_fp_1src_half(s, opcode, rd, rn); 6906 break; 6907 default: 6908 goto do_unallocated; 6909 } 6910 break; 6911 6912 case 0x6: 6913 switch (type) { 6914 case 1: /* BFCVT */ 6915 if (!dc_isar_feature(aa64_bf16, s)) { 6916 goto do_unallocated; 6917 } 6918 if (!fp_access_check(s)) { 6919 return; 6920 } 6921 handle_fp_1src_single(s, opcode, rd, rn); 6922 break; 6923 default: 6924 goto do_unallocated; 6925 } 6926 break; 6927 6928 default: 6929 do_unallocated: 6930 unallocated_encoding(s); 6931 break; 6932 } 6933 } 6934 6935 /* Floating-point data-processing (2 source) - single precision */ 6936 static void handle_fp_2src_single(DisasContext *s, int opcode, 6937 int rd, int rn, int rm) 6938 { 6939 TCGv_i32 tcg_op1; 6940 TCGv_i32 tcg_op2; 6941 TCGv_i32 tcg_res; 6942 TCGv_ptr fpst; 6943 6944 tcg_res = tcg_temp_new_i32(); 6945 fpst = fpstatus_ptr(FPST_FPCR); 6946 tcg_op1 = read_fp_sreg(s, rn); 6947 tcg_op2 = read_fp_sreg(s, rm); 6948 6949 switch (opcode) { 6950 case 0x8: /* FNMUL */ 6951 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6952 gen_helper_vfp_negs(tcg_res, tcg_res); 6953 break; 6954 default: 6955 case 0x0: /* FMUL */ 6956 case 0x1: /* FDIV */ 6957 case 0x2: /* FADD */ 6958 case 0x3: /* FSUB */ 6959 case 0x4: /* FMAX */ 6960 case 0x5: /* FMIN */ 6961 case 0x6: /* FMAXNM */ 6962 case 0x7: /* FMINNM */ 6963 g_assert_not_reached(); 6964 } 6965 6966 write_fp_sreg(s, rd, tcg_res); 6967 } 6968 6969 /* Floating-point data-processing (2 source) - double precision */ 6970 static void handle_fp_2src_double(DisasContext *s, int opcode, 6971 int rd, int rn, int rm) 6972 { 6973 TCGv_i64 tcg_op1; 6974 TCGv_i64 tcg_op2; 6975 TCGv_i64 tcg_res; 6976 TCGv_ptr fpst; 6977 6978 tcg_res = tcg_temp_new_i64(); 6979 fpst = fpstatus_ptr(FPST_FPCR); 6980 tcg_op1 = read_fp_dreg(s, rn); 6981 tcg_op2 = read_fp_dreg(s, rm); 6982 6983 switch (opcode) { 6984 case 0x8: /* FNMUL */ 6985 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6986 gen_helper_vfp_negd(tcg_res, tcg_res); 6987 break; 6988 default: 6989 case 0x0: /* FMUL */ 6990 case 0x1: /* FDIV */ 6991 case 0x2: /* FADD */ 6992 case 0x3: /* FSUB */ 6993 case 0x4: /* FMAX */ 6994 case 0x5: /* FMIN */ 6995 case 0x6: /* FMAXNM */ 6996 case 0x7: /* FMINNM */ 6997 g_assert_not_reached(); 6998 } 6999 7000 write_fp_dreg(s, rd, tcg_res); 7001 } 7002 7003 /* Floating-point data-processing (2 source) - half precision */ 7004 static void handle_fp_2src_half(DisasContext *s, int opcode, 7005 int rd, int rn, int rm) 7006 { 7007 TCGv_i32 tcg_op1; 7008 TCGv_i32 tcg_op2; 7009 TCGv_i32 tcg_res; 7010 TCGv_ptr fpst; 7011 7012 tcg_res = tcg_temp_new_i32(); 7013 fpst = fpstatus_ptr(FPST_FPCR_F16); 7014 tcg_op1 = read_fp_hreg(s, rn); 7015 tcg_op2 = read_fp_hreg(s, rm); 7016 7017 switch (opcode) { 7018 case 0x8: /* FNMUL */ 7019 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 7020 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 7021 break; 7022 default: 7023 case 0x0: /* FMUL */ 7024 case 0x1: /* FDIV */ 7025 case 0x2: /* FADD */ 7026 case 0x3: /* FSUB */ 7027 case 0x4: /* FMAX */ 7028 case 0x5: /* FMIN */ 7029 case 0x6: /* FMAXNM */ 7030 case 0x7: /* FMINNM */ 7031 g_assert_not_reached(); 7032 } 7033 7034 write_fp_sreg(s, rd, tcg_res); 7035 } 7036 7037 /* Floating point data-processing (2 source) 7038 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 7039 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 7040 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 7041 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 7042 */ 7043 static void disas_fp_2src(DisasContext *s, uint32_t insn) 7044 { 7045 int mos = extract32(insn, 29, 3); 7046 int type = extract32(insn, 22, 2); 7047 int rd = extract32(insn, 0, 5); 7048 int rn = extract32(insn, 5, 5); 7049 int rm = extract32(insn, 16, 5); 7050 int opcode = extract32(insn, 12, 4); 7051 7052 if (opcode > 8 || mos) { 7053 unallocated_encoding(s); 7054 return; 7055 } 7056 7057 switch (type) { 7058 case 0: 7059 if (!fp_access_check(s)) { 7060 return; 7061 } 7062 handle_fp_2src_single(s, opcode, rd, rn, rm); 7063 break; 7064 case 1: 7065 if (!fp_access_check(s)) { 7066 return; 7067 } 7068 handle_fp_2src_double(s, opcode, rd, rn, rm); 7069 break; 7070 case 3: 7071 if (!dc_isar_feature(aa64_fp16, s)) { 7072 unallocated_encoding(s); 7073 return; 7074 } 7075 if (!fp_access_check(s)) { 7076 return; 7077 } 7078 handle_fp_2src_half(s, opcode, rd, rn, rm); 7079 break; 7080 default: 7081 unallocated_encoding(s); 7082 } 7083 } 7084 7085 /* Floating-point data-processing (3 source) - single precision */ 7086 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7087 int rd, int rn, int rm, int ra) 7088 { 7089 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7090 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7091 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7092 7093 tcg_op1 = read_fp_sreg(s, rn); 7094 tcg_op2 = read_fp_sreg(s, rm); 7095 tcg_op3 = read_fp_sreg(s, ra); 7096 7097 /* These are fused multiply-add, and must be done as one 7098 * floating point operation with no rounding between the 7099 * multiplication and addition steps. 7100 * NB that doing the negations here as separate steps is 7101 * correct : an input NaN should come out with its sign bit 7102 * flipped if it is a negated-input. 7103 */ 7104 if (o1 == true) { 7105 gen_helper_vfp_negs(tcg_op3, tcg_op3); 7106 } 7107 7108 if (o0 != o1) { 7109 gen_helper_vfp_negs(tcg_op1, tcg_op1); 7110 } 7111 7112 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7113 7114 write_fp_sreg(s, rd, tcg_res); 7115 } 7116 7117 /* Floating-point data-processing (3 source) - double precision */ 7118 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7119 int rd, int rn, int rm, int ra) 7120 { 7121 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7122 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7123 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7124 7125 tcg_op1 = read_fp_dreg(s, rn); 7126 tcg_op2 = read_fp_dreg(s, rm); 7127 tcg_op3 = read_fp_dreg(s, ra); 7128 7129 /* These are fused multiply-add, and must be done as one 7130 * floating point operation with no rounding between the 7131 * multiplication and addition steps. 7132 * NB that doing the negations here as separate steps is 7133 * correct : an input NaN should come out with its sign bit 7134 * flipped if it is a negated-input. 7135 */ 7136 if (o1 == true) { 7137 gen_helper_vfp_negd(tcg_op3, tcg_op3); 7138 } 7139 7140 if (o0 != o1) { 7141 gen_helper_vfp_negd(tcg_op1, tcg_op1); 7142 } 7143 7144 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7145 7146 write_fp_dreg(s, rd, tcg_res); 7147 } 7148 7149 /* Floating-point data-processing (3 source) - half precision */ 7150 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7151 int rd, int rn, int rm, int ra) 7152 { 7153 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7154 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7155 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7156 7157 tcg_op1 = read_fp_hreg(s, rn); 7158 tcg_op2 = read_fp_hreg(s, rm); 7159 tcg_op3 = read_fp_hreg(s, ra); 7160 7161 /* These are fused multiply-add, and must be done as one 7162 * floating point operation with no rounding between the 7163 * multiplication and addition steps. 7164 * NB that doing the negations here as separate steps is 7165 * correct : an input NaN should come out with its sign bit 7166 * flipped if it is a negated-input. 7167 */ 7168 if (o1 == true) { 7169 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7170 } 7171 7172 if (o0 != o1) { 7173 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7174 } 7175 7176 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7177 7178 write_fp_sreg(s, rd, tcg_res); 7179 } 7180 7181 /* Floating point data-processing (3 source) 7182 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7183 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7184 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7185 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7186 */ 7187 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7188 { 7189 int mos = extract32(insn, 29, 3); 7190 int type = extract32(insn, 22, 2); 7191 int rd = extract32(insn, 0, 5); 7192 int rn = extract32(insn, 5, 5); 7193 int ra = extract32(insn, 10, 5); 7194 int rm = extract32(insn, 16, 5); 7195 bool o0 = extract32(insn, 15, 1); 7196 bool o1 = extract32(insn, 21, 1); 7197 7198 if (mos) { 7199 unallocated_encoding(s); 7200 return; 7201 } 7202 7203 switch (type) { 7204 case 0: 7205 if (!fp_access_check(s)) { 7206 return; 7207 } 7208 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7209 break; 7210 case 1: 7211 if (!fp_access_check(s)) { 7212 return; 7213 } 7214 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7215 break; 7216 case 3: 7217 if (!dc_isar_feature(aa64_fp16, s)) { 7218 unallocated_encoding(s); 7219 return; 7220 } 7221 if (!fp_access_check(s)) { 7222 return; 7223 } 7224 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7225 break; 7226 default: 7227 unallocated_encoding(s); 7228 } 7229 } 7230 7231 /* Floating point immediate 7232 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7233 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7234 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7235 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7236 */ 7237 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7238 { 7239 int rd = extract32(insn, 0, 5); 7240 int imm5 = extract32(insn, 5, 5); 7241 int imm8 = extract32(insn, 13, 8); 7242 int type = extract32(insn, 22, 2); 7243 int mos = extract32(insn, 29, 3); 7244 uint64_t imm; 7245 MemOp sz; 7246 7247 if (mos || imm5) { 7248 unallocated_encoding(s); 7249 return; 7250 } 7251 7252 switch (type) { 7253 case 0: 7254 sz = MO_32; 7255 break; 7256 case 1: 7257 sz = MO_64; 7258 break; 7259 case 3: 7260 sz = MO_16; 7261 if (dc_isar_feature(aa64_fp16, s)) { 7262 break; 7263 } 7264 /* fallthru */ 7265 default: 7266 unallocated_encoding(s); 7267 return; 7268 } 7269 7270 if (!fp_access_check(s)) { 7271 return; 7272 } 7273 7274 imm = vfp_expand_imm(sz, imm8); 7275 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7276 } 7277 7278 /* Handle floating point <=> fixed point conversions. Note that we can 7279 * also deal with fp <=> integer conversions as a special case (scale == 64) 7280 * OPTME: consider handling that special case specially or at least skipping 7281 * the call to scalbn in the helpers for zero shifts. 7282 */ 7283 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7284 bool itof, int rmode, int scale, int sf, int type) 7285 { 7286 bool is_signed = !(opcode & 1); 7287 TCGv_ptr tcg_fpstatus; 7288 TCGv_i32 tcg_shift, tcg_single; 7289 TCGv_i64 tcg_double; 7290 7291 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7292 7293 tcg_shift = tcg_constant_i32(64 - scale); 7294 7295 if (itof) { 7296 TCGv_i64 tcg_int = cpu_reg(s, rn); 7297 if (!sf) { 7298 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7299 7300 if (is_signed) { 7301 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7302 } else { 7303 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7304 } 7305 7306 tcg_int = tcg_extend; 7307 } 7308 7309 switch (type) { 7310 case 1: /* float64 */ 7311 tcg_double = tcg_temp_new_i64(); 7312 if (is_signed) { 7313 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7314 tcg_shift, tcg_fpstatus); 7315 } else { 7316 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7317 tcg_shift, tcg_fpstatus); 7318 } 7319 write_fp_dreg(s, rd, tcg_double); 7320 break; 7321 7322 case 0: /* float32 */ 7323 tcg_single = tcg_temp_new_i32(); 7324 if (is_signed) { 7325 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7326 tcg_shift, tcg_fpstatus); 7327 } else { 7328 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7329 tcg_shift, tcg_fpstatus); 7330 } 7331 write_fp_sreg(s, rd, tcg_single); 7332 break; 7333 7334 case 3: /* float16 */ 7335 tcg_single = tcg_temp_new_i32(); 7336 if (is_signed) { 7337 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7338 tcg_shift, tcg_fpstatus); 7339 } else { 7340 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7341 tcg_shift, tcg_fpstatus); 7342 } 7343 write_fp_sreg(s, rd, tcg_single); 7344 break; 7345 7346 default: 7347 g_assert_not_reached(); 7348 } 7349 } else { 7350 TCGv_i64 tcg_int = cpu_reg(s, rd); 7351 TCGv_i32 tcg_rmode; 7352 7353 if (extract32(opcode, 2, 1)) { 7354 /* There are too many rounding modes to all fit into rmode, 7355 * so FCVTA[US] is a special case. 7356 */ 7357 rmode = FPROUNDING_TIEAWAY; 7358 } 7359 7360 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7361 7362 switch (type) { 7363 case 1: /* float64 */ 7364 tcg_double = read_fp_dreg(s, rn); 7365 if (is_signed) { 7366 if (!sf) { 7367 gen_helper_vfp_tosld(tcg_int, tcg_double, 7368 tcg_shift, tcg_fpstatus); 7369 } else { 7370 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7371 tcg_shift, tcg_fpstatus); 7372 } 7373 } else { 7374 if (!sf) { 7375 gen_helper_vfp_tould(tcg_int, tcg_double, 7376 tcg_shift, tcg_fpstatus); 7377 } else { 7378 gen_helper_vfp_touqd(tcg_int, tcg_double, 7379 tcg_shift, tcg_fpstatus); 7380 } 7381 } 7382 if (!sf) { 7383 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7384 } 7385 break; 7386 7387 case 0: /* float32 */ 7388 tcg_single = read_fp_sreg(s, rn); 7389 if (sf) { 7390 if (is_signed) { 7391 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7392 tcg_shift, tcg_fpstatus); 7393 } else { 7394 gen_helper_vfp_touqs(tcg_int, tcg_single, 7395 tcg_shift, tcg_fpstatus); 7396 } 7397 } else { 7398 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7399 if (is_signed) { 7400 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7401 tcg_shift, tcg_fpstatus); 7402 } else { 7403 gen_helper_vfp_touls(tcg_dest, tcg_single, 7404 tcg_shift, tcg_fpstatus); 7405 } 7406 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7407 } 7408 break; 7409 7410 case 3: /* float16 */ 7411 tcg_single = read_fp_sreg(s, rn); 7412 if (sf) { 7413 if (is_signed) { 7414 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7415 tcg_shift, tcg_fpstatus); 7416 } else { 7417 gen_helper_vfp_touqh(tcg_int, tcg_single, 7418 tcg_shift, tcg_fpstatus); 7419 } 7420 } else { 7421 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7422 if (is_signed) { 7423 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7424 tcg_shift, tcg_fpstatus); 7425 } else { 7426 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7427 tcg_shift, tcg_fpstatus); 7428 } 7429 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7430 } 7431 break; 7432 7433 default: 7434 g_assert_not_reached(); 7435 } 7436 7437 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7438 } 7439 } 7440 7441 /* Floating point <-> fixed point conversions 7442 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7443 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7444 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7445 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7446 */ 7447 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7448 { 7449 int rd = extract32(insn, 0, 5); 7450 int rn = extract32(insn, 5, 5); 7451 int scale = extract32(insn, 10, 6); 7452 int opcode = extract32(insn, 16, 3); 7453 int rmode = extract32(insn, 19, 2); 7454 int type = extract32(insn, 22, 2); 7455 bool sbit = extract32(insn, 29, 1); 7456 bool sf = extract32(insn, 31, 1); 7457 bool itof; 7458 7459 if (sbit || (!sf && scale < 32)) { 7460 unallocated_encoding(s); 7461 return; 7462 } 7463 7464 switch (type) { 7465 case 0: /* float32 */ 7466 case 1: /* float64 */ 7467 break; 7468 case 3: /* float16 */ 7469 if (dc_isar_feature(aa64_fp16, s)) { 7470 break; 7471 } 7472 /* fallthru */ 7473 default: 7474 unallocated_encoding(s); 7475 return; 7476 } 7477 7478 switch ((rmode << 3) | opcode) { 7479 case 0x2: /* SCVTF */ 7480 case 0x3: /* UCVTF */ 7481 itof = true; 7482 break; 7483 case 0x18: /* FCVTZS */ 7484 case 0x19: /* FCVTZU */ 7485 itof = false; 7486 break; 7487 default: 7488 unallocated_encoding(s); 7489 return; 7490 } 7491 7492 if (!fp_access_check(s)) { 7493 return; 7494 } 7495 7496 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7497 } 7498 7499 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7500 { 7501 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7502 * without conversion. 7503 */ 7504 7505 if (itof) { 7506 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7507 TCGv_i64 tmp; 7508 7509 switch (type) { 7510 case 0: 7511 /* 32 bit */ 7512 tmp = tcg_temp_new_i64(); 7513 tcg_gen_ext32u_i64(tmp, tcg_rn); 7514 write_fp_dreg(s, rd, tmp); 7515 break; 7516 case 1: 7517 /* 64 bit */ 7518 write_fp_dreg(s, rd, tcg_rn); 7519 break; 7520 case 2: 7521 /* 64 bit to top half. */ 7522 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7523 clear_vec_high(s, true, rd); 7524 break; 7525 case 3: 7526 /* 16 bit */ 7527 tmp = tcg_temp_new_i64(); 7528 tcg_gen_ext16u_i64(tmp, tcg_rn); 7529 write_fp_dreg(s, rd, tmp); 7530 break; 7531 default: 7532 g_assert_not_reached(); 7533 } 7534 } else { 7535 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7536 7537 switch (type) { 7538 case 0: 7539 /* 32 bit */ 7540 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7541 break; 7542 case 1: 7543 /* 64 bit */ 7544 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7545 break; 7546 case 2: 7547 /* 64 bits from top half */ 7548 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7549 break; 7550 case 3: 7551 /* 16 bit */ 7552 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7553 break; 7554 default: 7555 g_assert_not_reached(); 7556 } 7557 } 7558 } 7559 7560 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7561 { 7562 TCGv_i64 t = read_fp_dreg(s, rn); 7563 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7564 7565 gen_helper_fjcvtzs(t, t, fpstatus); 7566 7567 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7568 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7569 tcg_gen_movi_i32(cpu_CF, 0); 7570 tcg_gen_movi_i32(cpu_NF, 0); 7571 tcg_gen_movi_i32(cpu_VF, 0); 7572 } 7573 7574 /* Floating point <-> integer conversions 7575 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7576 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7577 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7578 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7579 */ 7580 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7581 { 7582 int rd = extract32(insn, 0, 5); 7583 int rn = extract32(insn, 5, 5); 7584 int opcode = extract32(insn, 16, 3); 7585 int rmode = extract32(insn, 19, 2); 7586 int type = extract32(insn, 22, 2); 7587 bool sbit = extract32(insn, 29, 1); 7588 bool sf = extract32(insn, 31, 1); 7589 bool itof = false; 7590 7591 if (sbit) { 7592 goto do_unallocated; 7593 } 7594 7595 switch (opcode) { 7596 case 2: /* SCVTF */ 7597 case 3: /* UCVTF */ 7598 itof = true; 7599 /* fallthru */ 7600 case 4: /* FCVTAS */ 7601 case 5: /* FCVTAU */ 7602 if (rmode != 0) { 7603 goto do_unallocated; 7604 } 7605 /* fallthru */ 7606 case 0: /* FCVT[NPMZ]S */ 7607 case 1: /* FCVT[NPMZ]U */ 7608 switch (type) { 7609 case 0: /* float32 */ 7610 case 1: /* float64 */ 7611 break; 7612 case 3: /* float16 */ 7613 if (!dc_isar_feature(aa64_fp16, s)) { 7614 goto do_unallocated; 7615 } 7616 break; 7617 default: 7618 goto do_unallocated; 7619 } 7620 if (!fp_access_check(s)) { 7621 return; 7622 } 7623 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7624 break; 7625 7626 default: 7627 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7628 case 0b01100110: /* FMOV half <-> 32-bit int */ 7629 case 0b01100111: 7630 case 0b11100110: /* FMOV half <-> 64-bit int */ 7631 case 0b11100111: 7632 if (!dc_isar_feature(aa64_fp16, s)) { 7633 goto do_unallocated; 7634 } 7635 /* fallthru */ 7636 case 0b00000110: /* FMOV 32-bit */ 7637 case 0b00000111: 7638 case 0b10100110: /* FMOV 64-bit */ 7639 case 0b10100111: 7640 case 0b11001110: /* FMOV top half of 128-bit */ 7641 case 0b11001111: 7642 if (!fp_access_check(s)) { 7643 return; 7644 } 7645 itof = opcode & 1; 7646 handle_fmov(s, rd, rn, type, itof); 7647 break; 7648 7649 case 0b00111110: /* FJCVTZS */ 7650 if (!dc_isar_feature(aa64_jscvt, s)) { 7651 goto do_unallocated; 7652 } else if (fp_access_check(s)) { 7653 handle_fjcvtzs(s, rd, rn); 7654 } 7655 break; 7656 7657 default: 7658 do_unallocated: 7659 unallocated_encoding(s); 7660 return; 7661 } 7662 break; 7663 } 7664 } 7665 7666 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7667 * 31 30 29 28 25 24 0 7668 * +---+---+---+---------+-----------------------------+ 7669 * | | 0 | | 1 1 1 1 | | 7670 * +---+---+---+---------+-----------------------------+ 7671 */ 7672 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7673 { 7674 if (extract32(insn, 24, 1)) { 7675 /* Floating point data-processing (3 source) */ 7676 disas_fp_3src(s, insn); 7677 } else if (extract32(insn, 21, 1) == 0) { 7678 /* Floating point to fixed point conversions */ 7679 disas_fp_fixed_conv(s, insn); 7680 } else { 7681 switch (extract32(insn, 10, 2)) { 7682 case 1: 7683 /* Floating point conditional compare */ 7684 disas_fp_ccomp(s, insn); 7685 break; 7686 case 2: 7687 /* Floating point data-processing (2 source) */ 7688 disas_fp_2src(s, insn); 7689 break; 7690 case 3: 7691 /* Floating point conditional select */ 7692 disas_fp_csel(s, insn); 7693 break; 7694 case 0: 7695 switch (ctz32(extract32(insn, 12, 4))) { 7696 case 0: /* [15:12] == xxx1 */ 7697 /* Floating point immediate */ 7698 disas_fp_imm(s, insn); 7699 break; 7700 case 1: /* [15:12] == xx10 */ 7701 /* Floating point compare */ 7702 disas_fp_compare(s, insn); 7703 break; 7704 case 2: /* [15:12] == x100 */ 7705 /* Floating point data-processing (1 source) */ 7706 disas_fp_1src(s, insn); 7707 break; 7708 case 3: /* [15:12] == 1000 */ 7709 unallocated_encoding(s); 7710 break; 7711 default: /* [15:12] == 0000 */ 7712 /* Floating point <-> integer conversions */ 7713 disas_fp_int_conv(s, insn); 7714 break; 7715 } 7716 break; 7717 } 7718 } 7719 } 7720 7721 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7722 int pos) 7723 { 7724 /* Extract 64 bits from the middle of two concatenated 64 bit 7725 * vector register slices left:right. The extracted bits start 7726 * at 'pos' bits into the right (least significant) side. 7727 * We return the result in tcg_right, and guarantee not to 7728 * trash tcg_left. 7729 */ 7730 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7731 assert(pos > 0 && pos < 64); 7732 7733 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7734 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7735 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7736 } 7737 7738 /* EXT 7739 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7740 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7741 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7742 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7743 */ 7744 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7745 { 7746 int is_q = extract32(insn, 30, 1); 7747 int op2 = extract32(insn, 22, 2); 7748 int imm4 = extract32(insn, 11, 4); 7749 int rm = extract32(insn, 16, 5); 7750 int rn = extract32(insn, 5, 5); 7751 int rd = extract32(insn, 0, 5); 7752 int pos = imm4 << 3; 7753 TCGv_i64 tcg_resl, tcg_resh; 7754 7755 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7756 unallocated_encoding(s); 7757 return; 7758 } 7759 7760 if (!fp_access_check(s)) { 7761 return; 7762 } 7763 7764 tcg_resh = tcg_temp_new_i64(); 7765 tcg_resl = tcg_temp_new_i64(); 7766 7767 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7768 * either extracting 128 bits from a 128:128 concatenation, or 7769 * extracting 64 bits from a 64:64 concatenation. 7770 */ 7771 if (!is_q) { 7772 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7773 if (pos != 0) { 7774 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7775 do_ext64(s, tcg_resh, tcg_resl, pos); 7776 } 7777 } else { 7778 TCGv_i64 tcg_hh; 7779 typedef struct { 7780 int reg; 7781 int elt; 7782 } EltPosns; 7783 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7784 EltPosns *elt = eltposns; 7785 7786 if (pos >= 64) { 7787 elt++; 7788 pos -= 64; 7789 } 7790 7791 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7792 elt++; 7793 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7794 elt++; 7795 if (pos != 0) { 7796 do_ext64(s, tcg_resh, tcg_resl, pos); 7797 tcg_hh = tcg_temp_new_i64(); 7798 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7799 do_ext64(s, tcg_hh, tcg_resh, pos); 7800 } 7801 } 7802 7803 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7804 if (is_q) { 7805 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7806 } 7807 clear_vec_high(s, is_q, rd); 7808 } 7809 7810 /* TBL/TBX 7811 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7812 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7813 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7814 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7815 */ 7816 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7817 { 7818 int op2 = extract32(insn, 22, 2); 7819 int is_q = extract32(insn, 30, 1); 7820 int rm = extract32(insn, 16, 5); 7821 int rn = extract32(insn, 5, 5); 7822 int rd = extract32(insn, 0, 5); 7823 int is_tbx = extract32(insn, 12, 1); 7824 int len = (extract32(insn, 13, 2) + 1) * 16; 7825 7826 if (op2 != 0) { 7827 unallocated_encoding(s); 7828 return; 7829 } 7830 7831 if (!fp_access_check(s)) { 7832 return; 7833 } 7834 7835 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7836 vec_full_reg_offset(s, rm), tcg_env, 7837 is_q ? 16 : 8, vec_full_reg_size(s), 7838 (len << 6) | (is_tbx << 5) | rn, 7839 gen_helper_simd_tblx); 7840 } 7841 7842 /* ZIP/UZP/TRN 7843 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7844 * +---+---+-------------+------+---+------+---+------------------+------+ 7845 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7846 * +---+---+-------------+------+---+------+---+------------------+------+ 7847 */ 7848 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7849 { 7850 int rd = extract32(insn, 0, 5); 7851 int rn = extract32(insn, 5, 5); 7852 int rm = extract32(insn, 16, 5); 7853 int size = extract32(insn, 22, 2); 7854 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7855 * bit 2 indicates 1 vs 2 variant of the insn. 7856 */ 7857 int opcode = extract32(insn, 12, 2); 7858 bool part = extract32(insn, 14, 1); 7859 bool is_q = extract32(insn, 30, 1); 7860 int esize = 8 << size; 7861 int i; 7862 int datasize = is_q ? 