xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision a13f9fb5)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1356 {
1357     if (!a->q && a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 /*
1367  * This utility function is for doing register extension with an
1368  * optional shift. You will likely want to pass a temporary for the
1369  * destination register. See DecodeRegExtend() in the ARM ARM.
1370  */
1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1372                               int option, unsigned int shift)
1373 {
1374     int extsize = extract32(option, 0, 2);
1375     bool is_signed = extract32(option, 2, 1);
1376 
1377     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1378     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1379 }
1380 
1381 static inline void gen_check_sp_alignment(DisasContext *s)
1382 {
1383     /* The AArch64 architecture mandates that (if enabled via PSTATE
1384      * or SCTLR bits) there is a check that SP is 16-aligned on every
1385      * SP-relative load or store (with an exception generated if it is not).
1386      * In line with general QEMU practice regarding misaligned accesses,
1387      * we omit these checks for the sake of guest program performance.
1388      * This function is provided as a hook so we can more easily add these
1389      * checks in future (possibly as a "favour catching guest program bugs
1390      * over speed" user selectable option).
1391      */
1392 }
1393 
1394 /*
1395  * This provides a simple table based table lookup decoder. It is
1396  * intended to be used when the relevant bits for decode are too
1397  * awkwardly placed and switch/if based logic would be confusing and
1398  * deeply nested. Since it's a linear search through the table, tables
1399  * should be kept small.
1400  *
1401  * It returns the first handler where insn & mask == pattern, or
1402  * NULL if there is no match.
1403  * The table is terminated by an empty mask (i.e. 0)
1404  */
1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1406                                                uint32_t insn)
1407 {
1408     const AArch64DecodeTable *tptr = table;
1409 
1410     while (tptr->mask) {
1411         if ((insn & tptr->mask) == tptr->pattern) {
1412             return tptr->disas_fn;
1413         }
1414         tptr++;
1415     }
1416     return NULL;
1417 }
1418 
1419 /*
1420  * The instruction disassembly implemented here matches
1421  * the instruction encoding classifications in chapter C4
1422  * of the ARM Architecture Reference Manual (DDI0487B_a);
1423  * classification names and decode diagrams here should generally
1424  * match up with those in the manual.
1425  */
1426 
1427 static bool trans_B(DisasContext *s, arg_i *a)
1428 {
1429     reset_btype(s);
1430     gen_goto_tb(s, 0, a->imm);
1431     return true;
1432 }
1433 
1434 static bool trans_BL(DisasContext *s, arg_i *a)
1435 {
1436     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1437     reset_btype(s);
1438     gen_goto_tb(s, 0, a->imm);
1439     return true;
1440 }
1441 
1442 
1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1444 {
1445     DisasLabel match;
1446     TCGv_i64 tcg_cmp;
1447 
1448     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1449     reset_btype(s);
1450 
1451     match = gen_disas_label(s);
1452     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1453                         tcg_cmp, 0, match.label);
1454     gen_goto_tb(s, 0, 4);
1455     set_disas_label(s, match);
1456     gen_goto_tb(s, 1, a->imm);
1457     return true;
1458 }
1459 
1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1461 {
1462     DisasLabel match;
1463     TCGv_i64 tcg_cmp;
1464 
1465     tcg_cmp = tcg_temp_new_i64();
1466     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1467 
1468     reset_btype(s);
1469 
1470     match = gen_disas_label(s);
1471     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1472                         tcg_cmp, 0, match.label);
1473     gen_goto_tb(s, 0, 4);
1474     set_disas_label(s, match);
1475     gen_goto_tb(s, 1, a->imm);
1476     return true;
1477 }
1478 
1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1480 {
1481     /* BC.cond is only present with FEAT_HBC */
1482     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1483         return false;
1484     }
1485     reset_btype(s);
1486     if (a->cond < 0x0e) {
1487         /* genuinely conditional branches */
1488         DisasLabel match = gen_disas_label(s);
1489         arm_gen_test_cc(a->cond, match.label);
1490         gen_goto_tb(s, 0, 4);
1491         set_disas_label(s, match);
1492         gen_goto_tb(s, 1, a->imm);
1493     } else {
1494         /* 0xe and 0xf are both "always" conditions */
1495         gen_goto_tb(s, 0, a->imm);
1496     }
1497     return true;
1498 }
1499 
1500 static void set_btype_for_br(DisasContext *s, int rn)
1501 {
1502     if (dc_isar_feature(aa64_bti, s)) {
1503         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1504         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1505     }
1506 }
1507 
1508 static void set_btype_for_blr(DisasContext *s)
1509 {
1510     if (dc_isar_feature(aa64_bti, s)) {
1511         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1512         set_btype(s, 2);
1513     }
1514 }
1515 
1516 static bool trans_BR(DisasContext *s, arg_r *a)
1517 {
1518     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1519     set_btype_for_br(s, a->rn);
1520     s->base.is_jmp = DISAS_JUMP;
1521     return true;
1522 }
1523 
1524 static bool trans_BLR(DisasContext *s, arg_r *a)
1525 {
1526     TCGv_i64 dst = cpu_reg(s, a->rn);
1527     TCGv_i64 lr = cpu_reg(s, 30);
1528     if (dst == lr) {
1529         TCGv_i64 tmp = tcg_temp_new_i64();
1530         tcg_gen_mov_i64(tmp, dst);
1531         dst = tmp;
1532     }
1533     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1534     gen_a64_set_pc(s, dst);
1535     set_btype_for_blr(s);
1536     s->base.is_jmp = DISAS_JUMP;
1537     return true;
1538 }
1539 
1540 static bool trans_RET(DisasContext *s, arg_r *a)
1541 {
1542     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1543     s->base.is_jmp = DISAS_JUMP;
1544     return true;
1545 }
1546 
1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1548                                    TCGv_i64 modifier, bool use_key_a)
1549 {
1550     TCGv_i64 truedst;
1551     /*
1552      * Return the branch target for a BRAA/RETA/etc, which is either
1553      * just the destination dst, or that value with the pauth check
1554      * done and the code removed from the high bits.
1555      */
1556     if (!s->pauth_active) {
1557         return dst;
1558     }
1559 
1560     truedst = tcg_temp_new_i64();
1561     if (use_key_a) {
1562         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1563     } else {
1564         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1565     }
1566     return truedst;
1567 }
1568 
1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1570 {
1571     TCGv_i64 dst;
1572 
1573     if (!dc_isar_feature(aa64_pauth, s)) {
1574         return false;
1575     }
1576 
1577     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1578     gen_a64_set_pc(s, dst);
1579     set_btype_for_br(s, a->rn);
1580     s->base.is_jmp = DISAS_JUMP;
1581     return true;
1582 }
1583 
1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1585 {
1586     TCGv_i64 dst, lr;
1587 
1588     if (!dc_isar_feature(aa64_pauth, s)) {
1589         return false;
1590     }
1591 
1592     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1593     lr = cpu_reg(s, 30);
1594     if (dst == lr) {
1595         TCGv_i64 tmp = tcg_temp_new_i64();
1596         tcg_gen_mov_i64(tmp, dst);
1597         dst = tmp;
1598     }
1599     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1600     gen_a64_set_pc(s, dst);
1601     set_btype_for_blr(s);
1602     s->base.is_jmp = DISAS_JUMP;
1603     return true;
1604 }
1605 
1606 static bool trans_RETA(DisasContext *s, arg_reta *a)
1607 {
1608     TCGv_i64 dst;
1609 
1610     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1611     gen_a64_set_pc(s, dst);
1612     s->base.is_jmp = DISAS_JUMP;
1613     return true;
1614 }
1615 
1616 static bool trans_BRA(DisasContext *s, arg_bra *a)
1617 {
1618     TCGv_i64 dst;
1619 
1620     if (!dc_isar_feature(aa64_pauth, s)) {
1621         return false;
1622     }
1623     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1624     gen_a64_set_pc(s, dst);
1625     set_btype_for_br(s, a->rn);
1626     s->base.is_jmp = DISAS_JUMP;
1627     return true;
1628 }
1629 
1630 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1631 {
1632     TCGv_i64 dst, lr;
1633 
1634     if (!dc_isar_feature(aa64_pauth, s)) {
1635         return false;
1636     }
1637     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1638     lr = cpu_reg(s, 30);
1639     if (dst == lr) {
1640         TCGv_i64 tmp = tcg_temp_new_i64();
1641         tcg_gen_mov_i64(tmp, dst);
1642         dst = tmp;
1643     }
1644     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1645     gen_a64_set_pc(s, dst);
1646     set_btype_for_blr(s);
1647     s->base.is_jmp = DISAS_JUMP;
1648     return true;
1649 }
1650 
1651 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1652 {
1653     TCGv_i64 dst;
1654 
1655     if (s->current_el == 0) {
1656         return false;
1657     }
1658     if (s->trap_eret) {
1659         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1660         return true;
1661     }
1662     dst = tcg_temp_new_i64();
1663     tcg_gen_ld_i64(dst, tcg_env,
1664                    offsetof(CPUARMState, elr_el[s->current_el]));
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(tcg_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1675 {
1676     TCGv_i64 dst;
1677 
1678     if (!dc_isar_feature(aa64_pauth, s)) {
1679         return false;
1680     }
1681     if (s->current_el == 0) {
1682         return false;
1683     }
1684     /* The FGT trap takes precedence over an auth trap. */
1685     if (s->trap_eret) {
1686         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1687         return true;
1688     }
1689     dst = tcg_temp_new_i64();
1690     tcg_gen_ld_i64(dst, tcg_env,
1691                    offsetof(CPUARMState, elr_el[s->current_el]));
1692 
1693     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1694 
1695     translator_io_start(&s->base);
1696 
1697     gen_helper_exception_return(tcg_env, dst);
1698     /* Must exit loop to check un-masked IRQs */
1699     s->base.is_jmp = DISAS_EXIT;
1700     return true;
1701 }
1702 
1703 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1704 {
1705     return true;
1706 }
1707 
1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1709 {
1710     /*
1711      * When running in MTTCG we don't generate jumps to the yield and
1712      * WFE helpers as it won't affect the scheduling of other vCPUs.
1713      * If we wanted to more completely model WFE/SEV so we don't busy
1714      * spin unnecessarily we would need to do something more involved.
1715      */
1716     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1717         s->base.is_jmp = DISAS_YIELD;
1718     }
1719     return true;
1720 }
1721 
1722 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1723 {
1724     s->base.is_jmp = DISAS_WFI;
1725     return true;
1726 }
1727 
1728 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1729 {
1730     /*
1731      * When running in MTTCG we don't generate jumps to the yield and
1732      * WFE helpers as it won't affect the scheduling of other vCPUs.
1733      * If we wanted to more completely model WFE/SEV so we don't busy
1734      * spin unnecessarily we would need to do something more involved.
1735      */
1736     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1737         s->base.is_jmp = DISAS_WFE;
1738     }
1739     return true;
1740 }
1741 
1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1743 {
1744     if (s->pauth_active) {
1745         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1746     }
1747     return true;
1748 }
1749 
1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1751 {
1752     if (s->pauth_active) {
1753         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1754     }
1755     return true;
1756 }
1757 
1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1759 {
1760     if (s->pauth_active) {
1761         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1762     }
1763     return true;
1764 }
1765 
1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1767 {
1768     if (s->pauth_active) {
1769         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1770     }
1771     return true;
1772 }
1773 
1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1775 {
1776     if (s->pauth_active) {
1777         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1778     }
1779     return true;
1780 }
1781 
1782 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1783 {
1784     /* Without RAS, we must implement this as NOP. */
1785     if (dc_isar_feature(aa64_ras, s)) {
1786         /*
1787          * QEMU does not have a source of physical SErrors,
1788          * so we are only concerned with virtual SErrors.
1789          * The pseudocode in the ARM for this case is
1790          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1791          *      AArch64.vESBOperation();
1792          * Most of the condition can be evaluated at translation time.
1793          * Test for EL2 present, and defer test for SEL2 to runtime.
1794          */
1795         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1796             gen_helper_vesb(tcg_env);
1797         }
1798     }
1799     return true;
1800 }
1801 
1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1803 {
1804     if (s->pauth_active) {
1805         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1806     }
1807     return true;
1808 }
1809 
1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1811 {
1812     if (s->pauth_active) {
1813         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1814     }
1815     return true;
1816 }
1817 
1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1819 {
1820     if (s->pauth_active) {
1821         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1822     }
1823     return true;
1824 }
1825 
1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1827 {
1828     if (s->pauth_active) {
1829         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1830     }
1831     return true;
1832 }
1833 
1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1835 {
1836     if (s->pauth_active) {
1837         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1838     }
1839     return true;
1840 }
1841 
1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1843 {
1844     if (s->pauth_active) {
1845         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1846     }
1847     return true;
1848 }
1849 
1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1851 {
1852     if (s->pauth_active) {
1853         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854     }
1855     return true;
1856 }
1857 
1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1859 {
1860     if (s->pauth_active) {
1861         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862     }
1863     return true;
1864 }
1865 
1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1867 {
1868     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1869     return true;
1870 }
1871 
1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1873 {
1874     /* We handle DSB and DMB the same way */
1875     TCGBar bar;
1876 
1877     switch (a->types) {
1878     case 1: /* MBReqTypes_Reads */
1879         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1880         break;
1881     case 2: /* MBReqTypes_Writes */
1882         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1883         break;
1884     default: /* MBReqTypes_All */
1885         bar = TCG_BAR_SC | TCG_MO_ALL;
1886         break;
1887     }
1888     tcg_gen_mb(bar);
1889     return true;
1890 }
1891 
1892 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1893 {
1894     /*
1895      * We need to break the TB after this insn to execute
1896      * self-modifying code correctly and also to take
1897      * any pending interrupts immediately.
1898      */
1899     reset_btype(s);
1900     gen_goto_tb(s, 0, 4);
1901     return true;
1902 }
1903 
1904 static bool trans_SB(DisasContext *s, arg_SB *a)
1905 {
1906     if (!dc_isar_feature(aa64_sb, s)) {
1907         return false;
1908     }
1909     /*
1910      * TODO: There is no speculation barrier opcode for TCG;
1911      * MB and end the TB instead.
1912      */
1913     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1914     gen_goto_tb(s, 0, 4);
1915     return true;
1916 }
1917 
1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1919 {
1920     if (!dc_isar_feature(aa64_condm_4, s)) {
1921         return false;
1922     }
1923     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1924     return true;
1925 }
1926 
1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1928 {
1929     TCGv_i32 z;
1930 
1931     if (!dc_isar_feature(aa64_condm_5, s)) {
1932         return false;
1933     }
1934 
1935     z = tcg_temp_new_i32();
1936 
1937     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1938 
1939     /*
1940      * (!C & !Z) << 31
1941      * (!(C | Z)) << 31
1942      * ~((C | Z) << 31)
1943      * ~-(C | Z)
1944      * (C | Z) - 1
1945      */
1946     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1947     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1948 
1949     /* !(Z & C) */
1950     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1951     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1952 
1953     /* (!C & Z) << 31 -> -(Z & ~C) */
1954     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1955     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1956 
1957     /* C | Z */
1958     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1959 
1960     return true;
1961 }
1962 
1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1964 {
1965     if (!dc_isar_feature(aa64_condm_5, s)) {
1966         return false;
1967     }
1968 
1969     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1970     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1971 
1972     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1973     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1974 
1975     tcg_gen_movi_i32(cpu_NF, 0);
1976     tcg_gen_movi_i32(cpu_VF, 0);
1977 
1978     return true;
1979 }
1980 
1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1982 {
1983     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1984         return false;
1985     }
1986     if (a->imm & 1) {
1987         set_pstate_bits(PSTATE_UAO);
1988     } else {
1989         clear_pstate_bits(PSTATE_UAO);
1990     }
1991     gen_rebuild_hflags(s);
1992     s->base.is_jmp = DISAS_TOO_MANY;
1993     return true;
1994 }
1995 
1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1997 {
1998     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1999         return false;
2000     }
2001     if (a->imm & 1) {
2002         set_pstate_bits(PSTATE_PAN);
2003     } else {
2004         clear_pstate_bits(PSTATE_PAN);
2005     }
2006     gen_rebuild_hflags(s);
2007     s->base.is_jmp = DISAS_TOO_MANY;
2008     return true;
2009 }
2010 
2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2012 {
2013     if (s->current_el == 0) {
2014         return false;
2015     }
2016     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2017     s->base.is_jmp = DISAS_TOO_MANY;
2018     return true;
2019 }
2020 
2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2022 {
2023     if (!dc_isar_feature(aa64_ssbs, s)) {
2024         return false;
2025     }
2026     if (a->imm & 1) {
2027         set_pstate_bits(PSTATE_SSBS);
2028     } else {
2029         clear_pstate_bits(PSTATE_SSBS);
2030     }
2031     /* Don't need to rebuild hflags since SSBS is a nop */
2032     s->base.is_jmp = DISAS_TOO_MANY;
2033     return true;
2034 }
2035 
2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2037 {
2038     if (!dc_isar_feature(aa64_dit, s)) {
2039         return false;
2040     }
2041     if (a->imm & 1) {
2042         set_pstate_bits(PSTATE_DIT);
2043     } else {
2044         clear_pstate_bits(PSTATE_DIT);
2045     }
2046     /* There's no need to rebuild hflags because DIT is a nop */
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2052 {
2053     if (dc_isar_feature(aa64_mte, s)) {
2054         /* Full MTE is enabled -- set the TCO bit as directed. */
2055         if (a->imm & 1) {
2056             set_pstate_bits(PSTATE_TCO);
2057         } else {
2058             clear_pstate_bits(PSTATE_TCO);
2059         }
2060         gen_rebuild_hflags(s);
2061         /* Many factors, including TCO, go into MTE_ACTIVE. */
2062         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2063         return true;
2064     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2065         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2066         return true;
2067     } else {
2068         /* Insn not present */
2069         return false;
2070     }
2071 }
2072 
2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2074 {
2075     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2076     s->base.is_jmp = DISAS_TOO_MANY;
2077     return true;
2078 }
2079 
2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2081 {
2082     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2083     /* Exit the cpu loop to re-evaluate pending IRQs. */
2084     s->base.is_jmp = DISAS_UPDATE_EXIT;
2085     return true;
2086 }
2087 
2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2089 {
2090     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2091         return false;
2092     }
2093 
2094     if (a->imm == 0) {
2095         clear_pstate_bits(PSTATE_ALLINT);
2096     } else if (s->current_el > 1) {
2097         set_pstate_bits(PSTATE_ALLINT);
2098     } else {
2099         gen_helper_msr_set_allint_el1(tcg_env);
2100     }
2101 
2102     /* Exit the cpu loop to re-evaluate pending IRQs. */
2103     s->base.is_jmp = DISAS_UPDATE_EXIT;
2104     return true;
2105 }
2106 
2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2108 {
2109     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2110         return false;
2111     }
2112     if (sme_access_check(s)) {
2113         int old = s->pstate_sm | (s->pstate_za << 1);
2114         int new = a->imm * 3;
2115 
2116         if ((old ^ new) & a->mask) {
2117             /* At least one bit changes. */
2118             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2119                                 tcg_constant_i32(a->mask));
2120             s->base.is_jmp = DISAS_TOO_MANY;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2127 {
2128     TCGv_i32 tmp = tcg_temp_new_i32();
2129     TCGv_i32 nzcv = tcg_temp_new_i32();
2130 
2131     /* build bit 31, N */
2132     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2133     /* build bit 30, Z */
2134     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2135     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2136     /* build bit 29, C */
2137     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2138     /* build bit 28, V */
2139     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2140     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2141     /* generate result */
2142     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2143 }
2144 
2145 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2146 {
2147     TCGv_i32 nzcv = tcg_temp_new_i32();
2148 
2149     /* take NZCV from R[t] */
2150     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2151 
2152     /* bit 31, N */
2153     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2154     /* bit 30, Z */
2155     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2156     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2157     /* bit 29, C */
2158     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2159     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2160     /* bit 28, V */
2161     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2162     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2163 }
2164 
2165 static void gen_sysreg_undef(DisasContext *s, bool isread,
2166                              uint8_t op0, uint8_t op1, uint8_t op2,
2167                              uint8_t crn, uint8_t crm, uint8_t rt)
2168 {
2169     /*
2170      * Generate code to emit an UNDEF with correct syndrome
2171      * information for a failed system register access.
2172      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2173      * but if FEAT_IDST is implemented then read accesses to registers
2174      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2175      * syndrome.
2176      */
2177     uint32_t syndrome;
2178 
2179     if (isread && dc_isar_feature(aa64_ids, s) &&
2180         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182     } else {
2183         syndrome = syn_uncategorized();
2184     }
2185     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2186 }
2187 
2188 /* MRS - move from system register
2189  * MSR (register) - move to system register
2190  * SYS
2191  * SYSL
2192  * These are all essentially the same insn in 'read' and 'write'
2193  * versions, with varying op0 fields.
2194  */
2195 static void handle_sys(DisasContext *s, bool isread,
2196                        unsigned int op0, unsigned int op1, unsigned int op2,
2197                        unsigned int crn, unsigned int crm, unsigned int rt)
2198 {
2199     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2200                                       crn, crm, op0, op1, op2);
2201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2202     bool need_exit_tb = false;
2203     bool nv_trap_to_el2 = false;
2204     bool nv_redirect_reg = false;
2205     bool skip_fp_access_checks = false;
2206     bool nv2_mem_redirect = false;
2207     TCGv_ptr tcg_ri = NULL;
2208     TCGv_i64 tcg_rt;
2209     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2210 
2211     if (crn == 11 || crn == 15) {
2212         /*
2213          * Check for TIDCP trap, which must take precedence over
2214          * the UNDEF for "no such register" etc.
2215          */
2216         switch (s->current_el) {
2217         case 0:
2218             if (dc_isar_feature(aa64_tidcp1, s)) {
2219                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2220             }
2221             break;
2222         case 1:
2223             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2224             break;
2225         }
2226     }
2227 
2228     if (!ri) {
2229         /* Unknown register; this might be a guest error or a QEMU
2230          * unimplemented feature.
2231          */
2232         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2233                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2234                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2235         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2236         return;
2237     }
2238 
2239     if (s->nv2 && ri->nv2_redirect_offset) {
2240         /*
2241          * Some registers always redirect to memory; some only do so if
2242          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2243          * pairs which share an offset; see the table in R_CSRPQ).
2244          */
2245         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2246             nv2_mem_redirect = s->nv1;
2247         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2248             nv2_mem_redirect = !s->nv1;
2249         } else {
2250             nv2_mem_redirect = true;
2251         }
2252     }
2253 
2254     /* Check access permissions */
2255     if (!cp_access_ok(s->current_el, ri, isread)) {
2256         /*
2257          * FEAT_NV/NV2 handling does not do the usual FP access checks
2258          * for registers only accessible at EL2 (though it *does* do them
2259          * for registers accessible at EL1).
2260          */
2261         skip_fp_access_checks = true;
2262         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2263             /*
2264              * This is one of the few EL2 registers which should redirect
2265              * to the equivalent EL1 register. We do that after running
2266              * the EL2 register's accessfn.
2267              */
2268             nv_redirect_reg = true;
2269             assert(!nv2_mem_redirect);
2270         } else if (nv2_mem_redirect) {
2271             /*
2272              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2273              * UNDEF to EL1.
2274              */
2275         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2276             /*
2277              * This register / instruction exists and is an EL2 register, so
2278              * we must trap to EL2 if accessed in nested virtualization EL1
2279              * instead of UNDEFing. We'll do that after the usual access checks.
2280              * (This makes a difference only for a couple of registers like
2281              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2282              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2283              * an accessfn which does nothing when called from EL1, because
2284              * the trap-to-EL3 controls which would apply to that register
2285              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2286              */
2287             nv_trap_to_el2 = true;
2288         } else {
2289             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290             return;
2291         }
2292     }
2293 
2294     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2295         /* Emit code to perform further access permissions checks at
2296          * runtime; this may result in an exception.
2297          */
2298         gen_a64_update_pc(s, 0);
2299         tcg_ri = tcg_temp_new_ptr();
2300         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2301                                        tcg_constant_i32(key),
2302                                        tcg_constant_i32(syndrome),
2303                                        tcg_constant_i32(isread));
2304     } else if (ri->type & ARM_CP_RAISES_EXC) {
2305         /*
2306          * The readfn or writefn might raise an exception;
2307          * synchronize the CPU state in case it does.
2308          */
2309         gen_a64_update_pc(s, 0);
2310     }
2311 
2312     if (!skip_fp_access_checks) {
2313         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2314             return;
2315         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2316             return;
2317         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2318             return;
2319         }
2320     }
2321 
2322     if (nv_trap_to_el2) {
2323         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2324         return;
2325     }
2326 
2327     if (nv_redirect_reg) {
2328         /*
2329          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2330          * Conveniently in all cases the encoding of the EL1 register is
2331          * identical to the EL2 register except that opc1 is 0.
2332          * Get the reginfo for the EL1 register to use for the actual access.
2333          * We don't use the EL1 register's access function, and
2334          * fine-grained-traps on EL1 also do not apply here.
2335          */
2336         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2337                                  crn, crm, op0, 0, op2);
2338         ri = get_arm_cp_reginfo(s->cp_regs, key);
2339         assert(ri);
2340         assert(cp_access_ok(s->current_el, ri, isread));
2341         /*
2342          * We might not have done an update_pc earlier, so check we don't
2343          * need it. We could support this in future if necessary.
2344          */
2345         assert(!(ri->type & ARM_CP_RAISES_EXC));
2346     }
2347 
2348     if (nv2_mem_redirect) {
2349         /*
2350          * This system register is being redirected into an EL2 memory access.
2351          * This means it is not an IO operation, doesn't change hflags,
2352          * and need not end the TB, because it has no side effects.
2353          *
2354          * The access is 64-bit single copy atomic, guaranteed aligned because
2355          * of the definition of VCNR_EL2. Its endianness depends on
2356          * SCTLR_EL2.EE, not on the data endianness of EL1.
2357          * It is done under either the EL2 translation regime or the EL2&0
2358          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2359          * PSTATE.PAN is 0.
2360          */
2361         TCGv_i64 ptr = tcg_temp_new_i64();
2362         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2363         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2364         int memidx = arm_to_core_mmu_idx(armmemidx);
2365         uint32_t syn;
2366 
2367         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2368 
2369         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2370         tcg_gen_addi_i64(ptr, ptr,
2371                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2372         tcg_rt = cpu_reg(s, rt);
2373 
2374         syn = syn_data_abort_vncr(0, !isread, 0);
2375         disas_set_insn_syndrome(s, syn);
2376         if (isread) {
2377             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2378         } else {
2379             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2380         }
2381         return;
2382     }
2383 
2384     /* Handle special cases first */
2385     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2386     case 0:
2387         break;
2388     case ARM_CP_NOP:
2389         return;
2390     case ARM_CP_NZCV:
2391         tcg_rt = cpu_reg(s, rt);
2392         if (isread) {
2393             gen_get_nzcv(tcg_rt);
2394         } else {
2395             gen_set_nzcv(tcg_rt);
2396         }
2397         return;
2398     case ARM_CP_CURRENTEL:
2399     {
2400         /*
2401          * Reads as current EL value from pstate, which is
2402          * guaranteed to be constant by the tb flags.
2403          * For nested virt we should report EL2.
2404          */
2405         int el = s->nv ? 2 : s->current_el;
2406         tcg_rt = cpu_reg(s, rt);
2407         tcg_gen_movi_i64(tcg_rt, el << 2);
2408         return;
2409     }
2410     case ARM_CP_DC_ZVA:
2411         /* Writes clear the aligned block of memory which rt points into. */
2412         if (s->mte_active[0]) {
2413             int desc = 0;
2414 
2415             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2416             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2417             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2418 
2419             tcg_rt = tcg_temp_new_i64();
2420             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2421                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2422         } else {
2423             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2424         }
2425         gen_helper_dc_zva(tcg_env, tcg_rt);
2426         return;
2427     case ARM_CP_DC_GVA:
2428         {
2429             TCGv_i64 clean_addr, tag;
2430 
2431             /*
2432              * DC_GVA, like DC_ZVA, requires that we supply the original
2433              * pointer for an invalid page.  Probe that address first.
2434              */
2435             tcg_rt = cpu_reg(s, rt);
2436             clean_addr = clean_data_tbi(s, tcg_rt);
2437             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2438 
2439             if (s->ata[0]) {
2440                 /* Extract the tag from the register to match STZGM.  */
2441                 tag = tcg_temp_new_i64();
2442                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2443                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2444             }
2445         }
2446         return;
2447     case ARM_CP_DC_GZVA:
2448         {
2449             TCGv_i64 clean_addr, tag;
2450 
2451             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2452             tcg_rt = cpu_reg(s, rt);
2453             clean_addr = clean_data_tbi(s, tcg_rt);
2454             gen_helper_dc_zva(tcg_env, clean_addr);
2455 
2456             if (s->ata[0]) {
2457                 /* Extract the tag from the register to match STZGM.  */
2458                 tag = tcg_temp_new_i64();
2459                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2460                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2461             }
2462         }
2463         return;
2464     default:
2465         g_assert_not_reached();
2466     }
2467 
2468     if (ri->type & ARM_CP_IO) {
2469         /* I/O operations must end the TB here (whether read or write) */
2470         need_exit_tb = translator_io_start(&s->base);
2471     }
2472 
2473     tcg_rt = cpu_reg(s, rt);
2474 
2475     if (isread) {
2476         if (ri->type & ARM_CP_CONST) {
2477             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2478         } else if (ri->readfn) {
2479             if (!tcg_ri) {
2480                 tcg_ri = gen_lookup_cp_reg(key);
2481             }
2482             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2483         } else {
2484             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2485         }
2486     } else {
2487         if (ri->type & ARM_CP_CONST) {
2488             /* If not forbidden by access permissions, treat as WI */
2489             return;
2490         } else if (ri->writefn) {
2491             if (!tcg_ri) {
2492                 tcg_ri = gen_lookup_cp_reg(key);
2493             }
2494             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2495         } else {
2496             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497         }
2498     }
2499 
2500     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2501         /*
2502          * A write to any coprocessor register that ends a TB
2503          * must rebuild the hflags for the next TB.
2504          */
2505         gen_rebuild_hflags(s);
2506         /*
2507          * We default to ending the TB on a coprocessor register write,
2508          * but allow this to be suppressed by the register definition
2509          * (usually only necessary to work around guest bugs).
2510          */
2511         need_exit_tb = true;
2512     }
2513     if (need_exit_tb) {
2514         s->base.is_jmp = DISAS_UPDATE_EXIT;
2515     }
2516 }
2517 
2518 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2519 {
2520     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2521     return true;
2522 }
2523 
2524 static bool trans_SVC(DisasContext *s, arg_i *a)
2525 {
2526     /*
2527      * For SVC, HVC and SMC we advance the single-step state
2528      * machine before taking the exception. This is architecturally
2529      * mandated, to ensure that single-stepping a system call
2530      * instruction works properly.
2531      */
2532     uint32_t syndrome = syn_aa64_svc(a->imm);
2533     if (s->fgt_svc) {
2534         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2535         return true;
2536     }
2537     gen_ss_advance(s);
2538     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2539     return true;
2540 }
2541 
2542 static bool trans_HVC(DisasContext *s, arg_i *a)
2543 {
2544     int target_el = s->current_el == 3 ? 3 : 2;
2545 
2546     if (s->current_el == 0) {
2547         unallocated_encoding(s);
2548         return true;
2549     }
2550     /*
2551      * The pre HVC helper handles cases when HVC gets trapped
2552      * as an undefined insn by runtime configuration.
2553      */
2554     gen_a64_update_pc(s, 0);
2555     gen_helper_pre_hvc(tcg_env);
2556     /* Architecture requires ss advance before we do the actual work */
2557     gen_ss_advance(s);
2558     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2559     return true;
2560 }
2561 
2562 static bool trans_SMC(DisasContext *s, arg_i *a)
2563 {
2564     if (s->current_el == 0) {
2565         unallocated_encoding(s);
2566         return true;
2567     }
2568     gen_a64_update_pc(s, 0);
2569     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2570     /* Architecture requires ss advance before we do the actual work */
2571     gen_ss_advance(s);
2572     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2573     return true;
2574 }
2575 
2576 static bool trans_BRK(DisasContext *s, arg_i *a)
2577 {
2578     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2579     return true;
2580 }
2581 
2582 static bool trans_HLT(DisasContext *s, arg_i *a)
2583 {
2584     /*
2585      * HLT. This has two purposes.
2586      * Architecturally, it is an external halting debug instruction.
2587      * Since QEMU doesn't implement external debug, we treat this as
2588      * it is required for halting debug disabled: it will UNDEF.
2589      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2590      */
2591     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2592         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2593     } else {
2594         unallocated_encoding(s);
2595     }
2596     return true;
2597 }
2598 
2599 /*
2600  * Load/Store exclusive instructions are implemented by remembering
2601  * the value/address loaded, and seeing if these are the same
2602  * when the store is performed. This is not actually the architecturally
2603  * mandated semantics, but it works for typical guest code sequences
2604  * and avoids having to monitor regular stores.
2605  *
2606  * The store exclusive uses the atomic cmpxchg primitives to avoid
2607  * races in multi-threaded linux-user and when MTTCG softmmu is
2608  * enabled.
2609  */
2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2611                                int size, bool is_pair)
2612 {
2613     int idx = get_mem_index(s);
2614     TCGv_i64 dirty_addr, clean_addr;
2615     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2616 
2617     s->is_ldex = true;
2618     dirty_addr = cpu_reg_sp(s, rn);
2619     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2620 
2621     g_assert(size <= 3);
2622     if (is_pair) {
2623         g_assert(size >= 2);
2624         if (size == 2) {
2625             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2626             if (s->be_data == MO_LE) {
2627                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2628                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2629             } else {
2630                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2631                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2632             }
2633         } else {
2634             TCGv_i128 t16 = tcg_temp_new_i128();
2635 
2636             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2637 
2638             if (s->be_data == MO_LE) {
2639                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2640                                       cpu_exclusive_high, t16);
2641             } else {
2642                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2643                                       cpu_exclusive_val, t16);
2644             }
2645             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2646             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2647         }
2648     } else {
2649         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2650         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2651     }
2652     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2653 }
2654 
2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2656                                 int rn, int size, int is_pair)
2657 {
2658     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2659      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2660      *     [addr] = {Rt};
2661      *     if (is_pair) {
2662      *         [addr + datasize] = {Rt2};
2663      *     }
2664      *     {Rd} = 0;
2665      * } else {
2666      *     {Rd} = 1;
2667      * }
2668      * env->exclusive_addr = -1;
2669      */
2670     TCGLabel *fail_label = gen_new_label();
2671     TCGLabel *done_label = gen_new_label();
2672     TCGv_i64 tmp, clean_addr;
2673     MemOp memop;
2674 
2675     /*
2676      * FIXME: We are out of spec here.  We have recorded only the address
2677      * from load_exclusive, not the entire range, and we assume that the
2678      * size of the access on both sides match.  The architecture allows the
2679      * store to be smaller than the load, so long as the stored bytes are
2680      * within the range recorded by the load.
2681      */
2682 
2683     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2684     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2685     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2686 
2687     /*
2688      * The write, and any associated faults, only happen if the virtual
2689      * and physical addresses pass the exclusive monitor check.  These
2690      * faults are exceedingly unlikely, because normally the guest uses
2691      * the exact same address register for the load_exclusive, and we
2692      * would have recognized these faults there.
2693      *
2694      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2695      * unaligned 4-byte write within the range of an aligned 8-byte load.
2696      * With LSE2, the store would need to cross a 16-byte boundary when the
2697      * load did not, which would mean the store is outside the range
2698      * recorded for the monitor, which would have failed a corrected monitor
2699      * check above.  For now, we assume no size change and retain the
2700      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2701      *
2702      * It is possible to trigger an MTE fault, by performing the load with
2703      * a virtual address with a valid tag and performing the store with the
2704      * same virtual address and a different invalid tag.
