1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmax = { 4919 gen_helper_advsimd_maxh, 4920 gen_helper_vfp_maxs, 4921 gen_helper_vfp_maxd, 4922 }; 4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4924 4925 static const FPScalar f_scalar_fmin = { 4926 gen_helper_advsimd_minh, 4927 gen_helper_vfp_mins, 4928 gen_helper_vfp_mind, 4929 }; 4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4931 4932 static const FPScalar f_scalar_fmaxnm = { 4933 gen_helper_advsimd_maxnumh, 4934 gen_helper_vfp_maxnums, 4935 gen_helper_vfp_maxnumd, 4936 }; 4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4938 4939 static const FPScalar f_scalar_fminnm = { 4940 gen_helper_advsimd_minnumh, 4941 gen_helper_vfp_minnums, 4942 gen_helper_vfp_minnumd, 4943 }; 4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4945 4946 static const FPScalar f_scalar_fmulx = { 4947 gen_helper_advsimd_mulxh, 4948 gen_helper_vfp_mulxs, 4949 gen_helper_vfp_mulxd, 4950 }; 4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4952 4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4954 { 4955 gen_helper_vfp_mulh(d, n, m, s); 4956 gen_vfp_negh(d, d); 4957 } 4958 4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_muls(d, n, m, s); 4962 gen_vfp_negs(d, d); 4963 } 4964 4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muld(d, n, m, s); 4968 gen_vfp_negd(d, d); 4969 } 4970 4971 static const FPScalar f_scalar_fnmul = { 4972 gen_fnmul_h, 4973 gen_fnmul_s, 4974 gen_fnmul_d, 4975 }; 4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4977 4978 static const FPScalar f_scalar_fcmeq = { 4979 gen_helper_advsimd_ceq_f16, 4980 gen_helper_neon_ceq_f32, 4981 gen_helper_neon_ceq_f64, 4982 }; 4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4984 4985 static const FPScalar f_scalar_fcmge = { 4986 gen_helper_advsimd_cge_f16, 4987 gen_helper_neon_cge_f32, 4988 gen_helper_neon_cge_f64, 4989 }; 4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 4991 4992 static const FPScalar f_scalar_fcmgt = { 4993 gen_helper_advsimd_cgt_f16, 4994 gen_helper_neon_cgt_f32, 4995 gen_helper_neon_cgt_f64, 4996 }; 4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 4998 4999 static const FPScalar f_scalar_facge = { 5000 gen_helper_advsimd_acge_f16, 5001 gen_helper_neon_acge_f32, 5002 gen_helper_neon_acge_f64, 5003 }; 5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5005 5006 static const FPScalar f_scalar_facgt = { 5007 gen_helper_advsimd_acgt_f16, 5008 gen_helper_neon_acgt_f32, 5009 gen_helper_neon_acgt_f64, 5010 }; 5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5012 5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5014 { 5015 gen_helper_vfp_subh(d, n, m, s); 5016 gen_vfp_absh(d, d); 5017 } 5018 5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5020 { 5021 gen_helper_vfp_subs(d, n, m, s); 5022 gen_vfp_abss(d, d); 5023 } 5024 5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5026 { 5027 gen_helper_vfp_subd(d, n, m, s); 5028 gen_vfp_absd(d, d); 5029 } 5030 5031 static const FPScalar f_scalar_fabd = { 5032 gen_fabd_h, 5033 gen_fabd_s, 5034 gen_fabd_d, 5035 }; 5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5037 5038 static const FPScalar f_scalar_frecps = { 5039 gen_helper_recpsf_f16, 5040 gen_helper_recpsf_f32, 5041 gen_helper_recpsf_f64, 5042 }; 5043 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5044 5045 static const FPScalar f_scalar_frsqrts = { 5046 gen_helper_rsqrtsf_f16, 5047 gen_helper_rsqrtsf_f32, 5048 gen_helper_rsqrtsf_f64, 5049 }; 5050 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5051 5052 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5053 gen_helper_gvec_3_ptr * const fns[3]) 5054 { 5055 MemOp esz = a->esz; 5056 5057 switch (esz) { 5058 case MO_64: 5059 if (!a->q) { 5060 return false; 5061 } 5062 break; 5063 case MO_32: 5064 break; 5065 case MO_16: 5066 if (!dc_isar_feature(aa64_fp16, s)) { 5067 return false; 5068 } 5069 break; 5070 default: 5071 return false; 5072 } 5073 if (fp_access_check(s)) { 5074 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5075 esz == MO_16, 0, fns[esz - 1]); 5076 } 5077 return true; 5078 } 5079 5080 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5081 gen_helper_gvec_fadd_h, 5082 gen_helper_gvec_fadd_s, 5083 gen_helper_gvec_fadd_d, 5084 }; 5085 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5086 5087 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5088 gen_helper_gvec_fsub_h, 5089 gen_helper_gvec_fsub_s, 5090 gen_helper_gvec_fsub_d, 5091 }; 5092 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5093 5094 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5095 gen_helper_gvec_fdiv_h, 5096 gen_helper_gvec_fdiv_s, 5097 gen_helper_gvec_fdiv_d, 5098 }; 5099 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5100 5101 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5102 gen_helper_gvec_fmul_h, 5103 gen_helper_gvec_fmul_s, 5104 gen_helper_gvec_fmul_d, 5105 }; 5106 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5107 5108 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5109 gen_helper_gvec_fmax_h, 5110 gen_helper_gvec_fmax_s, 5111 gen_helper_gvec_fmax_d, 5112 }; 5113 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5114 5115 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5116 gen_helper_gvec_fmin_h, 5117 gen_helper_gvec_fmin_s, 5118 gen_helper_gvec_fmin_d, 5119 }; 5120 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5121 5122 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5123 gen_helper_gvec_fmaxnum_h, 5124 gen_helper_gvec_fmaxnum_s, 5125 gen_helper_gvec_fmaxnum_d, 5126 }; 5127 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5128 5129 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5130 gen_helper_gvec_fminnum_h, 5131 gen_helper_gvec_fminnum_s, 5132 gen_helper_gvec_fminnum_d, 5133 }; 5134 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5135 5136 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5137 gen_helper_gvec_fmulx_h, 5138 gen_helper_gvec_fmulx_s, 5139 gen_helper_gvec_fmulx_d, 5140 }; 5141 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5142 5143 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5144 gen_helper_gvec_vfma_h, 5145 gen_helper_gvec_vfma_s, 5146 gen_helper_gvec_vfma_d, 5147 }; 5148 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5149 5150 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5151 gen_helper_gvec_vfms_h, 5152 gen_helper_gvec_vfms_s, 5153 gen_helper_gvec_vfms_d, 5154 }; 5155 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5156 5157 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5158 gen_helper_gvec_fceq_h, 5159 gen_helper_gvec_fceq_s, 5160 gen_helper_gvec_fceq_d, 5161 }; 5162 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5163 5164 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5165 gen_helper_gvec_fcge_h, 5166 gen_helper_gvec_fcge_s, 5167 gen_helper_gvec_fcge_d, 5168 }; 5169 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5170 5171 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5172 gen_helper_gvec_fcgt_h, 5173 gen_helper_gvec_fcgt_s, 5174 gen_helper_gvec_fcgt_d, 5175 }; 5176 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5177 5178 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5179 gen_helper_gvec_facge_h, 5180 gen_helper_gvec_facge_s, 5181 gen_helper_gvec_facge_d, 5182 }; 5183 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5184 5185 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5186 gen_helper_gvec_facgt_h, 5187 gen_helper_gvec_facgt_s, 5188 gen_helper_gvec_facgt_d, 5189 }; 5190 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5191 5192 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5193 gen_helper_gvec_fabd_h, 5194 gen_helper_gvec_fabd_s, 5195 gen_helper_gvec_fabd_d, 5196 }; 5197 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5198 5199 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5200 gen_helper_gvec_recps_h, 5201 gen_helper_gvec_recps_s, 5202 gen_helper_gvec_recps_d, 5203 }; 5204 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) 5205 5206 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5207 gen_helper_gvec_rsqrts_h, 5208 gen_helper_gvec_rsqrts_s, 5209 gen_helper_gvec_rsqrts_d, 5210 }; 5211 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) 5212 5213 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5214 gen_helper_gvec_faddp_h, 5215 gen_helper_gvec_faddp_s, 5216 gen_helper_gvec_faddp_d, 5217 }; 5218 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp) 5219 5220 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5221 gen_helper_gvec_fmaxp_h, 5222 gen_helper_gvec_fmaxp_s, 5223 gen_helper_gvec_fmaxp_d, 5224 }; 5225 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp) 5226 5227 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5228 gen_helper_gvec_fminp_h, 5229 gen_helper_gvec_fminp_s, 5230 gen_helper_gvec_fminp_d, 5231 }; 5232 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp) 5233 5234 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5235 gen_helper_gvec_fmaxnump_h, 5236 gen_helper_gvec_fmaxnump_s, 5237 gen_helper_gvec_fmaxnump_d, 5238 }; 5239 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp) 5240 5241 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5242 gen_helper_gvec_fminnump_h, 5243 gen_helper_gvec_fminnump_s, 5244 gen_helper_gvec_fminnump_d, 5245 }; 5246 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp) 5247 5248 /* 5249 * Advanced SIMD scalar/vector x indexed element 5250 */ 5251 5252 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5253 { 5254 switch (a->esz) { 5255 case MO_64: 5256 if (fp_access_check(s)) { 5257 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5258 TCGv_i64 t1 = tcg_temp_new_i64(); 5259 5260 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5261 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5262 write_fp_dreg(s, a->rd, t0); 5263 } 5264 break; 5265 case MO_32: 5266 if (fp_access_check(s)) { 5267 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5268 TCGv_i32 t1 = tcg_temp_new_i32(); 5269 5270 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5271 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5272 write_fp_sreg(s, a->rd, t0); 5273 } 5274 break; 5275 case MO_16: 5276 if (!dc_isar_feature(aa64_fp16, s)) { 5277 return false; 5278 } 5279 if (fp_access_check(s)) { 5280 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5281 TCGv_i32 t1 = tcg_temp_new_i32(); 5282 5283 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5284 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5285 write_fp_sreg(s, a->rd, t0); 5286 } 5287 break; 5288 default: 5289 g_assert_not_reached(); 5290 } 5291 return true; 5292 } 5293 5294 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5295 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5296 5297 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5298 { 5299 switch (a->esz) { 5300 case MO_64: 5301 if (fp_access_check(s)) { 5302 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5303 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5304 TCGv_i64 t2 = tcg_temp_new_i64(); 5305 5306 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5307 if (neg) { 5308 gen_vfp_negd(t1, t1); 5309 } 5310 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5311 write_fp_dreg(s, a->rd, t0); 5312 } 5313 break; 5314 case MO_32: 5315 if (fp_access_check(s)) { 5316 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5317 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5318 TCGv_i32 t2 = tcg_temp_new_i32(); 5319 5320 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5321 if (neg) { 5322 gen_vfp_negs(t1, t1); 5323 } 5324 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5325 write_fp_sreg(s, a->rd, t0); 5326 } 5327 break; 5328 case MO_16: 5329 if (!dc_isar_feature(aa64_fp16, s)) { 5330 return false; 5331 } 5332 if (fp_access_check(s)) { 5333 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5334 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5335 TCGv_i32 t2 = tcg_temp_new_i32(); 5336 5337 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5338 if (neg) { 5339 gen_vfp_negh(t1, t1); 5340 } 5341 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5342 fpstatus_ptr(FPST_FPCR_F16)); 5343 write_fp_sreg(s, a->rd, t0); 5344 } 5345 break; 5346 default: 5347 g_assert_not_reached(); 5348 } 5349 return true; 5350 } 5351 5352 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5353 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5354 5355 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5356 gen_helper_gvec_3_ptr * const fns[3]) 5357 { 5358 MemOp esz = a->esz; 5359 5360 switch (esz) { 5361 case MO_64: 5362 if (!a->q) { 5363 return false; 5364 } 5365 break; 5366 case MO_32: 5367 break; 5368 case MO_16: 5369 if (!dc_isar_feature(aa64_fp16, s)) { 5370 return false; 5371 } 5372 break; 5373 default: 5374 g_assert_not_reached(); 5375 } 5376 if (fp_access_check(s)) { 5377 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5378 esz == MO_16, a->idx, fns[esz - 1]); 5379 } 5380 return true; 5381 } 5382 5383 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5384 gen_helper_gvec_fmul_idx_h, 5385 gen_helper_gvec_fmul_idx_s, 5386 gen_helper_gvec_fmul_idx_d, 5387 }; 5388 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5389 5390 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5391 gen_helper_gvec_fmulx_idx_h, 5392 gen_helper_gvec_fmulx_idx_s, 5393 gen_helper_gvec_fmulx_idx_d, 5394 }; 5395 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5396 5397 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5398 { 5399 static gen_helper_gvec_4_ptr * const fns[3] = { 5400 gen_helper_gvec_fmla_idx_h, 5401 gen_helper_gvec_fmla_idx_s, 5402 gen_helper_gvec_fmla_idx_d, 5403 }; 5404 MemOp esz = a->esz; 5405 5406 switch (esz) { 5407 case MO_64: 5408 if (!a->q) { 5409 return false; 5410 } 5411 break; 5412 case MO_32: 5413 break; 5414 case MO_16: 5415 if (!dc_isar_feature(aa64_fp16, s)) { 5416 return false; 5417 } 5418 break; 5419 default: 5420 g_assert_not_reached(); 5421 } 5422 if (fp_access_check(s)) { 5423 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5424 esz == MO_16, (a->idx << 1) | neg, 5425 fns[esz - 1]); 5426 } 5427 return true; 5428 } 5429 5430 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5431 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5432 5433 /* 5434 * Advanced SIMD scalar pairwise 5435 */ 5436 5437 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 5438 { 5439 switch (a->esz) { 5440 case MO_64: 5441 if (fp_access_check(s)) { 5442 TCGv_i64 t0 = tcg_temp_new_i64(); 5443 TCGv_i64 t1 = tcg_temp_new_i64(); 5444 5445 read_vec_element(s, t0, a->rn, 0, MO_64); 5446 read_vec_element(s, t1, a->rn, 1, MO_64); 5447 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5448 write_fp_dreg(s, a->rd, t0); 5449 } 5450 break; 5451 case MO_32: 5452 if (fp_access_check(s)) { 5453 TCGv_i32 t0 = tcg_temp_new_i32(); 5454 TCGv_i32 t1 = tcg_temp_new_i32(); 5455 5456 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 5457 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 5458 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5459 write_fp_sreg(s, a->rd, t0); 5460 } 5461 break; 5462 case MO_16: 5463 if (!dc_isar_feature(aa64_fp16, s)) { 5464 return false; 5465 } 5466 if (fp_access_check(s)) { 5467 TCGv_i32 t0 = tcg_temp_new_i32(); 5468 TCGv_i32 t1 = tcg_temp_new_i32(); 5469 5470 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 5471 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 5472 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5473 write_fp_sreg(s, a->rd, t0); 5474 } 5475 break; 5476 default: 5477 g_assert_not_reached(); 5478 } 5479 return true; 5480 } 5481 5482 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 5483 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 5484 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 5485 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 5486 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 5487 5488 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5489 * Note that it is the caller's responsibility to ensure that the 5490 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5491 * mandated semantics for out of range shifts. 5492 */ 5493 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5494 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5495 { 5496 switch (shift_type) { 5497 case A64_SHIFT_TYPE_LSL: 5498 tcg_gen_shl_i64(dst, src, shift_amount); 5499 break; 5500 case A64_SHIFT_TYPE_LSR: 5501 tcg_gen_shr_i64(dst, src, shift_amount); 5502 break; 5503 case A64_SHIFT_TYPE_ASR: 5504 if (!sf) { 5505 tcg_gen_ext32s_i64(dst, src); 5506 } 5507 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5508 break; 5509 case A64_SHIFT_TYPE_ROR: 5510 if (sf) { 5511 tcg_gen_rotr_i64(dst, src, shift_amount); 5512 } else { 5513 TCGv_i32 t0, t1; 5514 t0 = tcg_temp_new_i32(); 5515 t1 = tcg_temp_new_i32(); 5516 tcg_gen_extrl_i64_i32(t0, src); 5517 tcg_gen_extrl_i64_i32(t1, shift_amount); 5518 tcg_gen_rotr_i32(t0, t0, t1); 5519 tcg_gen_extu_i32_i64(dst, t0); 5520 } 5521 break; 5522 default: 5523 assert(FALSE); /* all shift types should be handled */ 5524 break; 5525 } 5526 5527 if (!sf) { /* zero extend final result */ 5528 tcg_gen_ext32u_i64(dst, dst); 5529 } 5530 } 5531 5532 /* Shift a TCGv src by immediate, put result in dst. 5533 * The shift amount must be in range (this should always be true as the 5534 * relevant instructions will UNDEF on bad shift immediates). 5535 */ 5536 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5537 enum a64_shift_type shift_type, unsigned int shift_i) 5538 { 5539 assert(shift_i < (sf ? 64 : 32)); 5540 5541 if (shift_i == 0) { 5542 tcg_gen_mov_i64(dst, src); 5543 } else { 5544 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5545 } 5546 } 5547 5548 /* Logical (shifted register) 5549 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5550 * +----+-----+-----------+-------+---+------+--------+------+------+ 5551 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5552 * +----+-----+-----------+-------+---+------+--------+------+------+ 5553 */ 5554 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5555 { 5556 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5557 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5558 5559 sf = extract32(insn, 31, 1); 5560 opc = extract32(insn, 29, 2); 5561 shift_type = extract32(insn, 22, 2); 5562 invert = extract32(insn, 21, 1); 5563 rm = extract32(insn, 16, 5); 5564 shift_amount = extract32(insn, 10, 6); 5565 rn = extract32(insn, 5, 5); 5566 rd = extract32(insn, 0, 5); 5567 5568 if (!sf && (shift_amount & (1 << 5))) { 5569 unallocated_encoding(s); 5570 return; 5571 } 5572 5573 tcg_rd = cpu_reg(s, rd); 5574 5575 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5576 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5577 * register-register MOV and MVN, so it is worth special casing. 5578 */ 5579 tcg_rm = cpu_reg(s, rm); 5580 if (invert) { 5581 tcg_gen_not_i64(tcg_rd, tcg_rm); 5582 if (!sf) { 5583 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5584 } 5585 } else { 5586 if (sf) { 5587 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5588 } else { 5589 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5590 } 5591 } 5592 return; 5593 } 5594 5595 tcg_rm = read_cpu_reg(s, rm, sf); 5596 5597 if (shift_amount) { 5598 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5599 } 5600 5601 tcg_rn = cpu_reg(s, rn); 5602 5603 switch (opc | (invert << 2)) { 5604 case 0: /* AND */ 5605 case 3: /* ANDS */ 5606 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5607 break; 5608 case 1: /* ORR */ 5609 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5610 break; 5611 case 2: /* EOR */ 5612 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5613 break; 5614 case 4: /* BIC */ 5615 case 7: /* BICS */ 5616 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5617 break; 5618 case 5: /* ORN */ 5619 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5620 break; 5621 case 6: /* EON */ 5622 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5623 break; 5624 default: 5625 assert(FALSE); 5626 break; 5627 } 5628 5629 if (!sf) { 5630 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5631 } 5632 5633 if (opc == 3) { 5634 gen_logic_CC(sf, tcg_rd); 5635 } 5636 } 5637 5638 /* 5639 * Add/subtract (extended register) 5640 * 5641 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5642 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5643 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5644 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5645 * 5646 * sf: 0 -> 32bit, 1 -> 64bit 5647 * op: 0 -> add , 1 -> sub 5648 * S: 1 -> set flags 5649 * opt: 00 5650 * option: extension type (see DecodeRegExtend) 5651 * imm3: optional shift to Rm 5652 * 5653 * Rd = Rn + LSL(extend(Rm), amount) 5654 */ 5655 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5656 { 5657 int rd = extract32(insn, 0, 5); 5658 int rn = extract32(insn, 5, 5); 5659 int imm3 = extract32(insn, 10, 3); 5660 int option = extract32(insn, 13, 3); 5661 int rm = extract32(insn, 16, 5); 5662 int opt = extract32(insn, 22, 2); 5663 bool setflags = extract32(insn, 29, 1); 5664 bool sub_op = extract32(insn, 30, 1); 5665 bool sf = extract32(insn, 31, 1); 5666 5667 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5668 TCGv_i64 tcg_rd; 5669 TCGv_i64 tcg_result; 5670 5671 if (imm3 > 4 || opt != 0) { 5672 unallocated_encoding(s); 5673 return; 5674 } 5675 5676 /* non-flag setting ops may use SP */ 5677 if (!setflags) { 5678 tcg_rd = cpu_reg_sp(s, rd); 5679 } else { 5680 tcg_rd = cpu_reg(s, rd); 5681 } 5682 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5683 5684 tcg_rm = read_cpu_reg(s, rm, sf); 5685 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5686 5687 tcg_result = tcg_temp_new_i64(); 5688 5689 if (!setflags) { 5690 if (sub_op) { 5691 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5692 } else { 5693 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5694 } 5695 } else { 5696 if (sub_op) { 5697 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5698 } else { 5699 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5700 } 5701 } 5702 5703 if (sf) { 5704 tcg_gen_mov_i64(tcg_rd, tcg_result); 5705 } else { 5706 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5707 } 5708 } 5709 5710 /* 5711 * Add/subtract (shifted register) 5712 * 5713 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5714 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5715 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5716 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5717 * 5718 * sf: 0 -> 32bit, 1 -> 64bit 5719 * op: 0 -> add , 1 -> sub 5720 * S: 1 -> set flags 5721 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5722 * imm6: Shift amount to apply to Rm before the add/sub 5723 */ 5724 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5725 { 5726 int rd = extract32(insn, 0, 5); 5727 int rn = extract32(insn, 5, 5); 5728 int imm6 = extract32(insn, 10, 6); 5729 int rm = extract32(insn, 16, 5); 5730 int shift_type = extract32(insn, 22, 2); 5731 bool setflags = extract32(insn, 29, 1); 5732 bool sub_op = extract32(insn, 30, 1); 5733 bool sf = extract32(insn, 31, 1); 5734 5735 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5736 TCGv_i64 tcg_rn, tcg_rm; 5737 TCGv_i64 tcg_result; 5738 5739 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5740 unallocated_encoding(s); 5741 return; 5742 } 5743 5744 tcg_rn = read_cpu_reg(s, rn, sf); 5745 tcg_rm = read_cpu_reg(s, rm, sf); 5746 5747 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5748 5749 tcg_result = tcg_temp_new_i64(); 5750 5751 if (!setflags) { 5752 if (sub_op) { 5753 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5754 } else { 5755 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5756 } 5757 } else { 5758 if (sub_op) { 5759 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5760 } else { 5761 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5762 } 5763 } 5764 5765 if (sf) { 5766 tcg_gen_mov_i64(tcg_rd, tcg_result); 5767 } else { 5768 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5769 } 5770 } 5771 5772 /* Data-processing (3 source) 5773 * 5774 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5775 * +--+------+-----------+------+------+----+------+------+------+ 5776 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5777 * +--+------+-----------+------+------+----+------+------+------+ 5778 */ 5779 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5780 { 5781 int rd = extract32(insn, 0, 5); 5782 int rn = extract32(insn, 5, 5); 5783 int ra = extract32(insn, 10, 5); 5784 int rm = extract32(insn, 16, 5); 5785 int op_id = (extract32(insn, 29, 3) << 4) | 5786 (extract32(insn, 21, 3) << 1) | 5787 extract32(insn, 15, 1); 5788 bool sf = extract32(insn, 31, 1); 5789 bool is_sub = extract32(op_id, 0, 1); 5790 bool is_high = extract32(op_id, 2, 1); 5791 bool is_signed = false; 5792 TCGv_i64 tcg_op1; 5793 TCGv_i64 tcg_op2; 5794 TCGv_i64 tcg_tmp; 5795 5796 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5797 switch (op_id) { 5798 case 0x42: /* SMADDL */ 5799 case 0x43: /* SMSUBL */ 5800 case 0x44: /* SMULH */ 5801 is_signed = true; 5802 break; 5803 case 0x0: /* MADD (32bit) */ 5804 case 0x1: /* MSUB (32bit) */ 5805 case 0x40: /* MADD (64bit) */ 5806 case 0x41: /* MSUB (64bit) */ 5807 case 0x4a: /* UMADDL */ 5808 case 0x4b: /* UMSUBL */ 5809 case 0x4c: /* UMULH */ 5810 break; 5811 default: 5812 unallocated_encoding(s); 5813 return; 5814 } 5815 5816 if (is_high) { 5817 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5818 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5819 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5820 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5821 5822 if (is_signed) { 5823 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5824 } else { 5825 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5826 } 5827 return; 5828 } 5829 5830 tcg_op1 = tcg_temp_new_i64(); 5831 tcg_op2 = tcg_temp_new_i64(); 5832 tcg_tmp = tcg_temp_new_i64(); 5833 5834 if (op_id < 0x42) { 5835 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5836 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5837 } else { 5838 if (is_signed) { 5839 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5840 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5841 } else { 5842 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5843 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5844 } 5845 } 5846 5847 if (ra == 31 && !is_sub) { 5848 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5849 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5850 } else { 5851 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5852 if (is_sub) { 5853 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5854 } else { 5855 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5856 } 5857 } 5858 5859 if (!sf) { 5860 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5861 } 5862 } 5863 5864 /* Add/subtract (with carry) 5865 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5866 * +--+--+--+------------------------+------+-------------+------+-----+ 5867 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5868 * +--+--+--+------------------------+------+-------------+------+-----+ 5869 */ 5870 5871 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5872 { 5873 unsigned int sf, op, setflags, rm, rn, rd; 5874 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5875 5876 sf = extract32(insn, 31, 1); 5877 op = extract32(insn, 30, 1); 5878 setflags = extract32(insn, 29, 1); 5879 rm = extract32(insn, 16, 5); 5880 rn = extract32(insn, 5, 5); 5881 rd = extract32(insn, 0, 5); 5882 5883 tcg_rd = cpu_reg(s, rd); 5884 tcg_rn = cpu_reg(s, rn); 5885 5886 if (op) { 5887 tcg_y = tcg_temp_new_i64(); 5888 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5889 } else { 5890 tcg_y = cpu_reg(s, rm); 5891 } 5892 5893 if (setflags) { 5894 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5895 } else { 5896 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5897 } 5898 } 5899 5900 /* 5901 * Rotate right into flags 5902 * 31 30 29 21 15 10 5 4 0 5903 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5904 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5905 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5906 */ 5907 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5908 { 5909 int mask = extract32(insn, 0, 4); 5910 int o2 = extract32(insn, 4, 1); 5911 int rn = extract32(insn, 5, 5); 5912 int imm6 = extract32(insn, 15, 6); 5913 int sf_op_s = extract32(insn, 29, 3); 5914 TCGv_i64 tcg_rn; 5915 TCGv_i32 nzcv; 5916 5917 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5918 unallocated_encoding(s); 5919 return; 5920 } 5921 5922 tcg_rn = read_cpu_reg(s, rn, 1); 5923 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5924 5925 nzcv = tcg_temp_new_i32(); 5926 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5927 5928 if (mask & 8) { /* N */ 5929 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5930 } 5931 if (mask & 4) { /* Z */ 5932 tcg_gen_not_i32(cpu_ZF, nzcv); 5933 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5934 } 5935 if (mask & 2) { /* C */ 5936 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5937 } 5938 if (mask & 1) { /* V */ 5939 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5940 } 5941 } 5942 5943 /* 5944 * Evaluate into flags 5945 * 31 30 29 21 15 14 10 5 4 0 5946 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5947 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5948 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5949 */ 5950 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5951 { 5952 int o3_mask = extract32(insn, 0, 5); 5953 int rn = extract32(insn, 5, 5); 5954 int o2 = extract32(insn, 15, 6); 5955 int sz = extract32(insn, 14, 1); 5956 int sf_op_s = extract32(insn, 29, 3); 5957 TCGv_i32 tmp; 5958 int shift; 5959 5960 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5961 !dc_isar_feature(aa64_condm_4, s)) { 5962 unallocated_encoding(s); 5963 return; 5964 } 5965 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5966 5967 tmp = tcg_temp_new_i32(); 5968 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5969 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5970 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5971 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5972 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5973 } 5974 5975 /* Conditional compare (immediate / register) 5976 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5977 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5978 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5979 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5980 * [1] y [0] [0] 5981 */ 5982 static void disas_cc(DisasContext *s, uint32_t insn) 5983 { 5984 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5985 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5986 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5987 DisasCompare c; 5988 5989 if (!extract32(insn, 29, 1)) { 5990 unallocated_encoding(s); 5991 return; 5992 } 5993 if (insn & (1 << 10 | 1 << 4)) { 5994 unallocated_encoding(s); 5995 return; 5996 } 5997 sf = extract32(insn, 31, 1); 5998 op = extract32(insn, 30, 1); 5999 is_imm = extract32(insn, 11, 1); 6000 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 6001 cond = extract32(insn, 12, 4); 6002 rn = extract32(insn, 5, 5); 6003 nzcv = extract32(insn, 0, 4); 6004 6005 /* Set T0 = !COND. */ 6006 tcg_t0 = tcg_temp_new_i32(); 6007 arm_test_cc(&c, cond); 6008 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 6009 6010 /* Load the arguments for the new comparison. */ 6011 if (is_imm) { 6012 tcg_y = tcg_temp_new_i64(); 6013 tcg_gen_movi_i64(tcg_y, y); 6014 } else { 6015 tcg_y = cpu_reg(s, y); 6016 } 6017 tcg_rn = cpu_reg(s, rn); 6018 6019 /* Set the flags for the new comparison. */ 6020 tcg_tmp = tcg_temp_new_i64(); 6021 if (op) { 6022 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6023 } else { 6024 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6025 } 6026 6027 /* If COND was false, force the flags to #nzcv. Compute two masks 6028 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 6029 * For tcg hosts that support ANDC, we can make do with just T1. 