128 : 64; 7863 int elements = datasize / esize; 7864 TCGv_i64 tcg_res[2], tcg_ele; 7865 7866 if (opcode == 0 || (size == 3 && !is_q)) { 7867 unallocated_encoding(s); 7868 return; 7869 } 7870 7871 if (!fp_access_check(s)) { 7872 return; 7873 } 7874 7875 tcg_res[0] = tcg_temp_new_i64(); 7876 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7877 tcg_ele = tcg_temp_new_i64(); 7878 7879 for (i = 0; i < elements; i++) { 7880 int o, w; 7881 7882 switch (opcode) { 7883 case 1: /* UZP1/2 */ 7884 { 7885 int midpoint = elements / 2; 7886 if (i < midpoint) { 7887 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7888 } else { 7889 read_vec_element(s, tcg_ele, rm, 7890 2 * (i - midpoint) + part, size); 7891 } 7892 break; 7893 } 7894 case 2: /* TRN1/2 */ 7895 if (i & 1) { 7896 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7897 } else { 7898 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7899 } 7900 break; 7901 case 3: /* ZIP1/2 */ 7902 { 7903 int base = part * elements / 2; 7904 if (i & 1) { 7905 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7906 } else { 7907 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7908 } 7909 break; 7910 } 7911 default: 7912 g_assert_not_reached(); 7913 } 7914 7915 w = (i * esize) / 64; 7916 o = (i * esize) % 64; 7917 if (o == 0) { 7918 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7919 } else { 7920 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7921 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7922 } 7923 } 7924 7925 for (i = 0; i <= is_q; ++i) { 7926 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7927 } 7928 clear_vec_high(s, is_q, rd); 7929 } 7930 7931 /* 7932 * do_reduction_op helper 7933 * 7934 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7935 * important for correct NaN propagation that we do these 7936 * operations in exactly the order specified by the pseudocode. 7937 * 7938 * This is a recursive function, TCG temps should be freed by the 7939 * calling function once it is done with the values. 7940 */ 7941 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7942 int esize, int size, int vmap, TCGv_ptr fpst) 7943 { 7944 if (esize == size) { 7945 int element; 7946 MemOp msize = esize == 16 ? MO_16 : MO_32; 7947 TCGv_i32 tcg_elem; 7948 7949 /* We should have one register left here */ 7950 assert(ctpop8(vmap) == 1); 7951 element = ctz32(vmap); 7952 assert(element < 8); 7953 7954 tcg_elem = tcg_temp_new_i32(); 7955 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7956 return tcg_elem; 7957 } else { 7958 int bits = size / 2; 7959 int shift = ctpop8(vmap) / 2; 7960 int vmap_lo = (vmap >> shift) & vmap; 7961 int vmap_hi = (vmap & ~vmap_lo); 7962 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7963 7964 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7965 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7966 tcg_res = tcg_temp_new_i32(); 7967 7968 switch (fpopcode) { 7969 case 0x0c: /* fmaxnmv half-precision */ 7970 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7971 break; 7972 case 0x0f: /* fmaxv half-precision */ 7973 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7974 break; 7975 case 0x1c: /* fminnmv half-precision */ 7976 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7977 break; 7978 case 0x1f: /* fminv half-precision */ 7979 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7980 break; 7981 case 0x2c: /* fmaxnmv */ 7982 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7983 break; 7984 case 0x2f: /* fmaxv */ 7985 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7986 break; 7987 case 0x3c: /* fminnmv */ 7988 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7989 break; 7990 case 0x3f: /* fminv */ 7991 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7992 break; 7993 default: 7994 g_assert_not_reached(); 7995 } 7996 return tcg_res; 7997 } 7998 } 7999 8000 /* AdvSIMD across lanes 8001 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8002 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8003 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8004 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8005 */ 8006 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8007 { 8008 int rd = extract32(insn, 0, 5); 8009 int rn = extract32(insn, 5, 5); 8010 int size = extract32(insn, 22, 2); 8011 int opcode = extract32(insn, 12, 5); 8012 bool is_q = extract32(insn, 30, 1); 8013 bool is_u = extract32(insn, 29, 1); 8014 bool is_fp = false; 8015 bool is_min = false; 8016 int esize; 8017 int elements; 8018 int i; 8019 TCGv_i64 tcg_res, tcg_elt; 8020 8021 switch (opcode) { 8022 case 0x1b: /* ADDV */ 8023 if (is_u) { 8024 unallocated_encoding(s); 8025 return; 8026 } 8027 /* fall through */ 8028 case 0x3: /* SADDLV, UADDLV */ 8029 case 0xa: /* SMAXV, UMAXV */ 8030 case 0x1a: /* SMINV, UMINV */ 8031 if (size == 3 || (size == 2 && !is_q)) { 8032 unallocated_encoding(s); 8033 return; 8034 } 8035 break; 8036 case 0xc: /* FMAXNMV, FMINNMV */ 8037 case 0xf: /* FMAXV, FMINV */ 8038 /* Bit 1 of size field encodes min vs max and the actual size 8039 * depends on the encoding of the U bit. If not set (and FP16 8040 * enabled) then we do half-precision float instead of single 8041 * precision. 8042 */ 8043 is_min = extract32(size, 1, 1); 8044 is_fp = true; 8045 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8046 size = 1; 8047 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8048 unallocated_encoding(s); 8049 return; 8050 } else { 8051 size = 2; 8052 } 8053 break; 8054 default: 8055 unallocated_encoding(s); 8056 return; 8057 } 8058 8059 if (!fp_access_check(s)) { 8060 return; 8061 } 8062 8063 esize = 8 << size; 8064 elements = (is_q ? 128 : 64) / esize; 8065 8066 tcg_res = tcg_temp_new_i64(); 8067 tcg_elt = tcg_temp_new_i64(); 8068 8069 /* These instructions operate across all lanes of a vector 8070 * to produce a single result. We can guarantee that a 64 8071 * bit intermediate is sufficient: 8072 * + for [US]ADDLV the maximum element size is 32 bits, and 8073 * the result type is 64 bits 8074 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8075 * same as the element size, which is 32 bits at most 8076 * For the integer operations we can choose to work at 64 8077 * or 32 bits and truncate at the end; for simplicity 8078 * we use 64 bits always. The floating point 8079 * ops do require 32 bit intermediates, though. 8080 */ 8081 if (!is_fp) { 8082 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8083 8084 for (i = 1; i < elements; i++) { 8085 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8086 8087 switch (opcode) { 8088 case 0x03: /* SADDLV / UADDLV */ 8089 case 0x1b: /* ADDV */ 8090 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8091 break; 8092 case 0x0a: /* SMAXV / UMAXV */ 8093 if (is_u) { 8094 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8095 } else { 8096 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8097 } 8098 break; 8099 case 0x1a: /* SMINV / UMINV */ 8100 if (is_u) { 8101 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8102 } else { 8103 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8104 } 8105 break; 8106 default: 8107 g_assert_not_reached(); 8108 } 8109 8110 } 8111 } else { 8112 /* Floating point vector reduction ops which work across 32 8113 * bit (single) or 16 bit (half-precision) intermediates. 8114 * Note that correct NaN propagation requires that we do these 8115 * operations in exactly the order specified by the pseudocode. 8116 */ 8117 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8118 int fpopcode = opcode | is_min << 4 | is_u << 5; 8119 int vmap = (1 << elements) - 1; 8120 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8121 (is_q ? 128 : 64), vmap, fpst); 8122 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8123 } 8124 8125 /* Now truncate the result to the width required for the final output */ 8126 if (opcode == 0x03) { 8127 /* SADDLV, UADDLV: result is 2*esize */ 8128 size++; 8129 } 8130 8131 switch (size) { 8132 case 0: 8133 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8134 break; 8135 case 1: 8136 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8137 break; 8138 case 2: 8139 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8140 break; 8141 case 3: 8142 break; 8143 default: 8144 g_assert_not_reached(); 8145 } 8146 8147 write_fp_dreg(s, rd, tcg_res); 8148 } 8149 8150 /* AdvSIMD modified immediate 8151 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8152 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8153 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8154 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8155 * 8156 * There are a number of operations that can be carried out here: 8157 * MOVI - move (shifted) imm into register 8158 * MVNI - move inverted (shifted) imm into register 8159 * ORR - bitwise OR of (shifted) imm with register 8160 * BIC - bitwise clear of (shifted) imm with register 8161 * With ARMv8.2 we also have: 8162 * FMOV half-precision 8163 */ 8164 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8165 { 8166 int rd = extract32(insn, 0, 5); 8167 int cmode = extract32(insn, 12, 4); 8168 int o2 = extract32(insn, 11, 1); 8169 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8170 bool is_neg = extract32(insn, 29, 1); 8171 bool is_q = extract32(insn, 30, 1); 8172 uint64_t imm = 0; 8173 8174 if (o2) { 8175 if (cmode != 0xf || is_neg) { 8176 unallocated_encoding(s); 8177 return; 8178 } 8179 /* FMOV (vector, immediate) - half-precision */ 8180 if (!dc_isar_feature(aa64_fp16, s)) { 8181 unallocated_encoding(s); 8182 return; 8183 } 8184 imm = vfp_expand_imm(MO_16, abcdefgh); 8185 /* now duplicate across the lanes */ 8186 imm = dup_const(MO_16, imm); 8187 } else { 8188 if (cmode == 0xf && is_neg && !is_q) { 8189 unallocated_encoding(s); 8190 return; 8191 } 8192 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8193 } 8194 8195 if (!fp_access_check(s)) { 8196 return; 8197 } 8198 8199 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8200 /* MOVI or MVNI, with MVNI negation handled above. */ 8201 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8202 vec_full_reg_size(s), imm); 8203 } else { 8204 /* ORR or BIC, with BIC negation to AND handled above. */ 8205 if (is_neg) { 8206 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8207 } else { 8208 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8209 } 8210 } 8211 } 8212 8213 /* AdvSIMD scalar pairwise 8214 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8215 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8216 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8217 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8218 */ 8219 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8220 { 8221 int u = extract32(insn, 29, 1); 8222 int size = extract32(insn, 22, 2); 8223 int opcode = extract32(insn, 12, 5); 8224 int rn = extract32(insn, 5, 5); 8225 int rd = extract32(insn, 0, 5); 8226 TCGv_ptr fpst; 8227 8228 /* For some ops (the FP ones), size[1] is part of the encoding. 8229 * For ADDP strictly it is not but size[1] is always 1 for valid 8230 * encodings. 8231 */ 8232 opcode |= (extract32(size, 1, 1) << 5); 8233 8234 switch (opcode) { 8235 case 0x3b: /* ADDP */ 8236 if (u || size != 3) { 8237 unallocated_encoding(s); 8238 return; 8239 } 8240 if (!fp_access_check(s)) { 8241 return; 8242 } 8243 8244 fpst = NULL; 8245 break; 8246 case 0xc: /* FMAXNMP */ 8247 case 0xd: /* FADDP */ 8248 case 0xf: /* FMAXP */ 8249 case 0x2c: /* FMINNMP */ 8250 case 0x2f: /* FMINP */ 8251 /* FP op, size[0] is 32 or 64 bit*/ 8252 if (!u) { 8253 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8254 unallocated_encoding(s); 8255 return; 8256 } else { 8257 size = MO_16; 8258 } 8259 } else { 8260 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8261 } 8262 8263 if (!fp_access_check(s)) { 8264 return; 8265 } 8266 8267 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8268 break; 8269 default: 8270 unallocated_encoding(s); 8271 return; 8272 } 8273 8274 if (size == MO_64) { 8275 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8276 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8277 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8278 8279 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8280 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8281 8282 switch (opcode) { 8283 case 0x3b: /* ADDP */ 8284 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8285 break; 8286 case 0xc: /* FMAXNMP */ 8287 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8288 break; 8289 case 0xd: /* FADDP */ 8290 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8291 break; 8292 case 0xf: /* FMAXP */ 8293 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8294 break; 8295 case 0x2c: /* FMINNMP */ 8296 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8297 break; 8298 case 0x2f: /* FMINP */ 8299 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8300 break; 8301 default: 8302 g_assert_not_reached(); 8303 } 8304 8305 write_fp_dreg(s, rd, tcg_res); 8306 } else { 8307 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8308 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8309 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8310 8311 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8312 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8313 8314 if (size == MO_16) { 8315 switch (opcode) { 8316 case 0xc: /* FMAXNMP */ 8317 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8318 break; 8319 case 0xd: /* FADDP */ 8320 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8321 break; 8322 case 0xf: /* FMAXP */ 8323 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8324 break; 8325 case 0x2c: /* FMINNMP */ 8326 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8327 break; 8328 case 0x2f: /* FMINP */ 8329 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8330 break; 8331 default: 8332 g_assert_not_reached(); 8333 } 8334 } else { 8335 switch (opcode) { 8336 case 0xc: /* FMAXNMP */ 8337 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8338 break; 8339 case 0xd: /* FADDP */ 8340 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8341 break; 8342 case 0xf: /* FMAXP */ 8343 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8344 break; 8345 case 0x2c: /* FMINNMP */ 8346 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8347 break; 8348 case 0x2f: /* FMINP */ 8349 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8350 break; 8351 default: 8352 g_assert_not_reached(); 8353 } 8354 } 8355 8356 write_fp_sreg(s, rd, tcg_res); 8357 } 8358 } 8359 8360 /* 8361 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8362 * 8363 * This code is handles the common shifting code and is used by both 8364 * the vector and scalar code. 8365 */ 8366 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8367 TCGv_i64 tcg_rnd, bool accumulate, 8368 bool is_u, int size, int shift) 8369 { 8370 bool extended_result = false; 8371 bool round = tcg_rnd != NULL; 8372 int ext_lshift = 0; 8373 TCGv_i64 tcg_src_hi; 8374 8375 if (round && size == 3) { 8376 extended_result = true; 8377 ext_lshift = 64 - shift; 8378 tcg_src_hi = tcg_temp_new_i64(); 8379 } else if (shift == 64) { 8380 if (!accumulate && is_u) { 8381 /* result is zero */ 8382 tcg_gen_movi_i64(tcg_res, 0); 8383 return; 8384 } 8385 } 8386 8387 /* Deal with the rounding step */ 8388 if (round) { 8389 if (extended_result) { 8390 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8391 if (!is_u) { 8392 /* take care of sign extending tcg_res */ 8393 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8394 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8395 tcg_src, tcg_src_hi, 8396 tcg_rnd, tcg_zero); 8397 } else { 8398 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8399 tcg_src, tcg_zero, 8400 tcg_rnd, tcg_zero); 8401 } 8402 } else { 8403 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8404 } 8405 } 8406 8407 /* Now do the shift right */ 8408 if (round && extended_result) { 8409 /* extended case, >64 bit precision required */ 8410 if (ext_lshift == 0) { 8411 /* special case, only high bits matter */ 8412 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8413 } else { 8414 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8415 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8416 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8417 } 8418 } else { 8419 if (is_u) { 8420 if (shift == 64) { 8421 /* essentially shifting in 64 zeros */ 8422 tcg_gen_movi_i64(tcg_src, 0); 8423 } else { 8424 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8425 } 8426 } else { 8427 if (shift == 64) { 8428 /* effectively extending the sign-bit */ 8429 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8430 } else { 8431 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8432 } 8433 } 8434 } 8435 8436 if (accumulate) { 8437 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8438 } else { 8439 tcg_gen_mov_i64(tcg_res, tcg_src); 8440 } 8441 } 8442 8443 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8444 static void handle_scalar_simd_shri(DisasContext *s, 8445 bool is_u, int immh, int immb, 8446 int opcode, int rn, int rd) 8447 { 8448 const int size = 3; 8449 int immhb = immh << 3 | immb; 8450 int shift = 2 * (8 << size) - immhb; 8451 bool accumulate = false; 8452 bool round = false; 8453 bool insert = false; 8454 TCGv_i64 tcg_rn; 8455 TCGv_i64 tcg_rd; 8456 TCGv_i64 tcg_round; 8457 8458 if (!extract32(immh, 3, 1)) { 8459 unallocated_encoding(s); 8460 return; 8461 } 8462 8463 if (!fp_access_check(s)) { 8464 return; 8465 } 8466 8467 switch (opcode) { 8468 case 0x02: /* SSRA / USRA (accumulate) */ 8469 accumulate = true; 8470 break; 8471 case 0x04: /* SRSHR / URSHR (rounding) */ 8472 round = true; 8473 break; 8474 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8475 accumulate = round = true; 8476 break; 8477 case 0x08: /* SRI */ 8478 insert = true; 8479 break; 8480 } 8481 8482 if (round) { 8483 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8484 } else { 8485 tcg_round = NULL; 8486 } 8487 8488 tcg_rn = read_fp_dreg(s, rn); 8489 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8490 8491 if (insert) { 8492 /* shift count same as element size is valid but does nothing; 8493 * special case to avoid potential shift by 64. 8494 */ 8495 int esize = 8 << size; 8496 if (shift != esize) { 8497 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8498 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8499 } 8500 } else { 8501 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8502 accumulate, is_u, size, shift); 8503 } 8504 8505 write_fp_dreg(s, rd, tcg_rd); 8506 } 8507 8508 /* SHL/SLI - Scalar shift left */ 8509 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8510 int immh, int immb, int opcode, 8511 int rn, int rd) 8512 { 8513 int size = 32 - clz32(immh) - 1; 8514 int immhb = immh << 3 | immb; 8515 int shift = immhb - (8 << size); 8516 TCGv_i64 tcg_rn; 8517 TCGv_i64 tcg_rd; 8518 8519 if (!extract32(immh, 3, 1)) { 8520 unallocated_encoding(s); 8521 return; 8522 } 8523 8524 if (!fp_access_check(s)) { 8525 return; 8526 } 8527 8528 tcg_rn = read_fp_dreg(s, rn); 8529 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8530 8531 if (insert) { 8532 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8533 } else { 8534 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8535 } 8536 8537 write_fp_dreg(s, rd, tcg_rd); 8538 } 8539 8540 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8541 * (signed/unsigned) narrowing */ 8542 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8543 bool is_u_shift, bool is_u_narrow, 8544 int immh, int immb, int opcode, 8545 int rn, int rd) 8546 { 8547 int immhb = immh << 3 | immb; 8548 int size = 32 - clz32(immh) - 1; 8549 int esize = 8 << size; 8550 int shift = (2 * esize) - immhb; 8551 int elements = is_scalar ? 1 : (64 / esize); 8552 bool round = extract32(opcode, 0, 1); 8553 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8554 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8555 TCGv_i32 tcg_rd_narrowed; 8556 TCGv_i64 tcg_final; 8557 8558 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8559 { gen_helper_neon_narrow_sat_s8, 8560 gen_helper_neon_unarrow_sat8 }, 8561 { gen_helper_neon_narrow_sat_s16, 8562 gen_helper_neon_unarrow_sat16 }, 8563 { gen_helper_neon_narrow_sat_s32, 8564 gen_helper_neon_unarrow_sat32 }, 8565 { NULL, NULL }, 8566 }; 8567 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8568 gen_helper_neon_narrow_sat_u8, 8569 gen_helper_neon_narrow_sat_u16, 8570 gen_helper_neon_narrow_sat_u32, 8571 NULL 8572 }; 8573 NeonGenNarrowEnvFn *narrowfn; 8574 8575 int i; 8576 8577 assert(size < 4); 8578 8579 if (extract32(immh, 3, 1)) { 8580 unallocated_encoding(s); 8581 return; 8582 } 8583 8584 if (!fp_access_check(s)) { 8585 return; 8586 } 8587 8588 if (is_u_shift) { 8589 narrowfn = unsigned_narrow_fns[size]; 8590 } else { 8591 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8592 } 8593 8594 tcg_rn = tcg_temp_new_i64(); 8595 tcg_rd = tcg_temp_new_i64(); 8596 tcg_rd_narrowed = tcg_temp_new_i32(); 8597 tcg_final = tcg_temp_new_i64(); 8598 8599 if (round) { 8600 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8601 } else { 8602 tcg_round = NULL; 8603 } 8604 8605 for (i = 0; i < elements; i++) { 8606 read_vec_element(s, tcg_rn, rn, i, ldop); 8607 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8608 false, is_u_shift, size+1, shift); 8609 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8610 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8611 if (i == 0) { 8612 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8613 } else { 8614 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8615 } 8616 } 8617 8618 if (!is_q) { 8619 write_vec_element(s, tcg_final, rd, 0, MO_64); 8620 } else { 8621 write_vec_element(s, tcg_final, rd, 1, MO_64); 8622 } 8623 clear_vec_high(s, is_q, rd); 8624 } 8625 8626 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8627 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8628 bool src_unsigned, bool dst_unsigned, 8629 int immh, int immb, int rn, int rd) 8630 { 8631 int immhb = immh << 3 | immb; 8632 int size = 32 - clz32(immh) - 1; 8633 int shift = immhb - (8 << size); 8634 int pass; 8635 8636 assert(immh != 0); 8637 assert(!(scalar && is_q)); 8638 8639 if (!scalar) { 8640 if (!is_q && extract32(immh, 3, 1)) { 8641 unallocated_encoding(s); 8642 return; 8643 } 8644 8645 /* Since we use the variable-shift helpers we must 8646 * replicate the shift count into each element of 8647 * the tcg_shift value. 8648 */ 8649 switch (size) { 8650 case 0: 8651 shift |= shift << 8; 8652 /* fall through */ 8653 case 1: 8654 shift |= shift << 16; 8655 break; 8656 case 2: 8657 case 3: 8658 break; 8659 default: 8660 g_assert_not_reached(); 8661 } 8662 } 8663 8664 if (!fp_access_check(s)) { 8665 return; 8666 } 8667 8668 if (size == 3) { 8669 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8670 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8671 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8672 { NULL, gen_helper_neon_qshl_u64 }, 8673 }; 8674 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8675 int maxpass = is_q ? 