2705      */
2706     memop = size + is_pair;
2707     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2708         memop |= MO_ALIGN;
2709     }
2710     memop = finalize_memop(s, memop);
2711     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2712 
2713     tmp = tcg_temp_new_i64();
2714     if (is_pair) {
2715         if (size == 2) {
2716             if (s->be_data == MO_LE) {
2717                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2718             } else {
2719                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2720             }
2721             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2722                                        cpu_exclusive_val, tmp,
2723                                        get_mem_index(s), memop);
2724             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2725         } else {
2726             TCGv_i128 t16 = tcg_temp_new_i128();
2727             TCGv_i128 c16 = tcg_temp_new_i128();
2728             TCGv_i64 a, b;
2729 
2730             if (s->be_data == MO_LE) {
2731                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2732                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2733                                         cpu_exclusive_high);
2734             } else {
2735                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2736                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2737                                         cpu_exclusive_val);
2738             }
2739 
2740             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2741                                         get_mem_index(s), memop);
2742 
2743             a = tcg_temp_new_i64();
2744             b = tcg_temp_new_i64();
2745             if (s->be_data == MO_LE) {
2746                 tcg_gen_extr_i128_i64(a, b, t16);
2747             } else {
2748                 tcg_gen_extr_i128_i64(b, a, t16);
2749             }
2750 
2751             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2752             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2753             tcg_gen_or_i64(tmp, a, b);
2754 
2755             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2756         }
2757     } else {
2758         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2759                                    cpu_reg(s, rt), get_mem_index(s), memop);
2760         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2761     }
2762     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2763     tcg_gen_br(done_label);
2764 
2765     gen_set_label(fail_label);
2766     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2767     gen_set_label(done_label);
2768     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2769 }
2770 
2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2772                                  int rn, int size)
2773 {
2774     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2775     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776     int memidx = get_mem_index(s);
2777     TCGv_i64 clean_addr;
2778     MemOp memop;
2779 
2780     if (rn == 31) {
2781         gen_check_sp_alignment(s);
2782     }
2783     memop = check_atomic_align(s, rn, size);
2784     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2785     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2786                                memidx, memop);
2787 }
2788 
2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2790                                       int rn, int size)
2791 {
2792     TCGv_i64 s1 = cpu_reg(s, rs);
2793     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2794     TCGv_i64 t1 = cpu_reg(s, rt);
2795     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2796     TCGv_i64 clean_addr;
2797     int memidx = get_mem_index(s);
2798     MemOp memop;
2799 
2800     if (rn == 31) {
2801         gen_check_sp_alignment(s);
2802     }
2803 
2804     /* This is a single atomic access, despite the "pair". */
2805     memop = check_atomic_align(s, rn, size + 1);
2806     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2807 
2808     if (size == 2) {
2809         TCGv_i64 cmp = tcg_temp_new_i64();
2810         TCGv_i64 val = tcg_temp_new_i64();
2811 
2812         if (s->be_data == MO_LE) {
2813             tcg_gen_concat32_i64(val, t1, t2);
2814             tcg_gen_concat32_i64(cmp, s1, s2);
2815         } else {
2816             tcg_gen_concat32_i64(val, t2, t1);
2817             tcg_gen_concat32_i64(cmp, s2, s1);
2818         }
2819 
2820         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2821 
2822         if (s->be_data == MO_LE) {
2823             tcg_gen_extr32_i64(s1, s2, cmp);
2824         } else {
2825             tcg_gen_extr32_i64(s2, s1, cmp);
2826         }
2827     } else {
2828         TCGv_i128 cmp = tcg_temp_new_i128();
2829         TCGv_i128 val = tcg_temp_new_i128();
2830 
2831         if (s->be_data == MO_LE) {
2832             tcg_gen_concat_i64_i128(val, t1, t2);
2833             tcg_gen_concat_i64_i128(cmp, s1, s2);
2834         } else {
2835             tcg_gen_concat_i64_i128(val, t2, t1);
2836             tcg_gen_concat_i64_i128(cmp, s2, s1);
2837         }
2838 
2839         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2840 
2841         if (s->be_data == MO_LE) {
2842             tcg_gen_extr_i128_i64(s1, s2, cmp);
2843         } else {
2844             tcg_gen_extr_i128_i64(s2, s1, cmp);
2845         }
2846     }
2847 }
2848 
2849 /*
2850  * Compute the ISS.SF bit for syndrome information if an exception
2851  * is taken on a load or store. This indicates whether the instruction
2852  * is accessing a 32-bit or 64-bit register. This logic is derived
2853  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2854  */
2855 static bool ldst_iss_sf(int size, bool sign, bool ext)
2856 {
2857 
2858     if (sign) {
2859         /*
2860          * Signed loads are 64 bit results if we are not going to
2861          * do a zero-extend from 32 to 64 after the load.
2862          * (For a store, sign and ext are always false.)
2863          */
2864         return !ext;
2865     } else {
2866         /* Unsigned loads/stores work at the specified size */
2867         return size == MO_64;
2868     }
2869 }
2870 
2871 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2872 {
2873     if (a->rn == 31) {
2874         gen_check_sp_alignment(s);
2875     }
2876     if (a->lasr) {
2877         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2878     }
2879     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2880     return true;
2881 }
2882 
2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2884 {
2885     if (a->rn == 31) {
2886         gen_check_sp_alignment(s);
2887     }
2888     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2889     if (a->lasr) {
2890         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2891     }
2892     return true;
2893 }
2894 
2895 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2896 {
2897     TCGv_i64 clean_addr;
2898     MemOp memop;
2899     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2900 
2901     /*
2902      * StoreLORelease is the same as Store-Release for QEMU, but
2903      * needs the feature-test.
2904      */
2905     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2906         return false;
2907     }
2908     /* Generate ISS for non-exclusive accesses including LASR.  */
2909     if (a->rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2913     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2914     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2915                                 true, a->rn != 31, memop);
2916     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2917               iss_sf, a->lasr);
2918     return true;
2919 }
2920 
2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2922 {
2923     TCGv_i64 clean_addr;
2924     MemOp memop;
2925     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2926 
2927     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2928     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2929         return false;
2930     }
2931     /* Generate ISS for non-exclusive accesses including LASR.  */
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2936     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2937                                 false, a->rn != 31, memop);
2938     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2939               a->rt, iss_sf, a->lasr);
2940     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2941     return true;
2942 }
2943 
2944 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2945 {
2946     if (a->rn == 31) {
2947         gen_check_sp_alignment(s);
2948     }
2949     if (a->lasr) {
2950         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2951     }
2952     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2953     return true;
2954 }
2955 
2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2957 {
2958     if (a->rn == 31) {
2959         gen_check_sp_alignment(s);
2960     }
2961     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2962     if (a->lasr) {
2963         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2964     }
2965     return true;
2966 }
2967 
2968 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2969 {
2970     if (!dc_isar_feature(aa64_atomics, s)) {
2971         return false;
2972     }
2973     if (((a->rt | a->rs) & 1) != 0) {
2974         return false;
2975     }
2976 
2977     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2978     return true;
2979 }
2980 
2981 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2982 {
2983     if (!dc_isar_feature(aa64_atomics, s)) {
2984         return false;
2985     }
2986     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2987     return true;
2988 }
2989 
2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2991 {
2992     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2993     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2994     TCGv_i64 clean_addr = tcg_temp_new_i64();
2995     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2996 
2997     gen_pc_plus_diff(s, clean_addr, a->imm);
2998     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2999               false, true, a->rt, iss_sf, false);
3000     return true;
3001 }
3002 
3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3004 {
3005     /* Load register (literal), vector version */
3006     TCGv_i64 clean_addr;
3007     MemOp memop;
3008 
3009     if (!fp_access_check(s)) {
3010         return true;
3011     }
3012     memop = finalize_memop_asimd(s, a->sz);
3013     clean_addr = tcg_temp_new_i64();
3014     gen_pc_plus_diff(s, clean_addr, a->imm);
3015     do_fp_ld(s, a->rt, clean_addr, memop);
3016     return true;
3017 }
3018 
3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3020                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3021                                  uint64_t offset, bool is_store, MemOp mop)
3022 {
3023     if (a->rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3028     if (!a->p) {
3029         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3030     }
3031 
3032     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3033                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3034 }
3035 
3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3037                                   TCGv_i64 dirty_addr, uint64_t offset)
3038 {
3039     if (a->w) {
3040         if (a->p) {
3041             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3042         }
3043         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3044     }
3045 }
3046 
3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3048 {
3049     uint64_t offset = a->imm << a->sz;
3050     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3051     MemOp mop = finalize_memop(s, a->sz);
3052 
3053     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3054     tcg_rt = cpu_reg(s, a->rt);
3055     tcg_rt2 = cpu_reg(s, a->rt2);
3056     /*
3057      * We built mop above for the single logical access -- rebuild it
3058      * now for the paired operation.
3059      *
3060      * With LSE2, non-sign-extending pairs are treated atomically if
3061      * aligned, and if unaligned one of the pair will be completely
3062      * within a 16-byte block and that element will be atomic.
3063      * Otherwise each element is separately atomic.
3064      * In all cases, issue one operation with the correct atomicity.
3065      */
3066     mop = a->sz + 1;
3067     if (s->align_mem) {
3068         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3069     }
3070     mop = finalize_memop_pair(s, mop);
3071     if (a->sz == 2) {
3072         TCGv_i64 tmp = tcg_temp_new_i64();
3073 
3074         if (s->be_data == MO_LE) {
3075             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3076         } else {
3077             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3078         }
3079         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3080     } else {
3081         TCGv_i128 tmp = tcg_temp_new_i128();
3082 
3083         if (s->be_data == MO_LE) {
3084             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3085         } else {
3086             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3087         }
3088         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3089     }
3090     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3091     return true;
3092 }
3093 
3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103 
3104     /*
3105      * We built mop above for the single logical access -- rebuild it
3106      * now for the paired operation.
3107      *
3108      * With LSE2, non-sign-extending pairs are treated atomically if
3109      * aligned, and if unaligned one of the pair will be completely
3110      * within a 16-byte block and that element will be atomic.
3111      * Otherwise each element is separately atomic.
3112      * In all cases, issue one operation with the correct atomicity.
3113      *
3114      * This treats sign-extending loads like zero-extending loads,
3115      * since that reuses the most code below.
3116      */
3117     mop = a->sz + 1;
3118     if (s->align_mem) {
3119         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3120     }
3121     mop = finalize_memop_pair(s, mop);
3122     if (a->sz == 2) {
3123         int o2 = s->be_data == MO_LE ? 32 : 0;
3124         int o1 = o2 ^ 32;
3125 
3126         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3127         if (a->sign) {
3128             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3129             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3130         } else {
3131             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3132             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3133         }
3134     } else {
3135         TCGv_i128 tmp = tcg_temp_new_i128();
3136 
3137         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3138         if (s->be_data == MO_LE) {
3139             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3140         } else {
3141             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3142         }
3143     }
3144     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145     return true;
3146 }
3147 
3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3149 {
3150     uint64_t offset = a->imm << a->sz;
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157 
3158     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3159     mop = finalize_memop_asimd(s, a->sz);
3160     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3161     do_fp_st(s, a->rt, clean_addr, mop);
3162     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3163     do_fp_st(s, a->rt2, clean_addr, mop);
3164     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3165     return true;
3166 }
3167 
3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3169 {
3170     uint64_t offset = a->imm << a->sz;
3171     TCGv_i64 clean_addr, dirty_addr;
3172     MemOp mop;
3173 
3174     if (!fp_access_check(s)) {
3175         return true;
3176     }
3177 
3178     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3179     mop = finalize_memop_asimd(s, a->sz);
3180     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3181     do_fp_ld(s, a->rt, clean_addr, mop);
3182     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3183     do_fp_ld(s, a->rt2, clean_addr, mop);
3184     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3185     return true;
3186 }
3187 
3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3189 {
3190     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3191     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3192     MemOp mop;
3193     TCGv_i128 tmp;
3194 
3195     /* STGP only comes in one size. */
3196     tcg_debug_assert(a->sz == MO_64);
3197 
3198     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3199         return false;
3200     }
3201 
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205 
3206     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3207     if (!a->p) {
3208         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209     }
3210 
3211     clean_addr = clean_data_tbi(s, dirty_addr);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     tcg_rt2 = cpu_reg(s, a->rt2);
3214 
3215     /*
3216      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3217      * and one tag operation.  We implement it as one single aligned 16-byte
3218      * memory operation for convenience.  Note that the alignment ensures
3219      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3220      */
3221     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3222 
3223     tmp = tcg_temp_new_i128();
3224     if (s->be_data == MO_LE) {
3225         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3226     } else {
3227         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3228     }
3229     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3230 
3231     /* Perform the tag store, if tag access enabled. */
3232     if (s->ata[0]) {
3233         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3234             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3235         } else {
3236             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3237         }
3238     }
3239 
3240     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3241     return true;
3242 }
3243 
3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3245                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3246                                  uint64_t offset, bool is_store, MemOp mop)
3247 {
3248     int memidx;
3249 
3250     if (a->rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253 
3254     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3255     if (!a->p) {
3256         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3257     }
3258     memidx = get_a64_user_mem_index(s, a->unpriv);
3259     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3260                                         a->w || a->rn != 31,
3261                                         mop, a->unpriv, memidx);
3262 }
3263 
3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3265                                   TCGv_i64 dirty_addr, uint64_t offset)
3266 {
3267     if (a->w) {
3268         if (a->p) {
3269             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3270         }
3271         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3272     }
3273 }
3274 
3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3276 {
3277     bool iss_sf, iss_valid = !a->w;
3278     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3279     int memidx = get_a64_user_mem_index(s, a->unpriv);
3280     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3281 
3282     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3283 
3284     tcg_rt = cpu_reg(s, a->rt);
3285     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3286 
3287     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3288                      iss_valid, a->rt, iss_sf, false);
3289     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3290     return true;
3291 }
3292 
3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3294 {
3295     bool iss_sf, iss_valid = !a->w;
3296     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3297     int memidx = get_a64_user_mem_index(s, a->unpriv);
3298     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3299 
3300     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3301 
3302     tcg_rt = cpu_reg(s, a->rt);
3303     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3304 
3305     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3306                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3307     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3308     return true;
3309 }
3310 
3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3312 {
3313     TCGv_i64 clean_addr, dirty_addr;
3314     MemOp mop;
3315 
3316     if (!fp_access_check(s)) {
3317         return true;
3318     }
3319     mop = finalize_memop_asimd(s, a->sz);
3320     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3321     do_fp_st(s, a->rt, clean_addr, mop);
3322     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp mop;
3330 
3331     if (!fp_access_check(s)) {
3332         return true;
3333     }
3334     mop = finalize_memop_asimd(s, a->sz);
3335     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3336     do_fp_ld(s, a->rt, clean_addr, mop);
3337     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3338     return true;
3339 }
3340 
3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3342                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3343                              bool is_store, MemOp memop)
3344 {
3345     TCGv_i64 tcg_rm;
3346 
3347     if (a->rn == 31) {
3348         gen_check_sp_alignment(s);
3349     }
3350     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3351 
3352     tcg_rm = read_cpu_reg(s, a->rm, 1);
3353     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3354 
3355     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3356     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3357 }
3358 
3359 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3360 {
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3362     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3363     MemOp memop;
3364 
3365     if (extract32(a->opt, 1, 1) == 0) {
3366         return false;
3367     }
3368 
3369     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               a->ext, true, a->rt, iss_sf, false);
3374     return true;
3375 }
3376 
3377 static bool trans_STR(DisasContext *s, arg_ldst *a)
3378 {
3379     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3380     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3381     MemOp memop;
3382 
3383     if (extract32(a->opt, 1, 1) == 0) {
3384         return false;
3385     }
3386 
3387     memop = finalize_memop(s, a->sz);
3388     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3389     tcg_rt = cpu_reg(s, a->rt);
3390     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3391     return true;
3392 }
3393 
3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3395 {
3396     TCGv_i64 clean_addr, dirty_addr;
3397     MemOp memop;
3398 
3399     if (extract32(a->opt, 1, 1) == 0) {
3400         return false;
3401     }
3402 
3403     if (!fp_access_check(s)) {
3404         return true;
3405     }
3406 
3407     memop = finalize_memop_asimd(s, a->sz);
3408     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3409     do_fp_ld(s, a->rt, clean_addr, memop);
3410     return true;
3411 }
3412 
3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3414 {
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp memop;
3417 
3418     if (extract32(a->opt, 1, 1) == 0) {
3419         return false;
3420     }
3421 
3422     if (!fp_access_check(s)) {
3423         return true;
3424     }
3425 
3426     memop = finalize_memop_asimd(s, a->sz);
3427     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3428     do_fp_st(s, a->rt, clean_addr, memop);
3429     return true;
3430 }
3431 
3432 
3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3434                          int sign, bool invert)
3435 {
3436     MemOp mop = a->sz | sign;
3437     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3438 
3439     if (a->rn == 31) {
3440         gen_check_sp_alignment(s);
3441     }
3442     mop = check_atomic_align(s, a->rn, mop);
3443     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3444                                 a->rn != 31, mop);
3445     tcg_rs = read_cpu_reg(s, a->rs, true);
3446     tcg_rt = cpu_reg(s, a->rt);
3447     if (invert) {
3448         tcg_gen_not_i64(tcg_rs, tcg_rs);
3449     }
3450     /*
3451      * The tcg atomic primitives are all full barriers.  Therefore we
3452      * can ignore the Acquire and Release bits of this instruction.
3453      */
3454     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3455 
3456     if (mop & MO_SIGN) {
3457         switch (a->sz) {
3458         case MO_8:
3459             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3460             break;
3461         case MO_16:
3462             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3463             break;
3464         case MO_32:
3465             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3466             break;
3467         case MO_64:
3468             break;
3469         default:
3470             g_assert_not_reached();
3471         }
3472     }
3473     return true;
3474 }
3475 
3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3485 
3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3487 {
3488     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3489     TCGv_i64 clean_addr;
3490     MemOp mop;
3491 
3492     if (!dc_isar_feature(aa64_atomics, s) ||
3493         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3494         return false;
3495     }
3496     if (a->rn == 31) {
3497         gen_check_sp_alignment(s);
3498     }
3499     mop = check_atomic_align(s, a->rn, a->sz);
3500     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3501                                 a->rn != 31, mop);
3502     /*
3503      * LDAPR* are a special case because they are a simple load, not a
3504      * fetch-and-do-something op.
3505      * The architectural consistency requirements here are weaker than
3506      * full load-acquire (we only need "load-acquire processor consistent"),
3507      * but we choose to implement them as full LDAQ.
3508      */
3509     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3510               true, a->rt, iss_sf, true);
3511     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3512     return true;
3513 }
3514 
3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3516 {
3517     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3518     MemOp memop;
3519 
3520     /* Load with pointer authentication */
3521     if (!dc_isar_feature(aa64_pauth, s)) {
3522         return false;
3523     }
3524 
3525     if (a->rn == 31) {
3526         gen_check_sp_alignment(s);
3527     }
3528     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3529 
3530     if (s->pauth_active) {
3531         if (!a->m) {
3532             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3533                                       tcg_constant_i64(0));
3534         } else {
3535             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3536                                       tcg_constant_i64(0));
3537         }
3538     }
3539 
3540     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3541 
3542     memop = finalize_memop(s, MO_64);
3543 
3544     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3545     clean_addr = gen_mte_check1(s, dirty_addr, false,
3546                                 a->w || a->rn != 31, memop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3550               /* extend */ false, /* iss_valid */ !a->w,
3551               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3552 
3553     if (a->w) {
3554         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3555     }
3556     return true;
3557 }
3558 
3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3560 {
3561     TCGv_i64 clean_addr, dirty_addr;
3562     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3563     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3564 
3565     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3566         return false;
3567     }
3568 
3569     if (a->rn == 31) {
3570         gen_check_sp_alignment(s);
3571     }
3572 
3573     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3574     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3575     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3576     clean_addr = clean_data_tbi(s, dirty_addr);
3577 
3578     /*
3579      * Load-AcquirePC semantics; we implement as the slightly more
3580      * restrictive Load-Acquire.
3581      */
3582     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3583               a->rt, iss_sf, true);
3584     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3585     return true;
3586 }
3587 
3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3589 {
3590     TCGv_i64 clean_addr, dirty_addr;
3591     MemOp mop = a->sz;
3592     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3593 
3594     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3595         return false;
3596     }
3597 
3598     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3599 
3600     if (a->rn == 31) {
3601         gen_check_sp_alignment(s);
3602     }
3603 
3604     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3605     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3606     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3607     clean_addr = clean_data_tbi(s, dirty_addr);
3608 
3609     /* Store-Release semantics */
3610     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3611     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3612     return true;
3613 }
3614 
3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3616 {
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int r;
3623     int size = a->sz;
3624 
3625     if (!a->p && a->rm != 0) {
3626         /* For non-postindexed accesses the Rm field must be 0 */
3627         return false;
3628     }
3629     if (size == 3 && !a->q && a->selem != 1) {
3630         return false;
3631     }
3632     if (!fp_access_check(s)) {
3633         return true;
3634     }
3635 
3636     if (a->rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     /* For our purposes, bytes are always little-endian.  */
3641     endian = s->be_data;
3642     if (size == 0) {
3643         endian = MO_LE;
3644     }
3645 
3646     total = a->rpt * a->selem * (a->q ? 16 : 8);
3647     tcg_rn = cpu_reg_sp(s, a->rn);
3648 
3649     /*
3650      * Issue the MTE check vs the logical repeat count, before we
3651      * promote consecutive little-endian elements below.
3652      */
3653     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3654                                 finalize_memop_asimd(s, size));
3655 
3656     /*
3657      * Consecutive little-endian elements from a single register
3658      * can be promoted to a larger little-endian operation.
3659      */
3660     align = MO_ALIGN;
3661     if (a->selem == 1 && endian == MO_LE) {
3662         align = pow2_align(size);
3663         size = 3;
3664     }
3665     if (!s->align_mem) {
3666         align = 0;
3667     }
3668     mop = endian | size | align;
3669 
3670     elements = (a->q ? 16 : 8) >> size;
3671     tcg_ebytes = tcg_constant_i64(1 << size);
3672     for (r = 0; r < a->rpt; r++) {
3673         int e;
3674         for (e = 0; e < elements; e++) {
3675             int xs;
3676             for (xs = 0; xs < a->selem; xs++) {
3677                 int tt = (a->rt + r + xs) % 32;
3678                 do_vec_ld(s, tt, e, clean_addr, mop);
3679                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3680             }
3681         }
3682     }
3683 
3684     /*
3685      * For non-quad operations, setting a slice of the low 64 bits of
3686      * the register clears the high 64 bits (in the ARM ARM pseudocode
3687      * this is implicit in the fact that 'rval' is a 64 bit wide
3688      * variable).  For quad operations, we might still need to zero
3689      * the high bits of SVE.
3690      */
3691     for (r = 0; r < a->rpt * a->selem; r++) {
3692         int tt = (a->rt + r) % 32;
3693         clear_vec_high(s, a->q, tt);
3694     }
3695 
3696     if (a->p) {
3697         if (a->rm == 31) {
3698             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699         } else {
3700             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701         }
3702     }
3703     return true;
3704 }
3705 
3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3707 {
3708     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3709     MemOp endian, align, mop;
3710 
3711     int total;    /* total bytes */
3712     int elements; /* elements per vector */
3713     int r;
3714     int size = a->sz;
3715 
3716     if (!a->p && a->rm != 0) {
3717         /* For non-postindexed accesses the Rm field must be 0 */
3718         return false;
3719     }
3720     if (size == 3 && !a->q && a->selem != 1) {
3721         return false;
3722     }
3723     if (!fp_access_check(s)) {
3724         return true;
3725     }
3726 
3727     if (a->rn == 31) {
3728         gen_check_sp_alignment(s);
3729     }
3730 
3731     /* For our purposes, bytes are always little-endian.  */
3732     endian = s->be_data;
3733     if (size == 0) {
3734         endian = MO_LE;
3735     }
3736 
3737     total = a->rpt * a->selem * (a->q ? 16 : 8);
3738     tcg_rn = cpu_reg_sp(s, a->rn);
3739 
3740     /*
3741      * Issue the MTE check vs the logical repeat count, before we
3742      * promote consecutive little-endian elements below.
3743      */
3744     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3745                                 finalize_memop_asimd(s, size));
3746 
3747     /*
3748      * Consecutive little-endian elements from a single register
3749      * can be promoted to a larger little-endian operation.
3750      */
3751     align = MO_ALIGN;
3752     if (a->selem == 1 && endian == MO_LE) {
3753         align = pow2_align(size);
3754         size = 3;
3755     }
3756     if (!s->align_mem) {
3757         align = 0;
3758     }
3759     mop = endian | size | align;
3760 
3761     elements = (a->q ? 16 : 8) >> size;
3762     tcg_ebytes = tcg_constant_i64(1 << size);
3763     for (r = 0; r < a->rpt; r++) {
3764         int e;
3765         for (e = 0; e < elements; e++) {
3766             int xs;
3767             for (xs = 0; xs < a->selem; xs++) {
3768                 int tt = (a->rt + r + xs) % 32;
3769                 do_vec_st(s, tt, e, clean_addr, mop);
3770                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771             }
3772         }
3773     }
3774 
3775     if (a->p) {
3776         if (a->rm == 31) {
3777             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3778         } else {
3779             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3780         }
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3786 {
3787     int xs, total, rt;
3788     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3789     MemOp mop;
3790 
3791     if (!a->p && a->rm != 0) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     total = a->selem << a->scale;
3803     tcg_rn = cpu_reg_sp(s, a->rn);
3804 
3805     mop = finalize_memop_asimd(s, a->scale);
3806     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3807                                 total, mop);
3808 
3809     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3810     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3811         do_vec_st(s, rt, a->index, clean_addr, mop);
3812         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3813     }
3814 
3815     if (a->p) {
3816         if (a->rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3820         }
3821     }
3822     return true;
3823 }
3824 
3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3826 {
3827     int xs, total, rt;
3828     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3829     MemOp mop;
3830 
3831     if (!a->p && a->rm != 0) {
3832         return false;
3833     }
3834     if (!fp_access_check(s)) {
3835         return true;
3836     }
3837 
3838     if (a->rn == 31) {
3839         gen_check_sp_alignment(s);
3840     }
3841 
3842     total = a->selem << a->scale;
3843     tcg_rn = cpu_reg_sp(s, a->rn);
3844 
3845     mop = finalize_memop_asimd(s, a->scale);
3846     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3847                                 total, mop);
3848 
3849     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3850     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3851         do_vec_ld(s, rt, a->index, clean_addr, mop);
3852         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3853     }
3854 
3855     if (a->p) {
3856         if (a->rm == 31) {
3857             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3858         } else {
3859             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3860         }
3861     }
3862     return true;
3863 }
3864 
3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3866 {
3867     int xs, total, rt;
3868     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3869     MemOp mop;
3870 
3871     if (!a->p && a->rm != 0) {
3872         return false;
3873     }
3874     if (!fp_access_check(s)) {
3875         return true;
3876     }
3877 
3878     if (a->rn == 31) {
3879         gen_check_sp_alignment(s);
3880     }
3881 
3882     total = a->selem << a->scale;
3883     tcg_rn = cpu_reg_sp(s, a->rn);
3884 
3885     mop = finalize_memop_asimd(s, a->scale);
3886     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3887                                 total, mop);
3888 
3889     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3890     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3891         /* Load and replicate to all elements */
3892         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3893 
3894         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3895         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3896                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3897         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3898     }
3899 
3900     if (a->p) {
3901         if (a->rm == 31) {
3902             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3903         } else {
3904             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3905         }
3906     }
3907     return true;
3908 }
3909 
3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3911 {
3912     TCGv_i64 addr, clean_addr, tcg_rt;
3913     int size = 4 << s->dcz_blocksize;
3914 
3915     if (!dc_isar_feature(aa64_mte, s)) {
3916         return false;
3917     }
3918     if (s->current_el == 0) {
3919         return false;
3920     }
3921 
3922     if (a->rn == 31) {
3923         gen_check_sp_alignment(s);
3924     }
3925 
3926     addr = read_cpu_reg_sp(s, a->rn, true);
3927     tcg_gen_addi_i64(addr, addr, a->imm);
3928     tcg_rt = cpu_reg(s, a->rt);
3929 
3930     if (s->ata[0]) {
3931         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3932     }
3933     /*
3934      * The non-tags portion of STZGM is mostly like DC_ZVA,
3935      * except the alignment happens before the access.
3936      */
3937     clean_addr = clean_data_tbi(s, addr);
3938     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3939     gen_helper_dc_zva(tcg_env, clean_addr);
3940     return true;
3941 }
3942 
3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3944 {
3945     TCGv_i64 addr, clean_addr, tcg_rt;
3946 
3947     if (!dc_isar_feature(aa64_mte, s)) {
3948         return false;
3949     }
3950     if (s->current_el == 0) {
3951         return false;
3952     }
3953 
3954     if (a->rn == 31) {
3955         gen_check_sp_alignment(s);
3956     }
3957 
3958     addr = read_cpu_reg_sp(s, a->rn, true);
3959     tcg_gen_addi_i64(addr, addr, a->imm);
3960     tcg_rt = cpu_reg(s, a->rt);
3961 
3962     if (s->ata[0]) {
3963         gen_helper_stgm(tcg_env, addr, tcg_rt);
3964     } else {
3965         MMUAccessType acc = MMU_DATA_STORE;
3966         int size = 4 << s->gm_blocksize;
3967 
3968         clean_addr = clean_data_tbi(s, addr);
3969         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3970         gen_probe_access(s, clean_addr, acc, size);
3971     }
3972     return true;
3973 }
3974 
3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3976 {
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     if (!dc_isar_feature(aa64_mte, s)) {
3980         return false;
3981     }
3982     if (s->current_el == 0) {
3983         return false;
3984     }
3985 
3986     if (a->rn == 31) {
3987         gen_check_sp_alignment(s);
3988     }
3989 
3990     addr = read_cpu_reg_sp(s, a->rn, true);
3991     tcg_gen_addi_i64(addr, addr, a->imm);
3992     tcg_rt = cpu_reg(s, a->rt);
3993 
3994     if (s->ata[0]) {
3995         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3996     } else {
3997         MMUAccessType acc = MMU_DATA_LOAD;
3998         int size = 4 << s->gm_blocksize;
3999 
4000         clean_addr = clean_data_tbi(s, addr);
4001         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4002         gen_probe_access(s, clean_addr, acc, size);
4003         /* The result tags are zeros.  */
4004         tcg_gen_movi_i64(tcg_rt, 0);
4005     }
4006     return true;
4007 }
4008 
4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4010 {
4011     TCGv_i64 addr, clean_addr, tcg_rt;
4012 
4013     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4014         return false;
4015     }
4016 
4017     if (a->rn == 31) {
4018         gen_check_sp_alignment(s);
4019     }
4020 
4021     addr = read_cpu_reg_sp(s, a->rn, true);
4022     if (!a->p) {
4023         /* pre-index or signed offset */
4024         tcg_gen_addi_i64(addr, addr, a->imm);
4025     }
4026 
4027     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4028     tcg_rt = cpu_reg(s, a->rt);
4029     if (s->ata[0]) {
4030         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4031     } else {
4032         /*
4033          * Tag access disabled: we must check for aborts on the load
4034          * load from [rn+offset], and then insert a 0 tag into rt.
4035          */
4036         clean_addr = clean_data_tbi(s, addr);
4037         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4038         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4039     }
4040 
4041     if (a->w) {
4042         /* pre-index or post-index */
4043         if (a->p) {
4044             /* post-index */
4045             tcg_gen_addi_i64(addr, addr, a->imm);
4046         }
4047         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4048     }
4049     return true;
4050 }
4051 
4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4053 {
4054     TCGv_i64 addr, tcg_rt;
4055 
4056     if (a->rn == 31) {
4057         gen_check_sp_alignment(s);
4058     }
4059 
4060     addr = read_cpu_reg_sp(s, a->rn, true);
4061     if (!a->p) {
4062         /* pre-index or signed offset */
4063         tcg_gen_addi_i64(addr, addr, a->imm);
4064     }
4065     tcg_rt = cpu_reg_sp(s, a->rt);
4066     if (!s->ata[0]) {
4067         /*
4068          * For STG and ST2G, we need to check alignment and probe memory.
4069          * TODO: For STZG and STZ2G, we could rely on the stores below,
4070          * at least for system mode; user-only won't enforce alignment.
4071          */
4072         if (is_pair) {
4073             gen_helper_st2g_stub(tcg_env, addr);
4074         } else {
4075             gen_helper_stg_stub(tcg_env, addr);
4076         }
4077     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4078         if (is_pair) {
4079             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4080         } else {
4081             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4082         }
4083     } else {
4084         if (is_pair) {
4085             gen_helper_st2g(tcg_env, addr, tcg_rt);
4086         } else {
4087             gen_helper_stg(tcg_env, addr, tcg_rt);
4088         }
4089     }
4090 
4091     if (is_zero) {
4092         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4093         TCGv_i64 zero64 = tcg_constant_i64(0);
4094         TCGv_i128 zero128 = tcg_temp_new_i128();
4095         int mem_index = get_mem_index(s);
4096         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4097 
4098         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4099 
4100         /* This is 1 or 2 atomic 16-byte operations. */
4101         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4102         if (is_pair) {
4103             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4104             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4105         }
4106     }
4107 
4108     if (a->w) {
4109         /* pre-index or post-index */
4110         if (a->p) {
4111             /* post-index */
4112             tcg_gen_addi_i64(addr, addr, a->imm);
4113         }
4114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4115     }
4116     return true;
4117 }
4118 
4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4123 
4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4125 
4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4127                    bool is_setg, SetFn fn)
4128 {
4129     int memidx;
4130     uint32_t syndrome, desc = 0;
4131 
4132     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4133         return false;
4134     }
4135 
4136     /*
4137      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4138      * us to pull this check before the CheckMOPSEnabled() test
4139      * (which we do in the helper function)
4140      */
4141     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4142         a->rd == 31 || a->rn == 31) {
4143         return false;
4144     }
4145 
4146     memidx = get_a64_user_mem_index(s, a->unpriv);
4147 
4148     /*
4149      * We pass option_a == true, matching our implementation;
4150      * we pass wrong_option == false: helper function may set that bit.
4151      */
4152     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4153                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4154 
4155     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4156         /* We may need to do MTE tag checking, so assemble the descriptor */
4157         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4158         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4159         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4160         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4161     }
4162     /* The helper function always needs the memidx even with MTE disabled */
4163     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4164 
4165     /*
4166      * The helper needs the register numbers, but since they're in
4167      * the syndrome anyway, we let it extract them from there rather
4168      * than passing in an extra three integer arguments.
4169      */
4170     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4171     return true;
4172 }
4173 
4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4180 
4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4182 
4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4184 {
4185     int rmemidx, wmemidx;
4186     uint32_t syndrome, rdesc = 0, wdesc = 0;
4187     bool wunpriv = extract32(a->options, 0, 1);
4188     bool runpriv = extract32(a->options, 1, 1);
4189 
4190     /*
4191      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192      * us to pull this check before the CheckMOPSEnabled() test
4193      * (which we do in the helper function)
4194      */
4195     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4197         return false;
4198     }
4199 
4200     rmemidx = get_a64_user_mem_index(s, runpriv);
4201     wmemidx = get_a64_user_mem_index(s, wunpriv);
4202 
4203     /*
4204      * We pass option_a == true, matching our implementation;
4205      * we pass wrong_option == false: helper function may set that bit.
4206      */
4207     syndrome = syn_mop(false, false, a->options, is_epilogue,
4208                        false, true, a->rd, a->rs, a->rn);
4209 
4210     /* If we need to do MTE tag checking, assemble the descriptors */
4211     if (s->mte_active[runpriv]) {
4212         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4213         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4214     }
4215     if (s->mte_active[wunpriv]) {
4216         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4217         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4218         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4219     }
4220     /* The helper function needs these parts of the descriptor regardless */
4221     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4222     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4223 
4224     /*
4225      * The helper needs the register numbers, but since they're in
4226      * the syndrome anyway, we let it extract them from there rather
4227      * than passing in an extra three integer arguments.
4228      */
4229     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4230        tcg_constant_i32(rdesc));
4231     return true;
4232 }
4233 
4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4240 
4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4242 
4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4244                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4245 {
4246     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4247     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4248     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4249 
4250     fn(tcg_rd, tcg_rn, tcg_imm);
4251     if (!a->sf) {
4252         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4253     }
4254     return true;
4255 }
4256 
4257 /*
4258  * PC-rel. addressing
4259  */
4260 
4261 static bool trans_ADR(DisasContext *s, arg_ri *a)
4262 {
4263     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4264     return true;
4265 }
4266 
4267 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4268 {
4269     int64_t offset = (int64_t)a->imm << 12;
4270 
4271     /* The page offset is ok for CF_PCREL. */
4272     offset -= s->pc_curr & 0xfff;
4273     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4274     return true;
4275 }
4276 
4277 /*
4278  * Add/subtract (immediate)
4279  */
4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4284 
4285 /*
4286  * Add/subtract (immediate, with tags)
4287  */
4288 
4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4290                                       bool sub_op)
4291 {
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     imm = a->uimm6 << LOG2_TAG_GRANULE;
4296     if (sub_op) {
4297         imm = -imm;
4298     }
4299 
4300     tcg_rn = cpu_reg_sp(s, a->rn);
4301     tcg_rd = cpu_reg_sp(s, a->rd);
4302 
4303     if (s->ata[0]) {
4304         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4305                            tcg_constant_i32(imm),
4306                            tcg_constant_i32(a->uimm4));
4307     } else {
4308         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4309         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4310     }
4311     return true;
4312 }
4313 
4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4316 
4317 /* The input should be a value in the bottom e bits (with higher
4318  * bits zero); returns that value replicated into every element
4319  * of size e in a 64 bit integer.
4320  */
4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4322 {
4323     assert(e != 0);
4324     while (e < 64) {
4325         mask |= mask << e;
4326         e *= 2;
4327     }
4328     return mask;
4329 }
4330 
4331 /*
4332  * Logical (immediate)
4333  */
4334 
4335 /*
4336  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4337  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4338  * value (ie should cause a guest UNDEF exception), and true if they are
4339  * valid, in which case the decoded bit pattern is written to result.
4340  */
4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4342                             unsigned int imms, unsigned int immr)
4343 {
4344     uint64_t mask;
4345     unsigned e, levels, s, r;
4346     int len;
4347 
4348     assert(immn < 2 && imms < 64 && immr < 64);
4349 
4350     /* The bit patterns we create here are 64 bit patterns which
4351      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4352      * 64 bits each. Each element contains the same value: a run
4353      * of between 1 and e-1 non-zero bits, rotated within the
4354      * element by between 0 and e-1 bits.
4355      *
4356      * The element size and run length are encoded into immn (1 bit)
4357      * and imms (6 bits) as follows:
4358      * 64 bit elements: immn = 1, imms = <length of run - 1>
4359      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4360      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4361      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4362      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4363      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4364      * Notice that immn = 0, imms = 11111x is the only combination
4365      * not covered by one of the above options; this is reserved.
4366      * Further, <length of run - 1> all-ones is a reserved pattern.
4367      *
4368      * In all cases the rotation is by immr % e (and immr is 6 bits).
4369      */
4370 
4371     /* First determine the element size */
4372     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4373     if (len < 1) {
4374         /* This is the immn == 0, imms == 0x11111x case */
4375         return false;
4376     }
4377     e = 1 << len;
4378 
4379     levels = e - 1;
4380     s = imms & levels;
4381     r = immr & levels;
4382 
4383     if (s == levels) {
4384         /* <length of run - 1> mustn't be all-ones. */
4385         return false;
4386     }
4387 
4388     /* Create the value of one element: s+1 set bits rotated
4389      * by r within the element (which is e bits wide)...