6030 * In either case, allow the tcg optimizer to delete any unused mask. 6031 */ 6032 tcg_t1 = tcg_temp_new_i32(); 6033 tcg_t2 = tcg_temp_new_i32(); 6034 tcg_gen_neg_i32(tcg_t1, tcg_t0); 6035 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 6036 6037 if (nzcv & 8) { /* N */ 6038 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 6039 } else { 6040 if (TCG_TARGET_HAS_andc_i32) { 6041 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 6042 } else { 6043 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 6044 } 6045 } 6046 if (nzcv & 4) { /* Z */ 6047 if (TCG_TARGET_HAS_andc_i32) { 6048 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 6049 } else { 6050 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 6051 } 6052 } else { 6053 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 6054 } 6055 if (nzcv & 2) { /* C */ 6056 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 6057 } else { 6058 if (TCG_TARGET_HAS_andc_i32) { 6059 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 6060 } else { 6061 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 6062 } 6063 } 6064 if (nzcv & 1) { /* V */ 6065 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 6066 } else { 6067 if (TCG_TARGET_HAS_andc_i32) { 6068 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 6069 } else { 6070 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 6071 } 6072 } 6073 } 6074 6075 /* Conditional select 6076 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 6077 * +----+----+---+-----------------+------+------+-----+------+------+ 6078 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 6079 * +----+----+---+-----------------+------+------+-----+------+------+ 6080 */ 6081 static void disas_cond_select(DisasContext *s, uint32_t insn) 6082 { 6083 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 6084 TCGv_i64 tcg_rd, zero; 6085 DisasCompare64 c; 6086 6087 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 6088 /* S == 1 or op2<1> == 1 */ 6089 unallocated_encoding(s); 6090 return; 6091 } 6092 sf = extract32(insn, 31, 1); 6093 else_inv = extract32(insn, 30, 1); 6094 rm = extract32(insn, 16, 5); 6095 cond = extract32(insn, 12, 4); 6096 else_inc = extract32(insn, 10, 1); 6097 rn = extract32(insn, 5, 5); 6098 rd = extract32(insn, 0, 5); 6099 6100 tcg_rd = cpu_reg(s, rd); 6101 6102 a64_test_cc(&c, cond); 6103 zero = tcg_constant_i64(0); 6104 6105 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6106 /* CSET & CSETM. */ 6107 if (else_inv) { 6108 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6109 tcg_rd, c.value, zero); 6110 } else { 6111 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6112 tcg_rd, c.value, zero); 6113 } 6114 } else { 6115 TCGv_i64 t_true = cpu_reg(s, rn); 6116 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6117 if (else_inv && else_inc) { 6118 tcg_gen_neg_i64(t_false, t_false); 6119 } else if (else_inv) { 6120 tcg_gen_not_i64(t_false, t_false); 6121 } else if (else_inc) { 6122 tcg_gen_addi_i64(t_false, t_false, 1); 6123 } 6124 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6125 } 6126 6127 if (!sf) { 6128 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6129 } 6130 } 6131 6132 static void handle_clz(DisasContext *s, unsigned int sf, 6133 unsigned int rn, unsigned int rd) 6134 { 6135 TCGv_i64 tcg_rd, tcg_rn; 6136 tcg_rd = cpu_reg(s, rd); 6137 tcg_rn = cpu_reg(s, rn); 6138 6139 if (sf) { 6140 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6141 } else { 6142 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6143 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6144 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6145 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6146 } 6147 } 6148 6149 static void handle_cls(DisasContext *s, unsigned int sf, 6150 unsigned int rn, unsigned int rd) 6151 { 6152 TCGv_i64 tcg_rd, tcg_rn; 6153 tcg_rd = cpu_reg(s, rd); 6154 tcg_rn = cpu_reg(s, rn); 6155 6156 if (sf) { 6157 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6158 } else { 6159 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6160 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6161 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6162 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6163 } 6164 } 6165 6166 static void handle_rbit(DisasContext *s, unsigned int sf, 6167 unsigned int rn, unsigned int rd) 6168 { 6169 TCGv_i64 tcg_rd, tcg_rn; 6170 tcg_rd = cpu_reg(s, rd); 6171 tcg_rn = cpu_reg(s, rn); 6172 6173 if (sf) { 6174 gen_helper_rbit64(tcg_rd, tcg_rn); 6175 } else { 6176 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6177 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6178 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6179 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6180 } 6181 } 6182 6183 /* REV with sf==1, opcode==3 ("REV64") */ 6184 static void handle_rev64(DisasContext *s, unsigned int sf, 6185 unsigned int rn, unsigned int rd) 6186 { 6187 if (!sf) { 6188 unallocated_encoding(s); 6189 return; 6190 } 6191 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6192 } 6193 6194 /* REV with sf==0, opcode==2 6195 * REV32 (sf==1, opcode==2) 6196 */ 6197 static void handle_rev32(DisasContext *s, unsigned int sf, 6198 unsigned int rn, unsigned int rd) 6199 { 6200 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6201 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6202 6203 if (sf) { 6204 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6205 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6206 } else { 6207 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6208 } 6209 } 6210 6211 /* REV16 (opcode==1) */ 6212 static void handle_rev16(DisasContext *s, unsigned int sf, 6213 unsigned int rn, unsigned int rd) 6214 { 6215 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6216 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6217 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6218 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6219 6220 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6221 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6222 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6223 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6224 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6225 } 6226 6227 /* Data-processing (1 source) 6228 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6229 * +----+---+---+-----------------+---------+--------+------+------+ 6230 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6231 * +----+---+---+-----------------+---------+--------+------+------+ 6232 */ 6233 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6234 { 6235 unsigned int sf, opcode, opcode2, rn, rd; 6236 TCGv_i64 tcg_rd; 6237 6238 if (extract32(insn, 29, 1)) { 6239 unallocated_encoding(s); 6240 return; 6241 } 6242 6243 sf = extract32(insn, 31, 1); 6244 opcode = extract32(insn, 10, 6); 6245 opcode2 = extract32(insn, 16, 5); 6246 rn = extract32(insn, 5, 5); 6247 rd = extract32(insn, 0, 5); 6248 6249 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6250 6251 switch (MAP(sf, opcode2, opcode)) { 6252 case MAP(0, 0x00, 0x00): /* RBIT */ 6253 case MAP(1, 0x00, 0x00): 6254 handle_rbit(s, sf, rn, rd); 6255 break; 6256 case MAP(0, 0x00, 0x01): /* REV16 */ 6257 case MAP(1, 0x00, 0x01): 6258 handle_rev16(s, sf, rn, rd); 6259 break; 6260 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6261 case MAP(1, 0x00, 0x02): 6262 handle_rev32(s, sf, rn, rd); 6263 break; 6264 case MAP(1, 0x00, 0x03): /* REV64 */ 6265 handle_rev64(s, sf, rn, rd); 6266 break; 6267 case MAP(0, 0x00, 0x04): /* CLZ */ 6268 case MAP(1, 0x00, 0x04): 6269 handle_clz(s, sf, rn, rd); 6270 break; 6271 case MAP(0, 0x00, 0x05): /* CLS */ 6272 case MAP(1, 0x00, 0x05): 6273 handle_cls(s, sf, rn, rd); 6274 break; 6275 case MAP(1, 0x01, 0x00): /* PACIA */ 6276 if (s->pauth_active) { 6277 tcg_rd = cpu_reg(s, rd); 6278 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6279 } else if (!dc_isar_feature(aa64_pauth, s)) { 6280 goto do_unallocated; 6281 } 6282 break; 6283 case MAP(1, 0x01, 0x01): /* PACIB */ 6284 if (s->pauth_active) { 6285 tcg_rd = cpu_reg(s, rd); 6286 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6287 } else if (!dc_isar_feature(aa64_pauth, s)) { 6288 goto do_unallocated; 6289 } 6290 break; 6291 case MAP(1, 0x01, 0x02): /* PACDA */ 6292 if (s->pauth_active) { 6293 tcg_rd = cpu_reg(s, rd); 6294 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6295 } else if (!dc_isar_feature(aa64_pauth, s)) { 6296 goto do_unallocated; 6297 } 6298 break; 6299 case MAP(1, 0x01, 0x03): /* PACDB */ 6300 if (s->pauth_active) { 6301 tcg_rd = cpu_reg(s, rd); 6302 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6303 } else if (!dc_isar_feature(aa64_pauth, s)) { 6304 goto do_unallocated; 6305 } 6306 break; 6307 case MAP(1, 0x01, 0x04): /* AUTIA */ 6308 if (s->pauth_active) { 6309 tcg_rd = cpu_reg(s, rd); 6310 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6311 } else if (!dc_isar_feature(aa64_pauth, s)) { 6312 goto do_unallocated; 6313 } 6314 break; 6315 case MAP(1, 0x01, 0x05): /* AUTIB */ 6316 if (s->pauth_active) { 6317 tcg_rd = cpu_reg(s, rd); 6318 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6319 } else if (!dc_isar_feature(aa64_pauth, s)) { 6320 goto do_unallocated; 6321 } 6322 break; 6323 case MAP(1, 0x01, 0x06): /* AUTDA */ 6324 if (s->pauth_active) { 6325 tcg_rd = cpu_reg(s, rd); 6326 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6327 } else if (!dc_isar_feature(aa64_pauth, s)) { 6328 goto do_unallocated; 6329 } 6330 break; 6331 case MAP(1, 0x01, 0x07): /* AUTDB */ 6332 if (s->pauth_active) { 6333 tcg_rd = cpu_reg(s, rd); 6334 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6335 } else if (!dc_isar_feature(aa64_pauth, s)) { 6336 goto do_unallocated; 6337 } 6338 break; 6339 case MAP(1, 0x01, 0x08): /* PACIZA */ 6340 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6341 goto do_unallocated; 6342 } else if (s->pauth_active) { 6343 tcg_rd = cpu_reg(s, rd); 6344 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6345 } 6346 break; 6347 case MAP(1, 0x01, 0x09): /* PACIZB */ 6348 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6349 goto do_unallocated; 6350 } else if (s->pauth_active) { 6351 tcg_rd = cpu_reg(s, rd); 6352 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6353 } 6354 break; 6355 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6356 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6357 goto do_unallocated; 6358 } else if (s->pauth_active) { 6359 tcg_rd = cpu_reg(s, rd); 6360 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6361 } 6362 break; 6363 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6364 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6365 goto do_unallocated; 6366 } else if (s->pauth_active) { 6367 tcg_rd = cpu_reg(s, rd); 6368 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6369 } 6370 break; 6371 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6372 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6373 goto do_unallocated; 6374 } else if (s->pauth_active) { 6375 tcg_rd = cpu_reg(s, rd); 6376 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6377 } 6378 break; 6379 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6380 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6381 goto do_unallocated; 6382 } else if (s->pauth_active) { 6383 tcg_rd = cpu_reg(s, rd); 6384 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6385 } 6386 break; 6387 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6388 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6389 goto do_unallocated; 6390 } else if (s->pauth_active) { 6391 tcg_rd = cpu_reg(s, rd); 6392 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6393 } 6394 break; 6395 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6396 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6397 goto do_unallocated; 6398 } else if (s->pauth_active) { 6399 tcg_rd = cpu_reg(s, rd); 6400 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6401 } 6402 break; 6403 case MAP(1, 0x01, 0x10): /* XPACI */ 6404 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6405 goto do_unallocated; 6406 } else if (s->pauth_active) { 6407 tcg_rd = cpu_reg(s, rd); 6408 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6409 } 6410 break; 6411 case MAP(1, 0x01, 0x11): /* XPACD */ 6412 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6413 goto do_unallocated; 6414 } else if (s->pauth_active) { 6415 tcg_rd = cpu_reg(s, rd); 6416 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6417 } 6418 break; 6419 default: 6420 do_unallocated: 6421 unallocated_encoding(s); 6422 break; 6423 } 6424 6425 #undef MAP 6426 } 6427 6428 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6429 unsigned int rm, unsigned int rn, unsigned int rd) 6430 { 6431 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6432 tcg_rd = cpu_reg(s, rd); 6433 6434 if (!sf && is_signed) { 6435 tcg_n = tcg_temp_new_i64(); 6436 tcg_m = tcg_temp_new_i64(); 6437 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6438 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6439 } else { 6440 tcg_n = read_cpu_reg(s, rn, sf); 6441 tcg_m = read_cpu_reg(s, rm, sf); 6442 } 6443 6444 if (is_signed) { 6445 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6446 } else { 6447 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6448 } 6449 6450 if (!sf) { /* zero extend final result */ 6451 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6452 } 6453 } 6454 6455 /* LSLV, LSRV, ASRV, RORV */ 6456 static void handle_shift_reg(DisasContext *s, 6457 enum a64_shift_type shift_type, unsigned int sf, 6458 unsigned int rm, unsigned int rn, unsigned int rd) 6459 { 6460 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6461 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6462 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6463 6464 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6465 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6466 } 6467 6468 /* CRC32[BHWX], CRC32C[BHWX] */ 6469 static void handle_crc32(DisasContext *s, 6470 unsigned int sf, unsigned int sz, bool crc32c, 6471 unsigned int rm, unsigned int rn, unsigned int rd) 6472 { 6473 TCGv_i64 tcg_acc, tcg_val; 6474 TCGv_i32 tcg_bytes; 6475 6476 if (!dc_isar_feature(aa64_crc32, s) 6477 || (sf == 1 && sz != 3) 6478 || (sf == 0 && sz == 3)) { 6479 unallocated_encoding(s); 6480 return; 6481 } 6482 6483 if (sz == 3) { 6484 tcg_val = cpu_reg(s, rm); 6485 } else { 6486 uint64_t mask; 6487 switch (sz) { 6488 case 0: 6489 mask = 0xFF; 6490 break; 6491 case 1: 6492 mask = 0xFFFF; 6493 break; 6494 case 2: 6495 mask = 0xFFFFFFFF; 6496 break; 6497 default: 6498 g_assert_not_reached(); 6499 } 6500 tcg_val = tcg_temp_new_i64(); 6501 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6502 } 6503 6504 tcg_acc = cpu_reg(s, rn); 6505 tcg_bytes = tcg_constant_i32(1 << sz); 6506 6507 if (crc32c) { 6508 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6509 } else { 6510 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6511 } 6512 } 6513 6514 /* Data-processing (2 source) 6515 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6516 * +----+---+---+-----------------+------+--------+------+------+ 6517 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6518 * +----+---+---+-----------------+------+--------+------+------+ 6519 */ 6520 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6521 { 6522 unsigned int sf, rm, opcode, rn, rd, setflag; 6523 sf = extract32(insn, 31, 1); 6524 setflag = extract32(insn, 29, 1); 6525 rm = extract32(insn, 16, 5); 6526 opcode = extract32(insn, 10, 6); 6527 rn = extract32(insn, 5, 5); 6528 rd = extract32(insn, 0, 5); 6529 6530 if (setflag && opcode != 0) { 6531 unallocated_encoding(s); 6532 return; 6533 } 6534 6535 switch (opcode) { 6536 case 0: /* SUBP(S) */ 6537 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6538 goto do_unallocated; 6539 } else { 6540 TCGv_i64 tcg_n, tcg_m, tcg_d; 6541 6542 tcg_n = read_cpu_reg_sp(s, rn, true); 6543 tcg_m = read_cpu_reg_sp(s, rm, true); 6544 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6545 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6546 tcg_d = cpu_reg(s, rd); 6547 6548 if (setflag) { 6549 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6550 } else { 6551 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6552 } 6553 } 6554 break; 6555 case 2: /* UDIV */ 6556 handle_div(s, false, sf, rm, rn, rd); 6557 break; 6558 case 3: /* SDIV */ 6559 handle_div(s, true, sf, rm, rn, rd); 6560 break; 6561 case 4: /* IRG */ 6562 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6563 goto do_unallocated; 6564 } 6565 if (s->ata[0]) { 6566 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6567 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6568 } else { 6569 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6570 cpu_reg_sp(s, rn)); 6571 } 6572 break; 6573 case 5: /* GMI */ 6574 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6575 goto do_unallocated; 6576 } else { 6577 TCGv_i64 t = tcg_temp_new_i64(); 6578 6579 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6580 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6581 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6582 } 6583 break; 6584 case 8: /* LSLV */ 6585 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6586 break; 6587 case 9: /* LSRV */ 6588 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6589 break; 6590 case 10: /* ASRV */ 6591 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6592 break; 6593 case 11: /* RORV */ 6594 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6595 break; 6596 case 12: /* PACGA */ 6597 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6598 goto do_unallocated; 6599 } 6600 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6601 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6602 break; 6603 case 16: 6604 case 17: 6605 case 18: 6606 case 19: 6607 case 20: 6608 case 21: 6609 case 22: 6610 case 23: /* CRC32 */ 6611 { 6612 int sz = extract32(opcode, 0, 2); 6613 bool crc32c = extract32(opcode, 2, 1); 6614 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6615 break; 6616 } 6617 default: 6618 do_unallocated: 6619 unallocated_encoding(s); 6620 break; 6621 } 6622 } 6623 6624 /* 6625 * Data processing - register 6626 * 31 30 29 28 25 21 20 16 10 0 6627 * +--+---+--+---+-------+-----+-------+-------+---------+ 6628 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6629 * +--+---+--+---+-------+-----+-------+-------+---------+ 6630 */ 6631 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6632 { 6633 int op0 = extract32(insn, 30, 1); 6634 int op1 = extract32(insn, 28, 1); 6635 int op2 = extract32(insn, 21, 4); 6636 int op3 = extract32(insn, 10, 6); 6637 6638 if (!op1) { 6639 if (op2 & 8) { 6640 if (op2 & 1) { 6641 /* Add/sub (extended register) */ 6642 disas_add_sub_ext_reg(s, insn); 6643 } else { 6644 /* Add/sub (shifted register) */ 6645 disas_add_sub_reg(s, insn); 6646 } 6647 } else { 6648 /* Logical (shifted register) */ 6649 disas_logic_reg(s, insn); 6650 } 6651 return; 6652 } 6653 6654 switch (op2) { 6655 case 0x0: 6656 switch (op3) { 6657 case 0x00: /* Add/subtract (with carry) */ 6658 disas_adc_sbc(s, insn); 6659 break; 6660 6661 case 0x01: /* Rotate right into flags */ 6662 case 0x21: 6663 disas_rotate_right_into_flags(s, insn); 6664 break; 6665 6666 case 0x02: /* Evaluate into flags */ 6667 case 0x12: 6668 case 0x22: 6669 case 0x32: 6670 disas_evaluate_into_flags(s, insn); 6671 break; 6672 6673 default: 6674 goto do_unallocated; 6675 } 6676 break; 6677 6678 case 0x2: /* Conditional compare */ 6679 disas_cc(s, insn); /* both imm and reg forms */ 6680 break; 6681 6682 case 0x4: /* Conditional select */ 6683 disas_cond_select(s, insn); 6684 break; 6685 6686 case 0x6: /* Data-processing */ 6687 if (op0) { /* (1 source) */ 6688 disas_data_proc_1src(s, insn); 6689 } else { /* (2 source) */ 6690 disas_data_proc_2src(s, insn); 6691 } 6692 break; 6693 case 0x8 ... 0xf: /* (3 source) */ 6694 disas_data_proc_3src(s, insn); 6695 break; 6696 6697 default: 6698 do_unallocated: 6699 unallocated_encoding(s); 6700 break; 6701 } 6702 } 6703 6704 static void handle_fp_compare(DisasContext *s, int size, 6705 unsigned int rn, unsigned int rm, 6706 bool cmp_with_zero, bool signal_all_nans) 6707 { 6708 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6709 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6710 6711 if (size == MO_64) { 6712 TCGv_i64 tcg_vn, tcg_vm; 6713 6714 tcg_vn = read_fp_dreg(s, rn); 6715 if (cmp_with_zero) { 6716 tcg_vm = tcg_constant_i64(0); 6717 } else { 6718 tcg_vm = read_fp_dreg(s, rm); 6719 } 6720 if (signal_all_nans) { 6721 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6722 } else { 6723 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6724 } 6725 } else { 6726 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6727 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6728 6729 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6730 if (cmp_with_zero) { 6731 tcg_gen_movi_i32(tcg_vm, 0); 6732 } else { 6733 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6734 } 6735 6736 switch (size) { 6737 case MO_32: 6738 if (signal_all_nans) { 6739 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6740 } else { 6741 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6742 } 6743 break; 6744 case MO_16: 6745 if (signal_all_nans) { 6746 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6747 } else { 6748 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6749 } 6750 break; 6751 default: 6752 g_assert_not_reached(); 6753 } 6754 } 6755 6756 gen_set_nzcv(tcg_flags); 6757 } 6758 6759 /* Floating point compare 6760 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6761 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6762 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6763 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6764 */ 6765 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6766 { 6767 unsigned int mos, type, rm, op, rn, opc, op2r; 6768 int size; 6769 6770 mos = extract32(insn, 29, 3); 6771 type = extract32(insn, 22, 2); 6772 rm = extract32(insn, 16, 5); 6773 op = extract32(insn, 14, 2); 6774 rn = extract32(insn, 5, 5); 6775 opc = extract32(insn, 3, 2); 6776 op2r = extract32(insn, 0, 3); 6777 6778 if (mos || op || op2r) { 6779 unallocated_encoding(s); 6780 return; 6781 } 6782 6783 switch (type) { 6784 case 0: 6785 size = MO_32; 6786 break; 6787 case 1: 6788 size = MO_64; 6789 break; 6790 case 3: 6791 size = MO_16; 6792 if (dc_isar_feature(aa64_fp16, s)) { 6793 break; 6794 } 6795 /* fallthru */ 6796 default: 6797 unallocated_encoding(s); 6798 return; 6799 } 6800 6801 if (!fp_access_check(s)) { 6802 return; 6803 } 6804 6805 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6806 } 6807 6808 /* Floating point conditional compare 6809 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6810 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6811 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6812 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6813 */ 6814 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6815 { 6816 unsigned int mos, type, rm, cond, rn, op, nzcv; 6817 TCGLabel *label_continue = NULL; 6818 int size; 6819 6820 mos = extract32(insn, 29, 3); 6821 type = extract32(insn, 22, 2); 6822 rm = extract32(insn, 16, 5); 6823 cond = extract32(insn, 12, 4); 6824 rn = extract32(insn, 5, 5); 6825 op = extract32(insn, 4, 1); 6826 nzcv = extract32(insn, 0, 4); 6827 6828 if (mos) { 6829 unallocated_encoding(s); 6830 return; 6831 } 6832 6833 switch (type) { 6834 case 0: 6835 size = MO_32; 6836 break; 6837 case 1: 6838 size = MO_64; 6839 break; 6840 case 3: 6841 size = MO_16; 6842 if (dc_isar_feature(aa64_fp16, s)) { 6843 break; 6844 } 6845 /* fallthru */ 6846 default: 6847 unallocated_encoding(s); 6848 return; 6849 } 6850 6851 if (!fp_access_check(s)) { 6852 return; 6853 } 6854 6855 if (cond < 0x0e) { /* not always */ 6856 TCGLabel *label_match = gen_new_label(); 6857 label_continue = gen_new_label(); 6858 arm_gen_test_cc(cond, label_match); 6859 /* nomatch: */ 6860 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6861 tcg_gen_br(label_continue); 6862 gen_set_label(label_match); 6863 } 6864 6865 handle_fp_compare(s, size, rn, rm, false, op); 6866 6867 if (cond < 0x0e) { 6868 gen_set_label(label_continue); 6869 } 6870 } 6871 6872 /* Floating point conditional select 6873 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6874 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6875 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6876 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6877 */ 6878 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6879 { 6880 unsigned int mos, type, rm, cond, rn, rd; 6881 TCGv_i64 t_true, t_false; 6882 DisasCompare64 c; 6883 MemOp sz; 6884 6885 mos = extract32(insn, 29, 3); 6886 type = extract32(insn, 22, 2); 6887 rm = extract32(insn, 16, 5); 6888 cond = extract32(insn, 12, 4); 6889 rn = extract32(insn, 5, 5); 6890 rd = extract32(insn, 0, 5); 6891 6892 if (mos) { 6893 unallocated_encoding(s); 6894 return; 6895 } 6896 6897 switch (type) { 6898 case 0: 6899 sz = MO_32; 6900 break; 6901 case 1: 6902 sz = MO_64; 6903 break; 6904 case 3: 6905 sz = MO_16; 6906 if (dc_isar_feature(aa64_fp16, s)) { 6907 break; 6908 } 6909 /* fallthru */ 6910 default: 6911 unallocated_encoding(s); 6912 return; 6913 } 6914 6915 if (!fp_access_check(s)) { 6916 return; 6917 } 6918 6919 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6920 t_true = tcg_temp_new_i64(); 6921 t_false = tcg_temp_new_i64(); 6922 read_vec_element(s, t_true, rn, 0, sz); 6923 read_vec_element(s, t_false, rm, 0, sz); 6924 6925 a64_test_cc(&c, cond); 6926 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6927 t_true, t_false); 6928 6929 /* Note that sregs & hregs write back zeros to the high bits, 6930 and we've already done the zero-extension. */ 6931 write_fp_dreg(s, rd, t_true); 6932 } 6933 6934 /* Floating-point data-processing (1 source) - half precision */ 6935 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6936 { 6937 TCGv_ptr fpst = NULL; 6938 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6939 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6940 6941 switch (opcode) { 6942 case 0x0: /* FMOV */ 6943 tcg_gen_mov_i32(tcg_res, tcg_op); 6944 break; 6945 case 0x1: /* FABS */ 6946 gen_vfp_absh(tcg_res, tcg_op); 6947 break; 6948 case 0x2: /* FNEG */ 6949 gen_vfp_negh(tcg_res, tcg_op); 6950 break; 6951 case 0x3: /* FSQRT */ 6952 fpst = fpstatus_ptr(FPST_FPCR_F16); 6953 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6954 break; 6955 case 0x8: /* FRINTN */ 6956 case 0x9: /* FRINTP */ 6957 case 0xa: /* FRINTM */ 6958 case 0xb: /* FRINTZ */ 6959 case 0xc: /* FRINTA */ 6960 { 6961 TCGv_i32 tcg_rmode; 6962 6963 fpst = fpstatus_ptr(FPST_FPCR_F16); 6964 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6965 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6966 gen_restore_rmode(tcg_rmode, fpst); 6967 break; 6968 } 6969 case 0xe: /* FRINTX */ 6970 fpst = fpstatus_ptr(FPST_FPCR_F16); 6971 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6972 break; 6973 case 0xf: /* FRINTI */ 6974 fpst = fpstatus_ptr(FPST_FPCR_F16); 6975 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6976 break; 6977 default: 6978 g_assert_not_reached(); 6979 } 6980 6981 write_fp_sreg(s, rd, tcg_res); 6982 } 6983 6984 /* Floating-point data-processing (1 source) - single precision */ 6985 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6986 { 6987 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6988 TCGv_i32 tcg_op, tcg_res; 6989 TCGv_ptr fpst; 6990 int rmode = -1; 6991 6992 tcg_op = read_fp_sreg(s, rn); 6993 tcg_res = tcg_temp_new_i32(); 6994 6995 switch (opcode) { 6996 case 0x0: /* FMOV */ 6997 tcg_gen_mov_i32(tcg_res, tcg_op); 6998 goto done; 6999 case 0x1: /* FABS */ 7000 gen_vfp_abss(tcg_res, tcg_op); 7001 goto done; 7002 case 0x2: /* FNEG */ 7003 gen_vfp_negs(tcg_res, tcg_op); 7004 goto done; 7005 case 0x3: /* FSQRT */ 7006 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 7007 goto done; 7008 case 0x6: /* BFCVT */ 7009 gen_fpst = gen_helper_bfcvt; 7010 break; 7011 case 0x8: /* FRINTN */ 7012 case 0x9: /* FRINTP */ 7013 case 0xa: /* FRINTM */ 7014 case 0xb: /* FRINTZ */ 7015 case 0xc: /* FRINTA */ 7016 rmode = opcode & 7; 7017 gen_fpst = gen_helper_rints; 7018 break; 7019 case 0xe: /* FRINTX */ 7020 gen_fpst = gen_helper_rints_exact; 7021 break; 7022 case 0xf: /* FRINTI */ 7023 gen_fpst = gen_helper_rints; 7024 break; 7025 case 0x10: /* FRINT32Z */ 7026 rmode = FPROUNDING_ZERO; 7027 gen_fpst = gen_helper_frint32_s; 7028 break; 7029 case 0x11: /* FRINT32X */ 7030 gen_fpst = gen_helper_frint32_s; 7031 break; 7032 case 0x12: /* FRINT64Z */ 7033 rmode = FPROUNDING_ZERO; 7034 gen_fpst = gen_helper_frint64_s; 7035 break; 7036 case 0x13: /* FRINT64X */ 7037 gen_fpst = gen_helper_frint64_s; 7038 break; 7039 default: 7040 g_assert_not_reached(); 7041 } 7042 7043 fpst = fpstatus_ptr(FPST_FPCR); 7044 if (rmode >= 0) { 7045 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7046 gen_fpst(tcg_res, tcg_op, fpst); 7047 gen_restore_rmode(tcg_rmode, fpst); 7048 } else { 7049 gen_fpst(tcg_res, tcg_op, fpst); 7050 } 7051 7052 done: 7053 write_fp_sreg(s, rd, tcg_res); 7054 } 7055 7056 /* Floating-point data-processing (1 source) - double precision */ 7057 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 7058 { 7059 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 7060 TCGv_i64 tcg_op, tcg_res; 7061 TCGv_ptr fpst; 7062 int rmode = -1; 7063 7064 switch (opcode) { 7065 case 0x0: /* FMOV */ 7066 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 7067 return; 7068 } 7069 7070 tcg_op = read_fp_dreg(s, rn); 7071 tcg_res = tcg_temp_new_i64(); 7072 7073 switch (opcode) { 7074 case 0x1: /* FABS */ 7075 gen_vfp_absd(tcg_res, tcg_op); 7076 goto done; 7077 case 0x2: /* FNEG */ 7078 gen_vfp_negd(tcg_res, tcg_op); 7079 goto done; 7080 case 0x3: /* FSQRT */ 7081 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 7082 goto done; 7083 case 0x8: /* FRINTN */ 7084 case 0x9: /* FRINTP */ 7085 case 0xa: /* FRINTM */ 7086 case 0xb: /* FRINTZ */ 7087 case 0xc: /* FRINTA */ 7088 rmode = opcode & 7; 7089 gen_fpst = gen_helper_rintd; 7090 break; 7091 case 0xe: /* FRINTX */ 7092 gen_fpst = gen_helper_rintd_exact; 7093 break; 7094 case 0xf: /* FRINTI */ 7095 gen_fpst = gen_helper_rintd; 7096 break; 7097 case 0x10: /* FRINT32Z */ 7098 rmode = FPROUNDING_ZERO; 7099 gen_fpst = gen_helper_frint32_d; 7100 break; 7101 case 0x11: /* FRINT32X */ 7102 gen_fpst = gen_helper_frint32_d; 7103 break; 7104 case 0x12: /* FRINT64Z */ 7105 rmode = FPROUNDING_ZERO; 7106 gen_fpst = gen_helper_frint64_d; 7107 break; 7108 case 0x13: /* FRINT64X */ 7109 gen_fpst = gen_helper_frint64_d; 7110 break; 7111 default: 7112 g_assert_not_reached(); 7113 } 7114 7115 fpst = fpstatus_ptr(FPST_FPCR); 7116 if (rmode >= 0) { 7117 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7118 gen_fpst(tcg_res, tcg_op, fpst); 7119 gen_restore_rmode(tcg_rmode, fpst); 7120 } else { 7121 gen_fpst(tcg_res, tcg_op, fpst); 7122 } 7123 7124 done: 7125 write_fp_dreg(s, rd, tcg_res); 7126 } 7127 7128 static void handle_fp_fcvt(DisasContext *s, int opcode, 7129 int rd, int rn, int dtype, int ntype) 7130 { 7131 switch (ntype) { 7132 case 0x0: 7133 { 7134 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7135 if (dtype == 1) { 7136 /* Single to double */ 7137 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7138 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7139 write_fp_dreg(s, rd, tcg_rd); 7140 } else { 7141 /* Single to half */ 7142 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7143 TCGv_i32 ahp = get_ahp_flag(); 7144 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7145 7146 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7147 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7148 write_fp_sreg(s, rd, tcg_rd); 7149 } 7150 break; 7151 } 7152 case 0x1: 7153 { 7154 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7155 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7156 if (dtype == 0) { 7157 /* Double to single */ 7158 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7159 } else { 7160 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7161 TCGv_i32 ahp = get_ahp_flag(); 7162 /* Double to half */ 7163 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7164 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7165 } 7166 write_fp_sreg(s, rd, tcg_rd); 7167 break; 7168 } 7169 case 0x3: 7170 { 7171 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7172 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7173 TCGv_i32 tcg_ahp = get_ahp_flag(); 7174 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7175 if (dtype == 0) { 7176 /* Half to single */ 7177 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7178 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7179 write_fp_sreg(s, rd, tcg_rd); 7180 } else { 7181 /* Half to double */ 7182 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7183 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7184 write_fp_dreg(s, rd, tcg_rd); 7185 } 7186 break; 7187 } 7188 default: 7189 g_assert_not_reached(); 7190 } 7191 } 7192 7193 /* Floating point data-processing (1 source) 7194 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7195 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7196 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7197 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7198 */ 7199 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7200 { 7201 int mos = extract32(insn, 29, 3); 7202 int type = extract32(insn, 22, 2); 7203 int opcode = extract32(insn, 15, 6); 7204 int rn = extract32(insn, 5, 5); 7205 int rd = extract32(insn, 0, 5); 7206 7207 if (mos) { 7208 goto do_unallocated; 7209 } 7210 7211 switch (opcode) { 7212 case 0x4: case 0x5: case 0x7: 7213 { 7214 /* FCVT between half, single and double precision */ 7215 int dtype = extract32(opcode, 0, 2); 7216 if (type == 2 || dtype == type) { 7217 goto do_unallocated; 7218 } 7219 if (!fp_access_check(s)) { 7220 return; 7221 } 7222 7223 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7224 break; 7225 } 7226 7227 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7228 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7229 goto do_unallocated; 7230 } 7231 /* fall through */ 7232 case 0x0 ... 