2 : 1; 8676 8677 for (pass = 0; pass < maxpass; pass++) { 8678 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8679 8680 read_vec_element(s, tcg_op, rn, pass, MO_64); 8681 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8682 write_vec_element(s, tcg_op, rd, pass, MO_64); 8683 } 8684 clear_vec_high(s, is_q, rd); 8685 } else { 8686 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8687 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8688 { 8689 { gen_helper_neon_qshl_s8, 8690 gen_helper_neon_qshl_s16, 8691 gen_helper_neon_qshl_s32 }, 8692 { gen_helper_neon_qshlu_s8, 8693 gen_helper_neon_qshlu_s16, 8694 gen_helper_neon_qshlu_s32 } 8695 }, { 8696 { NULL, NULL, NULL }, 8697 { gen_helper_neon_qshl_u8, 8698 gen_helper_neon_qshl_u16, 8699 gen_helper_neon_qshl_u32 } 8700 } 8701 }; 8702 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8703 MemOp memop = scalar ? size : MO_32; 8704 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8705 8706 for (pass = 0; pass < maxpass; pass++) { 8707 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8708 8709 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8710 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8711 if (scalar) { 8712 switch (size) { 8713 case 0: 8714 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8715 break; 8716 case 1: 8717 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8718 break; 8719 case 2: 8720 break; 8721 default: 8722 g_assert_not_reached(); 8723 } 8724 write_fp_sreg(s, rd, tcg_op); 8725 } else { 8726 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8727 } 8728 } 8729 8730 if (!scalar) { 8731 clear_vec_high(s, is_q, rd); 8732 } 8733 } 8734 } 8735 8736 /* Common vector code for handling integer to FP conversion */ 8737 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8738 int elements, int is_signed, 8739 int fracbits, int size) 8740 { 8741 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8742 TCGv_i32 tcg_shift = NULL; 8743 8744 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8745 int pass; 8746 8747 if (fracbits || size == MO_64) { 8748 tcg_shift = tcg_constant_i32(fracbits); 8749 } 8750 8751 if (size == MO_64) { 8752 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8753 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8754 8755 for (pass = 0; pass < elements; pass++) { 8756 read_vec_element(s, tcg_int64, rn, pass, mop); 8757 8758 if (is_signed) { 8759 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8760 tcg_shift, tcg_fpst); 8761 } else { 8762 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8763 tcg_shift, tcg_fpst); 8764 } 8765 if (elements == 1) { 8766 write_fp_dreg(s, rd, tcg_double); 8767 } else { 8768 write_vec_element(s, tcg_double, rd, pass, MO_64); 8769 } 8770 } 8771 } else { 8772 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8773 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8774 8775 for (pass = 0; pass < elements; pass++) { 8776 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8777 8778 switch (size) { 8779 case MO_32: 8780 if (fracbits) { 8781 if (is_signed) { 8782 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8783 tcg_shift, tcg_fpst); 8784 } else { 8785 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8786 tcg_shift, tcg_fpst); 8787 } 8788 } else { 8789 if (is_signed) { 8790 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8791 } else { 8792 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8793 } 8794 } 8795 break; 8796 case MO_16: 8797 if (fracbits) { 8798 if (is_signed) { 8799 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8800 tcg_shift, tcg_fpst); 8801 } else { 8802 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8803 tcg_shift, tcg_fpst); 8804 } 8805 } else { 8806 if (is_signed) { 8807 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8808 } else { 8809 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8810 } 8811 } 8812 break; 8813 default: 8814 g_assert_not_reached(); 8815 } 8816 8817 if (elements == 1) { 8818 write_fp_sreg(s, rd, tcg_float); 8819 } else { 8820 write_vec_element_i32(s, tcg_float, rd, pass, size); 8821 } 8822 } 8823 } 8824 8825 clear_vec_high(s, elements << size == 16, rd); 8826 } 8827 8828 /* UCVTF/SCVTF - Integer to FP conversion */ 8829 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8830 bool is_q, bool is_u, 8831 int immh, int immb, int opcode, 8832 int rn, int rd) 8833 { 8834 int size, elements, fracbits; 8835 int immhb = immh << 3 | immb; 8836 8837 if (immh & 8) { 8838 size = MO_64; 8839 if (!is_scalar && !is_q) { 8840 unallocated_encoding(s); 8841 return; 8842 } 8843 } else if (immh & 4) { 8844 size = MO_32; 8845 } else if (immh & 2) { 8846 size = MO_16; 8847 if (!dc_isar_feature(aa64_fp16, s)) { 8848 unallocated_encoding(s); 8849 return; 8850 } 8851 } else { 8852 /* immh == 0 would be a failure of the decode logic */ 8853 g_assert(immh == 1); 8854 unallocated_encoding(s); 8855 return; 8856 } 8857 8858 if (is_scalar) { 8859 elements = 1; 8860 } else { 8861 elements = (8 << is_q) >> size; 8862 } 8863 fracbits = (16 << size) - immhb; 8864 8865 if (!fp_access_check(s)) { 8866 return; 8867 } 8868 8869 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8870 } 8871 8872 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8873 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8874 bool is_q, bool is_u, 8875 int immh, int immb, int rn, int rd) 8876 { 8877 int immhb = immh << 3 | immb; 8878 int pass, size, fracbits; 8879 TCGv_ptr tcg_fpstatus; 8880 TCGv_i32 tcg_rmode, tcg_shift; 8881 8882 if (immh & 0x8) { 8883 size = MO_64; 8884 if (!is_scalar && !is_q) { 8885 unallocated_encoding(s); 8886 return; 8887 } 8888 } else if (immh & 0x4) { 8889 size = MO_32; 8890 } else if (immh & 0x2) { 8891 size = MO_16; 8892 if (!dc_isar_feature(aa64_fp16, s)) { 8893 unallocated_encoding(s); 8894 return; 8895 } 8896 } else { 8897 /* Should have split out AdvSIMD modified immediate earlier. */ 8898 assert(immh == 1); 8899 unallocated_encoding(s); 8900 return; 8901 } 8902 8903 if (!fp_access_check(s)) { 8904 return; 8905 } 8906 8907 assert(!(is_scalar && is_q)); 8908 8909 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8910 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8911 fracbits = (16 << size) - immhb; 8912 tcg_shift = tcg_constant_i32(fracbits); 8913 8914 if (size == MO_64) { 8915 int maxpass = is_scalar ? 1 : 2; 8916 8917 for (pass = 0; pass < maxpass; pass++) { 8918 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8919 8920 read_vec_element(s, tcg_op, rn, pass, MO_64); 8921 if (is_u) { 8922 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8923 } else { 8924 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8925 } 8926 write_vec_element(s, tcg_op, rd, pass, MO_64); 8927 } 8928 clear_vec_high(s, is_q, rd); 8929 } else { 8930 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8931 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8932 8933 switch (size) { 8934 case MO_16: 8935 if (is_u) { 8936 fn = gen_helper_vfp_touhh; 8937 } else { 8938 fn = gen_helper_vfp_toshh; 8939 } 8940 break; 8941 case MO_32: 8942 if (is_u) { 8943 fn = gen_helper_vfp_touls; 8944 } else { 8945 fn = gen_helper_vfp_tosls; 8946 } 8947 break; 8948 default: 8949 g_assert_not_reached(); 8950 } 8951 8952 for (pass = 0; pass < maxpass; pass++) { 8953 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8954 8955 read_vec_element_i32(s, tcg_op, rn, pass, size); 8956 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8957 if (is_scalar) { 8958 if (size == MO_16 && !is_u) { 8959 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8960 } 8961 write_fp_sreg(s, rd, tcg_op); 8962 } else { 8963 write_vec_element_i32(s, tcg_op, rd, pass, size); 8964 } 8965 } 8966 if (!is_scalar) { 8967 clear_vec_high(s, is_q, rd); 8968 } 8969 } 8970 8971 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8972 } 8973 8974 /* AdvSIMD scalar shift by immediate 8975 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8976 * +-----+---+-------------+------+------+--------+---+------+------+ 8977 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8978 * +-----+---+-------------+------+------+--------+---+------+------+ 8979 * 8980 * This is the scalar version so it works on a fixed sized registers 8981 */ 8982 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8983 { 8984 int rd = extract32(insn, 0, 5); 8985 int rn = extract32(insn, 5, 5); 8986 int opcode = extract32(insn, 11, 5); 8987 int immb = extract32(insn, 16, 3); 8988 int immh = extract32(insn, 19, 4); 8989 bool is_u = extract32(insn, 29, 1); 8990 8991 if (immh == 0) { 8992 unallocated_encoding(s); 8993 return; 8994 } 8995 8996 switch (opcode) { 8997 case 0x08: /* SRI */ 8998 if (!is_u) { 8999 unallocated_encoding(s); 9000 return; 9001 } 9002 /* fall through */ 9003 case 0x00: /* SSHR / USHR */ 9004 case 0x02: /* SSRA / USRA */ 9005 case 0x04: /* SRSHR / URSHR */ 9006 case 0x06: /* SRSRA / URSRA */ 9007 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9008 break; 9009 case 0x0a: /* SHL / SLI */ 9010 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9011 break; 9012 case 0x1c: /* SCVTF, UCVTF */ 9013 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9014 opcode, rn, rd); 9015 break; 9016 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9017 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9018 if (!is_u) { 9019 unallocated_encoding(s); 9020 return; 9021 } 9022 handle_vec_simd_sqshrn(s, true, false, false, true, 9023 immh, immb, opcode, rn, rd); 9024 break; 9025 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9026 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9027 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9028 immh, immb, opcode, rn, rd); 9029 break; 9030 case 0xc: /* SQSHLU */ 9031 if (!is_u) { 9032 unallocated_encoding(s); 9033 return; 9034 } 9035 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9036 break; 9037 case 0xe: /* SQSHL, UQSHL */ 9038 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9039 break; 9040 case 0x1f: /* FCVTZS, FCVTZU */ 9041 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9042 break; 9043 default: 9044 unallocated_encoding(s); 9045 break; 9046 } 9047 } 9048 9049 /* AdvSIMD scalar three different 9050 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9051 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9052 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9053 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9054 */ 9055 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9056 { 9057 bool is_u = extract32(insn, 29, 1); 9058 int size = extract32(insn, 22, 2); 9059 int opcode = extract32(insn, 12, 4); 9060 int rm = extract32(insn, 16, 5); 9061 int rn = extract32(insn, 5, 5); 9062 int rd = extract32(insn, 0, 5); 9063 9064 if (is_u) { 9065 unallocated_encoding(s); 9066 return; 9067 } 9068 9069 switch (opcode) { 9070 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9071 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9072 case 0xd: /* SQDMULL, SQDMULL2 */ 9073 if (size == 0 || size == 3) { 9074 unallocated_encoding(s); 9075 return; 9076 } 9077 break; 9078 default: 9079 unallocated_encoding(s); 9080 return; 9081 } 9082 9083 if (!fp_access_check(s)) { 9084 return; 9085 } 9086 9087 if (size == 2) { 9088 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9089 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9090 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9091 9092 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9093 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9094 9095 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9096 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9097 9098 switch (opcode) { 9099 case 0xd: /* SQDMULL, SQDMULL2 */ 9100 break; 9101 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9102 tcg_gen_neg_i64(tcg_res, tcg_res); 9103 /* fall through */ 9104 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9105 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9106 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9107 tcg_res, tcg_op1); 9108 break; 9109 default: 9110 g_assert_not_reached(); 9111 } 9112 9113 write_fp_dreg(s, rd, tcg_res); 9114 } else { 9115 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9116 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9117 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9118 9119 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9120 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9121 9122 switch (opcode) { 9123 case 0xd: /* SQDMULL, SQDMULL2 */ 9124 break; 9125 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9126 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9127 /* fall through */ 9128 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9129 { 9130 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9131 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9132 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9133 tcg_res, tcg_op3); 9134 break; 9135 } 9136 default: 9137 g_assert_not_reached(); 9138 } 9139 9140 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9141 write_fp_dreg(s, rd, tcg_res); 9142 } 9143 } 9144 9145 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9146 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9147 { 9148 /* Handle 64x64->64 opcodes which are shared between the scalar 9149 * and vector 3-same groups. We cover every opcode where size == 3 9150 * is valid in either the three-reg-same (integer, not pairwise) 9151 * or scalar-three-reg-same groups. 9152 */ 9153 TCGCond cond; 9154 9155 switch (opcode) { 9156 case 0x1: /* SQADD */ 9157 if (u) { 9158 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9159 } else { 9160 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9161 } 9162 break; 9163 case 0x5: /* SQSUB */ 9164 if (u) { 9165 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9166 } else { 9167 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9168 } 9169 break; 9170 case 0x6: /* CMGT, CMHI */ 9171 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9172 do_cmop: 9173 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9174 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9175 break; 9176 case 0x7: /* CMGE, CMHS */ 9177 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9178 goto do_cmop; 9179 case 0x11: /* CMTST, CMEQ */ 9180 if (u) { 9181 cond = TCG_COND_EQ; 9182 goto do_cmop; 9183 } 9184 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9185 break; 9186 case 0x8: /* SSHL, USHL */ 9187 if (u) { 9188 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9189 } else { 9190 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9191 } 9192 break; 9193 case 0x9: /* SQSHL, UQSHL */ 9194 if (u) { 9195 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9196 } else { 9197 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9198 } 9199 break; 9200 case 0xa: /* SRSHL, URSHL */ 9201 if (u) { 9202 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9203 } else { 9204 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9205 } 9206 break; 9207 case 0xb: /* SQRSHL, UQRSHL */ 9208 if (u) { 9209 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9210 } else { 9211 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9212 } 9213 break; 9214 case 0x10: /* ADD, SUB */ 9215 if (u) { 9216 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9217 } else { 9218 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9219 } 9220 break; 9221 default: 9222 g_assert_not_reached(); 9223 } 9224 } 9225 9226 /* Handle the 3-same-operands float operations; shared by the scalar 9227 * and vector encodings. The caller must filter out any encodings 9228 * not allocated for the encoding it is dealing with. 9229 */ 9230 static void handle_3same_float(DisasContext *s, int size, int elements, 9231 int fpopcode, int rd, int rn, int rm) 9232 { 9233 int pass; 9234 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9235 9236 for (pass = 0; pass < elements; pass++) { 9237 if (size) { 9238 /* Double */ 9239 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9240 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9241 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9242 9243 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9244 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9245 9246 switch (fpopcode) { 9247 case 0x39: /* FMLS */ 9248 /* As usual for ARM, separate negation for fused multiply-add */ 9249 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9250 /* fall through */ 9251 case 0x19: /* FMLA */ 9252 read_vec_element(s, tcg_res, rd, pass, MO_64); 9253 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9254 tcg_res, fpst); 9255 break; 9256 case 0x1c: /* FCMEQ */ 9257 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9258 break; 9259 case 0x1f: /* FRECPS */ 9260 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9261 break; 9262 case 0x3f: /* FRSQRTS */ 9263 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9264 break; 9265 case 0x5c: /* FCMGE */ 9266 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9267 break; 9268 case 0x5d: /* FACGE */ 9269 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9270 break; 9271 case 0x7a: /* FABD */ 9272 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9273 gen_helper_vfp_absd(tcg_res, tcg_res); 9274 break; 9275 case 0x7c: /* FCMGT */ 9276 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9277 break; 9278 case 0x7d: /* FACGT */ 9279 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9280 break; 9281 default: 9282 case 0x18: /* FMAXNM */ 9283 case 0x1a: /* FADD */ 9284 case 0x1b: /* FMULX */ 9285 case 0x1e: /* FMAX */ 9286 case 0x38: /* FMINNM */ 9287 case 0x3a: /* FSUB */ 9288 case 0x3e: /* FMIN */ 9289 case 0x5b: /* FMUL */ 9290 case 0x5f: /* FDIV */ 9291 g_assert_not_reached(); 9292 } 9293 9294 write_vec_element(s, tcg_res, rd, pass, MO_64); 9295 } else { 9296 /* Single */ 9297 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9298 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9299 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9300 9301 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9302 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9303 9304 switch (fpopcode) { 9305 case 0x39: /* FMLS */ 9306 /* As usual for ARM, separate negation for fused multiply-add */ 9307 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9308 /* fall through */ 9309 case 0x19: /* FMLA */ 9310 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9311 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9312 tcg_res, fpst); 9313 break; 9314 case 0x1c: /* FCMEQ */ 9315 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9316 break; 9317 case 0x1f: /* FRECPS */ 9318 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9319 break; 9320 case 0x3f: /* FRSQRTS */ 9321 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9322 break; 9323 case 0x5c: /* FCMGE */ 9324 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9325 break; 9326 case 0x5d: /* FACGE */ 9327 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9328 break; 9329 case 0x7a: /* FABD */ 9330 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9331 gen_helper_vfp_abss(tcg_res, tcg_res); 9332 break; 9333 case 0x7c: /* FCMGT */ 9334 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9335 break; 9336 case 0x7d: /* FACGT */ 9337 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9338 break; 9339 default: 9340 case 0x18: /* FMAXNM */ 9341 case 0x1a: /* FADD */ 9342 case 0x1b: /* FMULX */ 9343 case 0x1e: /* FMAX */ 9344 case 0x38: /* FMINNM */ 9345 case 0x3a: /* FSUB */ 9346 case 0x3e: /* FMIN */ 9347 case 0x5b: /* FMUL */ 9348 case 0x5f: /* FDIV */ 9349 g_assert_not_reached(); 9350 } 9351 9352 if (elements == 1) { 9353 /* scalar single so clear high part */ 9354 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9355 9356 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9357 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9358 } else { 9359 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9360 } 9361 } 9362 } 9363 9364 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9365 } 9366 9367 /* AdvSIMD scalar three same 9368 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9369 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9370 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9371 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9372 */ 9373 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9374 { 9375 int rd = extract32(insn, 0, 5); 9376 int rn = extract32(insn, 5, 5); 9377 int opcode = extract32(insn, 11, 5); 9378 int rm = extract32(insn, 16, 5); 9379 int size = extract32(insn, 22, 2); 9380 bool u = extract32(insn, 29, 1); 9381 TCGv_i64 tcg_rd; 9382 9383 if (opcode >= 0x18) { 9384 /* Floating point: U, size[1] and opcode indicate operation */ 9385 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9386 switch (fpopcode) { 9387 case 0x1f: /* FRECPS */ 9388 case 0x3f: /* FRSQRTS */ 9389 case 0x5d: /* FACGE */ 9390 case 0x7d: /* FACGT */ 9391 case 0x1c: /* FCMEQ */ 9392 case 0x5c: /* FCMGE */ 9393 case 0x7c: /* FCMGT */ 9394 case 0x7a: /* FABD */ 9395 break; 9396 default: 9397 case 0x1b: /* FMULX */ 9398 unallocated_encoding(s); 9399 return; 9400 } 9401 9402 if (!fp_access_check(s)) { 9403 return; 9404 } 9405 9406 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9407 return; 9408 } 9409 9410 switch (opcode) { 9411 case 0x1: /* SQADD, UQADD */ 9412 case 0x5: /* SQSUB, UQSUB */ 9413 case 0x9: /* SQSHL, UQSHL */ 9414 case 0xb: /* SQRSHL, UQRSHL */ 9415 break; 9416 case 0x8: /* SSHL, USHL */ 9417 case 0xa: /* SRSHL, URSHL */ 9418 case 0x6: /* CMGT, CMHI */ 9419 case 0x7: /* CMGE, CMHS */ 9420 case 0x11: /* CMTST, CMEQ */ 9421 case 0x10: /* ADD, SUB (vector) */ 9422 if (size != 3) { 9423 unallocated_encoding(s); 9424 return; 9425 } 9426 break; 9427 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9428 if (size != 1 && size != 2) { 9429 unallocated_encoding(s); 9430 return; 9431 } 9432 break; 9433 default: 9434 unallocated_encoding(s); 9435 return; 9436 } 9437 9438 if (!fp_access_check(s)) { 9439 return; 9440 } 9441 9442 tcg_rd = tcg_temp_new_i64(); 9443 9444 if (size == 3) { 9445 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9446 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9447 9448 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9449 } else { 9450 /* Do a single operation on the lowest element in the vector. 9451 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9452 * no side effects for all these operations. 9453 * OPTME: special-purpose helpers would avoid doing some 9454 * unnecessary work in the helper for the 8 and 16 bit cases. 9455 */ 9456 NeonGenTwoOpEnvFn *genenvfn; 9457 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9458 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9459 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9460 9461 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9462 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9463 9464 switch (opcode) { 9465 case 0x1: /* SQADD, UQADD */ 9466 { 9467 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9468 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9469 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9470 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9471 }; 9472 genenvfn = fns[size][u]; 9473 break; 9474 } 9475 case 0x5: /* SQSUB, UQSUB */ 9476 { 9477 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9478 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9479 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9480 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9481 }; 9482 genenvfn = fns[size][u]; 9483 break; 9484 } 9485 case 0x9: /* SQSHL, UQSHL */ 9486 { 9487 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9488 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9489 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9490 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9491 }; 9492 genenvfn = fns[size][u]; 9493 break; 9494 } 9495 case 0xb: /* SQRSHL, UQRSHL */ 9496 { 9497 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9498 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9499 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9500 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9501 }; 9502 genenvfn = fns[size][u]; 9503 break; 9504 } 9505 case 0x16: /* SQDMULH, SQRDMULH */ 9506 { 9507 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9508 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9509 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9510 }; 9511 assert(size == 1 || size == 2); 9512 genenvfn = fns[size - 1][u]; 9513 break; 9514 } 9515 default: 9516 g_assert_not_reached(); 9517 } 9518 9519 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9520 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9521 } 9522 9523 write_fp_dreg(s, rd, tcg_rd); 9524 } 9525 9526 /* AdvSIMD scalar three same FP16 9527 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9528 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9529 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9530 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9531 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9532 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9533 */ 9534 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9535 uint32_t insn) 9536 { 9537 int rd = extract32(insn, 0, 5); 9538 int rn = extract32(insn, 5, 5); 9539 int opcode = extract32(insn, 11, 3); 9540 int rm = extract32(insn, 16, 5); 9541 bool u = extract32(insn, 29, 1); 9542 bool a = extract32(insn, 23, 1); 9543 int fpopcode = opcode | (a << 3) | (u << 4); 9544 TCGv_ptr fpst; 9545 TCGv_i32 tcg_op1; 9546 TCGv_i32 tcg_op2; 9547 TCGv_i32 tcg_res; 9548 9549 switch (fpopcode) { 9550 case 0x04: /* FCMEQ (reg) */ 9551 case 0x07: /* FRECPS */ 9552 case 0x0f: /* FRSQRTS */ 9553 case 0x14: /* FCMGE (reg) */ 9554 case 0x15: /* FACGE */ 9555 case 0x1a: /* FABD */ 9556 case 0x1c: /* FCMGT (reg) */ 9557 case 0x1d: /* FACGT */ 9558 break; 9559 default: 9560 case 0x03: /* FMULX */ 9561 unallocated_encoding(s); 9562 return; 9563 } 9564 9565 if (!dc_isar_feature(aa64_fp16, s)) { 9566 unallocated_encoding(s); 9567 } 9568 9569 if (!fp_access_check(s)) { 9570 return; 9571 } 9572 9573 fpst = fpstatus_ptr(FPST_FPCR_F16); 9574 9575 tcg_op1 = read_fp_hreg(s, rn); 9576 tcg_op2 = read_fp_hreg(s, rm); 9577 tcg_res = tcg_temp_new_i32(); 9578 9579 switch (fpopcode) { 9580 case 0x04: /* FCMEQ (reg) */ 9581 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9582 break; 9583 case 0x07: /* FRECPS */ 9584 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9585 break; 9586 case 0x0f: /* FRSQRTS */ 9587 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9588 break; 9589 case 0x14: /* FCMGE (reg) */ 9590 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9591 break; 9592 case 0x15: /* FACGE */ 9593 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9594 break; 9595 case 0x1a: /* FABD */ 9596 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9597 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9598 break; 9599 case 0x1c: /* FCMGT (reg) */ 9600 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9601 break; 9602 case 0x1d: /* FACGT */ 9603 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9604 break; 9605 default: 9606 case 0x03: /* FMULX */ 9607 g_assert_not_reached(); 9608 } 9609 9610 write_fp_sreg(s, rd, tcg_res); 9611 } 9612 9613 /* AdvSIMD scalar three same extra 9614 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9615 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9616 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9617 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9618 */ 9619 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9620 uint32_t insn) 9621 { 9622 int rd = extract32(insn, 0, 5); 9623 int rn = extract32(insn, 5, 5); 9624 int opcode = extract32(insn, 11, 4); 9625 int rm = extract32(insn, 16, 5); 9626 int size = extract32(insn, 22, 2); 9627 bool u = extract32(insn, 29, 1); 9628 TCGv_i32 ele1, ele2, ele3; 9629 TCGv_i64 res; 9630 bool feature; 9631 9632 switch (u * 16 + opcode) { 9633 case 0x10: /* SQRDMLAH (vector) */ 9634 case 0x11: /* SQRDMLSH (vector) */ 9635 if (size != 1 && size != 2) { 9636 unallocated_encoding(s); 9637 return; 9638 } 9639 feature = dc_isar_feature(aa64_rdm, s); 9640 break; 9641 default: 9642 unallocated_encoding(s); 9643 return; 9644 } 9645 if (!feature) { 9646 unallocated_encoding(s); 9647 return; 9648 } 9649 if (!fp_access_check(s)) { 9650 return; 9651 } 9652 9653 /* Do a single operation on the lowest element in the vector. 9654 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9655 * with no side effects for all these operations. 9656 * OPTME: special-purpose helpers would avoid doing some 9657 * unnecessary work in the helper for the 16 bit cases. 