4390      */
4391     mask = MAKE_64BIT_MASK(0, s + 1);
4392     if (r) {
4393         mask = (mask >> r) | (mask << (e - r));
4394         mask &= MAKE_64BIT_MASK(0, e);
4395     }
4396     /* ...then replicate the element over the whole 64 bit value */
4397     mask = bitfield_replicate(mask, e);
4398     *result = mask;
4399     return true;
4400 }
4401 
4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4403                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4404 {
4405     TCGv_i64 tcg_rd, tcg_rn;
4406     uint64_t imm;
4407 
4408     /* Some immediate field values are reserved. */
4409     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4410                                 extract32(a->dbm, 0, 6),
4411                                 extract32(a->dbm, 6, 6))) {
4412         return false;
4413     }
4414     if (!a->sf) {
4415         imm &= 0xffffffffull;
4416     }
4417 
4418     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4419     tcg_rn = cpu_reg(s, a->rn);
4420 
4421     fn(tcg_rd, tcg_rn, imm);
4422     if (set_cc) {
4423         gen_logic_CC(a->sf, tcg_rd);
4424     }
4425     if (!a->sf) {
4426         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4427     }
4428     return true;
4429 }
4430 
4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4435 
4436 /*
4437  * Move wide (immediate)
4438  */
4439 
4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4441 {
4442     int pos = a->hw << 4;
4443     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4444     return true;
4445 }
4446 
4447 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4448 {
4449     int pos = a->hw << 4;
4450     uint64_t imm = a->imm;
4451 
4452     imm = ~(imm << pos);
4453     if (!a->sf) {
4454         imm = (uint32_t)imm;
4455     }
4456     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4457     return true;
4458 }
4459 
4460 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4461 {
4462     int pos = a->hw << 4;
4463     TCGv_i64 tcg_rd, tcg_im;
4464 
4465     tcg_rd = cpu_reg(s, a->rd);
4466     tcg_im = tcg_constant_i64(a->imm);
4467     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4468     if (!a->sf) {
4469         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4470     }
4471     return true;
4472 }
4473 
4474 /*
4475  * Bitfield
4476  */
4477 
4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4479 {
4480     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4481     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482     unsigned int bitsize = a->sf ? 64 : 32;
4483     unsigned int ri = a->immr;
4484     unsigned int si = a->imms;
4485     unsigned int pos, len;
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         len = (si - ri) + 1;
4490         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4491         if (!a->sf) {
4492             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4493         }
4494     } else {
4495         /* Wd<32+s-r,32-r> = Wn<s:0> */
4496         len = si + 1;
4497         pos = (bitsize - ri) & (bitsize - 1);
4498 
4499         if (len < ri) {
4500             /*
4501              * Sign extend the destination field from len to fill the
4502              * balance of the word.  Let the deposit below insert all
4503              * of those sign bits.
4504              */
4505             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4506             len = ri;
4507         }
4508 
4509         /*
4510          * We start with zero, and we haven't modified any bits outside
4511          * bitsize, therefore no final zero-extension is unneeded for !sf.
4512          */
4513         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4514     }
4515     return true;
4516 }
4517 
4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4519 {
4520     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4521     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4522     unsigned int bitsize = a->sf ? 64 : 32;
4523     unsigned int ri = a->immr;
4524     unsigned int si = a->imms;
4525     unsigned int pos, len;
4526 
4527     tcg_rd = cpu_reg(s, a->rd);
4528     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 
4530     if (si >= ri) {
4531         /* Wd<s-r:0> = Wn<s:r> */
4532         len = (si - ri) + 1;
4533         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534     } else {
4535         /* Wd<32+s-r,32-r> = Wn<s:0> */
4536         len = si + 1;
4537         pos = (bitsize - ri) & (bitsize - 1);
4538         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4539     }
4540     return true;
4541 }
4542 
4543 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4544 {
4545     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4546     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4547     unsigned int bitsize = a->sf ? 64 : 32;
4548     unsigned int ri = a->immr;
4549     unsigned int si = a->imms;
4550     unsigned int pos, len;
4551 
4552     tcg_rd = cpu_reg(s, a->rd);
4553     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4554 
4555     if (si >= ri) {
4556         /* Wd<s-r:0> = Wn<s:r> */
4557         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4558         len = (si - ri) + 1;
4559         pos = 0;
4560     } else {
4561         /* Wd<32+s-r,32-r> = Wn<s:0> */
4562         len = si + 1;
4563         pos = (bitsize - ri) & (bitsize - 1);
4564     }
4565 
4566     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4567     if (!a->sf) {
4568         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4569     }
4570     return true;
4571 }
4572 
4573 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4574 {
4575     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4576 
4577     tcg_rd = cpu_reg(s, a->rd);
4578 
4579     if (unlikely(a->imm == 0)) {
4580         /*
4581          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4582          * so an extract from bit 0 is a special case.
4583          */
4584         if (a->sf) {
4585             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4586         } else {
4587             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4588         }
4589     } else {
4590         tcg_rm = cpu_reg(s, a->rm);
4591         tcg_rn = cpu_reg(s, a->rn);
4592 
4593         if (a->sf) {
4594             /* Specialization to ROR happens in EXTRACT2.  */
4595             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4596         } else {
4597             TCGv_i32 t0 = tcg_temp_new_i32();
4598 
4599             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4600             if (a->rm == a->rn) {
4601                 tcg_gen_rotri_i32(t0, t0, a->imm);
4602             } else {
4603                 TCGv_i32 t1 = tcg_temp_new_i32();
4604                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4605                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4606             }
4607             tcg_gen_extu_i32_i64(tcg_rd, t0);
4608         }
4609     }
4610     return true;
4611 }
4612 
4613 /*
4614  * Cryptographic AES, SHA, SHA512
4615  */
4616 
4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4621 
4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4626 
4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4630 
4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4634 
4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4642 
4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4645 
4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4648 
4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4650 {
4651     if (!dc_isar_feature(aa64_sm3, s)) {
4652         return false;
4653     }
4654     if (fp_access_check(s)) {
4655         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4656         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4657         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4658         TCGv_i32 tcg_res = tcg_temp_new_i32();
4659         unsigned vsz, dofs;
4660 
4661         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4662         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4663         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4664 
4665         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4666         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4667         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4668         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4669 
4670         /* Clear the whole register first, then store bits [127:96]. */
4671         vsz = vec_full_reg_size(s);
4672         dofs = vec_full_reg_offset(s, a->rd);
4673         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4674         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4675     }
4676     return true;
4677 }
4678 
4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4680 {
4681     if (fp_access_check(s)) {
4682         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4683     }
4684     return true;
4685 }
4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4690 
4691 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4692 {
4693     if (!dc_isar_feature(aa64_sha3, s)) {
4694         return false;
4695     }
4696     if (fp_access_check(s)) {
4697         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4698                      vec_full_reg_offset(s, a->rn),
4699                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4700                      vec_full_reg_size(s));
4701     }
4702     return true;
4703 }
4704 
4705 /*
4706  * Advanced SIMD copy
4707  */
4708 
4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4710 {
4711     unsigned esz = ctz32(imm);
4712     if (esz <= MO_64) {
4713         *pesz = esz;
4714         *pidx = imm >> (esz + 1);
4715         return true;
4716     }
4717     return false;
4718 }
4719 
4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4721 {
4722     MemOp esz;
4723     unsigned idx;
4724 
4725     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4726         return false;
4727     }
4728     if (fp_access_check(s)) {
4729         /*
4730          * This instruction just extracts the specified element and
4731          * zero-extends it into the bottom of the destination register.
4732          */
4733         TCGv_i64 tmp = tcg_temp_new_i64();
4734         read_vec_element(s, tmp, a->rn, idx, esz);
4735         write_fp_dreg(s, a->rd, tmp);
4736     }
4737     return true;
4738 }
4739 
4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4741 {
4742     MemOp esz;
4743     unsigned idx;
4744 
4745     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4746         return false;
4747     }
4748     if (esz == MO_64 && !a->q) {
4749         return false;
4750     }
4751     if (fp_access_check(s)) {
4752         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4753                              vec_reg_offset(s, a->rn, idx, esz),
4754                              a->q ? 16 : 8, vec_full_reg_size(s));
4755     }
4756     return true;
4757 }
4758 
4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4760 {
4761     MemOp esz;
4762     unsigned idx;
4763 
4764     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4765         return false;
4766     }
4767     if (esz == MO_64 && !a->q) {
4768         return false;
4769     }
4770     if (fp_access_check(s)) {
4771         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4772                              a->q ? 16 : 8, vec_full_reg_size(s),
4773                              cpu_reg(s, a->rn));
4774     }
4775     return true;
4776 }
4777 
4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4779 {
4780     MemOp esz;
4781     unsigned idx;
4782 
4783     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4784         return false;
4785     }
4786     if (is_signed) {
4787         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4788             return false;
4789         }
4790     } else {
4791         if (esz == MO_64 ? !a->q : a->q) {
4792             return false;
4793         }
4794     }
4795     if (fp_access_check(s)) {
4796         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4797         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4798         if (is_signed && !a->q) {
4799             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4800         }
4801     }
4802     return true;
4803 }
4804 
4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4806 TRANS(UMOV, do_smov_umov, a, 0)
4807 
4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4809 {
4810     MemOp esz;
4811     unsigned idx;
4812 
4813     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4814         return false;
4815     }
4816     if (fp_access_check(s)) {
4817         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4818         clear_vec_high(s, true, a->rd);
4819     }
4820     return true;
4821 }
4822 
4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4824 {
4825     MemOp esz;
4826     unsigned didx, sidx;
4827 
4828     if (!decode_esz_idx(a->di, &esz, &didx)) {
4829         return false;
4830     }
4831     sidx = a->si >> esz;
4832     if (fp_access_check(s)) {
4833         TCGv_i64 tmp = tcg_temp_new_i64();
4834 
4835         read_vec_element(s, tmp, a->rn, sidx, esz);
4836         write_vec_element(s, tmp, a->rd, didx, esz);
4837 
4838         /* INS is considered a 128-bit write for SVE. */
4839         clear_vec_high(s, true, a->rd);
4840     }
4841     return true;
4842 }
4843 
4844 /*
4845  * Advanced SIMD three same
4846  */
4847 
4848 typedef struct FPScalar {
4849     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4850     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4851     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4852 } FPScalar;
4853 
4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4855 {
4856     switch (a->esz) {
4857     case MO_64:
4858         if (fp_access_check(s)) {
4859             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4860             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4861             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4862             write_fp_dreg(s, a->rd, t0);
4863         }
4864         break;
4865     case MO_32:
4866         if (fp_access_check(s)) {
4867             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4868             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4869             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4870             write_fp_sreg(s, a->rd, t0);
4871         }
4872         break;
4873     case MO_16:
4874         if (!dc_isar_feature(aa64_fp16, s)) {
4875             return false;
4876         }
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     default:
4885         return false;
4886     }
4887     return true;
4888 }
4889 
4890 static const FPScalar f_scalar_fadd = {
4891     gen_helper_vfp_addh,
4892     gen_helper_vfp_adds,
4893     gen_helper_vfp_addd,
4894 };
4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4896 
4897 static const FPScalar f_scalar_fsub = {
4898     gen_helper_vfp_subh,
4899     gen_helper_vfp_subs,
4900     gen_helper_vfp_subd,
4901 };
4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4903 
4904 static const FPScalar f_scalar_fdiv = {
4905     gen_helper_vfp_divh,
4906     gen_helper_vfp_divs,
4907     gen_helper_vfp_divd,
4908 };
4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4910 
4911 static const FPScalar f_scalar_fmul = {
4912     gen_helper_vfp_mulh,
4913     gen_helper_vfp_muls,
4914     gen_helper_vfp_muld,
4915 };
4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4917 
4918 static const FPScalar f_scalar_fmax = {
4919     gen_helper_advsimd_maxh,
4920     gen_helper_vfp_maxs,
4921     gen_helper_vfp_maxd,
4922 };
4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4924 
4925 static const FPScalar f_scalar_fmin = {
4926     gen_helper_advsimd_minh,
4927     gen_helper_vfp_mins,
4928     gen_helper_vfp_mind,
4929 };
4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4931 
4932 static const FPScalar f_scalar_fmaxnm = {
4933     gen_helper_advsimd_maxnumh,
4934     gen_helper_vfp_maxnums,
4935     gen_helper_vfp_maxnumd,
4936 };
4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4938 
4939 static const FPScalar f_scalar_fminnm = {
4940     gen_helper_advsimd_minnumh,
4941     gen_helper_vfp_minnums,
4942     gen_helper_vfp_minnumd,
4943 };
4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4945 
4946 static const FPScalar f_scalar_fmulx = {
4947     gen_helper_advsimd_mulxh,
4948     gen_helper_vfp_mulxs,
4949     gen_helper_vfp_mulxd,
4950 };
4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4952 
4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4954 {
4955     gen_helper_vfp_mulh(d, n, m, s);
4956     gen_vfp_negh(d, d);
4957 }
4958 
4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4960 {
4961     gen_helper_vfp_muls(d, n, m, s);
4962     gen_vfp_negs(d, d);
4963 }
4964 
4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4966 {
4967     gen_helper_vfp_muld(d, n, m, s);
4968     gen_vfp_negd(d, d);
4969 }
4970 
4971 static const FPScalar f_scalar_fnmul = {
4972     gen_fnmul_h,
4973     gen_fnmul_s,
4974     gen_fnmul_d,
4975 };
4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4977 
4978 static const FPScalar f_scalar_fcmeq = {
4979     gen_helper_advsimd_ceq_f16,
4980     gen_helper_neon_ceq_f32,
4981     gen_helper_neon_ceq_f64,
4982 };
4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
4984 
4985 static const FPScalar f_scalar_fcmge = {
4986     gen_helper_advsimd_cge_f16,
4987     gen_helper_neon_cge_f32,
4988     gen_helper_neon_cge_f64,
4989 };
4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
4991 
4992 static const FPScalar f_scalar_fcmgt = {
4993     gen_helper_advsimd_cgt_f16,
4994     gen_helper_neon_cgt_f32,
4995     gen_helper_neon_cgt_f64,
4996 };
4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
4998 
4999 static const FPScalar f_scalar_facge = {
5000     gen_helper_advsimd_acge_f16,
5001     gen_helper_neon_acge_f32,
5002     gen_helper_neon_acge_f64,
5003 };
5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5005 
5006 static const FPScalar f_scalar_facgt = {
5007     gen_helper_advsimd_acgt_f16,
5008     gen_helper_neon_acgt_f32,
5009     gen_helper_neon_acgt_f64,
5010 };
5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5012 
5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5014 {
5015     gen_helper_vfp_subh(d, n, m, s);
5016     gen_vfp_absh(d, d);
5017 }
5018 
5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5020 {
5021     gen_helper_vfp_subs(d, n, m, s);
5022     gen_vfp_abss(d, d);
5023 }
5024 
5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5026 {
5027     gen_helper_vfp_subd(d, n, m, s);
5028     gen_vfp_absd(d, d);
5029 }
5030 
5031 static const FPScalar f_scalar_fabd = {
5032     gen_fabd_h,
5033     gen_fabd_s,
5034     gen_fabd_d,
5035 };
5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5037 
5038 static const FPScalar f_scalar_frecps = {
5039     gen_helper_recpsf_f16,
5040     gen_helper_recpsf_f32,
5041     gen_helper_recpsf_f64,
5042 };
5043 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5044 
5045 static const FPScalar f_scalar_frsqrts = {
5046     gen_helper_rsqrtsf_f16,
5047     gen_helper_rsqrtsf_f32,
5048     gen_helper_rsqrtsf_f64,
5049 };
5050 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5051 
5052 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5053                           gen_helper_gvec_3_ptr * const fns[3])
5054 {
5055     MemOp esz = a->esz;
5056 
5057     switch (esz) {
5058     case MO_64:
5059         if (!a->q) {
5060             return false;
5061         }
5062         break;
5063     case MO_32:
5064         break;
5065     case MO_16:
5066         if (!dc_isar_feature(aa64_fp16, s)) {
5067             return false;
5068         }
5069         break;
5070     default:
5071         return false;
5072     }
5073     if (fp_access_check(s)) {
5074         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5075                           esz == MO_16, 0, fns[esz - 1]);
5076     }
5077     return true;
5078 }
5079 
5080 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5081     gen_helper_gvec_fadd_h,
5082     gen_helper_gvec_fadd_s,
5083     gen_helper_gvec_fadd_d,
5084 };
5085 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5086 
5087 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5088     gen_helper_gvec_fsub_h,
5089     gen_helper_gvec_fsub_s,
5090     gen_helper_gvec_fsub_d,
5091 };
5092 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5093 
5094 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5095     gen_helper_gvec_fdiv_h,
5096     gen_helper_gvec_fdiv_s,
5097     gen_helper_gvec_fdiv_d,
5098 };
5099 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5100 
5101 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5102     gen_helper_gvec_fmul_h,
5103     gen_helper_gvec_fmul_s,
5104     gen_helper_gvec_fmul_d,
5105 };
5106 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5107 
5108 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5109     gen_helper_gvec_fmax_h,
5110     gen_helper_gvec_fmax_s,
5111     gen_helper_gvec_fmax_d,
5112 };
5113 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5114 
5115 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5116     gen_helper_gvec_fmin_h,
5117     gen_helper_gvec_fmin_s,
5118     gen_helper_gvec_fmin_d,
5119 };
5120 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5121 
5122 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5123     gen_helper_gvec_fmaxnum_h,
5124     gen_helper_gvec_fmaxnum_s,
5125     gen_helper_gvec_fmaxnum_d,
5126 };
5127 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5128 
5129 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5130     gen_helper_gvec_fminnum_h,
5131     gen_helper_gvec_fminnum_s,
5132     gen_helper_gvec_fminnum_d,
5133 };
5134 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5135 
5136 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5137     gen_helper_gvec_fmulx_h,
5138     gen_helper_gvec_fmulx_s,
5139     gen_helper_gvec_fmulx_d,
5140 };
5141 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5142 
5143 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5144     gen_helper_gvec_vfma_h,
5145     gen_helper_gvec_vfma_s,
5146     gen_helper_gvec_vfma_d,
5147 };
5148 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5149 
5150 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5151     gen_helper_gvec_vfms_h,
5152     gen_helper_gvec_vfms_s,
5153     gen_helper_gvec_vfms_d,
5154 };
5155 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5156 
5157 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5158     gen_helper_gvec_fceq_h,
5159     gen_helper_gvec_fceq_s,
5160     gen_helper_gvec_fceq_d,
5161 };
5162 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5163 
5164 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5165     gen_helper_gvec_fcge_h,
5166     gen_helper_gvec_fcge_s,
5167     gen_helper_gvec_fcge_d,
5168 };
5169 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5170 
5171 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5172     gen_helper_gvec_fcgt_h,
5173     gen_helper_gvec_fcgt_s,
5174     gen_helper_gvec_fcgt_d,
5175 };
5176 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5177 
5178 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5179     gen_helper_gvec_facge_h,
5180     gen_helper_gvec_facge_s,
5181     gen_helper_gvec_facge_d,
5182 };
5183 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5184 
5185 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5186     gen_helper_gvec_facgt_h,
5187     gen_helper_gvec_facgt_s,
5188     gen_helper_gvec_facgt_d,
5189 };
5190 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5191 
5192 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5193     gen_helper_gvec_fabd_h,
5194     gen_helper_gvec_fabd_s,
5195     gen_helper_gvec_fabd_d,
5196 };
5197 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5198 
5199 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5200     gen_helper_gvec_recps_h,
5201     gen_helper_gvec_recps_s,
5202     gen_helper_gvec_recps_d,
5203 };
5204 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5205 
5206 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5207     gen_helper_gvec_rsqrts_h,
5208     gen_helper_gvec_rsqrts_s,
5209     gen_helper_gvec_rsqrts_d,
5210 };
5211 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5212 
5213 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5214     gen_helper_gvec_faddp_h,
5215     gen_helper_gvec_faddp_s,
5216     gen_helper_gvec_faddp_d,
5217 };
5218 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5219 
5220 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5221     gen_helper_gvec_fmaxp_h,
5222     gen_helper_gvec_fmaxp_s,
5223     gen_helper_gvec_fmaxp_d,
5224 };
5225 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5226 
5227 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5228     gen_helper_gvec_fminp_h,
5229     gen_helper_gvec_fminp_s,
5230     gen_helper_gvec_fminp_d,
5231 };
5232 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5233 
5234 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5235     gen_helper_gvec_fmaxnump_h,
5236     gen_helper_gvec_fmaxnump_s,
5237     gen_helper_gvec_fmaxnump_d,
5238 };
5239 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5240 
5241 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5242     gen_helper_gvec_fminnump_h,
5243     gen_helper_gvec_fminnump_s,
5244     gen_helper_gvec_fminnump_d,
5245 };
5246 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5247 
5248 /*
5249  * Advanced SIMD scalar/vector x indexed element
5250  */
5251 
5252 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5253 {
5254     switch (a->esz) {
5255     case MO_64:
5256         if (fp_access_check(s)) {
5257             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5258             TCGv_i64 t1 = tcg_temp_new_i64();
5259 
5260             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5261             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5262             write_fp_dreg(s, a->rd, t0);
5263         }
5264         break;
5265     case MO_32:
5266         if (fp_access_check(s)) {
5267             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5268             TCGv_i32 t1 = tcg_temp_new_i32();
5269 
5270             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5271             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5272             write_fp_sreg(s, a->rd, t0);
5273         }
5274         break;
5275     case MO_16:
5276         if (!dc_isar_feature(aa64_fp16, s)) {
5277             return false;
5278         }
5279         if (fp_access_check(s)) {
5280             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5281             TCGv_i32 t1 = tcg_temp_new_i32();
5282 
5283             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5284             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5285             write_fp_sreg(s, a->rd, t0);
5286         }
5287         break;
5288     default:
5289         g_assert_not_reached();
5290     }
5291     return true;
5292 }
5293 
5294 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5295 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5296 
5297 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5298 {
5299     switch (a->esz) {
5300     case MO_64:
5301         if (fp_access_check(s)) {
5302             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5303             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5304             TCGv_i64 t2 = tcg_temp_new_i64();
5305 
5306             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5307             if (neg) {
5308                 gen_vfp_negd(t1, t1);
5309             }
5310             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5311             write_fp_dreg(s, a->rd, t0);
5312         }
5313         break;
5314     case MO_32:
5315         if (fp_access_check(s)) {
5316             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5317             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5318             TCGv_i32 t2 = tcg_temp_new_i32();
5319 
5320             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5321             if (neg) {
5322                 gen_vfp_negs(t1, t1);
5323             }
5324             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5325             write_fp_sreg(s, a->rd, t0);
5326         }
5327         break;
5328     case MO_16:
5329         if (!dc_isar_feature(aa64_fp16, s)) {
5330             return false;
5331         }
5332         if (fp_access_check(s)) {
5333             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5334             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5335             TCGv_i32 t2 = tcg_temp_new_i32();
5336 
5337             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5338             if (neg) {
5339                 gen_vfp_negh(t1, t1);
5340             }
5341             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5342                                        fpstatus_ptr(FPST_FPCR_F16));
5343             write_fp_sreg(s, a->rd, t0);
5344         }
5345         break;
5346     default:
5347         g_assert_not_reached();
5348     }
5349     return true;
5350 }
5351 
5352 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5353 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5354 
5355 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5356                               gen_helper_gvec_3_ptr * const fns[3])
5357 {
5358     MemOp esz = a->esz;
5359 
5360     switch (esz) {
5361     case MO_64:
5362         if (!a->q) {
5363             return false;
5364         }
5365         break;
5366     case MO_32:
5367         break;
5368     case MO_16:
5369         if (!dc_isar_feature(aa64_fp16, s)) {
5370             return false;
5371         }
5372         break;
5373     default:
5374         g_assert_not_reached();
5375     }
5376     if (fp_access_check(s)) {
5377         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5378                           esz == MO_16, a->idx, fns[esz - 1]);
5379     }
5380     return true;
5381 }
5382 
5383 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5384     gen_helper_gvec_fmul_idx_h,
5385     gen_helper_gvec_fmul_idx_s,
5386     gen_helper_gvec_fmul_idx_d,
5387 };
5388 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5389 
5390 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5391     gen_helper_gvec_fmulx_idx_h,
5392     gen_helper_gvec_fmulx_idx_s,
5393     gen_helper_gvec_fmulx_idx_d,
5394 };
5395 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5396 
5397 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5398 {
5399     static gen_helper_gvec_4_ptr * const fns[3] = {
5400         gen_helper_gvec_fmla_idx_h,
5401         gen_helper_gvec_fmla_idx_s,
5402         gen_helper_gvec_fmla_idx_d,
5403     };
5404     MemOp esz = a->esz;
5405 
5406     switch (esz) {
5407     case MO_64:
5408         if (!a->q) {
5409             return false;
5410         }
5411         break;
5412     case MO_32:
5413         break;
5414     case MO_16:
5415         if (!dc_isar_feature(aa64_fp16, s)) {
5416             return false;
5417         }
5418         break;
5419     default:
5420         g_assert_not_reached();
5421     }
5422     if (fp_access_check(s)) {
5423         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5424                           esz == MO_16, (a->idx << 1) | neg,
5425                           fns[esz - 1]);
5426     }
5427     return true;
5428 }
5429 
5430 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5431 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5432 
5433 /*
5434  * Advanced SIMD scalar pairwise
5435  */
5436 
5437 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5438 {
5439     switch (a->esz) {
5440     case MO_64:
5441         if (fp_access_check(s)) {
5442             TCGv_i64 t0 = tcg_temp_new_i64();
5443             TCGv_i64 t1 = tcg_temp_new_i64();
5444 
5445             read_vec_element(s, t0, a->rn, 0, MO_64);
5446             read_vec_element(s, t1, a->rn, 1, MO_64);
5447             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5448             write_fp_dreg(s, a->rd, t0);
5449         }
5450         break;
5451     case MO_32:
5452         if (fp_access_check(s)) {
5453             TCGv_i32 t0 = tcg_temp_new_i32();
5454             TCGv_i32 t1 = tcg_temp_new_i32();
5455 
5456             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5457             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5458             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5459             write_fp_sreg(s, a->rd, t0);
5460         }
5461         break;
5462     case MO_16:
5463         if (!dc_isar_feature(aa64_fp16, s)) {
5464             return false;
5465         }
5466         if (fp_access_check(s)) {
5467             TCGv_i32 t0 = tcg_temp_new_i32();
5468             TCGv_i32 t1 = tcg_temp_new_i32();
5469 
5470             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5471             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5472             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5473             write_fp_sreg(s, a->rd, t0);
5474         }
5475         break;
5476     default:
5477         g_assert_not_reached();
5478     }
5479     return true;
5480 }
5481 
5482 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5483 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
5484 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
5485 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
5486 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
5487 
5488 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5489  * Note that it is the caller's responsibility to ensure that the
5490  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5491  * mandated semantics for out of range shifts.
5492  */
5493 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5494                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5495 {
5496     switch (shift_type) {
5497     case A64_SHIFT_TYPE_LSL:
5498         tcg_gen_shl_i64(dst, src, shift_amount);
5499         break;
5500     case A64_SHIFT_TYPE_LSR:
5501         tcg_gen_shr_i64(dst, src, shift_amount);
5502         break;
5503     case A64_SHIFT_TYPE_ASR:
5504         if (!sf) {
5505             tcg_gen_ext32s_i64(dst, src);
5506         }
5507         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5508         break;
5509     case A64_SHIFT_TYPE_ROR:
5510         if (sf) {
5511             tcg_gen_rotr_i64(dst, src, shift_amount);
5512         } else {
5513             TCGv_i32 t0, t1;
5514             t0 = tcg_temp_new_i32();
5515             t1 = tcg_temp_new_i32();
5516             tcg_gen_extrl_i64_i32(t0, src);
5517             tcg_gen_extrl_i64_i32(t1, shift_amount);
5518             tcg_gen_rotr_i32(t0, t0, t1);
5519             tcg_gen_extu_i32_i64(dst, t0);
5520         }
5521         break;
5522     default:
5523         assert(FALSE); /* all shift types should be handled */
5524         break;
5525     }
5526 
5527     if (!sf) { /* zero extend final result */
5528         tcg_gen_ext32u_i64(dst, dst);
5529     }
5530 }
5531 
5532 /* Shift a TCGv src by immediate, put result in dst.
5533  * The shift amount must be in range (this should always be true as the
5534  * relevant instructions will UNDEF on bad shift immediates).
5535  */
5536 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5537                           enum a64_shift_type shift_type, unsigned int shift_i)
5538 {
5539     assert(shift_i < (sf ? 64 : 32));
5540 
5541     if (shift_i == 0) {
5542         tcg_gen_mov_i64(dst, src);
5543     } else {
5544         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5545     }
5546 }
5547 
5548 /* Logical (shifted register)
5549  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5550  * +----+-----+-----------+-------+---+------+--------+------+------+
5551  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5552  * +----+-----+-----------+-------+---+------+--------+------+------+
5553  */
5554 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5555 {
5556     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5557     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5558 
5559     sf = extract32(insn, 31, 1);
5560     opc = extract32(insn, 29, 2);
5561     shift_type = extract32(insn, 22, 2);
5562     invert = extract32(insn, 21, 1);
5563     rm = extract32(insn, 16, 5);
5564     shift_amount = extract32(insn, 10, 6);
5565     rn = extract32(insn, 5, 5);
5566     rd = extract32(insn, 0, 5);
5567 
5568     if (!sf && (shift_amount & (1 << 5))) {
5569         unallocated_encoding(s);
5570         return;
5571     }
5572 
5573     tcg_rd = cpu_reg(s, rd);
5574 
5575     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5576         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5577          * register-register MOV and MVN, so it is worth special casing.
5578          */
5579         tcg_rm = cpu_reg(s, rm);
5580         if (invert) {
5581             tcg_gen_not_i64(tcg_rd, tcg_rm);
5582             if (!sf) {
5583                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5584             }
5585         } else {
5586             if (sf) {
5587                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5588             } else {
5589                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5590             }
5591         }
5592         return;
5593     }
5594 
5595     tcg_rm = read_cpu_reg(s, rm, sf);
5596 
5597     if (shift_amount) {
5598         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5599     }
5600 
5601     tcg_rn = cpu_reg(s, rn);
5602 
5603     switch (opc | (invert << 2)) {
5604     case 0: /* AND */
5605     case 3: /* ANDS */
5606         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5607         break;
5608     case 1: /* ORR */
5609         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5610         break;
5611     case 2: /* EOR */
5612         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5613         break;
5614     case 4: /* BIC */
5615     case 7: /* BICS */
5616         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5617         break;
5618     case 5: /* ORN */
5619         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5620         break;
5621     case 6: /* EON */
5622         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5623         break;
5624     default:
5625         assert(FALSE);
5626         break;
5627     }
5628 
5629     if (!sf) {
5630         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5631     }
5632 
5633     if (opc == 3) {
5634         gen_logic_CC(sf, tcg_rd);
5635     }
5636 }
5637 
5638 /*
5639  * Add/subtract (extended register)
5640  *
5641  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5642  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5643  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5644  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5645  *
5646  *  sf: 0 -> 32bit, 1 -> 64bit
5647  *  op: 0 -> add  , 1 -> sub
5648  *   S: 1 -> set flags
5649  * opt: 00
5650  * option: extension type (see DecodeRegExtend)
5651  * imm3: optional shift to Rm
5652  *
5653  * Rd = Rn + LSL(extend(Rm), amount)
5654  */
5655 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5656 {
5657     int rd = extract32(insn, 0, 5);
5658     int rn = extract32(insn, 5, 5);
5659     int imm3 = extract32(insn, 10, 3);
5660     int option = extract32(insn, 13, 3);
5661     int rm = extract32(insn, 16, 5);
5662     int opt = extract32(insn, 22, 2);
5663     bool setflags = extract32(insn, 29, 1);
5664     bool sub_op = extract32(insn, 30, 1);
5665     bool sf = extract32(insn, 31, 1);
5666 
5667     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5668     TCGv_i64 tcg_rd;
5669     TCGv_i64 tcg_result;
5670 
5671     if (imm3 > 4 || opt != 0) {
5672         unallocated_encoding(s);
5673         return;
5674     }
5675 
5676     /* non-flag setting ops may use SP */
5677     if (!setflags) {
5678         tcg_rd = cpu_reg_sp(s, rd);
5679     } else {
5680         tcg_rd = cpu_reg(s, rd);
5681     }
5682     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5683 
5684     tcg_rm = read_cpu_reg(s, rm, sf);
5685     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5686 
5687     tcg_result = tcg_temp_new_i64();
5688 
5689     if (!setflags) {
5690         if (sub_op) {
5691             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5692         } else {
5693             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5694         }
5695     } else {
5696         if (sub_op) {
5697             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5698         } else {
5699             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5700         }
5701     }
5702 
5703     if (sf) {
5704         tcg_gen_mov_i64(tcg_rd, tcg_result);
5705     } else {
5706         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5707     }
5708 }
5709 
5710 /*
5711  * Add/subtract (shifted register)
5712  *
5713  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5714  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5715  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5716  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5717  *
5718  *    sf: 0 -> 32bit, 1 -> 64bit
5719  *    op: 0 -> add  , 1 -> sub
5720  *     S: 1 -> set flags
5721  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5722  *  imm6: Shift amount to apply to Rm before the add/sub
5723  */
5724 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5725 {
5726     int rd = extract32(insn, 0, 5);
5727     int rn = extract32(insn, 5, 5);
5728     int imm6 = extract32(insn, 10, 6);
5729     int rm = extract32(insn, 16, 5);
5730     int shift_type = extract32(insn, 22, 2);
5731     bool setflags = extract32(insn, 29, 1);
5732     bool sub_op = extract32(insn, 30, 1);
5733     bool sf = extract32(insn, 31, 1);
5734 
5735     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5736     TCGv_i64 tcg_rn, tcg_rm;
5737     TCGv_i64 tcg_result;
5738 
5739     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5740         unallocated_encoding(s);
5741         return;
5742     }
5743 
5744     tcg_rn = read_cpu_reg(s, rn, sf);
5745     tcg_rm = read_cpu_reg(s, rm, sf);
5746 
5747     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5748 
5749     tcg_result = tcg_temp_new_i64();
5750 
5751     if (!setflags) {
5752         if (sub_op) {
5753             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5754         } else {
5755             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5756         }
5757     } else {
5758         if (sub_op) {
5759             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5760         } else {
5761             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5762         }
5763     }
5764 
5765     if (sf) {
5766         tcg_gen_mov_i64(tcg_rd, tcg_result);
5767     } else {
5768         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5769     }
5770 }
5771 
5772 /* Data-processing (3 source)
5773  *
5774  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5775  *  +--+------+-----------+------+------+----+------+------+------+
5776  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5777  *  +--+------+-----------+------+------+----+------+------+------+
5778  */
5779 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5780 {
5781     int rd = extract32(insn, 0, 5);
5782     int rn = extract32(insn, 5, 5);
5783     int ra = extract32(insn, 10, 5);
5784     int rm = extract32(insn, 16, 5);
5785     int op_id = (extract32(insn, 29, 3) << 4) |
5786         (extract32(insn, 21, 3) << 1) |
5787         extract32(insn, 15, 1);
5788     bool sf = extract32(insn, 31, 1);
5789     bool is_sub = extract32(op_id, 0, 1);
5790     bool is_high = extract32(op_id, 2, 1);
5791     bool is_signed = false;
5792     TCGv_i64 tcg_op1;
5793     TCGv_i64 tcg_op2;
5794     TCGv_i64 tcg_tmp;
5795 
5796     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5797     switch (op_id) {
5798     case 0x42: /* SMADDL */
5799     case 0x43: /* SMSUBL */
5800     case 0x44: /* SMULH */
5801         is_signed = true;
5802         break;
5803     case 0x0: /* MADD (32bit) */
5804     case 0x1: /* MSUB (32bit) */
5805     case 0x40: /* MADD (64bit) */
5806     case 0x41: /* MSUB (64bit) */
5807     case 0x4a: /* UMADDL */
5808     case 0x4b: /* UMSUBL */
5809     case 0x4c: /* UMULH */
5810         break;
5811     default:
5812         unallocated_encoding(s);
5813         return;
5814     }
5815 
5816     if (is_high) {
5817         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5818         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5819         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5820         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5821 
5822         if (is_signed) {
5823             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5824         } else {
5825             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5826         }
5827         return;
5828     }
5829 
5830     tcg_op1 = tcg_temp_new_i64();
5831     tcg_op2 = tcg_temp_new_i64();
5832     tcg_tmp = tcg_temp_new_i64();
5833 
5834     if (op_id < 0x42) {
5835         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5836         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5837     } else {
5838         if (is_signed) {
5839             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5840             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5841         } else {
5842             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5843             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5844         }
5845     }
5846 
5847     if (ra == 31 && !is_sub) {
5848         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5849         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5850     } else {
5851         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5852         if (is_sub) {
5853             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5854         } else {
5855             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5856         }
5857     }
5858 
5859     if (!sf) {
5860         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5861     }
5862 }
5863 
5864 /* Add/subtract (with carry)
5865  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5866  * +--+--+--+------------------------+------+-------------+------+-----+
5867  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5868  * +--+--+--+------------------------+------+-------------+------+-----+
5869  */
5870 
5871 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5872 {
5873     unsigned int sf, op, setflags, rm, rn, rd;
5874     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5875 
5876     sf = extract32(insn, 31, 1);
5877     op = extract32(insn, 30, 1);
5878     setflags = extract32(insn, 29, 1);
5879     rm = extract32(insn, 16, 5);
5880     rn = extract32(insn, 5, 5);
5881     rd = extract32(insn, 0, 5);
5882 
5883     tcg_rd = cpu_reg(s, rd);
5884     tcg_rn = cpu_reg(s, rn);
5885 
5886     if (op) {
5887         tcg_y = tcg_temp_new_i64();
5888         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5889     } else {
5890         tcg_y = cpu_reg(s, rm);
5891     }
5892 
5893     if (setflags) {
5894         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5895     } else {
5896         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5897     }
5898 }
5899 
5900 /*
5901  * Rotate right into flags
5902  *  31 30 29                21       15          10      5  4      0
5903  * +--+--+--+-----------------+--------+-----------+------+--+------+
5904  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5905  * +--+--+--+-----------------+--------+-----------+------+--+------+
5906  */
5907 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5908 {
5909     int mask = extract32(insn, 0, 4);
5910     int o2 = extract32(insn, 4, 1);
5911     int rn = extract32(insn, 5, 5);
5912     int imm6 = extract32(insn, 15, 6);
5913     int sf_op_s = extract32(insn, 29, 3);
5914     TCGv_i64 tcg_rn;
5915     TCGv_i32 nzcv;
5916 
5917     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5918         unallocated_encoding(s);
5919         return;
5920     }
5921 
5922     tcg_rn = read_cpu_reg(s, rn, 1);
5923     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5924 
5925     nzcv = tcg_temp_new_i32();
5926     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5927 
5928     if (mask & 8) { /* N */
5929         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5930     }
5931     if (mask & 4) { /* Z */
5932         tcg_gen_not_i32(cpu_ZF, nzcv);
5933         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5934     }
5935     if (mask & 2) { /* C */
5936         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5937     }
5938     if (mask & 1) { /* V */
5939         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5940     }
5941 }
5942 
5943 /*
5944  * Evaluate into flags
5945  *  31 30 29                21        15   14        10      5  4      0
5946  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5947  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5948  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5949  */
5950 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5951 {
5952     int o3_mask = extract32(insn, 0, 5);
5953     int rn = extract32(insn, 5, 5);
5954     int o2 = extract32(insn, 15, 6);
5955     int sz = extract32(insn, 14, 1);
5956     int sf_op_s = extract32(insn, 29, 3);
5957     TCGv_i32 tmp;
5958     int shift;
5959 
5960     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5961         !dc_isar_feature(aa64_condm_4, s)) {
5962         unallocated_encoding(s);
5963         return;
5964     }
5965     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5966 
5967     tmp = tcg_temp_new_i32();
5968     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5969     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5970     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5971     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5972     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5973 }
5974 
5975 /* Conditional compare (immediate / register)
5976  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5977  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5978  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5979  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5980  *        [1]                             y                [0]       [0]
5981  */
5982 static void disas_cc(DisasContext *s, uint32_t insn)
5983 {
5984     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5985     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5986     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5987     DisasCompare c;
5988 
5989     if (!extract32(insn, 29, 1)) {
5990         unallocated_encoding(s);
5991         return;
5992     }
5993     if (insn & (1 << 10 | 1 << 4)) {
5994         unallocated_encoding(s);
5995         return;
5996     }
5997     sf = extract32(insn, 31, 1);
5998     op = extract32(insn, 30, 1);
5999     is_imm = extract32(insn, 11, 1);
6000     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6001     cond = extract32(insn, 12, 4);
6002     rn = extract32(insn, 5, 5);
6003     nzcv = extract32(insn, 0, 4);
6004 
6005     /* Set T0 = !COND.  */
6006     tcg_t0 = tcg_temp_new_i32();
6007     arm_test_cc(&c, cond);
6008     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6009 
6010     /* Load the arguments for the new comparison.  */
6011     if (is_imm) {
6012         tcg_y = tcg_temp_new_i64();
6013         tcg_gen_movi_i64(tcg_y, y);
6014     } else {
6015         tcg_y = cpu_reg(s, y);
6016     }
6017     tcg_rn = cpu_reg(s, rn);
6018 
6019     /* Set the flags for the new comparison.  */
6020     tcg_tmp = tcg_temp_new_i64();
6021     if (op) {
6022         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6023     } else {
6024         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6025     }
6026 
6027     /* If COND was false, force the flags to #nzcv.  Compute two masks
6028      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6029      * For tcg hosts that support ANDC, we can make do with just T1.