0x3: 7233 case 0x8 ... 0xc: 7234 case 0xe ... 0xf: 7235 /* 32-to-32 and 64-to-64 ops */ 7236 switch (type) { 7237 case 0: 7238 if (!fp_access_check(s)) { 7239 return; 7240 } 7241 handle_fp_1src_single(s, opcode, rd, rn); 7242 break; 7243 case 1: 7244 if (!fp_access_check(s)) { 7245 return; 7246 } 7247 handle_fp_1src_double(s, opcode, rd, rn); 7248 break; 7249 case 3: 7250 if (!dc_isar_feature(aa64_fp16, s)) { 7251 goto do_unallocated; 7252 } 7253 7254 if (!fp_access_check(s)) { 7255 return; 7256 } 7257 handle_fp_1src_half(s, opcode, rd, rn); 7258 break; 7259 default: 7260 goto do_unallocated; 7261 } 7262 break; 7263 7264 case 0x6: 7265 switch (type) { 7266 case 1: /* BFCVT */ 7267 if (!dc_isar_feature(aa64_bf16, s)) { 7268 goto do_unallocated; 7269 } 7270 if (!fp_access_check(s)) { 7271 return; 7272 } 7273 handle_fp_1src_single(s, opcode, rd, rn); 7274 break; 7275 default: 7276 goto do_unallocated; 7277 } 7278 break; 7279 7280 default: 7281 do_unallocated: 7282 unallocated_encoding(s); 7283 break; 7284 } 7285 } 7286 7287 /* Floating-point data-processing (3 source) - single precision */ 7288 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7289 int rd, int rn, int rm, int ra) 7290 { 7291 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7292 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7293 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7294 7295 tcg_op1 = read_fp_sreg(s, rn); 7296 tcg_op2 = read_fp_sreg(s, rm); 7297 tcg_op3 = read_fp_sreg(s, ra); 7298 7299 /* These are fused multiply-add, and must be done as one 7300 * floating point operation with no rounding between the 7301 * multiplication and addition steps. 7302 * NB that doing the negations here as separate steps is 7303 * correct : an input NaN should come out with its sign bit 7304 * flipped if it is a negated-input. 7305 */ 7306 if (o1 == true) { 7307 gen_vfp_negs(tcg_op3, tcg_op3); 7308 } 7309 7310 if (o0 != o1) { 7311 gen_vfp_negs(tcg_op1, tcg_op1); 7312 } 7313 7314 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7315 7316 write_fp_sreg(s, rd, tcg_res); 7317 } 7318 7319 /* Floating-point data-processing (3 source) - double precision */ 7320 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7321 int rd, int rn, int rm, int ra) 7322 { 7323 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7324 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7325 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7326 7327 tcg_op1 = read_fp_dreg(s, rn); 7328 tcg_op2 = read_fp_dreg(s, rm); 7329 tcg_op3 = read_fp_dreg(s, ra); 7330 7331 /* These are fused multiply-add, and must be done as one 7332 * floating point operation with no rounding between the 7333 * multiplication and addition steps. 7334 * NB that doing the negations here as separate steps is 7335 * correct : an input NaN should come out with its sign bit 7336 * flipped if it is a negated-input. 7337 */ 7338 if (o1 == true) { 7339 gen_vfp_negd(tcg_op3, tcg_op3); 7340 } 7341 7342 if (o0 != o1) { 7343 gen_vfp_negd(tcg_op1, tcg_op1); 7344 } 7345 7346 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7347 7348 write_fp_dreg(s, rd, tcg_res); 7349 } 7350 7351 /* Floating-point data-processing (3 source) - half precision */ 7352 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7353 int rd, int rn, int rm, int ra) 7354 { 7355 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7356 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7357 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7358 7359 tcg_op1 = read_fp_hreg(s, rn); 7360 tcg_op2 = read_fp_hreg(s, rm); 7361 tcg_op3 = read_fp_hreg(s, ra); 7362 7363 /* These are fused multiply-add, and must be done as one 7364 * floating point operation with no rounding between the 7365 * multiplication and addition steps. 7366 * NB that doing the negations here as separate steps is 7367 * correct : an input NaN should come out with its sign bit 7368 * flipped if it is a negated-input. 7369 */ 7370 if (o1 == true) { 7371 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7372 } 7373 7374 if (o0 != o1) { 7375 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7376 } 7377 7378 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7379 7380 write_fp_sreg(s, rd, tcg_res); 7381 } 7382 7383 /* Floating point data-processing (3 source) 7384 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7385 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7386 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7387 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7388 */ 7389 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7390 { 7391 int mos = extract32(insn, 29, 3); 7392 int type = extract32(insn, 22, 2); 7393 int rd = extract32(insn, 0, 5); 7394 int rn = extract32(insn, 5, 5); 7395 int ra = extract32(insn, 10, 5); 7396 int rm = extract32(insn, 16, 5); 7397 bool o0 = extract32(insn, 15, 1); 7398 bool o1 = extract32(insn, 21, 1); 7399 7400 if (mos) { 7401 unallocated_encoding(s); 7402 return; 7403 } 7404 7405 switch (type) { 7406 case 0: 7407 if (!fp_access_check(s)) { 7408 return; 7409 } 7410 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7411 break; 7412 case 1: 7413 if (!fp_access_check(s)) { 7414 return; 7415 } 7416 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7417 break; 7418 case 3: 7419 if (!dc_isar_feature(aa64_fp16, s)) { 7420 unallocated_encoding(s); 7421 return; 7422 } 7423 if (!fp_access_check(s)) { 7424 return; 7425 } 7426 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7427 break; 7428 default: 7429 unallocated_encoding(s); 7430 } 7431 } 7432 7433 /* Floating point immediate 7434 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7435 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7436 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7437 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7438 */ 7439 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7440 { 7441 int rd = extract32(insn, 0, 5); 7442 int imm5 = extract32(insn, 5, 5); 7443 int imm8 = extract32(insn, 13, 8); 7444 int type = extract32(insn, 22, 2); 7445 int mos = extract32(insn, 29, 3); 7446 uint64_t imm; 7447 MemOp sz; 7448 7449 if (mos || imm5) { 7450 unallocated_encoding(s); 7451 return; 7452 } 7453 7454 switch (type) { 7455 case 0: 7456 sz = MO_32; 7457 break; 7458 case 1: 7459 sz = MO_64; 7460 break; 7461 case 3: 7462 sz = MO_16; 7463 if (dc_isar_feature(aa64_fp16, s)) { 7464 break; 7465 } 7466 /* fallthru */ 7467 default: 7468 unallocated_encoding(s); 7469 return; 7470 } 7471 7472 if (!fp_access_check(s)) { 7473 return; 7474 } 7475 7476 imm = vfp_expand_imm(sz, imm8); 7477 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7478 } 7479 7480 /* Handle floating point <=> fixed point conversions. Note that we can 7481 * also deal with fp <=> integer conversions as a special case (scale == 64) 7482 * OPTME: consider handling that special case specially or at least skipping 7483 * the call to scalbn in the helpers for zero shifts. 7484 */ 7485 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7486 bool itof, int rmode, int scale, int sf, int type) 7487 { 7488 bool is_signed = !(opcode & 1); 7489 TCGv_ptr tcg_fpstatus; 7490 TCGv_i32 tcg_shift, tcg_single; 7491 TCGv_i64 tcg_double; 7492 7493 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7494 7495 tcg_shift = tcg_constant_i32(64 - scale); 7496 7497 if (itof) { 7498 TCGv_i64 tcg_int = cpu_reg(s, rn); 7499 if (!sf) { 7500 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7501 7502 if (is_signed) { 7503 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7504 } else { 7505 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7506 } 7507 7508 tcg_int = tcg_extend; 7509 } 7510 7511 switch (type) { 7512 case 1: /* float64 */ 7513 tcg_double = tcg_temp_new_i64(); 7514 if (is_signed) { 7515 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7516 tcg_shift, tcg_fpstatus); 7517 } else { 7518 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7519 tcg_shift, tcg_fpstatus); 7520 } 7521 write_fp_dreg(s, rd, tcg_double); 7522 break; 7523 7524 case 0: /* float32 */ 7525 tcg_single = tcg_temp_new_i32(); 7526 if (is_signed) { 7527 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7528 tcg_shift, tcg_fpstatus); 7529 } else { 7530 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7531 tcg_shift, tcg_fpstatus); 7532 } 7533 write_fp_sreg(s, rd, tcg_single); 7534 break; 7535 7536 case 3: /* float16 */ 7537 tcg_single = tcg_temp_new_i32(); 7538 if (is_signed) { 7539 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7540 tcg_shift, tcg_fpstatus); 7541 } else { 7542 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7543 tcg_shift, tcg_fpstatus); 7544 } 7545 write_fp_sreg(s, rd, tcg_single); 7546 break; 7547 7548 default: 7549 g_assert_not_reached(); 7550 } 7551 } else { 7552 TCGv_i64 tcg_int = cpu_reg(s, rd); 7553 TCGv_i32 tcg_rmode; 7554 7555 if (extract32(opcode, 2, 1)) { 7556 /* There are too many rounding modes to all fit into rmode, 7557 * so FCVTA[US] is a special case. 7558 */ 7559 rmode = FPROUNDING_TIEAWAY; 7560 } 7561 7562 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7563 7564 switch (type) { 7565 case 1: /* float64 */ 7566 tcg_double = read_fp_dreg(s, rn); 7567 if (is_signed) { 7568 if (!sf) { 7569 gen_helper_vfp_tosld(tcg_int, tcg_double, 7570 tcg_shift, tcg_fpstatus); 7571 } else { 7572 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7573 tcg_shift, tcg_fpstatus); 7574 } 7575 } else { 7576 if (!sf) { 7577 gen_helper_vfp_tould(tcg_int, tcg_double, 7578 tcg_shift, tcg_fpstatus); 7579 } else { 7580 gen_helper_vfp_touqd(tcg_int, tcg_double, 7581 tcg_shift, tcg_fpstatus); 7582 } 7583 } 7584 if (!sf) { 7585 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7586 } 7587 break; 7588 7589 case 0: /* float32 */ 7590 tcg_single = read_fp_sreg(s, rn); 7591 if (sf) { 7592 if (is_signed) { 7593 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7594 tcg_shift, tcg_fpstatus); 7595 } else { 7596 gen_helper_vfp_touqs(tcg_int, tcg_single, 7597 tcg_shift, tcg_fpstatus); 7598 } 7599 } else { 7600 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7601 if (is_signed) { 7602 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7603 tcg_shift, tcg_fpstatus); 7604 } else { 7605 gen_helper_vfp_touls(tcg_dest, tcg_single, 7606 tcg_shift, tcg_fpstatus); 7607 } 7608 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7609 } 7610 break; 7611 7612 case 3: /* float16 */ 7613 tcg_single = read_fp_sreg(s, rn); 7614 if (sf) { 7615 if (is_signed) { 7616 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7617 tcg_shift, tcg_fpstatus); 7618 } else { 7619 gen_helper_vfp_touqh(tcg_int, tcg_single, 7620 tcg_shift, tcg_fpstatus); 7621 } 7622 } else { 7623 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7624 if (is_signed) { 7625 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7626 tcg_shift, tcg_fpstatus); 7627 } else { 7628 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7629 tcg_shift, tcg_fpstatus); 7630 } 7631 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7632 } 7633 break; 7634 7635 default: 7636 g_assert_not_reached(); 7637 } 7638 7639 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7640 } 7641 } 7642 7643 /* Floating point <-> fixed point conversions 7644 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7645 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7646 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7647 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7648 */ 7649 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7650 { 7651 int rd = extract32(insn, 0, 5); 7652 int rn = extract32(insn, 5, 5); 7653 int scale = extract32(insn, 10, 6); 7654 int opcode = extract32(insn, 16, 3); 7655 int rmode = extract32(insn, 19, 2); 7656 int type = extract32(insn, 22, 2); 7657 bool sbit = extract32(insn, 29, 1); 7658 bool sf = extract32(insn, 31, 1); 7659 bool itof; 7660 7661 if (sbit || (!sf && scale < 32)) { 7662 unallocated_encoding(s); 7663 return; 7664 } 7665 7666 switch (type) { 7667 case 0: /* float32 */ 7668 case 1: /* float64 */ 7669 break; 7670 case 3: /* float16 */ 7671 if (dc_isar_feature(aa64_fp16, s)) { 7672 break; 7673 } 7674 /* fallthru */ 7675 default: 7676 unallocated_encoding(s); 7677 return; 7678 } 7679 7680 switch ((rmode << 3) | opcode) { 7681 case 0x2: /* SCVTF */ 7682 case 0x3: /* UCVTF */ 7683 itof = true; 7684 break; 7685 case 0x18: /* FCVTZS */ 7686 case 0x19: /* FCVTZU */ 7687 itof = false; 7688 break; 7689 default: 7690 unallocated_encoding(s); 7691 return; 7692 } 7693 7694 if (!fp_access_check(s)) { 7695 return; 7696 } 7697 7698 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7699 } 7700 7701 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7702 { 7703 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7704 * without conversion. 7705 */ 7706 7707 if (itof) { 7708 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7709 TCGv_i64 tmp; 7710 7711 switch (type) { 7712 case 0: 7713 /* 32 bit */ 7714 tmp = tcg_temp_new_i64(); 7715 tcg_gen_ext32u_i64(tmp, tcg_rn); 7716 write_fp_dreg(s, rd, tmp); 7717 break; 7718 case 1: 7719 /* 64 bit */ 7720 write_fp_dreg(s, rd, tcg_rn); 7721 break; 7722 case 2: 7723 /* 64 bit to top half. */ 7724 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7725 clear_vec_high(s, true, rd); 7726 break; 7727 case 3: 7728 /* 16 bit */ 7729 tmp = tcg_temp_new_i64(); 7730 tcg_gen_ext16u_i64(tmp, tcg_rn); 7731 write_fp_dreg(s, rd, tmp); 7732 break; 7733 default: 7734 g_assert_not_reached(); 7735 } 7736 } else { 7737 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7738 7739 switch (type) { 7740 case 0: 7741 /* 32 bit */ 7742 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7743 break; 7744 case 1: 7745 /* 64 bit */ 7746 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7747 break; 7748 case 2: 7749 /* 64 bits from top half */ 7750 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7751 break; 7752 case 3: 7753 /* 16 bit */ 7754 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7755 break; 7756 default: 7757 g_assert_not_reached(); 7758 } 7759 } 7760 } 7761 7762 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7763 { 7764 TCGv_i64 t = read_fp_dreg(s, rn); 7765 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7766 7767 gen_helper_fjcvtzs(t, t, fpstatus); 7768 7769 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7770 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7771 tcg_gen_movi_i32(cpu_CF, 0); 7772 tcg_gen_movi_i32(cpu_NF, 0); 7773 tcg_gen_movi_i32(cpu_VF, 0); 7774 } 7775 7776 /* Floating point <-> integer conversions 7777 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7778 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7779 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7780 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7781 */ 7782 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7783 { 7784 int rd = extract32(insn, 0, 5); 7785 int rn = extract32(insn, 5, 5); 7786 int opcode = extract32(insn, 16, 3); 7787 int rmode = extract32(insn, 19, 2); 7788 int type = extract32(insn, 22, 2); 7789 bool sbit = extract32(insn, 29, 1); 7790 bool sf = extract32(insn, 31, 1); 7791 bool itof = false; 7792 7793 if (sbit) { 7794 goto do_unallocated; 7795 } 7796 7797 switch (opcode) { 7798 case 2: /* SCVTF */ 7799 case 3: /* UCVTF */ 7800 itof = true; 7801 /* fallthru */ 7802 case 4: /* FCVTAS */ 7803 case 5: /* FCVTAU */ 7804 if (rmode != 0) { 7805 goto do_unallocated; 7806 } 7807 /* fallthru */ 7808 case 0: /* FCVT[NPMZ]S */ 7809 case 1: /* FCVT[NPMZ]U */ 7810 switch (type) { 7811 case 0: /* float32 */ 7812 case 1: /* float64 */ 7813 break; 7814 case 3: /* float16 */ 7815 if (!dc_isar_feature(aa64_fp16, s)) { 7816 goto do_unallocated; 7817 } 7818 break; 7819 default: 7820 goto do_unallocated; 7821 } 7822 if (!fp_access_check(s)) { 7823 return; 7824 } 7825 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7826 break; 7827 7828 default: 7829 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7830 case 0b01100110: /* FMOV half <-> 32-bit int */ 7831 case 0b01100111: 7832 case 0b11100110: /* FMOV half <-> 64-bit int */ 7833 case 0b11100111: 7834 if (!dc_isar_feature(aa64_fp16, s)) { 7835 goto do_unallocated; 7836 } 7837 /* fallthru */ 7838 case 0b00000110: /* FMOV 32-bit */ 7839 case 0b00000111: 7840 case 0b10100110: /* FMOV 64-bit */ 7841 case 0b10100111: 7842 case 0b11001110: /* FMOV top half of 128-bit */ 7843 case 0b11001111: 7844 if (!fp_access_check(s)) { 7845 return; 7846 } 7847 itof = opcode & 1; 7848 handle_fmov(s, rd, rn, type, itof); 7849 break; 7850 7851 case 0b00111110: /* FJCVTZS */ 7852 if (!dc_isar_feature(aa64_jscvt, s)) { 7853 goto do_unallocated; 7854 } else if (fp_access_check(s)) { 7855 handle_fjcvtzs(s, rd, rn); 7856 } 7857 break; 7858 7859 default: 7860 do_unallocated: 7861 unallocated_encoding(s); 7862 return; 7863 } 7864 break; 7865 } 7866 } 7867 7868 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7869 * 31 30 29 28 25 24 0 7870 * +---+---+---+---------+-----------------------------+ 7871 * | | 0 | | 1 1 1 1 | | 7872 * +---+---+---+---------+-----------------------------+ 7873 */ 7874 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7875 { 7876 if (extract32(insn, 24, 1)) { 7877 /* Floating point data-processing (3 source) */ 7878 disas_fp_3src(s, insn); 7879 } else if (extract32(insn, 21, 1) == 0) { 7880 /* Floating point to fixed point conversions */ 7881 disas_fp_fixed_conv(s, insn); 7882 } else { 7883 switch (extract32(insn, 10, 2)) { 7884 case 1: 7885 /* Floating point conditional compare */ 7886 disas_fp_ccomp(s, insn); 7887 break; 7888 case 2: 7889 /* Floating point data-processing (2 source) */ 7890 unallocated_encoding(s); /* in decodetree */ 7891 break; 7892 case 3: 7893 /* Floating point conditional select */ 7894 disas_fp_csel(s, insn); 7895 break; 7896 case 0: 7897 switch (ctz32(extract32(insn, 12, 4))) { 7898 case 0: /* [15:12] == xxx1 */ 7899 /* Floating point immediate */ 7900 disas_fp_imm(s, insn); 7901 break; 7902 case 1: /* [15:12] == xx10 */ 7903 /* Floating point compare */ 7904 disas_fp_compare(s, insn); 7905 break; 7906 case 2: /* [15:12] == x100 */ 7907 /* Floating point data-processing (1 source) */ 7908 disas_fp_1src(s, insn); 7909 break; 7910 case 3: /* [15:12] == 1000 */ 7911 unallocated_encoding(s); 7912 break; 7913 default: /* [15:12] == 0000 */ 7914 /* Floating point <-> integer conversions */ 7915 disas_fp_int_conv(s, insn); 7916 break; 7917 } 7918 break; 7919 } 7920 } 7921 } 7922 7923 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7924 int pos) 7925 { 7926 /* Extract 64 bits from the middle of two concatenated 64 bit 7927 * vector register slices left:right. The extracted bits start 7928 * at 'pos' bits into the right (least significant) side. 7929 * We return the result in tcg_right, and guarantee not to 7930 * trash tcg_left. 7931 */ 7932 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7933 assert(pos > 0 && pos < 64); 7934 7935 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7936 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7937 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7938 } 7939 7940 /* EXT 7941 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7942 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7943 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7944 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7945 */ 7946 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7947 { 7948 int is_q = extract32(insn, 30, 1); 7949 int op2 = extract32(insn, 22, 2); 7950 int imm4 = extract32(insn, 11, 4); 7951 int rm = extract32(insn, 16, 5); 7952 int rn = extract32(insn, 5, 5); 7953 int rd = extract32(insn, 0, 5); 7954 int pos = imm4 << 3; 7955 TCGv_i64 tcg_resl, tcg_resh; 7956 7957 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7958 unallocated_encoding(s); 7959 return; 7960 } 7961 7962 if (!fp_access_check(s)) { 7963 return; 7964 } 7965 7966 tcg_resh = tcg_temp_new_i64(); 7967 tcg_resl = tcg_temp_new_i64(); 7968 7969 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7970 * either extracting 128 bits from a 128:128 concatenation, or 7971 * extracting 64 bits from a 64:64 concatenation. 7972 */ 7973 if (!is_q) { 7974 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7975 if (pos != 0) { 7976 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7977 do_ext64(s, tcg_resh, tcg_resl, pos); 7978 } 7979 } else { 7980 TCGv_i64 tcg_hh; 7981 typedef struct { 7982 int reg; 7983 int elt; 7984 } EltPosns; 7985 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7986 EltPosns *elt = eltposns; 7987 7988 if (pos >= 64) { 7989 elt++; 7990 pos -= 64; 7991 } 7992 7993 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7994 elt++; 7995 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7996 elt++; 7997 if (pos != 0) { 7998 do_ext64(s, tcg_resh, tcg_resl, pos); 7999 tcg_hh = tcg_temp_new_i64(); 8000 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8001 do_ext64(s, tcg_hh, tcg_resh, pos); 8002 } 8003 } 8004 8005 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8006 if (is_q) { 8007 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8008 } 8009 clear_vec_high(s, is_q, rd); 8010 } 8011 8012 /* TBL/TBX 8013 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8014 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8015 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8016 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8017 */ 8018 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8019 { 8020 int op2 = extract32(insn, 22, 2); 8021 int is_q = extract32(insn, 30, 1); 8022 int rm = extract32(insn, 16, 5); 8023 int rn = extract32(insn, 5, 5); 8024 int rd = extract32(insn, 0, 5); 8025 int is_tbx = extract32(insn, 12, 1); 8026 int len = (extract32(insn, 13, 2) + 1) * 16; 8027 8028 if (op2 != 0) { 8029 unallocated_encoding(s); 8030 return; 8031 } 8032 8033 if (!fp_access_check(s)) { 8034 return; 8035 } 8036 8037 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8038 vec_full_reg_offset(s, rm), tcg_env, 8039 is_q ? 16 : 8, vec_full_reg_size(s), 8040 (len << 6) | (is_tbx << 5) | rn, 8041 gen_helper_simd_tblx); 8042 } 8043 8044 /* ZIP/UZP/TRN 8045 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8046 * +---+---+-------------+------+---+------+---+------------------+------+ 8047 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8048 * +---+---+-------------+------+---+------+---+------------------+------+ 8049 */ 8050 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8051 { 8052 int rd = extract32(insn, 0, 5); 8053 int rn = extract32(insn, 5, 5); 8054 int rm = extract32(insn, 16, 5); 8055 int size = extract32(insn, 22, 2); 8056 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8057 * bit 2 indicates 1 vs 2 variant of the insn. 8058 */ 8059 int opcode = extract32(insn, 12, 2); 8060 bool part = extract32(insn, 14, 1); 8061 bool is_q = extract32(insn, 30, 1); 8062 int esize = 8 << size; 8063 int i; 8064 int datasize = is_q ? 128 : 64; 8065 int elements = datasize / esize; 8066 TCGv_i64 tcg_res[2], tcg_ele; 8067 8068 if (opcode == 0 || (size == 3 && !is_q)) { 8069 unallocated_encoding(s); 8070 return; 8071 } 8072 8073 if (!fp_access_check(s)) { 8074 return; 8075 } 8076 8077 tcg_res[0] = tcg_temp_new_i64(); 8078 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 8079 tcg_ele = tcg_temp_new_i64(); 8080 8081 for (i = 0; i < elements; i++) { 8082 int o, w; 8083 8084 switch (opcode) { 8085 case 1: /* UZP1/2 */ 8086 { 8087 int midpoint = elements / 2; 8088 if (i < midpoint) { 8089 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8090 } else { 8091 read_vec_element(s, tcg_ele, rm, 8092 2 * (i - midpoint) + part, size); 8093 } 8094 break; 8095 } 8096 case 2: /* TRN1/2 */ 8097 if (i & 1) { 8098 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8099 } else { 8100 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8101 } 8102 break; 8103 case 3: /* ZIP1/2 */ 8104 { 8105 int base = part * elements / 2; 8106 if (i & 1) { 8107 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8108 } else { 8109 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8110 } 8111 break; 8112 } 8113 default: 8114 g_assert_not_reached(); 8115 } 8116 8117 w = (i * esize) / 64; 8118 o = (i * esize) % 64; 8119 if (o == 0) { 8120 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8121 } else { 8122 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8123 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8124 } 8125 } 8126 8127 for (i = 0; i <= is_q; ++i) { 8128 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8129 } 8130 clear_vec_high(s, is_q, rd); 8131 } 8132 8133 /* 8134 * do_reduction_op helper 8135 * 8136 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8137 * important for correct NaN propagation that we do these 8138 * operations in exactly the order specified by the pseudocode. 8139 * 8140 * This is a recursive function, TCG temps should be freed by the 8141 * calling function once it is done with the values. 8142 */ 8143 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8144 int esize, int size, int vmap, TCGv_ptr fpst) 8145 { 8146 if (esize == size) { 8147 int element; 8148 MemOp msize = esize == 16 ? MO_16 : MO_32; 8149 TCGv_i32 tcg_elem; 8150 8151 /* We should have one register left here */ 8152 assert(ctpop8(vmap) == 1); 8153 element = ctz32(vmap); 8154 assert(element < 8); 8155 8156 tcg_elem = tcg_temp_new_i32(); 8157 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8158 return tcg_elem; 8159 } else { 8160 int bits = size / 2; 8161 int shift = ctpop8(vmap) / 2; 8162 int vmap_lo = (vmap >> shift) & vmap; 8163 int vmap_hi = (vmap & ~vmap_lo); 8164 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8165 8166 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8167 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8168 tcg_res = tcg_temp_new_i32(); 8169 8170 switch (fpopcode) { 8171 case 0x0c: /* fmaxnmv half-precision */ 8172 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8173 break; 8174 case 0x0f: /* fmaxv half-precision */ 8175 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8176 break; 8177 case 0x1c: /* fminnmv half-precision */ 8178 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8179 break; 8180 case 0x1f: /* fminv half-precision */ 8181 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8182 break; 8183 case 0x2c: /* fmaxnmv */ 8184 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8185 break; 8186 case 0x2f: /* fmaxv */ 8187 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8188 break; 8189 case 0x3c: /* fminnmv */ 8190 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8191 break; 8192 case 0x3f: /* fminv */ 8193 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8194 break; 8195 default: 8196 g_assert_not_reached(); 8197 } 8198 return tcg_res; 8199 } 8200 } 8201 8202 /* AdvSIMD across lanes 8203 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8204 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8205 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8206 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8207 */ 8208 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8209 { 8210 int rd = extract32(insn, 0, 5); 8211 int rn = extract32(insn, 5, 5); 8212 int size = extract32(insn, 22, 2); 8213 int opcode = extract32(insn, 12, 5); 8214 bool is_q = extract32(insn, 30, 1); 8215 bool is_u = extract32(insn, 29, 1); 8216 bool is_fp = false; 8217 bool is_min = false; 8218 int esize; 8219 int elements; 8220 int i; 8221 TCGv_i64 tcg_res, tcg_elt; 8222 8223 switch (opcode) { 8224 case 0x1b: /* ADDV */ 8225 if (is_u) { 8226 unallocated_encoding(s); 8227 return; 8228 } 8229 /* fall through */ 8230 case 0x3: /* SADDLV, UADDLV */ 8231 case 0xa: /* SMAXV, UMAXV */ 8232 case 0x1a: /* SMINV, UMINV */ 8233 if (size == 3 || (size == 2 && !is_q)) { 8234 unallocated_encoding(s); 8235 return; 8236 } 8237 break; 8238 case 0xc: /* FMAXNMV, FMINNMV */ 8239 case 0xf: /* FMAXV, FMINV */ 8240 /* Bit 1 of size field encodes min vs max and the actual size 8241 * depends on the encoding of the U bit. If not set (and FP16 8242 * enabled) then we do half-precision float instead of single 8243 * precision. 