9658 */ 9659 ele1 = tcg_temp_new_i32(); 9660 ele2 = tcg_temp_new_i32(); 9661 ele3 = tcg_temp_new_i32(); 9662 9663 read_vec_element_i32(s, ele1, rn, 0, size); 9664 read_vec_element_i32(s, ele2, rm, 0, size); 9665 read_vec_element_i32(s, ele3, rd, 0, size); 9666 9667 switch (opcode) { 9668 case 0x0: /* SQRDMLAH */ 9669 if (size == 1) { 9670 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9671 } else { 9672 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9673 } 9674 break; 9675 case 0x1: /* SQRDMLSH */ 9676 if (size == 1) { 9677 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9678 } else { 9679 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9680 } 9681 break; 9682 default: 9683 g_assert_not_reached(); 9684 } 9685 9686 res = tcg_temp_new_i64(); 9687 tcg_gen_extu_i32_i64(res, ele3); 9688 write_fp_dreg(s, rd, res); 9689 } 9690 9691 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9692 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9693 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9694 { 9695 /* Handle 64->64 opcodes which are shared between the scalar and 9696 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9697 * is valid in either group and also the double-precision fp ops. 9698 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9699 * requires them. 9700 */ 9701 TCGCond cond; 9702 9703 switch (opcode) { 9704 case 0x4: /* CLS, CLZ */ 9705 if (u) { 9706 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9707 } else { 9708 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9709 } 9710 break; 9711 case 0x5: /* NOT */ 9712 /* This opcode is shared with CNT and RBIT but we have earlier 9713 * enforced that size == 3 if and only if this is the NOT insn. 9714 */ 9715 tcg_gen_not_i64(tcg_rd, tcg_rn); 9716 break; 9717 case 0x7: /* SQABS, SQNEG */ 9718 if (u) { 9719 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9720 } else { 9721 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9722 } 9723 break; 9724 case 0xa: /* CMLT */ 9725 cond = TCG_COND_LT; 9726 do_cmop: 9727 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9728 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9729 break; 9730 case 0x8: /* CMGT, CMGE */ 9731 cond = u ? TCG_COND_GE : TCG_COND_GT; 9732 goto do_cmop; 9733 case 0x9: /* CMEQ, CMLE */ 9734 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9735 goto do_cmop; 9736 case 0xb: /* ABS, NEG */ 9737 if (u) { 9738 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9739 } else { 9740 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9741 } 9742 break; 9743 case 0x2f: /* FABS */ 9744 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9745 break; 9746 case 0x6f: /* FNEG */ 9747 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9748 break; 9749 case 0x7f: /* FSQRT */ 9750 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9751 break; 9752 case 0x1a: /* FCVTNS */ 9753 case 0x1b: /* FCVTMS */ 9754 case 0x1c: /* FCVTAS */ 9755 case 0x3a: /* FCVTPS */ 9756 case 0x3b: /* FCVTZS */ 9757 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9758 break; 9759 case 0x5a: /* FCVTNU */ 9760 case 0x5b: /* FCVTMU */ 9761 case 0x5c: /* FCVTAU */ 9762 case 0x7a: /* FCVTPU */ 9763 case 0x7b: /* FCVTZU */ 9764 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9765 break; 9766 case 0x18: /* FRINTN */ 9767 case 0x19: /* FRINTM */ 9768 case 0x38: /* FRINTP */ 9769 case 0x39: /* FRINTZ */ 9770 case 0x58: /* FRINTA */ 9771 case 0x79: /* FRINTI */ 9772 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9773 break; 9774 case 0x59: /* FRINTX */ 9775 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9776 break; 9777 case 0x1e: /* FRINT32Z */ 9778 case 0x5e: /* FRINT32X */ 9779 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9780 break; 9781 case 0x1f: /* FRINT64Z */ 9782 case 0x5f: /* FRINT64X */ 9783 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9784 break; 9785 default: 9786 g_assert_not_reached(); 9787 } 9788 } 9789 9790 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9791 bool is_scalar, bool is_u, bool is_q, 9792 int size, int rn, int rd) 9793 { 9794 bool is_double = (size == MO_64); 9795 TCGv_ptr fpst; 9796 9797 if (!fp_access_check(s)) { 9798 return; 9799 } 9800 9801 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9802 9803 if (is_double) { 9804 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9805 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9806 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9807 NeonGenTwoDoubleOpFn *genfn; 9808 bool swap = false; 9809 int pass; 9810 9811 switch (opcode) { 9812 case 0x2e: /* FCMLT (zero) */ 9813 swap = true; 9814 /* fallthrough */ 9815 case 0x2c: /* FCMGT (zero) */ 9816 genfn = gen_helper_neon_cgt_f64; 9817 break; 9818 case 0x2d: /* FCMEQ (zero) */ 9819 genfn = gen_helper_neon_ceq_f64; 9820 break; 9821 case 0x6d: /* FCMLE (zero) */ 9822 swap = true; 9823 /* fall through */ 9824 case 0x6c: /* FCMGE (zero) */ 9825 genfn = gen_helper_neon_cge_f64; 9826 break; 9827 default: 9828 g_assert_not_reached(); 9829 } 9830 9831 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9832 read_vec_element(s, tcg_op, rn, pass, MO_64); 9833 if (swap) { 9834 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9835 } else { 9836 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9837 } 9838 write_vec_element(s, tcg_res, rd, pass, MO_64); 9839 } 9840 9841 clear_vec_high(s, !is_scalar, rd); 9842 } else { 9843 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9844 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9845 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9846 NeonGenTwoSingleOpFn *genfn; 9847 bool swap = false; 9848 int pass, maxpasses; 9849 9850 if (size == MO_16) { 9851 switch (opcode) { 9852 case 0x2e: /* FCMLT (zero) */ 9853 swap = true; 9854 /* fall through */ 9855 case 0x2c: /* FCMGT (zero) */ 9856 genfn = gen_helper_advsimd_cgt_f16; 9857 break; 9858 case 0x2d: /* FCMEQ (zero) */ 9859 genfn = gen_helper_advsimd_ceq_f16; 9860 break; 9861 case 0x6d: /* FCMLE (zero) */ 9862 swap = true; 9863 /* fall through */ 9864 case 0x6c: /* FCMGE (zero) */ 9865 genfn = gen_helper_advsimd_cge_f16; 9866 break; 9867 default: 9868 g_assert_not_reached(); 9869 } 9870 } else { 9871 switch (opcode) { 9872 case 0x2e: /* FCMLT (zero) */ 9873 swap = true; 9874 /* fall through */ 9875 case 0x2c: /* FCMGT (zero) */ 9876 genfn = gen_helper_neon_cgt_f32; 9877 break; 9878 case 0x2d: /* FCMEQ (zero) */ 9879 genfn = gen_helper_neon_ceq_f32; 9880 break; 9881 case 0x6d: /* FCMLE (zero) */ 9882 swap = true; 9883 /* fall through */ 9884 case 0x6c: /* FCMGE (zero) */ 9885 genfn = gen_helper_neon_cge_f32; 9886 break; 9887 default: 9888 g_assert_not_reached(); 9889 } 9890 } 9891 9892 if (is_scalar) { 9893 maxpasses = 1; 9894 } else { 9895 int vector_size = 8 << is_q; 9896 maxpasses = vector_size >> size; 9897 } 9898 9899 for (pass = 0; pass < maxpasses; pass++) { 9900 read_vec_element_i32(s, tcg_op, rn, pass, size); 9901 if (swap) { 9902 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9903 } else { 9904 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9905 } 9906 if (is_scalar) { 9907 write_fp_sreg(s, rd, tcg_res); 9908 } else { 9909 write_vec_element_i32(s, tcg_res, rd, pass, size); 9910 } 9911 } 9912 9913 if (!is_scalar) { 9914 clear_vec_high(s, is_q, rd); 9915 } 9916 } 9917 } 9918 9919 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9920 bool is_scalar, bool is_u, bool is_q, 9921 int size, int rn, int rd) 9922 { 9923 bool is_double = (size == 3); 9924 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9925 9926 if (is_double) { 9927 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9928 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9929 int pass; 9930 9931 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9932 read_vec_element(s, tcg_op, rn, pass, MO_64); 9933 switch (opcode) { 9934 case 0x3d: /* FRECPE */ 9935 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9936 break; 9937 case 0x3f: /* FRECPX */ 9938 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9939 break; 9940 case 0x7d: /* FRSQRTE */ 9941 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9942 break; 9943 default: 9944 g_assert_not_reached(); 9945 } 9946 write_vec_element(s, tcg_res, rd, pass, MO_64); 9947 } 9948 clear_vec_high(s, !is_scalar, rd); 9949 } else { 9950 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9951 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9952 int pass, maxpasses; 9953 9954 if (is_scalar) { 9955 maxpasses = 1; 9956 } else { 9957 maxpasses = is_q ? 4 : 2; 9958 } 9959 9960 for (pass = 0; pass < maxpasses; pass++) { 9961 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9962 9963 switch (opcode) { 9964 case 0x3c: /* URECPE */ 9965 gen_helper_recpe_u32(tcg_res, tcg_op); 9966 break; 9967 case 0x3d: /* FRECPE */ 9968 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9969 break; 9970 case 0x3f: /* FRECPX */ 9971 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9972 break; 9973 case 0x7d: /* FRSQRTE */ 9974 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9975 break; 9976 default: 9977 g_assert_not_reached(); 9978 } 9979 9980 if (is_scalar) { 9981 write_fp_sreg(s, rd, tcg_res); 9982 } else { 9983 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9984 } 9985 } 9986 if (!is_scalar) { 9987 clear_vec_high(s, is_q, rd); 9988 } 9989 } 9990 } 9991 9992 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9993 int opcode, bool u, bool is_q, 9994 int size, int rn, int rd) 9995 { 9996 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9997 * in the source becomes a size element in the destination). 9998 */ 9999 int pass; 10000 TCGv_i32 tcg_res[2]; 10001 int destelt = is_q ? 2 : 0; 10002 int passes = scalar ? 1 : 2; 10003 10004 if (scalar) { 10005 tcg_res[1] = tcg_constant_i32(0); 10006 } 10007 10008 for (pass = 0; pass < passes; pass++) { 10009 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10010 NeonGenNarrowFn *genfn = NULL; 10011 NeonGenNarrowEnvFn *genenvfn = NULL; 10012 10013 if (scalar) { 10014 read_vec_element(s, tcg_op, rn, pass, size + 1); 10015 } else { 10016 read_vec_element(s, tcg_op, rn, pass, MO_64); 10017 } 10018 tcg_res[pass] = tcg_temp_new_i32(); 10019 10020 switch (opcode) { 10021 case 0x12: /* XTN, SQXTUN */ 10022 { 10023 static NeonGenNarrowFn * const xtnfns[3] = { 10024 gen_helper_neon_narrow_u8, 10025 gen_helper_neon_narrow_u16, 10026 tcg_gen_extrl_i64_i32, 10027 }; 10028 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 10029 gen_helper_neon_unarrow_sat8, 10030 gen_helper_neon_unarrow_sat16, 10031 gen_helper_neon_unarrow_sat32, 10032 }; 10033 if (u) { 10034 genenvfn = sqxtunfns[size]; 10035 } else { 10036 genfn = xtnfns[size]; 10037 } 10038 break; 10039 } 10040 case 0x14: /* SQXTN, UQXTN */ 10041 { 10042 static NeonGenNarrowEnvFn * const fns[3][2] = { 10043 { gen_helper_neon_narrow_sat_s8, 10044 gen_helper_neon_narrow_sat_u8 }, 10045 { gen_helper_neon_narrow_sat_s16, 10046 gen_helper_neon_narrow_sat_u16 }, 10047 { gen_helper_neon_narrow_sat_s32, 10048 gen_helper_neon_narrow_sat_u32 }, 10049 }; 10050 genenvfn = fns[size][u]; 10051 break; 10052 } 10053 case 0x16: /* FCVTN, FCVTN2 */ 10054 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10055 if (size == 2) { 10056 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 10057 } else { 10058 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10059 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10060 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10061 TCGv_i32 ahp = get_ahp_flag(); 10062 10063 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10064 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10065 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10066 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10067 } 10068 break; 10069 case 0x36: /* BFCVTN, BFCVTN2 */ 10070 { 10071 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10072 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10073 } 10074 break; 10075 case 0x56: /* FCVTXN, FCVTXN2 */ 10076 /* 64 bit to 32 bit float conversion 10077 * with von Neumann rounding (round to odd) 10078 */ 10079 assert(size == 2); 10080 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10081 break; 10082 default: 10083 g_assert_not_reached(); 10084 } 10085 10086 if (genfn) { 10087 genfn(tcg_res[pass], tcg_op); 10088 } else if (genenvfn) { 10089 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10090 } 10091 } 10092 10093 for (pass = 0; pass < 2; pass++) { 10094 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10095 } 10096 clear_vec_high(s, is_q, rd); 10097 } 10098 10099 /* Remaining saturating accumulating ops */ 10100 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10101 bool is_q, int size, int rn, int rd) 10102 { 10103 bool is_double = (size == 3); 10104 10105 if (is_double) { 10106 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10107 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10108 int pass; 10109 10110 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10111 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10112 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10113 10114 if (is_u) { /* USQADD */ 10115 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10116 } else { /* SUQADD */ 10117 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10118 } 10119 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10120 } 10121 clear_vec_high(s, !is_scalar, rd); 10122 } else { 10123 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10124 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10125 int pass, maxpasses; 10126 10127 if (is_scalar) { 10128 maxpasses = 1; 10129 } else { 10130 maxpasses = is_q ? 4 : 2; 10131 } 10132 10133 for (pass = 0; pass < maxpasses; pass++) { 10134 if (is_scalar) { 10135 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10136 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10137 } else { 10138 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10139 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10140 } 10141 10142 if (is_u) { /* USQADD */ 10143 switch (size) { 10144 case 0: 10145 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10146 break; 10147 case 1: 10148 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10149 break; 10150 case 2: 10151 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10152 break; 10153 default: 10154 g_assert_not_reached(); 10155 } 10156 } else { /* SUQADD */ 10157 switch (size) { 10158 case 0: 10159 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10160 break; 10161 case 1: 10162 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10163 break; 10164 case 2: 10165 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10166 break; 10167 default: 10168 g_assert_not_reached(); 10169 } 10170 } 10171 10172 if (is_scalar) { 10173 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10174 } 10175 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10176 } 10177 clear_vec_high(s, is_q, rd); 10178 } 10179 } 10180 10181 /* AdvSIMD scalar two reg misc 10182 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10183 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10184 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10185 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10186 */ 10187 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10188 { 10189 int rd = extract32(insn, 0, 5); 10190 int rn = extract32(insn, 5, 5); 10191 int opcode = extract32(insn, 12, 5); 10192 int size = extract32(insn, 22, 2); 10193 bool u = extract32(insn, 29, 1); 10194 bool is_fcvt = false; 10195 int rmode; 10196 TCGv_i32 tcg_rmode; 10197 TCGv_ptr tcg_fpstatus; 10198 10199 switch (opcode) { 10200 case 0x3: /* USQADD / SUQADD*/ 10201 if (!fp_access_check(s)) { 10202 return; 10203 } 10204 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10205 return; 10206 case 0x7: /* SQABS / SQNEG */ 10207 break; 10208 case 0xa: /* CMLT */ 10209 if (u) { 10210 unallocated_encoding(s); 10211 return; 10212 } 10213 /* fall through */ 10214 case 0x8: /* CMGT, CMGE */ 10215 case 0x9: /* CMEQ, CMLE */ 10216 case 0xb: /* ABS, NEG */ 10217 if (size != 3) { 10218 unallocated_encoding(s); 10219 return; 10220 } 10221 break; 10222 case 0x12: /* SQXTUN */ 10223 if (!u) { 10224 unallocated_encoding(s); 10225 return; 10226 } 10227 /* fall through */ 10228 case 0x14: /* SQXTN, UQXTN */ 10229 if (size == 3) { 10230 unallocated_encoding(s); 10231 return; 10232 } 10233 if (!fp_access_check(s)) { 10234 return; 10235 } 10236 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10237 return; 10238 case 0xc ... 0xf: 10239 case 0x16 ... 0x1d: 10240 case 0x1f: 10241 /* Floating point: U, size[1] and opcode indicate operation; 10242 * size[0] indicates single or double precision. 10243 */ 10244 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10245 size = extract32(size, 0, 1) ? 3 : 2; 10246 switch (opcode) { 10247 case 0x2c: /* FCMGT (zero) */ 10248 case 0x2d: /* FCMEQ (zero) */ 10249 case 0x2e: /* FCMLT (zero) */ 10250 case 0x6c: /* FCMGE (zero) */ 10251 case 0x6d: /* FCMLE (zero) */ 10252 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10253 return; 10254 case 0x1d: /* SCVTF */ 10255 case 0x5d: /* UCVTF */ 10256 { 10257 bool is_signed = (opcode == 0x1d); 10258 if (!fp_access_check(s)) { 10259 return; 10260 } 10261 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10262 return; 10263 } 10264 case 0x3d: /* FRECPE */ 10265 case 0x3f: /* FRECPX */ 10266 case 0x7d: /* FRSQRTE */ 10267 if (!fp_access_check(s)) { 10268 return; 10269 } 10270 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10271 return; 10272 case 0x1a: /* FCVTNS */ 10273 case 0x1b: /* FCVTMS */ 10274 case 0x3a: /* FCVTPS */ 10275 case 0x3b: /* FCVTZS */ 10276 case 0x5a: /* FCVTNU */ 10277 case 0x5b: /* FCVTMU */ 10278 case 0x7a: /* FCVTPU */ 10279 case 0x7b: /* FCVTZU */ 10280 is_fcvt = true; 10281 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10282 break; 10283 case 0x1c: /* FCVTAS */ 10284 case 0x5c: /* FCVTAU */ 10285 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10286 is_fcvt = true; 10287 rmode = FPROUNDING_TIEAWAY; 10288 break; 10289 case 0x56: /* FCVTXN, FCVTXN2 */ 10290 if (size == 2) { 10291 unallocated_encoding(s); 10292 return; 10293 } 10294 if (!fp_access_check(s)) { 10295 return; 10296 } 10297 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10298 return; 10299 default: 10300 unallocated_encoding(s); 10301 return; 10302 } 10303 break; 10304 default: 10305 unallocated_encoding(s); 10306 return; 10307 } 10308 10309 if (!fp_access_check(s)) { 10310 return; 10311 } 10312 10313 if (is_fcvt) { 10314 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10315 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10316 } else { 10317 tcg_fpstatus = NULL; 10318 tcg_rmode = NULL; 10319 } 10320 10321 if (size == 3) { 10322 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10323 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10324 10325 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10326 write_fp_dreg(s, rd, tcg_rd); 10327 } else { 10328 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10329 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10330 10331 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10332 10333 switch (opcode) { 10334 case 0x7: /* SQABS, SQNEG */ 10335 { 10336 NeonGenOneOpEnvFn *genfn; 10337 static NeonGenOneOpEnvFn * const fns[3][2] = { 10338 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10339 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10340 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10341 }; 10342 genfn = fns[size][u]; 10343 genfn(tcg_rd, tcg_env, tcg_rn); 10344 break; 10345 } 10346 case 0x1a: /* FCVTNS */ 10347 case 0x1b: /* FCVTMS */ 10348 case 0x1c: /* FCVTAS */ 10349 case 0x3a: /* FCVTPS */ 10350 case 0x3b: /* FCVTZS */ 10351 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10352 tcg_fpstatus); 10353 break; 10354 case 0x5a: /* FCVTNU */ 10355 case 0x5b: /* FCVTMU */ 10356 case 0x5c: /* FCVTAU */ 10357 case 0x7a: /* FCVTPU */ 10358 case 0x7b: /* FCVTZU */ 10359 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10360 tcg_fpstatus); 10361 break; 10362 default: 10363 g_assert_not_reached(); 10364 } 10365 10366 write_fp_sreg(s, rd, tcg_rd); 10367 } 10368 10369 if (is_fcvt) { 10370 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10371 } 10372 } 10373 10374 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10375 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10376 int immh, int immb, int opcode, int rn, int rd) 10377 { 10378 int size = 32 - clz32(immh) - 1; 10379 int immhb = immh << 3 | immb; 10380 int shift = 2 * (8 << size) - immhb; 10381 GVecGen2iFn *gvec_fn; 10382 10383 if (extract32(immh, 3, 1) && !is_q) { 10384 unallocated_encoding(s); 10385 return; 10386 } 10387 tcg_debug_assert(size <= 3); 10388 10389 if (!fp_access_check(s)) { 10390 return; 10391 } 10392 10393 switch (opcode) { 10394 case 0x02: /* SSRA / USRA (accumulate) */ 10395 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10396 break; 10397 10398 case 0x08: /* SRI */ 10399 gvec_fn = gen_gvec_sri; 10400 break; 10401 10402 case 0x00: /* SSHR / USHR */ 10403 if (is_u) { 10404 if (shift == 8 << size) { 10405 /* Shift count the same size as element size produces zero. */ 10406 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10407 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10408 return; 10409 } 10410 gvec_fn = tcg_gen_gvec_shri; 10411 } else { 10412 /* Shift count the same size as element size produces all sign. */ 10413 if (shift == 8 << size) { 10414 shift -= 1; 10415 } 10416 gvec_fn = tcg_gen_gvec_sari; 10417 } 10418 break; 10419 10420 case 0x04: /* SRSHR / URSHR (rounding) */ 10421 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10422 break; 10423 10424 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10425 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10426 break; 10427 10428 default: 10429 g_assert_not_reached(); 10430 } 10431 10432 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10433 } 10434 10435 /* SHL/SLI - Vector shift left */ 10436 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10437 int immh, int immb, int opcode, int rn, int rd) 10438 { 10439 int size = 32 - clz32(immh) - 1; 10440 int immhb = immh << 3 | immb; 10441 int shift = immhb - (8 << size); 10442 10443 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10444 assert(size >= 0 && size <= 3); 10445 10446 if (extract32(immh, 3, 1) && !is_q) { 10447 unallocated_encoding(s); 10448 return; 10449 } 10450 10451 if (!fp_access_check(s)) { 10452 return; 10453 } 10454 10455 if (insert) { 10456 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10457 } else { 10458 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10459 } 10460 } 10461 10462 /* USHLL/SHLL - Vector shift left with widening */ 10463 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10464 int immh, int immb, int opcode, int rn, int rd) 10465 { 10466 int size = 32 - clz32(immh) - 1; 10467 int immhb = immh << 3 | immb; 10468 int shift = immhb - (8 << size); 10469 int dsize = 64; 10470 int esize = 8 << size; 10471 int elements = dsize/esize; 10472 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10473 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10474 int i; 10475 10476 if (size >= 3) { 10477 unallocated_encoding(s); 10478 return; 10479 } 10480 10481 if (!fp_access_check(s)) { 10482 return; 10483 } 10484 10485 /* For the LL variants the store is larger than the load, 10486 * so if rd == rn we would overwrite parts of our input. 10487 * So load everything right now and use shifts in the main loop. 10488 */ 10489 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10490 10491 for (i = 0; i < elements; i++) { 10492 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10493 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10494 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10495 write_vec_element(s, tcg_rd, rd, i, size + 1); 10496 } 10497 } 10498 10499 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10500 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10501 int immh, int immb, int opcode, int rn, int rd) 10502 { 10503 int immhb = immh << 3 | immb; 10504 int size = 32 - clz32(immh) - 1; 10505 int dsize = 64; 10506 int esize = 8 << size; 10507 int elements = dsize/esize; 10508 int shift = (2 * esize) - immhb; 10509 bool round = extract32(opcode, 0, 1); 10510 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10511 TCGv_i64 tcg_round; 10512 int i; 10513 10514 if (extract32(immh, 3, 1)) { 10515 unallocated_encoding(s); 10516 return; 10517 } 10518 10519 if (!fp_access_check(s)) { 10520 return; 10521 } 10522 10523 tcg_rn = tcg_temp_new_i64(); 10524 tcg_rd = tcg_temp_new_i64(); 10525 tcg_final = tcg_temp_new_i64(); 10526 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10527 10528 if (round) { 10529 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10530 } else { 10531 tcg_round = NULL; 10532 } 10533 10534 for (i = 0; i < elements; i++) { 10535 read_vec_element(s, tcg_rn, rn, i, size+1); 10536 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10537 false, true, size+1, shift); 10538 10539 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10540 } 10541 10542 if (!is_q) { 10543 write_vec_element(s, tcg_final, rd, 0, MO_64); 10544 } else { 10545 write_vec_element(s, tcg_final, rd, 1, MO_64); 10546 } 10547 10548 clear_vec_high(s, is_q, rd); 10549 } 10550 10551 10552 /* AdvSIMD shift by immediate 10553 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10554 * +---+---+---+-------------+------+------+--------+---+------+------+ 10555 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10556 * +---+---+---+-------------+------+------+--------+---+------+------+ 10557 */ 10558 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10559 { 10560 int rd = extract32(insn, 0, 5); 10561 int rn = extract32(insn, 5, 5); 10562 int opcode = extract32(insn, 11, 5); 10563 int immb = extract32(insn, 16, 3); 10564 int immh = extract32(insn, 19, 4); 10565 bool is_u = extract32(insn, 29, 1); 10566 bool is_q = extract32(insn, 30, 1); 10567 10568 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10569 assert(immh != 0); 10570 10571 switch (opcode) { 10572 case 0x08: /* SRI */ 10573 if (!is_u) { 10574 unallocated_encoding(s); 10575 return; 10576 } 10577 /* fall through */ 10578 case 0x00: /* SSHR / USHR */ 10579 case 0x02: /* SSRA / USRA (accumulate) */ 10580 case 0x04: /* SRSHR / URSHR (rounding) */ 10581 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10582 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10583 break; 10584 case 0x0a: /* SHL / SLI */ 10585 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10586 break; 10587 case 0x10: /* SHRN */ 10588 case 0x11: /* RSHRN / SQRSHRUN */ 10589 if (is_u) { 10590 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10591 opcode, rn, rd); 10592 } else { 10593 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10594 } 10595 break; 10596 case 0x12: /* SQSHRN / UQSHRN */ 10597 case 0x13: /* SQRSHRN / UQRSHRN */ 10598 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10599 opcode, rn, rd); 10600 break; 10601 case 0x14: /* SSHLL / USHLL */ 10602 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10603 break; 10604 case 0x1c: /* SCVTF / UCVTF */ 10605 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10606 opcode, rn, rd); 10607 break; 10608 case 0xc: /* SQSHLU */ 10609 if (!is_u) { 10610 unallocated_encoding(s); 10611 return; 10612 } 10613 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10614 break; 10615 case 0xe: /* SQSHL, UQSHL */ 10616 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10617 break; 10618 case 0x1f: /* FCVTZS/ FCVTZU */ 10619 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10620 return; 10621 default: 10622 unallocated_encoding(s); 10623 return; 10624 } 10625 } 10626 10627 /* Generate code to do a "long" addition or subtraction, ie one done in 10628 * TCGv_i64 on vector lanes twice the width specified by size. 10629 */ 10630 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10631 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10632 { 10633 static NeonGenTwo64OpFn * const fns[3][2] = { 10634 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10635 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10636 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10637 }; 10638 NeonGenTwo64OpFn *genfn; 10639 assert(size < 3); 10640 10641 genfn = fns[size][is_sub]; 10642 genfn(tcg_res, tcg_op1, tcg_op2); 10643 } 10644 10645 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10646 int opcode, int rd, int rn, int rm) 10647 { 10648 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10649 TCGv_i64 tcg_res[2]; 10650 int pass, accop; 10651 10652 tcg_res[0] = tcg_temp_new_i64(); 10653 tcg_res[1] = tcg_temp_new_i64(); 10654 10655 /* Does this op do an adding accumulate, a subtracting accumulate, 10656 * or no accumulate at all? 10657 */ 10658 switch (opcode) { 10659 case 5: 10660 case 8: 10661 case 9: 10662 accop = 1; 10663 break; 10664 case 10: 10665 case 11: 10666 accop = -1; 10667 break; 10668 default: 10669 accop = 0; 10670 break; 10671 } 10672 10673 if (accop != 0) { 10674 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10675 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10676 } 10677 10678 /* size == 2 means two 32x32->64 operations; this is worth special 10679 * casing because we can generally handle it inline. 