6030      * In either case, allow the tcg optimizer to delete any unused mask.
6031      */
6032     tcg_t1 = tcg_temp_new_i32();
6033     tcg_t2 = tcg_temp_new_i32();
6034     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6035     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6036 
6037     if (nzcv & 8) { /* N */
6038         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6039     } else {
6040         if (TCG_TARGET_HAS_andc_i32) {
6041             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6042         } else {
6043             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6044         }
6045     }
6046     if (nzcv & 4) { /* Z */
6047         if (TCG_TARGET_HAS_andc_i32) {
6048             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6049         } else {
6050             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6051         }
6052     } else {
6053         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6054     }
6055     if (nzcv & 2) { /* C */
6056         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6057     } else {
6058         if (TCG_TARGET_HAS_andc_i32) {
6059             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6060         } else {
6061             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6062         }
6063     }
6064     if (nzcv & 1) { /* V */
6065         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6066     } else {
6067         if (TCG_TARGET_HAS_andc_i32) {
6068             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6069         } else {
6070             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6071         }
6072     }
6073 }
6074 
6075 /* Conditional select
6076  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6077  * +----+----+---+-----------------+------+------+-----+------+------+
6078  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6079  * +----+----+---+-----------------+------+------+-----+------+------+
6080  */
6081 static void disas_cond_select(DisasContext *s, uint32_t insn)
6082 {
6083     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6084     TCGv_i64 tcg_rd, zero;
6085     DisasCompare64 c;
6086 
6087     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6088         /* S == 1 or op2<1> == 1 */
6089         unallocated_encoding(s);
6090         return;
6091     }
6092     sf = extract32(insn, 31, 1);
6093     else_inv = extract32(insn, 30, 1);
6094     rm = extract32(insn, 16, 5);
6095     cond = extract32(insn, 12, 4);
6096     else_inc = extract32(insn, 10, 1);
6097     rn = extract32(insn, 5, 5);
6098     rd = extract32(insn, 0, 5);
6099 
6100     tcg_rd = cpu_reg(s, rd);
6101 
6102     a64_test_cc(&c, cond);
6103     zero = tcg_constant_i64(0);
6104 
6105     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6106         /* CSET & CSETM.  */
6107         if (else_inv) {
6108             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6109                                    tcg_rd, c.value, zero);
6110         } else {
6111             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6112                                 tcg_rd, c.value, zero);
6113         }
6114     } else {
6115         TCGv_i64 t_true = cpu_reg(s, rn);
6116         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6117         if (else_inv && else_inc) {
6118             tcg_gen_neg_i64(t_false, t_false);
6119         } else if (else_inv) {
6120             tcg_gen_not_i64(t_false, t_false);
6121         } else if (else_inc) {
6122             tcg_gen_addi_i64(t_false, t_false, 1);
6123         }
6124         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6125     }
6126 
6127     if (!sf) {
6128         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6129     }
6130 }
6131 
6132 static void handle_clz(DisasContext *s, unsigned int sf,
6133                        unsigned int rn, unsigned int rd)
6134 {
6135     TCGv_i64 tcg_rd, tcg_rn;
6136     tcg_rd = cpu_reg(s, rd);
6137     tcg_rn = cpu_reg(s, rn);
6138 
6139     if (sf) {
6140         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6141     } else {
6142         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6143         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6144         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6145         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6146     }
6147 }
6148 
6149 static void handle_cls(DisasContext *s, unsigned int sf,
6150                        unsigned int rn, unsigned int rd)
6151 {
6152     TCGv_i64 tcg_rd, tcg_rn;
6153     tcg_rd = cpu_reg(s, rd);
6154     tcg_rn = cpu_reg(s, rn);
6155 
6156     if (sf) {
6157         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6158     } else {
6159         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6160         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6161         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6162         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6163     }
6164 }
6165 
6166 static void handle_rbit(DisasContext *s, unsigned int sf,
6167                         unsigned int rn, unsigned int rd)
6168 {
6169     TCGv_i64 tcg_rd, tcg_rn;
6170     tcg_rd = cpu_reg(s, rd);
6171     tcg_rn = cpu_reg(s, rn);
6172 
6173     if (sf) {
6174         gen_helper_rbit64(tcg_rd, tcg_rn);
6175     } else {
6176         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6177         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6178         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6179         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6180     }
6181 }
6182 
6183 /* REV with sf==1, opcode==3 ("REV64") */
6184 static void handle_rev64(DisasContext *s, unsigned int sf,
6185                          unsigned int rn, unsigned int rd)
6186 {
6187     if (!sf) {
6188         unallocated_encoding(s);
6189         return;
6190     }
6191     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6192 }
6193 
6194 /* REV with sf==0, opcode==2
6195  * REV32 (sf==1, opcode==2)
6196  */
6197 static void handle_rev32(DisasContext *s, unsigned int sf,
6198                          unsigned int rn, unsigned int rd)
6199 {
6200     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6201     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6202 
6203     if (sf) {
6204         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6205         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6206     } else {
6207         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6208     }
6209 }
6210 
6211 /* REV16 (opcode==1) */
6212 static void handle_rev16(DisasContext *s, unsigned int sf,
6213                          unsigned int rn, unsigned int rd)
6214 {
6215     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6216     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6217     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6218     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6219 
6220     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6221     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6222     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6223     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6224     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6225 }
6226 
6227 /* Data-processing (1 source)
6228  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6229  * +----+---+---+-----------------+---------+--------+------+------+
6230  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6231  * +----+---+---+-----------------+---------+--------+------+------+
6232  */
6233 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6234 {
6235     unsigned int sf, opcode, opcode2, rn, rd;
6236     TCGv_i64 tcg_rd;
6237 
6238     if (extract32(insn, 29, 1)) {
6239         unallocated_encoding(s);
6240         return;
6241     }
6242 
6243     sf = extract32(insn, 31, 1);
6244     opcode = extract32(insn, 10, 6);
6245     opcode2 = extract32(insn, 16, 5);
6246     rn = extract32(insn, 5, 5);
6247     rd = extract32(insn, 0, 5);
6248 
6249 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6250 
6251     switch (MAP(sf, opcode2, opcode)) {
6252     case MAP(0, 0x00, 0x00): /* RBIT */
6253     case MAP(1, 0x00, 0x00):
6254         handle_rbit(s, sf, rn, rd);
6255         break;
6256     case MAP(0, 0x00, 0x01): /* REV16 */
6257     case MAP(1, 0x00, 0x01):
6258         handle_rev16(s, sf, rn, rd);
6259         break;
6260     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6261     case MAP(1, 0x00, 0x02):
6262         handle_rev32(s, sf, rn, rd);
6263         break;
6264     case MAP(1, 0x00, 0x03): /* REV64 */
6265         handle_rev64(s, sf, rn, rd);
6266         break;
6267     case MAP(0, 0x00, 0x04): /* CLZ */
6268     case MAP(1, 0x00, 0x04):
6269         handle_clz(s, sf, rn, rd);
6270         break;
6271     case MAP(0, 0x00, 0x05): /* CLS */
6272     case MAP(1, 0x00, 0x05):
6273         handle_cls(s, sf, rn, rd);
6274         break;
6275     case MAP(1, 0x01, 0x00): /* PACIA */
6276         if (s->pauth_active) {
6277             tcg_rd = cpu_reg(s, rd);
6278             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6279         } else if (!dc_isar_feature(aa64_pauth, s)) {
6280             goto do_unallocated;
6281         }
6282         break;
6283     case MAP(1, 0x01, 0x01): /* PACIB */
6284         if (s->pauth_active) {
6285             tcg_rd = cpu_reg(s, rd);
6286             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6287         } else if (!dc_isar_feature(aa64_pauth, s)) {
6288             goto do_unallocated;
6289         }
6290         break;
6291     case MAP(1, 0x01, 0x02): /* PACDA */
6292         if (s->pauth_active) {
6293             tcg_rd = cpu_reg(s, rd);
6294             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6295         } else if (!dc_isar_feature(aa64_pauth, s)) {
6296             goto do_unallocated;
6297         }
6298         break;
6299     case MAP(1, 0x01, 0x03): /* PACDB */
6300         if (s->pauth_active) {
6301             tcg_rd = cpu_reg(s, rd);
6302             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6303         } else if (!dc_isar_feature(aa64_pauth, s)) {
6304             goto do_unallocated;
6305         }
6306         break;
6307     case MAP(1, 0x01, 0x04): /* AUTIA */
6308         if (s->pauth_active) {
6309             tcg_rd = cpu_reg(s, rd);
6310             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6311         } else if (!dc_isar_feature(aa64_pauth, s)) {
6312             goto do_unallocated;
6313         }
6314         break;
6315     case MAP(1, 0x01, 0x05): /* AUTIB */
6316         if (s->pauth_active) {
6317             tcg_rd = cpu_reg(s, rd);
6318             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6319         } else if (!dc_isar_feature(aa64_pauth, s)) {
6320             goto do_unallocated;
6321         }
6322         break;
6323     case MAP(1, 0x01, 0x06): /* AUTDA */
6324         if (s->pauth_active) {
6325             tcg_rd = cpu_reg(s, rd);
6326             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6327         } else if (!dc_isar_feature(aa64_pauth, s)) {
6328             goto do_unallocated;
6329         }
6330         break;
6331     case MAP(1, 0x01, 0x07): /* AUTDB */
6332         if (s->pauth_active) {
6333             tcg_rd = cpu_reg(s, rd);
6334             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6335         } else if (!dc_isar_feature(aa64_pauth, s)) {
6336             goto do_unallocated;
6337         }
6338         break;
6339     case MAP(1, 0x01, 0x08): /* PACIZA */
6340         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6341             goto do_unallocated;
6342         } else if (s->pauth_active) {
6343             tcg_rd = cpu_reg(s, rd);
6344             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6345         }
6346         break;
6347     case MAP(1, 0x01, 0x09): /* PACIZB */
6348         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6349             goto do_unallocated;
6350         } else if (s->pauth_active) {
6351             tcg_rd = cpu_reg(s, rd);
6352             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6353         }
6354         break;
6355     case MAP(1, 0x01, 0x0a): /* PACDZA */
6356         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6357             goto do_unallocated;
6358         } else if (s->pauth_active) {
6359             tcg_rd = cpu_reg(s, rd);
6360             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6361         }
6362         break;
6363     case MAP(1, 0x01, 0x0b): /* PACDZB */
6364         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6365             goto do_unallocated;
6366         } else if (s->pauth_active) {
6367             tcg_rd = cpu_reg(s, rd);
6368             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6369         }
6370         break;
6371     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6372         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6373             goto do_unallocated;
6374         } else if (s->pauth_active) {
6375             tcg_rd = cpu_reg(s, rd);
6376             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6377         }
6378         break;
6379     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6380         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6381             goto do_unallocated;
6382         } else if (s->pauth_active) {
6383             tcg_rd = cpu_reg(s, rd);
6384             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6385         }
6386         break;
6387     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6388         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6389             goto do_unallocated;
6390         } else if (s->pauth_active) {
6391             tcg_rd = cpu_reg(s, rd);
6392             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6393         }
6394         break;
6395     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6396         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6397             goto do_unallocated;
6398         } else if (s->pauth_active) {
6399             tcg_rd = cpu_reg(s, rd);
6400             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6401         }
6402         break;
6403     case MAP(1, 0x01, 0x10): /* XPACI */
6404         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6405             goto do_unallocated;
6406         } else if (s->pauth_active) {
6407             tcg_rd = cpu_reg(s, rd);
6408             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6409         }
6410         break;
6411     case MAP(1, 0x01, 0x11): /* XPACD */
6412         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6413             goto do_unallocated;
6414         } else if (s->pauth_active) {
6415             tcg_rd = cpu_reg(s, rd);
6416             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6417         }
6418         break;
6419     default:
6420     do_unallocated:
6421         unallocated_encoding(s);
6422         break;
6423     }
6424 
6425 #undef MAP
6426 }
6427 
6428 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6429                        unsigned int rm, unsigned int rn, unsigned int rd)
6430 {
6431     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6432     tcg_rd = cpu_reg(s, rd);
6433 
6434     if (!sf && is_signed) {
6435         tcg_n = tcg_temp_new_i64();
6436         tcg_m = tcg_temp_new_i64();
6437         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6438         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6439     } else {
6440         tcg_n = read_cpu_reg(s, rn, sf);
6441         tcg_m = read_cpu_reg(s, rm, sf);
6442     }
6443 
6444     if (is_signed) {
6445         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6446     } else {
6447         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6448     }
6449 
6450     if (!sf) { /* zero extend final result */
6451         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6452     }
6453 }
6454 
6455 /* LSLV, LSRV, ASRV, RORV */
6456 static void handle_shift_reg(DisasContext *s,
6457                              enum a64_shift_type shift_type, unsigned int sf,
6458                              unsigned int rm, unsigned int rn, unsigned int rd)
6459 {
6460     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6461     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6462     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6463 
6464     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6465     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6466 }
6467 
6468 /* CRC32[BHWX], CRC32C[BHWX] */
6469 static void handle_crc32(DisasContext *s,
6470                          unsigned int sf, unsigned int sz, bool crc32c,
6471                          unsigned int rm, unsigned int rn, unsigned int rd)
6472 {
6473     TCGv_i64 tcg_acc, tcg_val;
6474     TCGv_i32 tcg_bytes;
6475 
6476     if (!dc_isar_feature(aa64_crc32, s)
6477         || (sf == 1 && sz != 3)
6478         || (sf == 0 && sz == 3)) {
6479         unallocated_encoding(s);
6480         return;
6481     }
6482 
6483     if (sz == 3) {
6484         tcg_val = cpu_reg(s, rm);
6485     } else {
6486         uint64_t mask;
6487         switch (sz) {
6488         case 0:
6489             mask = 0xFF;
6490             break;
6491         case 1:
6492             mask = 0xFFFF;
6493             break;
6494         case 2:
6495             mask = 0xFFFFFFFF;
6496             break;
6497         default:
6498             g_assert_not_reached();
6499         }
6500         tcg_val = tcg_temp_new_i64();
6501         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6502     }
6503 
6504     tcg_acc = cpu_reg(s, rn);
6505     tcg_bytes = tcg_constant_i32(1 << sz);
6506 
6507     if (crc32c) {
6508         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6509     } else {
6510         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6511     }
6512 }
6513 
6514 /* Data-processing (2 source)
6515  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6516  * +----+---+---+-----------------+------+--------+------+------+
6517  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6518  * +----+---+---+-----------------+------+--------+------+------+
6519  */
6520 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6521 {
6522     unsigned int sf, rm, opcode, rn, rd, setflag;
6523     sf = extract32(insn, 31, 1);
6524     setflag = extract32(insn, 29, 1);
6525     rm = extract32(insn, 16, 5);
6526     opcode = extract32(insn, 10, 6);
6527     rn = extract32(insn, 5, 5);
6528     rd = extract32(insn, 0, 5);
6529 
6530     if (setflag && opcode != 0) {
6531         unallocated_encoding(s);
6532         return;
6533     }
6534 
6535     switch (opcode) {
6536     case 0: /* SUBP(S) */
6537         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6538             goto do_unallocated;
6539         } else {
6540             TCGv_i64 tcg_n, tcg_m, tcg_d;
6541 
6542             tcg_n = read_cpu_reg_sp(s, rn, true);
6543             tcg_m = read_cpu_reg_sp(s, rm, true);
6544             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6545             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6546             tcg_d = cpu_reg(s, rd);
6547 
6548             if (setflag) {
6549                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6550             } else {
6551                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6552             }
6553         }
6554         break;
6555     case 2: /* UDIV */
6556         handle_div(s, false, sf, rm, rn, rd);
6557         break;
6558     case 3: /* SDIV */
6559         handle_div(s, true, sf, rm, rn, rd);
6560         break;
6561     case 4: /* IRG */
6562         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6563             goto do_unallocated;
6564         }
6565         if (s->ata[0]) {
6566             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6567                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6568         } else {
6569             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6570                                              cpu_reg_sp(s, rn));
6571         }
6572         break;
6573     case 5: /* GMI */
6574         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6575             goto do_unallocated;
6576         } else {
6577             TCGv_i64 t = tcg_temp_new_i64();
6578 
6579             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6580             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6581             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6582         }
6583         break;
6584     case 8: /* LSLV */
6585         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6586         break;
6587     case 9: /* LSRV */
6588         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6589         break;
6590     case 10: /* ASRV */
6591         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6592         break;
6593     case 11: /* RORV */
6594         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6595         break;
6596     case 12: /* PACGA */
6597         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6598             goto do_unallocated;
6599         }
6600         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6601                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6602         break;
6603     case 16:
6604     case 17:
6605     case 18:
6606     case 19:
6607     case 20:
6608     case 21:
6609     case 22:
6610     case 23: /* CRC32 */
6611     {
6612         int sz = extract32(opcode, 0, 2);
6613         bool crc32c = extract32(opcode, 2, 1);
6614         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6615         break;
6616     }
6617     default:
6618     do_unallocated:
6619         unallocated_encoding(s);
6620         break;
6621     }
6622 }
6623 
6624 /*
6625  * Data processing - register
6626  *  31  30 29  28      25    21  20  16      10         0
6627  * +--+---+--+---+-------+-----+-------+-------+---------+
6628  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6629  * +--+---+--+---+-------+-----+-------+-------+---------+
6630  */
6631 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6632 {
6633     int op0 = extract32(insn, 30, 1);
6634     int op1 = extract32(insn, 28, 1);
6635     int op2 = extract32(insn, 21, 4);
6636     int op3 = extract32(insn, 10, 6);
6637 
6638     if (!op1) {
6639         if (op2 & 8) {
6640             if (op2 & 1) {
6641                 /* Add/sub (extended register) */
6642                 disas_add_sub_ext_reg(s, insn);
6643             } else {
6644                 /* Add/sub (shifted register) */
6645                 disas_add_sub_reg(s, insn);
6646             }
6647         } else {
6648             /* Logical (shifted register) */
6649             disas_logic_reg(s, insn);
6650         }
6651         return;
6652     }
6653 
6654     switch (op2) {
6655     case 0x0:
6656         switch (op3) {
6657         case 0x00: /* Add/subtract (with carry) */
6658             disas_adc_sbc(s, insn);
6659             break;
6660 
6661         case 0x01: /* Rotate right into flags */
6662         case 0x21:
6663             disas_rotate_right_into_flags(s, insn);
6664             break;
6665 
6666         case 0x02: /* Evaluate into flags */
6667         case 0x12:
6668         case 0x22:
6669         case 0x32:
6670             disas_evaluate_into_flags(s, insn);
6671             break;
6672 
6673         default:
6674             goto do_unallocated;
6675         }
6676         break;
6677 
6678     case 0x2: /* Conditional compare */
6679         disas_cc(s, insn); /* both imm and reg forms */
6680         break;
6681 
6682     case 0x4: /* Conditional select */
6683         disas_cond_select(s, insn);
6684         break;
6685 
6686     case 0x6: /* Data-processing */
6687         if (op0) {    /* (1 source) */
6688             disas_data_proc_1src(s, insn);
6689         } else {      /* (2 source) */
6690             disas_data_proc_2src(s, insn);
6691         }
6692         break;
6693     case 0x8 ... 0xf: /* (3 source) */
6694         disas_data_proc_3src(s, insn);
6695         break;
6696 
6697     default:
6698     do_unallocated:
6699         unallocated_encoding(s);
6700         break;
6701     }
6702 }
6703 
6704 static void handle_fp_compare(DisasContext *s, int size,
6705                               unsigned int rn, unsigned int rm,
6706                               bool cmp_with_zero, bool signal_all_nans)
6707 {
6708     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6709     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6710 
6711     if (size == MO_64) {
6712         TCGv_i64 tcg_vn, tcg_vm;
6713 
6714         tcg_vn = read_fp_dreg(s, rn);
6715         if (cmp_with_zero) {
6716             tcg_vm = tcg_constant_i64(0);
6717         } else {
6718             tcg_vm = read_fp_dreg(s, rm);
6719         }
6720         if (signal_all_nans) {
6721             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6722         } else {
6723             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6724         }
6725     } else {
6726         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6727         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6728 
6729         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6730         if (cmp_with_zero) {
6731             tcg_gen_movi_i32(tcg_vm, 0);
6732         } else {
6733             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6734         }
6735 
6736         switch (size) {
6737         case MO_32:
6738             if (signal_all_nans) {
6739                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6740             } else {
6741                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6742             }
6743             break;
6744         case MO_16:
6745             if (signal_all_nans) {
6746                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6747             } else {
6748                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6749             }
6750             break;
6751         default:
6752             g_assert_not_reached();
6753         }
6754     }
6755 
6756     gen_set_nzcv(tcg_flags);
6757 }
6758 
6759 /* Floating point compare
6760  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6761  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6762  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6763  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6764  */
6765 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6766 {
6767     unsigned int mos, type, rm, op, rn, opc, op2r;
6768     int size;
6769 
6770     mos = extract32(insn, 29, 3);
6771     type = extract32(insn, 22, 2);
6772     rm = extract32(insn, 16, 5);
6773     op = extract32(insn, 14, 2);
6774     rn = extract32(insn, 5, 5);
6775     opc = extract32(insn, 3, 2);
6776     op2r = extract32(insn, 0, 3);
6777 
6778     if (mos || op || op2r) {
6779         unallocated_encoding(s);
6780         return;
6781     }
6782 
6783     switch (type) {
6784     case 0:
6785         size = MO_32;
6786         break;
6787     case 1:
6788         size = MO_64;
6789         break;
6790     case 3:
6791         size = MO_16;
6792         if (dc_isar_feature(aa64_fp16, s)) {
6793             break;
6794         }
6795         /* fallthru */
6796     default:
6797         unallocated_encoding(s);
6798         return;
6799     }
6800 
6801     if (!fp_access_check(s)) {
6802         return;
6803     }
6804 
6805     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6806 }
6807 
6808 /* Floating point conditional compare
6809  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6810  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6811  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6812  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6813  */
6814 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6815 {
6816     unsigned int mos, type, rm, cond, rn, op, nzcv;
6817     TCGLabel *label_continue = NULL;
6818     int size;
6819 
6820     mos = extract32(insn, 29, 3);
6821     type = extract32(insn, 22, 2);
6822     rm = extract32(insn, 16, 5);
6823     cond = extract32(insn, 12, 4);
6824     rn = extract32(insn, 5, 5);
6825     op = extract32(insn, 4, 1);
6826     nzcv = extract32(insn, 0, 4);
6827 
6828     if (mos) {
6829         unallocated_encoding(s);
6830         return;
6831     }
6832 
6833     switch (type) {
6834     case 0:
6835         size = MO_32;
6836         break;
6837     case 1:
6838         size = MO_64;
6839         break;
6840     case 3:
6841         size = MO_16;
6842         if (dc_isar_feature(aa64_fp16, s)) {
6843             break;
6844         }
6845         /* fallthru */
6846     default:
6847         unallocated_encoding(s);
6848         return;
6849     }
6850 
6851     if (!fp_access_check(s)) {
6852         return;
6853     }
6854 
6855     if (cond < 0x0e) { /* not always */
6856         TCGLabel *label_match = gen_new_label();
6857         label_continue = gen_new_label();
6858         arm_gen_test_cc(cond, label_match);
6859         /* nomatch: */
6860         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6861         tcg_gen_br(label_continue);
6862         gen_set_label(label_match);
6863     }
6864 
6865     handle_fp_compare(s, size, rn, rm, false, op);
6866 
6867     if (cond < 0x0e) {
6868         gen_set_label(label_continue);
6869     }
6870 }
6871 
6872 /* Floating point conditional select
6873  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6874  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6875  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6876  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6877  */
6878 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6879 {
6880     unsigned int mos, type, rm, cond, rn, rd;
6881     TCGv_i64 t_true, t_false;
6882     DisasCompare64 c;
6883     MemOp sz;
6884 
6885     mos = extract32(insn, 29, 3);
6886     type = extract32(insn, 22, 2);
6887     rm = extract32(insn, 16, 5);
6888     cond = extract32(insn, 12, 4);
6889     rn = extract32(insn, 5, 5);
6890     rd = extract32(insn, 0, 5);
6891 
6892     if (mos) {
6893         unallocated_encoding(s);
6894         return;
6895     }
6896 
6897     switch (type) {
6898     case 0:
6899         sz = MO_32;
6900         break;
6901     case 1:
6902         sz = MO_64;
6903         break;
6904     case 3:
6905         sz = MO_16;
6906         if (dc_isar_feature(aa64_fp16, s)) {
6907             break;
6908         }
6909         /* fallthru */
6910     default:
6911         unallocated_encoding(s);
6912         return;
6913     }
6914 
6915     if (!fp_access_check(s)) {
6916         return;
6917     }
6918 
6919     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6920     t_true = tcg_temp_new_i64();
6921     t_false = tcg_temp_new_i64();
6922     read_vec_element(s, t_true, rn, 0, sz);
6923     read_vec_element(s, t_false, rm, 0, sz);
6924 
6925     a64_test_cc(&c, cond);
6926     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6927                         t_true, t_false);
6928 
6929     /* Note that sregs & hregs write back zeros to the high bits,
6930        and we've already done the zero-extension.  */
6931     write_fp_dreg(s, rd, t_true);
6932 }
6933 
6934 /* Floating-point data-processing (1 source) - half precision */
6935 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6936 {
6937     TCGv_ptr fpst = NULL;
6938     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6939     TCGv_i32 tcg_res = tcg_temp_new_i32();
6940 
6941     switch (opcode) {
6942     case 0x0: /* FMOV */
6943         tcg_gen_mov_i32(tcg_res, tcg_op);
6944         break;
6945     case 0x1: /* FABS */
6946         gen_vfp_absh(tcg_res, tcg_op);
6947         break;
6948     case 0x2: /* FNEG */
6949         gen_vfp_negh(tcg_res, tcg_op);
6950         break;
6951     case 0x3: /* FSQRT */
6952         fpst = fpstatus_ptr(FPST_FPCR_F16);
6953         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6954         break;
6955     case 0x8: /* FRINTN */
6956     case 0x9: /* FRINTP */
6957     case 0xa: /* FRINTM */
6958     case 0xb: /* FRINTZ */
6959     case 0xc: /* FRINTA */
6960     {
6961         TCGv_i32 tcg_rmode;
6962 
6963         fpst = fpstatus_ptr(FPST_FPCR_F16);
6964         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6965         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6966         gen_restore_rmode(tcg_rmode, fpst);
6967         break;
6968     }
6969     case 0xe: /* FRINTX */
6970         fpst = fpstatus_ptr(FPST_FPCR_F16);
6971         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6972         break;
6973     case 0xf: /* FRINTI */
6974         fpst = fpstatus_ptr(FPST_FPCR_F16);
6975         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6976         break;
6977     default:
6978         g_assert_not_reached();
6979     }
6980 
6981     write_fp_sreg(s, rd, tcg_res);
6982 }
6983 
6984 /* Floating-point data-processing (1 source) - single precision */
6985 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6986 {
6987     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6988     TCGv_i32 tcg_op, tcg_res;
6989     TCGv_ptr fpst;
6990     int rmode = -1;
6991 
6992     tcg_op = read_fp_sreg(s, rn);
6993     tcg_res = tcg_temp_new_i32();
6994 
6995     switch (opcode) {
6996     case 0x0: /* FMOV */
6997         tcg_gen_mov_i32(tcg_res, tcg_op);
6998         goto done;
6999     case 0x1: /* FABS */
7000         gen_vfp_abss(tcg_res, tcg_op);
7001         goto done;
7002     case 0x2: /* FNEG */
7003         gen_vfp_negs(tcg_res, tcg_op);
7004         goto done;
7005     case 0x3: /* FSQRT */
7006         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7007         goto done;
7008     case 0x6: /* BFCVT */
7009         gen_fpst = gen_helper_bfcvt;
7010         break;
7011     case 0x8: /* FRINTN */
7012     case 0x9: /* FRINTP */
7013     case 0xa: /* FRINTM */
7014     case 0xb: /* FRINTZ */
7015     case 0xc: /* FRINTA */
7016         rmode = opcode & 7;
7017         gen_fpst = gen_helper_rints;
7018         break;
7019     case 0xe: /* FRINTX */
7020         gen_fpst = gen_helper_rints_exact;
7021         break;
7022     case 0xf: /* FRINTI */
7023         gen_fpst = gen_helper_rints;
7024         break;
7025     case 0x10: /* FRINT32Z */
7026         rmode = FPROUNDING_ZERO;
7027         gen_fpst = gen_helper_frint32_s;
7028         break;
7029     case 0x11: /* FRINT32X */
7030         gen_fpst = gen_helper_frint32_s;
7031         break;
7032     case 0x12: /* FRINT64Z */
7033         rmode = FPROUNDING_ZERO;
7034         gen_fpst = gen_helper_frint64_s;
7035         break;
7036     case 0x13: /* FRINT64X */
7037         gen_fpst = gen_helper_frint64_s;
7038         break;
7039     default:
7040         g_assert_not_reached();
7041     }
7042 
7043     fpst = fpstatus_ptr(FPST_FPCR);
7044     if (rmode >= 0) {
7045         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7046         gen_fpst(tcg_res, tcg_op, fpst);
7047         gen_restore_rmode(tcg_rmode, fpst);
7048     } else {
7049         gen_fpst(tcg_res, tcg_op, fpst);
7050     }
7051 
7052  done:
7053     write_fp_sreg(s, rd, tcg_res);
7054 }
7055 
7056 /* Floating-point data-processing (1 source) - double precision */
7057 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7058 {
7059     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7060     TCGv_i64 tcg_op, tcg_res;
7061     TCGv_ptr fpst;
7062     int rmode = -1;
7063 
7064     switch (opcode) {
7065     case 0x0: /* FMOV */
7066         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7067         return;
7068     }
7069 
7070     tcg_op = read_fp_dreg(s, rn);
7071     tcg_res = tcg_temp_new_i64();
7072 
7073     switch (opcode) {
7074     case 0x1: /* FABS */
7075         gen_vfp_absd(tcg_res, tcg_op);
7076         goto done;
7077     case 0x2: /* FNEG */
7078         gen_vfp_negd(tcg_res, tcg_op);
7079         goto done;
7080     case 0x3: /* FSQRT */
7081         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7082         goto done;
7083     case 0x8: /* FRINTN */
7084     case 0x9: /* FRINTP */
7085     case 0xa: /* FRINTM */
7086     case 0xb: /* FRINTZ */
7087     case 0xc: /* FRINTA */
7088         rmode = opcode & 7;
7089         gen_fpst = gen_helper_rintd;
7090         break;
7091     case 0xe: /* FRINTX */
7092         gen_fpst = gen_helper_rintd_exact;
7093         break;
7094     case 0xf: /* FRINTI */
7095         gen_fpst = gen_helper_rintd;
7096         break;
7097     case 0x10: /* FRINT32Z */
7098         rmode = FPROUNDING_ZERO;
7099         gen_fpst = gen_helper_frint32_d;
7100         break;
7101     case 0x11: /* FRINT32X */
7102         gen_fpst = gen_helper_frint32_d;
7103         break;
7104     case 0x12: /* FRINT64Z */
7105         rmode = FPROUNDING_ZERO;
7106         gen_fpst = gen_helper_frint64_d;
7107         break;
7108     case 0x13: /* FRINT64X */
7109         gen_fpst = gen_helper_frint64_d;
7110         break;
7111     default:
7112         g_assert_not_reached();
7113     }
7114 
7115     fpst = fpstatus_ptr(FPST_FPCR);
7116     if (rmode >= 0) {
7117         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7118         gen_fpst(tcg_res, tcg_op, fpst);
7119         gen_restore_rmode(tcg_rmode, fpst);
7120     } else {
7121         gen_fpst(tcg_res, tcg_op, fpst);
7122     }
7123 
7124  done:
7125     write_fp_dreg(s, rd, tcg_res);
7126 }
7127 
7128 static void handle_fp_fcvt(DisasContext *s, int opcode,
7129                            int rd, int rn, int dtype, int ntype)
7130 {
7131     switch (ntype) {
7132     case 0x0:
7133     {
7134         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7135         if (dtype == 1) {
7136             /* Single to double */
7137             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7138             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7139             write_fp_dreg(s, rd, tcg_rd);
7140         } else {
7141             /* Single to half */
7142             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7143             TCGv_i32 ahp = get_ahp_flag();
7144             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7145 
7146             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7147             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7148             write_fp_sreg(s, rd, tcg_rd);
7149         }
7150         break;
7151     }
7152     case 0x1:
7153     {
7154         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7155         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7156         if (dtype == 0) {
7157             /* Double to single */
7158             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7159         } else {
7160             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7161             TCGv_i32 ahp = get_ahp_flag();
7162             /* Double to half */
7163             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7164             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7165         }
7166         write_fp_sreg(s, rd, tcg_rd);
7167         break;
7168     }
7169     case 0x3:
7170     {
7171         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7172         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7173         TCGv_i32 tcg_ahp = get_ahp_flag();
7174         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7175         if (dtype == 0) {
7176             /* Half to single */
7177             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7178             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7179             write_fp_sreg(s, rd, tcg_rd);
7180         } else {
7181             /* Half to double */
7182             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7183             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7184             write_fp_dreg(s, rd, tcg_rd);
7185         }
7186         break;
7187     }
7188     default:
7189         g_assert_not_reached();
7190     }
7191 }
7192 
7193 /* Floating point data-processing (1 source)
7194  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7195  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7196  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7197  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7198  */
7199 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7200 {
7201     int mos = extract32(insn, 29, 3);
7202     int type = extract32(insn, 22, 2);
7203     int opcode = extract32(insn, 15, 6);
7204     int rn = extract32(insn, 5, 5);
7205     int rd = extract32(insn, 0, 5);
7206 
7207     if (mos) {
7208         goto do_unallocated;
7209     }
7210 
7211     switch (opcode) {
7212     case 0x4: case 0x5: case 0x7:
7213     {
7214         /* FCVT between half, single and double precision */
7215         int dtype = extract32(opcode, 0, 2);
7216         if (type == 2 || dtype == type) {
7217             goto do_unallocated;
7218         }
7219         if (!fp_access_check(s)) {
7220             return;
7221         }
7222 
7223         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7224         break;
7225     }
7226 
7227     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7228         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7229             goto do_unallocated;
7230         }
7231         /* fall through */
7232     case 0x0 ... 0x3:
7233     case 0x8 ... 0xc:
7234     case 0xe ... 0xf:
7235         /* 32-to-32 and 64-to-64 ops */
7236         switch (type) {
7237         case 0:
7238             if (!fp_access_check(s)) {
7239                 return;
7240             }
7241             handle_fp_1src_single(s, opcode, rd, rn);
7242             break;
7243         case 1:
7244             if (!fp_access_check(s)) {
7245                 return;
7246             }
7247             handle_fp_1src_double(s, opcode, rd, rn);
7248             break;
7249         case 3:
7250             if (!dc_isar_feature(aa64_fp16, s)) {
7251                 goto do_unallocated;
7252             }
7253 
7254             if (!fp_access_check(s)) {
7255                 return;
7256             }
7257             handle_fp_1src_half(s, opcode, rd, rn);
7258             break;
7259         default:
7260             goto do_unallocated;
7261         }
7262         break;
7263 
7264     case 0x6:
7265         switch (type) {
7266         case 1: /* BFCVT */
7267             if (!dc_isar_feature(aa64_bf16, s)) {
7268                 goto do_unallocated;
7269             }
7270             if (!fp_access_check(s)) {
7271                 return;
7272             }
7273             handle_fp_1src_single(s, opcode, rd, rn);
7274             break;
7275         default:
7276             goto do_unallocated;
7277         }
7278         break;
7279 
7280     default:
7281     do_unallocated:
7282         unallocated_encoding(s);
7283         break;
7284     }
7285 }
7286 
7287 /* Floating-point data-processing (3 source) - single precision */
7288 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7289                                   int rd, int rn, int rm, int ra)
7290 {
7291     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7292     TCGv_i32 tcg_res = tcg_temp_new_i32();
7293     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7294 
7295     tcg_op1 = read_fp_sreg(s, rn);
7296     tcg_op2 = read_fp_sreg(s, rm);
7297     tcg_op3 = read_fp_sreg(s, ra);
7298 
7299     /* These are fused multiply-add, and must be done as one
7300      * floating point operation with no rounding between the
7301      * multiplication and addition steps.