8244 */ 8245 is_min = extract32(size, 1, 1); 8246 is_fp = true; 8247 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8248 size = 1; 8249 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8250 unallocated_encoding(s); 8251 return; 8252 } else { 8253 size = 2; 8254 } 8255 break; 8256 default: 8257 unallocated_encoding(s); 8258 return; 8259 } 8260 8261 if (!fp_access_check(s)) { 8262 return; 8263 } 8264 8265 esize = 8 << size; 8266 elements = (is_q ? 128 : 64) / esize; 8267 8268 tcg_res = tcg_temp_new_i64(); 8269 tcg_elt = tcg_temp_new_i64(); 8270 8271 /* These instructions operate across all lanes of a vector 8272 * to produce a single result. We can guarantee that a 64 8273 * bit intermediate is sufficient: 8274 * + for [US]ADDLV the maximum element size is 32 bits, and 8275 * the result type is 64 bits 8276 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8277 * same as the element size, which is 32 bits at most 8278 * For the integer operations we can choose to work at 64 8279 * or 32 bits and truncate at the end; for simplicity 8280 * we use 64 bits always. The floating point 8281 * ops do require 32 bit intermediates, though. 8282 */ 8283 if (!is_fp) { 8284 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8285 8286 for (i = 1; i < elements; i++) { 8287 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8288 8289 switch (opcode) { 8290 case 0x03: /* SADDLV / UADDLV */ 8291 case 0x1b: /* ADDV */ 8292 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8293 break; 8294 case 0x0a: /* SMAXV / UMAXV */ 8295 if (is_u) { 8296 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8297 } else { 8298 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8299 } 8300 break; 8301 case 0x1a: /* SMINV / UMINV */ 8302 if (is_u) { 8303 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8304 } else { 8305 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8306 } 8307 break; 8308 default: 8309 g_assert_not_reached(); 8310 } 8311 8312 } 8313 } else { 8314 /* Floating point vector reduction ops which work across 32 8315 * bit (single) or 16 bit (half-precision) intermediates. 8316 * Note that correct NaN propagation requires that we do these 8317 * operations in exactly the order specified by the pseudocode. 8318 */ 8319 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8320 int fpopcode = opcode | is_min << 4 | is_u << 5; 8321 int vmap = (1 << elements) - 1; 8322 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8323 (is_q ? 128 : 64), vmap, fpst); 8324 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8325 } 8326 8327 /* Now truncate the result to the width required for the final output */ 8328 if (opcode == 0x03) { 8329 /* SADDLV, UADDLV: result is 2*esize */ 8330 size++; 8331 } 8332 8333 switch (size) { 8334 case 0: 8335 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8336 break; 8337 case 1: 8338 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8339 break; 8340 case 2: 8341 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8342 break; 8343 case 3: 8344 break; 8345 default: 8346 g_assert_not_reached(); 8347 } 8348 8349 write_fp_dreg(s, rd, tcg_res); 8350 } 8351 8352 /* AdvSIMD modified immediate 8353 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8354 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8355 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8356 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8357 * 8358 * There are a number of operations that can be carried out here: 8359 * MOVI - move (shifted) imm into register 8360 * MVNI - move inverted (shifted) imm into register 8361 * ORR - bitwise OR of (shifted) imm with register 8362 * BIC - bitwise clear of (shifted) imm with register 8363 * With ARMv8.2 we also have: 8364 * FMOV half-precision 8365 */ 8366 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8367 { 8368 int rd = extract32(insn, 0, 5); 8369 int cmode = extract32(insn, 12, 4); 8370 int o2 = extract32(insn, 11, 1); 8371 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8372 bool is_neg = extract32(insn, 29, 1); 8373 bool is_q = extract32(insn, 30, 1); 8374 uint64_t imm = 0; 8375 8376 if (o2) { 8377 if (cmode != 0xf || is_neg) { 8378 unallocated_encoding(s); 8379 return; 8380 } 8381 /* FMOV (vector, immediate) - half-precision */ 8382 if (!dc_isar_feature(aa64_fp16, s)) { 8383 unallocated_encoding(s); 8384 return; 8385 } 8386 imm = vfp_expand_imm(MO_16, abcdefgh); 8387 /* now duplicate across the lanes */ 8388 imm = dup_const(MO_16, imm); 8389 } else { 8390 if (cmode == 0xf && is_neg && !is_q) { 8391 unallocated_encoding(s); 8392 return; 8393 } 8394 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8395 } 8396 8397 if (!fp_access_check(s)) { 8398 return; 8399 } 8400 8401 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8402 /* MOVI or MVNI, with MVNI negation handled above. */ 8403 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8404 vec_full_reg_size(s), imm); 8405 } else { 8406 /* ORR or BIC, with BIC negation to AND handled above. */ 8407 if (is_neg) { 8408 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8409 } else { 8410 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8411 } 8412 } 8413 } 8414 8415 /* AdvSIMD scalar pairwise 8416 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8417 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8418 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8419 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8420 */ 8421 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8422 { 8423 int u = extract32(insn, 29, 1); 8424 int size = extract32(insn, 22, 2); 8425 int opcode = extract32(insn, 12, 5); 8426 int rn = extract32(insn, 5, 5); 8427 int rd = extract32(insn, 0, 5); 8428 8429 /* For some ops (the FP ones), size[1] is part of the encoding. 8430 * For ADDP strictly it is not but size[1] is always 1 for valid 8431 * encodings. 8432 */ 8433 opcode |= (extract32(size, 1, 1) << 5); 8434 8435 switch (opcode) { 8436 case 0x3b: /* ADDP */ 8437 if (u || size != 3) { 8438 unallocated_encoding(s); 8439 return; 8440 } 8441 if (!fp_access_check(s)) { 8442 return; 8443 } 8444 break; 8445 default: 8446 case 0xc: /* FMAXNMP */ 8447 case 0xd: /* FADDP */ 8448 case 0xf: /* FMAXP */ 8449 case 0x2c: /* FMINNMP */ 8450 case 0x2f: /* FMINP */ 8451 unallocated_encoding(s); 8452 return; 8453 } 8454 8455 if (size == MO_64) { 8456 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8457 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8458 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8459 8460 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8461 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8462 8463 switch (opcode) { 8464 case 0x3b: /* ADDP */ 8465 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8466 break; 8467 default: 8468 case 0xc: /* FMAXNMP */ 8469 case 0xd: /* FADDP */ 8470 case 0xf: /* FMAXP */ 8471 case 0x2c: /* FMINNMP */ 8472 case 0x2f: /* FMINP */ 8473 g_assert_not_reached(); 8474 } 8475 8476 write_fp_dreg(s, rd, tcg_res); 8477 } else { 8478 g_assert_not_reached(); 8479 } 8480 } 8481 8482 /* 8483 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8484 * 8485 * This code is handles the common shifting code and is used by both 8486 * the vector and scalar code. 8487 */ 8488 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8489 TCGv_i64 tcg_rnd, bool accumulate, 8490 bool is_u, int size, int shift) 8491 { 8492 bool extended_result = false; 8493 bool round = tcg_rnd != NULL; 8494 int ext_lshift = 0; 8495 TCGv_i64 tcg_src_hi; 8496 8497 if (round && size == 3) { 8498 extended_result = true; 8499 ext_lshift = 64 - shift; 8500 tcg_src_hi = tcg_temp_new_i64(); 8501 } else if (shift == 64) { 8502 if (!accumulate && is_u) { 8503 /* result is zero */ 8504 tcg_gen_movi_i64(tcg_res, 0); 8505 return; 8506 } 8507 } 8508 8509 /* Deal with the rounding step */ 8510 if (round) { 8511 if (extended_result) { 8512 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8513 if (!is_u) { 8514 /* take care of sign extending tcg_res */ 8515 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8516 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8517 tcg_src, tcg_src_hi, 8518 tcg_rnd, tcg_zero); 8519 } else { 8520 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8521 tcg_src, tcg_zero, 8522 tcg_rnd, tcg_zero); 8523 } 8524 } else { 8525 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8526 } 8527 } 8528 8529 /* Now do the shift right */ 8530 if (round && extended_result) { 8531 /* extended case, >64 bit precision required */ 8532 if (ext_lshift == 0) { 8533 /* special case, only high bits matter */ 8534 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8535 } else { 8536 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8537 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8538 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8539 } 8540 } else { 8541 if (is_u) { 8542 if (shift == 64) { 8543 /* essentially shifting in 64 zeros */ 8544 tcg_gen_movi_i64(tcg_src, 0); 8545 } else { 8546 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8547 } 8548 } else { 8549 if (shift == 64) { 8550 /* effectively extending the sign-bit */ 8551 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8552 } else { 8553 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8554 } 8555 } 8556 } 8557 8558 if (accumulate) { 8559 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8560 } else { 8561 tcg_gen_mov_i64(tcg_res, tcg_src); 8562 } 8563 } 8564 8565 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8566 static void handle_scalar_simd_shri(DisasContext *s, 8567 bool is_u, int immh, int immb, 8568 int opcode, int rn, int rd) 8569 { 8570 const int size = 3; 8571 int immhb = immh << 3 | immb; 8572 int shift = 2 * (8 << size) - immhb; 8573 bool accumulate = false; 8574 bool round = false; 8575 bool insert = false; 8576 TCGv_i64 tcg_rn; 8577 TCGv_i64 tcg_rd; 8578 TCGv_i64 tcg_round; 8579 8580 if (!extract32(immh, 3, 1)) { 8581 unallocated_encoding(s); 8582 return; 8583 } 8584 8585 if (!fp_access_check(s)) { 8586 return; 8587 } 8588 8589 switch (opcode) { 8590 case 0x02: /* SSRA / USRA (accumulate) */ 8591 accumulate = true; 8592 break; 8593 case 0x04: /* SRSHR / URSHR (rounding) */ 8594 round = true; 8595 break; 8596 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8597 accumulate = round = true; 8598 break; 8599 case 0x08: /* SRI */ 8600 insert = true; 8601 break; 8602 } 8603 8604 if (round) { 8605 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8606 } else { 8607 tcg_round = NULL; 8608 } 8609 8610 tcg_rn = read_fp_dreg(s, rn); 8611 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8612 8613 if (insert) { 8614 /* shift count same as element size is valid but does nothing; 8615 * special case to avoid potential shift by 64. 8616 */ 8617 int esize = 8 << size; 8618 if (shift != esize) { 8619 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8620 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8621 } 8622 } else { 8623 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8624 accumulate, is_u, size, shift); 8625 } 8626 8627 write_fp_dreg(s, rd, tcg_rd); 8628 } 8629 8630 /* SHL/SLI - Scalar shift left */ 8631 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8632 int immh, int immb, int opcode, 8633 int rn, int rd) 8634 { 8635 int size = 32 - clz32(immh) - 1; 8636 int immhb = immh << 3 | immb; 8637 int shift = immhb - (8 << size); 8638 TCGv_i64 tcg_rn; 8639 TCGv_i64 tcg_rd; 8640 8641 if (!extract32(immh, 3, 1)) { 8642 unallocated_encoding(s); 8643 return; 8644 } 8645 8646 if (!fp_access_check(s)) { 8647 return; 8648 } 8649 8650 tcg_rn = read_fp_dreg(s, rn); 8651 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8652 8653 if (insert) { 8654 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8655 } else { 8656 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8657 } 8658 8659 write_fp_dreg(s, rd, tcg_rd); 8660 } 8661 8662 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8663 * (signed/unsigned) narrowing */ 8664 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8665 bool is_u_shift, bool is_u_narrow, 8666 int immh, int immb, int opcode, 8667 int rn, int rd) 8668 { 8669 int immhb = immh << 3 | immb; 8670 int size = 32 - clz32(immh) - 1; 8671 int esize = 8 << size; 8672 int shift = (2 * esize) - immhb; 8673 int elements = is_scalar ? 1 : (64 / esize); 8674 bool round = extract32(opcode, 0, 1); 8675 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8676 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8677 TCGv_i32 tcg_rd_narrowed; 8678 TCGv_i64 tcg_final; 8679 8680 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8681 { gen_helper_neon_narrow_sat_s8, 8682 gen_helper_neon_unarrow_sat8 }, 8683 { gen_helper_neon_narrow_sat_s16, 8684 gen_helper_neon_unarrow_sat16 }, 8685 { gen_helper_neon_narrow_sat_s32, 8686 gen_helper_neon_unarrow_sat32 }, 8687 { NULL, NULL }, 8688 }; 8689 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8690 gen_helper_neon_narrow_sat_u8, 8691 gen_helper_neon_narrow_sat_u16, 8692 gen_helper_neon_narrow_sat_u32, 8693 NULL 8694 }; 8695 NeonGenNarrowEnvFn *narrowfn; 8696 8697 int i; 8698 8699 assert(size < 4); 8700 8701 if (extract32(immh, 3, 1)) { 8702 unallocated_encoding(s); 8703 return; 8704 } 8705 8706 if (!fp_access_check(s)) { 8707 return; 8708 } 8709 8710 if (is_u_shift) { 8711 narrowfn = unsigned_narrow_fns[size]; 8712 } else { 8713 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8714 } 8715 8716 tcg_rn = tcg_temp_new_i64(); 8717 tcg_rd = tcg_temp_new_i64(); 8718 tcg_rd_narrowed = tcg_temp_new_i32(); 8719 tcg_final = tcg_temp_new_i64(); 8720 8721 if (round) { 8722 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8723 } else { 8724 tcg_round = NULL; 8725 } 8726 8727 for (i = 0; i < elements; i++) { 8728 read_vec_element(s, tcg_rn, rn, i, ldop); 8729 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8730 false, is_u_shift, size+1, shift); 8731 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8732 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8733 if (i == 0) { 8734 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8735 } else { 8736 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8737 } 8738 } 8739 8740 if (!is_q) { 8741 write_vec_element(s, tcg_final, rd, 0, MO_64); 8742 } else { 8743 write_vec_element(s, tcg_final, rd, 1, MO_64); 8744 } 8745 clear_vec_high(s, is_q, rd); 8746 } 8747 8748 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8749 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8750 bool src_unsigned, bool dst_unsigned, 8751 int immh, int immb, int rn, int rd) 8752 { 8753 int immhb = immh << 3 | immb; 8754 int size = 32 - clz32(immh) - 1; 8755 int shift = immhb - (8 << size); 8756 int pass; 8757 8758 assert(immh != 0); 8759 assert(!(scalar && is_q)); 8760 8761 if (!scalar) { 8762 if (!is_q && extract32(immh, 3, 1)) { 8763 unallocated_encoding(s); 8764 return; 8765 } 8766 8767 /* Since we use the variable-shift helpers we must 8768 * replicate the shift count into each element of 8769 * the tcg_shift value. 8770 */ 8771 switch (size) { 8772 case 0: 8773 shift |= shift << 8; 8774 /* fall through */ 8775 case 1: 8776 shift |= shift << 16; 8777 break; 8778 case 2: 8779 case 3: 8780 break; 8781 default: 8782 g_assert_not_reached(); 8783 } 8784 } 8785 8786 if (!fp_access_check(s)) { 8787 return; 8788 } 8789 8790 if (size == 3) { 8791 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8792 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8793 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8794 { NULL, gen_helper_neon_qshl_u64 }, 8795 }; 8796 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8797 int maxpass = is_q ? 2 : 1; 8798 8799 for (pass = 0; pass < maxpass; pass++) { 8800 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8801 8802 read_vec_element(s, tcg_op, rn, pass, MO_64); 8803 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8804 write_vec_element(s, tcg_op, rd, pass, MO_64); 8805 } 8806 clear_vec_high(s, is_q, rd); 8807 } else { 8808 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8809 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8810 { 8811 { gen_helper_neon_qshl_s8, 8812 gen_helper_neon_qshl_s16, 8813 gen_helper_neon_qshl_s32 }, 8814 { gen_helper_neon_qshlu_s8, 8815 gen_helper_neon_qshlu_s16, 8816 gen_helper_neon_qshlu_s32 } 8817 }, { 8818 { NULL, NULL, NULL }, 8819 { gen_helper_neon_qshl_u8, 8820 gen_helper_neon_qshl_u16, 8821 gen_helper_neon_qshl_u32 } 8822 } 8823 }; 8824 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8825 MemOp memop = scalar ? size : MO_32; 8826 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8827 8828 for (pass = 0; pass < maxpass; pass++) { 8829 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8830 8831 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8832 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8833 if (scalar) { 8834 switch (size) { 8835 case 0: 8836 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8837 break; 8838 case 1: 8839 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8840 break; 8841 case 2: 8842 break; 8843 default: 8844 g_assert_not_reached(); 8845 } 8846 write_fp_sreg(s, rd, tcg_op); 8847 } else { 8848 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8849 } 8850 } 8851 8852 if (!scalar) { 8853 clear_vec_high(s, is_q, rd); 8854 } 8855 } 8856 } 8857 8858 /* Common vector code for handling integer to FP conversion */ 8859 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8860 int elements, int is_signed, 8861 int fracbits, int size) 8862 { 8863 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8864 TCGv_i32 tcg_shift = NULL; 8865 8866 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8867 int pass; 8868 8869 if (fracbits || size == MO_64) { 8870 tcg_shift = tcg_constant_i32(fracbits); 8871 } 8872 8873 if (size == MO_64) { 8874 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8875 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8876 8877 for (pass = 0; pass < elements; pass++) { 8878 read_vec_element(s, tcg_int64, rn, pass, mop); 8879 8880 if (is_signed) { 8881 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8882 tcg_shift, tcg_fpst); 8883 } else { 8884 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8885 tcg_shift, tcg_fpst); 8886 } 8887 if (elements == 1) { 8888 write_fp_dreg(s, rd, tcg_double); 8889 } else { 8890 write_vec_element(s, tcg_double, rd, pass, MO_64); 8891 } 8892 } 8893 } else { 8894 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8895 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8896 8897 for (pass = 0; pass < elements; pass++) { 8898 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8899 8900 switch (size) { 8901 case MO_32: 8902 if (fracbits) { 8903 if (is_signed) { 8904 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8905 tcg_shift, tcg_fpst); 8906 } else { 8907 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8908 tcg_shift, tcg_fpst); 8909 } 8910 } else { 8911 if (is_signed) { 8912 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8913 } else { 8914 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8915 } 8916 } 8917 break; 8918 case MO_16: 8919 if (fracbits) { 8920 if (is_signed) { 8921 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8922 tcg_shift, tcg_fpst); 8923 } else { 8924 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8925 tcg_shift, tcg_fpst); 8926 } 8927 } else { 8928 if (is_signed) { 8929 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8930 } else { 8931 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8932 } 8933 } 8934 break; 8935 default: 8936 g_assert_not_reached(); 8937 } 8938 8939 if (elements == 1) { 8940 write_fp_sreg(s, rd, tcg_float); 8941 } else { 8942 write_vec_element_i32(s, tcg_float, rd, pass, size); 8943 } 8944 } 8945 } 8946 8947 clear_vec_high(s, elements << size == 16, rd); 8948 } 8949 8950 /* UCVTF/SCVTF - Integer to FP conversion */ 8951 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8952 bool is_q, bool is_u, 8953 int immh, int immb, int opcode, 8954 int rn, int rd) 8955 { 8956 int size, elements, fracbits; 8957 int immhb = immh << 3 | immb; 8958 8959 if (immh & 8) { 8960 size = MO_64; 8961 if (!is_scalar && !is_q) { 8962 unallocated_encoding(s); 8963 return; 8964 } 8965 } else if (immh & 4) { 8966 size = MO_32; 8967 } else if (immh & 2) { 8968 size = MO_16; 8969 if (!dc_isar_feature(aa64_fp16, s)) { 8970 unallocated_encoding(s); 8971 return; 8972 } 8973 } else { 8974 /* immh == 0 would be a failure of the decode logic */ 8975 g_assert(immh == 1); 8976 unallocated_encoding(s); 8977 return; 8978 } 8979 8980 if (is_scalar) { 8981 elements = 1; 8982 } else { 8983 elements = (8 << is_q) >> size; 8984 } 8985 fracbits = (16 << size) - immhb; 8986 8987 if (!fp_access_check(s)) { 8988 return; 8989 } 8990 8991 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8992 } 8993 8994 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8995 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8996 bool is_q, bool is_u, 8997 int immh, int immb, int rn, int rd) 8998 { 8999 int immhb = immh << 3 | immb; 9000 int pass, size, fracbits; 9001 TCGv_ptr tcg_fpstatus; 9002 TCGv_i32 tcg_rmode, tcg_shift; 9003 9004 if (immh & 0x8) { 9005 size = MO_64; 9006 if (!is_scalar && !is_q) { 9007 unallocated_encoding(s); 9008 return; 9009 } 9010 } else if (immh & 0x4) { 9011 size = MO_32; 9012 } else if (immh & 0x2) { 9013 size = MO_16; 9014 if (!dc_isar_feature(aa64_fp16, s)) { 9015 unallocated_encoding(s); 9016 return; 9017 } 9018 } else { 9019 /* Should have split out AdvSIMD modified immediate earlier. */ 9020 assert(immh == 1); 9021 unallocated_encoding(s); 9022 return; 9023 } 9024 9025 if (!fp_access_check(s)) { 9026 return; 9027 } 9028 9029 assert(!(is_scalar && is_q)); 9030 9031 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9032 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9033 fracbits = (16 << size) - immhb; 9034 tcg_shift = tcg_constant_i32(fracbits); 9035 9036 if (size == MO_64) { 9037 int maxpass = is_scalar ? 1 : 2; 9038 9039 for (pass = 0; pass < maxpass; pass++) { 9040 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9041 9042 read_vec_element(s, tcg_op, rn, pass, MO_64); 9043 if (is_u) { 9044 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9045 } else { 9046 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9047 } 9048 write_vec_element(s, tcg_op, rd, pass, MO_64); 9049 } 9050 clear_vec_high(s, is_q, rd); 9051 } else { 9052 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9053 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9054 9055 switch (size) { 9056 case MO_16: 9057 if (is_u) { 9058 fn = gen_helper_vfp_touhh; 9059 } else { 9060 fn = gen_helper_vfp_toshh; 9061 } 9062 break; 9063 case MO_32: 9064 if (is_u) { 9065 fn = gen_helper_vfp_touls; 9066 } else { 9067 fn = gen_helper_vfp_tosls; 9068 } 9069 break; 9070 default: 9071 g_assert_not_reached(); 9072 } 9073 9074 for (pass = 0; pass < maxpass; pass++) { 9075 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9076 9077 read_vec_element_i32(s, tcg_op, rn, pass, size); 9078 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9079 if (is_scalar) { 9080 if (size == MO_16 && !is_u) { 9081 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9082 } 9083 write_fp_sreg(s, rd, tcg_op); 9084 } else { 9085 write_vec_element_i32(s, tcg_op, rd, pass, size); 9086 } 9087 } 9088 if (!is_scalar) { 9089 clear_vec_high(s, is_q, rd); 9090 } 9091 } 9092 9093 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9094 } 9095 9096 /* AdvSIMD scalar shift by immediate 9097 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9098 * +-----+---+-------------+------+------+--------+---+------+------+ 9099 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9100 * +-----+---+-------------+------+------+--------+---+------+------+ 9101 * 9102 * This is the scalar version so it works on a fixed sized registers 9103 */ 9104 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9105 { 9106 int rd = extract32(insn, 0, 5); 9107 int rn = extract32(insn, 5, 5); 9108 int opcode = extract32(insn, 11, 5); 9109 int immb = extract32(insn, 16, 3); 9110 int immh = extract32(insn, 19, 4); 9111 bool is_u = extract32(insn, 29, 1); 9112 9113 if (immh == 0) { 9114 unallocated_encoding(s); 9115 return; 9116 } 9117 9118 switch (opcode) { 9119 case 0x08: /* SRI */ 9120 if (!is_u) { 9121 unallocated_encoding(s); 9122 return; 9123 } 9124 /* fall through */ 9125 case 0x00: /* SSHR / USHR */ 9126 case 0x02: /* SSRA / USRA */ 9127 case 0x04: /* SRSHR / URSHR */ 9128 case 0x06: /* SRSRA / URSRA */ 9129 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9130 break; 9131 case 0x0a: /* SHL / SLI */ 9132 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9133 break; 9134 case 0x1c: /* SCVTF, UCVTF */ 9135 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9136 opcode, rn, rd); 9137 break; 9138 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9139 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9140 if (!is_u) { 9141 unallocated_encoding(s); 9142 return; 9143 } 9144 handle_vec_simd_sqshrn(s, true, false, false, true, 9145 immh, immb, opcode, rn, rd); 9146 break; 9147 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9148 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9149 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9150 immh, immb, opcode, rn, rd); 9151 break; 9152 case 0xc: /* SQSHLU */ 9153 if (!is_u) { 9154 unallocated_encoding(s); 9155 return; 9156 } 9157 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9158 break; 9159 case 0xe: /* SQSHL, UQSHL */ 9160 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9161 break; 9162 case 0x1f: /* FCVTZS, FCVTZU */ 9163 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9164 break; 9165 default: 9166 unallocated_encoding(s); 9167 break; 9168 } 9169 } 9170 9171 /* AdvSIMD scalar three different 9172 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9173 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9174 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9175 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9176 */ 9177 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9178 { 9179 bool is_u = extract32(insn, 29, 1); 9180 int size = extract32(insn, 22, 2); 9181 int opcode = extract32(insn, 12, 4); 9182 int rm = extract32(insn, 16, 5); 9183 int rn = extract32(insn, 5, 5); 9184 int rd = extract32(insn, 0, 5); 9185 9186 if (is_u) { 9187 unallocated_encoding(s); 9188 return; 9189 } 9190 9191 switch (opcode) { 9192 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9193 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9194 case 0xd: /* SQDMULL, SQDMULL2 */ 9195 if (size == 0 || size == 3) { 9196 unallocated_encoding(s); 9197 return; 9198 } 9199 break; 9200 default: 9201 unallocated_encoding(s); 9202 return; 9203 } 9204 9205 if (!fp_access_check(s)) { 9206 return; 9207 } 9208 9209 if (size == 2) { 9210 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9211 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9212 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9213 9214 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9215 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9216 9217 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9218 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9219 9220 switch (opcode) { 9221 case 0xd: /* SQDMULL, SQDMULL2 */ 9222 break; 9223 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9224 tcg_gen_neg_i64(tcg_res, tcg_res); 9225 /* fall through */ 9226 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9227 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9228 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9229 tcg_res, tcg_op1); 9230 break; 9231 default: 9232 g_assert_not_reached(); 9233 } 9234 9235 write_fp_dreg(s, rd, tcg_res); 9236 } else { 9237 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9238 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9239 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9240 9241 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9242 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9243 9244 switch (opcode) { 9245 case 0xd: /* SQDMULL, SQDMULL2 */ 9246 break; 9247 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9248 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9249 /* fall through */ 9250 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9251 { 9252 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9253 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9254 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9255 tcg_res, tcg_op3); 9256 break; 9257 } 9258 default: 9259 g_assert_not_reached(); 9260 } 9261 9262 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9263 write_fp_dreg(s, rd, tcg_res); 9264 } 9265 } 9266 9267 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9268 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9269 { 9270 /* Handle 64x64->64 opcodes which are shared between the scalar 9271 * and vector 3-same groups. We cover every opcode where size == 3 9272 * is valid in either the three-reg-same (integer, not pairwise) 9273 * or scalar-three-reg-same groups. 9274 */ 9275 TCGCond cond; 9276 9277 switch (opcode) { 9278 case 0x1: /* SQADD */ 9279 if (u) { 9280 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9281 } else { 9282 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9283 } 9284 break; 9285 case 0x5: /* SQSUB */ 9286 if (u) { 9287 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9288 } else { 9289 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9290 } 9291 break; 9292 case 0x6: /* CMGT, CMHI */ 9293 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9294 do_cmop: 9295 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9296 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9297 break; 9298 case 0x7: /* CMGE, CMHS */ 9299 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9300 goto do_cmop; 9301 case 0x11: /* CMTST, CMEQ */ 9302 if (u) { 9303 cond = TCG_COND_EQ; 9304 goto do_cmop; 9305 } 9306 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9307 break; 9308 case 0x8: /* SSHL, USHL */ 9309 if (u) { 9310 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9311 } else { 9312 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9313 } 9314 break; 9315 case 0x9: /* SQSHL, UQSHL */ 9316 if (u) { 9317 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9318 } else { 9319 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9320 } 9321 break; 9322 case 0xa: /* SRSHL, URSHL */ 9323 if (u) { 9324 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9325 } else { 9326 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9327 } 9328 break; 9329 case 0xb: /* SQRSHL, UQRSHL */ 9330 if (u) { 9331 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9332 } else { 9333 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9334 } 9335 break; 9336 case 0x10: /* ADD, SUB */ 9337 if (u) { 9338 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9339 } else { 9340 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9341 } 9342 break; 9343 default: 9344 g_assert_not_reached(); 9345 } 9346 } 9347 9348 /* AdvSIMD scalar three same 9349 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9350 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9351 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9352 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9353 */ 9354 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9355 { 9356 int rd = extract32(insn, 0, 5); 9357 int rn = extract32(insn, 5, 5); 9358 int opcode = extract32(insn, 11, 5); 9359 int rm = extract32(insn, 16, 5); 9360 int size = extract32(insn, 22, 2); 9361 bool u = extract32(insn, 29, 1); 9362 TCGv_i64 tcg_rd; 9363 9364 switch (opcode) { 9365 case 0x1: /* SQADD, UQADD */ 9366 case 0x5: /* SQSUB, UQSUB */ 9367 case 0x9: /* SQSHL, UQSHL */ 9368 case 0xb: /* SQRSHL, UQRSHL */ 9369 break; 9370 case 0x8: /* SSHL, USHL */ 9371 case 0xa: /* SRSHL, URSHL */ 9372 case 0x6: /* CMGT, CMHI */ 9373 case 0x7: /* CMGE, CMHS */ 9374 case 0x11: /* CMTST, CMEQ */ 9375 case 0x10: /* ADD, SUB (vector) */ 9376 if (size != 3) { 9377 unallocated_encoding(s); 9378 return; 9379 } 9380 break; 9381 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9382 if (size != 1 && size != 2) { 9383 unallocated_encoding(s); 9384 return; 9385 } 9386 break; 9387 default: 9388 unallocated_encoding(s); 9389 return; 9390 } 9391 9392 if (!fp_access_check(s)) { 9393 return; 9394 } 9395 9396 tcg_rd = tcg_temp_new_i64(); 9397 9398 if (size == 3) { 9399 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9400 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9401 9402 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9403 } else { 9404 /* Do a single operation on the lowest element in the vector. 