10680 */ 10681 if (size == 2) { 10682 for (pass = 0; pass < 2; pass++) { 10683 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10684 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10685 TCGv_i64 tcg_passres; 10686 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10687 10688 int elt = pass + is_q * 2; 10689 10690 read_vec_element(s, tcg_op1, rn, elt, memop); 10691 read_vec_element(s, tcg_op2, rm, elt, memop); 10692 10693 if (accop == 0) { 10694 tcg_passres = tcg_res[pass]; 10695 } else { 10696 tcg_passres = tcg_temp_new_i64(); 10697 } 10698 10699 switch (opcode) { 10700 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10701 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10702 break; 10703 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10704 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10705 break; 10706 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10707 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10708 { 10709 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10710 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10711 10712 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10713 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10714 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10715 tcg_passres, 10716 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10717 break; 10718 } 10719 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10720 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10721 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10722 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10723 break; 10724 case 9: /* SQDMLAL, SQDMLAL2 */ 10725 case 11: /* SQDMLSL, SQDMLSL2 */ 10726 case 13: /* SQDMULL, SQDMULL2 */ 10727 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10728 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10729 tcg_passres, tcg_passres); 10730 break; 10731 default: 10732 g_assert_not_reached(); 10733 } 10734 10735 if (opcode == 9 || opcode == 11) { 10736 /* saturating accumulate ops */ 10737 if (accop < 0) { 10738 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10739 } 10740 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10741 tcg_res[pass], tcg_passres); 10742 } else if (accop > 0) { 10743 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10744 } else if (accop < 0) { 10745 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10746 } 10747 } 10748 } else { 10749 /* size 0 or 1, generally helper functions */ 10750 for (pass = 0; pass < 2; pass++) { 10751 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10752 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10753 TCGv_i64 tcg_passres; 10754 int elt = pass + is_q * 2; 10755 10756 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10757 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10758 10759 if (accop == 0) { 10760 tcg_passres = tcg_res[pass]; 10761 } else { 10762 tcg_passres = tcg_temp_new_i64(); 10763 } 10764 10765 switch (opcode) { 10766 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10767 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10768 { 10769 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10770 static NeonGenWidenFn * const widenfns[2][2] = { 10771 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10772 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10773 }; 10774 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10775 10776 widenfn(tcg_op2_64, tcg_op2); 10777 widenfn(tcg_passres, tcg_op1); 10778 gen_neon_addl(size, (opcode == 2), tcg_passres, 10779 tcg_passres, tcg_op2_64); 10780 break; 10781 } 10782 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10783 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10784 if (size == 0) { 10785 if (is_u) { 10786 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10787 } else { 10788 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10789 } 10790 } else { 10791 if (is_u) { 10792 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10793 } else { 10794 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10795 } 10796 } 10797 break; 10798 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10799 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10800 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10801 if (size == 0) { 10802 if (is_u) { 10803 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10804 } else { 10805 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10806 } 10807 } else { 10808 if (is_u) { 10809 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10810 } else { 10811 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10812 } 10813 } 10814 break; 10815 case 9: /* SQDMLAL, SQDMLAL2 */ 10816 case 11: /* SQDMLSL, SQDMLSL2 */ 10817 case 13: /* SQDMULL, SQDMULL2 */ 10818 assert(size == 1); 10819 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10820 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10821 tcg_passres, tcg_passres); 10822 break; 10823 default: 10824 g_assert_not_reached(); 10825 } 10826 10827 if (accop != 0) { 10828 if (opcode == 9 || opcode == 11) { 10829 /* saturating accumulate ops */ 10830 if (accop < 0) { 10831 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10832 } 10833 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10834 tcg_res[pass], 10835 tcg_passres); 10836 } else { 10837 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10838 tcg_res[pass], tcg_passres); 10839 } 10840 } 10841 } 10842 } 10843 10844 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10845 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10846 } 10847 10848 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10849 int opcode, int rd, int rn, int rm) 10850 { 10851 TCGv_i64 tcg_res[2]; 10852 int part = is_q ? 2 : 0; 10853 int pass; 10854 10855 for (pass = 0; pass < 2; pass++) { 10856 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10857 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10858 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10859 static NeonGenWidenFn * const widenfns[3][2] = { 10860 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10861 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10862 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10863 }; 10864 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10865 10866 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10867 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10868 widenfn(tcg_op2_wide, tcg_op2); 10869 tcg_res[pass] = tcg_temp_new_i64(); 10870 gen_neon_addl(size, (opcode == 3), 10871 tcg_res[pass], tcg_op1, tcg_op2_wide); 10872 } 10873 10874 for (pass = 0; pass < 2; pass++) { 10875 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10876 } 10877 } 10878 10879 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10880 { 10881 tcg_gen_addi_i64(in, in, 1U << 31); 10882 tcg_gen_extrh_i64_i32(res, in); 10883 } 10884 10885 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10886 int opcode, int rd, int rn, int rm) 10887 { 10888 TCGv_i32 tcg_res[2]; 10889 int part = is_q ? 2 : 0; 10890 int pass; 10891 10892 for (pass = 0; pass < 2; pass++) { 10893 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10894 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10895 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10896 static NeonGenNarrowFn * const narrowfns[3][2] = { 10897 { gen_helper_neon_narrow_high_u8, 10898 gen_helper_neon_narrow_round_high_u8 }, 10899 { gen_helper_neon_narrow_high_u16, 10900 gen_helper_neon_narrow_round_high_u16 }, 10901 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10902 }; 10903 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10904 10905 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10906 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10907 10908 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10909 10910 tcg_res[pass] = tcg_temp_new_i32(); 10911 gennarrow(tcg_res[pass], tcg_wideres); 10912 } 10913 10914 for (pass = 0; pass < 2; pass++) { 10915 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10916 } 10917 clear_vec_high(s, is_q, rd); 10918 } 10919 10920 /* AdvSIMD three different 10921 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10922 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10923 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10924 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10925 */ 10926 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10927 { 10928 /* Instructions in this group fall into three basic classes 10929 * (in each case with the operation working on each element in 10930 * the input vectors): 10931 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10932 * 128 bit input) 10933 * (2) wide 64 x 128 -> 128 10934 * (3) narrowing 128 x 128 -> 64 10935 * Here we do initial decode, catch unallocated cases and 10936 * dispatch to separate functions for each class. 10937 */ 10938 int is_q = extract32(insn, 30, 1); 10939 int is_u = extract32(insn, 29, 1); 10940 int size = extract32(insn, 22, 2); 10941 int opcode = extract32(insn, 12, 4); 10942 int rm = extract32(insn, 16, 5); 10943 int rn = extract32(insn, 5, 5); 10944 int rd = extract32(insn, 0, 5); 10945 10946 switch (opcode) { 10947 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10948 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10949 /* 64 x 128 -> 128 */ 10950 if (size == 3) { 10951 unallocated_encoding(s); 10952 return; 10953 } 10954 if (!fp_access_check(s)) { 10955 return; 10956 } 10957 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10958 break; 10959 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10960 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10961 /* 128 x 128 -> 64 */ 10962 if (size == 3) { 10963 unallocated_encoding(s); 10964 return; 10965 } 10966 if (!fp_access_check(s)) { 10967 return; 10968 } 10969 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10970 break; 10971 case 14: /* PMULL, PMULL2 */ 10972 if (is_u) { 10973 unallocated_encoding(s); 10974 return; 10975 } 10976 switch (size) { 10977 case 0: /* PMULL.P8 */ 10978 if (!fp_access_check(s)) { 10979 return; 10980 } 10981 /* The Q field specifies lo/hi half input for this insn. */ 10982 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10983 gen_helper_neon_pmull_h); 10984 break; 10985 10986 case 3: /* PMULL.P64 */ 10987 if (!dc_isar_feature(aa64_pmull, s)) { 10988 unallocated_encoding(s); 10989 return; 10990 } 10991 if (!fp_access_check(s)) { 10992 return; 10993 } 10994 /* The Q field specifies lo/hi half input for this insn. */ 10995 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10996 gen_helper_gvec_pmull_q); 10997 break; 10998 10999 default: 11000 unallocated_encoding(s); 11001 break; 11002 } 11003 return; 11004 case 9: /* SQDMLAL, SQDMLAL2 */ 11005 case 11: /* SQDMLSL, SQDMLSL2 */ 11006 case 13: /* SQDMULL, SQDMULL2 */ 11007 if (is_u || size == 0) { 11008 unallocated_encoding(s); 11009 return; 11010 } 11011 /* fall through */ 11012 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 11013 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 11014 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 11015 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 11016 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 11017 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 11018 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 11019 /* 64 x 64 -> 128 */ 11020 if (size == 3) { 11021 unallocated_encoding(s); 11022 return; 11023 } 11024 if (!fp_access_check(s)) { 11025 return; 11026 } 11027 11028 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 11029 break; 11030 default: 11031 /* opcode 15 not allocated */ 11032 unallocated_encoding(s); 11033 break; 11034 } 11035 } 11036 11037 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 11038 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 11039 { 11040 int rd = extract32(insn, 0, 5); 11041 int rn = extract32(insn, 5, 5); 11042 int rm = extract32(insn, 16, 5); 11043 int size = extract32(insn, 22, 2); 11044 bool is_u = extract32(insn, 29, 1); 11045 bool is_q = extract32(insn, 30, 1); 11046 11047 if (!fp_access_check(s)) { 11048 return; 11049 } 11050 11051 switch (size + 4 * is_u) { 11052 case 0: /* AND */ 11053 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 11054 return; 11055 case 1: /* BIC */ 11056 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 11057 return; 11058 case 2: /* ORR */ 11059 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 11060 return; 11061 case 3: /* ORN */ 11062 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 11063 return; 11064 case 4: /* EOR */ 11065 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 11066 return; 11067 11068 case 5: /* BSL bitwise select */ 11069 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 11070 return; 11071 case 6: /* BIT, bitwise insert if true */ 11072 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 11073 return; 11074 case 7: /* BIF, bitwise insert if false */ 11075 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11076 return; 11077 11078 default: 11079 g_assert_not_reached(); 11080 } 11081 } 11082 11083 /* Pairwise op subgroup of C3.6.16. 11084 * 11085 * This is called directly or via the handle_3same_float for float pairwise 11086 * operations where the opcode and size are calculated differently. 11087 */ 11088 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11089 int size, int rn, int rm, int rd) 11090 { 11091 TCGv_ptr fpst; 11092 int pass; 11093 11094 /* Floating point operations need fpst */ 11095 if (opcode >= 0x58) { 11096 fpst = fpstatus_ptr(FPST_FPCR); 11097 } else { 11098 fpst = NULL; 11099 } 11100 11101 if (!fp_access_check(s)) { 11102 return; 11103 } 11104 11105 /* These operations work on the concatenated rm:rn, with each pair of 11106 * adjacent elements being operated on to produce an element in the result. 11107 */ 11108 if (size == 3) { 11109 TCGv_i64 tcg_res[2]; 11110 11111 for (pass = 0; pass < 2; pass++) { 11112 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11113 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11114 int passreg = (pass == 0) ? rn : rm; 11115 11116 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11117 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11118 tcg_res[pass] = tcg_temp_new_i64(); 11119 11120 switch (opcode) { 11121 case 0x17: /* ADDP */ 11122 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11123 break; 11124 case 0x58: /* FMAXNMP */ 11125 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11126 break; 11127 case 0x5a: /* FADDP */ 11128 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11129 break; 11130 case 0x5e: /* FMAXP */ 11131 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11132 break; 11133 case 0x78: /* FMINNMP */ 11134 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11135 break; 11136 case 0x7e: /* FMINP */ 11137 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11138 break; 11139 default: 11140 g_assert_not_reached(); 11141 } 11142 } 11143 11144 for (pass = 0; pass < 2; pass++) { 11145 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11146 } 11147 } else { 11148 int maxpass = is_q ? 4 : 2; 11149 TCGv_i32 tcg_res[4]; 11150 11151 for (pass = 0; pass < maxpass; pass++) { 11152 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11153 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11154 NeonGenTwoOpFn *genfn = NULL; 11155 int passreg = pass < (maxpass / 2) ? rn : rm; 11156 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11157 11158 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11159 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11160 tcg_res[pass] = tcg_temp_new_i32(); 11161 11162 switch (opcode) { 11163 case 0x17: /* ADDP */ 11164 { 11165 static NeonGenTwoOpFn * const fns[3] = { 11166 gen_helper_neon_padd_u8, 11167 gen_helper_neon_padd_u16, 11168 tcg_gen_add_i32, 11169 }; 11170 genfn = fns[size]; 11171 break; 11172 } 11173 case 0x14: /* SMAXP, UMAXP */ 11174 { 11175 static NeonGenTwoOpFn * const fns[3][2] = { 11176 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11177 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11178 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11179 }; 11180 genfn = fns[size][u]; 11181 break; 11182 } 11183 case 0x15: /* SMINP, UMINP */ 11184 { 11185 static NeonGenTwoOpFn * const fns[3][2] = { 11186 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11187 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11188 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11189 }; 11190 genfn = fns[size][u]; 11191 break; 11192 } 11193 /* The FP operations are all on single floats (32 bit) */ 11194 case 0x58: /* FMAXNMP */ 11195 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11196 break; 11197 case 0x5a: /* FADDP */ 11198 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11199 break; 11200 case 0x5e: /* FMAXP */ 11201 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11202 break; 11203 case 0x78: /* FMINNMP */ 11204 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11205 break; 11206 case 0x7e: /* FMINP */ 11207 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11208 break; 11209 default: 11210 g_assert_not_reached(); 11211 } 11212 11213 /* FP ops called directly, otherwise call now */ 11214 if (genfn) { 11215 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11216 } 11217 } 11218 11219 for (pass = 0; pass < maxpass; pass++) { 11220 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11221 } 11222 clear_vec_high(s, is_q, rd); 11223 } 11224 } 11225 11226 /* Floating point op subgroup of C3.6.16. */ 11227 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11228 { 11229 /* For floating point ops, the U, size[1] and opcode bits 11230 * together indicate the operation. size[0] indicates single 11231 * or double. 11232 */ 11233 int fpopcode = extract32(insn, 11, 5) 11234 | (extract32(insn, 23, 1) << 5) 11235 | (extract32(insn, 29, 1) << 6); 11236 int is_q = extract32(insn, 30, 1); 11237 int size = extract32(insn, 22, 1); 11238 int rm = extract32(insn, 16, 5); 11239 int rn = extract32(insn, 5, 5); 11240 int rd = extract32(insn, 0, 5); 11241 11242 int datasize = is_q ? 128 : 64; 11243 int esize = 32 << size; 11244 int elements = datasize / esize; 11245 11246 if (size == 1 && !is_q) { 11247 unallocated_encoding(s); 11248 return; 11249 } 11250 11251 switch (fpopcode) { 11252 case 0x58: /* FMAXNMP */ 11253 case 0x5a: /* FADDP */ 11254 case 0x5e: /* FMAXP */ 11255 case 0x78: /* FMINNMP */ 11256 case 0x7e: /* FMINP */ 11257 if (size && !is_q) { 11258 unallocated_encoding(s); 11259 return; 11260 } 11261 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11262 rn, rm, rd); 11263 return; 11264 case 0x1f: /* FRECPS */ 11265 case 0x3f: /* FRSQRTS */ 11266 case 0x5d: /* FACGE */ 11267 case 0x7d: /* FACGT */ 11268 case 0x19: /* FMLA */ 11269 case 0x39: /* FMLS */ 11270 case 0x1c: /* FCMEQ */ 11271 case 0x5c: /* FCMGE */ 11272 case 0x7a: /* FABD */ 11273 case 0x7c: /* FCMGT */ 11274 if (!fp_access_check(s)) { 11275 return; 11276 } 11277 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11278 return; 11279 11280 case 0x1d: /* FMLAL */ 11281 case 0x3d: /* FMLSL */ 11282 case 0x59: /* FMLAL2 */ 11283 case 0x79: /* FMLSL2 */ 11284 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11285 unallocated_encoding(s); 11286 return; 11287 } 11288 if (fp_access_check(s)) { 11289 int is_s = extract32(insn, 23, 1); 11290 int is_2 = extract32(insn, 29, 1); 11291 int data = (is_2 << 1) | is_s; 11292 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11293 vec_full_reg_offset(s, rn), 11294 vec_full_reg_offset(s, rm), tcg_env, 11295 is_q ? 16 : 8, vec_full_reg_size(s), 11296 data, gen_helper_gvec_fmlal_a64); 11297 } 11298 return; 11299 11300 default: 11301 case 0x18: /* FMAXNM */ 11302 case 0x1a: /* FADD */ 11303 case 0x1b: /* FMULX */ 11304 case 0x1e: /* FMAX */ 11305 case 0x38: /* FMINNM */ 11306 case 0x3a: /* FSUB */ 11307 case 0x3e: /* FMIN */ 11308 case 0x5b: /* FMUL */ 11309 case 0x5f: /* FDIV */ 11310 unallocated_encoding(s); 11311 return; 11312 } 11313 } 11314 11315 /* Integer op subgroup of C3.6.16. */ 11316 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11317 { 11318 int is_q = extract32(insn, 30, 1); 11319 int u = extract32(insn, 29, 1); 11320 int size = extract32(insn, 22, 2); 11321 int opcode = extract32(insn, 11, 5); 11322 int rm = extract32(insn, 16, 5); 11323 int rn = extract32(insn, 5, 5); 11324 int rd = extract32(insn, 0, 5); 11325 int pass; 11326 TCGCond cond; 11327 11328 switch (opcode) { 11329 case 0x13: /* MUL, PMUL */ 11330 if (u && size != 0) { 11331 unallocated_encoding(s); 11332 return; 11333 } 11334 /* fall through */ 11335 case 0x0: /* SHADD, UHADD */ 11336 case 0x2: /* SRHADD, URHADD */ 11337 case 0x4: /* SHSUB, UHSUB */ 11338 case 0xc: /* SMAX, UMAX */ 11339 case 0xd: /* SMIN, UMIN */ 11340 case 0xe: /* SABD, UABD */ 11341 case 0xf: /* SABA, UABA */ 11342 case 0x12: /* MLA, MLS */ 11343 if (size == 3) { 11344 unallocated_encoding(s); 11345 return; 11346 } 11347 break; 11348 case 0x16: /* SQDMULH, SQRDMULH */ 11349 if (size == 0 || size == 3) { 11350 unallocated_encoding(s); 11351 return; 11352 } 11353 break; 11354 default: 11355 if (size == 3 && !is_q) { 11356 unallocated_encoding(s); 11357 return; 11358 } 11359 break; 11360 } 11361 11362 if (!fp_access_check(s)) { 11363 return; 11364 } 11365 11366 switch (opcode) { 11367 case 0x01: /* SQADD, UQADD */ 11368 if (u) { 11369 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11370 } else { 11371 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11372 } 11373 return; 11374 case 0x05: /* SQSUB, UQSUB */ 11375 if (u) { 11376 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11377 } else { 11378 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11379 } 11380 return; 11381 case 0x08: /* SSHL, USHL */ 11382 if (u) { 11383 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11384 } else { 11385 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11386 } 11387 return; 11388 case 0x0c: /* SMAX, UMAX */ 11389 if (u) { 11390 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11391 } else { 11392 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11393 } 11394 return; 11395 case 0x0d: /* SMIN, UMIN */ 11396 if (u) { 11397 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11398 } else { 11399 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11400 } 11401 return; 11402 case 0xe: /* SABD, UABD */ 11403 if (u) { 11404 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11405 } else { 11406 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11407 } 11408 return; 11409 case 0xf: /* SABA, UABA */ 11410 if (u) { 11411 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11412 } else { 11413 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11414 } 11415 return; 11416 case 0x10: /* ADD, SUB */ 11417 if (u) { 11418 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11419 } else { 11420 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11421 } 11422 return; 11423 case 0x13: /* MUL, PMUL */ 11424 if (!u) { /* MUL */ 11425 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11426 } else { /* PMUL */ 11427 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11428 } 11429 return; 11430 case 0x12: /* MLA, MLS */ 11431 if (u) { 11432 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11433 } else { 11434 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11435 } 11436 return; 11437 case 0x16: /* SQDMULH, SQRDMULH */ 11438 { 11439 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11440 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11441 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11442 }; 11443 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11444 } 11445 return; 11446 case 0x11: 11447 if (!u) { /* CMTST */ 11448 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11449 return; 11450 } 11451 /* else CMEQ */ 11452 cond = TCG_COND_EQ; 11453 goto do_gvec_cmp; 11454 case 0x06: /* CMGT, CMHI */ 11455 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11456 goto do_gvec_cmp; 11457 case 0x07: /* CMGE, CMHS */ 11458 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11459 do_gvec_cmp: 11460 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11461 vec_full_reg_offset(s, rn), 11462 vec_full_reg_offset(s, rm), 11463 is_q ? 