7302      * NB that doing the negations here as separate steps is
7303      * correct : an input NaN should come out with its sign bit
7304      * flipped if it is a negated-input.
7305      */
7306     if (o1 == true) {
7307         gen_vfp_negs(tcg_op3, tcg_op3);
7308     }
7309 
7310     if (o0 != o1) {
7311         gen_vfp_negs(tcg_op1, tcg_op1);
7312     }
7313 
7314     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7315 
7316     write_fp_sreg(s, rd, tcg_res);
7317 }
7318 
7319 /* Floating-point data-processing (3 source) - double precision */
7320 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7321                                   int rd, int rn, int rm, int ra)
7322 {
7323     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7324     TCGv_i64 tcg_res = tcg_temp_new_i64();
7325     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7326 
7327     tcg_op1 = read_fp_dreg(s, rn);
7328     tcg_op2 = read_fp_dreg(s, rm);
7329     tcg_op3 = read_fp_dreg(s, ra);
7330 
7331     /* These are fused multiply-add, and must be done as one
7332      * floating point operation with no rounding between the
7333      * multiplication and addition steps.
7334      * NB that doing the negations here as separate steps is
7335      * correct : an input NaN should come out with its sign bit
7336      * flipped if it is a negated-input.
7337      */
7338     if (o1 == true) {
7339         gen_vfp_negd(tcg_op3, tcg_op3);
7340     }
7341 
7342     if (o0 != o1) {
7343         gen_vfp_negd(tcg_op1, tcg_op1);
7344     }
7345 
7346     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7347 
7348     write_fp_dreg(s, rd, tcg_res);
7349 }
7350 
7351 /* Floating-point data-processing (3 source) - half precision */
7352 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7353                                 int rd, int rn, int rm, int ra)
7354 {
7355     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7356     TCGv_i32 tcg_res = tcg_temp_new_i32();
7357     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7358 
7359     tcg_op1 = read_fp_hreg(s, rn);
7360     tcg_op2 = read_fp_hreg(s, rm);
7361     tcg_op3 = read_fp_hreg(s, ra);
7362 
7363     /* These are fused multiply-add, and must be done as one
7364      * floating point operation with no rounding between the
7365      * multiplication and addition steps.
7366      * NB that doing the negations here as separate steps is
7367      * correct : an input NaN should come out with its sign bit
7368      * flipped if it is a negated-input.
7369      */
7370     if (o1 == true) {
7371         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7372     }
7373 
7374     if (o0 != o1) {
7375         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7376     }
7377 
7378     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7379 
7380     write_fp_sreg(s, rd, tcg_res);
7381 }
7382 
7383 /* Floating point data-processing (3 source)
7384  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7385  * +---+---+---+-----------+------+----+------+----+------+------+------+
7386  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7387  * +---+---+---+-----------+------+----+------+----+------+------+------+
7388  */
7389 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7390 {
7391     int mos = extract32(insn, 29, 3);
7392     int type = extract32(insn, 22, 2);
7393     int rd = extract32(insn, 0, 5);
7394     int rn = extract32(insn, 5, 5);
7395     int ra = extract32(insn, 10, 5);
7396     int rm = extract32(insn, 16, 5);
7397     bool o0 = extract32(insn, 15, 1);
7398     bool o1 = extract32(insn, 21, 1);
7399 
7400     if (mos) {
7401         unallocated_encoding(s);
7402         return;
7403     }
7404 
7405     switch (type) {
7406     case 0:
7407         if (!fp_access_check(s)) {
7408             return;
7409         }
7410         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7411         break;
7412     case 1:
7413         if (!fp_access_check(s)) {
7414             return;
7415         }
7416         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7417         break;
7418     case 3:
7419         if (!dc_isar_feature(aa64_fp16, s)) {
7420             unallocated_encoding(s);
7421             return;
7422         }
7423         if (!fp_access_check(s)) {
7424             return;
7425         }
7426         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7427         break;
7428     default:
7429         unallocated_encoding(s);
7430     }
7431 }
7432 
7433 /* Floating point immediate
7434  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7435  * +---+---+---+-----------+------+---+------------+-------+------+------+
7436  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7437  * +---+---+---+-----------+------+---+------------+-------+------+------+
7438  */
7439 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7440 {
7441     int rd = extract32(insn, 0, 5);
7442     int imm5 = extract32(insn, 5, 5);
7443     int imm8 = extract32(insn, 13, 8);
7444     int type = extract32(insn, 22, 2);
7445     int mos = extract32(insn, 29, 3);
7446     uint64_t imm;
7447     MemOp sz;
7448 
7449     if (mos || imm5) {
7450         unallocated_encoding(s);
7451         return;
7452     }
7453 
7454     switch (type) {
7455     case 0:
7456         sz = MO_32;
7457         break;
7458     case 1:
7459         sz = MO_64;
7460         break;
7461     case 3:
7462         sz = MO_16;
7463         if (dc_isar_feature(aa64_fp16, s)) {
7464             break;
7465         }
7466         /* fallthru */
7467     default:
7468         unallocated_encoding(s);
7469         return;
7470     }
7471 
7472     if (!fp_access_check(s)) {
7473         return;
7474     }
7475 
7476     imm = vfp_expand_imm(sz, imm8);
7477     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7478 }
7479 
7480 /* Handle floating point <=> fixed point conversions. Note that we can
7481  * also deal with fp <=> integer conversions as a special case (scale == 64)
7482  * OPTME: consider handling that special case specially or at least skipping
7483  * the call to scalbn in the helpers for zero shifts.
7484  */
7485 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7486                            bool itof, int rmode, int scale, int sf, int type)
7487 {
7488     bool is_signed = !(opcode & 1);
7489     TCGv_ptr tcg_fpstatus;
7490     TCGv_i32 tcg_shift, tcg_single;
7491     TCGv_i64 tcg_double;
7492 
7493     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7494 
7495     tcg_shift = tcg_constant_i32(64 - scale);
7496 
7497     if (itof) {
7498         TCGv_i64 tcg_int = cpu_reg(s, rn);
7499         if (!sf) {
7500             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7501 
7502             if (is_signed) {
7503                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7504             } else {
7505                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7506             }
7507 
7508             tcg_int = tcg_extend;
7509         }
7510 
7511         switch (type) {
7512         case 1: /* float64 */
7513             tcg_double = tcg_temp_new_i64();
7514             if (is_signed) {
7515                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7516                                      tcg_shift, tcg_fpstatus);
7517             } else {
7518                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7519                                      tcg_shift, tcg_fpstatus);
7520             }
7521             write_fp_dreg(s, rd, tcg_double);
7522             break;
7523 
7524         case 0: /* float32 */
7525             tcg_single = tcg_temp_new_i32();
7526             if (is_signed) {
7527                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7528                                      tcg_shift, tcg_fpstatus);
7529             } else {
7530                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7531                                      tcg_shift, tcg_fpstatus);
7532             }
7533             write_fp_sreg(s, rd, tcg_single);
7534             break;
7535 
7536         case 3: /* float16 */
7537             tcg_single = tcg_temp_new_i32();
7538             if (is_signed) {
7539                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7540                                      tcg_shift, tcg_fpstatus);
7541             } else {
7542                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7543                                      tcg_shift, tcg_fpstatus);
7544             }
7545             write_fp_sreg(s, rd, tcg_single);
7546             break;
7547 
7548         default:
7549             g_assert_not_reached();
7550         }
7551     } else {
7552         TCGv_i64 tcg_int = cpu_reg(s, rd);
7553         TCGv_i32 tcg_rmode;
7554 
7555         if (extract32(opcode, 2, 1)) {
7556             /* There are too many rounding modes to all fit into rmode,
7557              * so FCVTA[US] is a special case.
7558              */
7559             rmode = FPROUNDING_TIEAWAY;
7560         }
7561 
7562         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7563 
7564         switch (type) {
7565         case 1: /* float64 */
7566             tcg_double = read_fp_dreg(s, rn);
7567             if (is_signed) {
7568                 if (!sf) {
7569                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7570                                          tcg_shift, tcg_fpstatus);
7571                 } else {
7572                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7573                                          tcg_shift, tcg_fpstatus);
7574                 }
7575             } else {
7576                 if (!sf) {
7577                     gen_helper_vfp_tould(tcg_int, tcg_double,
7578                                          tcg_shift, tcg_fpstatus);
7579                 } else {
7580                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7581                                          tcg_shift, tcg_fpstatus);
7582                 }
7583             }
7584             if (!sf) {
7585                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7586             }
7587             break;
7588 
7589         case 0: /* float32 */
7590             tcg_single = read_fp_sreg(s, rn);
7591             if (sf) {
7592                 if (is_signed) {
7593                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7594                                          tcg_shift, tcg_fpstatus);
7595                 } else {
7596                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7597                                          tcg_shift, tcg_fpstatus);
7598                 }
7599             } else {
7600                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7601                 if (is_signed) {
7602                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7603                                          tcg_shift, tcg_fpstatus);
7604                 } else {
7605                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7606                                          tcg_shift, tcg_fpstatus);
7607                 }
7608                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7609             }
7610             break;
7611 
7612         case 3: /* float16 */
7613             tcg_single = read_fp_sreg(s, rn);
7614             if (sf) {
7615                 if (is_signed) {
7616                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7617                                          tcg_shift, tcg_fpstatus);
7618                 } else {
7619                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7620                                          tcg_shift, tcg_fpstatus);
7621                 }
7622             } else {
7623                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7624                 if (is_signed) {
7625                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7626                                          tcg_shift, tcg_fpstatus);
7627                 } else {
7628                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7629                                          tcg_shift, tcg_fpstatus);
7630                 }
7631                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7632             }
7633             break;
7634 
7635         default:
7636             g_assert_not_reached();
7637         }
7638 
7639         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7640     }
7641 }
7642 
7643 /* Floating point <-> fixed point conversions
7644  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7645  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7646  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7647  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7648  */
7649 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7650 {
7651     int rd = extract32(insn, 0, 5);
7652     int rn = extract32(insn, 5, 5);
7653     int scale = extract32(insn, 10, 6);
7654     int opcode = extract32(insn, 16, 3);
7655     int rmode = extract32(insn, 19, 2);
7656     int type = extract32(insn, 22, 2);
7657     bool sbit = extract32(insn, 29, 1);
7658     bool sf = extract32(insn, 31, 1);
7659     bool itof;
7660 
7661     if (sbit || (!sf && scale < 32)) {
7662         unallocated_encoding(s);
7663         return;
7664     }
7665 
7666     switch (type) {
7667     case 0: /* float32 */
7668     case 1: /* float64 */
7669         break;
7670     case 3: /* float16 */
7671         if (dc_isar_feature(aa64_fp16, s)) {
7672             break;
7673         }
7674         /* fallthru */
7675     default:
7676         unallocated_encoding(s);
7677         return;
7678     }
7679 
7680     switch ((rmode << 3) | opcode) {
7681     case 0x2: /* SCVTF */
7682     case 0x3: /* UCVTF */
7683         itof = true;
7684         break;
7685     case 0x18: /* FCVTZS */
7686     case 0x19: /* FCVTZU */
7687         itof = false;
7688         break;
7689     default:
7690         unallocated_encoding(s);
7691         return;
7692     }
7693 
7694     if (!fp_access_check(s)) {
7695         return;
7696     }
7697 
7698     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7699 }
7700 
7701 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7702 {
7703     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7704      * without conversion.
7705      */
7706 
7707     if (itof) {
7708         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7709         TCGv_i64 tmp;
7710 
7711         switch (type) {
7712         case 0:
7713             /* 32 bit */
7714             tmp = tcg_temp_new_i64();
7715             tcg_gen_ext32u_i64(tmp, tcg_rn);
7716             write_fp_dreg(s, rd, tmp);
7717             break;
7718         case 1:
7719             /* 64 bit */
7720             write_fp_dreg(s, rd, tcg_rn);
7721             break;
7722         case 2:
7723             /* 64 bit to top half. */
7724             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7725             clear_vec_high(s, true, rd);
7726             break;
7727         case 3:
7728             /* 16 bit */
7729             tmp = tcg_temp_new_i64();
7730             tcg_gen_ext16u_i64(tmp, tcg_rn);
7731             write_fp_dreg(s, rd, tmp);
7732             break;
7733         default:
7734             g_assert_not_reached();
7735         }
7736     } else {
7737         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7738 
7739         switch (type) {
7740         case 0:
7741             /* 32 bit */
7742             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7743             break;
7744         case 1:
7745             /* 64 bit */
7746             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7747             break;
7748         case 2:
7749             /* 64 bits from top half */
7750             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7751             break;
7752         case 3:
7753             /* 16 bit */
7754             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7755             break;
7756         default:
7757             g_assert_not_reached();
7758         }
7759     }
7760 }
7761 
7762 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7763 {
7764     TCGv_i64 t = read_fp_dreg(s, rn);
7765     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7766 
7767     gen_helper_fjcvtzs(t, t, fpstatus);
7768 
7769     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7770     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7771     tcg_gen_movi_i32(cpu_CF, 0);
7772     tcg_gen_movi_i32(cpu_NF, 0);
7773     tcg_gen_movi_i32(cpu_VF, 0);
7774 }
7775 
7776 /* Floating point <-> integer conversions
7777  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7778  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7779  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7780  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7781  */
7782 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7783 {
7784     int rd = extract32(insn, 0, 5);
7785     int rn = extract32(insn, 5, 5);
7786     int opcode = extract32(insn, 16, 3);
7787     int rmode = extract32(insn, 19, 2);
7788     int type = extract32(insn, 22, 2);
7789     bool sbit = extract32(insn, 29, 1);
7790     bool sf = extract32(insn, 31, 1);
7791     bool itof = false;
7792 
7793     if (sbit) {
7794         goto do_unallocated;
7795     }
7796 
7797     switch (opcode) {
7798     case 2: /* SCVTF */
7799     case 3: /* UCVTF */
7800         itof = true;
7801         /* fallthru */
7802     case 4: /* FCVTAS */
7803     case 5: /* FCVTAU */
7804         if (rmode != 0) {
7805             goto do_unallocated;
7806         }
7807         /* fallthru */
7808     case 0: /* FCVT[NPMZ]S */
7809     case 1: /* FCVT[NPMZ]U */
7810         switch (type) {
7811         case 0: /* float32 */
7812         case 1: /* float64 */
7813             break;
7814         case 3: /* float16 */
7815             if (!dc_isar_feature(aa64_fp16, s)) {
7816                 goto do_unallocated;
7817             }
7818             break;
7819         default:
7820             goto do_unallocated;
7821         }
7822         if (!fp_access_check(s)) {
7823             return;
7824         }
7825         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7826         break;
7827 
7828     default:
7829         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7830         case 0b01100110: /* FMOV half <-> 32-bit int */
7831         case 0b01100111:
7832         case 0b11100110: /* FMOV half <-> 64-bit int */
7833         case 0b11100111:
7834             if (!dc_isar_feature(aa64_fp16, s)) {
7835                 goto do_unallocated;
7836             }
7837             /* fallthru */
7838         case 0b00000110: /* FMOV 32-bit */
7839         case 0b00000111:
7840         case 0b10100110: /* FMOV 64-bit */
7841         case 0b10100111:
7842         case 0b11001110: /* FMOV top half of 128-bit */
7843         case 0b11001111:
7844             if (!fp_access_check(s)) {
7845                 return;
7846             }
7847             itof = opcode & 1;
7848             handle_fmov(s, rd, rn, type, itof);
7849             break;
7850 
7851         case 0b00111110: /* FJCVTZS */
7852             if (!dc_isar_feature(aa64_jscvt, s)) {
7853                 goto do_unallocated;
7854             } else if (fp_access_check(s)) {
7855                 handle_fjcvtzs(s, rd, rn);
7856             }
7857             break;
7858 
7859         default:
7860         do_unallocated:
7861             unallocated_encoding(s);
7862             return;
7863         }
7864         break;
7865     }
7866 }
7867 
7868 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7869  *   31  30  29 28     25 24                          0
7870  * +---+---+---+---------+-----------------------------+
7871  * |   | 0 |   | 1 1 1 1 |                             |
7872  * +---+---+---+---------+-----------------------------+
7873  */
7874 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7875 {
7876     if (extract32(insn, 24, 1)) {
7877         /* Floating point data-processing (3 source) */
7878         disas_fp_3src(s, insn);
7879     } else if (extract32(insn, 21, 1) == 0) {
7880         /* Floating point to fixed point conversions */
7881         disas_fp_fixed_conv(s, insn);
7882     } else {
7883         switch (extract32(insn, 10, 2)) {
7884         case 1:
7885             /* Floating point conditional compare */
7886             disas_fp_ccomp(s, insn);
7887             break;
7888         case 2:
7889             /* Floating point data-processing (2 source) */
7890             unallocated_encoding(s); /* in decodetree */
7891             break;
7892         case 3:
7893             /* Floating point conditional select */
7894             disas_fp_csel(s, insn);
7895             break;
7896         case 0:
7897             switch (ctz32(extract32(insn, 12, 4))) {
7898             case 0: /* [15:12] == xxx1 */
7899                 /* Floating point immediate */
7900                 disas_fp_imm(s, insn);
7901                 break;
7902             case 1: /* [15:12] == xx10 */
7903                 /* Floating point compare */
7904                 disas_fp_compare(s, insn);
7905                 break;
7906             case 2: /* [15:12] == x100 */
7907                 /* Floating point data-processing (1 source) */
7908                 disas_fp_1src(s, insn);
7909                 break;
7910             case 3: /* [15:12] == 1000 */
7911                 unallocated_encoding(s);
7912                 break;
7913             default: /* [15:12] == 0000 */
7914                 /* Floating point <-> integer conversions */
7915                 disas_fp_int_conv(s, insn);
7916                 break;
7917             }
7918             break;
7919         }
7920     }
7921 }
7922 
7923 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7924                      int pos)
7925 {
7926     /* Extract 64 bits from the middle of two concatenated 64 bit
7927      * vector register slices left:right. The extracted bits start
7928      * at 'pos' bits into the right (least significant) side.
7929      * We return the result in tcg_right, and guarantee not to
7930      * trash tcg_left.
7931      */
7932     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7933     assert(pos > 0 && pos < 64);
7934 
7935     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7936     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7937     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7938 }
7939 
7940 /* EXT
7941  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7942  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7943  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7944  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7945  */
7946 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7947 {
7948     int is_q = extract32(insn, 30, 1);
7949     int op2 = extract32(insn, 22, 2);
7950     int imm4 = extract32(insn, 11, 4);
7951     int rm = extract32(insn, 16, 5);
7952     int rn = extract32(insn, 5, 5);
7953     int rd = extract32(insn, 0, 5);
7954     int pos = imm4 << 3;
7955     TCGv_i64 tcg_resl, tcg_resh;
7956 
7957     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7958         unallocated_encoding(s);
7959         return;
7960     }
7961 
7962     if (!fp_access_check(s)) {
7963         return;
7964     }
7965 
7966     tcg_resh = tcg_temp_new_i64();
7967     tcg_resl = tcg_temp_new_i64();
7968 
7969     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7970      * either extracting 128 bits from a 128:128 concatenation, or
7971      * extracting 64 bits from a 64:64 concatenation.
7972      */
7973     if (!is_q) {
7974         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7975         if (pos != 0) {
7976             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7977             do_ext64(s, tcg_resh, tcg_resl, pos);
7978         }
7979     } else {
7980         TCGv_i64 tcg_hh;
7981         typedef struct {
7982             int reg;
7983             int elt;
7984         } EltPosns;
7985         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7986         EltPosns *elt = eltposns;
7987 
7988         if (pos >= 64) {
7989             elt++;
7990             pos -= 64;
7991         }
7992 
7993         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7994         elt++;
7995         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7996         elt++;
7997         if (pos != 0) {
7998             do_ext64(s, tcg_resh, tcg_resl, pos);
7999             tcg_hh = tcg_temp_new_i64();
8000             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8001             do_ext64(s, tcg_hh, tcg_resh, pos);
8002         }
8003     }
8004 
8005     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8006     if (is_q) {
8007         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8008     }
8009     clear_vec_high(s, is_q, rd);
8010 }
8011 
8012 /* TBL/TBX
8013  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8014  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8015  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8016  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8017  */
8018 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8019 {
8020     int op2 = extract32(insn, 22, 2);
8021     int is_q = extract32(insn, 30, 1);
8022     int rm = extract32(insn, 16, 5);
8023     int rn = extract32(insn, 5, 5);
8024     int rd = extract32(insn, 0, 5);
8025     int is_tbx = extract32(insn, 12, 1);
8026     int len = (extract32(insn, 13, 2) + 1) * 16;
8027 
8028     if (op2 != 0) {
8029         unallocated_encoding(s);
8030         return;
8031     }
8032 
8033     if (!fp_access_check(s)) {
8034         return;
8035     }
8036 
8037     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8038                        vec_full_reg_offset(s, rm), tcg_env,
8039                        is_q ? 16 : 8, vec_full_reg_size(s),
8040                        (len << 6) | (is_tbx << 5) | rn,
8041                        gen_helper_simd_tblx);
8042 }
8043 
8044 /* ZIP/UZP/TRN
8045  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8046  * +---+---+-------------+------+---+------+---+------------------+------+
8047  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8048  * +---+---+-------------+------+---+------+---+------------------+------+
8049  */
8050 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8051 {
8052     int rd = extract32(insn, 0, 5);
8053     int rn = extract32(insn, 5, 5);
8054     int rm = extract32(insn, 16, 5);
8055     int size = extract32(insn, 22, 2);
8056     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8057      * bit 2 indicates 1 vs 2 variant of the insn.
8058      */
8059     int opcode = extract32(insn, 12, 2);
8060     bool part = extract32(insn, 14, 1);
8061     bool is_q = extract32(insn, 30, 1);
8062     int esize = 8 << size;
8063     int i;
8064     int datasize = is_q ? 128 : 64;
8065     int elements = datasize / esize;
8066     TCGv_i64 tcg_res[2], tcg_ele;
8067 
8068     if (opcode == 0 || (size == 3 && !is_q)) {
8069         unallocated_encoding(s);
8070         return;
8071     }
8072 
8073     if (!fp_access_check(s)) {
8074         return;
8075     }
8076 
8077     tcg_res[0] = tcg_temp_new_i64();
8078     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8079     tcg_ele = tcg_temp_new_i64();
8080 
8081     for (i = 0; i < elements; i++) {
8082         int o, w;
8083 
8084         switch (opcode) {
8085         case 1: /* UZP1/2 */
8086         {
8087             int midpoint = elements / 2;
8088             if (i < midpoint) {
8089                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8090             } else {
8091                 read_vec_element(s, tcg_ele, rm,
8092                                  2 * (i - midpoint) + part, size);
8093             }
8094             break;
8095         }
8096         case 2: /* TRN1/2 */
8097             if (i & 1) {
8098                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8099             } else {
8100                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8101             }
8102             break;
8103         case 3: /* ZIP1/2 */
8104         {
8105             int base = part * elements / 2;
8106             if (i & 1) {
8107                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8108             } else {
8109                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8110             }
8111             break;
8112         }
8113         default:
8114             g_assert_not_reached();
8115         }
8116 
8117         w = (i * esize) / 64;
8118         o = (i * esize) % 64;
8119         if (o == 0) {
8120             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8121         } else {
8122             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8123             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8124         }
8125     }
8126 
8127     for (i = 0; i <= is_q; ++i) {
8128         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8129     }
8130     clear_vec_high(s, is_q, rd);
8131 }
8132 
8133 /*
8134  * do_reduction_op helper
8135  *
8136  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8137  * important for correct NaN propagation that we do these
8138  * operations in exactly the order specified by the pseudocode.
8139  *
8140  * This is a recursive function, TCG temps should be freed by the
8141  * calling function once it is done with the values.
8142  */
8143 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8144                                 int esize, int size, int vmap, TCGv_ptr fpst)
8145 {
8146     if (esize == size) {
8147         int element;
8148         MemOp msize = esize == 16 ? MO_16 : MO_32;
8149         TCGv_i32 tcg_elem;
8150 
8151         /* We should have one register left here */
8152         assert(ctpop8(vmap) == 1);
8153         element = ctz32(vmap);
8154         assert(element < 8);
8155 
8156         tcg_elem = tcg_temp_new_i32();
8157         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8158         return tcg_elem;
8159     } else {
8160         int bits = size / 2;
8161         int shift = ctpop8(vmap) / 2;
8162         int vmap_lo = (vmap >> shift) & vmap;
8163         int vmap_hi = (vmap & ~vmap_lo);
8164         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8165 
8166         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8167         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8168         tcg_res = tcg_temp_new_i32();
8169 
8170         switch (fpopcode) {
8171         case 0x0c: /* fmaxnmv half-precision */
8172             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8173             break;
8174         case 0x0f: /* fmaxv half-precision */
8175             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8176             break;
8177         case 0x1c: /* fminnmv half-precision */
8178             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8179             break;
8180         case 0x1f: /* fminv half-precision */
8181             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8182             break;
8183         case 0x2c: /* fmaxnmv */
8184             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8185             break;
8186         case 0x2f: /* fmaxv */
8187             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8188             break;
8189         case 0x3c: /* fminnmv */
8190             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8191             break;
8192         case 0x3f: /* fminv */
8193             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8194             break;
8195         default:
8196             g_assert_not_reached();
8197         }
8198         return tcg_res;
8199     }
8200 }
8201 
8202 /* AdvSIMD across lanes
8203  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8204  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8205  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8206  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8207  */
8208 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8209 {
8210     int rd = extract32(insn, 0, 5);
8211     int rn = extract32(insn, 5, 5);
8212     int size = extract32(insn, 22, 2);
8213     int opcode = extract32(insn, 12, 5);
8214     bool is_q = extract32(insn, 30, 1);
8215     bool is_u = extract32(insn, 29, 1);
8216     bool is_fp = false;
8217     bool is_min = false;
8218     int esize;
8219     int elements;
8220     int i;
8221     TCGv_i64 tcg_res, tcg_elt;
8222 
8223     switch (opcode) {
8224     case 0x1b: /* ADDV */
8225         if (is_u) {
8226             unallocated_encoding(s);
8227             return;
8228         }
8229         /* fall through */
8230     case 0x3: /* SADDLV, UADDLV */
8231     case 0xa: /* SMAXV, UMAXV */
8232     case 0x1a: /* SMINV, UMINV */
8233         if (size == 3 || (size == 2 && !is_q)) {
8234             unallocated_encoding(s);
8235             return;
8236         }
8237         break;
8238     case 0xc: /* FMAXNMV, FMINNMV */
8239     case 0xf: /* FMAXV, FMINV */
8240         /* Bit 1 of size field encodes min vs max and the actual size
8241          * depends on the encoding of the U bit. If not set (and FP16
8242          * enabled) then we do half-precision float instead of single
8243          * precision.
8244          */
8245         is_min = extract32(size, 1, 1);
8246         is_fp = true;
8247         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8248             size = 1;
8249         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8250             unallocated_encoding(s);
8251             return;
8252         } else {
8253             size = 2;
8254         }
8255         break;
8256     default:
8257         unallocated_encoding(s);
8258         return;
8259     }
8260 
8261     if (!fp_access_check(s)) {
8262         return;
8263     }
8264 
8265     esize = 8 << size;
8266     elements = (is_q ? 128 : 64) / esize;
8267 
8268     tcg_res = tcg_temp_new_i64();
8269     tcg_elt = tcg_temp_new_i64();
8270 
8271     /* These instructions operate across all lanes of a vector
8272      * to produce a single result. We can guarantee that a 64
8273      * bit intermediate is sufficient:
8274      *  + for [US]ADDLV the maximum element size is 32 bits, and
8275      *    the result type is 64 bits
8276      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8277      *    same as the element size, which is 32 bits at most
8278      * For the integer operations we can choose to work at 64
8279      * or 32 bits and truncate at the end; for simplicity
8280      * we use 64 bits always. The floating point
8281      * ops do require 32 bit intermediates, though.
8282      */
8283     if (!is_fp) {
8284         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8285 
8286         for (i = 1; i < elements; i++) {
8287             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8288 
8289             switch (opcode) {
8290             case 0x03: /* SADDLV / UADDLV */
8291             case 0x1b: /* ADDV */
8292                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8293                 break;
8294             case 0x0a: /* SMAXV / UMAXV */
8295                 if (is_u) {
8296                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8297                 } else {
8298                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8299                 }
8300                 break;
8301             case 0x1a: /* SMINV / UMINV */
8302                 if (is_u) {
8303                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8304                 } else {
8305                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8306                 }
8307                 break;
8308             default:
8309                 g_assert_not_reached();
8310             }
8311 
8312         }
8313     } else {
8314         /* Floating point vector reduction ops which work across 32
8315          * bit (single) or 16 bit (half-precision) intermediates.
8316          * Note that correct NaN propagation requires that we do these
8317          * operations in exactly the order specified by the pseudocode.
8318          */
8319         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8320         int fpopcode = opcode | is_min << 4 | is_u << 5;
8321         int vmap = (1 << elements) - 1;
8322         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8323                                              (is_q ? 128 : 64), vmap, fpst);
8324         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8325     }
8326 
8327     /* Now truncate the result to the width required for the final output */
8328     if (opcode == 0x03) {
8329         /* SADDLV, UADDLV: result is 2*esize */
8330         size++;
8331     }
8332 
8333     switch (size) {
8334     case 0:
8335         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8336         break;
8337     case 1:
8338         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8339         break;
8340     case 2:
8341         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8342         break;
8343     case 3:
8344         break;
8345     default:
8346         g_assert_not_reached();
8347     }
8348 
8349     write_fp_dreg(s, rd, tcg_res);
8350 }
8351 
8352 /* AdvSIMD modified immediate
8353  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8354  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8355  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8356  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8357  *
8358  * There are a number of operations that can be carried out here:
8359  *   MOVI - move (shifted) imm into register
8360  *   MVNI - move inverted (shifted) imm into register
8361  *   ORR  - bitwise OR of (shifted) imm with register
8362  *   BIC  - bitwise clear of (shifted) imm with register
8363  * With ARMv8.2 we also have:
8364  *   FMOV half-precision
8365  */
8366 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8367 {
8368     int rd = extract32(insn, 0, 5);
8369     int cmode = extract32(insn, 12, 4);
8370     int o2 = extract32(insn, 11, 1);
8371     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8372     bool is_neg = extract32(insn, 29, 1);
8373     bool is_q = extract32(insn, 30, 1);
8374     uint64_t imm = 0;
8375 
8376     if (o2) {
8377         if (cmode != 0xf || is_neg) {
8378             unallocated_encoding(s);
8379             return;
8380         }
8381         /* FMOV (vector, immediate) - half-precision */
8382         if (!dc_isar_feature(aa64_fp16, s)) {
8383             unallocated_encoding(s);
8384             return;
8385         }
8386         imm = vfp_expand_imm(MO_16, abcdefgh);
8387         /* now duplicate across the lanes */
8388         imm = dup_const(MO_16, imm);
8389     } else {
8390         if (cmode == 0xf && is_neg && !is_q) {
8391             unallocated_encoding(s);
8392             return;
8393         }
8394         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8395     }
8396 
8397     if (!fp_access_check(s)) {
8398         return;
8399     }
8400 
8401     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8402         /* MOVI or MVNI, with MVNI negation handled above.  */
8403         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8404                              vec_full_reg_size(s), imm);
8405     } else {
8406         /* ORR or BIC, with BIC negation to AND handled above.  */
8407         if (is_neg) {
8408             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8409         } else {
8410             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8411         }
8412     }
8413 }
8414 
8415 /* AdvSIMD scalar pairwise
8416  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8417  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8418  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8419  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8420  */
8421 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8422 {
8423     int u = extract32(insn, 29, 1);
8424     int size = extract32(insn, 22, 2);
8425     int opcode = extract32(insn, 12, 5);
8426     int rn = extract32(insn, 5, 5);
8427     int rd = extract32(insn, 0, 5);
8428 
8429     /* For some ops (the FP ones), size[1] is part of the encoding.
8430      * For ADDP strictly it is not but size[1] is always 1 for valid
8431      * encodings.
8432      */
8433     opcode |= (extract32(size, 1, 1) << 5);
8434 
8435     switch (opcode) {
8436     case 0x3b: /* ADDP */
8437         if (u || size != 3) {
8438             unallocated_encoding(s);
8439             return;
8440         }
8441         if (!fp_access_check(s)) {
8442             return;
8443         }
8444         break;
8445     default:
8446     case 0xc: /* FMAXNMP */
8447     case 0xd: /* FADDP */
8448     case 0xf: /* FMAXP */
8449     case 0x2c: /* FMINNMP */
8450     case 0x2f: /* FMINP */
8451         unallocated_encoding(s);
8452         return;
8453     }
8454 
8455     if (size == MO_64) {
8456         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8457         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8458         TCGv_i64 tcg_res = tcg_temp_new_i64();
8459 
8460         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8461         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8462 
8463         switch (opcode) {
8464         case 0x3b: /* ADDP */
8465             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8466             break;
8467         default:
8468         case 0xc: /* FMAXNMP */
8469         case 0xd: /* FADDP */
8470         case 0xf: /* FMAXP */
8471         case 0x2c: /* FMINNMP */
8472         case 0x2f: /* FMINP */
8473             g_assert_not_reached();
8474         }
8475 
8476         write_fp_dreg(s, rd, tcg_res);
8477     } else {
8478         g_assert_not_reached();
8479     }
8480 }
8481 
8482 /*
8483  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8484  *
8485  * This code is handles the common shifting code and is used by both
8486  * the vector and scalar code.
8487  */
8488 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8489                                     TCGv_i64 tcg_rnd, bool accumulate,
8490                                     bool is_u, int size, int shift)
8491 {
8492     bool extended_result = false;
8493     bool round = tcg_rnd != NULL;
8494     int ext_lshift = 0;
8495     TCGv_i64 tcg_src_hi;
8496 
8497     if (round && size == 3) {
8498         extended_result = true;
8499         ext_lshift = 64 - shift;
8500         tcg_src_hi = tcg_temp_new_i64();
8501     } else if (shift == 64) {
8502         if (!accumulate && is_u) {
8503             /* result is zero */
8504             tcg_gen_movi_i64(tcg_res, 0);
8505             return;
8506         }
8507     }
8508 
8509     /* Deal with the rounding step */
8510     if (round) {
8511         if (extended_result) {
8512             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8513             if (!is_u) {
8514                 /* take care of sign extending tcg_res */
8515                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8516                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8517                                  tcg_src, tcg_src_hi,
8518                                  tcg_rnd, tcg_zero);
8519             } else {
8520                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8521                                  tcg_src, tcg_zero,
8522                                  tcg_rnd, tcg_zero);
8523             }
8524         } else {
8525             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8526         }
8527     }
8528 
8529     /* Now do the shift right */
8530     if (round && extended_result) {
8531         /* extended case, >64 bit precision required */
8532         if (ext_lshift == 0) {
8533             /* special case, only high bits matter */
8534             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8535         } else {
8536             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8537             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8538             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8539         }
8540     } else {
8541         if (is_u) {
8542             if (shift == 64) {
8543                 /* essentially shifting in 64 zeros */
8544                 tcg_gen_movi_i64(tcg_src, 0);
8545             } else {
8546                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8547             }
8548         } else {
8549             if (shift == 64) {
8550                 /* effectively extending the sign-bit */
8551                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8552             } else {
8553                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8554             }
8555         }
8556     }
8557 
8558     if (accumulate) {
8559         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8560     } else {
8561         tcg_gen_mov_i64(tcg_res, tcg_src);
8562     }
8563 }
8564 
8565 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8566 static void handle_scalar_simd_shri(DisasContext *s,
8567                                     bool is_u, int immh, int immb,
8568                                     int opcode, int rn, int rd)
8569 {
8570     const int size = 3;
8571     int immhb = immh << 3 | immb;
8572     int shift = 2 * (8 << size) - immhb;
8573     bool accumulate = false;
8574     bool round = false;
8575     bool insert = false;
8576     TCGv_i64 tcg_rn;
8577     TCGv_i64 tcg_rd;
8578     TCGv_i64 tcg_round;
8579 
8580     if (!extract32(immh, 3, 1)) {
8581         unallocated_encoding(s);
8582         return;
8583     }
8584 
8585     if (!fp_access_check(s)) {
8586         return;
8587     }
8588 
8589     switch (opcode) {
8590     case 0x02: /* SSRA / USRA (accumulate) */
8591         accumulate = true;
8592         break;
8593     case 0x04: /* SRSHR / URSHR (rounding) */
8594         round = true;
8595         break;
8596     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8597         accumulate = round = true;
8598         break;
8599     case 0x08: /* SRI */
8600         insert = true;
8601         break;
8602     }
8603 
8604     if (round) {
8605         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8606     } else {
8607         tcg_round = NULL;
8608     }
8609 
8610     tcg_rn = read_fp_dreg(s, rn);
8611     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8612 
8613     if (insert) {
8614         /* shift count same as element size is valid but does nothing;
8615          * special case to avoid potential shift by 64.