9405 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9406 * no side effects for all these operations. 9407 * OPTME: special-purpose helpers would avoid doing some 9408 * unnecessary work in the helper for the 8 and 16 bit cases. 9409 */ 9410 NeonGenTwoOpEnvFn *genenvfn; 9411 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9412 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9413 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9414 9415 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9416 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9417 9418 switch (opcode) { 9419 case 0x1: /* SQADD, UQADD */ 9420 { 9421 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9422 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9423 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9424 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9425 }; 9426 genenvfn = fns[size][u]; 9427 break; 9428 } 9429 case 0x5: /* SQSUB, UQSUB */ 9430 { 9431 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9432 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9433 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9434 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9435 }; 9436 genenvfn = fns[size][u]; 9437 break; 9438 } 9439 case 0x9: /* SQSHL, UQSHL */ 9440 { 9441 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9442 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9443 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9444 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9445 }; 9446 genenvfn = fns[size][u]; 9447 break; 9448 } 9449 case 0xb: /* SQRSHL, UQRSHL */ 9450 { 9451 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9452 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9453 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9454 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9455 }; 9456 genenvfn = fns[size][u]; 9457 break; 9458 } 9459 case 0x16: /* SQDMULH, SQRDMULH */ 9460 { 9461 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9462 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9463 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9464 }; 9465 assert(size == 1 || size == 2); 9466 genenvfn = fns[size - 1][u]; 9467 break; 9468 } 9469 default: 9470 g_assert_not_reached(); 9471 } 9472 9473 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9474 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9475 } 9476 9477 write_fp_dreg(s, rd, tcg_rd); 9478 } 9479 9480 /* AdvSIMD scalar three same extra 9481 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9482 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9483 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9484 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9485 */ 9486 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9487 uint32_t insn) 9488 { 9489 int rd = extract32(insn, 0, 5); 9490 int rn = extract32(insn, 5, 5); 9491 int opcode = extract32(insn, 11, 4); 9492 int rm = extract32(insn, 16, 5); 9493 int size = extract32(insn, 22, 2); 9494 bool u = extract32(insn, 29, 1); 9495 TCGv_i32 ele1, ele2, ele3; 9496 TCGv_i64 res; 9497 bool feature; 9498 9499 switch (u * 16 + opcode) { 9500 case 0x10: /* SQRDMLAH (vector) */ 9501 case 0x11: /* SQRDMLSH (vector) */ 9502 if (size != 1 && size != 2) { 9503 unallocated_encoding(s); 9504 return; 9505 } 9506 feature = dc_isar_feature(aa64_rdm, s); 9507 break; 9508 default: 9509 unallocated_encoding(s); 9510 return; 9511 } 9512 if (!feature) { 9513 unallocated_encoding(s); 9514 return; 9515 } 9516 if (!fp_access_check(s)) { 9517 return; 9518 } 9519 9520 /* Do a single operation on the lowest element in the vector. 9521 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9522 * with no side effects for all these operations. 9523 * OPTME: special-purpose helpers would avoid doing some 9524 * unnecessary work in the helper for the 16 bit cases. 9525 */ 9526 ele1 = tcg_temp_new_i32(); 9527 ele2 = tcg_temp_new_i32(); 9528 ele3 = tcg_temp_new_i32(); 9529 9530 read_vec_element_i32(s, ele1, rn, 0, size); 9531 read_vec_element_i32(s, ele2, rm, 0, size); 9532 read_vec_element_i32(s, ele3, rd, 0, size); 9533 9534 switch (opcode) { 9535 case 0x0: /* SQRDMLAH */ 9536 if (size == 1) { 9537 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9538 } else { 9539 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9540 } 9541 break; 9542 case 0x1: /* SQRDMLSH */ 9543 if (size == 1) { 9544 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9545 } else { 9546 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9547 } 9548 break; 9549 default: 9550 g_assert_not_reached(); 9551 } 9552 9553 res = tcg_temp_new_i64(); 9554 tcg_gen_extu_i32_i64(res, ele3); 9555 write_fp_dreg(s, rd, res); 9556 } 9557 9558 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9559 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9560 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9561 { 9562 /* Handle 64->64 opcodes which are shared between the scalar and 9563 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9564 * is valid in either group and also the double-precision fp ops. 9565 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9566 * requires them. 9567 */ 9568 TCGCond cond; 9569 9570 switch (opcode) { 9571 case 0x4: /* CLS, CLZ */ 9572 if (u) { 9573 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9574 } else { 9575 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9576 } 9577 break; 9578 case 0x5: /* NOT */ 9579 /* This opcode is shared with CNT and RBIT but we have earlier 9580 * enforced that size == 3 if and only if this is the NOT insn. 9581 */ 9582 tcg_gen_not_i64(tcg_rd, tcg_rn); 9583 break; 9584 case 0x7: /* SQABS, SQNEG */ 9585 if (u) { 9586 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9587 } else { 9588 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9589 } 9590 break; 9591 case 0xa: /* CMLT */ 9592 cond = TCG_COND_LT; 9593 do_cmop: 9594 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9595 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9596 break; 9597 case 0x8: /* CMGT, CMGE */ 9598 cond = u ? TCG_COND_GE : TCG_COND_GT; 9599 goto do_cmop; 9600 case 0x9: /* CMEQ, CMLE */ 9601 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9602 goto do_cmop; 9603 case 0xb: /* ABS, NEG */ 9604 if (u) { 9605 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9606 } else { 9607 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9608 } 9609 break; 9610 case 0x2f: /* FABS */ 9611 gen_vfp_absd(tcg_rd, tcg_rn); 9612 break; 9613 case 0x6f: /* FNEG */ 9614 gen_vfp_negd(tcg_rd, tcg_rn); 9615 break; 9616 case 0x7f: /* FSQRT */ 9617 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9618 break; 9619 case 0x1a: /* FCVTNS */ 9620 case 0x1b: /* FCVTMS */ 9621 case 0x1c: /* FCVTAS */ 9622 case 0x3a: /* FCVTPS */ 9623 case 0x3b: /* FCVTZS */ 9624 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9625 break; 9626 case 0x5a: /* FCVTNU */ 9627 case 0x5b: /* FCVTMU */ 9628 case 0x5c: /* FCVTAU */ 9629 case 0x7a: /* FCVTPU */ 9630 case 0x7b: /* FCVTZU */ 9631 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9632 break; 9633 case 0x18: /* FRINTN */ 9634 case 0x19: /* FRINTM */ 9635 case 0x38: /* FRINTP */ 9636 case 0x39: /* FRINTZ */ 9637 case 0x58: /* FRINTA */ 9638 case 0x79: /* FRINTI */ 9639 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9640 break; 9641 case 0x59: /* FRINTX */ 9642 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9643 break; 9644 case 0x1e: /* FRINT32Z */ 9645 case 0x5e: /* FRINT32X */ 9646 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9647 break; 9648 case 0x1f: /* FRINT64Z */ 9649 case 0x5f: /* FRINT64X */ 9650 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9651 break; 9652 default: 9653 g_assert_not_reached(); 9654 } 9655 } 9656 9657 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9658 bool is_scalar, bool is_u, bool is_q, 9659 int size, int rn, int rd) 9660 { 9661 bool is_double = (size == MO_64); 9662 TCGv_ptr fpst; 9663 9664 if (!fp_access_check(s)) { 9665 return; 9666 } 9667 9668 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9669 9670 if (is_double) { 9671 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9672 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9673 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9674 NeonGenTwoDoubleOpFn *genfn; 9675 bool swap = false; 9676 int pass; 9677 9678 switch (opcode) { 9679 case 0x2e: /* FCMLT (zero) */ 9680 swap = true; 9681 /* fallthrough */ 9682 case 0x2c: /* FCMGT (zero) */ 9683 genfn = gen_helper_neon_cgt_f64; 9684 break; 9685 case 0x2d: /* FCMEQ (zero) */ 9686 genfn = gen_helper_neon_ceq_f64; 9687 break; 9688 case 0x6d: /* FCMLE (zero) */ 9689 swap = true; 9690 /* fall through */ 9691 case 0x6c: /* FCMGE (zero) */ 9692 genfn = gen_helper_neon_cge_f64; 9693 break; 9694 default: 9695 g_assert_not_reached(); 9696 } 9697 9698 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9699 read_vec_element(s, tcg_op, rn, pass, MO_64); 9700 if (swap) { 9701 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9702 } else { 9703 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9704 } 9705 write_vec_element(s, tcg_res, rd, pass, MO_64); 9706 } 9707 9708 clear_vec_high(s, !is_scalar, rd); 9709 } else { 9710 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9711 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9712 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9713 NeonGenTwoSingleOpFn *genfn; 9714 bool swap = false; 9715 int pass, maxpasses; 9716 9717 if (size == MO_16) { 9718 switch (opcode) { 9719 case 0x2e: /* FCMLT (zero) */ 9720 swap = true; 9721 /* fall through */ 9722 case 0x2c: /* FCMGT (zero) */ 9723 genfn = gen_helper_advsimd_cgt_f16; 9724 break; 9725 case 0x2d: /* FCMEQ (zero) */ 9726 genfn = gen_helper_advsimd_ceq_f16; 9727 break; 9728 case 0x6d: /* FCMLE (zero) */ 9729 swap = true; 9730 /* fall through */ 9731 case 0x6c: /* FCMGE (zero) */ 9732 genfn = gen_helper_advsimd_cge_f16; 9733 break; 9734 default: 9735 g_assert_not_reached(); 9736 } 9737 } else { 9738 switch (opcode) { 9739 case 0x2e: /* FCMLT (zero) */ 9740 swap = true; 9741 /* fall through */ 9742 case 0x2c: /* FCMGT (zero) */ 9743 genfn = gen_helper_neon_cgt_f32; 9744 break; 9745 case 0x2d: /* FCMEQ (zero) */ 9746 genfn = gen_helper_neon_ceq_f32; 9747 break; 9748 case 0x6d: /* FCMLE (zero) */ 9749 swap = true; 9750 /* fall through */ 9751 case 0x6c: /* FCMGE (zero) */ 9752 genfn = gen_helper_neon_cge_f32; 9753 break; 9754 default: 9755 g_assert_not_reached(); 9756 } 9757 } 9758 9759 if (is_scalar) { 9760 maxpasses = 1; 9761 } else { 9762 int vector_size = 8 << is_q; 9763 maxpasses = vector_size >> size; 9764 } 9765 9766 for (pass = 0; pass < maxpasses; pass++) { 9767 read_vec_element_i32(s, tcg_op, rn, pass, size); 9768 if (swap) { 9769 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9770 } else { 9771 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9772 } 9773 if (is_scalar) { 9774 write_fp_sreg(s, rd, tcg_res); 9775 } else { 9776 write_vec_element_i32(s, tcg_res, rd, pass, size); 9777 } 9778 } 9779 9780 if (!is_scalar) { 9781 clear_vec_high(s, is_q, rd); 9782 } 9783 } 9784 } 9785 9786 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9787 bool is_scalar, bool is_u, bool is_q, 9788 int size, int rn, int rd) 9789 { 9790 bool is_double = (size == 3); 9791 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9792 9793 if (is_double) { 9794 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9795 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9796 int pass; 9797 9798 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9799 read_vec_element(s, tcg_op, rn, pass, MO_64); 9800 switch (opcode) { 9801 case 0x3d: /* FRECPE */ 9802 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9803 break; 9804 case 0x3f: /* FRECPX */ 9805 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9806 break; 9807 case 0x7d: /* FRSQRTE */ 9808 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9809 break; 9810 default: 9811 g_assert_not_reached(); 9812 } 9813 write_vec_element(s, tcg_res, rd, pass, MO_64); 9814 } 9815 clear_vec_high(s, !is_scalar, rd); 9816 } else { 9817 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9818 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9819 int pass, maxpasses; 9820 9821 if (is_scalar) { 9822 maxpasses = 1; 9823 } else { 9824 maxpasses = is_q ? 4 : 2; 9825 } 9826 9827 for (pass = 0; pass < maxpasses; pass++) { 9828 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9829 9830 switch (opcode) { 9831 case 0x3c: /* URECPE */ 9832 gen_helper_recpe_u32(tcg_res, tcg_op); 9833 break; 9834 case 0x3d: /* FRECPE */ 9835 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9836 break; 9837 case 0x3f: /* FRECPX */ 9838 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9839 break; 9840 case 0x7d: /* FRSQRTE */ 9841 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9842 break; 9843 default: 9844 g_assert_not_reached(); 9845 } 9846 9847 if (is_scalar) { 9848 write_fp_sreg(s, rd, tcg_res); 9849 } else { 9850 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9851 } 9852 } 9853 if (!is_scalar) { 9854 clear_vec_high(s, is_q, rd); 9855 } 9856 } 9857 } 9858 9859 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9860 int opcode, bool u, bool is_q, 9861 int size, int rn, int rd) 9862 { 9863 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9864 * in the source becomes a size element in the destination). 9865 */ 9866 int pass; 9867 TCGv_i32 tcg_res[2]; 9868 int destelt = is_q ? 2 : 0; 9869 int passes = scalar ? 1 : 2; 9870 9871 if (scalar) { 9872 tcg_res[1] = tcg_constant_i32(0); 9873 } 9874 9875 for (pass = 0; pass < passes; pass++) { 9876 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9877 NeonGenNarrowFn *genfn = NULL; 9878 NeonGenNarrowEnvFn *genenvfn = NULL; 9879 9880 if (scalar) { 9881 read_vec_element(s, tcg_op, rn, pass, size + 1); 9882 } else { 9883 read_vec_element(s, tcg_op, rn, pass, MO_64); 9884 } 9885 tcg_res[pass] = tcg_temp_new_i32(); 9886 9887 switch (opcode) { 9888 case 0x12: /* XTN, SQXTUN */ 9889 { 9890 static NeonGenNarrowFn * const xtnfns[3] = { 9891 gen_helper_neon_narrow_u8, 9892 gen_helper_neon_narrow_u16, 9893 tcg_gen_extrl_i64_i32, 9894 }; 9895 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9896 gen_helper_neon_unarrow_sat8, 9897 gen_helper_neon_unarrow_sat16, 9898 gen_helper_neon_unarrow_sat32, 9899 }; 9900 if (u) { 9901 genenvfn = sqxtunfns[size]; 9902 } else { 9903 genfn = xtnfns[size]; 9904 } 9905 break; 9906 } 9907 case 0x14: /* SQXTN, UQXTN */ 9908 { 9909 static NeonGenNarrowEnvFn * const fns[3][2] = { 9910 { gen_helper_neon_narrow_sat_s8, 9911 gen_helper_neon_narrow_sat_u8 }, 9912 { gen_helper_neon_narrow_sat_s16, 9913 gen_helper_neon_narrow_sat_u16 }, 9914 { gen_helper_neon_narrow_sat_s32, 9915 gen_helper_neon_narrow_sat_u32 }, 9916 }; 9917 genenvfn = fns[size][u]; 9918 break; 9919 } 9920 case 0x16: /* FCVTN, FCVTN2 */ 9921 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9922 if (size == 2) { 9923 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9924 } else { 9925 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9926 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9927 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9928 TCGv_i32 ahp = get_ahp_flag(); 9929 9930 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9931 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9932 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9933 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9934 } 9935 break; 9936 case 0x36: /* BFCVTN, BFCVTN2 */ 9937 { 9938 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9939 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9940 } 9941 break; 9942 case 0x56: /* FCVTXN, FCVTXN2 */ 9943 /* 64 bit to 32 bit float conversion 9944 * with von Neumann rounding (round to odd) 9945 */ 9946 assert(size == 2); 9947 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9948 break; 9949 default: 9950 g_assert_not_reached(); 9951 } 9952 9953 if (genfn) { 9954 genfn(tcg_res[pass], tcg_op); 9955 } else if (genenvfn) { 9956 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9957 } 9958 } 9959 9960 for (pass = 0; pass < 2; pass++) { 9961 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9962 } 9963 clear_vec_high(s, is_q, rd); 9964 } 9965 9966 /* Remaining saturating accumulating ops */ 9967 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9968 bool is_q, int size, int rn, int rd) 9969 { 9970 bool is_double = (size == 3); 9971 9972 if (is_double) { 9973 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9974 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9975 int pass; 9976 9977 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9978 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9979 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9980 9981 if (is_u) { /* USQADD */ 9982 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9983 } else { /* SUQADD */ 9984 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9985 } 9986 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9987 } 9988 clear_vec_high(s, !is_scalar, rd); 9989 } else { 9990 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9991 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9992 int pass, maxpasses; 9993 9994 if (is_scalar) { 9995 maxpasses = 1; 9996 } else { 9997 maxpasses = is_q ? 4 : 2; 9998 } 9999 10000 for (pass = 0; pass < maxpasses; pass++) { 10001 if (is_scalar) { 10002 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10003 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10004 } else { 10005 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10006 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10007 } 10008 10009 if (is_u) { /* USQADD */ 10010 switch (size) { 10011 case 0: 10012 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10013 break; 10014 case 1: 10015 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10016 break; 10017 case 2: 10018 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10019 break; 10020 default: 10021 g_assert_not_reached(); 10022 } 10023 } else { /* SUQADD */ 10024 switch (size) { 10025 case 0: 10026 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10027 break; 10028 case 1: 10029 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10030 break; 10031 case 2: 10032 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10033 break; 10034 default: 10035 g_assert_not_reached(); 10036 } 10037 } 10038 10039 if (is_scalar) { 10040 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10041 } 10042 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10043 } 10044 clear_vec_high(s, is_q, rd); 10045 } 10046 } 10047 10048 /* AdvSIMD scalar two reg misc 10049 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10050 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10051 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10052 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10053 */ 10054 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10055 { 10056 int rd = extract32(insn, 0, 5); 10057 int rn = extract32(insn, 5, 5); 10058 int opcode = extract32(insn, 12, 5); 10059 int size = extract32(insn, 22, 2); 10060 bool u = extract32(insn, 29, 1); 10061 bool is_fcvt = false; 10062 int rmode; 10063 TCGv_i32 tcg_rmode; 10064 TCGv_ptr tcg_fpstatus; 10065 10066 switch (opcode) { 10067 case 0x3: /* USQADD / SUQADD*/ 10068 if (!fp_access_check(s)) { 10069 return; 10070 } 10071 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10072 return; 10073 case 0x7: /* SQABS / SQNEG */ 10074 break; 10075 case 0xa: /* CMLT */ 10076 if (u) { 10077 unallocated_encoding(s); 10078 return; 10079 } 10080 /* fall through */ 10081 case 0x8: /* CMGT, CMGE */ 10082 case 0x9: /* CMEQ, CMLE */ 10083 case 0xb: /* ABS, NEG */ 10084 if (size != 3) { 10085 unallocated_encoding(s); 10086 return; 10087 } 10088 break; 10089 case 0x12: /* SQXTUN */ 10090 if (!u) { 10091 unallocated_encoding(s); 10092 return; 10093 } 10094 /* fall through */ 10095 case 0x14: /* SQXTN, UQXTN */ 10096 if (size == 3) { 10097 unallocated_encoding(s); 10098 return; 10099 } 10100 if (!fp_access_check(s)) { 10101 return; 10102 } 10103 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10104 return; 10105 case 0xc ... 0xf: 10106 case 0x16 ... 0x1d: 10107 case 0x1f: 10108 /* Floating point: U, size[1] and opcode indicate operation; 10109 * size[0] indicates single or double precision. 10110 */ 10111 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10112 size = extract32(size, 0, 1) ? 3 : 2; 10113 switch (opcode) { 10114 case 0x2c: /* FCMGT (zero) */ 10115 case 0x2d: /* FCMEQ (zero) */ 10116 case 0x2e: /* FCMLT (zero) */ 10117 case 0x6c: /* FCMGE (zero) */ 10118 case 0x6d: /* FCMLE (zero) */ 10119 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10120 return; 10121 case 0x1d: /* SCVTF */ 10122 case 0x5d: /* UCVTF */ 10123 { 10124 bool is_signed = (opcode == 0x1d); 10125 if (!fp_access_check(s)) { 10126 return; 10127 } 10128 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10129 return; 10130 } 10131 case 0x3d: /* FRECPE */ 10132 case 0x3f: /* FRECPX */ 10133 case 0x7d: /* FRSQRTE */ 10134 if (!fp_access_check(s)) { 10135 return; 10136 } 10137 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10138 return; 10139 case 0x1a: /* FCVTNS */ 10140 case 0x1b: /* FCVTMS */ 10141 case 0x3a: /* FCVTPS */ 10142 case 0x3b: /* FCVTZS */ 10143 case 0x5a: /* FCVTNU */ 10144 case 0x5b: /* FCVTMU */ 10145 case 0x7a: /* FCVTPU */ 10146 case 0x7b: /* FCVTZU */ 10147 is_fcvt = true; 10148 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10149 break; 10150 case 0x1c: /* FCVTAS */ 10151 case 0x5c: /* FCVTAU */ 10152 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10153 is_fcvt = true; 10154 rmode = FPROUNDING_TIEAWAY; 10155 break; 10156 case 0x56: /* FCVTXN, FCVTXN2 */ 10157 if (size == 2) { 10158 unallocated_encoding(s); 10159 return; 10160 } 10161 if (!fp_access_check(s)) { 10162 return; 10163 } 10164 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10165 return; 10166 default: 10167 unallocated_encoding(s); 10168 return; 10169 } 10170 break; 10171 default: 10172 unallocated_encoding(s); 10173 return; 10174 } 10175 10176 if (!fp_access_check(s)) { 10177 return; 10178 } 10179 10180 if (is_fcvt) { 10181 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10182 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10183 } else { 10184 tcg_fpstatus = NULL; 10185 tcg_rmode = NULL; 10186 } 10187 10188 if (size == 3) { 10189 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10190 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10191 10192 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10193 write_fp_dreg(s, rd, tcg_rd); 10194 } else { 10195 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10196 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10197 10198 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10199 10200 switch (opcode) { 10201 case 0x7: /* SQABS, SQNEG */ 10202 { 10203 NeonGenOneOpEnvFn *genfn; 10204 static NeonGenOneOpEnvFn * const fns[3][2] = { 10205 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10206 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10207 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10208 }; 10209 genfn = fns[size][u]; 10210 genfn(tcg_rd, tcg_env, tcg_rn); 10211 break; 10212 } 10213 case 0x1a: /* FCVTNS */ 10214 case 0x1b: /* FCVTMS */ 10215 case 0x1c: /* FCVTAS */ 10216 case 0x3a: /* FCVTPS */ 10217 case 0x3b: /* FCVTZS */ 10218 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10219 tcg_fpstatus); 10220 break; 10221 case 0x5a: /* FCVTNU */ 10222 case 0x5b: /* FCVTMU */ 10223 case 0x5c: /* FCVTAU */ 10224 case 0x7a: /* FCVTPU */ 10225 case 0x7b: /* FCVTZU */ 10226 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10227 tcg_fpstatus); 10228 break; 10229 default: 10230 g_assert_not_reached(); 10231 } 10232 10233 write_fp_sreg(s, rd, tcg_rd); 10234 } 10235 10236 if (is_fcvt) { 10237 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10238 } 10239 } 10240 10241 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10242 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10243 int immh, int immb, int opcode, int rn, int rd) 10244 { 10245 int size = 32 - clz32(immh) - 1; 10246 int immhb = immh << 3 | immb; 10247 int shift = 2 * (8 << size) - immhb; 10248 GVecGen2iFn *gvec_fn; 10249 10250 if (extract32(immh, 3, 1) && !is_q) { 10251 unallocated_encoding(s); 10252 return; 10253 } 10254 tcg_debug_assert(size <= 3); 10255 10256 if (!fp_access_check(s)) { 10257 return; 10258 } 10259 10260 switch (opcode) { 10261 case 0x02: /* SSRA / USRA (accumulate) */ 10262 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10263 break; 10264 10265 case 0x08: /* SRI */ 10266 gvec_fn = gen_gvec_sri; 10267 break; 10268 10269 case 0x00: /* SSHR / USHR */ 10270 if (is_u) { 10271 if (shift == 8 << size) { 10272 /* Shift count the same size as element size produces zero. */ 10273 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10274 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10275 return; 10276 } 10277 gvec_fn = tcg_gen_gvec_shri; 10278 } else { 10279 /* Shift count the same size as element size produces all sign. */ 10280 if (shift == 8 << size) { 10281 shift -= 1; 10282 } 10283 gvec_fn = tcg_gen_gvec_sari; 10284 } 10285 break; 10286 10287 case 0x04: /* SRSHR / URSHR (rounding) */ 10288 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10289 break; 10290 10291 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10292 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10293 break; 10294 10295 default: 10296 g_assert_not_reached(); 10297 } 10298 10299 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10300 } 10301 10302 /* SHL/SLI - Vector shift left */ 10303 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10304 int immh, int immb, int opcode, int rn, int rd) 10305 { 10306 int size = 32 - clz32(immh) - 1; 10307 int immhb = immh << 3 | immb; 10308 int shift = immhb - (8 << size); 10309 10310 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10311 assert(size >= 0 && size <= 3); 10312 10313 if (extract32(immh, 3, 1) && !is_q) { 10314 unallocated_encoding(s); 10315 return; 10316 } 10317 10318 if (!fp_access_check(s)) { 10319 return; 10320 } 10321 10322 if (insert) { 10323 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10324 } else { 10325 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10326 } 10327 } 10328 10329 /* USHLL/SHLL - Vector shift left with widening */ 10330 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10331 int immh, int immb, int opcode, int rn, int rd) 10332 { 10333 int size = 32 - clz32(immh) - 1; 10334 int immhb = immh << 3 | immb; 10335 int shift = immhb - (8 << size); 10336 int dsize = 64; 10337 int esize = 8 << size; 10338 int elements = dsize/esize; 10339 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10340 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10341 int i; 10342 10343 if (size >= 3) { 10344 unallocated_encoding(s); 10345 return; 10346 } 10347 10348 if (!fp_access_check(s)) { 10349 return; 10350 } 10351 10352 /* For the LL variants the store is larger than the load, 10353 * so if rd == rn we would overwrite parts of our input. 10354 * So load everything right now and use shifts in the main loop. 10355 */ 10356 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10357 10358 for (i = 0; i < elements; i++) { 10359 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10360 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10361 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10362 write_vec_element(s, tcg_rd, rd, i, size + 1); 10363 } 10364 } 10365 10366 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10367 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10368 int immh, int immb, int opcode, int rn, int rd) 10369 { 10370 int immhb = immh << 3 | immb; 10371 int size = 32 - clz32(immh) - 1; 10372 int dsize = 64; 10373 int esize = 8 << size; 10374 int elements = dsize/esize; 10375 int shift = (2 * esize) - immhb; 10376 bool round = extract32(opcode, 0, 1); 10377 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10378 TCGv_i64 tcg_round; 10379 int i; 10380 10381 if (extract32(immh, 3, 1)) { 10382 unallocated_encoding(s); 10383 return; 10384 } 10385 10386 if (!fp_access_check(s)) { 10387 return; 10388 } 10389 10390 tcg_rn = tcg_temp_new_i64(); 10391 tcg_rd = tcg_temp_new_i64(); 10392 tcg_final = tcg_temp_new_i64(); 10393 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10394 10395 if (round) { 10396 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10397 } else { 10398 tcg_round = NULL; 10399 } 10400 10401 for (i = 0; i < elements; i++) { 10402 read_vec_element(s, tcg_rn, rn, i, size+1); 10403 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10404 false, true, size+1, shift); 10405 10406 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10407 } 10408 10409 if (!is_q) { 10410 write_vec_element(s, tcg_final, rd, 0, MO_64); 10411 } else { 10412 write_vec_element(s, tcg_final, rd, 1, MO_64); 10413 } 10414 10415 clear_vec_high(s, is_q, rd); 10416 } 10417 10418 10419 /* AdvSIMD shift by immediate 10420 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10421 * +---+---+---+-------------+------+------+--------+---+------+------+ 10422 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10423 * +---+---+---+-------------+------+------+--------+---+------+------+ 10424 */ 10425 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10426 { 10427 int rd = extract32(insn, 0, 5); 10428 int rn = extract32(insn, 5, 5); 10429 int opcode = extract32(insn, 11, 5); 10430 int immb = extract32(insn, 16, 3); 10431 int immh = extract32(insn, 19, 4); 10432 bool is_u = extract32(insn, 29, 1); 10433 bool is_q = extract32(insn, 30, 1); 10434 10435 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10436 assert(immh != 0); 10437 10438 switch (opcode) { 10439 case 0x08: /* SRI */ 10440 if (!is_u) { 10441 unallocated_encoding(s); 10442 return; 10443 } 10444 /* fall through */ 10445 case 0x00: /* SSHR / USHR */ 10446 case 0x02: /* SSRA / USRA (accumulate) */ 10447 case 0x04: /* SRSHR / URSHR (rounding) */ 10448 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10449 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10450 break; 10451 case 0x0a: /* SHL / SLI */ 10452 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10453 break; 10454 case 0x10: /* SHRN */ 10455 case 0x11: /* RSHRN / SQRSHRUN */ 10456 if (is_u) { 10457 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10458 opcode, rn, rd); 10459 } else { 10460 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10461 } 10462 break; 10463 case 0x12: /* SQSHRN / UQSHRN */ 10464 case 0x13: /* SQRSHRN / UQRSHRN */ 10465 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10466 opcode, rn, rd); 10467 break; 10468 case 0x14: /* SSHLL / USHLL */ 10469 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10470 break; 10471 case 0x1c: /* SCVTF / UCVTF */ 10472 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10473 opcode, rn, rd); 10474 break; 10475 case 0xc: /* SQSHLU */ 10476 if (!is_u) { 10477 unallocated_encoding(s); 10478 return; 10479 } 10480 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10481 break; 10482 case 0xe: /* SQSHL, UQSHL */ 10483 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10484 break; 10485 case 0x1f: /* FCVTZS/ FCVTZU */ 10486 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10487 return; 10488 default: 10489 unallocated_encoding(s); 10490 return; 10491 } 10492 } 10493 10494 /* Generate code to do a "long" addition or subtraction, ie one done in 10495 * TCGv_i64 on vector lanes twice the width specified by size. 10496 */ 10497 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10498 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10499 { 10500 static NeonGenTwo64OpFn * const fns[3][2] = { 10501 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10502 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10503 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10504 }; 10505 NeonGenTwo64OpFn *genfn; 10506 assert(size < 3); 10507 10508 genfn = fns[size][is_sub]; 10509 genfn(tcg_res, tcg_op1, tcg_op2); 10510 } 10511 10512 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10513 int opcode, int rd, int rn, int rm) 10514 { 10515 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10516 TCGv_i64 tcg_res[2]; 10517 int pass, accop; 10518 10519 tcg_res[0] = tcg_temp_new_i64(); 10520 tcg_res[1] = tcg_temp_new_i64(); 10521 10522 /* Does this op do an adding accumulate, a subtracting accumulate, 10523 * or no accumulate at all? 10524 */ 10525 switch (opcode) { 10526 case 5: 10527 case 8: 10528 case 9: 10529 accop = 1; 10530 break; 10531 case 10: 10532 case 11: 10533 accop = -1; 10534 break; 10535 default: 10536 accop = 0; 10537 break; 10538 } 10539 10540 if (accop != 0) { 10541 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10542 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10543 } 10544 10545 /* size == 2 means two 32x32->64 operations; this is worth special 10546 * casing because we can generally handle it inline. 