16 : 8, vec_full_reg_size(s)); 11464 return; 11465 } 11466 11467 if (size == 3) { 11468 assert(is_q); 11469 for (pass = 0; pass < 2; pass++) { 11470 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11471 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11472 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11473 11474 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11475 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11476 11477 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11478 11479 write_vec_element(s, tcg_res, rd, pass, MO_64); 11480 } 11481 } else { 11482 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11483 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11484 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11485 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11486 NeonGenTwoOpFn *genfn = NULL; 11487 NeonGenTwoOpEnvFn *genenvfn = NULL; 11488 11489 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11490 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11491 11492 switch (opcode) { 11493 case 0x0: /* SHADD, UHADD */ 11494 { 11495 static NeonGenTwoOpFn * const fns[3][2] = { 11496 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11497 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11498 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11499 }; 11500 genfn = fns[size][u]; 11501 break; 11502 } 11503 case 0x2: /* SRHADD, URHADD */ 11504 { 11505 static NeonGenTwoOpFn * const fns[3][2] = { 11506 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11507 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11508 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11509 }; 11510 genfn = fns[size][u]; 11511 break; 11512 } 11513 case 0x4: /* SHSUB, UHSUB */ 11514 { 11515 static NeonGenTwoOpFn * const fns[3][2] = { 11516 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11517 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11518 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11519 }; 11520 genfn = fns[size][u]; 11521 break; 11522 } 11523 case 0x9: /* SQSHL, UQSHL */ 11524 { 11525 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11526 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11527 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11528 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11529 }; 11530 genenvfn = fns[size][u]; 11531 break; 11532 } 11533 case 0xa: /* SRSHL, URSHL */ 11534 { 11535 static NeonGenTwoOpFn * const fns[3][2] = { 11536 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11537 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11538 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11539 }; 11540 genfn = fns[size][u]; 11541 break; 11542 } 11543 case 0xb: /* SQRSHL, UQRSHL */ 11544 { 11545 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11546 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11547 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11548 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11549 }; 11550 genenvfn = fns[size][u]; 11551 break; 11552 } 11553 default: 11554 g_assert_not_reached(); 11555 } 11556 11557 if (genenvfn) { 11558 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11559 } else { 11560 genfn(tcg_res, tcg_op1, tcg_op2); 11561 } 11562 11563 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11564 } 11565 } 11566 clear_vec_high(s, is_q, rd); 11567 } 11568 11569 /* AdvSIMD three same 11570 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11571 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11572 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11573 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11574 */ 11575 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11576 { 11577 int opcode = extract32(insn, 11, 5); 11578 11579 switch (opcode) { 11580 case 0x3: /* logic ops */ 11581 disas_simd_3same_logic(s, insn); 11582 break; 11583 case 0x17: /* ADDP */ 11584 case 0x14: /* SMAXP, UMAXP */ 11585 case 0x15: /* SMINP, UMINP */ 11586 { 11587 /* Pairwise operations */ 11588 int is_q = extract32(insn, 30, 1); 11589 int u = extract32(insn, 29, 1); 11590 int size = extract32(insn, 22, 2); 11591 int rm = extract32(insn, 16, 5); 11592 int rn = extract32(insn, 5, 5); 11593 int rd = extract32(insn, 0, 5); 11594 if (opcode == 0x17) { 11595 if (u || (size == 3 && !is_q)) { 11596 unallocated_encoding(s); 11597 return; 11598 } 11599 } else { 11600 if (size == 3) { 11601 unallocated_encoding(s); 11602 return; 11603 } 11604 } 11605 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11606 break; 11607 } 11608 case 0x18 ... 0x31: 11609 /* floating point ops, sz[1] and U are part of opcode */ 11610 disas_simd_3same_float(s, insn); 11611 break; 11612 default: 11613 disas_simd_3same_int(s, insn); 11614 break; 11615 } 11616 } 11617 11618 /* 11619 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11620 * 11621 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11622 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11623 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11624 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11625 * 11626 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11627 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11628 * 11629 */ 11630 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11631 { 11632 int opcode = extract32(insn, 11, 3); 11633 int u = extract32(insn, 29, 1); 11634 int a = extract32(insn, 23, 1); 11635 int is_q = extract32(insn, 30, 1); 11636 int rm = extract32(insn, 16, 5); 11637 int rn = extract32(insn, 5, 5); 11638 int rd = extract32(insn, 0, 5); 11639 /* 11640 * For these floating point ops, the U, a and opcode bits 11641 * together indicate the operation. 11642 */ 11643 int fpopcode = opcode | (a << 3) | (u << 4); 11644 int datasize = is_q ? 128 : 64; 11645 int elements = datasize / 16; 11646 bool pairwise; 11647 TCGv_ptr fpst; 11648 int pass; 11649 11650 switch (fpopcode) { 11651 case 0x1: /* FMLA */ 11652 case 0x4: /* FCMEQ */ 11653 case 0x7: /* FRECPS */ 11654 case 0x9: /* FMLS */ 11655 case 0xf: /* FRSQRTS */ 11656 case 0x14: /* FCMGE */ 11657 case 0x15: /* FACGE */ 11658 case 0x1a: /* FABD */ 11659 case 0x1c: /* FCMGT */ 11660 case 0x1d: /* FACGT */ 11661 pairwise = false; 11662 break; 11663 case 0x10: /* FMAXNMP */ 11664 case 0x12: /* FADDP */ 11665 case 0x16: /* FMAXP */ 11666 case 0x18: /* FMINNMP */ 11667 case 0x1e: /* FMINP */ 11668 pairwise = true; 11669 break; 11670 default: 11671 case 0x0: /* FMAXNM */ 11672 case 0x2: /* FADD */ 11673 case 0x3: /* FMULX */ 11674 case 0x6: /* FMAX */ 11675 case 0x8: /* FMINNM */ 11676 case 0xa: /* FSUB */ 11677 case 0xe: /* FMIN */ 11678 case 0x13: /* FMUL */ 11679 case 0x17: /* FDIV */ 11680 unallocated_encoding(s); 11681 return; 11682 } 11683 11684 if (!dc_isar_feature(aa64_fp16, s)) { 11685 unallocated_encoding(s); 11686 return; 11687 } 11688 11689 if (!fp_access_check(s)) { 11690 return; 11691 } 11692 11693 fpst = fpstatus_ptr(FPST_FPCR_F16); 11694 11695 if (pairwise) { 11696 int maxpass = is_q ? 8 : 4; 11697 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11698 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11699 TCGv_i32 tcg_res[8]; 11700 11701 for (pass = 0; pass < maxpass; pass++) { 11702 int passreg = pass < (maxpass / 2) ? rn : rm; 11703 int passelt = (pass << 1) & (maxpass - 1); 11704 11705 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11706 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11707 tcg_res[pass] = tcg_temp_new_i32(); 11708 11709 switch (fpopcode) { 11710 case 0x10: /* FMAXNMP */ 11711 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11712 fpst); 11713 break; 11714 case 0x12: /* FADDP */ 11715 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11716 break; 11717 case 0x16: /* FMAXP */ 11718 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11719 break; 11720 case 0x18: /* FMINNMP */ 11721 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11722 fpst); 11723 break; 11724 case 0x1e: /* FMINP */ 11725 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11726 break; 11727 default: 11728 g_assert_not_reached(); 11729 } 11730 } 11731 11732 for (pass = 0; pass < maxpass; pass++) { 11733 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11734 } 11735 } else { 11736 for (pass = 0; pass < elements; pass++) { 11737 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11738 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11739 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11740 11741 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11742 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11743 11744 switch (fpopcode) { 11745 case 0x1: /* FMLA */ 11746 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11747 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11748 fpst); 11749 break; 11750 case 0x4: /* FCMEQ */ 11751 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11752 break; 11753 case 0x7: /* FRECPS */ 11754 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11755 break; 11756 case 0x9: /* FMLS */ 11757 /* As usual for ARM, separate negation for fused multiply-add */ 11758 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11759 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11760 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11761 fpst); 11762 break; 11763 case 0xf: /* FRSQRTS */ 11764 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11765 break; 11766 case 0x14: /* FCMGE */ 11767 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11768 break; 11769 case 0x15: /* FACGE */ 11770 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11771 break; 11772 case 0x1a: /* FABD */ 11773 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11774 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11775 break; 11776 case 0x1c: /* FCMGT */ 11777 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11778 break; 11779 case 0x1d: /* FACGT */ 11780 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11781 break; 11782 default: 11783 case 0x0: /* FMAXNM */ 11784 case 0x2: /* FADD */ 11785 case 0x3: /* FMULX */ 11786 case 0x6: /* FMAX */ 11787 case 0x8: /* FMINNM */ 11788 case 0xa: /* FSUB */ 11789 case 0xe: /* FMIN */ 11790 case 0x13: /* FMUL */ 11791 case 0x17: /* FDIV */ 11792 g_assert_not_reached(); 11793 } 11794 11795 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11796 } 11797 } 11798 11799 clear_vec_high(s, is_q, rd); 11800 } 11801 11802 /* AdvSIMD three same extra 11803 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11804 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11805 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11806 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11807 */ 11808 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11809 { 11810 int rd = extract32(insn, 0, 5); 11811 int rn = extract32(insn, 5, 5); 11812 int opcode = extract32(insn, 11, 4); 11813 int rm = extract32(insn, 16, 5); 11814 int size = extract32(insn, 22, 2); 11815 bool u = extract32(insn, 29, 1); 11816 bool is_q = extract32(insn, 30, 1); 11817 bool feature; 11818 int rot; 11819 11820 switch (u * 16 + opcode) { 11821 case 0x10: /* SQRDMLAH (vector) */ 11822 case 0x11: /* SQRDMLSH (vector) */ 11823 if (size != 1 && size != 2) { 11824 unallocated_encoding(s); 11825 return; 11826 } 11827 feature = dc_isar_feature(aa64_rdm, s); 11828 break; 11829 case 0x02: /* SDOT (vector) */ 11830 case 0x12: /* UDOT (vector) */ 11831 if (size != MO_32) { 11832 unallocated_encoding(s); 11833 return; 11834 } 11835 feature = dc_isar_feature(aa64_dp, s); 11836 break; 11837 case 0x03: /* USDOT */ 11838 if (size != MO_32) { 11839 unallocated_encoding(s); 11840 return; 11841 } 11842 feature = dc_isar_feature(aa64_i8mm, s); 11843 break; 11844 case 0x04: /* SMMLA */ 11845 case 0x14: /* UMMLA */ 11846 case 0x05: /* USMMLA */ 11847 if (!is_q || size != MO_32) { 11848 unallocated_encoding(s); 11849 return; 11850 } 11851 feature = dc_isar_feature(aa64_i8mm, s); 11852 break; 11853 case 0x18: /* FCMLA, #0 */ 11854 case 0x19: /* FCMLA, #90 */ 11855 case 0x1a: /* FCMLA, #180 */ 11856 case 0x1b: /* FCMLA, #270 */ 11857 case 0x1c: /* FCADD, #90 */ 11858 case 0x1e: /* FCADD, #270 */ 11859 if (size == 0 11860 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11861 || (size == 3 && !is_q)) { 11862 unallocated_encoding(s); 11863 return; 11864 } 11865 feature = dc_isar_feature(aa64_fcma, s); 11866 break; 11867 case 0x1d: /* BFMMLA */ 11868 if (size != MO_16 || !is_q) { 11869 unallocated_encoding(s); 11870 return; 11871 } 11872 feature = dc_isar_feature(aa64_bf16, s); 11873 break; 11874 case 0x1f: 11875 switch (size) { 11876 case 1: /* BFDOT */ 11877 case 3: /* BFMLAL{B,T} */ 11878 feature = dc_isar_feature(aa64_bf16, s); 11879 break; 11880 default: 11881 unallocated_encoding(s); 11882 return; 11883 } 11884 break; 11885 default: 11886 unallocated_encoding(s); 11887 return; 11888 } 11889 if (!feature) { 11890 unallocated_encoding(s); 11891 return; 11892 } 11893 if (!fp_access_check(s)) { 11894 return; 11895 } 11896 11897 switch (opcode) { 11898 case 0x0: /* SQRDMLAH (vector) */ 11899 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11900 return; 11901 11902 case 0x1: /* SQRDMLSH (vector) */ 11903 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11904 return; 11905 11906 case 0x2: /* SDOT / UDOT */ 11907 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11908 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11909 return; 11910 11911 case 0x3: /* USDOT */ 11912 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11913 return; 11914 11915 case 0x04: /* SMMLA, UMMLA */ 11916 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11917 u ? gen_helper_gvec_ummla_b 11918 : gen_helper_gvec_smmla_b); 11919 return; 11920 case 0x05: /* USMMLA */ 11921 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11922 return; 11923 11924 case 0x8: /* FCMLA, #0 */ 11925 case 0x9: /* FCMLA, #90 */ 11926 case 0xa: /* FCMLA, #180 */ 11927 case 0xb: /* FCMLA, #270 */ 11928 rot = extract32(opcode, 0, 2); 11929 switch (size) { 11930 case 1: 11931 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11932 gen_helper_gvec_fcmlah); 11933 break; 11934 case 2: 11935 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11936 gen_helper_gvec_fcmlas); 11937 break; 11938 case 3: 11939 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11940 gen_helper_gvec_fcmlad); 11941 break; 11942 default: 11943 g_assert_not_reached(); 11944 } 11945 return; 11946 11947 case 0xc: /* FCADD, #90 */ 11948 case 0xe: /* FCADD, #270 */ 11949 rot = extract32(opcode, 1, 1); 11950 switch (size) { 11951 case 1: 11952 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11953 gen_helper_gvec_fcaddh); 11954 break; 11955 case 2: 11956 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11957 gen_helper_gvec_fcadds); 11958 break; 11959 case 3: 11960 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11961 gen_helper_gvec_fcaddd); 11962 break; 11963 default: 11964 g_assert_not_reached(); 11965 } 11966 return; 11967 11968 case 0xd: /* BFMMLA */ 11969 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11970 return; 11971 case 0xf: 11972 switch (size) { 11973 case 1: /* BFDOT */ 11974 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11975 break; 11976 case 3: /* BFMLAL{B,T} */ 11977 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11978 gen_helper_gvec_bfmlal); 11979 break; 11980 default: 11981 g_assert_not_reached(); 11982 } 11983 return; 11984 11985 default: 11986 g_assert_not_reached(); 11987 } 11988 } 11989 11990 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11991 int size, int rn, int rd) 11992 { 11993 /* Handle 2-reg-misc ops which are widening (so each size element 11994 * in the source becomes a 2*size element in the destination. 11995 * The only instruction like this is FCVTL. 11996 */ 11997 int pass; 11998 11999 if (size == 3) { 12000 /* 32 -> 64 bit fp conversion */ 12001 TCGv_i64 tcg_res[2]; 12002 int srcelt = is_q ? 2 : 0; 12003 12004 for (pass = 0; pass < 2; pass++) { 12005 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12006 tcg_res[pass] = tcg_temp_new_i64(); 12007 12008 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 12009 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 12010 } 12011 for (pass = 0; pass < 2; pass++) { 12012 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12013 } 12014 } else { 12015 /* 16 -> 32 bit fp conversion */ 12016 int srcelt = is_q ? 4 : 0; 12017 TCGv_i32 tcg_res[4]; 12018 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 12019 TCGv_i32 ahp = get_ahp_flag(); 12020 12021 for (pass = 0; pass < 4; pass++) { 12022 tcg_res[pass] = tcg_temp_new_i32(); 12023 12024 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 12025 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 12026 fpst, ahp); 12027 } 12028 for (pass = 0; pass < 4; pass++) { 12029 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 12030 } 12031 } 12032 } 12033 12034 static void handle_rev(DisasContext *s, int opcode, bool u, 12035 bool is_q, int size, int rn, int rd) 12036 { 12037 int op = (opcode << 1) | u; 12038 int opsz = op + size; 12039 int grp_size = 3 - opsz; 12040 int dsize = is_q ? 128 : 64; 12041 int i; 12042 12043 if (opsz >= 3) { 12044 unallocated_encoding(s); 12045 return; 12046 } 12047 12048 if (!fp_access_check(s)) { 12049 return; 12050 } 12051 12052 if (size == 0) { 12053 /* Special case bytes, use bswap op on each group of elements */ 12054 int groups = dsize / (8 << grp_size); 12055 12056 for (i = 0; i < groups; i++) { 12057 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12058 12059 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12060 switch (grp_size) { 12061 case MO_16: 12062 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12063 break; 12064 case MO_32: 12065 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12066 break; 12067 case MO_64: 12068 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12069 break; 12070 default: 12071 g_assert_not_reached(); 12072 } 12073 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12074 } 12075 clear_vec_high(s, is_q, rd); 12076 } else { 12077 int revmask = (1 << grp_size) - 1; 12078 int esize = 8 << size; 12079 int elements = dsize / esize; 12080 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12081 TCGv_i64 tcg_rd[2]; 12082 12083 for (i = 0; i < 2; i++) { 12084 tcg_rd[i] = tcg_temp_new_i64(); 12085 tcg_gen_movi_i64(tcg_rd[i], 0); 12086 } 12087 12088 for (i = 0; i < elements; i++) { 12089 int e_rev = (i & 0xf) ^ revmask; 12090 int w = (e_rev * esize) / 64; 12091 int o = (e_rev * esize) % 64; 12092 12093 read_vec_element(s, tcg_rn, rn, i, size); 12094 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12095 } 12096 12097 for (i = 0; i < 2; i++) { 12098 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12099 } 12100 clear_vec_high(s, true, rd); 12101 } 12102 } 12103 12104 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12105 bool is_q, int size, int rn, int rd) 12106 { 12107 /* Implement the pairwise operations from 2-misc: 12108 * SADDLP, UADDLP, SADALP, UADALP. 12109 * These all add pairs of elements in the input to produce a 12110 * double-width result element in the output (possibly accumulating). 12111 */ 12112 bool accum = (opcode == 0x6); 12113 int maxpass = is_q ? 2 : 1; 12114 int pass; 12115 TCGv_i64 tcg_res[2]; 12116 12117 if (size == 2) { 12118 /* 32 + 32 -> 64 op */ 12119 MemOp memop = size + (u ? 0 : MO_SIGN); 12120 12121 for (pass = 0; pass < maxpass; pass++) { 12122 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12123 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12124 12125 tcg_res[pass] = tcg_temp_new_i64(); 12126 12127 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12128 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12129 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12130 if (accum) { 12131 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12132 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12133 } 12134 } 12135 } else { 12136 for (pass = 0; pass < maxpass; pass++) { 12137 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12138 NeonGenOne64OpFn *genfn; 12139 static NeonGenOne64OpFn * const fns[2][2] = { 12140 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12141 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12142 }; 12143 12144 genfn = fns[size][u]; 12145 12146 tcg_res[pass] = tcg_temp_new_i64(); 12147 12148 read_vec_element(s, tcg_op, rn, pass, MO_64); 12149 genfn(tcg_res[pass], tcg_op); 12150 12151 if (accum) { 12152 read_vec_element(s, tcg_op, rd, pass, MO_64); 12153 if (size == 0) { 12154 gen_helper_neon_addl_u16(tcg_res[pass], 12155 tcg_res[pass], tcg_op); 12156 } else { 12157 gen_helper_neon_addl_u32(tcg_res[pass], 12158 tcg_res[pass], tcg_op); 12159 } 12160 } 12161 } 12162 } 12163 if (!is_q) { 12164 tcg_res[1] = tcg_constant_i64(0); 12165 } 12166 for (pass = 0; pass < 2; pass++) { 12167 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12168 } 12169 } 12170 12171 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12172 { 12173 /* Implement SHLL and SHLL2 */ 12174 int pass; 12175 int part = is_q ? 2 : 0; 12176 TCGv_i64 tcg_res[2]; 12177 12178 for (pass = 0; pass < 2; pass++) { 12179 static NeonGenWidenFn * const widenfns[3] = { 12180 gen_helper_neon_widen_u8, 12181 gen_helper_neon_widen_u16, 12182 tcg_gen_extu_i32_i64, 12183 }; 12184 NeonGenWidenFn *widenfn = widenfns[size]; 12185 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12186 12187 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12188 tcg_res[pass] = tcg_temp_new_i64(); 12189 widenfn(tcg_res[pass], tcg_op); 12190 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12191 } 12192 12193 for (pass = 0; pass < 2; pass++) { 12194 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12195 } 12196 } 12197 12198 /* AdvSIMD two reg misc 12199 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12200 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12201 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12202 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12203 */ 12204 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12205 { 12206 int size = extract32(insn, 22, 2); 12207 int opcode = extract32(insn, 12, 5); 12208 bool u = extract32(insn, 29, 1); 12209 bool is_q = extract32(insn, 30, 1); 12210 int rn = extract32(insn, 5, 5); 12211 int rd = extract32(insn, 0, 5); 12212 bool need_fpstatus = false; 12213 int rmode = -1; 12214 TCGv_i32 tcg_rmode; 12215 TCGv_ptr tcg_fpstatus; 12216 12217 switch (opcode) { 12218 case 0x0: /* REV64, REV32 */ 12219 case 0x1: /* REV16 */ 12220 handle_rev(s, opcode, u, is_q, size, rn, rd); 12221 return; 12222 case 0x5: /* CNT, NOT, RBIT */ 12223 if (u && size == 0) { 12224 /* NOT */ 12225 break; 12226 } else if (u && size == 1) { 12227 /* RBIT */ 12228 break; 12229 } else if (!u && size == 0) { 12230 /* CNT */ 12231 break; 12232 } 12233 unallocated_encoding(s); 12234 return; 12235 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12236 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12237 if (size == 3) { 12238 unallocated_encoding(s); 12239 return; 12240 } 12241 if (!fp_access_check(s)) { 12242 return; 12243 } 12244 12245 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12246 return; 12247 case 0x4: /* CLS, CLZ */ 12248 if (size == 3) { 12249 unallocated_encoding(s); 12250 return; 12251 } 12252 break; 12253 case 0x2: /* SADDLP, UADDLP */ 12254 case 0x6: /* SADALP, UADALP */ 12255 if (size == 3) { 12256 unallocated_encoding(s); 12257 return; 12258 } 12259 if (!fp_access_check(s)) { 12260 return; 12261 } 12262 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12263 return; 12264 case 0x13: /* SHLL, SHLL2 */ 12265 if (u == 0 || size == 3) { 12266 unallocated_encoding(s); 12267 return; 12268 } 12269 if (!fp_access_check(s)) { 12270 return; 12271 } 12272 handle_shll(s, is_q, size, rn, rd); 12273 return; 12274 case 0xa: /* CMLT */ 12275 if (u == 1) { 12276 unallocated_encoding(s); 12277 return; 12278 } 12279 /* fall through */ 12280 case 0x8: /* CMGT, CMGE */ 12281 case 0x9: /* CMEQ, CMLE */ 12282 case 0xb: /* ABS, NEG */ 12283 if (size == 3 && !is_q) { 12284 unallocated_encoding(s); 12285 return; 12286 } 12287 break; 12288 case 0x3: /* SUQADD, USQADD */ 12289 if (size == 3 && !is_q) { 12290 unallocated_encoding(s); 12291 return; 12292 } 12293 if (!fp_access_check(s)) { 12294 return; 12295 } 12296 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12297 return; 12298 case 0x7: /* SQABS, SQNEG */ 12299 if (size == 3 && !is_q) { 12300 unallocated_encoding(s); 12301 return; 12302 } 12303 break; 12304 case 0xc ... 0xf: 12305 case 0x16 ... 0x1f: 12306 { 12307 /* Floating point: U, size[1] and opcode indicate operation; 12308 * size[0] indicates single or double precision. 12309 */ 12310 int is_double = extract32(size, 0, 1); 12311 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12312 size = is_double ? 3 : 2; 12313 switch (opcode) { 12314 case 0x2f: /* FABS */ 12315 case 0x6f: /* FNEG */ 12316 if (size == 3 && !is_q) { 12317 unallocated_encoding(s); 12318 return; 12319 } 12320 break; 12321 case 0x1d: /* SCVTF */ 12322 case 0x5d: /* UCVTF */ 12323 { 12324 bool is_signed = (opcode == 0x1d) ? true : false; 12325 int elements = is_double ? 2 : is_q ? 