8616          */
8617         int esize = 8 << size;
8618         if (shift != esize) {
8619             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8620             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8621         }
8622     } else {
8623         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8624                                 accumulate, is_u, size, shift);
8625     }
8626 
8627     write_fp_dreg(s, rd, tcg_rd);
8628 }
8629 
8630 /* SHL/SLI - Scalar shift left */
8631 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8632                                     int immh, int immb, int opcode,
8633                                     int rn, int rd)
8634 {
8635     int size = 32 - clz32(immh) - 1;
8636     int immhb = immh << 3 | immb;
8637     int shift = immhb - (8 << size);
8638     TCGv_i64 tcg_rn;
8639     TCGv_i64 tcg_rd;
8640 
8641     if (!extract32(immh, 3, 1)) {
8642         unallocated_encoding(s);
8643         return;
8644     }
8645 
8646     if (!fp_access_check(s)) {
8647         return;
8648     }
8649 
8650     tcg_rn = read_fp_dreg(s, rn);
8651     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8652 
8653     if (insert) {
8654         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8655     } else {
8656         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8657     }
8658 
8659     write_fp_dreg(s, rd, tcg_rd);
8660 }
8661 
8662 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8663  * (signed/unsigned) narrowing */
8664 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8665                                    bool is_u_shift, bool is_u_narrow,
8666                                    int immh, int immb, int opcode,
8667                                    int rn, int rd)
8668 {
8669     int immhb = immh << 3 | immb;
8670     int size = 32 - clz32(immh) - 1;
8671     int esize = 8 << size;
8672     int shift = (2 * esize) - immhb;
8673     int elements = is_scalar ? 1 : (64 / esize);
8674     bool round = extract32(opcode, 0, 1);
8675     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8676     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8677     TCGv_i32 tcg_rd_narrowed;
8678     TCGv_i64 tcg_final;
8679 
8680     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8681         { gen_helper_neon_narrow_sat_s8,
8682           gen_helper_neon_unarrow_sat8 },
8683         { gen_helper_neon_narrow_sat_s16,
8684           gen_helper_neon_unarrow_sat16 },
8685         { gen_helper_neon_narrow_sat_s32,
8686           gen_helper_neon_unarrow_sat32 },
8687         { NULL, NULL },
8688     };
8689     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8690         gen_helper_neon_narrow_sat_u8,
8691         gen_helper_neon_narrow_sat_u16,
8692         gen_helper_neon_narrow_sat_u32,
8693         NULL
8694     };
8695     NeonGenNarrowEnvFn *narrowfn;
8696 
8697     int i;
8698 
8699     assert(size < 4);
8700 
8701     if (extract32(immh, 3, 1)) {
8702         unallocated_encoding(s);
8703         return;
8704     }
8705 
8706     if (!fp_access_check(s)) {
8707         return;
8708     }
8709 
8710     if (is_u_shift) {
8711         narrowfn = unsigned_narrow_fns[size];
8712     } else {
8713         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8714     }
8715 
8716     tcg_rn = tcg_temp_new_i64();
8717     tcg_rd = tcg_temp_new_i64();
8718     tcg_rd_narrowed = tcg_temp_new_i32();
8719     tcg_final = tcg_temp_new_i64();
8720 
8721     if (round) {
8722         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8723     } else {
8724         tcg_round = NULL;
8725     }
8726 
8727     for (i = 0; i < elements; i++) {
8728         read_vec_element(s, tcg_rn, rn, i, ldop);
8729         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8730                                 false, is_u_shift, size+1, shift);
8731         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8732         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8733         if (i == 0) {
8734             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8735         } else {
8736             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8737         }
8738     }
8739 
8740     if (!is_q) {
8741         write_vec_element(s, tcg_final, rd, 0, MO_64);
8742     } else {
8743         write_vec_element(s, tcg_final, rd, 1, MO_64);
8744     }
8745     clear_vec_high(s, is_q, rd);
8746 }
8747 
8748 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8749 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8750                              bool src_unsigned, bool dst_unsigned,
8751                              int immh, int immb, int rn, int rd)
8752 {
8753     int immhb = immh << 3 | immb;
8754     int size = 32 - clz32(immh) - 1;
8755     int shift = immhb - (8 << size);
8756     int pass;
8757 
8758     assert(immh != 0);
8759     assert(!(scalar && is_q));
8760 
8761     if (!scalar) {
8762         if (!is_q && extract32(immh, 3, 1)) {
8763             unallocated_encoding(s);
8764             return;
8765         }
8766 
8767         /* Since we use the variable-shift helpers we must
8768          * replicate the shift count into each element of
8769          * the tcg_shift value.
8770          */
8771         switch (size) {
8772         case 0:
8773             shift |= shift << 8;
8774             /* fall through */
8775         case 1:
8776             shift |= shift << 16;
8777             break;
8778         case 2:
8779         case 3:
8780             break;
8781         default:
8782             g_assert_not_reached();
8783         }
8784     }
8785 
8786     if (!fp_access_check(s)) {
8787         return;
8788     }
8789 
8790     if (size == 3) {
8791         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8792         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8793             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8794             { NULL, gen_helper_neon_qshl_u64 },
8795         };
8796         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8797         int maxpass = is_q ? 2 : 1;
8798 
8799         for (pass = 0; pass < maxpass; pass++) {
8800             TCGv_i64 tcg_op = tcg_temp_new_i64();
8801 
8802             read_vec_element(s, tcg_op, rn, pass, MO_64);
8803             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8804             write_vec_element(s, tcg_op, rd, pass, MO_64);
8805         }
8806         clear_vec_high(s, is_q, rd);
8807     } else {
8808         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8809         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8810             {
8811                 { gen_helper_neon_qshl_s8,
8812                   gen_helper_neon_qshl_s16,
8813                   gen_helper_neon_qshl_s32 },
8814                 { gen_helper_neon_qshlu_s8,
8815                   gen_helper_neon_qshlu_s16,
8816                   gen_helper_neon_qshlu_s32 }
8817             }, {
8818                 { NULL, NULL, NULL },
8819                 { gen_helper_neon_qshl_u8,
8820                   gen_helper_neon_qshl_u16,
8821                   gen_helper_neon_qshl_u32 }
8822             }
8823         };
8824         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8825         MemOp memop = scalar ? size : MO_32;
8826         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8827 
8828         for (pass = 0; pass < maxpass; pass++) {
8829             TCGv_i32 tcg_op = tcg_temp_new_i32();
8830 
8831             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8832             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8833             if (scalar) {
8834                 switch (size) {
8835                 case 0:
8836                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8837                     break;
8838                 case 1:
8839                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8840                     break;
8841                 case 2:
8842                     break;
8843                 default:
8844                     g_assert_not_reached();
8845                 }
8846                 write_fp_sreg(s, rd, tcg_op);
8847             } else {
8848                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8849             }
8850         }
8851 
8852         if (!scalar) {
8853             clear_vec_high(s, is_q, rd);
8854         }
8855     }
8856 }
8857 
8858 /* Common vector code for handling integer to FP conversion */
8859 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8860                                    int elements, int is_signed,
8861                                    int fracbits, int size)
8862 {
8863     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8864     TCGv_i32 tcg_shift = NULL;
8865 
8866     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8867     int pass;
8868 
8869     if (fracbits || size == MO_64) {
8870         tcg_shift = tcg_constant_i32(fracbits);
8871     }
8872 
8873     if (size == MO_64) {
8874         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8875         TCGv_i64 tcg_double = tcg_temp_new_i64();
8876 
8877         for (pass = 0; pass < elements; pass++) {
8878             read_vec_element(s, tcg_int64, rn, pass, mop);
8879 
8880             if (is_signed) {
8881                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8882                                      tcg_shift, tcg_fpst);
8883             } else {
8884                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8885                                      tcg_shift, tcg_fpst);
8886             }
8887             if (elements == 1) {
8888                 write_fp_dreg(s, rd, tcg_double);
8889             } else {
8890                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8891             }
8892         }
8893     } else {
8894         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8895         TCGv_i32 tcg_float = tcg_temp_new_i32();
8896 
8897         for (pass = 0; pass < elements; pass++) {
8898             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8899 
8900             switch (size) {
8901             case MO_32:
8902                 if (fracbits) {
8903                     if (is_signed) {
8904                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8905                                              tcg_shift, tcg_fpst);
8906                     } else {
8907                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8908                                              tcg_shift, tcg_fpst);
8909                     }
8910                 } else {
8911                     if (is_signed) {
8912                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8913                     } else {
8914                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8915                     }
8916                 }
8917                 break;
8918             case MO_16:
8919                 if (fracbits) {
8920                     if (is_signed) {
8921                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8922                                              tcg_shift, tcg_fpst);
8923                     } else {
8924                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8925                                              tcg_shift, tcg_fpst);
8926                     }
8927                 } else {
8928                     if (is_signed) {
8929                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8930                     } else {
8931                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8932                     }
8933                 }
8934                 break;
8935             default:
8936                 g_assert_not_reached();
8937             }
8938 
8939             if (elements == 1) {
8940                 write_fp_sreg(s, rd, tcg_float);
8941             } else {
8942                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8943             }
8944         }
8945     }
8946 
8947     clear_vec_high(s, elements << size == 16, rd);
8948 }
8949 
8950 /* UCVTF/SCVTF - Integer to FP conversion */
8951 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8952                                          bool is_q, bool is_u,
8953                                          int immh, int immb, int opcode,
8954                                          int rn, int rd)
8955 {
8956     int size, elements, fracbits;
8957     int immhb = immh << 3 | immb;
8958 
8959     if (immh & 8) {
8960         size = MO_64;
8961         if (!is_scalar && !is_q) {
8962             unallocated_encoding(s);
8963             return;
8964         }
8965     } else if (immh & 4) {
8966         size = MO_32;
8967     } else if (immh & 2) {
8968         size = MO_16;
8969         if (!dc_isar_feature(aa64_fp16, s)) {
8970             unallocated_encoding(s);
8971             return;
8972         }
8973     } else {
8974         /* immh == 0 would be a failure of the decode logic */
8975         g_assert(immh == 1);
8976         unallocated_encoding(s);
8977         return;
8978     }
8979 
8980     if (is_scalar) {
8981         elements = 1;
8982     } else {
8983         elements = (8 << is_q) >> size;
8984     }
8985     fracbits = (16 << size) - immhb;
8986 
8987     if (!fp_access_check(s)) {
8988         return;
8989     }
8990 
8991     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8992 }
8993 
8994 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8995 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8996                                          bool is_q, bool is_u,
8997                                          int immh, int immb, int rn, int rd)
8998 {
8999     int immhb = immh << 3 | immb;
9000     int pass, size, fracbits;
9001     TCGv_ptr tcg_fpstatus;
9002     TCGv_i32 tcg_rmode, tcg_shift;
9003 
9004     if (immh & 0x8) {
9005         size = MO_64;
9006         if (!is_scalar && !is_q) {
9007             unallocated_encoding(s);
9008             return;
9009         }
9010     } else if (immh & 0x4) {
9011         size = MO_32;
9012     } else if (immh & 0x2) {
9013         size = MO_16;
9014         if (!dc_isar_feature(aa64_fp16, s)) {
9015             unallocated_encoding(s);
9016             return;
9017         }
9018     } else {
9019         /* Should have split out AdvSIMD modified immediate earlier.  */
9020         assert(immh == 1);
9021         unallocated_encoding(s);
9022         return;
9023     }
9024 
9025     if (!fp_access_check(s)) {
9026         return;
9027     }
9028 
9029     assert(!(is_scalar && is_q));
9030 
9031     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9032     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9033     fracbits = (16 << size) - immhb;
9034     tcg_shift = tcg_constant_i32(fracbits);
9035 
9036     if (size == MO_64) {
9037         int maxpass = is_scalar ? 1 : 2;
9038 
9039         for (pass = 0; pass < maxpass; pass++) {
9040             TCGv_i64 tcg_op = tcg_temp_new_i64();
9041 
9042             read_vec_element(s, tcg_op, rn, pass, MO_64);
9043             if (is_u) {
9044                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9045             } else {
9046                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9047             }
9048             write_vec_element(s, tcg_op, rd, pass, MO_64);
9049         }
9050         clear_vec_high(s, is_q, rd);
9051     } else {
9052         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9053         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9054 
9055         switch (size) {
9056         case MO_16:
9057             if (is_u) {
9058                 fn = gen_helper_vfp_touhh;
9059             } else {
9060                 fn = gen_helper_vfp_toshh;
9061             }
9062             break;
9063         case MO_32:
9064             if (is_u) {
9065                 fn = gen_helper_vfp_touls;
9066             } else {
9067                 fn = gen_helper_vfp_tosls;
9068             }
9069             break;
9070         default:
9071             g_assert_not_reached();
9072         }
9073 
9074         for (pass = 0; pass < maxpass; pass++) {
9075             TCGv_i32 tcg_op = tcg_temp_new_i32();
9076 
9077             read_vec_element_i32(s, tcg_op, rn, pass, size);
9078             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9079             if (is_scalar) {
9080                 if (size == MO_16 && !is_u) {
9081                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9082                 }
9083                 write_fp_sreg(s, rd, tcg_op);
9084             } else {
9085                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9086             }
9087         }
9088         if (!is_scalar) {
9089             clear_vec_high(s, is_q, rd);
9090         }
9091     }
9092 
9093     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9094 }
9095 
9096 /* AdvSIMD scalar shift by immediate
9097  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9098  * +-----+---+-------------+------+------+--------+---+------+------+
9099  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9100  * +-----+---+-------------+------+------+--------+---+------+------+
9101  *
9102  * This is the scalar version so it works on a fixed sized registers
9103  */
9104 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9105 {
9106     int rd = extract32(insn, 0, 5);
9107     int rn = extract32(insn, 5, 5);
9108     int opcode = extract32(insn, 11, 5);
9109     int immb = extract32(insn, 16, 3);
9110     int immh = extract32(insn, 19, 4);
9111     bool is_u = extract32(insn, 29, 1);
9112 
9113     if (immh == 0) {
9114         unallocated_encoding(s);
9115         return;
9116     }
9117 
9118     switch (opcode) {
9119     case 0x08: /* SRI */
9120         if (!is_u) {
9121             unallocated_encoding(s);
9122             return;
9123         }
9124         /* fall through */
9125     case 0x00: /* SSHR / USHR */
9126     case 0x02: /* SSRA / USRA */
9127     case 0x04: /* SRSHR / URSHR */
9128     case 0x06: /* SRSRA / URSRA */
9129         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9130         break;
9131     case 0x0a: /* SHL / SLI */
9132         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9133         break;
9134     case 0x1c: /* SCVTF, UCVTF */
9135         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9136                                      opcode, rn, rd);
9137         break;
9138     case 0x10: /* SQSHRUN, SQSHRUN2 */
9139     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9140         if (!is_u) {
9141             unallocated_encoding(s);
9142             return;
9143         }
9144         handle_vec_simd_sqshrn(s, true, false, false, true,
9145                                immh, immb, opcode, rn, rd);
9146         break;
9147     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9148     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9149         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9150                                immh, immb, opcode, rn, rd);
9151         break;
9152     case 0xc: /* SQSHLU */
9153         if (!is_u) {
9154             unallocated_encoding(s);
9155             return;
9156         }
9157         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9158         break;
9159     case 0xe: /* SQSHL, UQSHL */
9160         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9161         break;
9162     case 0x1f: /* FCVTZS, FCVTZU */
9163         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9164         break;
9165     default:
9166         unallocated_encoding(s);
9167         break;
9168     }
9169 }
9170 
9171 /* AdvSIMD scalar three different
9172  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9173  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9174  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9175  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9176  */
9177 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9178 {
9179     bool is_u = extract32(insn, 29, 1);
9180     int size = extract32(insn, 22, 2);
9181     int opcode = extract32(insn, 12, 4);
9182     int rm = extract32(insn, 16, 5);
9183     int rn = extract32(insn, 5, 5);
9184     int rd = extract32(insn, 0, 5);
9185 
9186     if (is_u) {
9187         unallocated_encoding(s);
9188         return;
9189     }
9190 
9191     switch (opcode) {
9192     case 0x9: /* SQDMLAL, SQDMLAL2 */
9193     case 0xb: /* SQDMLSL, SQDMLSL2 */
9194     case 0xd: /* SQDMULL, SQDMULL2 */
9195         if (size == 0 || size == 3) {
9196             unallocated_encoding(s);
9197             return;
9198         }
9199         break;
9200     default:
9201         unallocated_encoding(s);
9202         return;
9203     }
9204 
9205     if (!fp_access_check(s)) {
9206         return;
9207     }
9208 
9209     if (size == 2) {
9210         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9211         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9212         TCGv_i64 tcg_res = tcg_temp_new_i64();
9213 
9214         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9215         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9216 
9217         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9218         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9219 
9220         switch (opcode) {
9221         case 0xd: /* SQDMULL, SQDMULL2 */
9222             break;
9223         case 0xb: /* SQDMLSL, SQDMLSL2 */
9224             tcg_gen_neg_i64(tcg_res, tcg_res);
9225             /* fall through */
9226         case 0x9: /* SQDMLAL, SQDMLAL2 */
9227             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9228             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9229                                               tcg_res, tcg_op1);
9230             break;
9231         default:
9232             g_assert_not_reached();
9233         }
9234 
9235         write_fp_dreg(s, rd, tcg_res);
9236     } else {
9237         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9238         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9239         TCGv_i64 tcg_res = tcg_temp_new_i64();
9240 
9241         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9242         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9243 
9244         switch (opcode) {
9245         case 0xd: /* SQDMULL, SQDMULL2 */
9246             break;
9247         case 0xb: /* SQDMLSL, SQDMLSL2 */
9248             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9249             /* fall through */
9250         case 0x9: /* SQDMLAL, SQDMLAL2 */
9251         {
9252             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9253             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9254             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9255                                               tcg_res, tcg_op3);
9256             break;
9257         }
9258         default:
9259             g_assert_not_reached();
9260         }
9261 
9262         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9263         write_fp_dreg(s, rd, tcg_res);
9264     }
9265 }
9266 
9267 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9268                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9269 {
9270     /* Handle 64x64->64 opcodes which are shared between the scalar
9271      * and vector 3-same groups. We cover every opcode where size == 3
9272      * is valid in either the three-reg-same (integer, not pairwise)
9273      * or scalar-three-reg-same groups.
9274      */
9275     TCGCond cond;
9276 
9277     switch (opcode) {
9278     case 0x1: /* SQADD */
9279         if (u) {
9280             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9281         } else {
9282             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9283         }
9284         break;
9285     case 0x5: /* SQSUB */
9286         if (u) {
9287             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9288         } else {
9289             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9290         }
9291         break;
9292     case 0x6: /* CMGT, CMHI */
9293         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9294     do_cmop:
9295         /* 64 bit integer comparison, result = test ? -1 : 0. */
9296         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9297         break;
9298     case 0x7: /* CMGE, CMHS */
9299         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9300         goto do_cmop;
9301     case 0x11: /* CMTST, CMEQ */
9302         if (u) {
9303             cond = TCG_COND_EQ;
9304             goto do_cmop;
9305         }
9306         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9307         break;
9308     case 0x8: /* SSHL, USHL */
9309         if (u) {
9310             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9311         } else {
9312             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9313         }
9314         break;
9315     case 0x9: /* SQSHL, UQSHL */
9316         if (u) {
9317             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9318         } else {
9319             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9320         }
9321         break;
9322     case 0xa: /* SRSHL, URSHL */
9323         if (u) {
9324             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9325         } else {
9326             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9327         }
9328         break;
9329     case 0xb: /* SQRSHL, UQRSHL */
9330         if (u) {
9331             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9332         } else {
9333             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9334         }
9335         break;
9336     case 0x10: /* ADD, SUB */
9337         if (u) {
9338             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9339         } else {
9340             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9341         }
9342         break;
9343     default:
9344         g_assert_not_reached();
9345     }
9346 }
9347 
9348 /* AdvSIMD scalar three same
9349  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9350  * +-----+---+-----------+------+---+------+--------+---+------+------+
9351  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9352  * +-----+---+-----------+------+---+------+--------+---+------+------+
9353  */
9354 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9355 {
9356     int rd = extract32(insn, 0, 5);
9357     int rn = extract32(insn, 5, 5);
9358     int opcode = extract32(insn, 11, 5);
9359     int rm = extract32(insn, 16, 5);
9360     int size = extract32(insn, 22, 2);
9361     bool u = extract32(insn, 29, 1);
9362     TCGv_i64 tcg_rd;
9363 
9364     switch (opcode) {
9365     case 0x1: /* SQADD, UQADD */
9366     case 0x5: /* SQSUB, UQSUB */
9367     case 0x9: /* SQSHL, UQSHL */
9368     case 0xb: /* SQRSHL, UQRSHL */
9369         break;
9370     case 0x8: /* SSHL, USHL */
9371     case 0xa: /* SRSHL, URSHL */
9372     case 0x6: /* CMGT, CMHI */
9373     case 0x7: /* CMGE, CMHS */
9374     case 0x11: /* CMTST, CMEQ */
9375     case 0x10: /* ADD, SUB (vector) */
9376         if (size != 3) {
9377             unallocated_encoding(s);
9378             return;
9379         }
9380         break;
9381     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9382         if (size != 1 && size != 2) {
9383             unallocated_encoding(s);
9384             return;
9385         }
9386         break;
9387     default:
9388         unallocated_encoding(s);
9389         return;
9390     }
9391 
9392     if (!fp_access_check(s)) {
9393         return;
9394     }
9395 
9396     tcg_rd = tcg_temp_new_i64();
9397 
9398     if (size == 3) {
9399         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9400         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9401 
9402         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9403     } else {
9404         /* Do a single operation on the lowest element in the vector.
9405          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9406          * no side effects for all these operations.
9407          * OPTME: special-purpose helpers would avoid doing some
9408          * unnecessary work in the helper for the 8 and 16 bit cases.
9409          */
9410         NeonGenTwoOpEnvFn *genenvfn;
9411         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9412         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9413         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9414 
9415         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9416         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9417 
9418         switch (opcode) {
9419         case 0x1: /* SQADD, UQADD */
9420         {
9421             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9422                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9423                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9424                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9425             };
9426             genenvfn = fns[size][u];
9427             break;
9428         }
9429         case 0x5: /* SQSUB, UQSUB */
9430         {
9431             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9432                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9433                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9434                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9435             };
9436             genenvfn = fns[size][u];
9437             break;
9438         }
9439         case 0x9: /* SQSHL, UQSHL */
9440         {
9441             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9442                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9443                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9444                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9445             };
9446             genenvfn = fns[size][u];
9447             break;
9448         }
9449         case 0xb: /* SQRSHL, UQRSHL */
9450         {
9451             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9452                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9453                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9454                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9455             };
9456             genenvfn = fns[size][u];
9457             break;
9458         }
9459         case 0x16: /* SQDMULH, SQRDMULH */
9460         {
9461             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9462                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9463                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9464             };
9465             assert(size == 1 || size == 2);
9466             genenvfn = fns[size - 1][u];
9467             break;
9468         }
9469         default:
9470             g_assert_not_reached();
9471         }
9472 
9473         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9474         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9475     }
9476 
9477     write_fp_dreg(s, rd, tcg_rd);
9478 }
9479 
9480 /* AdvSIMD scalar three same extra
9481  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9482  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9483  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9484  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9485  */
9486 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9487                                                    uint32_t insn)
9488 {
9489     int rd = extract32(insn, 0, 5);
9490     int rn = extract32(insn, 5, 5);
9491     int opcode = extract32(insn, 11, 4);
9492     int rm = extract32(insn, 16, 5);
9493     int size = extract32(insn, 22, 2);
9494     bool u = extract32(insn, 29, 1);
9495     TCGv_i32 ele1, ele2, ele3;
9496     TCGv_i64 res;
9497     bool feature;
9498 
9499     switch (u * 16 + opcode) {
9500     case 0x10: /* SQRDMLAH (vector) */
9501     case 0x11: /* SQRDMLSH (vector) */
9502         if (size != 1 && size != 2) {
9503             unallocated_encoding(s);
9504             return;
9505         }
9506         feature = dc_isar_feature(aa64_rdm, s);
9507         break;
9508     default:
9509         unallocated_encoding(s);
9510         return;
9511     }
9512     if (!feature) {
9513         unallocated_encoding(s);
9514         return;
9515     }
9516     if (!fp_access_check(s)) {
9517         return;
9518     }
9519 
9520     /* Do a single operation on the lowest element in the vector.
9521      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9522      * with no side effects for all these operations.
9523      * OPTME: special-purpose helpers would avoid doing some
9524      * unnecessary work in the helper for the 16 bit cases.
9525      */
9526     ele1 = tcg_temp_new_i32();
9527     ele2 = tcg_temp_new_i32();
9528     ele3 = tcg_temp_new_i32();
9529 
9530     read_vec_element_i32(s, ele1, rn, 0, size);
9531     read_vec_element_i32(s, ele2, rm, 0, size);
9532     read_vec_element_i32(s, ele3, rd, 0, size);
9533 
9534     switch (opcode) {
9535     case 0x0: /* SQRDMLAH */
9536         if (size == 1) {
9537             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9538         } else {
9539             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9540         }
9541         break;
9542     case 0x1: /* SQRDMLSH */
9543         if (size == 1) {
9544             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9545         } else {
9546             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9547         }
9548         break;
9549     default:
9550         g_assert_not_reached();
9551     }
9552 
9553     res = tcg_temp_new_i64();
9554     tcg_gen_extu_i32_i64(res, ele3);
9555     write_fp_dreg(s, rd, res);
9556 }
9557 
9558 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9559                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9560                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9561 {
9562     /* Handle 64->64 opcodes which are shared between the scalar and
9563      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9564      * is valid in either group and also the double-precision fp ops.
9565      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9566      * requires them.
9567      */
9568     TCGCond cond;
9569 
9570     switch (opcode) {
9571     case 0x4: /* CLS, CLZ */
9572         if (u) {
9573             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9574         } else {
9575             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9576         }
9577         break;
9578     case 0x5: /* NOT */
9579         /* This opcode is shared with CNT and RBIT but we have earlier
9580          * enforced that size == 3 if and only if this is the NOT insn.
9581          */
9582         tcg_gen_not_i64(tcg_rd, tcg_rn);
9583         break;
9584     case 0x7: /* SQABS, SQNEG */
9585         if (u) {
9586             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9587         } else {
9588             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9589         }
9590         break;
9591     case 0xa: /* CMLT */
9592         cond = TCG_COND_LT;
9593     do_cmop:
9594         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9595         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9596         break;
9597     case 0x8: /* CMGT, CMGE */
9598         cond = u ? TCG_COND_GE : TCG_COND_GT;
9599         goto do_cmop;
9600     case 0x9: /* CMEQ, CMLE */
9601         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9602         goto do_cmop;
9603     case 0xb: /* ABS, NEG */
9604         if (u) {
9605             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9606         } else {
9607             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9608         }
9609         break;
9610     case 0x2f: /* FABS */
9611         gen_vfp_absd(tcg_rd, tcg_rn);
9612         break;
9613     case 0x6f: /* FNEG */
9614         gen_vfp_negd(tcg_rd, tcg_rn);
9615         break;
9616     case 0x7f: /* FSQRT */
9617         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9618         break;
9619     case 0x1a: /* FCVTNS */
9620     case 0x1b: /* FCVTMS */
9621     case 0x1c: /* FCVTAS */
9622     case 0x3a: /* FCVTPS */
9623     case 0x3b: /* FCVTZS */
9624         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9625         break;
9626     case 0x5a: /* FCVTNU */
9627     case 0x5b: /* FCVTMU */
9628     case 0x5c: /* FCVTAU */
9629     case 0x7a: /* FCVTPU */
9630     case 0x7b: /* FCVTZU */
9631         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9632         break;
9633     case 0x18: /* FRINTN */
9634     case 0x19: /* FRINTM */
9635     case 0x38: /* FRINTP */
9636     case 0x39: /* FRINTZ */
9637     case 0x58: /* FRINTA */
9638     case 0x79: /* FRINTI */
9639         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9640         break;
9641     case 0x59: /* FRINTX */
9642         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9643         break;
9644     case 0x1e: /* FRINT32Z */
9645     case 0x5e: /* FRINT32X */
9646         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9647         break;
9648     case 0x1f: /* FRINT64Z */
9649     case 0x5f: /* FRINT64X */
9650         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9651         break;
9652     default:
9653         g_assert_not_reached();
9654     }
9655 }
9656 
9657 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9658                                    bool is_scalar, bool is_u, bool is_q,
9659                                    int size, int rn, int rd)
9660 {
9661     bool is_double = (size == MO_64);
9662     TCGv_ptr fpst;
9663 
9664     if (!fp_access_check(s)) {
9665         return;
9666     }
9667 
9668     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9669 
9670     if (is_double) {
9671         TCGv_i64 tcg_op = tcg_temp_new_i64();
9672         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9673         TCGv_i64 tcg_res = tcg_temp_new_i64();
9674         NeonGenTwoDoubleOpFn *genfn;
9675         bool swap = false;
9676         int pass;
9677 
9678         switch (opcode) {
9679         case 0x2e: /* FCMLT (zero) */
9680             swap = true;
9681             /* fallthrough */
9682         case 0x2c: /* FCMGT (zero) */
9683             genfn = gen_helper_neon_cgt_f64;
9684             break;
9685         case 0x2d: /* FCMEQ (zero) */
9686             genfn = gen_helper_neon_ceq_f64;
9687             break;
9688         case 0x6d: /* FCMLE (zero) */
9689             swap = true;
9690             /* fall through */
9691         case 0x6c: /* FCMGE (zero) */
9692             genfn = gen_helper_neon_cge_f64;
9693             break;
9694         default:
9695             g_assert_not_reached();
9696         }
9697 
9698         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9699             read_vec_element(s, tcg_op, rn, pass, MO_64);
9700             if (swap) {
9701                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9702             } else {
9703                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9704             }
9705             write_vec_element(s, tcg_res, rd, pass, MO_64);
9706         }
9707 
9708         clear_vec_high(s, !is_scalar, rd);
9709     } else {
9710         TCGv_i32 tcg_op = tcg_temp_new_i32();
9711         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9712         TCGv_i32 tcg_res = tcg_temp_new_i32();
9713         NeonGenTwoSingleOpFn *genfn;
9714         bool swap = false;
9715         int pass, maxpasses;
9716 
9717         if (size == MO_16) {
9718             switch (opcode) {
9719             case 0x2e: /* FCMLT (zero) */
9720                 swap = true;
9721                 /* fall through */
9722             case 0x2c: /* FCMGT (zero) */
9723                 genfn = gen_helper_advsimd_cgt_f16;
9724                 break;
9725             case 0x2d: /* FCMEQ (zero) */
9726                 genfn = gen_helper_advsimd_ceq_f16;
9727                 break;
9728             case 0x6d: /* FCMLE (zero) */
9729                 swap = true;
9730                 /* fall through */
9731             case 0x6c: /* FCMGE (zero) */
9732                 genfn = gen_helper_advsimd_cge_f16;
9733                 break;
9734             default:
9735                 g_assert_not_reached();
9736             }
9737         } else {
9738             switch (opcode) {
9739             case 0x2e: /* FCMLT (zero) */
9740                 swap = true;
9741                 /* fall through */
9742             case 0x2c: /* FCMGT (zero) */
9743                 genfn = gen_helper_neon_cgt_f32;
9744                 break;
9745             case 0x2d: /* FCMEQ (zero) */
9746                 genfn = gen_helper_neon_ceq_f32;
9747                 break;
9748             case 0x6d: /* FCMLE (zero) */
9749                 swap = true;
9750                 /* fall through */
9751             case 0x6c: /* FCMGE (zero) */
9752                 genfn = gen_helper_neon_cge_f32;
9753                 break;
9754             default:
9755                 g_assert_not_reached();
9756             }
9757         }
9758 
9759         if (is_scalar) {
9760             maxpasses = 1;
9761         } else {
9762             int vector_size = 8 << is_q;
9763             maxpasses = vector_size >> size;
9764         }
9765 
9766         for (pass = 0; pass < maxpasses; pass++) {
9767             read_vec_element_i32(s, tcg_op, rn, pass, size);
9768             if (swap) {
9769                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9770             } else {
9771                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9772             }
9773             if (is_scalar) {
9774                 write_fp_sreg(s, rd, tcg_res);
9775             } else {
9776                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9777             }
9778         }
9779 
9780         if (!is_scalar) {
9781             clear_vec_high(s, is_q, rd);
9782         }
9783     }
9784 }
9785 
9786 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9787                                     bool is_scalar, bool is_u, bool is_q,
9788                                     int size, int rn, int rd)
9789 {
9790     bool is_double = (size == 3);
9791     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9792 
9793     if (is_double) {
9794         TCGv_i64 tcg_op = tcg_temp_new_i64();
9795         TCGv_i64 tcg_res = tcg_temp_new_i64();
9796         int pass;
9797 
9798         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9799             read_vec_element(s, tcg_op, rn, pass, MO_64);
9800             switch (opcode) {
9801             case 0x3d: /* FRECPE */
9802                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9803                 break;
9804             case 0x3f: /* FRECPX */
9805                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9806                 break;
9807             case 0x7d: /* FRSQRTE */
9808                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9809                 break;
9810             default:
9811                 g_assert_not_reached();
9812             }
9813             write_vec_element(s, tcg_res, rd, pass, MO_64);
9814         }
9815         clear_vec_high(s, !is_scalar, rd);
9816     } else {
9817         TCGv_i32 tcg_op = tcg_temp_new_i32();
9818         TCGv_i32 tcg_res = tcg_temp_new_i32();
9819         int pass, maxpasses;
9820 
9821         if (is_scalar) {
9822             maxpasses = 1;
9823         } else {
9824             maxpasses = is_q ? 4 : 2;
9825         }
9826 
9827         for (pass = 0; pass < maxpasses; pass++) {
9828             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9829 
9830             switch (opcode) {
9831             case 0x3c: /* URECPE */
9832                 gen_helper_recpe_u32(tcg_res, tcg_op);
9833                 break;
9834             case 0x3d: /* FRECPE */
9835                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9836                 break;
9837             case 0x3f: /* FRECPX */
9838                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9839                 break;
9840             case 0x7d: /* FRSQRTE */
9841                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9842                 break;
9843             default:
9844                 g_assert_not_reached();
9845             }
9846 
9847             if (is_scalar) {
9848                 write_fp_sreg(s, rd, tcg_res);
9849             } else {
9850                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9851             }
9852         }
9853         if (!is_scalar) {
9854             clear_vec_high(s, is_q, rd);
9855         }
9856     }
9857 }
9858 
9859 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9860                                 int opcode, bool u, bool is_q,
9861                                 int size, int rn, int rd)
9862 {
9863     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9864      * in the source becomes a size element in the destination).