10547 */ 10548 if (size == 2) { 10549 for (pass = 0; pass < 2; pass++) { 10550 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10551 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10552 TCGv_i64 tcg_passres; 10553 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10554 10555 int elt = pass + is_q * 2; 10556 10557 read_vec_element(s, tcg_op1, rn, elt, memop); 10558 read_vec_element(s, tcg_op2, rm, elt, memop); 10559 10560 if (accop == 0) { 10561 tcg_passres = tcg_res[pass]; 10562 } else { 10563 tcg_passres = tcg_temp_new_i64(); 10564 } 10565 10566 switch (opcode) { 10567 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10568 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10569 break; 10570 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10571 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10572 break; 10573 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10574 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10575 { 10576 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10577 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10578 10579 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10580 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10581 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10582 tcg_passres, 10583 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10584 break; 10585 } 10586 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10587 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10588 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10589 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10590 break; 10591 case 9: /* SQDMLAL, SQDMLAL2 */ 10592 case 11: /* SQDMLSL, SQDMLSL2 */ 10593 case 13: /* SQDMULL, SQDMULL2 */ 10594 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10595 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10596 tcg_passres, tcg_passres); 10597 break; 10598 default: 10599 g_assert_not_reached(); 10600 } 10601 10602 if (opcode == 9 || opcode == 11) { 10603 /* saturating accumulate ops */ 10604 if (accop < 0) { 10605 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10606 } 10607 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10608 tcg_res[pass], tcg_passres); 10609 } else if (accop > 0) { 10610 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10611 } else if (accop < 0) { 10612 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10613 } 10614 } 10615 } else { 10616 /* size 0 or 1, generally helper functions */ 10617 for (pass = 0; pass < 2; pass++) { 10618 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10619 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10620 TCGv_i64 tcg_passres; 10621 int elt = pass + is_q * 2; 10622 10623 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10624 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10625 10626 if (accop == 0) { 10627 tcg_passres = tcg_res[pass]; 10628 } else { 10629 tcg_passres = tcg_temp_new_i64(); 10630 } 10631 10632 switch (opcode) { 10633 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10634 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10635 { 10636 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10637 static NeonGenWidenFn * const widenfns[2][2] = { 10638 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10639 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10640 }; 10641 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10642 10643 widenfn(tcg_op2_64, tcg_op2); 10644 widenfn(tcg_passres, tcg_op1); 10645 gen_neon_addl(size, (opcode == 2), tcg_passres, 10646 tcg_passres, tcg_op2_64); 10647 break; 10648 } 10649 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10650 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10651 if (size == 0) { 10652 if (is_u) { 10653 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10654 } else { 10655 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10656 } 10657 } else { 10658 if (is_u) { 10659 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10660 } else { 10661 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10662 } 10663 } 10664 break; 10665 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10666 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10667 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10668 if (size == 0) { 10669 if (is_u) { 10670 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10671 } else { 10672 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10673 } 10674 } else { 10675 if (is_u) { 10676 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10677 } else { 10678 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10679 } 10680 } 10681 break; 10682 case 9: /* SQDMLAL, SQDMLAL2 */ 10683 case 11: /* SQDMLSL, SQDMLSL2 */ 10684 case 13: /* SQDMULL, SQDMULL2 */ 10685 assert(size == 1); 10686 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10687 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10688 tcg_passres, tcg_passres); 10689 break; 10690 default: 10691 g_assert_not_reached(); 10692 } 10693 10694 if (accop != 0) { 10695 if (opcode == 9 || opcode == 11) { 10696 /* saturating accumulate ops */ 10697 if (accop < 0) { 10698 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10699 } 10700 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10701 tcg_res[pass], 10702 tcg_passres); 10703 } else { 10704 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10705 tcg_res[pass], tcg_passres); 10706 } 10707 } 10708 } 10709 } 10710 10711 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10712 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10713 } 10714 10715 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10716 int opcode, int rd, int rn, int rm) 10717 { 10718 TCGv_i64 tcg_res[2]; 10719 int part = is_q ? 2 : 0; 10720 int pass; 10721 10722 for (pass = 0; pass < 2; pass++) { 10723 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10724 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10725 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10726 static NeonGenWidenFn * const widenfns[3][2] = { 10727 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10728 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10729 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10730 }; 10731 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10732 10733 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10734 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10735 widenfn(tcg_op2_wide, tcg_op2); 10736 tcg_res[pass] = tcg_temp_new_i64(); 10737 gen_neon_addl(size, (opcode == 3), 10738 tcg_res[pass], tcg_op1, tcg_op2_wide); 10739 } 10740 10741 for (pass = 0; pass < 2; pass++) { 10742 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10743 } 10744 } 10745 10746 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10747 { 10748 tcg_gen_addi_i64(in, in, 1U << 31); 10749 tcg_gen_extrh_i64_i32(res, in); 10750 } 10751 10752 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10753 int opcode, int rd, int rn, int rm) 10754 { 10755 TCGv_i32 tcg_res[2]; 10756 int part = is_q ? 2 : 0; 10757 int pass; 10758 10759 for (pass = 0; pass < 2; pass++) { 10760 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10761 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10762 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10763 static NeonGenNarrowFn * const narrowfns[3][2] = { 10764 { gen_helper_neon_narrow_high_u8, 10765 gen_helper_neon_narrow_round_high_u8 }, 10766 { gen_helper_neon_narrow_high_u16, 10767 gen_helper_neon_narrow_round_high_u16 }, 10768 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10769 }; 10770 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10771 10772 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10773 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10774 10775 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10776 10777 tcg_res[pass] = tcg_temp_new_i32(); 10778 gennarrow(tcg_res[pass], tcg_wideres); 10779 } 10780 10781 for (pass = 0; pass < 2; pass++) { 10782 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10783 } 10784 clear_vec_high(s, is_q, rd); 10785 } 10786 10787 /* AdvSIMD three different 10788 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10789 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10790 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10791 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10792 */ 10793 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10794 { 10795 /* Instructions in this group fall into three basic classes 10796 * (in each case with the operation working on each element in 10797 * the input vectors): 10798 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10799 * 128 bit input) 10800 * (2) wide 64 x 128 -> 128 10801 * (3) narrowing 128 x 128 -> 64 10802 * Here we do initial decode, catch unallocated cases and 10803 * dispatch to separate functions for each class. 10804 */ 10805 int is_q = extract32(insn, 30, 1); 10806 int is_u = extract32(insn, 29, 1); 10807 int size = extract32(insn, 22, 2); 10808 int opcode = extract32(insn, 12, 4); 10809 int rm = extract32(insn, 16, 5); 10810 int rn = extract32(insn, 5, 5); 10811 int rd = extract32(insn, 0, 5); 10812 10813 switch (opcode) { 10814 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10815 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10816 /* 64 x 128 -> 128 */ 10817 if (size == 3) { 10818 unallocated_encoding(s); 10819 return; 10820 } 10821 if (!fp_access_check(s)) { 10822 return; 10823 } 10824 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10825 break; 10826 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10827 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10828 /* 128 x 128 -> 64 */ 10829 if (size == 3) { 10830 unallocated_encoding(s); 10831 return; 10832 } 10833 if (!fp_access_check(s)) { 10834 return; 10835 } 10836 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10837 break; 10838 case 14: /* PMULL, PMULL2 */ 10839 if (is_u) { 10840 unallocated_encoding(s); 10841 return; 10842 } 10843 switch (size) { 10844 case 0: /* PMULL.P8 */ 10845 if (!fp_access_check(s)) { 10846 return; 10847 } 10848 /* The Q field specifies lo/hi half input for this insn. */ 10849 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10850 gen_helper_neon_pmull_h); 10851 break; 10852 10853 case 3: /* PMULL.P64 */ 10854 if (!dc_isar_feature(aa64_pmull, s)) { 10855 unallocated_encoding(s); 10856 return; 10857 } 10858 if (!fp_access_check(s)) { 10859 return; 10860 } 10861 /* The Q field specifies lo/hi half input for this insn. */ 10862 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10863 gen_helper_gvec_pmull_q); 10864 break; 10865 10866 default: 10867 unallocated_encoding(s); 10868 break; 10869 } 10870 return; 10871 case 9: /* SQDMLAL, SQDMLAL2 */ 10872 case 11: /* SQDMLSL, SQDMLSL2 */ 10873 case 13: /* SQDMULL, SQDMULL2 */ 10874 if (is_u || size == 0) { 10875 unallocated_encoding(s); 10876 return; 10877 } 10878 /* fall through */ 10879 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10880 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10881 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10882 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10883 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10884 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10885 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10886 /* 64 x 64 -> 128 */ 10887 if (size == 3) { 10888 unallocated_encoding(s); 10889 return; 10890 } 10891 if (!fp_access_check(s)) { 10892 return; 10893 } 10894 10895 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10896 break; 10897 default: 10898 /* opcode 15 not allocated */ 10899 unallocated_encoding(s); 10900 break; 10901 } 10902 } 10903 10904 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10905 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10906 { 10907 int rd = extract32(insn, 0, 5); 10908 int rn = extract32(insn, 5, 5); 10909 int rm = extract32(insn, 16, 5); 10910 int size = extract32(insn, 22, 2); 10911 bool is_u = extract32(insn, 29, 1); 10912 bool is_q = extract32(insn, 30, 1); 10913 10914 if (!fp_access_check(s)) { 10915 return; 10916 } 10917 10918 switch (size + 4 * is_u) { 10919 case 0: /* AND */ 10920 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10921 return; 10922 case 1: /* BIC */ 10923 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10924 return; 10925 case 2: /* ORR */ 10926 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10927 return; 10928 case 3: /* ORN */ 10929 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10930 return; 10931 case 4: /* EOR */ 10932 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10933 return; 10934 10935 case 5: /* BSL bitwise select */ 10936 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10937 return; 10938 case 6: /* BIT, bitwise insert if true */ 10939 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10940 return; 10941 case 7: /* BIF, bitwise insert if false */ 10942 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10943 return; 10944 10945 default: 10946 g_assert_not_reached(); 10947 } 10948 } 10949 10950 /* Pairwise op subgroup of C3.6.16. 10951 * 10952 * This is called directly for float pairwise 10953 * operations where the opcode and size are calculated differently. 10954 */ 10955 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10956 int size, int rn, int rm, int rd) 10957 { 10958 int pass; 10959 10960 if (!fp_access_check(s)) { 10961 return; 10962 } 10963 10964 /* These operations work on the concatenated rm:rn, with each pair of 10965 * adjacent elements being operated on to produce an element in the result. 10966 */ 10967 if (size == 3) { 10968 TCGv_i64 tcg_res[2]; 10969 10970 for (pass = 0; pass < 2; pass++) { 10971 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10972 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10973 int passreg = (pass == 0) ? rn : rm; 10974 10975 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10976 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10977 tcg_res[pass] = tcg_temp_new_i64(); 10978 10979 switch (opcode) { 10980 case 0x17: /* ADDP */ 10981 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10982 break; 10983 default: 10984 case 0x58: /* FMAXNMP */ 10985 case 0x5a: /* FADDP */ 10986 case 0x5e: /* FMAXP */ 10987 case 0x78: /* FMINNMP */ 10988 case 0x7e: /* FMINP */ 10989 g_assert_not_reached(); 10990 } 10991 } 10992 10993 for (pass = 0; pass < 2; pass++) { 10994 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10995 } 10996 } else { 10997 int maxpass = is_q ? 4 : 2; 10998 TCGv_i32 tcg_res[4]; 10999 11000 for (pass = 0; pass < maxpass; pass++) { 11001 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11002 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11003 NeonGenTwoOpFn *genfn = NULL; 11004 int passreg = pass < (maxpass / 2) ? rn : rm; 11005 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11006 11007 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11008 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11009 tcg_res[pass] = tcg_temp_new_i32(); 11010 11011 switch (opcode) { 11012 case 0x17: /* ADDP */ 11013 { 11014 static NeonGenTwoOpFn * const fns[3] = { 11015 gen_helper_neon_padd_u8, 11016 gen_helper_neon_padd_u16, 11017 tcg_gen_add_i32, 11018 }; 11019 genfn = fns[size]; 11020 break; 11021 } 11022 case 0x14: /* SMAXP, UMAXP */ 11023 { 11024 static NeonGenTwoOpFn * const fns[3][2] = { 11025 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11026 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11027 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11028 }; 11029 genfn = fns[size][u]; 11030 break; 11031 } 11032 case 0x15: /* SMINP, UMINP */ 11033 { 11034 static NeonGenTwoOpFn * const fns[3][2] = { 11035 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11036 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11037 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11038 }; 11039 genfn = fns[size][u]; 11040 break; 11041 } 11042 default: 11043 case 0x58: /* FMAXNMP */ 11044 case 0x5a: /* FADDP */ 11045 case 0x5e: /* FMAXP */ 11046 case 0x78: /* FMINNMP */ 11047 case 0x7e: /* FMINP */ 11048 g_assert_not_reached(); 11049 } 11050 11051 /* FP ops called directly, otherwise call now */ 11052 if (genfn) { 11053 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11054 } 11055 } 11056 11057 for (pass = 0; pass < maxpass; pass++) { 11058 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11059 } 11060 clear_vec_high(s, is_q, rd); 11061 } 11062 } 11063 11064 /* Floating point op subgroup of C3.6.16. */ 11065 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11066 { 11067 /* For floating point ops, the U, size[1] and opcode bits 11068 * together indicate the operation. size[0] indicates single 11069 * or double. 11070 */ 11071 int fpopcode = extract32(insn, 11, 5) 11072 | (extract32(insn, 23, 1) << 5) 11073 | (extract32(insn, 29, 1) << 6); 11074 int is_q = extract32(insn, 30, 1); 11075 int size = extract32(insn, 22, 1); 11076 int rm = extract32(insn, 16, 5); 11077 int rn = extract32(insn, 5, 5); 11078 int rd = extract32(insn, 0, 5); 11079 11080 if (size == 1 && !is_q) { 11081 unallocated_encoding(s); 11082 return; 11083 } 11084 11085 switch (fpopcode) { 11086 case 0x1d: /* FMLAL */ 11087 case 0x3d: /* FMLSL */ 11088 case 0x59: /* FMLAL2 */ 11089 case 0x79: /* FMLSL2 */ 11090 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11091 unallocated_encoding(s); 11092 return; 11093 } 11094 if (fp_access_check(s)) { 11095 int is_s = extract32(insn, 23, 1); 11096 int is_2 = extract32(insn, 29, 1); 11097 int data = (is_2 << 1) | is_s; 11098 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11099 vec_full_reg_offset(s, rn), 11100 vec_full_reg_offset(s, rm), tcg_env, 11101 is_q ? 16 : 8, vec_full_reg_size(s), 11102 data, gen_helper_gvec_fmlal_a64); 11103 } 11104 return; 11105 11106 default: 11107 case 0x18: /* FMAXNM */ 11108 case 0x19: /* FMLA */ 11109 case 0x1a: /* FADD */ 11110 case 0x1b: /* FMULX */ 11111 case 0x1c: /* FCMEQ */ 11112 case 0x1e: /* FMAX */ 11113 case 0x1f: /* FRECPS */ 11114 case 0x38: /* FMINNM */ 11115 case 0x39: /* FMLS */ 11116 case 0x3a: /* FSUB */ 11117 case 0x3e: /* FMIN */ 11118 case 0x3f: /* FRSQRTS */ 11119 case 0x58: /* FMAXNMP */ 11120 case 0x5a: /* FADDP */ 11121 case 0x5b: /* FMUL */ 11122 case 0x5c: /* FCMGE */ 11123 case 0x5d: /* FACGE */ 11124 case 0x5e: /* FMAXP */ 11125 case 0x5f: /* FDIV */ 11126 case 0x78: /* FMINNMP */ 11127 case 0x7a: /* FABD */ 11128 case 0x7d: /* FACGT */ 11129 case 0x7c: /* FCMGT */ 11130 case 0x7e: /* FMINP */ 11131 unallocated_encoding(s); 11132 return; 11133 } 11134 } 11135 11136 /* Integer op subgroup of C3.6.16. */ 11137 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11138 { 11139 int is_q = extract32(insn, 30, 1); 11140 int u = extract32(insn, 29, 1); 11141 int size = extract32(insn, 22, 2); 11142 int opcode = extract32(insn, 11, 5); 11143 int rm = extract32(insn, 16, 5); 11144 int rn = extract32(insn, 5, 5); 11145 int rd = extract32(insn, 0, 5); 11146 int pass; 11147 TCGCond cond; 11148 11149 switch (opcode) { 11150 case 0x13: /* MUL, PMUL */ 11151 if (u && size != 0) { 11152 unallocated_encoding(s); 11153 return; 11154 } 11155 /* fall through */ 11156 case 0x0: /* SHADD, UHADD */ 11157 case 0x2: /* SRHADD, URHADD */ 11158 case 0x4: /* SHSUB, UHSUB */ 11159 case 0xc: /* SMAX, UMAX */ 11160 case 0xd: /* SMIN, UMIN */ 11161 case 0xe: /* SABD, UABD */ 11162 case 0xf: /* SABA, UABA */ 11163 case 0x12: /* MLA, MLS */ 11164 if (size == 3) { 11165 unallocated_encoding(s); 11166 return; 11167 } 11168 break; 11169 case 0x16: /* SQDMULH, SQRDMULH */ 11170 if (size == 0 || size == 3) { 11171 unallocated_encoding(s); 11172 return; 11173 } 11174 break; 11175 default: 11176 if (size == 3 && !is_q) { 11177 unallocated_encoding(s); 11178 return; 11179 } 11180 break; 11181 } 11182 11183 if (!fp_access_check(s)) { 11184 return; 11185 } 11186 11187 switch (opcode) { 11188 case 0x01: /* SQADD, UQADD */ 11189 if (u) { 11190 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11191 } else { 11192 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11193 } 11194 return; 11195 case 0x05: /* SQSUB, UQSUB */ 11196 if (u) { 11197 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11198 } else { 11199 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11200 } 11201 return; 11202 case 0x08: /* SSHL, USHL */ 11203 if (u) { 11204 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11205 } else { 11206 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11207 } 11208 return; 11209 case 0x0c: /* SMAX, UMAX */ 11210 if (u) { 11211 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11212 } else { 11213 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11214 } 11215 return; 11216 case 0x0d: /* SMIN, UMIN */ 11217 if (u) { 11218 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11219 } else { 11220 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11221 } 11222 return; 11223 case 0xe: /* SABD, UABD */ 11224 if (u) { 11225 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11226 } else { 11227 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11228 } 11229 return; 11230 case 0xf: /* SABA, UABA */ 11231 if (u) { 11232 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11233 } else { 11234 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11235 } 11236 return; 11237 case 0x10: /* ADD, SUB */ 11238 if (u) { 11239 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11240 } else { 11241 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11242 } 11243 return; 11244 case 0x13: /* MUL, PMUL */ 11245 if (!u) { /* MUL */ 11246 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11247 } else { /* PMUL */ 11248 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11249 } 11250 return; 11251 case 0x12: /* MLA, MLS */ 11252 if (u) { 11253 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11254 } else { 11255 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11256 } 11257 return; 11258 case 0x16: /* SQDMULH, SQRDMULH */ 11259 { 11260 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11261 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11262 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11263 }; 11264 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11265 } 11266 return; 11267 case 0x11: 11268 if (!u) { /* CMTST */ 11269 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11270 return; 11271 } 11272 /* else CMEQ */ 11273 cond = TCG_COND_EQ; 11274 goto do_gvec_cmp; 11275 case 0x06: /* CMGT, CMHI */ 11276 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11277 goto do_gvec_cmp; 11278 case 0x07: /* CMGE, CMHS */ 11279 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11280 do_gvec_cmp: 11281 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11282 vec_full_reg_offset(s, rn), 11283 vec_full_reg_offset(s, rm), 11284 is_q ? 16 : 8, vec_full_reg_size(s)); 11285 return; 11286 } 11287 11288 if (size == 3) { 11289 assert(is_q); 11290 for (pass = 0; pass < 2; pass++) { 11291 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11292 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11293 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11294 11295 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11296 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11297 11298 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11299 11300 write_vec_element(s, tcg_res, rd, pass, MO_64); 11301 } 11302 } else { 11303 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11304 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11305 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11306 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11307 NeonGenTwoOpFn *genfn = NULL; 11308 NeonGenTwoOpEnvFn *genenvfn = NULL; 11309 11310 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11311 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11312 11313 switch (opcode) { 11314 case 0x0: /* SHADD, UHADD */ 11315 { 11316 static NeonGenTwoOpFn * const fns[3][2] = { 11317 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11318 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11319 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11320 }; 11321 genfn = fns[size][u]; 11322 break; 11323 } 11324 case 0x2: /* SRHADD, URHADD */ 11325 { 11326 static NeonGenTwoOpFn * const fns[3][2] = { 11327 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11328 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11329 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11330 }; 11331 genfn = fns[size][u]; 11332 break; 11333 } 11334 case 0x4: /* SHSUB, UHSUB */ 11335 { 11336 static NeonGenTwoOpFn * const fns[3][2] = { 11337 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11338 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11339 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11340 }; 11341 genfn = fns[size][u]; 11342 break; 11343 } 11344 case 0x9: /* SQSHL, UQSHL */ 11345 { 11346 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11347 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11348 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11349 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11350 }; 11351 genenvfn = fns[size][u]; 11352 break; 11353 } 11354 case 0xa: /* SRSHL, URSHL */ 11355 { 11356 static NeonGenTwoOpFn * const fns[3][2] = { 11357 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11358 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11359 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11360 }; 11361 genfn = fns[size][u]; 11362 break; 11363 } 11364 case 0xb: /* SQRSHL, UQRSHL */ 11365 { 11366 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11367 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11368 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11369 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11370 }; 11371 genenvfn = fns[size][u]; 11372 break; 11373 } 11374 default: 11375 g_assert_not_reached(); 11376 } 11377 11378 if (genenvfn) { 11379 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11380 } else { 11381 genfn(tcg_res, tcg_op1, tcg_op2); 11382 } 11383 11384 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11385 } 11386 } 11387 clear_vec_high(s, is_q, rd); 11388 } 11389 11390 /* AdvSIMD three same 11391 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11392 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11393 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11394 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11395 */ 11396 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11397 { 11398 int opcode = extract32(insn, 11, 5); 11399 11400 switch (opcode) { 11401 case 0x3: /* logic ops */ 11402 disas_simd_3same_logic(s, insn); 11403 break; 11404 case 0x17: /* ADDP */ 11405 case 0x14: /* SMAXP, UMAXP */ 11406 case 0x15: /* SMINP, UMINP */ 11407 { 11408 /* Pairwise operations */ 11409 int is_q = extract32(insn, 30, 1); 11410 int u = extract32(insn, 29, 1); 11411 int size = extract32(insn, 22, 2); 11412 int rm = extract32(insn, 16, 5); 11413 int rn = extract32(insn, 5, 5); 11414 int rd = extract32(insn, 0, 5); 11415 if (opcode == 0x17) { 11416 if (u || (size == 3 && !is_q)) { 11417 unallocated_encoding(s); 11418 return; 11419 } 11420 } else { 11421 if (size == 3) { 11422 unallocated_encoding(s); 11423 return; 11424 } 11425 } 11426 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11427 break; 11428 } 11429 case 0x18 ... 