4 : 2; 12326 if (is_double && !is_q) { 12327 unallocated_encoding(s); 12328 return; 12329 } 12330 if (!fp_access_check(s)) { 12331 return; 12332 } 12333 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12334 return; 12335 } 12336 case 0x2c: /* FCMGT (zero) */ 12337 case 0x2d: /* FCMEQ (zero) */ 12338 case 0x2e: /* FCMLT (zero) */ 12339 case 0x6c: /* FCMGE (zero) */ 12340 case 0x6d: /* FCMLE (zero) */ 12341 if (size == 3 && !is_q) { 12342 unallocated_encoding(s); 12343 return; 12344 } 12345 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12346 return; 12347 case 0x7f: /* FSQRT */ 12348 if (size == 3 && !is_q) { 12349 unallocated_encoding(s); 12350 return; 12351 } 12352 break; 12353 case 0x1a: /* FCVTNS */ 12354 case 0x1b: /* FCVTMS */ 12355 case 0x3a: /* FCVTPS */ 12356 case 0x3b: /* FCVTZS */ 12357 case 0x5a: /* FCVTNU */ 12358 case 0x5b: /* FCVTMU */ 12359 case 0x7a: /* FCVTPU */ 12360 case 0x7b: /* FCVTZU */ 12361 need_fpstatus = true; 12362 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12363 if (size == 3 && !is_q) { 12364 unallocated_encoding(s); 12365 return; 12366 } 12367 break; 12368 case 0x5c: /* FCVTAU */ 12369 case 0x1c: /* FCVTAS */ 12370 need_fpstatus = true; 12371 rmode = FPROUNDING_TIEAWAY; 12372 if (size == 3 && !is_q) { 12373 unallocated_encoding(s); 12374 return; 12375 } 12376 break; 12377 case 0x3c: /* URECPE */ 12378 if (size == 3) { 12379 unallocated_encoding(s); 12380 return; 12381 } 12382 /* fall through */ 12383 case 0x3d: /* FRECPE */ 12384 case 0x7d: /* FRSQRTE */ 12385 if (size == 3 && !is_q) { 12386 unallocated_encoding(s); 12387 return; 12388 } 12389 if (!fp_access_check(s)) { 12390 return; 12391 } 12392 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12393 return; 12394 case 0x56: /* FCVTXN, FCVTXN2 */ 12395 if (size == 2) { 12396 unallocated_encoding(s); 12397 return; 12398 } 12399 /* fall through */ 12400 case 0x16: /* FCVTN, FCVTN2 */ 12401 /* handle_2misc_narrow does a 2*size -> size operation, but these 12402 * instructions encode the source size rather than dest size. 12403 */ 12404 if (!fp_access_check(s)) { 12405 return; 12406 } 12407 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12408 return; 12409 case 0x36: /* BFCVTN, BFCVTN2 */ 12410 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12411 unallocated_encoding(s); 12412 return; 12413 } 12414 if (!fp_access_check(s)) { 12415 return; 12416 } 12417 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12418 return; 12419 case 0x17: /* FCVTL, FCVTL2 */ 12420 if (!fp_access_check(s)) { 12421 return; 12422 } 12423 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12424 return; 12425 case 0x18: /* FRINTN */ 12426 case 0x19: /* FRINTM */ 12427 case 0x38: /* FRINTP */ 12428 case 0x39: /* FRINTZ */ 12429 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12430 /* fall through */ 12431 case 0x59: /* FRINTX */ 12432 case 0x79: /* FRINTI */ 12433 need_fpstatus = true; 12434 if (size == 3 && !is_q) { 12435 unallocated_encoding(s); 12436 return; 12437 } 12438 break; 12439 case 0x58: /* FRINTA */ 12440 rmode = FPROUNDING_TIEAWAY; 12441 need_fpstatus = true; 12442 if (size == 3 && !is_q) { 12443 unallocated_encoding(s); 12444 return; 12445 } 12446 break; 12447 case 0x7c: /* URSQRTE */ 12448 if (size == 3) { 12449 unallocated_encoding(s); 12450 return; 12451 } 12452 break; 12453 case 0x1e: /* FRINT32Z */ 12454 case 0x1f: /* FRINT64Z */ 12455 rmode = FPROUNDING_ZERO; 12456 /* fall through */ 12457 case 0x5e: /* FRINT32X */ 12458 case 0x5f: /* FRINT64X */ 12459 need_fpstatus = true; 12460 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12461 unallocated_encoding(s); 12462 return; 12463 } 12464 break; 12465 default: 12466 unallocated_encoding(s); 12467 return; 12468 } 12469 break; 12470 } 12471 default: 12472 unallocated_encoding(s); 12473 return; 12474 } 12475 12476 if (!fp_access_check(s)) { 12477 return; 12478 } 12479 12480 if (need_fpstatus || rmode >= 0) { 12481 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12482 } else { 12483 tcg_fpstatus = NULL; 12484 } 12485 if (rmode >= 0) { 12486 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12487 } else { 12488 tcg_rmode = NULL; 12489 } 12490 12491 switch (opcode) { 12492 case 0x5: 12493 if (u && size == 0) { /* NOT */ 12494 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12495 return; 12496 } 12497 break; 12498 case 0x8: /* CMGT, CMGE */ 12499 if (u) { 12500 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12501 } else { 12502 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12503 } 12504 return; 12505 case 0x9: /* CMEQ, CMLE */ 12506 if (u) { 12507 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12508 } else { 12509 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12510 } 12511 return; 12512 case 0xa: /* CMLT */ 12513 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12514 return; 12515 case 0xb: 12516 if (u) { /* ABS, NEG */ 12517 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12518 } else { 12519 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12520 } 12521 return; 12522 } 12523 12524 if (size == 3) { 12525 /* All 64-bit element operations can be shared with scalar 2misc */ 12526 int pass; 12527 12528 /* Coverity claims (size == 3 && !is_q) has been eliminated 12529 * from all paths leading to here. 12530 */ 12531 tcg_debug_assert(is_q); 12532 for (pass = 0; pass < 2; pass++) { 12533 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12534 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12535 12536 read_vec_element(s, tcg_op, rn, pass, MO_64); 12537 12538 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12539 tcg_rmode, tcg_fpstatus); 12540 12541 write_vec_element(s, tcg_res, rd, pass, MO_64); 12542 } 12543 } else { 12544 int pass; 12545 12546 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12547 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12548 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12549 12550 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12551 12552 if (size == 2) { 12553 /* Special cases for 32 bit elements */ 12554 switch (opcode) { 12555 case 0x4: /* CLS */ 12556 if (u) { 12557 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12558 } else { 12559 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12560 } 12561 break; 12562 case 0x7: /* SQABS, SQNEG */ 12563 if (u) { 12564 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12565 } else { 12566 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12567 } 12568 break; 12569 case 0x2f: /* FABS */ 12570 gen_helper_vfp_abss(tcg_res, tcg_op); 12571 break; 12572 case 0x6f: /* FNEG */ 12573 gen_helper_vfp_negs(tcg_res, tcg_op); 12574 break; 12575 case 0x7f: /* FSQRT */ 12576 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12577 break; 12578 case 0x1a: /* FCVTNS */ 12579 case 0x1b: /* FCVTMS */ 12580 case 0x1c: /* FCVTAS */ 12581 case 0x3a: /* FCVTPS */ 12582 case 0x3b: /* FCVTZS */ 12583 gen_helper_vfp_tosls(tcg_res, tcg_op, 12584 tcg_constant_i32(0), tcg_fpstatus); 12585 break; 12586 case 0x5a: /* FCVTNU */ 12587 case 0x5b: /* FCVTMU */ 12588 case 0x5c: /* FCVTAU */ 12589 case 0x7a: /* FCVTPU */ 12590 case 0x7b: /* FCVTZU */ 12591 gen_helper_vfp_touls(tcg_res, tcg_op, 12592 tcg_constant_i32(0), tcg_fpstatus); 12593 break; 12594 case 0x18: /* FRINTN */ 12595 case 0x19: /* FRINTM */ 12596 case 0x38: /* FRINTP */ 12597 case 0x39: /* FRINTZ */ 12598 case 0x58: /* FRINTA */ 12599 case 0x79: /* FRINTI */ 12600 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12601 break; 12602 case 0x59: /* FRINTX */ 12603 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12604 break; 12605 case 0x7c: /* URSQRTE */ 12606 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12607 break; 12608 case 0x1e: /* FRINT32Z */ 12609 case 0x5e: /* FRINT32X */ 12610 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12611 break; 12612 case 0x1f: /* FRINT64Z */ 12613 case 0x5f: /* FRINT64X */ 12614 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12615 break; 12616 default: 12617 g_assert_not_reached(); 12618 } 12619 } else { 12620 /* Use helpers for 8 and 16 bit elements */ 12621 switch (opcode) { 12622 case 0x5: /* CNT, RBIT */ 12623 /* For these two insns size is part of the opcode specifier 12624 * (handled earlier); they always operate on byte elements. 12625 */ 12626 if (u) { 12627 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12628 } else { 12629 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12630 } 12631 break; 12632 case 0x7: /* SQABS, SQNEG */ 12633 { 12634 NeonGenOneOpEnvFn *genfn; 12635 static NeonGenOneOpEnvFn * const fns[2][2] = { 12636 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12637 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12638 }; 12639 genfn = fns[size][u]; 12640 genfn(tcg_res, tcg_env, tcg_op); 12641 break; 12642 } 12643 case 0x4: /* CLS, CLZ */ 12644 if (u) { 12645 if (size == 0) { 12646 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12647 } else { 12648 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12649 } 12650 } else { 12651 if (size == 0) { 12652 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12653 } else { 12654 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12655 } 12656 } 12657 break; 12658 default: 12659 g_assert_not_reached(); 12660 } 12661 } 12662 12663 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12664 } 12665 } 12666 clear_vec_high(s, is_q, rd); 12667 12668 if (tcg_rmode) { 12669 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12670 } 12671 } 12672 12673 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12674 * 12675 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12676 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12677 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12678 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12679 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12680 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12681 * 12682 * This actually covers two groups where scalar access is governed by 12683 * bit 28. A bunch of the instructions (float to integral) only exist 12684 * in the vector form and are un-allocated for the scalar decode. Also 12685 * in the scalar decode Q is always 1. 12686 */ 12687 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12688 { 12689 int fpop, opcode, a, u; 12690 int rn, rd; 12691 bool is_q; 12692 bool is_scalar; 12693 bool only_in_vector = false; 12694 12695 int pass; 12696 TCGv_i32 tcg_rmode = NULL; 12697 TCGv_ptr tcg_fpstatus = NULL; 12698 bool need_fpst = true; 12699 int rmode = -1; 12700 12701 if (!dc_isar_feature(aa64_fp16, s)) { 12702 unallocated_encoding(s); 12703 return; 12704 } 12705 12706 rd = extract32(insn, 0, 5); 12707 rn = extract32(insn, 5, 5); 12708 12709 a = extract32(insn, 23, 1); 12710 u = extract32(insn, 29, 1); 12711 is_scalar = extract32(insn, 28, 1); 12712 is_q = extract32(insn, 30, 1); 12713 12714 opcode = extract32(insn, 12, 5); 12715 fpop = deposit32(opcode, 5, 1, a); 12716 fpop = deposit32(fpop, 6, 1, u); 12717 12718 switch (fpop) { 12719 case 0x1d: /* SCVTF */ 12720 case 0x5d: /* UCVTF */ 12721 { 12722 int elements; 12723 12724 if (is_scalar) { 12725 elements = 1; 12726 } else { 12727 elements = (is_q ? 8 : 4); 12728 } 12729 12730 if (!fp_access_check(s)) { 12731 return; 12732 } 12733 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12734 return; 12735 } 12736 break; 12737 case 0x2c: /* FCMGT (zero) */ 12738 case 0x2d: /* FCMEQ (zero) */ 12739 case 0x2e: /* FCMLT (zero) */ 12740 case 0x6c: /* FCMGE (zero) */ 12741 case 0x6d: /* FCMLE (zero) */ 12742 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12743 return; 12744 case 0x3d: /* FRECPE */ 12745 case 0x3f: /* FRECPX */ 12746 break; 12747 case 0x18: /* FRINTN */ 12748 only_in_vector = true; 12749 rmode = FPROUNDING_TIEEVEN; 12750 break; 12751 case 0x19: /* FRINTM */ 12752 only_in_vector = true; 12753 rmode = FPROUNDING_NEGINF; 12754 break; 12755 case 0x38: /* FRINTP */ 12756 only_in_vector = true; 12757 rmode = FPROUNDING_POSINF; 12758 break; 12759 case 0x39: /* FRINTZ */ 12760 only_in_vector = true; 12761 rmode = FPROUNDING_ZERO; 12762 break; 12763 case 0x58: /* FRINTA */ 12764 only_in_vector = true; 12765 rmode = FPROUNDING_TIEAWAY; 12766 break; 12767 case 0x59: /* FRINTX */ 12768 case 0x79: /* FRINTI */ 12769 only_in_vector = true; 12770 /* current rounding mode */ 12771 break; 12772 case 0x1a: /* FCVTNS */ 12773 rmode = FPROUNDING_TIEEVEN; 12774 break; 12775 case 0x1b: /* FCVTMS */ 12776 rmode = FPROUNDING_NEGINF; 12777 break; 12778 case 0x1c: /* FCVTAS */ 12779 rmode = FPROUNDING_TIEAWAY; 12780 break; 12781 case 0x3a: /* FCVTPS */ 12782 rmode = FPROUNDING_POSINF; 12783 break; 12784 case 0x3b: /* FCVTZS */ 12785 rmode = FPROUNDING_ZERO; 12786 break; 12787 case 0x5a: /* FCVTNU */ 12788 rmode = FPROUNDING_TIEEVEN; 12789 break; 12790 case 0x5b: /* FCVTMU */ 12791 rmode = FPROUNDING_NEGINF; 12792 break; 12793 case 0x5c: /* FCVTAU */ 12794 rmode = FPROUNDING_TIEAWAY; 12795 break; 12796 case 0x7a: /* FCVTPU */ 12797 rmode = FPROUNDING_POSINF; 12798 break; 12799 case 0x7b: /* FCVTZU */ 12800 rmode = FPROUNDING_ZERO; 12801 break; 12802 case 0x2f: /* FABS */ 12803 case 0x6f: /* FNEG */ 12804 need_fpst = false; 12805 break; 12806 case 0x7d: /* FRSQRTE */ 12807 case 0x7f: /* FSQRT (vector) */ 12808 break; 12809 default: 12810 unallocated_encoding(s); 12811 return; 12812 } 12813 12814 12815 /* Check additional constraints for the scalar encoding */ 12816 if (is_scalar) { 12817 if (!is_q) { 12818 unallocated_encoding(s); 12819 return; 12820 } 12821 /* FRINTxx is only in the vector form */ 12822 if (only_in_vector) { 12823 unallocated_encoding(s); 12824 return; 12825 } 12826 } 12827 12828 if (!fp_access_check(s)) { 12829 return; 12830 } 12831 12832 if (rmode >= 0 || need_fpst) { 12833 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12834 } 12835 12836 if (rmode >= 0) { 12837 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12838 } 12839 12840 if (is_scalar) { 12841 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12842 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12843 12844 switch (fpop) { 12845 case 0x1a: /* FCVTNS */ 12846 case 0x1b: /* FCVTMS */ 12847 case 0x1c: /* FCVTAS */ 12848 case 0x3a: /* FCVTPS */ 12849 case 0x3b: /* FCVTZS */ 12850 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12851 break; 12852 case 0x3d: /* FRECPE */ 12853 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12854 break; 12855 case 0x3f: /* FRECPX */ 12856 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12857 break; 12858 case 0x5a: /* FCVTNU */ 12859 case 0x5b: /* FCVTMU */ 12860 case 0x5c: /* FCVTAU */ 12861 case 0x7a: /* FCVTPU */ 12862 case 0x7b: /* FCVTZU */ 12863 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12864 break; 12865 case 0x6f: /* FNEG */ 12866 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12867 break; 12868 case 0x7d: /* FRSQRTE */ 12869 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12870 break; 12871 default: 12872 g_assert_not_reached(); 12873 } 12874 12875 /* limit any sign extension going on */ 12876 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12877 write_fp_sreg(s, rd, tcg_res); 12878 } else { 12879 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12880 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12881 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12882 12883 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12884 12885 switch (fpop) { 12886 case 0x1a: /* FCVTNS */ 12887 case 0x1b: /* FCVTMS */ 12888 case 0x1c: /* FCVTAS */ 12889 case 0x3a: /* FCVTPS */ 12890 case 0x3b: /* FCVTZS */ 12891 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12892 break; 12893 case 0x3d: /* FRECPE */ 12894 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12895 break; 12896 case 0x5a: /* FCVTNU */ 12897 case 0x5b: /* FCVTMU */ 12898 case 0x5c: /* FCVTAU */ 12899 case 0x7a: /* FCVTPU */ 12900 case 0x7b: /* FCVTZU */ 12901 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12902 break; 12903 case 0x18: /* FRINTN */ 12904 case 0x19: /* FRINTM */ 12905 case 0x38: /* FRINTP */ 12906 case 0x39: /* FRINTZ */ 12907 case 0x58: /* FRINTA */ 12908 case 0x79: /* FRINTI */ 12909 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12910 break; 12911 case 0x59: /* FRINTX */ 12912 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12913 break; 12914 case 0x2f: /* FABS */ 12915 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12916 break; 12917 case 0x6f: /* FNEG */ 12918 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12919 break; 12920 case 0x7d: /* FRSQRTE */ 12921 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12922 break; 12923 case 0x7f: /* FSQRT */ 12924 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12925 break; 12926 default: 12927 g_assert_not_reached(); 12928 } 12929 12930 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12931 } 12932 12933 clear_vec_high(s, is_q, rd); 12934 } 12935 12936 if (tcg_rmode) { 12937 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12938 } 12939 } 12940 12941 /* AdvSIMD scalar x indexed element 12942 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12943 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12944 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12945 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12946 * AdvSIMD vector x indexed element 12947 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12948 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12949 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12950 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12951 */ 12952 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12953 { 12954 /* This encoding has two kinds of instruction: 12955 * normal, where we perform elt x idxelt => elt for each 12956 * element in the vector 12957 * long, where we perform elt x idxelt and generate a result of 12958 * double the width of the input element 12959 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12960 */ 12961 bool is_scalar = extract32(insn, 28, 1); 12962 bool is_q = extract32(insn, 30, 1); 12963 bool u = extract32(insn, 29, 1); 12964 int size = extract32(insn, 22, 2); 12965 int l = extract32(insn, 21, 1); 12966 int m = extract32(insn, 20, 1); 12967 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12968 int rm = extract32(insn, 16, 4); 12969 int opcode = extract32(insn, 12, 4); 12970 int h = extract32(insn, 11, 1); 12971 int rn = extract32(insn, 5, 5); 12972 int rd = extract32(insn, 0, 5); 12973 bool is_long = false; 12974 int is_fp = 0; 12975 bool is_fp16 = false; 12976 int index; 12977 TCGv_ptr fpst; 12978 12979 switch (16 * u + opcode) { 12980 case 0x08: /* MUL */ 12981 case 0x10: /* MLA */ 12982 case 0x14: /* MLS */ 12983 if (is_scalar) { 12984 unallocated_encoding(s); 12985 return; 12986 } 12987 break; 12988 case 0x02: /* SMLAL, SMLAL2 */ 12989 case 0x12: /* UMLAL, UMLAL2 */ 12990 case 0x06: /* SMLSL, SMLSL2 */ 12991 case 0x16: /* UMLSL, UMLSL2 */ 12992 case 0x0a: /* SMULL, SMULL2 */ 12993 case 0x1a: /* UMULL, UMULL2 */ 12994 if (is_scalar) { 12995 unallocated_encoding(s); 12996 return; 12997 } 12998 is_long = true; 12999 break; 13000 case 0x03: /* SQDMLAL, SQDMLAL2 */ 13001 case 0x07: /* SQDMLSL, SQDMLSL2 */ 13002 case 0x0b: /* SQDMULL, SQDMULL2 */ 13003 is_long = true; 13004 break; 13005 case 0x0c: /* SQDMULH */ 13006 case 0x0d: /* SQRDMULH */ 13007 break; 13008 case 0x01: /* FMLA */ 13009 case 0x05: /* FMLS */ 13010 is_fp = 1; 13011 break; 13012 case 0x1d: /* SQRDMLAH */ 13013 case 0x1f: /* SQRDMLSH */ 13014 if (!dc_isar_feature(aa64_rdm, s)) { 13015 unallocated_encoding(s); 13016 return; 13017 } 13018 break; 13019 case 0x0e: /* SDOT */ 13020 case 0x1e: /* UDOT */ 13021 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 13022 unallocated_encoding(s); 13023 return; 13024 } 13025 break; 13026 case 0x0f: 13027 switch (size) { 13028 case 0: /* SUDOT */ 13029 case 2: /* USDOT */ 13030 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 13031 unallocated_encoding(s); 13032 return; 13033 } 13034 size = MO_32; 13035 break; 13036 case 1: /* BFDOT */ 13037 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13038 unallocated_encoding(s); 13039 return; 13040 } 13041 size = MO_32; 13042 break; 13043 case 3: /* BFMLAL{B,T} */ 13044 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13045 unallocated_encoding(s); 13046 return; 13047 } 13048 /* can't set is_fp without other incorrect size checks */ 13049 size = MO_16; 13050 break; 13051 default: 13052 unallocated_encoding(s); 13053 return; 13054 } 13055 break; 13056 case 0x11: /* FCMLA #0 */ 13057 case 0x13: /* FCMLA #90 */ 13058 case 0x15: /* FCMLA #180 */ 13059 case 0x17: /* FCMLA #270 */ 13060 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13061 unallocated_encoding(s); 13062 return; 13063 } 13064 is_fp = 2; 13065 break; 13066 case 0x00: /* FMLAL */ 13067 case 0x04: /* FMLSL */ 13068 case 0x18: /* FMLAL2 */ 13069 case 0x1c: /* FMLSL2 */ 13070 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13071 unallocated_encoding(s); 13072 return; 13073 } 13074 size = MO_16; 13075 /* is_fp, but we pass tcg_env not fp_status. */ 13076 break; 13077 default: 13078 case 0x09: /* FMUL */ 13079 case 0x19: /* FMULX */ 13080 unallocated_encoding(s); 13081 return; 13082 } 13083 13084 switch (is_fp) { 13085 case 1: /* normal fp */ 13086 /* convert insn encoded size to MemOp size */ 13087 switch (size) { 13088 case 0: /* half-precision */ 13089 size = MO_16; 13090 is_fp16 = true; 13091 break; 13092 case MO_32: /* single precision */ 13093 case MO_64: /* double precision */ 13094 break; 13095 default: 13096 unallocated_encoding(s); 13097 return; 13098 } 13099 break; 13100 13101 case 2: /* complex fp */ 13102 /* Each indexable element is a complex pair. */ 13103 size += 1; 13104 switch (size) { 13105 case MO_32: 13106 if (h && !is_q) { 13107 unallocated_encoding(s); 13108 return; 13109 } 13110 is_fp16 = true; 13111 break; 13112 case MO_64: 13113 break; 13114 default: 13115 unallocated_encoding(s); 13116 return; 13117 } 13118 break; 13119 13120 default: /* integer */ 13121 switch (size) { 13122 case MO_8: 13123 case MO_64: 13124 unallocated_encoding(s); 13125 return; 13126 } 13127 break; 13128 } 13129 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13130 unallocated_encoding(s); 13131 return; 13132 } 13133 13134 /* Given MemOp size, adjust register and indexing. */ 13135 switch (size) { 13136 case MO_16: 13137 index = h << 2 | l << 1 | m; 13138 break; 13139 case MO_32: 13140 index = h << 1 | l; 13141 rm |= m << 4; 13142 break; 13143 case MO_64: 13144 if (l || !is_q) { 13145 unallocated_encoding(s); 13146 return; 13147 } 13148 index = h; 13149 rm |= m << 4; 13150 break; 13151 default: 13152 g_assert_not_reached(); 13153 } 13154 13155 if (!fp_access_check(s)) { 13156 return; 13157 } 13158 13159 if (is_fp) { 13160 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13161 } else { 13162 fpst = NULL; 13163 } 13164 13165 switch (16 * u + opcode) { 13166 case 0x0e: /* SDOT */ 13167 case 0x1e: /* UDOT */ 13168 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13169 u ? gen_helper_gvec_udot_idx_b 13170 : gen_helper_gvec_sdot_idx_b); 13171 return; 13172 case 0x0f: 13173 switch (extract32(insn, 22, 2)) { 13174 case 0: /* SUDOT */ 13175 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13176 gen_helper_gvec_sudot_idx_b); 13177 return; 13178 case 1: /* BFDOT */ 13179 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13180 gen_helper_gvec_bfdot_idx); 13181 return; 13182 case 2: /* USDOT */ 13183 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13184 gen_helper_gvec_usdot_idx_b); 13185 return; 13186 case 3: /* BFMLAL{B,T} */ 13187 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13188 gen_helper_gvec_bfmlal_idx); 13189 return; 13190 } 13191 g_assert_not_reached(); 13192 case 0x11: /* FCMLA #0 */ 13193 case 0x13: /* FCMLA #90 */ 13194 case 0x15: /* FCMLA #180 */ 13195 case 0x17: /* FCMLA #270 */ 13196 { 13197 int rot = extract32(insn, 13, 2); 13198 int data = (index << 2) | rot; 13199 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13200 vec_full_reg_offset(s, rn), 13201 vec_full_reg_offset(s, rm), 13202 vec_full_reg_offset(s, rd), fpst, 13203 is_q ? 16 : 8, vec_full_reg_size(s), data, 13204 size == MO_64 13205 ? gen_helper_gvec_fcmlas_idx 13206 : gen_helper_gvec_fcmlah_idx); 13207 } 13208 return; 13209 13210 case 0x00: /* FMLAL */ 13211 case 0x04: /* FMLSL */ 13212 case 0x18: /* FMLAL2 */ 13213 case 0x1c: /* FMLSL2 */ 13214 { 13215 int is_s = extract32(opcode, 2, 1); 13216 int is_2 = u; 13217 int data = (index << 2) | (is_2 << 1) | is_s; 13218 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13219 vec_full_reg_offset(s, rn), 13220 vec_full_reg_offset(s, rm), tcg_env, 13221 is_q ? 16 : 8, vec_full_reg_size(s), 13222 data, gen_helper_gvec_fmlal_idx_a64); 13223 } 13224 return; 13225 13226 case 0x08: /* MUL */ 13227 if (!is_long && !is_scalar) { 13228 static gen_helper_gvec_3 * const fns[3] = { 13229 gen_helper_gvec_mul_idx_h, 13230 gen_helper_gvec_mul_idx_s, 13231 gen_helper_gvec_mul_idx_d, 13232 }; 13233 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13234 vec_full_reg_offset(s, rn), 13235 vec_full_reg_offset(s, rm), 13236 is_q ? 16 : 8, vec_full_reg_size(s), 13237 index, fns[size - 1]); 13238 return; 13239 } 13240 break; 13241 13242 case 0x10: /* MLA */ 13243 if (!is_long && !is_scalar) { 13244 static gen_helper_gvec_4 * const fns[3] = { 13245 gen_helper_gvec_mla_idx_h, 13246 gen_helper_gvec_mla_idx_s, 13247 gen_helper_gvec_mla_idx_d, 13248 }; 13249 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13250 vec_full_reg_offset(s, rn), 13251 vec_full_reg_offset(s, rm), 13252 vec_full_reg_offset(s, rd), 13253 is_q ? 16 : 8, vec_full_reg_size(s), 13254 index, fns[size - 1]); 13255 return; 13256 } 13257 break; 13258 13259 case 0x14: /* MLS */ 13260 if (!is_long && !is_scalar) { 13261 static gen_helper_gvec_4 * const fns[3] = { 13262 gen_helper_gvec_mls_idx_h, 13263 gen_helper_gvec_mls_idx_s, 13264 gen_helper_gvec_mls_idx_d, 13265 }; 13266 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13267 vec_full_reg_offset(s, rn), 13268 vec_full_reg_offset(s, rm), 13269 vec_full_reg_offset(s, rd), 13270 is_q ? 