9865      */
9866     int pass;
9867     TCGv_i32 tcg_res[2];
9868     int destelt = is_q ? 2 : 0;
9869     int passes = scalar ? 1 : 2;
9870 
9871     if (scalar) {
9872         tcg_res[1] = tcg_constant_i32(0);
9873     }
9874 
9875     for (pass = 0; pass < passes; pass++) {
9876         TCGv_i64 tcg_op = tcg_temp_new_i64();
9877         NeonGenNarrowFn *genfn = NULL;
9878         NeonGenNarrowEnvFn *genenvfn = NULL;
9879 
9880         if (scalar) {
9881             read_vec_element(s, tcg_op, rn, pass, size + 1);
9882         } else {
9883             read_vec_element(s, tcg_op, rn, pass, MO_64);
9884         }
9885         tcg_res[pass] = tcg_temp_new_i32();
9886 
9887         switch (opcode) {
9888         case 0x12: /* XTN, SQXTUN */
9889         {
9890             static NeonGenNarrowFn * const xtnfns[3] = {
9891                 gen_helper_neon_narrow_u8,
9892                 gen_helper_neon_narrow_u16,
9893                 tcg_gen_extrl_i64_i32,
9894             };
9895             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9896                 gen_helper_neon_unarrow_sat8,
9897                 gen_helper_neon_unarrow_sat16,
9898                 gen_helper_neon_unarrow_sat32,
9899             };
9900             if (u) {
9901                 genenvfn = sqxtunfns[size];
9902             } else {
9903                 genfn = xtnfns[size];
9904             }
9905             break;
9906         }
9907         case 0x14: /* SQXTN, UQXTN */
9908         {
9909             static NeonGenNarrowEnvFn * const fns[3][2] = {
9910                 { gen_helper_neon_narrow_sat_s8,
9911                   gen_helper_neon_narrow_sat_u8 },
9912                 { gen_helper_neon_narrow_sat_s16,
9913                   gen_helper_neon_narrow_sat_u16 },
9914                 { gen_helper_neon_narrow_sat_s32,
9915                   gen_helper_neon_narrow_sat_u32 },
9916             };
9917             genenvfn = fns[size][u];
9918             break;
9919         }
9920         case 0x16: /* FCVTN, FCVTN2 */
9921             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9922             if (size == 2) {
9923                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9924             } else {
9925                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9926                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9927                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9928                 TCGv_i32 ahp = get_ahp_flag();
9929 
9930                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9931                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9932                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9933                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9934             }
9935             break;
9936         case 0x36: /* BFCVTN, BFCVTN2 */
9937             {
9938                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9939                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9940             }
9941             break;
9942         case 0x56:  /* FCVTXN, FCVTXN2 */
9943             /* 64 bit to 32 bit float conversion
9944              * with von Neumann rounding (round to odd)
9945              */
9946             assert(size == 2);
9947             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9948             break;
9949         default:
9950             g_assert_not_reached();
9951         }
9952 
9953         if (genfn) {
9954             genfn(tcg_res[pass], tcg_op);
9955         } else if (genenvfn) {
9956             genenvfn(tcg_res[pass], tcg_env, tcg_op);
9957         }
9958     }
9959 
9960     for (pass = 0; pass < 2; pass++) {
9961         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9962     }
9963     clear_vec_high(s, is_q, rd);
9964 }
9965 
9966 /* Remaining saturating accumulating ops */
9967 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9968                                 bool is_q, int size, int rn, int rd)
9969 {
9970     bool is_double = (size == 3);
9971 
9972     if (is_double) {
9973         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9974         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9975         int pass;
9976 
9977         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9978             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9979             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9980 
9981             if (is_u) { /* USQADD */
9982                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9983             } else { /* SUQADD */
9984                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9985             }
9986             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9987         }
9988         clear_vec_high(s, !is_scalar, rd);
9989     } else {
9990         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9991         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9992         int pass, maxpasses;
9993 
9994         if (is_scalar) {
9995             maxpasses = 1;
9996         } else {
9997             maxpasses = is_q ? 4 : 2;
9998         }
9999 
10000         for (pass = 0; pass < maxpasses; pass++) {
10001             if (is_scalar) {
10002                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10003                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10004             } else {
10005                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10006                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10007             }
10008 
10009             if (is_u) { /* USQADD */
10010                 switch (size) {
10011                 case 0:
10012                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10013                     break;
10014                 case 1:
10015                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10016                     break;
10017                 case 2:
10018                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10019                     break;
10020                 default:
10021                     g_assert_not_reached();
10022                 }
10023             } else { /* SUQADD */
10024                 switch (size) {
10025                 case 0:
10026                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10027                     break;
10028                 case 1:
10029                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10030                     break;
10031                 case 2:
10032                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10033                     break;
10034                 default:
10035                     g_assert_not_reached();
10036                 }
10037             }
10038 
10039             if (is_scalar) {
10040                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10041             }
10042             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10043         }
10044         clear_vec_high(s, is_q, rd);
10045     }
10046 }
10047 
10048 /* AdvSIMD scalar two reg misc
10049  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10050  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10051  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10052  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10053  */
10054 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10055 {
10056     int rd = extract32(insn, 0, 5);
10057     int rn = extract32(insn, 5, 5);
10058     int opcode = extract32(insn, 12, 5);
10059     int size = extract32(insn, 22, 2);
10060     bool u = extract32(insn, 29, 1);
10061     bool is_fcvt = false;
10062     int rmode;
10063     TCGv_i32 tcg_rmode;
10064     TCGv_ptr tcg_fpstatus;
10065 
10066     switch (opcode) {
10067     case 0x3: /* USQADD / SUQADD*/
10068         if (!fp_access_check(s)) {
10069             return;
10070         }
10071         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10072         return;
10073     case 0x7: /* SQABS / SQNEG */
10074         break;
10075     case 0xa: /* CMLT */
10076         if (u) {
10077             unallocated_encoding(s);
10078             return;
10079         }
10080         /* fall through */
10081     case 0x8: /* CMGT, CMGE */
10082     case 0x9: /* CMEQ, CMLE */
10083     case 0xb: /* ABS, NEG */
10084         if (size != 3) {
10085             unallocated_encoding(s);
10086             return;
10087         }
10088         break;
10089     case 0x12: /* SQXTUN */
10090         if (!u) {
10091             unallocated_encoding(s);
10092             return;
10093         }
10094         /* fall through */
10095     case 0x14: /* SQXTN, UQXTN */
10096         if (size == 3) {
10097             unallocated_encoding(s);
10098             return;
10099         }
10100         if (!fp_access_check(s)) {
10101             return;
10102         }
10103         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10104         return;
10105     case 0xc ... 0xf:
10106     case 0x16 ... 0x1d:
10107     case 0x1f:
10108         /* Floating point: U, size[1] and opcode indicate operation;
10109          * size[0] indicates single or double precision.
10110          */
10111         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10112         size = extract32(size, 0, 1) ? 3 : 2;
10113         switch (opcode) {
10114         case 0x2c: /* FCMGT (zero) */
10115         case 0x2d: /* FCMEQ (zero) */
10116         case 0x2e: /* FCMLT (zero) */
10117         case 0x6c: /* FCMGE (zero) */
10118         case 0x6d: /* FCMLE (zero) */
10119             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10120             return;
10121         case 0x1d: /* SCVTF */
10122         case 0x5d: /* UCVTF */
10123         {
10124             bool is_signed = (opcode == 0x1d);
10125             if (!fp_access_check(s)) {
10126                 return;
10127             }
10128             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10129             return;
10130         }
10131         case 0x3d: /* FRECPE */
10132         case 0x3f: /* FRECPX */
10133         case 0x7d: /* FRSQRTE */
10134             if (!fp_access_check(s)) {
10135                 return;
10136             }
10137             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10138             return;
10139         case 0x1a: /* FCVTNS */
10140         case 0x1b: /* FCVTMS */
10141         case 0x3a: /* FCVTPS */
10142         case 0x3b: /* FCVTZS */
10143         case 0x5a: /* FCVTNU */
10144         case 0x5b: /* FCVTMU */
10145         case 0x7a: /* FCVTPU */
10146         case 0x7b: /* FCVTZU */
10147             is_fcvt = true;
10148             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10149             break;
10150         case 0x1c: /* FCVTAS */
10151         case 0x5c: /* FCVTAU */
10152             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10153             is_fcvt = true;
10154             rmode = FPROUNDING_TIEAWAY;
10155             break;
10156         case 0x56: /* FCVTXN, FCVTXN2 */
10157             if (size == 2) {
10158                 unallocated_encoding(s);
10159                 return;
10160             }
10161             if (!fp_access_check(s)) {
10162                 return;
10163             }
10164             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10165             return;
10166         default:
10167             unallocated_encoding(s);
10168             return;
10169         }
10170         break;
10171     default:
10172         unallocated_encoding(s);
10173         return;
10174     }
10175 
10176     if (!fp_access_check(s)) {
10177         return;
10178     }
10179 
10180     if (is_fcvt) {
10181         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10182         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10183     } else {
10184         tcg_fpstatus = NULL;
10185         tcg_rmode = NULL;
10186     }
10187 
10188     if (size == 3) {
10189         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10190         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10191 
10192         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10193         write_fp_dreg(s, rd, tcg_rd);
10194     } else {
10195         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10196         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10197 
10198         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10199 
10200         switch (opcode) {
10201         case 0x7: /* SQABS, SQNEG */
10202         {
10203             NeonGenOneOpEnvFn *genfn;
10204             static NeonGenOneOpEnvFn * const fns[3][2] = {
10205                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10206                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10207                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10208             };
10209             genfn = fns[size][u];
10210             genfn(tcg_rd, tcg_env, tcg_rn);
10211             break;
10212         }
10213         case 0x1a: /* FCVTNS */
10214         case 0x1b: /* FCVTMS */
10215         case 0x1c: /* FCVTAS */
10216         case 0x3a: /* FCVTPS */
10217         case 0x3b: /* FCVTZS */
10218             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10219                                  tcg_fpstatus);
10220             break;
10221         case 0x5a: /* FCVTNU */
10222         case 0x5b: /* FCVTMU */
10223         case 0x5c: /* FCVTAU */
10224         case 0x7a: /* FCVTPU */
10225         case 0x7b: /* FCVTZU */
10226             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10227                                  tcg_fpstatus);
10228             break;
10229         default:
10230             g_assert_not_reached();
10231         }
10232 
10233         write_fp_sreg(s, rd, tcg_rd);
10234     }
10235 
10236     if (is_fcvt) {
10237         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10238     }
10239 }
10240 
10241 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10242 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10243                                  int immh, int immb, int opcode, int rn, int rd)
10244 {
10245     int size = 32 - clz32(immh) - 1;
10246     int immhb = immh << 3 | immb;
10247     int shift = 2 * (8 << size) - immhb;
10248     GVecGen2iFn *gvec_fn;
10249 
10250     if (extract32(immh, 3, 1) && !is_q) {
10251         unallocated_encoding(s);
10252         return;
10253     }
10254     tcg_debug_assert(size <= 3);
10255 
10256     if (!fp_access_check(s)) {
10257         return;
10258     }
10259 
10260     switch (opcode) {
10261     case 0x02: /* SSRA / USRA (accumulate) */
10262         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10263         break;
10264 
10265     case 0x08: /* SRI */
10266         gvec_fn = gen_gvec_sri;
10267         break;
10268 
10269     case 0x00: /* SSHR / USHR */
10270         if (is_u) {
10271             if (shift == 8 << size) {
10272                 /* Shift count the same size as element size produces zero.  */
10273                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10274                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10275                 return;
10276             }
10277             gvec_fn = tcg_gen_gvec_shri;
10278         } else {
10279             /* Shift count the same size as element size produces all sign.  */
10280             if (shift == 8 << size) {
10281                 shift -= 1;
10282             }
10283             gvec_fn = tcg_gen_gvec_sari;
10284         }
10285         break;
10286 
10287     case 0x04: /* SRSHR / URSHR (rounding) */
10288         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10289         break;
10290 
10291     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10292         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10293         break;
10294 
10295     default:
10296         g_assert_not_reached();
10297     }
10298 
10299     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10300 }
10301 
10302 /* SHL/SLI - Vector shift left */
10303 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10304                                  int immh, int immb, int opcode, int rn, int rd)
10305 {
10306     int size = 32 - clz32(immh) - 1;
10307     int immhb = immh << 3 | immb;
10308     int shift = immhb - (8 << size);
10309 
10310     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10311     assert(size >= 0 && size <= 3);
10312 
10313     if (extract32(immh, 3, 1) && !is_q) {
10314         unallocated_encoding(s);
10315         return;
10316     }
10317 
10318     if (!fp_access_check(s)) {
10319         return;
10320     }
10321 
10322     if (insert) {
10323         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10324     } else {
10325         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10326     }
10327 }
10328 
10329 /* USHLL/SHLL - Vector shift left with widening */
10330 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10331                                  int immh, int immb, int opcode, int rn, int rd)
10332 {
10333     int size = 32 - clz32(immh) - 1;
10334     int immhb = immh << 3 | immb;
10335     int shift = immhb - (8 << size);
10336     int dsize = 64;
10337     int esize = 8 << size;
10338     int elements = dsize/esize;
10339     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10340     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10341     int i;
10342 
10343     if (size >= 3) {
10344         unallocated_encoding(s);
10345         return;
10346     }
10347 
10348     if (!fp_access_check(s)) {
10349         return;
10350     }
10351 
10352     /* For the LL variants the store is larger than the load,
10353      * so if rd == rn we would overwrite parts of our input.
10354      * So load everything right now and use shifts in the main loop.
10355      */
10356     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10357 
10358     for (i = 0; i < elements; i++) {
10359         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10360         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10361         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10362         write_vec_element(s, tcg_rd, rd, i, size + 1);
10363     }
10364 }
10365 
10366 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10367 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10368                                  int immh, int immb, int opcode, int rn, int rd)
10369 {
10370     int immhb = immh << 3 | immb;
10371     int size = 32 - clz32(immh) - 1;
10372     int dsize = 64;
10373     int esize = 8 << size;
10374     int elements = dsize/esize;
10375     int shift = (2 * esize) - immhb;
10376     bool round = extract32(opcode, 0, 1);
10377     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10378     TCGv_i64 tcg_round;
10379     int i;
10380 
10381     if (extract32(immh, 3, 1)) {
10382         unallocated_encoding(s);
10383         return;
10384     }
10385 
10386     if (!fp_access_check(s)) {
10387         return;
10388     }
10389 
10390     tcg_rn = tcg_temp_new_i64();
10391     tcg_rd = tcg_temp_new_i64();
10392     tcg_final = tcg_temp_new_i64();
10393     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10394 
10395     if (round) {
10396         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10397     } else {
10398         tcg_round = NULL;
10399     }
10400 
10401     for (i = 0; i < elements; i++) {
10402         read_vec_element(s, tcg_rn, rn, i, size+1);
10403         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10404                                 false, true, size+1, shift);
10405 
10406         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10407     }
10408 
10409     if (!is_q) {
10410         write_vec_element(s, tcg_final, rd, 0, MO_64);
10411     } else {
10412         write_vec_element(s, tcg_final, rd, 1, MO_64);
10413     }
10414 
10415     clear_vec_high(s, is_q, rd);
10416 }
10417 
10418 
10419 /* AdvSIMD shift by immediate
10420  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10421  * +---+---+---+-------------+------+------+--------+---+------+------+
10422  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10423  * +---+---+---+-------------+------+------+--------+---+------+------+
10424  */
10425 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10426 {
10427     int rd = extract32(insn, 0, 5);
10428     int rn = extract32(insn, 5, 5);
10429     int opcode = extract32(insn, 11, 5);
10430     int immb = extract32(insn, 16, 3);
10431     int immh = extract32(insn, 19, 4);
10432     bool is_u = extract32(insn, 29, 1);
10433     bool is_q = extract32(insn, 30, 1);
10434 
10435     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10436     assert(immh != 0);
10437 
10438     switch (opcode) {
10439     case 0x08: /* SRI */
10440         if (!is_u) {
10441             unallocated_encoding(s);
10442             return;
10443         }
10444         /* fall through */
10445     case 0x00: /* SSHR / USHR */
10446     case 0x02: /* SSRA / USRA (accumulate) */
10447     case 0x04: /* SRSHR / URSHR (rounding) */
10448     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10449         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10450         break;
10451     case 0x0a: /* SHL / SLI */
10452         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10453         break;
10454     case 0x10: /* SHRN */
10455     case 0x11: /* RSHRN / SQRSHRUN */
10456         if (is_u) {
10457             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10458                                    opcode, rn, rd);
10459         } else {
10460             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10461         }
10462         break;
10463     case 0x12: /* SQSHRN / UQSHRN */
10464     case 0x13: /* SQRSHRN / UQRSHRN */
10465         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10466                                opcode, rn, rd);
10467         break;
10468     case 0x14: /* SSHLL / USHLL */
10469         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10470         break;
10471     case 0x1c: /* SCVTF / UCVTF */
10472         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10473                                      opcode, rn, rd);
10474         break;
10475     case 0xc: /* SQSHLU */
10476         if (!is_u) {
10477             unallocated_encoding(s);
10478             return;
10479         }
10480         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10481         break;
10482     case 0xe: /* SQSHL, UQSHL */
10483         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10484         break;
10485     case 0x1f: /* FCVTZS/ FCVTZU */
10486         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10487         return;
10488     default:
10489         unallocated_encoding(s);
10490         return;
10491     }
10492 }
10493 
10494 /* Generate code to do a "long" addition or subtraction, ie one done in
10495  * TCGv_i64 on vector lanes twice the width specified by size.
10496  */
10497 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10498                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10499 {
10500     static NeonGenTwo64OpFn * const fns[3][2] = {
10501         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10502         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10503         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10504     };
10505     NeonGenTwo64OpFn *genfn;
10506     assert(size < 3);
10507 
10508     genfn = fns[size][is_sub];
10509     genfn(tcg_res, tcg_op1, tcg_op2);
10510 }
10511 
10512 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10513                                 int opcode, int rd, int rn, int rm)
10514 {
10515     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10516     TCGv_i64 tcg_res[2];
10517     int pass, accop;
10518 
10519     tcg_res[0] = tcg_temp_new_i64();
10520     tcg_res[1] = tcg_temp_new_i64();
10521 
10522     /* Does this op do an adding accumulate, a subtracting accumulate,
10523      * or no accumulate at all?
10524      */
10525     switch (opcode) {
10526     case 5:
10527     case 8:
10528     case 9:
10529         accop = 1;
10530         break;
10531     case 10:
10532     case 11:
10533         accop = -1;
10534         break;
10535     default:
10536         accop = 0;
10537         break;
10538     }
10539 
10540     if (accop != 0) {
10541         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10542         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10543     }
10544 
10545     /* size == 2 means two 32x32->64 operations; this is worth special
10546      * casing because we can generally handle it inline.
10547      */
10548     if (size == 2) {
10549         for (pass = 0; pass < 2; pass++) {
10550             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10551             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10552             TCGv_i64 tcg_passres;
10553             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10554 
10555             int elt = pass + is_q * 2;
10556 
10557             read_vec_element(s, tcg_op1, rn, elt, memop);
10558             read_vec_element(s, tcg_op2, rm, elt, memop);
10559 
10560             if (accop == 0) {
10561                 tcg_passres = tcg_res[pass];
10562             } else {
10563                 tcg_passres = tcg_temp_new_i64();
10564             }
10565 
10566             switch (opcode) {
10567             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10568                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10569                 break;
10570             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10571                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10572                 break;
10573             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10574             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10575             {
10576                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10577                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10578 
10579                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10580                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10581                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10582                                     tcg_passres,
10583                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10584                 break;
10585             }
10586             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10587             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10588             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10589                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10590                 break;
10591             case 9: /* SQDMLAL, SQDMLAL2 */
10592             case 11: /* SQDMLSL, SQDMLSL2 */
10593             case 13: /* SQDMULL, SQDMULL2 */
10594                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10595                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10596                                                   tcg_passres, tcg_passres);
10597                 break;
10598             default:
10599                 g_assert_not_reached();
10600             }
10601 
10602             if (opcode == 9 || opcode == 11) {
10603                 /* saturating accumulate ops */
10604                 if (accop < 0) {
10605                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10606                 }
10607                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10608                                                   tcg_res[pass], tcg_passres);
10609             } else if (accop > 0) {
10610                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10611             } else if (accop < 0) {
10612                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10613             }
10614         }
10615     } else {
10616         /* size 0 or 1, generally helper functions */
10617         for (pass = 0; pass < 2; pass++) {
10618             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10619             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10620             TCGv_i64 tcg_passres;
10621             int elt = pass + is_q * 2;
10622 
10623             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10624             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10625 
10626             if (accop == 0) {
10627                 tcg_passres = tcg_res[pass];
10628             } else {
10629                 tcg_passres = tcg_temp_new_i64();
10630             }
10631 
10632             switch (opcode) {
10633             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10634             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10635             {
10636                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10637                 static NeonGenWidenFn * const widenfns[2][2] = {
10638                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10639                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10640                 };
10641                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10642 
10643                 widenfn(tcg_op2_64, tcg_op2);
10644                 widenfn(tcg_passres, tcg_op1);
10645                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10646                               tcg_passres, tcg_op2_64);
10647                 break;
10648             }
10649             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10650             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10651                 if (size == 0) {
10652                     if (is_u) {
10653                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10654                     } else {
10655                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10656                     }
10657                 } else {
10658                     if (is_u) {
10659                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10660                     } else {
10661                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10662                     }
10663                 }
10664                 break;
10665             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10666             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10667             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10668                 if (size == 0) {
10669                     if (is_u) {
10670                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10671                     } else {
10672                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10673                     }
10674                 } else {
10675                     if (is_u) {
10676                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10677                     } else {
10678                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10679                     }
10680                 }
10681                 break;
10682             case 9: /* SQDMLAL, SQDMLAL2 */
10683             case 11: /* SQDMLSL, SQDMLSL2 */
10684             case 13: /* SQDMULL, SQDMULL2 */
10685                 assert(size == 1);
10686                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10687                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10688                                                   tcg_passres, tcg_passres);
10689                 break;
10690             default:
10691                 g_assert_not_reached();
10692             }
10693 
10694             if (accop != 0) {
10695                 if (opcode == 9 || opcode == 11) {
10696                     /* saturating accumulate ops */
10697                     if (accop < 0) {
10698                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10699                     }
10700                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10701                                                       tcg_res[pass],
10702                                                       tcg_passres);
10703                 } else {
10704                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10705                                   tcg_res[pass], tcg_passres);
10706                 }
10707             }
10708         }
10709     }
10710 
10711     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10712     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10713 }
10714 
10715 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10716                             int opcode, int rd, int rn, int rm)
10717 {
10718     TCGv_i64 tcg_res[2];
10719     int part = is_q ? 2 : 0;
10720     int pass;
10721 
10722     for (pass = 0; pass < 2; pass++) {
10723         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10724         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10725         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10726         static NeonGenWidenFn * const widenfns[3][2] = {
10727             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10728             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10729             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10730         };
10731         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10732 
10733         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10734         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10735         widenfn(tcg_op2_wide, tcg_op2);
10736         tcg_res[pass] = tcg_temp_new_i64();
10737         gen_neon_addl(size, (opcode == 3),
10738                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10739     }
10740 
10741     for (pass = 0; pass < 2; pass++) {
10742         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10743     }
10744 }
10745 
10746 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10747 {
10748     tcg_gen_addi_i64(in, in, 1U << 31);
10749     tcg_gen_extrh_i64_i32(res, in);
10750 }
10751 
10752 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10753                                  int opcode, int rd, int rn, int rm)
10754 {
10755     TCGv_i32 tcg_res[2];
10756     int part = is_q ? 2 : 0;
10757     int pass;
10758 
10759     for (pass = 0; pass < 2; pass++) {
10760         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10761         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10762         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10763         static NeonGenNarrowFn * const narrowfns[3][2] = {
10764             { gen_helper_neon_narrow_high_u8,
10765               gen_helper_neon_narrow_round_high_u8 },
10766             { gen_helper_neon_narrow_high_u16,
10767               gen_helper_neon_narrow_round_high_u16 },
10768             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10769         };
10770         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10771 
10772         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10773         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10774 
10775         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10776 
10777         tcg_res[pass] = tcg_temp_new_i32();
10778         gennarrow(tcg_res[pass], tcg_wideres);
10779     }
10780 
10781     for (pass = 0; pass < 2; pass++) {
10782         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10783     }
10784     clear_vec_high(s, is_q, rd);
10785 }
10786 
10787 /* AdvSIMD three different
10788  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10789  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10790  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10791  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10792  */
10793 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10794 {
10795     /* Instructions in this group fall into three basic classes
10796      * (in each case with the operation working on each element in
10797      * the input vectors):
10798      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10799      *     128 bit input)
10800      * (2) wide 64 x 128 -> 128
10801      * (3) narrowing 128 x 128 -> 64
10802      * Here we do initial decode, catch unallocated cases and
10803      * dispatch to separate functions for each class.
10804      */
10805     int is_q = extract32(insn, 30, 1);
10806     int is_u = extract32(insn, 29, 1);
10807     int size = extract32(insn, 22, 2);
10808     int opcode = extract32(insn, 12, 4);
10809     int rm = extract32(insn, 16, 5);
10810     int rn = extract32(insn, 5, 5);
10811     int rd = extract32(insn, 0, 5);
10812 
10813     switch (opcode) {
10814     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10815     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10816         /* 64 x 128 -> 128 */
10817         if (size == 3) {
10818             unallocated_encoding(s);
10819             return;
10820         }
10821         if (!fp_access_check(s)) {
10822             return;
10823         }
10824         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10825         break;
10826     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10827     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10828         /* 128 x 128 -> 64 */
10829         if (size == 3) {
10830             unallocated_encoding(s);
10831             return;
10832         }
10833         if (!fp_access_check(s)) {
10834             return;
10835         }
10836         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10837         break;
10838     case 14: /* PMULL, PMULL2 */
10839         if (is_u) {
10840             unallocated_encoding(s);
10841             return;
10842         }
10843         switch (size) {
10844         case 0: /* PMULL.P8 */
10845             if (!fp_access_check(s)) {
10846                 return;
10847             }
10848             /* The Q field specifies lo/hi half input for this insn.  */
10849             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10850                              gen_helper_neon_pmull_h);
10851             break;
10852 
10853         case 3: /* PMULL.P64 */
10854             if (!dc_isar_feature(aa64_pmull, s)) {
10855                 unallocated_encoding(s);
10856                 return;
10857             }
10858             if (!fp_access_check(s)) {
10859                 return;
10860             }
10861             /* The Q field specifies lo/hi half input for this insn.  */
10862             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10863                              gen_helper_gvec_pmull_q);
10864             break;
10865 
10866         default:
10867             unallocated_encoding(s);
10868             break;
10869         }
10870         return;
10871     case 9: /* SQDMLAL, SQDMLAL2 */
10872     case 11: /* SQDMLSL, SQDMLSL2 */
10873     case 13: /* SQDMULL, SQDMULL2 */
10874         if (is_u || size == 0) {
10875             unallocated_encoding(s);
10876             return;
10877         }
10878         /* fall through */
10879     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10880     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10881     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10882     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10883     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10884     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10885     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10886         /* 64 x 64 -> 128 */
10887         if (size == 3) {
10888             unallocated_encoding(s);
10889             return;
10890         }
10891         if (!fp_access_check(s)) {
10892             return;
10893         }
10894 
10895         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10896         break;
10897     default:
10898         /* opcode 15 not allocated */
10899         unallocated_encoding(s);
10900         break;
10901     }
10902 }
10903 
10904 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10905 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10906 {
10907     int rd = extract32(insn, 0, 5);
10908     int rn = extract32(insn, 5, 5);
10909     int rm = extract32(insn, 16, 5);
10910     int size = extract32(insn, 22, 2);
10911     bool is_u = extract32(insn, 29, 1);
10912     bool is_q = extract32(insn, 30, 1);
10913 
10914     if (!fp_access_check(s)) {
10915         return;
10916     }
10917 
10918     switch (size + 4 * is_u) {
10919     case 0: /* AND */
10920         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10921         return;
10922     case 1: /* BIC */
10923         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10924         return;
10925     case 2: /* ORR */
10926         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10927         return;
10928     case 3: /* ORN */
10929         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10930         return;
10931     case 4: /* EOR */
10932         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10933         return;
10934 
10935     case 5: /* BSL bitwise select */
10936         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10937         return;
10938     case 6: /* BIT, bitwise insert if true */
10939         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10940         return;
10941     case 7: /* BIF, bitwise insert if false */
10942         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10943         return;
10944 
10945     default:
10946         g_assert_not_reached();
10947     }
10948 }
10949 
10950 /* Pairwise op subgroup of C3.6.16.
10951  *
10952  * This is called directly for float pairwise
10953  * operations where the opcode and size are calculated differently.
10954  */
10955 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10956                                    int size, int rn, int rm, int rd)
10957 {
10958     int pass;
10959 
10960     if (!fp_access_check(s)) {
10961         return;
10962     }
10963 
10964     /* These operations work on the concatenated rm:rn, with each pair of
10965      * adjacent elements being operated on to produce an element in the result.
10966      */
10967     if (size == 3) {
10968         TCGv_i64 tcg_res[2];
10969 
10970         for (pass = 0; pass < 2; pass++) {
10971             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10972             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10973             int passreg = (pass == 0) ? rn : rm;
10974 
10975             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10976             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10977             tcg_res[pass] = tcg_temp_new_i64();
10978 
10979             switch (opcode) {
10980             case 0x17: /* ADDP */
10981                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10982                 break;
10983             default:
10984             case 0x58: /* FMAXNMP */
10985             case 0x5a: /* FADDP */
10986             case 0x5e: /* FMAXP */
10987             case 0x78: /* FMINNMP */
10988             case 0x7e: /* FMINP */
10989                 g_assert_not_reached();
10990             }
10991         }
10992 
10993         for (pass = 0; pass < 2; pass++) {
10994             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10995         }
10996     } else {
10997         int maxpass = is_q ? 4 : 2;
10998         TCGv_i32 tcg_res[4];
10999 
11000         for (pass = 0; pass < maxpass; pass++) {
11001             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11002             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11003             NeonGenTwoOpFn *genfn = NULL;
11004             int passreg = pass < (maxpass / 2) ? rn : rm;
11005             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11006 
11007             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11008             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11009             tcg_res[pass] = tcg_temp_new_i32();
11010 
11011             switch (opcode) {
11012             case 0x17: /* ADDP */
11013             {
11014                 static NeonGenTwoOpFn * const fns[3] = {
11015                     gen_helper_neon_padd_u8,
11016                     gen_helper_neon_padd_u16,
11017                     tcg_gen_add_i32,
11018                 };
11019                 genfn = fns[size];
11020                 break;
11021             }
11022             case 0x14: /* SMAXP, UMAXP */
11023             {
11024                 static NeonGenTwoOpFn * const fns[3][2] = {
11025                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11026                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11027                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11028                 };
11029                 genfn = fns[size][u];
11030                 break;
11031             }
11032             case 0x15: /* SMINP, UMINP */
11033             {
11034                 static NeonGenTwoOpFn * const fns[3][2] = {
11035                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11036                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11037                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11038                 };
11039                 genfn = fns[size][u];
11040                 break;
11041             }
11042             default:
11043             case 0x58: /* FMAXNMP */
11044             case 0x5a: /* FADDP */
11045             case 0x5e: /* FMAXP */
11046             case 0x78: /* FMINNMP */
11047             case 0x7e: /* FMINP */
11048                 g_assert_not_reached();
11049             }
11050 
11051             /* FP ops called directly, otherwise call now */
11052             if (genfn) {
11053                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11054             }
11055         }
11056 
11057         for (pass = 0; pass < maxpass; pass++) {
11058             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11059         }
11060         clear_vec_high(s, is_q, rd);
11061     }
11062 }
11063 
11064 /* Floating point op subgroup of C3.6.16. */
11065 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11066 {
11067     /* For floating point ops, the U, size[1] and opcode bits
11068      * together indicate the operation. size[0] indicates single
11069      * or double.
11070      */
11071     int fpopcode = extract32(insn, 11, 5)
11072         | (extract32(insn, 23, 1) << 5)
11073         | (extract32(insn, 29, 1) << 6);
11074     int is_q = extract32(insn, 30, 1);
11075     int size = extract32(insn, 22, 1);
11076     int rm = extract32(insn, 16, 5);
11077     int rn = extract32(insn, 5, 5);
11078     int rd = extract32(insn, 0, 5);
11079 
11080     if (size == 1 && !is_q) {
11081         unallocated_encoding(s);
11082         return;
11083     }
11084 
11085     switch (fpopcode) {
11086     case 0x1d: /* FMLAL  */
11087     case 0x3d: /* FMLSL  */
11088     case 0x59: /* FMLAL2 */
11089     case 0x79: /* FMLSL2 */
11090         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11091             unallocated_encoding(s);
11092             return;
11093         }
11094         if (fp_access_check(s)) {
11095             int is_s = extract32(insn, 23, 1);
11096             int is_2 = extract32(insn, 29, 1);
11097             int data = (is_2 << 1) | is_s;
11098             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11099                                vec_full_reg_offset(s, rn),
11100                                vec_full_reg_offset(s, rm), tcg_env,
11101                                is_q ? 16 : 8, vec_full_reg_size(s),
11102                                data, gen_helper_gvec_fmlal_a64);
11103         }
11104         return;
11105 
11106     default:
11107     case 0x18: /* FMAXNM */
11108     case 0x19: /* FMLA */
11109     case 0x1a: /* FADD */
11110     case 0x1b: /* FMULX */
11111     case 0x1c: /* FCMEQ */
11112     case 0x1e: /* FMAX */
11113     case 0x1f: /* FRECPS */
11114     case 0x38: /* FMINNM */
11115     case 0x39: /* FMLS */
11116     case 0x3a: /* FSUB */
11117     case 0x3e: /* FMIN */
11118     case 0x3f: /* FRSQRTS */
11119     case 0x58: /* FMAXNMP */
11120     case 0x5a: /* FADDP */
11121     case 0x5b: /* FMUL */
11122     case 0x5c: /* FCMGE */
11123     case 0x5d: /* FACGE */
11124     case 0x5e: /* FMAXP */
11125     case 0x5f: /* FDIV */
11126     case 0x78: /* FMINNMP */
11127     case 0x7a: /* FABD */
11128     case 0x7d: /* FACGT */
11129     case 0x7c: /* FCMGT */
11130     case 0x7e: /* FMINP */
11131         unallocated_encoding(s);
11132         return;
11133     }
11134 }
11135 
11136 /* Integer op subgroup of C3.6.16. */
11137 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11138 {
11139     int is_q = extract32(insn, 30, 1);
11140     int u = extract32(insn, 29, 1);
11141     int size = extract32(insn, 22, 2);
11142     int opcode = extract32(insn, 11, 5);
11143     int rm = extract32(insn, 16, 5);
11144     int rn = extract32(insn, 5, 5);
11145     int rd = extract32(insn, 0, 5);
11146     int pass;
11147     TCGCond cond;
11148 
11149     switch (opcode) {
11150     case 0x13: /* MUL, PMUL */
11151         if (u && size != 0) {
11152             unallocated_encoding(s);
11153             return;
11154         }
11155         /* fall through */
11156     case 0x0: /* SHADD, UHADD */
11157     case 0x2: /* SRHADD, URHADD */
11158     case 0x4: /* SHSUB, UHSUB */
11159     case 0xc: /* SMAX, UMAX */
11160     case 0xd: /* SMIN, UMIN */
11161     case 0xe: /* SABD, UABD */
11162     case 0xf: /* SABA, UABA */
11163     case 0x12: /* MLA, MLS */
11164         if (size == 3) {
11165             unallocated_encoding(s);
11166             return;
11167         }
11168         break;
11169     case 0x16: /* SQDMULH, SQRDMULH */
11170         if (size == 0 || size == 3) {
11171             unallocated_encoding(s);
11172             return;
11173         }
11174         break;
11175     default:
11176         if (size == 3 && !is_q) {
11177             unallocated_encoding(s);
11178             return;
11179         }
11180         break;
11181     }
11182 
11183     if (!fp_access_check(s)) {
11184         return;
11185     }
11186 
11187     switch (opcode) {
11188     case 0x01: /* SQADD, UQADD */
11189         if (u) {
11190             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11191         } else {
11192             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11193         }
11194         return;
11195     case 0x05: /* SQSUB, UQSUB */
11196         if (u) {
11197             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11198         } else {
11199             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11200         }
11201         return;
11202     case 0x08: /* SSHL, USHL */
11203         if (u) {
11204             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11205         } else {
11206             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11207         }
11208         return;
11209     case 0x0c: /* SMAX, UMAX */
11210         if (u) {
11211             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11212         } else {
11213             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11214         }
11215         return;
11216     case 0x0d: /* SMIN, UMIN */
11217         if (u) {
11218             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11219         } else {
11220             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11221         }
11222         return;
11223     case 0xe: /* SABD, UABD */
11224         if (u) {
11225             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11226         } else {
11227             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11228         }
11229         return;
11230     case 0xf: /* SABA, UABA */
11231         if (u) {
11232             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11233         } else {
11234             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11235         }
11236         return;
11237     case 0x10: /* ADD, SUB */
11238         if (u) {
11239             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11240         } else {
11241             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11242         }
11243         return;
11244     case 0x13: /* MUL, PMUL */
11245         if (!u) { /* MUL */
11246             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11247         } else {  /* PMUL */
11248             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11249         }
11250         return;
11251     case 0x12: /* MLA, MLS */
11252         if (u) {
11253             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11254         } else {
11255             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11256         }
11257         return;
11258     case 0x16: /* SQDMULH, SQRDMULH */
11259         {
11260             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11261                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11262                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11263             };
11264             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11265         }
11266         return;
11267     case 0x11:
11268         if (!u) { /* CMTST */
11269             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11270             return;
11271         }
11272         /* else CMEQ */
11273         cond = TCG_COND_EQ;
11274         goto do_gvec_cmp;
11275     case 0x06: /* CMGT, CMHI */
11276         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11277         goto do_gvec_cmp;
11278     case 0x07: /* CMGE, CMHS */
11279         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11280     do_gvec_cmp:
11281         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11282                          vec_full_reg_offset(s, rn),
11283                          vec_full_reg_offset(s, rm),
11284                          is_q ? 16 : 8, vec_full_reg_size(s));
11285         return;
11286     }
11287 
11288     if (size == 3) {
11289         assert(is_q);
11290         for (pass = 0; pass < 2; pass++) {
11291             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11292             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11293             TCGv_i64 tcg_res = tcg_temp_new_i64();
11294 
11295             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11296             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11297 
11298             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11299 
11300             write_vec_element(s, tcg_res, rd, pass, MO_64);
11301         }
11302     } else {
11303         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11304             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11305             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11306             TCGv_i32 tcg_res = tcg_temp_new_i32();
11307             NeonGenTwoOpFn *genfn = NULL;
11308             NeonGenTwoOpEnvFn *genenvfn = NULL;
11309 
11310             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11311             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11312 
11313             switch (opcode) {
11314             case 0x0: /* SHADD, UHADD */
11315             {
11316                 static NeonGenTwoOpFn * const fns[3][2] = {
11317                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11318                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11319                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11320                 };
11321                 genfn = fns[size][u];
11322                 break;
11323             }
11324             case 0x2: /* SRHADD, URHADD */
11325             {
11326                 static NeonGenTwoOpFn * const fns[3][2] = {
11327                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11328                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11329                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11330                 };
11331                 genfn = fns[size][u];
11332                 break;
11333             }
11334             case 0x4: /* SHSUB, UHSUB */
11335             {
11336                 static NeonGenTwoOpFn * const fns[3][2] = {
11337                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11338                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11339                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11340                 };
11341                 genfn = fns[size][u];
11342                 break;
11343             }
11344             case 0x9: /* SQSHL, UQSHL */
11345             {
11346                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11347                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11348                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11349                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11350                 };
11351                 genenvfn = fns[size][u];
11352                 break;
11353             }
11354             case 0xa: /* SRSHL, URSHL */
11355             {
11356                 static NeonGenTwoOpFn * const fns[3][2] = {
11357                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11358                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11359                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11360                 };
11361                 genfn = fns[size][u];
11362                 break;
11363             }
11364             case 0xb: /* SQRSHL, UQRSHL */
11365             {
11366                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11367                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11368                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11369                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11370                 };
11371                 genenvfn = fns[size][u];
11372                 break;
11373             }
11374             default:
11375                 g_assert_not_reached();
11376             }
11377 
11378             if (genenvfn) {
11379                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11380             } else {
11381                 genfn(tcg_res, tcg_op1, tcg_op2);
11382             }
11383 
11384             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11385         }
11386     }
11387     clear_vec_high(s, is_q, rd);
11388 }
11389 
11390 /* AdvSIMD three same
11391  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11392  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11393  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11394  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11395  */
11396 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11397 {
11398     int opcode = extract32(insn, 11, 5);
11399 
11400     switch (opcode) {
11401     case 0x3: /* logic ops */
11402         disas_simd_3same_logic(s, insn);
11403         break;
11404     case 0x17: /* ADDP */
11405     case 0x14: /* SMAXP, UMAXP */
11406     case 0x15: /* SMINP, UMINP */
11407     {
11408         /* Pairwise operations */
11409         int is_q = extract32(insn, 30, 1);
11410         int u = extract32(insn, 29, 1);
11411         int size = extract32(insn, 22, 2);
11412         int rm = extract32(insn, 16, 5);
11413         int rn = extract32(insn, 5, 5);
11414         int rd = extract32(insn, 0, 5);
11415         if (opcode == 0x17) {
11416             if (u || (size == 3 && !is_q)) {
11417                 unallocated_encoding(s);
11418                 return;
11419             }
11420         } else {
11421             if (size == 3) {
11422                 unallocated_encoding(s);
11423                 return;
11424             }
11425         }
11426         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11427         break;
11428     }
11429     case 0x18 ... 0x31:
11430         /* floating point ops, sz[1] and U are part of opcode */
11431         disas_simd_3same_float(s, insn);
11432         break;
11433     default:
11434         disas_simd_3same_int(s, insn);
11435         break;
11436     }
11437 }
11438 
11439 /* AdvSIMD three same extra
11440  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11441  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11442  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11443  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11444  */
11445 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11446 {
11447     int rd = extract32(insn, 0, 5);
11448     int rn = extract32(insn, 5, 5);
11449     int opcode = extract32(insn, 11, 4);
11450     int rm = extract32(insn, 16, 5);
11451     int size = extract32(insn, 22, 2);
11452     bool u = extract32(insn, 29, 1);
11453     bool is_q = extract32(insn, 30, 1);
11454     bool feature;
11455     int rot;
11456 
11457     switch (u * 16 + opcode) {
11458     case 0x10: /* SQRDMLAH (vector) */
11459     case 0x11: /* SQRDMLSH (vector) */
11460         if (size != 1 && size != 2) {
11461             unallocated_encoding(s);
11462             return;
11463         }
11464         feature = dc_isar_feature(aa64_rdm, s);
11465         break;
11466     case 0x02: /* SDOT (vector) */
11467     case 0x12: /* UDOT (vector) */
11468         if (size != MO_32) {
11469             unallocated_encoding(s);
11470             return;
11471         }
11472         feature = dc_isar_feature(aa64_dp, s);
11473         break;
11474     case 0x03: /* USDOT */
11475         if (size != MO_32) {
11476             unallocated_encoding(s);
11477             return;
11478         }
11479         feature = dc_isar_feature(aa64_i8mm, s);
11480         break;
11481     case 0x04: /* SMMLA */
11482     case 0x14: /* UMMLA */
11483     case 0x05: /* USMMLA */
11484         if (!is_q || size != MO_32) {
11485             unallocated_encoding(s);
11486             return;
11487         }
11488         feature = dc_isar_feature(aa64_i8mm, s);
11489         break;
11490     case 0x18: /* FCMLA, #0 */
11491     case 0x19: /* FCMLA, #90 */
11492     case 0x1a: /* FCMLA, #180 */
11493     case 0x1b: /* FCMLA, #270 */
11494     case 0x1c: /* FCADD, #90 */
11495     case 0x1e: /* FCADD, #270 */
11496         if (size == 0
11497             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11498             || (size == 3 && !is_q)) {
11499             unallocated_encoding(s);
11500             return;
11501         }
11502         feature = dc_isar_feature(aa64_fcma, s);
11503         break;
11504     case 0x1d: /* BFMMLA */
11505         if (size != MO_16 || !is_q) {
11506             unallocated_encoding(s);
11507             return;
11508         }
11509         feature = dc_isar_feature(aa64_bf16, s);
11510         break;
11511     case 0x1f:
11512         switch (size) {
11513         case 1: /* BFDOT */
11514         case 3: /* BFMLAL{B,T} */
11515             feature = dc_isar_feature(aa64_bf16, s);
11516             break;
11517         default:
11518             unallocated_encoding(s);
11519             return;
11520         }
11521         break;
11522     default:
11523         unallocated_encoding(s);
11524         return;
11525     }
11526     if (!feature) {
11527         unallocated_encoding(s);
11528         return;
11529     }
11530     if (!fp_access_check(s)) {
11531         return;
11532     }
11533 
11534     switch (opcode) {
11535     case 0x0: /* SQRDMLAH (vector) */
11536         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11537         return;
11538 
11539     case 0x1: /* SQRDMLSH (vector) */
11540         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11541         return;
11542 
11543     case 0x2: /* SDOT / UDOT */
11544         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11545                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11546         return;
11547 
11548     case 0x3: /* USDOT */
11549         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11550         return;
11551 
11552     case 0x04: /* SMMLA, UMMLA */
11553         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11554                          u ? gen_helper_gvec_ummla_b
11555                          : gen_helper_gvec_smmla_b);
11556         return;
11557     case 0x05: /* USMMLA */
11558         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11559         return;
11560 
11561     case 0x8: /* FCMLA, #0 */
11562     case 0x9: /* FCMLA, #90 */
11563     case 0xa: /* FCMLA, #180 */
11564     case 0xb: /* FCMLA, #270 */
11565         rot = extract32(opcode, 0, 2);
11566         switch (size) {
11567         case 1:
11568             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11569                               gen_helper_gvec_fcmlah);
11570             break;
11571         case 2:
11572             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11573                               gen_helper_gvec_fcmlas);
11574             break;
11575         case 3:
11576             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11577                               gen_helper_gvec_fcmlad);
11578             break;
11579         default:
11580             g_assert_not_reached();
11581         }
11582         return;
11583 
11584     case 0xc: /* FCADD, #90 */
11585     case 0xe: /* FCADD, #270 */
11586         rot = extract32(opcode, 1, 1);
11587         switch (size) {
11588         case 1:
11589             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11590                               gen_helper_gvec_fcaddh);
11591             break;
11592         case 2:
11593             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11594                               gen_helper_gvec_fcadds);
11595             break;
11596         case 3:
11597             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11598                               gen_helper_gvec_fcaddd);
11599             break;
11600         default:
11601             g_assert_not_reached();
11602         }
11603         return;
11604 
11605     case 0xd: /* BFMMLA */
11606         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11607         return;
11608     case 0xf:
11609         switch (size) {
11610         case 1: /* BFDOT */
11611             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11612             break;
11613         case 3: /* BFMLAL{B,T} */
11614             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11615                               gen_helper_gvec_bfmlal);
11616             break;
11617         default:
11618             g_assert_not_reached();
11619         }
11620         return;
11621 
11622     default:
11623         g_assert_not_reached();
11624     }
11625 }
11626 
11627 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11628                                   int size, int rn, int rd)
11629 {
11630     /* Handle 2-reg-misc ops which are widening (so each size element
11631      * in the source becomes a 2*size element in the destination.