0x31: 11430 /* floating point ops, sz[1] and U are part of opcode */ 11431 disas_simd_3same_float(s, insn); 11432 break; 11433 default: 11434 disas_simd_3same_int(s, insn); 11435 break; 11436 } 11437 } 11438 11439 /* AdvSIMD three same extra 11440 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11441 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11442 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11443 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11444 */ 11445 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11446 { 11447 int rd = extract32(insn, 0, 5); 11448 int rn = extract32(insn, 5, 5); 11449 int opcode = extract32(insn, 11, 4); 11450 int rm = extract32(insn, 16, 5); 11451 int size = extract32(insn, 22, 2); 11452 bool u = extract32(insn, 29, 1); 11453 bool is_q = extract32(insn, 30, 1); 11454 bool feature; 11455 int rot; 11456 11457 switch (u * 16 + opcode) { 11458 case 0x10: /* SQRDMLAH (vector) */ 11459 case 0x11: /* SQRDMLSH (vector) */ 11460 if (size != 1 && size != 2) { 11461 unallocated_encoding(s); 11462 return; 11463 } 11464 feature = dc_isar_feature(aa64_rdm, s); 11465 break; 11466 case 0x02: /* SDOT (vector) */ 11467 case 0x12: /* UDOT (vector) */ 11468 if (size != MO_32) { 11469 unallocated_encoding(s); 11470 return; 11471 } 11472 feature = dc_isar_feature(aa64_dp, s); 11473 break; 11474 case 0x03: /* USDOT */ 11475 if (size != MO_32) { 11476 unallocated_encoding(s); 11477 return; 11478 } 11479 feature = dc_isar_feature(aa64_i8mm, s); 11480 break; 11481 case 0x04: /* SMMLA */ 11482 case 0x14: /* UMMLA */ 11483 case 0x05: /* USMMLA */ 11484 if (!is_q || size != MO_32) { 11485 unallocated_encoding(s); 11486 return; 11487 } 11488 feature = dc_isar_feature(aa64_i8mm, s); 11489 break; 11490 case 0x18: /* FCMLA, #0 */ 11491 case 0x19: /* FCMLA, #90 */ 11492 case 0x1a: /* FCMLA, #180 */ 11493 case 0x1b: /* FCMLA, #270 */ 11494 case 0x1c: /* FCADD, #90 */ 11495 case 0x1e: /* FCADD, #270 */ 11496 if (size == 0 11497 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11498 || (size == 3 && !is_q)) { 11499 unallocated_encoding(s); 11500 return; 11501 } 11502 feature = dc_isar_feature(aa64_fcma, s); 11503 break; 11504 case 0x1d: /* BFMMLA */ 11505 if (size != MO_16 || !is_q) { 11506 unallocated_encoding(s); 11507 return; 11508 } 11509 feature = dc_isar_feature(aa64_bf16, s); 11510 break; 11511 case 0x1f: 11512 switch (size) { 11513 case 1: /* BFDOT */ 11514 case 3: /* BFMLAL{B,T} */ 11515 feature = dc_isar_feature(aa64_bf16, s); 11516 break; 11517 default: 11518 unallocated_encoding(s); 11519 return; 11520 } 11521 break; 11522 default: 11523 unallocated_encoding(s); 11524 return; 11525 } 11526 if (!feature) { 11527 unallocated_encoding(s); 11528 return; 11529 } 11530 if (!fp_access_check(s)) { 11531 return; 11532 } 11533 11534 switch (opcode) { 11535 case 0x0: /* SQRDMLAH (vector) */ 11536 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11537 return; 11538 11539 case 0x1: /* SQRDMLSH (vector) */ 11540 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11541 return; 11542 11543 case 0x2: /* SDOT / UDOT */ 11544 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11545 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11546 return; 11547 11548 case 0x3: /* USDOT */ 11549 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11550 return; 11551 11552 case 0x04: /* SMMLA, UMMLA */ 11553 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11554 u ? gen_helper_gvec_ummla_b 11555 : gen_helper_gvec_smmla_b); 11556 return; 11557 case 0x05: /* USMMLA */ 11558 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11559 return; 11560 11561 case 0x8: /* FCMLA, #0 */ 11562 case 0x9: /* FCMLA, #90 */ 11563 case 0xa: /* FCMLA, #180 */ 11564 case 0xb: /* FCMLA, #270 */ 11565 rot = extract32(opcode, 0, 2); 11566 switch (size) { 11567 case 1: 11568 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11569 gen_helper_gvec_fcmlah); 11570 break; 11571 case 2: 11572 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11573 gen_helper_gvec_fcmlas); 11574 break; 11575 case 3: 11576 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11577 gen_helper_gvec_fcmlad); 11578 break; 11579 default: 11580 g_assert_not_reached(); 11581 } 11582 return; 11583 11584 case 0xc: /* FCADD, #90 */ 11585 case 0xe: /* FCADD, #270 */ 11586 rot = extract32(opcode, 1, 1); 11587 switch (size) { 11588 case 1: 11589 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11590 gen_helper_gvec_fcaddh); 11591 break; 11592 case 2: 11593 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11594 gen_helper_gvec_fcadds); 11595 break; 11596 case 3: 11597 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11598 gen_helper_gvec_fcaddd); 11599 break; 11600 default: 11601 g_assert_not_reached(); 11602 } 11603 return; 11604 11605 case 0xd: /* BFMMLA */ 11606 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11607 return; 11608 case 0xf: 11609 switch (size) { 11610 case 1: /* BFDOT */ 11611 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11612 break; 11613 case 3: /* BFMLAL{B,T} */ 11614 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11615 gen_helper_gvec_bfmlal); 11616 break; 11617 default: 11618 g_assert_not_reached(); 11619 } 11620 return; 11621 11622 default: 11623 g_assert_not_reached(); 11624 } 11625 } 11626 11627 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11628 int size, int rn, int rd) 11629 { 11630 /* Handle 2-reg-misc ops which are widening (so each size element 11631 * in the source becomes a 2*size element in the destination. 11632 * The only instruction like this is FCVTL. 11633 */ 11634 int pass; 11635 11636 if (size == 3) { 11637 /* 32 -> 64 bit fp conversion */ 11638 TCGv_i64 tcg_res[2]; 11639 int srcelt = is_q ? 2 : 0; 11640 11641 for (pass = 0; pass < 2; pass++) { 11642 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11643 tcg_res[pass] = tcg_temp_new_i64(); 11644 11645 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11646 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11647 } 11648 for (pass = 0; pass < 2; pass++) { 11649 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11650 } 11651 } else { 11652 /* 16 -> 32 bit fp conversion */ 11653 int srcelt = is_q ? 4 : 0; 11654 TCGv_i32 tcg_res[4]; 11655 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11656 TCGv_i32 ahp = get_ahp_flag(); 11657 11658 for (pass = 0; pass < 4; pass++) { 11659 tcg_res[pass] = tcg_temp_new_i32(); 11660 11661 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11662 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11663 fpst, ahp); 11664 } 11665 for (pass = 0; pass < 4; pass++) { 11666 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11667 } 11668 } 11669 } 11670 11671 static void handle_rev(DisasContext *s, int opcode, bool u, 11672 bool is_q, int size, int rn, int rd) 11673 { 11674 int op = (opcode << 1) | u; 11675 int opsz = op + size; 11676 int grp_size = 3 - opsz; 11677 int dsize = is_q ? 128 : 64; 11678 int i; 11679 11680 if (opsz >= 3) { 11681 unallocated_encoding(s); 11682 return; 11683 } 11684 11685 if (!fp_access_check(s)) { 11686 return; 11687 } 11688 11689 if (size == 0) { 11690 /* Special case bytes, use bswap op on each group of elements */ 11691 int groups = dsize / (8 << grp_size); 11692 11693 for (i = 0; i < groups; i++) { 11694 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11695 11696 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11697 switch (grp_size) { 11698 case MO_16: 11699 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11700 break; 11701 case MO_32: 11702 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11703 break; 11704 case MO_64: 11705 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11706 break; 11707 default: 11708 g_assert_not_reached(); 11709 } 11710 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11711 } 11712 clear_vec_high(s, is_q, rd); 11713 } else { 11714 int revmask = (1 << grp_size) - 1; 11715 int esize = 8 << size; 11716 int elements = dsize / esize; 11717 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11718 TCGv_i64 tcg_rd[2]; 11719 11720 for (i = 0; i < 2; i++) { 11721 tcg_rd[i] = tcg_temp_new_i64(); 11722 tcg_gen_movi_i64(tcg_rd[i], 0); 11723 } 11724 11725 for (i = 0; i < elements; i++) { 11726 int e_rev = (i & 0xf) ^ revmask; 11727 int w = (e_rev * esize) / 64; 11728 int o = (e_rev * esize) % 64; 11729 11730 read_vec_element(s, tcg_rn, rn, i, size); 11731 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11732 } 11733 11734 for (i = 0; i < 2; i++) { 11735 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11736 } 11737 clear_vec_high(s, true, rd); 11738 } 11739 } 11740 11741 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11742 bool is_q, int size, int rn, int rd) 11743 { 11744 /* Implement the pairwise operations from 2-misc: 11745 * SADDLP, UADDLP, SADALP, UADALP. 11746 * These all add pairs of elements in the input to produce a 11747 * double-width result element in the output (possibly accumulating). 11748 */ 11749 bool accum = (opcode == 0x6); 11750 int maxpass = is_q ? 2 : 1; 11751 int pass; 11752 TCGv_i64 tcg_res[2]; 11753 11754 if (size == 2) { 11755 /* 32 + 32 -> 64 op */ 11756 MemOp memop = size + (u ? 0 : MO_SIGN); 11757 11758 for (pass = 0; pass < maxpass; pass++) { 11759 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11760 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11761 11762 tcg_res[pass] = tcg_temp_new_i64(); 11763 11764 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11765 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11766 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11767 if (accum) { 11768 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11769 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11770 } 11771 } 11772 } else { 11773 for (pass = 0; pass < maxpass; pass++) { 11774 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11775 NeonGenOne64OpFn *genfn; 11776 static NeonGenOne64OpFn * const fns[2][2] = { 11777 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11778 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11779 }; 11780 11781 genfn = fns[size][u]; 11782 11783 tcg_res[pass] = tcg_temp_new_i64(); 11784 11785 read_vec_element(s, tcg_op, rn, pass, MO_64); 11786 genfn(tcg_res[pass], tcg_op); 11787 11788 if (accum) { 11789 read_vec_element(s, tcg_op, rd, pass, MO_64); 11790 if (size == 0) { 11791 gen_helper_neon_addl_u16(tcg_res[pass], 11792 tcg_res[pass], tcg_op); 11793 } else { 11794 gen_helper_neon_addl_u32(tcg_res[pass], 11795 tcg_res[pass], tcg_op); 11796 } 11797 } 11798 } 11799 } 11800 if (!is_q) { 11801 tcg_res[1] = tcg_constant_i64(0); 11802 } 11803 for (pass = 0; pass < 2; pass++) { 11804 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11805 } 11806 } 11807 11808 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11809 { 11810 /* Implement SHLL and SHLL2 */ 11811 int pass; 11812 int part = is_q ? 2 : 0; 11813 TCGv_i64 tcg_res[2]; 11814 11815 for (pass = 0; pass < 2; pass++) { 11816 static NeonGenWidenFn * const widenfns[3] = { 11817 gen_helper_neon_widen_u8, 11818 gen_helper_neon_widen_u16, 11819 tcg_gen_extu_i32_i64, 11820 }; 11821 NeonGenWidenFn *widenfn = widenfns[size]; 11822 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11823 11824 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11825 tcg_res[pass] = tcg_temp_new_i64(); 11826 widenfn(tcg_res[pass], tcg_op); 11827 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11828 } 11829 11830 for (pass = 0; pass < 2; pass++) { 11831 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11832 } 11833 } 11834 11835 /* AdvSIMD two reg misc 11836 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11837 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11838 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11839 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11840 */ 11841 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11842 { 11843 int size = extract32(insn, 22, 2); 11844 int opcode = extract32(insn, 12, 5); 11845 bool u = extract32(insn, 29, 1); 11846 bool is_q = extract32(insn, 30, 1); 11847 int rn = extract32(insn, 5, 5); 11848 int rd = extract32(insn, 0, 5); 11849 bool need_fpstatus = false; 11850 int rmode = -1; 11851 TCGv_i32 tcg_rmode; 11852 TCGv_ptr tcg_fpstatus; 11853 11854 switch (opcode) { 11855 case 0x0: /* REV64, REV32 */ 11856 case 0x1: /* REV16 */ 11857 handle_rev(s, opcode, u, is_q, size, rn, rd); 11858 return; 11859 case 0x5: /* CNT, NOT, RBIT */ 11860 if (u && size == 0) { 11861 /* NOT */ 11862 break; 11863 } else if (u && size == 1) { 11864 /* RBIT */ 11865 break; 11866 } else if (!u && size == 0) { 11867 /* CNT */ 11868 break; 11869 } 11870 unallocated_encoding(s); 11871 return; 11872 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11873 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11874 if (size == 3) { 11875 unallocated_encoding(s); 11876 return; 11877 } 11878 if (!fp_access_check(s)) { 11879 return; 11880 } 11881 11882 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11883 return; 11884 case 0x4: /* CLS, CLZ */ 11885 if (size == 3) { 11886 unallocated_encoding(s); 11887 return; 11888 } 11889 break; 11890 case 0x2: /* SADDLP, UADDLP */ 11891 case 0x6: /* SADALP, UADALP */ 11892 if (size == 3) { 11893 unallocated_encoding(s); 11894 return; 11895 } 11896 if (!fp_access_check(s)) { 11897 return; 11898 } 11899 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11900 return; 11901 case 0x13: /* SHLL, SHLL2 */ 11902 if (u == 0 || size == 3) { 11903 unallocated_encoding(s); 11904 return; 11905 } 11906 if (!fp_access_check(s)) { 11907 return; 11908 } 11909 handle_shll(s, is_q, size, rn, rd); 11910 return; 11911 case 0xa: /* CMLT */ 11912 if (u == 1) { 11913 unallocated_encoding(s); 11914 return; 11915 } 11916 /* fall through */ 11917 case 0x8: /* CMGT, CMGE */ 11918 case 0x9: /* CMEQ, CMLE */ 11919 case 0xb: /* ABS, NEG */ 11920 if (size == 3 && !is_q) { 11921 unallocated_encoding(s); 11922 return; 11923 } 11924 break; 11925 case 0x3: /* SUQADD, USQADD */ 11926 if (size == 3 && !is_q) { 11927 unallocated_encoding(s); 11928 return; 11929 } 11930 if (!fp_access_check(s)) { 11931 return; 11932 } 11933 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11934 return; 11935 case 0x7: /* SQABS, SQNEG */ 11936 if (size == 3 && !is_q) { 11937 unallocated_encoding(s); 11938 return; 11939 } 11940 break; 11941 case 0xc ... 0xf: 11942 case 0x16 ... 0x1f: 11943 { 11944 /* Floating point: U, size[1] and opcode indicate operation; 11945 * size[0] indicates single or double precision. 11946 */ 11947 int is_double = extract32(size, 0, 1); 11948 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11949 size = is_double ? 3 : 2; 11950 switch (opcode) { 11951 case 0x2f: /* FABS */ 11952 case 0x6f: /* FNEG */ 11953 if (size == 3 && !is_q) { 11954 unallocated_encoding(s); 11955 return; 11956 } 11957 break; 11958 case 0x1d: /* SCVTF */ 11959 case 0x5d: /* UCVTF */ 11960 { 11961 bool is_signed = (opcode == 0x1d) ? true : false; 11962 int elements = is_double ? 2 : is_q ? 4 : 2; 11963 if (is_double && !is_q) { 11964 unallocated_encoding(s); 11965 return; 11966 } 11967 if (!fp_access_check(s)) { 11968 return; 11969 } 11970 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11971 return; 11972 } 11973 case 0x2c: /* FCMGT (zero) */ 11974 case 0x2d: /* FCMEQ (zero) */ 11975 case 0x2e: /* FCMLT (zero) */ 11976 case 0x6c: /* FCMGE (zero) */ 11977 case 0x6d: /* FCMLE (zero) */ 11978 if (size == 3 && !is_q) { 11979 unallocated_encoding(s); 11980 return; 11981 } 11982 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11983 return; 11984 case 0x7f: /* FSQRT */ 11985 if (size == 3 && !is_q) { 11986 unallocated_encoding(s); 11987 return; 11988 } 11989 break; 11990 case 0x1a: /* FCVTNS */ 11991 case 0x1b: /* FCVTMS */ 11992 case 0x3a: /* FCVTPS */ 11993 case 0x3b: /* FCVTZS */ 11994 case 0x5a: /* FCVTNU */ 11995 case 0x5b: /* FCVTMU */ 11996 case 0x7a: /* FCVTPU */ 11997 case 0x7b: /* FCVTZU */ 11998 need_fpstatus = true; 11999 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12000 if (size == 3 && !is_q) { 12001 unallocated_encoding(s); 12002 return; 12003 } 12004 break; 12005 case 0x5c: /* FCVTAU */ 12006 case 0x1c: /* FCVTAS */ 12007 need_fpstatus = true; 12008 rmode = FPROUNDING_TIEAWAY; 12009 if (size == 3 && !is_q) { 12010 unallocated_encoding(s); 12011 return; 12012 } 12013 break; 12014 case 0x3c: /* URECPE */ 12015 if (size == 3) { 12016 unallocated_encoding(s); 12017 return; 12018 } 12019 /* fall through */ 12020 case 0x3d: /* FRECPE */ 12021 case 0x7d: /* FRSQRTE */ 12022 if (size == 3 && !is_q) { 12023 unallocated_encoding(s); 12024 return; 12025 } 12026 if (!fp_access_check(s)) { 12027 return; 12028 } 12029 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12030 return; 12031 case 0x56: /* FCVTXN, FCVTXN2 */ 12032 if (size == 2) { 12033 unallocated_encoding(s); 12034 return; 12035 } 12036 /* fall through */ 12037 case 0x16: /* FCVTN, FCVTN2 */ 12038 /* handle_2misc_narrow does a 2*size -> size operation, but these 12039 * instructions encode the source size rather than dest size. 12040 */ 12041 if (!fp_access_check(s)) { 12042 return; 12043 } 12044 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12045 return; 12046 case 0x36: /* BFCVTN, BFCVTN2 */ 12047 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12048 unallocated_encoding(s); 12049 return; 12050 } 12051 if (!fp_access_check(s)) { 12052 return; 12053 } 12054 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12055 return; 12056 case 0x17: /* FCVTL, FCVTL2 */ 12057 if (!fp_access_check(s)) { 12058 return; 12059 } 12060 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12061 return; 12062 case 0x18: /* FRINTN */ 12063 case 0x19: /* FRINTM */ 12064 case 0x38: /* FRINTP */ 12065 case 0x39: /* FRINTZ */ 12066 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12067 /* fall through */ 12068 case 0x59: /* FRINTX */ 12069 case 0x79: /* FRINTI */ 12070 need_fpstatus = true; 12071 if (size == 3 && !is_q) { 12072 unallocated_encoding(s); 12073 return; 12074 } 12075 break; 12076 case 0x58: /* FRINTA */ 12077 rmode = FPROUNDING_TIEAWAY; 12078 need_fpstatus = true; 12079 if (size == 3 && !is_q) { 12080 unallocated_encoding(s); 12081 return; 12082 } 12083 break; 12084 case 0x7c: /* URSQRTE */ 12085 if (size == 3) { 12086 unallocated_encoding(s); 12087 return; 12088 } 12089 break; 12090 case 0x1e: /* FRINT32Z */ 12091 case 0x1f: /* FRINT64Z */ 12092 rmode = FPROUNDING_ZERO; 12093 /* fall through */ 12094 case 0x5e: /* FRINT32X */ 12095 case 0x5f: /* FRINT64X */ 12096 need_fpstatus = true; 12097 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12098 unallocated_encoding(s); 12099 return; 12100 } 12101 break; 12102 default: 12103 unallocated_encoding(s); 12104 return; 12105 } 12106 break; 12107 } 12108 default: 12109 unallocated_encoding(s); 12110 return; 12111 } 12112 12113 if (!fp_access_check(s)) { 12114 return; 12115 } 12116 12117 if (need_fpstatus || rmode >= 0) { 12118 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12119 } else { 12120 tcg_fpstatus = NULL; 12121 } 12122 if (rmode >= 0) { 12123 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12124 } else { 12125 tcg_rmode = NULL; 12126 } 12127 12128 switch (opcode) { 12129 case 0x5: 12130 if (u && size == 0) { /* NOT */ 12131 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12132 return; 12133 } 12134 break; 12135 case 0x8: /* CMGT, CMGE */ 12136 if (u) { 12137 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12138 } else { 12139 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12140 } 12141 return; 12142 case 0x9: /* CMEQ, CMLE */ 12143 if (u) { 12144 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12145 } else { 12146 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12147 } 12148 return; 12149 case 0xa: /* CMLT */ 12150 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12151 return; 12152 case 0xb: 12153 if (u) { /* ABS, NEG */ 12154 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12155 } else { 12156 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12157 } 12158 return; 12159 } 12160 12161 if (size == 3) { 12162 /* All 64-bit element operations can be shared with scalar 2misc */ 12163 int pass; 12164 12165 /* Coverity claims (size == 3 && !is_q) has been eliminated 12166 * from all paths leading to here. 12167 */ 12168 tcg_debug_assert(is_q); 12169 for (pass = 0; pass < 2; pass++) { 12170 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12171 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12172 12173 read_vec_element(s, tcg_op, rn, pass, MO_64); 12174 12175 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12176 tcg_rmode, tcg_fpstatus); 12177 12178 write_vec_element(s, tcg_res, rd, pass, MO_64); 12179 } 12180 } else { 12181 int pass; 12182 12183 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12184 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12185 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12186 12187 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12188 12189 if (size == 2) { 12190 /* Special cases for 32 bit elements */ 12191 switch (opcode) { 12192 case 0x4: /* CLS */ 12193 if (u) { 12194 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12195 } else { 12196 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12197 } 12198 break; 12199 case 0x7: /* SQABS, SQNEG */ 12200 if (u) { 12201 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12202 } else { 12203 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12204 } 12205 break; 12206 case 0x2f: /* FABS */ 12207 gen_vfp_abss(tcg_res, tcg_op); 12208 break; 12209 case 0x6f: /* FNEG */ 12210 gen_vfp_negs(tcg_res, tcg_op); 12211 break; 12212 case 0x7f: /* FSQRT */ 12213 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12214 break; 12215 case 0x1a: /* FCVTNS */ 12216 case 0x1b: /* FCVTMS */ 12217 case 0x1c: /* FCVTAS */ 12218 case 0x3a: /* FCVTPS */ 12219 case 0x3b: /* FCVTZS */ 12220 gen_helper_vfp_tosls(tcg_res, tcg_op, 12221 tcg_constant_i32(0), tcg_fpstatus); 12222 break; 12223 case 0x5a: /* FCVTNU */ 12224 case 0x5b: /* FCVTMU */ 12225 case 0x5c: /* FCVTAU */ 12226 case 0x7a: /* FCVTPU */ 12227 case 0x7b: /* FCVTZU */ 12228 gen_helper_vfp_touls(tcg_res, tcg_op, 12229 tcg_constant_i32(0), tcg_fpstatus); 12230 break; 12231 case 0x18: /* FRINTN */ 12232 case 0x19: /* FRINTM */ 12233 case 0x38: /* FRINTP */ 12234 case 0x39: /* FRINTZ */ 12235 case 0x58: /* FRINTA */ 12236 case 0x79: /* FRINTI */ 12237 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12238 break; 12239 case 0x59: /* FRINTX */ 12240 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12241 break; 12242 case 0x7c: /* URSQRTE */ 12243 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12244 break; 12245 case 0x1e: /* FRINT32Z */ 12246 case 0x5e: /* FRINT32X */ 12247 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12248 break; 12249 case 0x1f: /* FRINT64Z */ 12250 case 0x5f: /* FRINT64X */ 12251 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12252 break; 12253 default: 12254 g_assert_not_reached(); 12255 } 12256 } else { 12257 /* Use helpers for 8 and 16 bit elements */ 12258 switch (opcode) { 12259 case 0x5: /* CNT, RBIT */ 12260 /* For these two insns size is part of the opcode specifier 12261 * (handled earlier); they always operate on byte elements. 12262 */ 12263 if (u) { 12264 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12265 } else { 12266 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12267 } 12268 break; 12269 case 0x7: /* SQABS, SQNEG */ 12270 { 12271 NeonGenOneOpEnvFn *genfn; 12272 static NeonGenOneOpEnvFn * const fns[2][2] = { 12273 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12274 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12275 }; 12276 genfn = fns[size][u]; 12277 genfn(tcg_res, tcg_env, tcg_op); 12278 break; 12279 } 12280 case 0x4: /* CLS, CLZ */ 12281 if (u) { 12282 if (size == 0) { 12283 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12284 } else { 12285 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12286 } 12287 } else { 12288 if (size == 0) { 12289 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12290 } else { 12291 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12292 } 12293 } 12294 break; 12295 default: 12296 g_assert_not_reached(); 12297 } 12298 } 12299 12300 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12301 } 12302 } 12303 clear_vec_high(s, is_q, rd); 12304 12305 if (tcg_rmode) { 12306 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12307 } 12308 } 12309 12310 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12311 * 12312 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12313 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12314 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12315 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12316 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12317 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12318 * 12319 * This actually covers two groups where scalar access is governed by 12320 * bit 28. A bunch of the instructions (float to integral) only exist 12321 * in the vector form and are un-allocated for the scalar decode. Also 12322 * in the scalar decode Q is always 1. 12323 */ 12324 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12325 { 12326 int fpop, opcode, a, u; 12327 int rn, rd; 12328 bool is_q; 12329 bool is_scalar; 12330 bool only_in_vector = false; 12331 12332 int pass; 12333 TCGv_i32 tcg_rmode = NULL; 12334 TCGv_ptr tcg_fpstatus = NULL; 12335 bool need_fpst = true; 12336 int rmode = -1; 12337 12338 if (!dc_isar_feature(aa64_fp16, s)) { 12339 unallocated_encoding(s); 12340 return; 12341 } 12342 12343 rd = extract32(insn, 0, 5); 12344 rn = extract32(insn, 5, 5); 12345 12346 a = extract32(insn, 23, 1); 12347 u = extract32(insn, 29, 1); 12348 is_scalar = extract32(insn, 28, 1); 12349 is_q = extract32(insn, 30, 1); 12350 12351 opcode = extract32(insn, 12, 5); 12352 fpop = deposit32(opcode, 5, 1, a); 12353 fpop = deposit32(fpop, 6, 1, u); 12354 12355 switch (fpop) { 12356 case 0x1d: /* SCVTF */ 12357 case 0x5d: /* UCVTF */ 12358 { 12359 int elements; 12360 12361 if (is_scalar) { 12362 elements = 1; 12363 } else { 12364 elements = (is_q ? 8 : 4); 12365 } 12366 12367 if (!fp_access_check(s)) { 12368 return; 12369 } 12370 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12371 return; 12372 } 12373 break; 12374 case 0x2c: /* FCMGT (zero) */ 12375 case 0x2d: /* FCMEQ (zero) */ 12376 case 0x2e: /* FCMLT (zero) */ 12377 case 0x6c: /* FCMGE (zero) */ 12378 case 0x6d: /* FCMLE (zero) */ 12379 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12380 return; 12381 case 0x3d: /* FRECPE */ 12382 case 0x3f: /* FRECPX */ 12383 break; 12384 case 0x18: /* FRINTN */ 12385 only_in_vector = true; 12386 rmode = FPROUNDING_TIEEVEN; 12387 break; 12388 case 0x19: /* FRINTM */ 12389 only_in_vector = true; 12390 rmode = FPROUNDING_NEGINF; 12391 break; 12392 case 0x38: /* FRINTP */ 12393 only_in_vector = true; 12394 rmode = FPROUNDING_POSINF; 12395 break; 12396 case 0x39: /* FRINTZ */ 12397 only_in_vector = true; 12398 rmode = FPROUNDING_ZERO; 12399 break; 12400 case 0x58: /* FRINTA */ 12401 only_in_vector = true; 12402 rmode = FPROUNDING_TIEAWAY; 12403 break; 12404 case 0x59: /* FRINTX */ 12405 case 0x79: /* FRINTI */ 12406 only_in_vector = true; 12407 /* current rounding mode */ 12408 break; 12409 case 0x1a: /* FCVTNS */ 12410 rmode = FPROUNDING_TIEEVEN; 12411 break; 12412 case 0x1b: /* FCVTMS */ 12413 rmode = FPROUNDING_NEGINF; 12414 break; 12415 case 0x1c: /* FCVTAS */ 12416 rmode = FPROUNDING_TIEAWAY; 12417 break; 12418 case 0x3a: /* FCVTPS */ 12419 rmode = FPROUNDING_POSINF; 12420 break; 12421 case 0x3b: /* FCVTZS */ 12422 rmode = FPROUNDING_ZERO; 12423 break; 12424 case 0x5a: /* FCVTNU */ 12425 rmode = FPROUNDING_TIEEVEN; 12426 break; 12427 case 0x5b: /* FCVTMU */ 12428 rmode = FPROUNDING_NEGINF; 12429 break; 12430 case 0x5c: /* FCVTAU */ 12431 rmode = FPROUNDING_TIEAWAY; 12432 break; 12433 case 0x7a: /* FCVTPU */ 12434 rmode = FPROUNDING_POSINF; 12435 break; 12436 case 0x7b: /* FCVTZU */ 12437 rmode = FPROUNDING_ZERO; 12438 break; 12439 case 0x2f: /* FABS */ 12440 case 0x6f: /* FNEG */ 12441 need_fpst = false; 12442 break; 12443 case 0x7d: /* FRSQRTE */ 12444 case 0x7f: /* FSQRT (vector) */ 12445 break; 12446 default: 12447 unallocated_encoding(s); 12448 return; 12449 } 12450 12451 12452 /* Check additional constraints for the scalar encoding */ 12453 if (is_scalar) { 12454 if (!is_q) { 12455 unallocated_encoding(s); 12456 return; 12457 } 12458 /* FRINTxx is only in the vector form */ 12459 if (only_in_vector) { 12460 unallocated_encoding(s); 12461 return; 12462 } 12463 } 12464 12465 if (!fp_access_check(s)) { 12466 return; 12467 } 12468 12469 if (rmode >= 0 || need_fpst) { 12470 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12471 } 12472 12473 if (rmode >= 0) { 12474 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12475 } 12476 12477 if (is_scalar) { 12478 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12479 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12480 12481 switch (fpop) { 12482 case 0x1a: /* FCVTNS */ 12483 case 0x1b: /* FCVTMS */ 12484 case 0x1c: /* FCVTAS */ 12485 case 0x3a: /* FCVTPS */ 12486 case 0x3b: /* FCVTZS */ 12487 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12488 break; 12489 case 0x3d: /* FRECPE */ 12490 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12491 break; 12492 case 0x3f: /* FRECPX */ 12493 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12494 break; 12495 case 0x5a: /* FCVTNU */ 12496 case 0x5b: /* FCVTMU */ 12497 case 0x5c: /* FCVTAU */ 12498 case 0x7a: /* FCVTPU */ 12499 case 0x7b: /* FCVTZU */ 12500 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12501 break; 12502 case 0x6f: /* FNEG */ 12503 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12504 break; 12505 case 0x7d: /* FRSQRTE */ 12506 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12507 break; 12508 default: 12509 g_assert_not_reached(); 12510 } 12511 12512 /* limit any sign extension going on */ 12513 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12514 write_fp_sreg(s, rd, tcg_res); 12515 } else { 12516 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12517 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12518 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12519 12520 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12521 12522 switch (fpop) { 12523 case 0x1a: /* FCVTNS */ 12524 case 0x1b: /* FCVTMS */ 12525 case 0x1c: /* FCVTAS */ 12526 case 0x3a: /* FCVTPS */ 12527 case 0x3b: /* FCVTZS */ 12528 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12529 break; 12530 case 0x3d: /* FRECPE */ 12531 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12532 break; 12533 case 0x5a: /* FCVTNU */ 12534 case 0x5b: /* FCVTMU */ 12535 case 0x5c: /* FCVTAU */ 12536 case 0x7a: /* FCVTPU */ 12537 case 0x7b: /* FCVTZU */ 12538 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12539 break; 12540 case 0x18: /* FRINTN */ 12541 case 0x19: /* FRINTM */ 12542 case 0x38: /* FRINTP */ 12543 case 0x39: /* FRINTZ */ 12544 case 0x58: /* FRINTA */ 12545 case 0x79: /* FRINTI */ 12546 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12547 break; 12548 case 0x59: /* FRINTX */ 12549 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12550 break; 12551 case 0x2f: /* FABS */ 12552 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12553 break; 12554 case 0x6f: /* FNEG */ 12555 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12556 break; 12557 case 0x7d: /* FRSQRTE */ 12558 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12559 break; 12560 case 0x7f: /* FSQRT */ 12561 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12562 break; 12563 default: 12564 g_assert_not_reached(); 12565 } 12566 12567 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12568 } 12569 12570 clear_vec_high(s, is_q, rd); 12571 } 12572 12573 if (tcg_rmode) { 12574 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12575 } 12576 } 12577 12578 /* AdvSIMD scalar x indexed element 12579 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12580 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12581 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12582 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12583 * AdvSIMD vector x indexed element 12584 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12585 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12586 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12587 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12588 */ 12589 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12590 { 12591 /* This encoding has two kinds of instruction: 12592 * normal, where we perform elt x idxelt => elt for each 12593 * element in the vector 12594 * long, where we perform elt x idxelt and generate a result of 12595 * double the width of the input element 12596 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12597 */ 12598 bool is_scalar = extract32(insn, 28, 1); 12599 bool is_q = extract32(insn, 30, 1); 12600 bool u = extract32(insn, 29, 1); 12601 int size = extract32(insn, 22, 2); 12602 int l = extract32(insn, 21, 1); 12603 int m = extract32(insn, 20, 1); 12604 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12605 int rm = extract32(insn, 16, 4); 12606 int opcode = extract32(insn, 12, 4); 12607 int h = extract32(insn, 11, 1); 12608 int rn = extract32(insn, 5, 5); 12609 int rd = extract32(insn, 0, 5); 12610 bool is_long = false; 12611 int is_fp = 0; 12612 