16 : 8, vec_full_reg_size(s), 13271 index, fns[size - 1]); 13272 return; 13273 } 13274 break; 13275 } 13276 13277 if (size == 3) { 13278 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13279 int pass; 13280 13281 assert(is_fp && is_q && !is_long); 13282 13283 read_vec_element(s, tcg_idx, rm, index, MO_64); 13284 13285 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13286 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13287 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13288 13289 read_vec_element(s, tcg_op, rn, pass, MO_64); 13290 13291 switch (16 * u + opcode) { 13292 case 0x05: /* FMLS */ 13293 /* As usual for ARM, separate negation for fused multiply-add */ 13294 gen_helper_vfp_negd(tcg_op, tcg_op); 13295 /* fall through */ 13296 case 0x01: /* FMLA */ 13297 read_vec_element(s, tcg_res, rd, pass, MO_64); 13298 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13299 break; 13300 default: 13301 case 0x09: /* FMUL */ 13302 case 0x19: /* FMULX */ 13303 g_assert_not_reached(); 13304 } 13305 13306 write_vec_element(s, tcg_res, rd, pass, MO_64); 13307 } 13308 13309 clear_vec_high(s, !is_scalar, rd); 13310 } else if (!is_long) { 13311 /* 32 bit floating point, or 16 or 32 bit integer. 13312 * For the 16 bit scalar case we use the usual Neon helpers and 13313 * rely on the fact that 0 op 0 == 0 with no side effects. 13314 */ 13315 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13316 int pass, maxpasses; 13317 13318 if (is_scalar) { 13319 maxpasses = 1; 13320 } else { 13321 maxpasses = is_q ? 4 : 2; 13322 } 13323 13324 read_vec_element_i32(s, tcg_idx, rm, index, size); 13325 13326 if (size == 1 && !is_scalar) { 13327 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13328 * the index into both halves of the 32 bit tcg_idx and then use 13329 * the usual Neon helpers. 13330 */ 13331 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13332 } 13333 13334 for (pass = 0; pass < maxpasses; pass++) { 13335 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13336 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13337 13338 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13339 13340 switch (16 * u + opcode) { 13341 case 0x08: /* MUL */ 13342 case 0x10: /* MLA */ 13343 case 0x14: /* MLS */ 13344 { 13345 static NeonGenTwoOpFn * const fns[2][2] = { 13346 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13347 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13348 }; 13349 NeonGenTwoOpFn *genfn; 13350 bool is_sub = opcode == 0x4; 13351 13352 if (size == 1) { 13353 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13354 } else { 13355 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13356 } 13357 if (opcode == 0x8) { 13358 break; 13359 } 13360 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13361 genfn = fns[size - 1][is_sub]; 13362 genfn(tcg_res, tcg_op, tcg_res); 13363 break; 13364 } 13365 case 0x05: /* FMLS */ 13366 case 0x01: /* FMLA */ 13367 read_vec_element_i32(s, tcg_res, rd, pass, 13368 is_scalar ? size : MO_32); 13369 switch (size) { 13370 case 1: 13371 if (opcode == 0x5) { 13372 /* As usual for ARM, separate negation for fused 13373 * multiply-add */ 13374 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13375 } 13376 if (is_scalar) { 13377 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13378 tcg_res, fpst); 13379 } else { 13380 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13381 tcg_res, fpst); 13382 } 13383 break; 13384 case 2: 13385 if (opcode == 0x5) { 13386 /* As usual for ARM, separate negation for 13387 * fused multiply-add */ 13388 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13389 } 13390 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13391 tcg_res, fpst); 13392 break; 13393 default: 13394 g_assert_not_reached(); 13395 } 13396 break; 13397 case 0x0c: /* SQDMULH */ 13398 if (size == 1) { 13399 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13400 tcg_op, tcg_idx); 13401 } else { 13402 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13403 tcg_op, tcg_idx); 13404 } 13405 break; 13406 case 0x0d: /* SQRDMULH */ 13407 if (size == 1) { 13408 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13409 tcg_op, tcg_idx); 13410 } else { 13411 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13412 tcg_op, tcg_idx); 13413 } 13414 break; 13415 case 0x1d: /* SQRDMLAH */ 13416 read_vec_element_i32(s, tcg_res, rd, pass, 13417 is_scalar ? size : MO_32); 13418 if (size == 1) { 13419 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13420 tcg_op, tcg_idx, tcg_res); 13421 } else { 13422 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13423 tcg_op, tcg_idx, tcg_res); 13424 } 13425 break; 13426 case 0x1f: /* SQRDMLSH */ 13427 read_vec_element_i32(s, tcg_res, rd, pass, 13428 is_scalar ? size : MO_32); 13429 if (size == 1) { 13430 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13431 tcg_op, tcg_idx, tcg_res); 13432 } else { 13433 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13434 tcg_op, tcg_idx, tcg_res); 13435 } 13436 break; 13437 default: 13438 case 0x09: /* FMUL */ 13439 case 0x19: /* FMULX */ 13440 g_assert_not_reached(); 13441 } 13442 13443 if (is_scalar) { 13444 write_fp_sreg(s, rd, tcg_res); 13445 } else { 13446 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13447 } 13448 } 13449 13450 clear_vec_high(s, is_q, rd); 13451 } else { 13452 /* long ops: 16x16->32 or 32x32->64 */ 13453 TCGv_i64 tcg_res[2]; 13454 int pass; 13455 bool satop = extract32(opcode, 0, 1); 13456 MemOp memop = MO_32; 13457 13458 if (satop || !u) { 13459 memop |= MO_SIGN; 13460 } 13461 13462 if (size == 2) { 13463 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13464 13465 read_vec_element(s, tcg_idx, rm, index, memop); 13466 13467 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13468 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13469 TCGv_i64 tcg_passres; 13470 int passelt; 13471 13472 if (is_scalar) { 13473 passelt = 0; 13474 } else { 13475 passelt = pass + (is_q * 2); 13476 } 13477 13478 read_vec_element(s, tcg_op, rn, passelt, memop); 13479 13480 tcg_res[pass] = tcg_temp_new_i64(); 13481 13482 if (opcode == 0xa || opcode == 0xb) { 13483 /* Non-accumulating ops */ 13484 tcg_passres = tcg_res[pass]; 13485 } else { 13486 tcg_passres = tcg_temp_new_i64(); 13487 } 13488 13489 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13490 13491 if (satop) { 13492 /* saturating, doubling */ 13493 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13494 tcg_passres, tcg_passres); 13495 } 13496 13497 if (opcode == 0xa || opcode == 0xb) { 13498 continue; 13499 } 13500 13501 /* Accumulating op: handle accumulate step */ 13502 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13503 13504 switch (opcode) { 13505 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13506 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13507 break; 13508 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13509 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13510 break; 13511 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13512 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13513 /* fall through */ 13514 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13515 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13516 tcg_res[pass], 13517 tcg_passres); 13518 break; 13519 default: 13520 g_assert_not_reached(); 13521 } 13522 } 13523 13524 clear_vec_high(s, !is_scalar, rd); 13525 } else { 13526 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13527 13528 assert(size == 1); 13529 read_vec_element_i32(s, tcg_idx, rm, index, size); 13530 13531 if (!is_scalar) { 13532 /* The simplest way to handle the 16x16 indexed ops is to 13533 * duplicate the index into both halves of the 32 bit tcg_idx 13534 * and then use the usual Neon helpers. 13535 */ 13536 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13537 } 13538 13539 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13540 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13541 TCGv_i64 tcg_passres; 13542 13543 if (is_scalar) { 13544 read_vec_element_i32(s, tcg_op, rn, pass, size); 13545 } else { 13546 read_vec_element_i32(s, tcg_op, rn, 13547 pass + (is_q * 2), MO_32); 13548 } 13549 13550 tcg_res[pass] = tcg_temp_new_i64(); 13551 13552 if (opcode == 0xa || opcode == 0xb) { 13553 /* Non-accumulating ops */ 13554 tcg_passres = tcg_res[pass]; 13555 } else { 13556 tcg_passres = tcg_temp_new_i64(); 13557 } 13558 13559 if (memop & MO_SIGN) { 13560 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13561 } else { 13562 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13563 } 13564 if (satop) { 13565 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13566 tcg_passres, tcg_passres); 13567 } 13568 13569 if (opcode == 0xa || opcode == 0xb) { 13570 continue; 13571 } 13572 13573 /* Accumulating op: handle accumulate step */ 13574 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13575 13576 switch (opcode) { 13577 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13578 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13579 tcg_passres); 13580 break; 13581 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13582 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13583 tcg_passres); 13584 break; 13585 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13586 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13587 /* fall through */ 13588 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13589 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13590 tcg_res[pass], 13591 tcg_passres); 13592 break; 13593 default: 13594 g_assert_not_reached(); 13595 } 13596 } 13597 13598 if (is_scalar) { 13599 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13600 } 13601 } 13602 13603 if (is_scalar) { 13604 tcg_res[1] = tcg_constant_i64(0); 13605 } 13606 13607 for (pass = 0; pass < 2; pass++) { 13608 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13609 } 13610 } 13611 } 13612 13613 /* C3.6 Data processing - SIMD, inc Crypto 13614 * 13615 * As the decode gets a little complex we are using a table based 13616 * approach for this part of the decode. 13617 */ 13618 static const AArch64DecodeTable data_proc_simd[] = { 13619 /* pattern , mask , fn */ 13620 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13621 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13622 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13623 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13624 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13625 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13626 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13627 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13628 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13629 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13630 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13631 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13632 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13633 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13634 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13635 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13636 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13637 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13638 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13639 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13640 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13641 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13642 { 0x00000000, 0x00000000, NULL } 13643 }; 13644 13645 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13646 { 13647 /* Note that this is called with all non-FP cases from 13648 * table C3-6 so it must UNDEF for entries not specifically 13649 * allocated to instructions in that table. 13650 */ 13651 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13652 if (fn) { 13653 fn(s, insn); 13654 } else { 13655 unallocated_encoding(s); 13656 } 13657 } 13658 13659 /* C3.6 Data processing - SIMD and floating point */ 13660 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13661 { 13662 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13663 disas_data_proc_fp(s, insn); 13664 } else { 13665 /* SIMD, including crypto */ 13666 disas_data_proc_simd(s, insn); 13667 } 13668 } 13669 13670 static bool trans_OK(DisasContext *s, arg_OK *a) 13671 { 13672 return true; 13673 } 13674 13675 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13676 { 13677 s->is_nonstreaming = true; 13678 return true; 13679 } 13680 13681 /** 13682 * is_guarded_page: 13683 * @env: The cpu environment 13684 * @s: The DisasContext 13685 * 13686 * Return true if the page is guarded. 13687 */ 13688 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13689 { 13690 uint64_t addr = s->base.pc_first; 13691 #ifdef CONFIG_USER_ONLY 13692 return page_get_flags(addr) & PAGE_BTI; 13693 #else 13694 CPUTLBEntryFull *full; 13695 void *host; 13696 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13697 int flags; 13698 13699 /* 13700 * We test this immediately after reading an insn, which means 13701 * that the TLB entry must be present and valid, and thus this 13702 * access will never raise an exception. 13703 */ 13704 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13705 false, &host, &full, 0); 13706 assert(!(flags & TLB_INVALID_MASK)); 13707 13708 return full->extra.arm.guarded; 13709 #endif 13710 } 13711 13712 /** 13713 * btype_destination_ok: 13714 * @insn: The instruction at the branch destination 13715 * @bt: SCTLR_ELx.BT 13716 * @btype: PSTATE.BTYPE, and is non-zero 13717 * 13718 * On a guarded page, there are a limited number of insns 13719 * that may be present at the branch target: 13720 * - branch target identifiers, 13721 * - paciasp, pacibsp, 13722 * - BRK insn 13723 * - HLT insn 13724 * Anything else causes a Branch Target Exception. 13725 * 13726 * Return true if the branch is compatible, false to raise BTITRAP. 13727 */ 13728 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13729 { 13730 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13731 /* HINT space */ 13732 switch (extract32(insn, 5, 7)) { 13733 case 0b011001: /* PACIASP */ 13734 case 0b011011: /* PACIBSP */ 13735 /* 13736 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13737 * with btype == 3. Otherwise all btype are ok. 13738 */ 13739 return !bt || btype != 3; 13740 case 0b100000: /* BTI */ 13741 /* Not compatible with any btype. */ 13742 return false; 13743 case 0b100010: /* BTI c */ 13744 /* Not compatible with btype == 3 */ 13745 return btype != 3; 13746 case 0b100100: /* BTI j */ 13747 /* Not compatible with btype == 2 */ 13748 return btype != 2; 13749 case 0b100110: /* BTI jc */ 13750 /* Compatible with any btype. */ 13751 return true; 13752 } 13753 } else { 13754 switch (insn & 0xffe0001fu) { 13755 case 0xd4200000u: /* BRK */ 13756 case 0xd4400000u: /* HLT */ 13757 /* Give priority to the breakpoint exception. */ 13758 return true; 13759 } 13760 } 13761 return false; 13762 } 13763 13764 /* C3.1 A64 instruction index by encoding */ 13765 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13766 { 13767 switch (extract32(insn, 25, 4)) { 13768 case 0x5: 13769 case 0xd: /* Data processing - register */ 13770 disas_data_proc_reg(s, insn); 13771 break; 13772 case 0x7: 13773 case 0xf: /* Data processing - SIMD and floating point */ 13774 disas_data_proc_simd_fp(s, insn); 13775 break; 13776 default: 13777 unallocated_encoding(s); 13778 break; 13779 } 13780 } 13781 13782 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13783 CPUState *cpu) 13784 { 13785 DisasContext *dc = container_of(dcbase, DisasContext, base); 13786 CPUARMState *env = cpu_env(cpu); 13787 ARMCPU *arm_cpu = env_archcpu(env); 13788 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13789 int bound, core_mmu_idx; 13790 13791 dc->isar = &arm_cpu->isar; 13792 dc->condjmp = 0; 13793 dc->pc_save = dc->base.pc_first; 13794 dc->aarch64 = true; 13795 dc->thumb = false; 13796 dc->sctlr_b = 0; 13797 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13798 dc->condexec_mask = 0; 13799 dc->condexec_cond = 0; 13800 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13801 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13802 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13803 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13804 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13805 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13806 #if !defined(CONFIG_USER_ONLY) 13807 dc->user = (dc->current_el == 0); 13808 #endif 13809 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13810 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13811 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13812 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13813 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13814 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13815 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13816 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13817 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13818 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13819 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13820 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13821 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13822 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13823 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13824 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13825 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13826 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13827 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13828 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13829 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13830 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13831 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13832 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13833 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13834 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13835 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13836 dc->vec_len = 0; 13837 dc->vec_stride = 0; 13838 dc->cp_regs = arm_cpu->cp_regs; 13839 dc->features = env->features; 13840 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13841 dc->gm_blocksize = arm_cpu->gm_blocksize; 13842 13843 #ifdef CONFIG_USER_ONLY 13844 /* In sve_probe_page, we assume TBI is enabled. */ 13845 tcg_debug_assert(dc->tbid & 1); 13846 #endif 13847 13848 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13849 13850 /* Single step state. The code-generation logic here is: 13851 * SS_ACTIVE == 0: 13852 * generate code with no special handling for single-stepping (except 13853 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13854 * this happens anyway because those changes are all system register or 13855 * PSTATE writes). 13856 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13857 * emit code for one insn 13858 * emit code to clear PSTATE.SS 13859 * emit code to generate software step exception for completed step 13860 * end TB (as usual for having generated an exception) 13861 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13862 * emit code to generate a software step exception 13863 * end the TB 13864 */ 13865 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13866 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13867 dc->is_ldex = false; 13868 13869 /* Bound the number of insns to execute to those left on the page. */ 13870 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13871 13872 /* If architectural single step active, limit to 1. */ 13873 if (dc->ss_active) { 13874 bound = 1; 13875 } 13876 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13877 } 13878 13879 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13880 { 13881 } 13882 13883 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13884 { 13885 DisasContext *dc = container_of(dcbase, DisasContext, base); 13886 target_ulong pc_arg = dc->base.pc_next; 13887 13888 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13889 pc_arg &= ~TARGET_PAGE_MASK; 13890 } 13891 tcg_gen_insn_start(pc_arg, 0, 0); 13892 dc->insn_start_updated = false; 13893 } 13894 13895 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13896 { 13897 DisasContext *s = container_of(dcbase, DisasContext, base); 13898 CPUARMState *env = cpu_env(cpu); 13899 uint64_t pc = s->base.pc_next; 13900 uint32_t insn; 13901 13902 /* Singlestep exceptions have the highest priority. */ 13903 if (s->ss_active && !s->pstate_ss) { 13904 /* Singlestep state is Active-pending. 13905 * If we're in this state at the start of a TB then either 13906 * a) we just took an exception to an EL which is being debugged 13907 * and this is the first insn in the exception handler 13908 * b) debug exceptions were masked and we just unmasked them 13909 * without changing EL (eg by clearing PSTATE.D) 13910 * In either case we're going to take a swstep exception in the 13911 * "did not step an insn" case, and so the syndrome ISV and EX 13912 * bits should be zero. 13913 */ 13914 assert(s->base.num_insns == 1); 13915 gen_swstep_exception(s, 0, 0); 13916 s->base.is_jmp = DISAS_NORETURN; 13917 s->base.pc_next = pc + 4; 13918 return; 13919 } 13920 13921 if (pc & 3) { 13922 /* 13923 * PC alignment fault. This has priority over the instruction abort 13924 * that we would receive from a translation fault via arm_ldl_code. 13925 * This should only be possible after an indirect branch, at the 13926 * start of the TB. 13927 */ 13928 assert(s->base.num_insns == 1); 13929 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13930 s->base.is_jmp = DISAS_NORETURN; 13931 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13932 return; 13933 } 13934 13935 s->pc_curr = pc; 13936 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13937 s->insn = insn; 13938 s->base.pc_next = pc + 4; 13939 13940 s->fp_access_checked = false; 13941 s->sve_access_checked = false; 13942 13943 if (s->pstate_il) { 13944 /* 13945 * Illegal execution state. This has priority over BTI 13946 * exceptions, but comes after instruction abort exceptions. 13947 */ 13948 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13949 return; 13950 } 13951 13952 if (dc_isar_feature(aa64_bti, s)) { 13953 if (s->base.num_insns == 1) { 13954 /* 13955 * At the first insn of the TB, compute s->guarded_page. 13956 * We delayed computing this until successfully reading 13957 * the first insn of the TB, above. This (mostly) ensures 13958 * that the softmmu tlb entry has been populated, and the 13959 * page table GP bit is available. 13960 * 13961 * Note that we need to compute this even if btype == 0, 13962 * because this value is used for BR instructions later 13963 * where ENV is not available. 13964 */ 13965 s->guarded_page = is_guarded_page(env, s); 13966 13967 /* First insn can have btype set to non-zero. */ 13968 tcg_debug_assert(s->btype >= 0); 13969 13970 /* 13971 * Note that the Branch Target Exception has fairly high 13972 * priority -- below debugging exceptions but above most 13973 * everything else. This allows us to handle this now 13974 * instead of waiting until the insn is otherwise decoded. 13975 */ 13976 if (s->btype != 0 13977 && s->guarded_page 13978 && !btype_destination_ok(insn, s->bt, s->btype)) { 13979 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13980 return; 13981 } 13982 } else { 13983 /* Not the first insn: btype must be 0. */ 13984 tcg_debug_assert(s->btype == 0); 13985 } 13986 } 13987 13988 s->is_nonstreaming = false; 13989 if (s->sme_trap_nonstreaming) { 13990 disas_sme_fa64(s, insn); 13991 } 13992 13993 if (!disas_a64(s, insn) && 13994 !disas_sme(s, insn) && 13995 !disas_sve(s, insn)) { 13996 disas_a64_legacy(s, insn); 13997 } 13998 13999 /* 14000 * After execution of most insns, btype is reset to 0. 14001 * Note that we set btype == -1 when the insn sets btype. 14002 */ 14003 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14004 reset_btype(s); 14005 } 14006 } 14007 14008 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14009 { 14010 DisasContext *dc = container_of(dcbase, DisasContext, base); 14011 14012 if (unlikely(dc->ss_active)) { 14013 /* Note that this means single stepping WFI doesn't halt the CPU. 14014 * For conditional branch insns this is harmless unreachable code as 14015 * gen_goto_tb() has already handled emitting the debug exception 14016 * (and thus a tb-jump is not possible when singlestepping). 14017 */ 14018 switch (dc->base.is_jmp) { 14019 default: 14020 gen_a64_update_pc(dc, 4); 14021 /* fall through */ 14022 case DISAS_EXIT: 14023 case DISAS_JUMP: 14024 gen_step_complete_exception(dc); 14025 break; 14026 case DISAS_NORETURN: 14027 break; 14028 } 14029 } else { 14030 switch (dc->base.is_jmp) { 14031 case DISAS_NEXT: 14032 case DISAS_TOO_MANY: 14033 gen_goto_tb(dc, 1, 4); 14034 break; 14035 default: 14036 case DISAS_UPDATE_EXIT: 14037 gen_a64_update_pc(dc, 4); 14038 /* fall through */ 14039 case DISAS_EXIT: 14040 tcg_gen_exit_tb(NULL, 0); 14041 break; 14042 case DISAS_UPDATE_NOCHAIN: 14043 gen_a64_update_pc(dc, 4); 14044 /* fall through */ 14045 case DISAS_JUMP: 14046 tcg_gen_lookup_and_goto_ptr(); 14047 break; 14048 case DISAS_NORETURN: 14049 case DISAS_SWI: 14050 break; 14051 case DISAS_WFE: 14052 gen_a64_update_pc(dc, 4); 14053 gen_helper_wfe(tcg_env); 14054 break; 14055 case DISAS_YIELD: 14056 gen_a64_update_pc(dc, 4); 14057 gen_helper_yield(tcg_env); 14058 break; 14059 case DISAS_WFI: 14060 /* 14061 * This is a special case because we don't want to just halt 14062 * the CPU if trying to debug across a WFI. 14063 */ 14064 gen_a64_update_pc(dc, 4); 14065 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14066 /* 14067 * The helper doesn't necessarily throw an exception, but we 14068 * must go back to the main loop to check for interrupts anyway. 14069 */ 14070 tcg_gen_exit_tb(NULL, 0); 14071 break; 14072 } 14073 } 14074 } 14075 14076 const TranslatorOps aarch64_translator_ops = { 14077 .init_disas_context = aarch64_tr_init_disas_context, 14078 .tb_start = aarch64_tr_tb_start, 14079 .insn_start = aarch64_tr_insn_start, 14080 .translate_insn = aarch64_tr_translate_insn, 14081 .tb_stop = aarch64_tr_tb_stop, 14082 }; 14083