bool is_fp16 = false; 12613 int index; 12614 TCGv_ptr fpst; 12615 12616 switch (16 * u + opcode) { 12617 case 0x08: /* MUL */ 12618 case 0x10: /* MLA */ 12619 case 0x14: /* MLS */ 12620 if (is_scalar) { 12621 unallocated_encoding(s); 12622 return; 12623 } 12624 break; 12625 case 0x02: /* SMLAL, SMLAL2 */ 12626 case 0x12: /* UMLAL, UMLAL2 */ 12627 case 0x06: /* SMLSL, SMLSL2 */ 12628 case 0x16: /* UMLSL, UMLSL2 */ 12629 case 0x0a: /* SMULL, SMULL2 */ 12630 case 0x1a: /* UMULL, UMULL2 */ 12631 if (is_scalar) { 12632 unallocated_encoding(s); 12633 return; 12634 } 12635 is_long = true; 12636 break; 12637 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12638 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12639 case 0x0b: /* SQDMULL, SQDMULL2 */ 12640 is_long = true; 12641 break; 12642 case 0x0c: /* SQDMULH */ 12643 case 0x0d: /* SQRDMULH */ 12644 break; 12645 case 0x1d: /* SQRDMLAH */ 12646 case 0x1f: /* SQRDMLSH */ 12647 if (!dc_isar_feature(aa64_rdm, s)) { 12648 unallocated_encoding(s); 12649 return; 12650 } 12651 break; 12652 case 0x0e: /* SDOT */ 12653 case 0x1e: /* UDOT */ 12654 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12655 unallocated_encoding(s); 12656 return; 12657 } 12658 break; 12659 case 0x0f: 12660 switch (size) { 12661 case 0: /* SUDOT */ 12662 case 2: /* USDOT */ 12663 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12664 unallocated_encoding(s); 12665 return; 12666 } 12667 size = MO_32; 12668 break; 12669 case 1: /* BFDOT */ 12670 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12671 unallocated_encoding(s); 12672 return; 12673 } 12674 size = MO_32; 12675 break; 12676 case 3: /* BFMLAL{B,T} */ 12677 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12678 unallocated_encoding(s); 12679 return; 12680 } 12681 /* can't set is_fp without other incorrect size checks */ 12682 size = MO_16; 12683 break; 12684 default: 12685 unallocated_encoding(s); 12686 return; 12687 } 12688 break; 12689 case 0x11: /* FCMLA #0 */ 12690 case 0x13: /* FCMLA #90 */ 12691 case 0x15: /* FCMLA #180 */ 12692 case 0x17: /* FCMLA #270 */ 12693 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12694 unallocated_encoding(s); 12695 return; 12696 } 12697 is_fp = 2; 12698 break; 12699 case 0x00: /* FMLAL */ 12700 case 0x04: /* FMLSL */ 12701 case 0x18: /* FMLAL2 */ 12702 case 0x1c: /* FMLSL2 */ 12703 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12704 unallocated_encoding(s); 12705 return; 12706 } 12707 size = MO_16; 12708 /* is_fp, but we pass tcg_env not fp_status. */ 12709 break; 12710 default: 12711 case 0x01: /* FMLA */ 12712 case 0x05: /* FMLS */ 12713 case 0x09: /* FMUL */ 12714 case 0x19: /* FMULX */ 12715 unallocated_encoding(s); 12716 return; 12717 } 12718 12719 switch (is_fp) { 12720 case 1: /* normal fp */ 12721 unallocated_encoding(s); /* in decodetree */ 12722 return; 12723 12724 case 2: /* complex fp */ 12725 /* Each indexable element is a complex pair. */ 12726 size += 1; 12727 switch (size) { 12728 case MO_32: 12729 if (h && !is_q) { 12730 unallocated_encoding(s); 12731 return; 12732 } 12733 is_fp16 = true; 12734 break; 12735 case MO_64: 12736 break; 12737 default: 12738 unallocated_encoding(s); 12739 return; 12740 } 12741 break; 12742 12743 default: /* integer */ 12744 switch (size) { 12745 case MO_8: 12746 case MO_64: 12747 unallocated_encoding(s); 12748 return; 12749 } 12750 break; 12751 } 12752 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12753 unallocated_encoding(s); 12754 return; 12755 } 12756 12757 /* Given MemOp size, adjust register and indexing. */ 12758 switch (size) { 12759 case MO_16: 12760 index = h << 2 | l << 1 | m; 12761 break; 12762 case MO_32: 12763 index = h << 1 | l; 12764 rm |= m << 4; 12765 break; 12766 case MO_64: 12767 if (l || !is_q) { 12768 unallocated_encoding(s); 12769 return; 12770 } 12771 index = h; 12772 rm |= m << 4; 12773 break; 12774 default: 12775 g_assert_not_reached(); 12776 } 12777 12778 if (!fp_access_check(s)) { 12779 return; 12780 } 12781 12782 if (is_fp) { 12783 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12784 } else { 12785 fpst = NULL; 12786 } 12787 12788 switch (16 * u + opcode) { 12789 case 0x0e: /* SDOT */ 12790 case 0x1e: /* UDOT */ 12791 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12792 u ? gen_helper_gvec_udot_idx_b 12793 : gen_helper_gvec_sdot_idx_b); 12794 return; 12795 case 0x0f: 12796 switch (extract32(insn, 22, 2)) { 12797 case 0: /* SUDOT */ 12798 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12799 gen_helper_gvec_sudot_idx_b); 12800 return; 12801 case 1: /* BFDOT */ 12802 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12803 gen_helper_gvec_bfdot_idx); 12804 return; 12805 case 2: /* USDOT */ 12806 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12807 gen_helper_gvec_usdot_idx_b); 12808 return; 12809 case 3: /* BFMLAL{B,T} */ 12810 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12811 gen_helper_gvec_bfmlal_idx); 12812 return; 12813 } 12814 g_assert_not_reached(); 12815 case 0x11: /* FCMLA #0 */ 12816 case 0x13: /* FCMLA #90 */ 12817 case 0x15: /* FCMLA #180 */ 12818 case 0x17: /* FCMLA #270 */ 12819 { 12820 int rot = extract32(insn, 13, 2); 12821 int data = (index << 2) | rot; 12822 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12823 vec_full_reg_offset(s, rn), 12824 vec_full_reg_offset(s, rm), 12825 vec_full_reg_offset(s, rd), fpst, 12826 is_q ? 16 : 8, vec_full_reg_size(s), data, 12827 size == MO_64 12828 ? gen_helper_gvec_fcmlas_idx 12829 : gen_helper_gvec_fcmlah_idx); 12830 } 12831 return; 12832 12833 case 0x00: /* FMLAL */ 12834 case 0x04: /* FMLSL */ 12835 case 0x18: /* FMLAL2 */ 12836 case 0x1c: /* FMLSL2 */ 12837 { 12838 int is_s = extract32(opcode, 2, 1); 12839 int is_2 = u; 12840 int data = (index << 2) | (is_2 << 1) | is_s; 12841 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12842 vec_full_reg_offset(s, rn), 12843 vec_full_reg_offset(s, rm), tcg_env, 12844 is_q ? 16 : 8, vec_full_reg_size(s), 12845 data, gen_helper_gvec_fmlal_idx_a64); 12846 } 12847 return; 12848 12849 case 0x08: /* MUL */ 12850 if (!is_long && !is_scalar) { 12851 static gen_helper_gvec_3 * const fns[3] = { 12852 gen_helper_gvec_mul_idx_h, 12853 gen_helper_gvec_mul_idx_s, 12854 gen_helper_gvec_mul_idx_d, 12855 }; 12856 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12857 vec_full_reg_offset(s, rn), 12858 vec_full_reg_offset(s, rm), 12859 is_q ? 16 : 8, vec_full_reg_size(s), 12860 index, fns[size - 1]); 12861 return; 12862 } 12863 break; 12864 12865 case 0x10: /* MLA */ 12866 if (!is_long && !is_scalar) { 12867 static gen_helper_gvec_4 * const fns[3] = { 12868 gen_helper_gvec_mla_idx_h, 12869 gen_helper_gvec_mla_idx_s, 12870 gen_helper_gvec_mla_idx_d, 12871 }; 12872 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12873 vec_full_reg_offset(s, rn), 12874 vec_full_reg_offset(s, rm), 12875 vec_full_reg_offset(s, rd), 12876 is_q ? 16 : 8, vec_full_reg_size(s), 12877 index, fns[size - 1]); 12878 return; 12879 } 12880 break; 12881 12882 case 0x14: /* MLS */ 12883 if (!is_long && !is_scalar) { 12884 static gen_helper_gvec_4 * const fns[3] = { 12885 gen_helper_gvec_mls_idx_h, 12886 gen_helper_gvec_mls_idx_s, 12887 gen_helper_gvec_mls_idx_d, 12888 }; 12889 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12890 vec_full_reg_offset(s, rn), 12891 vec_full_reg_offset(s, rm), 12892 vec_full_reg_offset(s, rd), 12893 is_q ? 16 : 8, vec_full_reg_size(s), 12894 index, fns[size - 1]); 12895 return; 12896 } 12897 break; 12898 } 12899 12900 if (size == 3) { 12901 g_assert_not_reached(); 12902 } else if (!is_long) { 12903 /* 32 bit floating point, or 16 or 32 bit integer. 12904 * For the 16 bit scalar case we use the usual Neon helpers and 12905 * rely on the fact that 0 op 0 == 0 with no side effects. 12906 */ 12907 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12908 int pass, maxpasses; 12909 12910 if (is_scalar) { 12911 maxpasses = 1; 12912 } else { 12913 maxpasses = is_q ? 4 : 2; 12914 } 12915 12916 read_vec_element_i32(s, tcg_idx, rm, index, size); 12917 12918 if (size == 1 && !is_scalar) { 12919 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12920 * the index into both halves of the 32 bit tcg_idx and then use 12921 * the usual Neon helpers. 12922 */ 12923 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12924 } 12925 12926 for (pass = 0; pass < maxpasses; pass++) { 12927 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12928 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12929 12930 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12931 12932 switch (16 * u + opcode) { 12933 case 0x08: /* MUL */ 12934 case 0x10: /* MLA */ 12935 case 0x14: /* MLS */ 12936 { 12937 static NeonGenTwoOpFn * const fns[2][2] = { 12938 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12939 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12940 }; 12941 NeonGenTwoOpFn *genfn; 12942 bool is_sub = opcode == 0x4; 12943 12944 if (size == 1) { 12945 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12946 } else { 12947 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12948 } 12949 if (opcode == 0x8) { 12950 break; 12951 } 12952 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12953 genfn = fns[size - 1][is_sub]; 12954 genfn(tcg_res, tcg_op, tcg_res); 12955 break; 12956 } 12957 case 0x0c: /* SQDMULH */ 12958 if (size == 1) { 12959 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 12960 tcg_op, tcg_idx); 12961 } else { 12962 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 12963 tcg_op, tcg_idx); 12964 } 12965 break; 12966 case 0x0d: /* SQRDMULH */ 12967 if (size == 1) { 12968 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 12969 tcg_op, tcg_idx); 12970 } else { 12971 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 12972 tcg_op, tcg_idx); 12973 } 12974 break; 12975 case 0x1d: /* SQRDMLAH */ 12976 read_vec_element_i32(s, tcg_res, rd, pass, 12977 is_scalar ? size : MO_32); 12978 if (size == 1) { 12979 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 12980 tcg_op, tcg_idx, tcg_res); 12981 } else { 12982 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 12983 tcg_op, tcg_idx, tcg_res); 12984 } 12985 break; 12986 case 0x1f: /* SQRDMLSH */ 12987 read_vec_element_i32(s, tcg_res, rd, pass, 12988 is_scalar ? size : MO_32); 12989 if (size == 1) { 12990 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 12991 tcg_op, tcg_idx, tcg_res); 12992 } else { 12993 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 12994 tcg_op, tcg_idx, tcg_res); 12995 } 12996 break; 12997 default: 12998 case 0x01: /* FMLA */ 12999 case 0x05: /* FMLS */ 13000 case 0x09: /* FMUL */ 13001 case 0x19: /* FMULX */ 13002 g_assert_not_reached(); 13003 } 13004 13005 if (is_scalar) { 13006 write_fp_sreg(s, rd, tcg_res); 13007 } else { 13008 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13009 } 13010 } 13011 13012 clear_vec_high(s, is_q, rd); 13013 } else { 13014 /* long ops: 16x16->32 or 32x32->64 */ 13015 TCGv_i64 tcg_res[2]; 13016 int pass; 13017 bool satop = extract32(opcode, 0, 1); 13018 MemOp memop = MO_32; 13019 13020 if (satop || !u) { 13021 memop |= MO_SIGN; 13022 } 13023 13024 if (size == 2) { 13025 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13026 13027 read_vec_element(s, tcg_idx, rm, index, memop); 13028 13029 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13030 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13031 TCGv_i64 tcg_passres; 13032 int passelt; 13033 13034 if (is_scalar) { 13035 passelt = 0; 13036 } else { 13037 passelt = pass + (is_q * 2); 13038 } 13039 13040 read_vec_element(s, tcg_op, rn, passelt, memop); 13041 13042 tcg_res[pass] = tcg_temp_new_i64(); 13043 13044 if (opcode == 0xa || opcode == 0xb) { 13045 /* Non-accumulating ops */ 13046 tcg_passres = tcg_res[pass]; 13047 } else { 13048 tcg_passres = tcg_temp_new_i64(); 13049 } 13050 13051 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13052 13053 if (satop) { 13054 /* saturating, doubling */ 13055 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13056 tcg_passres, tcg_passres); 13057 } 13058 13059 if (opcode == 0xa || opcode == 0xb) { 13060 continue; 13061 } 13062 13063 /* Accumulating op: handle accumulate step */ 13064 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13065 13066 switch (opcode) { 13067 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13068 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13069 break; 13070 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13071 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13072 break; 13073 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13074 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13075 /* fall through */ 13076 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13077 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13078 tcg_res[pass], 13079 tcg_passres); 13080 break; 13081 default: 13082 g_assert_not_reached(); 13083 } 13084 } 13085 13086 clear_vec_high(s, !is_scalar, rd); 13087 } else { 13088 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13089 13090 assert(size == 1); 13091 read_vec_element_i32(s, tcg_idx, rm, index, size); 13092 13093 if (!is_scalar) { 13094 /* The simplest way to handle the 16x16 indexed ops is to 13095 * duplicate the index into both halves of the 32 bit tcg_idx 13096 * and then use the usual Neon helpers. 13097 */ 13098 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13099 } 13100 13101 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13102 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13103 TCGv_i64 tcg_passres; 13104 13105 if (is_scalar) { 13106 read_vec_element_i32(s, tcg_op, rn, pass, size); 13107 } else { 13108 read_vec_element_i32(s, tcg_op, rn, 13109 pass + (is_q * 2), MO_32); 13110 } 13111 13112 tcg_res[pass] = tcg_temp_new_i64(); 13113 13114 if (opcode == 0xa || opcode == 0xb) { 13115 /* Non-accumulating ops */ 13116 tcg_passres = tcg_res[pass]; 13117 } else { 13118 tcg_passres = tcg_temp_new_i64(); 13119 } 13120 13121 if (memop & MO_SIGN) { 13122 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13123 } else { 13124 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13125 } 13126 if (satop) { 13127 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13128 tcg_passres, tcg_passres); 13129 } 13130 13131 if (opcode == 0xa || opcode == 0xb) { 13132 continue; 13133 } 13134 13135 /* Accumulating op: handle accumulate step */ 13136 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13137 13138 switch (opcode) { 13139 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13140 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13141 tcg_passres); 13142 break; 13143 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13144 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13145 tcg_passres); 13146 break; 13147 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13148 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13149 /* fall through */ 13150 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13151 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13152 tcg_res[pass], 13153 tcg_passres); 13154 break; 13155 default: 13156 g_assert_not_reached(); 13157 } 13158 } 13159 13160 if (is_scalar) { 13161 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13162 } 13163 } 13164 13165 if (is_scalar) { 13166 tcg_res[1] = tcg_constant_i64(0); 13167 } 13168 13169 for (pass = 0; pass < 2; pass++) { 13170 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13171 } 13172 } 13173 } 13174 13175 /* C3.6 Data processing - SIMD, inc Crypto 13176 * 13177 * As the decode gets a little complex we are using a table based 13178 * approach for this part of the decode. 13179 */ 13180 static const AArch64DecodeTable data_proc_simd[] = { 13181 /* pattern , mask , fn */ 13182 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13183 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13184 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13185 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13186 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13187 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13188 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13189 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13190 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13191 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13192 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13193 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13194 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13195 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13196 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13197 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13198 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13199 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13200 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13201 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13202 { 0x00000000, 0x00000000, NULL } 13203 }; 13204 13205 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13206 { 13207 /* Note that this is called with all non-FP cases from 13208 * table C3-6 so it must UNDEF for entries not specifically 13209 * allocated to instructions in that table. 13210 */ 13211 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13212 if (fn) { 13213 fn(s, insn); 13214 } else { 13215 unallocated_encoding(s); 13216 } 13217 } 13218 13219 /* C3.6 Data processing - SIMD and floating point */ 13220 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13221 { 13222 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13223 disas_data_proc_fp(s, insn); 13224 } else { 13225 /* SIMD, including crypto */ 13226 disas_data_proc_simd(s, insn); 13227 } 13228 } 13229 13230 static bool trans_OK(DisasContext *s, arg_OK *a) 13231 { 13232 return true; 13233 } 13234 13235 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13236 { 13237 s->is_nonstreaming = true; 13238 return true; 13239 } 13240 13241 /** 13242 * is_guarded_page: 13243 * @env: The cpu environment 13244 * @s: The DisasContext 13245 * 13246 * Return true if the page is guarded. 13247 */ 13248 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13249 { 13250 uint64_t addr = s->base.pc_first; 13251 #ifdef CONFIG_USER_ONLY 13252 return page_get_flags(addr) & PAGE_BTI; 13253 #else 13254 CPUTLBEntryFull *full; 13255 void *host; 13256 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13257 int flags; 13258 13259 /* 13260 * We test this immediately after reading an insn, which means 13261 * that the TLB entry must be present and valid, and thus this 13262 * access will never raise an exception. 13263 */ 13264 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13265 false, &host, &full, 0); 13266 assert(!(flags & TLB_INVALID_MASK)); 13267 13268 return full->extra.arm.guarded; 13269 #endif 13270 } 13271 13272 /** 13273 * btype_destination_ok: 13274 * @insn: The instruction at the branch destination 13275 * @bt: SCTLR_ELx.BT 13276 * @btype: PSTATE.BTYPE, and is non-zero 13277 * 13278 * On a guarded page, there are a limited number of insns 13279 * that may be present at the branch target: 13280 * - branch target identifiers, 13281 * - paciasp, pacibsp, 13282 * - BRK insn 13283 * - HLT insn 13284 * Anything else causes a Branch Target Exception. 13285 * 13286 * Return true if the branch is compatible, false to raise BTITRAP. 13287 */ 13288 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13289 { 13290 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13291 /* HINT space */ 13292 switch (extract32(insn, 5, 7)) { 13293 case 0b011001: /* PACIASP */ 13294 case 0b011011: /* PACIBSP */ 13295 /* 13296 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13297 * with btype == 3. Otherwise all btype are ok. 13298 */ 13299 return !bt || btype != 3; 13300 case 0b100000: /* BTI */ 13301 /* Not compatible with any btype. */ 13302 return false; 13303 case 0b100010: /* BTI c */ 13304 /* Not compatible with btype == 3 */ 13305 return btype != 3; 13306 case 0b100100: /* BTI j */ 13307 /* Not compatible with btype == 2 */ 13308 return btype != 2; 13309 case 0b100110: /* BTI jc */ 13310 /* Compatible with any btype. */ 13311 return true; 13312 } 13313 } else { 13314 switch (insn & 0xffe0001fu) { 13315 case 0xd4200000u: /* BRK */ 13316 case 0xd4400000u: /* HLT */ 13317 /* Give priority to the breakpoint exception. */ 13318 return true; 13319 } 13320 } 13321 return false; 13322 } 13323 13324 /* C3.1 A64 instruction index by encoding */ 13325 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13326 { 13327 switch (extract32(insn, 25, 4)) { 13328 case 0x5: 13329 case 0xd: /* Data processing - register */ 13330 disas_data_proc_reg(s, insn); 13331 break; 13332 case 0x7: 13333 case 0xf: /* Data processing - SIMD and floating point */ 13334 disas_data_proc_simd_fp(s, insn); 13335 break; 13336 default: 13337 unallocated_encoding(s); 13338 break; 13339 } 13340 } 13341 13342 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13343 CPUState *cpu) 13344 { 13345 DisasContext *dc = container_of(dcbase, DisasContext, base); 13346 CPUARMState *env = cpu_env(cpu); 13347 ARMCPU *arm_cpu = env_archcpu(env); 13348 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13349 int bound, core_mmu_idx; 13350 13351 dc->isar = &arm_cpu->isar; 13352 dc->condjmp = 0; 13353 dc->pc_save = dc->base.pc_first; 13354 dc->aarch64 = true; 13355 dc->thumb = false; 13356 dc->sctlr_b = 0; 13357 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13358 dc->condexec_mask = 0; 13359 dc->condexec_cond = 0; 13360 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13361 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13362 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13363 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13364 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13365 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13366 #if !defined(CONFIG_USER_ONLY) 13367 dc->user = (dc->current_el == 0); 13368 #endif 13369 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13370 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13371 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13372 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13373 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13374 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13375 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13376 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13377 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13378 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13379 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13380 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13381 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13382 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13383 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13384 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13385 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13386 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13387 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13388 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13389 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13390 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13391 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13392 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13393 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13394 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13395 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13396 dc->vec_len = 0; 13397 dc->vec_stride = 0; 13398 dc->cp_regs = arm_cpu->cp_regs; 13399 dc->features = env->features; 13400 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13401 dc->gm_blocksize = arm_cpu->gm_blocksize; 13402 13403 #ifdef CONFIG_USER_ONLY 13404 /* In sve_probe_page, we assume TBI is enabled. */ 13405 tcg_debug_assert(dc->tbid & 1); 13406 #endif 13407 13408 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13409 13410 /* Single step state. The code-generation logic here is: 13411 * SS_ACTIVE == 0: 13412 * generate code with no special handling for single-stepping (except 13413 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13414 * this happens anyway because those changes are all system register or 13415 * PSTATE writes). 13416 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13417 * emit code for one insn 13418 * emit code to clear PSTATE.SS 13419 * emit code to generate software step exception for completed step 13420 * end TB (as usual for having generated an exception) 13421 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13422 * emit code to generate a software step exception 13423 * end the TB 13424 */ 13425 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13426 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13427 dc->is_ldex = false; 13428 13429 /* Bound the number of insns to execute to those left on the page. */ 13430 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13431 13432 /* If architectural single step active, limit to 1. */ 13433 if (dc->ss_active) { 13434 bound = 1; 13435 } 13436 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13437 } 13438 13439 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13440 { 13441 } 13442 13443 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13444 { 13445 DisasContext *dc = container_of(dcbase, DisasContext, base); 13446 target_ulong pc_arg = dc->base.pc_next; 13447 13448 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13449 pc_arg &= ~TARGET_PAGE_MASK; 13450 } 13451 tcg_gen_insn_start(pc_arg, 0, 0); 13452 dc->insn_start_updated = false; 13453 } 13454 13455 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13456 { 13457 DisasContext *s = container_of(dcbase, DisasContext, base); 13458 CPUARMState *env = cpu_env(cpu); 13459 uint64_t pc = s->base.pc_next; 13460 uint32_t insn; 13461 13462 /* Singlestep exceptions have the highest priority. */ 13463 if (s->ss_active && !s->pstate_ss) { 13464 /* Singlestep state is Active-pending. 13465 * If we're in this state at the start of a TB then either 13466 * a) we just took an exception to an EL which is being debugged 13467 * and this is the first insn in the exception handler 13468 * b) debug exceptions were masked and we just unmasked them 13469 * without changing EL (eg by clearing PSTATE.D) 13470 * In either case we're going to take a swstep exception in the 13471 * "did not step an insn" case, and so the syndrome ISV and EX 13472 * bits should be zero. 13473 */ 13474 assert(s->base.num_insns == 1); 13475 gen_swstep_exception(s, 0, 0); 13476 s->base.is_jmp = DISAS_NORETURN; 13477 s->base.pc_next = pc + 4; 13478 return; 13479 } 13480 13481 if (pc & 3) { 13482 /* 13483 * PC alignment fault. This has priority over the instruction abort 13484 * that we would receive from a translation fault via arm_ldl_code. 13485 * This should only be possible after an indirect branch, at the 13486 * start of the TB. 13487 */ 13488 assert(s->base.num_insns == 1); 13489 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13490 s->base.is_jmp = DISAS_NORETURN; 13491 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13492 return; 13493 } 13494 13495 s->pc_curr = pc; 13496 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13497 s->insn = insn; 13498 s->base.pc_next = pc + 4; 13499 13500 s->fp_access_checked = false; 13501 s->sve_access_checked = false; 13502 13503 if (s->pstate_il) { 13504 /* 13505 * Illegal execution state. This has priority over BTI 13506 * exceptions, but comes after instruction abort exceptions. 13507 */ 13508 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13509 return; 13510 } 13511 13512 if (dc_isar_feature(aa64_bti, s)) { 13513 if (s->base.num_insns == 1) { 13514 /* 13515 * At the first insn of the TB, compute s->guarded_page. 13516 * We delayed computing this until successfully reading 13517 * the first insn of the TB, above. This (mostly) ensures 13518 * that the softmmu tlb entry has been populated, and the 13519 * page table GP bit is available. 13520 * 13521 * Note that we need to compute this even if btype == 0, 13522 * because this value is used for BR instructions later 13523 * where ENV is not available. 13524 */ 13525 s->guarded_page = is_guarded_page(env, s); 13526 13527 /* First insn can have btype set to non-zero. */ 13528 tcg_debug_assert(s->btype >= 0); 13529 13530 /* 13531 * Note that the Branch Target Exception has fairly high 13532 * priority -- below debugging exceptions but above most 13533 * everything else. This allows us to handle this now 13534 * instead of waiting until the insn is otherwise decoded. 13535 */ 13536 if (s->btype != 0 13537 && s->guarded_page 13538 && !btype_destination_ok(insn, s->bt, s->btype)) { 13539 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13540 return; 13541 } 13542 } else { 13543 /* Not the first insn: btype must be 0. */ 13544 tcg_debug_assert(s->btype == 0); 13545 } 13546 } 13547 13548 s->is_nonstreaming = false; 13549 if (s->sme_trap_nonstreaming) { 13550 disas_sme_fa64(s, insn); 13551 } 13552 13553 if (!disas_a64(s, insn) && 13554 !disas_sme(s, insn) && 13555 !disas_sve(s, insn)) { 13556 disas_a64_legacy(s, insn); 13557 } 13558 13559 /* 13560 * After execution of most insns, btype is reset to 0. 13561 * Note that we set btype == -1 when the insn sets btype. 13562 */ 13563 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13564 reset_btype(s); 13565 } 13566 } 13567 13568 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13569 { 13570 DisasContext *dc = container_of(dcbase, DisasContext, base); 13571 13572 if (unlikely(dc->ss_active)) { 13573 /* Note that this means single stepping WFI doesn't halt the CPU. 13574 * For conditional branch insns this is harmless unreachable code as 13575 * gen_goto_tb() has already handled emitting the debug exception 13576 * (and thus a tb-jump is not possible when singlestepping). 13577 */ 13578 switch (dc->base.is_jmp) { 13579 default: 13580 gen_a64_update_pc(dc, 4); 13581 /* fall through */ 13582 case DISAS_EXIT: 13583 case DISAS_JUMP: 13584 gen_step_complete_exception(dc); 13585 break; 13586 case DISAS_NORETURN: 13587 break; 13588 } 13589 } else { 13590 switch (dc->base.is_jmp) { 13591 case DISAS_NEXT: 13592 case DISAS_TOO_MANY: 13593 gen_goto_tb(dc, 1, 4); 13594 break; 13595 default: 13596 case DISAS_UPDATE_EXIT: 13597 gen_a64_update_pc(dc, 4); 13598 /* fall through */ 13599 case DISAS_EXIT: 13600 tcg_gen_exit_tb(NULL, 0); 13601 break; 13602 case DISAS_UPDATE_NOCHAIN: 13603 gen_a64_update_pc(dc, 4); 13604 /* fall through */ 13605 case DISAS_JUMP: 13606 tcg_gen_lookup_and_goto_ptr(); 13607 break; 13608 case DISAS_NORETURN: 13609 case DISAS_SWI: 13610 break; 13611 case DISAS_WFE: 13612 gen_a64_update_pc(dc, 4); 13613 gen_helper_wfe(tcg_env); 13614 break; 13615 case DISAS_YIELD: 13616 gen_a64_update_pc(dc, 4); 13617 gen_helper_yield(tcg_env); 13618 break; 13619 case DISAS_WFI: 13620 /* 13621 * This is a special case because we don't want to just halt 13622 * the CPU if trying to debug across a WFI. 13623 */ 13624 gen_a64_update_pc(dc, 4); 13625 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13626 /* 13627 * The helper doesn't necessarily throw an exception, but we 13628 * must go back to the main loop to check for interrupts anyway. 13629 */ 13630 tcg_gen_exit_tb(NULL, 0); 13631 break; 13632 } 13633 } 13634 } 13635 13636 const TranslatorOps aarch64_translator_ops = { 13637 .init_disas_context = aarch64_tr_init_disas_context, 13638 .tb_start = aarch64_tr_tb_start, 13639 .insn_start = aarch64_tr_insn_start, 13640 .translate_insn = aarch64_tr_translate_insn, 13641 .tb_stop = aarch64_tr_tb_stop, 13642 }; 13643