11632      * The only instruction like this is FCVTL.
11633      */
11634     int pass;
11635 
11636     if (size == 3) {
11637         /* 32 -> 64 bit fp conversion */
11638         TCGv_i64 tcg_res[2];
11639         int srcelt = is_q ? 2 : 0;
11640 
11641         for (pass = 0; pass < 2; pass++) {
11642             TCGv_i32 tcg_op = tcg_temp_new_i32();
11643             tcg_res[pass] = tcg_temp_new_i64();
11644 
11645             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11646             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11647         }
11648         for (pass = 0; pass < 2; pass++) {
11649             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11650         }
11651     } else {
11652         /* 16 -> 32 bit fp conversion */
11653         int srcelt = is_q ? 4 : 0;
11654         TCGv_i32 tcg_res[4];
11655         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11656         TCGv_i32 ahp = get_ahp_flag();
11657 
11658         for (pass = 0; pass < 4; pass++) {
11659             tcg_res[pass] = tcg_temp_new_i32();
11660 
11661             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11662             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11663                                            fpst, ahp);
11664         }
11665         for (pass = 0; pass < 4; pass++) {
11666             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11667         }
11668     }
11669 }
11670 
11671 static void handle_rev(DisasContext *s, int opcode, bool u,
11672                        bool is_q, int size, int rn, int rd)
11673 {
11674     int op = (opcode << 1) | u;
11675     int opsz = op + size;
11676     int grp_size = 3 - opsz;
11677     int dsize = is_q ? 128 : 64;
11678     int i;
11679 
11680     if (opsz >= 3) {
11681         unallocated_encoding(s);
11682         return;
11683     }
11684 
11685     if (!fp_access_check(s)) {
11686         return;
11687     }
11688 
11689     if (size == 0) {
11690         /* Special case bytes, use bswap op on each group of elements */
11691         int groups = dsize / (8 << grp_size);
11692 
11693         for (i = 0; i < groups; i++) {
11694             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11695 
11696             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11697             switch (grp_size) {
11698             case MO_16:
11699                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11700                 break;
11701             case MO_32:
11702                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11703                 break;
11704             case MO_64:
11705                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11706                 break;
11707             default:
11708                 g_assert_not_reached();
11709             }
11710             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11711         }
11712         clear_vec_high(s, is_q, rd);
11713     } else {
11714         int revmask = (1 << grp_size) - 1;
11715         int esize = 8 << size;
11716         int elements = dsize / esize;
11717         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11718         TCGv_i64 tcg_rd[2];
11719 
11720         for (i = 0; i < 2; i++) {
11721             tcg_rd[i] = tcg_temp_new_i64();
11722             tcg_gen_movi_i64(tcg_rd[i], 0);
11723         }
11724 
11725         for (i = 0; i < elements; i++) {
11726             int e_rev = (i & 0xf) ^ revmask;
11727             int w = (e_rev * esize) / 64;
11728             int o = (e_rev * esize) % 64;
11729 
11730             read_vec_element(s, tcg_rn, rn, i, size);
11731             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11732         }
11733 
11734         for (i = 0; i < 2; i++) {
11735             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11736         }
11737         clear_vec_high(s, true, rd);
11738     }
11739 }
11740 
11741 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11742                                   bool is_q, int size, int rn, int rd)
11743 {
11744     /* Implement the pairwise operations from 2-misc:
11745      * SADDLP, UADDLP, SADALP, UADALP.
11746      * These all add pairs of elements in the input to produce a
11747      * double-width result element in the output (possibly accumulating).
11748      */
11749     bool accum = (opcode == 0x6);
11750     int maxpass = is_q ? 2 : 1;
11751     int pass;
11752     TCGv_i64 tcg_res[2];
11753 
11754     if (size == 2) {
11755         /* 32 + 32 -> 64 op */
11756         MemOp memop = size + (u ? 0 : MO_SIGN);
11757 
11758         for (pass = 0; pass < maxpass; pass++) {
11759             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11760             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11761 
11762             tcg_res[pass] = tcg_temp_new_i64();
11763 
11764             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11765             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11766             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11767             if (accum) {
11768                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11769                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11770             }
11771         }
11772     } else {
11773         for (pass = 0; pass < maxpass; pass++) {
11774             TCGv_i64 tcg_op = tcg_temp_new_i64();
11775             NeonGenOne64OpFn *genfn;
11776             static NeonGenOne64OpFn * const fns[2][2] = {
11777                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11778                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11779             };
11780 
11781             genfn = fns[size][u];
11782 
11783             tcg_res[pass] = tcg_temp_new_i64();
11784 
11785             read_vec_element(s, tcg_op, rn, pass, MO_64);
11786             genfn(tcg_res[pass], tcg_op);
11787 
11788             if (accum) {
11789                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11790                 if (size == 0) {
11791                     gen_helper_neon_addl_u16(tcg_res[pass],
11792                                              tcg_res[pass], tcg_op);
11793                 } else {
11794                     gen_helper_neon_addl_u32(tcg_res[pass],
11795                                              tcg_res[pass], tcg_op);
11796                 }
11797             }
11798         }
11799     }
11800     if (!is_q) {
11801         tcg_res[1] = tcg_constant_i64(0);
11802     }
11803     for (pass = 0; pass < 2; pass++) {
11804         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11805     }
11806 }
11807 
11808 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11809 {
11810     /* Implement SHLL and SHLL2 */
11811     int pass;
11812     int part = is_q ? 2 : 0;
11813     TCGv_i64 tcg_res[2];
11814 
11815     for (pass = 0; pass < 2; pass++) {
11816         static NeonGenWidenFn * const widenfns[3] = {
11817             gen_helper_neon_widen_u8,
11818             gen_helper_neon_widen_u16,
11819             tcg_gen_extu_i32_i64,
11820         };
11821         NeonGenWidenFn *widenfn = widenfns[size];
11822         TCGv_i32 tcg_op = tcg_temp_new_i32();
11823 
11824         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11825         tcg_res[pass] = tcg_temp_new_i64();
11826         widenfn(tcg_res[pass], tcg_op);
11827         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11828     }
11829 
11830     for (pass = 0; pass < 2; pass++) {
11831         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11832     }
11833 }
11834 
11835 /* AdvSIMD two reg misc
11836  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11837  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11838  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11839  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11840  */
11841 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11842 {
11843     int size = extract32(insn, 22, 2);
11844     int opcode = extract32(insn, 12, 5);
11845     bool u = extract32(insn, 29, 1);
11846     bool is_q = extract32(insn, 30, 1);
11847     int rn = extract32(insn, 5, 5);
11848     int rd = extract32(insn, 0, 5);
11849     bool need_fpstatus = false;
11850     int rmode = -1;
11851     TCGv_i32 tcg_rmode;
11852     TCGv_ptr tcg_fpstatus;
11853 
11854     switch (opcode) {
11855     case 0x0: /* REV64, REV32 */
11856     case 0x1: /* REV16 */
11857         handle_rev(s, opcode, u, is_q, size, rn, rd);
11858         return;
11859     case 0x5: /* CNT, NOT, RBIT */
11860         if (u && size == 0) {
11861             /* NOT */
11862             break;
11863         } else if (u && size == 1) {
11864             /* RBIT */
11865             break;
11866         } else if (!u && size == 0) {
11867             /* CNT */
11868             break;
11869         }
11870         unallocated_encoding(s);
11871         return;
11872     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11873     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11874         if (size == 3) {
11875             unallocated_encoding(s);
11876             return;
11877         }
11878         if (!fp_access_check(s)) {
11879             return;
11880         }
11881 
11882         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11883         return;
11884     case 0x4: /* CLS, CLZ */
11885         if (size == 3) {
11886             unallocated_encoding(s);
11887             return;
11888         }
11889         break;
11890     case 0x2: /* SADDLP, UADDLP */
11891     case 0x6: /* SADALP, UADALP */
11892         if (size == 3) {
11893             unallocated_encoding(s);
11894             return;
11895         }
11896         if (!fp_access_check(s)) {
11897             return;
11898         }
11899         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11900         return;
11901     case 0x13: /* SHLL, SHLL2 */
11902         if (u == 0 || size == 3) {
11903             unallocated_encoding(s);
11904             return;
11905         }
11906         if (!fp_access_check(s)) {
11907             return;
11908         }
11909         handle_shll(s, is_q, size, rn, rd);
11910         return;
11911     case 0xa: /* CMLT */
11912         if (u == 1) {
11913             unallocated_encoding(s);
11914             return;
11915         }
11916         /* fall through */
11917     case 0x8: /* CMGT, CMGE */
11918     case 0x9: /* CMEQ, CMLE */
11919     case 0xb: /* ABS, NEG */
11920         if (size == 3 && !is_q) {
11921             unallocated_encoding(s);
11922             return;
11923         }
11924         break;
11925     case 0x3: /* SUQADD, USQADD */
11926         if (size == 3 && !is_q) {
11927             unallocated_encoding(s);
11928             return;
11929         }
11930         if (!fp_access_check(s)) {
11931             return;
11932         }
11933         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11934         return;
11935     case 0x7: /* SQABS, SQNEG */
11936         if (size == 3 && !is_q) {
11937             unallocated_encoding(s);
11938             return;
11939         }
11940         break;
11941     case 0xc ... 0xf:
11942     case 0x16 ... 0x1f:
11943     {
11944         /* Floating point: U, size[1] and opcode indicate operation;
11945          * size[0] indicates single or double precision.
11946          */
11947         int is_double = extract32(size, 0, 1);
11948         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11949         size = is_double ? 3 : 2;
11950         switch (opcode) {
11951         case 0x2f: /* FABS */
11952         case 0x6f: /* FNEG */
11953             if (size == 3 && !is_q) {
11954                 unallocated_encoding(s);
11955                 return;
11956             }
11957             break;
11958         case 0x1d: /* SCVTF */
11959         case 0x5d: /* UCVTF */
11960         {
11961             bool is_signed = (opcode == 0x1d) ? true : false;
11962             int elements = is_double ? 2 : is_q ? 4 : 2;
11963             if (is_double && !is_q) {
11964                 unallocated_encoding(s);
11965                 return;
11966             }
11967             if (!fp_access_check(s)) {
11968                 return;
11969             }
11970             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11971             return;
11972         }
11973         case 0x2c: /* FCMGT (zero) */
11974         case 0x2d: /* FCMEQ (zero) */
11975         case 0x2e: /* FCMLT (zero) */
11976         case 0x6c: /* FCMGE (zero) */
11977         case 0x6d: /* FCMLE (zero) */
11978             if (size == 3 && !is_q) {
11979                 unallocated_encoding(s);
11980                 return;
11981             }
11982             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11983             return;
11984         case 0x7f: /* FSQRT */
11985             if (size == 3 && !is_q) {
11986                 unallocated_encoding(s);
11987                 return;
11988             }
11989             break;
11990         case 0x1a: /* FCVTNS */
11991         case 0x1b: /* FCVTMS */
11992         case 0x3a: /* FCVTPS */
11993         case 0x3b: /* FCVTZS */
11994         case 0x5a: /* FCVTNU */
11995         case 0x5b: /* FCVTMU */
11996         case 0x7a: /* FCVTPU */
11997         case 0x7b: /* FCVTZU */
11998             need_fpstatus = true;
11999             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12000             if (size == 3 && !is_q) {
12001                 unallocated_encoding(s);
12002                 return;
12003             }
12004             break;
12005         case 0x5c: /* FCVTAU */
12006         case 0x1c: /* FCVTAS */
12007             need_fpstatus = true;
12008             rmode = FPROUNDING_TIEAWAY;
12009             if (size == 3 && !is_q) {
12010                 unallocated_encoding(s);
12011                 return;
12012             }
12013             break;
12014         case 0x3c: /* URECPE */
12015             if (size == 3) {
12016                 unallocated_encoding(s);
12017                 return;
12018             }
12019             /* fall through */
12020         case 0x3d: /* FRECPE */
12021         case 0x7d: /* FRSQRTE */
12022             if (size == 3 && !is_q) {
12023                 unallocated_encoding(s);
12024                 return;
12025             }
12026             if (!fp_access_check(s)) {
12027                 return;
12028             }
12029             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12030             return;
12031         case 0x56: /* FCVTXN, FCVTXN2 */
12032             if (size == 2) {
12033                 unallocated_encoding(s);
12034                 return;
12035             }
12036             /* fall through */
12037         case 0x16: /* FCVTN, FCVTN2 */
12038             /* handle_2misc_narrow does a 2*size -> size operation, but these
12039              * instructions encode the source size rather than dest size.
12040              */
12041             if (!fp_access_check(s)) {
12042                 return;
12043             }
12044             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12045             return;
12046         case 0x36: /* BFCVTN, BFCVTN2 */
12047             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12048                 unallocated_encoding(s);
12049                 return;
12050             }
12051             if (!fp_access_check(s)) {
12052                 return;
12053             }
12054             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12055             return;
12056         case 0x17: /* FCVTL, FCVTL2 */
12057             if (!fp_access_check(s)) {
12058                 return;
12059             }
12060             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12061             return;
12062         case 0x18: /* FRINTN */
12063         case 0x19: /* FRINTM */
12064         case 0x38: /* FRINTP */
12065         case 0x39: /* FRINTZ */
12066             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12067             /* fall through */
12068         case 0x59: /* FRINTX */
12069         case 0x79: /* FRINTI */
12070             need_fpstatus = true;
12071             if (size == 3 && !is_q) {
12072                 unallocated_encoding(s);
12073                 return;
12074             }
12075             break;
12076         case 0x58: /* FRINTA */
12077             rmode = FPROUNDING_TIEAWAY;
12078             need_fpstatus = true;
12079             if (size == 3 && !is_q) {
12080                 unallocated_encoding(s);
12081                 return;
12082             }
12083             break;
12084         case 0x7c: /* URSQRTE */
12085             if (size == 3) {
12086                 unallocated_encoding(s);
12087                 return;
12088             }
12089             break;
12090         case 0x1e: /* FRINT32Z */
12091         case 0x1f: /* FRINT64Z */
12092             rmode = FPROUNDING_ZERO;
12093             /* fall through */
12094         case 0x5e: /* FRINT32X */
12095         case 0x5f: /* FRINT64X */
12096             need_fpstatus = true;
12097             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12098                 unallocated_encoding(s);
12099                 return;
12100             }
12101             break;
12102         default:
12103             unallocated_encoding(s);
12104             return;
12105         }
12106         break;
12107     }
12108     default:
12109         unallocated_encoding(s);
12110         return;
12111     }
12112 
12113     if (!fp_access_check(s)) {
12114         return;
12115     }
12116 
12117     if (need_fpstatus || rmode >= 0) {
12118         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12119     } else {
12120         tcg_fpstatus = NULL;
12121     }
12122     if (rmode >= 0) {
12123         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12124     } else {
12125         tcg_rmode = NULL;
12126     }
12127 
12128     switch (opcode) {
12129     case 0x5:
12130         if (u && size == 0) { /* NOT */
12131             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12132             return;
12133         }
12134         break;
12135     case 0x8: /* CMGT, CMGE */
12136         if (u) {
12137             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12138         } else {
12139             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12140         }
12141         return;
12142     case 0x9: /* CMEQ, CMLE */
12143         if (u) {
12144             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12145         } else {
12146             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12147         }
12148         return;
12149     case 0xa: /* CMLT */
12150         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12151         return;
12152     case 0xb:
12153         if (u) { /* ABS, NEG */
12154             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12155         } else {
12156             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12157         }
12158         return;
12159     }
12160 
12161     if (size == 3) {
12162         /* All 64-bit element operations can be shared with scalar 2misc */
12163         int pass;
12164 
12165         /* Coverity claims (size == 3 && !is_q) has been eliminated
12166          * from all paths leading to here.
12167          */
12168         tcg_debug_assert(is_q);
12169         for (pass = 0; pass < 2; pass++) {
12170             TCGv_i64 tcg_op = tcg_temp_new_i64();
12171             TCGv_i64 tcg_res = tcg_temp_new_i64();
12172 
12173             read_vec_element(s, tcg_op, rn, pass, MO_64);
12174 
12175             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12176                             tcg_rmode, tcg_fpstatus);
12177 
12178             write_vec_element(s, tcg_res, rd, pass, MO_64);
12179         }
12180     } else {
12181         int pass;
12182 
12183         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12184             TCGv_i32 tcg_op = tcg_temp_new_i32();
12185             TCGv_i32 tcg_res = tcg_temp_new_i32();
12186 
12187             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12188 
12189             if (size == 2) {
12190                 /* Special cases for 32 bit elements */
12191                 switch (opcode) {
12192                 case 0x4: /* CLS */
12193                     if (u) {
12194                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12195                     } else {
12196                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12197                     }
12198                     break;
12199                 case 0x7: /* SQABS, SQNEG */
12200                     if (u) {
12201                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12202                     } else {
12203                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12204                     }
12205                     break;
12206                 case 0x2f: /* FABS */
12207                     gen_vfp_abss(tcg_res, tcg_op);
12208                     break;
12209                 case 0x6f: /* FNEG */
12210                     gen_vfp_negs(tcg_res, tcg_op);
12211                     break;
12212                 case 0x7f: /* FSQRT */
12213                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12214                     break;
12215                 case 0x1a: /* FCVTNS */
12216                 case 0x1b: /* FCVTMS */
12217                 case 0x1c: /* FCVTAS */
12218                 case 0x3a: /* FCVTPS */
12219                 case 0x3b: /* FCVTZS */
12220                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12221                                          tcg_constant_i32(0), tcg_fpstatus);
12222                     break;
12223                 case 0x5a: /* FCVTNU */
12224                 case 0x5b: /* FCVTMU */
12225                 case 0x5c: /* FCVTAU */
12226                 case 0x7a: /* FCVTPU */
12227                 case 0x7b: /* FCVTZU */
12228                     gen_helper_vfp_touls(tcg_res, tcg_op,
12229                                          tcg_constant_i32(0), tcg_fpstatus);
12230                     break;
12231                 case 0x18: /* FRINTN */
12232                 case 0x19: /* FRINTM */
12233                 case 0x38: /* FRINTP */
12234                 case 0x39: /* FRINTZ */
12235                 case 0x58: /* FRINTA */
12236                 case 0x79: /* FRINTI */
12237                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12238                     break;
12239                 case 0x59: /* FRINTX */
12240                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12241                     break;
12242                 case 0x7c: /* URSQRTE */
12243                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12244                     break;
12245                 case 0x1e: /* FRINT32Z */
12246                 case 0x5e: /* FRINT32X */
12247                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12248                     break;
12249                 case 0x1f: /* FRINT64Z */
12250                 case 0x5f: /* FRINT64X */
12251                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12252                     break;
12253                 default:
12254                     g_assert_not_reached();
12255                 }
12256             } else {
12257                 /* Use helpers for 8 and 16 bit elements */
12258                 switch (opcode) {
12259                 case 0x5: /* CNT, RBIT */
12260                     /* For these two insns size is part of the opcode specifier
12261                      * (handled earlier); they always operate on byte elements.
12262                      */
12263                     if (u) {
12264                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12265                     } else {
12266                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12267                     }
12268                     break;
12269                 case 0x7: /* SQABS, SQNEG */
12270                 {
12271                     NeonGenOneOpEnvFn *genfn;
12272                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12273                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12274                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12275                     };
12276                     genfn = fns[size][u];
12277                     genfn(tcg_res, tcg_env, tcg_op);
12278                     break;
12279                 }
12280                 case 0x4: /* CLS, CLZ */
12281                     if (u) {
12282                         if (size == 0) {
12283                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12284                         } else {
12285                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12286                         }
12287                     } else {
12288                         if (size == 0) {
12289                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12290                         } else {
12291                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12292                         }
12293                     }
12294                     break;
12295                 default:
12296                     g_assert_not_reached();
12297                 }
12298             }
12299 
12300             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12301         }
12302     }
12303     clear_vec_high(s, is_q, rd);
12304 
12305     if (tcg_rmode) {
12306         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12307     }
12308 }
12309 
12310 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12311  *
12312  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12313  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12314  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12315  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12316  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12317  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12318  *
12319  * This actually covers two groups where scalar access is governed by
12320  * bit 28. A bunch of the instructions (float to integral) only exist
12321  * in the vector form and are un-allocated for the scalar decode. Also
12322  * in the scalar decode Q is always 1.
12323  */
12324 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12325 {
12326     int fpop, opcode, a, u;
12327     int rn, rd;
12328     bool is_q;
12329     bool is_scalar;
12330     bool only_in_vector = false;
12331 
12332     int pass;
12333     TCGv_i32 tcg_rmode = NULL;
12334     TCGv_ptr tcg_fpstatus = NULL;
12335     bool need_fpst = true;
12336     int rmode = -1;
12337 
12338     if (!dc_isar_feature(aa64_fp16, s)) {
12339         unallocated_encoding(s);
12340         return;
12341     }
12342 
12343     rd = extract32(insn, 0, 5);
12344     rn = extract32(insn, 5, 5);
12345 
12346     a = extract32(insn, 23, 1);
12347     u = extract32(insn, 29, 1);
12348     is_scalar = extract32(insn, 28, 1);
12349     is_q = extract32(insn, 30, 1);
12350 
12351     opcode = extract32(insn, 12, 5);
12352     fpop = deposit32(opcode, 5, 1, a);
12353     fpop = deposit32(fpop, 6, 1, u);
12354 
12355     switch (fpop) {
12356     case 0x1d: /* SCVTF */
12357     case 0x5d: /* UCVTF */
12358     {
12359         int elements;
12360 
12361         if (is_scalar) {
12362             elements = 1;
12363         } else {
12364             elements = (is_q ? 8 : 4);
12365         }
12366 
12367         if (!fp_access_check(s)) {
12368             return;
12369         }
12370         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12371         return;
12372     }
12373     break;
12374     case 0x2c: /* FCMGT (zero) */
12375     case 0x2d: /* FCMEQ (zero) */
12376     case 0x2e: /* FCMLT (zero) */
12377     case 0x6c: /* FCMGE (zero) */
12378     case 0x6d: /* FCMLE (zero) */
12379         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12380         return;
12381     case 0x3d: /* FRECPE */
12382     case 0x3f: /* FRECPX */
12383         break;
12384     case 0x18: /* FRINTN */
12385         only_in_vector = true;
12386         rmode = FPROUNDING_TIEEVEN;
12387         break;
12388     case 0x19: /* FRINTM */
12389         only_in_vector = true;
12390         rmode = FPROUNDING_NEGINF;
12391         break;
12392     case 0x38: /* FRINTP */
12393         only_in_vector = true;
12394         rmode = FPROUNDING_POSINF;
12395         break;
12396     case 0x39: /* FRINTZ */
12397         only_in_vector = true;
12398         rmode = FPROUNDING_ZERO;
12399         break;
12400     case 0x58: /* FRINTA */
12401         only_in_vector = true;
12402         rmode = FPROUNDING_TIEAWAY;
12403         break;
12404     case 0x59: /* FRINTX */
12405     case 0x79: /* FRINTI */
12406         only_in_vector = true;
12407         /* current rounding mode */
12408         break;
12409     case 0x1a: /* FCVTNS */
12410         rmode = FPROUNDING_TIEEVEN;
12411         break;
12412     case 0x1b: /* FCVTMS */
12413         rmode = FPROUNDING_NEGINF;
12414         break;
12415     case 0x1c: /* FCVTAS */
12416         rmode = FPROUNDING_TIEAWAY;
12417         break;
12418     case 0x3a: /* FCVTPS */
12419         rmode = FPROUNDING_POSINF;
12420         break;
12421     case 0x3b: /* FCVTZS */
12422         rmode = FPROUNDING_ZERO;
12423         break;
12424     case 0x5a: /* FCVTNU */
12425         rmode = FPROUNDING_TIEEVEN;
12426         break;
12427     case 0x5b: /* FCVTMU */
12428         rmode = FPROUNDING_NEGINF;
12429         break;
12430     case 0x5c: /* FCVTAU */
12431         rmode = FPROUNDING_TIEAWAY;
12432         break;
12433     case 0x7a: /* FCVTPU */
12434         rmode = FPROUNDING_POSINF;
12435         break;
12436     case 0x7b: /* FCVTZU */
12437         rmode = FPROUNDING_ZERO;
12438         break;
12439     case 0x2f: /* FABS */
12440     case 0x6f: /* FNEG */
12441         need_fpst = false;
12442         break;
12443     case 0x7d: /* FRSQRTE */
12444     case 0x7f: /* FSQRT (vector) */
12445         break;
12446     default:
12447         unallocated_encoding(s);
12448         return;
12449     }
12450 
12451 
12452     /* Check additional constraints for the scalar encoding */
12453     if (is_scalar) {
12454         if (!is_q) {
12455             unallocated_encoding(s);
12456             return;
12457         }
12458         /* FRINTxx is only in the vector form */
12459         if (only_in_vector) {
12460             unallocated_encoding(s);
12461             return;
12462         }
12463     }
12464 
12465     if (!fp_access_check(s)) {
12466         return;
12467     }
12468 
12469     if (rmode >= 0 || need_fpst) {
12470         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12471     }
12472 
12473     if (rmode >= 0) {
12474         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12475     }
12476 
12477     if (is_scalar) {
12478         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12479         TCGv_i32 tcg_res = tcg_temp_new_i32();
12480 
12481         switch (fpop) {
12482         case 0x1a: /* FCVTNS */
12483         case 0x1b: /* FCVTMS */
12484         case 0x1c: /* FCVTAS */
12485         case 0x3a: /* FCVTPS */
12486         case 0x3b: /* FCVTZS */
12487             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12488             break;
12489         case 0x3d: /* FRECPE */
12490             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12491             break;
12492         case 0x3f: /* FRECPX */
12493             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12494             break;
12495         case 0x5a: /* FCVTNU */
12496         case 0x5b: /* FCVTMU */
12497         case 0x5c: /* FCVTAU */
12498         case 0x7a: /* FCVTPU */
12499         case 0x7b: /* FCVTZU */
12500             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12501             break;
12502         case 0x6f: /* FNEG */
12503             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12504             break;
12505         case 0x7d: /* FRSQRTE */
12506             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12507             break;
12508         default:
12509             g_assert_not_reached();
12510         }
12511 
12512         /* limit any sign extension going on */
12513         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12514         write_fp_sreg(s, rd, tcg_res);
12515     } else {
12516         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12517             TCGv_i32 tcg_op = tcg_temp_new_i32();
12518             TCGv_i32 tcg_res = tcg_temp_new_i32();
12519 
12520             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12521 
12522             switch (fpop) {
12523             case 0x1a: /* FCVTNS */
12524             case 0x1b: /* FCVTMS */
12525             case 0x1c: /* FCVTAS */
12526             case 0x3a: /* FCVTPS */
12527             case 0x3b: /* FCVTZS */
12528                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12529                 break;
12530             case 0x3d: /* FRECPE */
12531                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12532                 break;
12533             case 0x5a: /* FCVTNU */
12534             case 0x5b: /* FCVTMU */
12535             case 0x5c: /* FCVTAU */
12536             case 0x7a: /* FCVTPU */
12537             case 0x7b: /* FCVTZU */
12538                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12539                 break;
12540             case 0x18: /* FRINTN */
12541             case 0x19: /* FRINTM */
12542             case 0x38: /* FRINTP */
12543             case 0x39: /* FRINTZ */
12544             case 0x58: /* FRINTA */
12545             case 0x79: /* FRINTI */
12546                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12547                 break;
12548             case 0x59: /* FRINTX */
12549                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12550                 break;
12551             case 0x2f: /* FABS */
12552                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12553                 break;
12554             case 0x6f: /* FNEG */
12555                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12556                 break;
12557             case 0x7d: /* FRSQRTE */
12558                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12559                 break;
12560             case 0x7f: /* FSQRT */
12561                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12562                 break;
12563             default:
12564                 g_assert_not_reached();
12565             }
12566 
12567             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12568         }
12569 
12570         clear_vec_high(s, is_q, rd);
12571     }
12572 
12573     if (tcg_rmode) {
12574         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12575     }
12576 }
12577 
12578 /* AdvSIMD scalar x indexed element
12579  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12580  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12581  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12582  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12583  * AdvSIMD vector x indexed element
12584  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12585  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12586  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12587  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12588  */
12589 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12590 {
12591     /* This encoding has two kinds of instruction:
12592      *  normal, where we perform elt x idxelt => elt for each
12593      *     element in the vector
12594      *  long, where we perform elt x idxelt and generate a result of
12595      *     double the width of the input element
12596      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12597      */
12598     bool is_scalar = extract32(insn, 28, 1);
12599     bool is_q = extract32(insn, 30, 1);
12600     bool u = extract32(insn, 29, 1);
12601     int size = extract32(insn, 22, 2);
12602     int l = extract32(insn, 21, 1);
12603     int m = extract32(insn, 20, 1);
12604     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12605     int rm = extract32(insn, 16, 4);
12606     int opcode = extract32(insn, 12, 4);
12607     int h = extract32(insn, 11, 1);
12608     int rn = extract32(insn, 5, 5);
12609     int rd = extract32(insn, 0, 5);
12610     bool is_long = false;
12611     int is_fp = 0;
12612     bool is_fp16 = false;
12613     int index;
12614     TCGv_ptr fpst;
12615 
12616     switch (16 * u + opcode) {
12617     case 0x08: /* MUL */
12618     case 0x10: /* MLA */
12619     case 0x14: /* MLS */
12620         if (is_scalar) {
12621             unallocated_encoding(s);
12622             return;
12623         }
12624         break;
12625     case 0x02: /* SMLAL, SMLAL2 */
12626     case 0x12: /* UMLAL, UMLAL2 */
12627     case 0x06: /* SMLSL, SMLSL2 */
12628     case 0x16: /* UMLSL, UMLSL2 */
12629     case 0x0a: /* SMULL, SMULL2 */
12630     case 0x1a: /* UMULL, UMULL2 */
12631         if (is_scalar) {
12632             unallocated_encoding(s);
12633             return;
12634         }
12635         is_long = true;
12636         break;
12637     case 0x03: /* SQDMLAL, SQDMLAL2 */
12638     case 0x07: /* SQDMLSL, SQDMLSL2 */
12639     case 0x0b: /* SQDMULL, SQDMULL2 */
12640         is_long = true;
12641         break;
12642     case 0x0c: /* SQDMULH */
12643     case 0x0d: /* SQRDMULH */
12644         break;
12645     case 0x1d: /* SQRDMLAH */
12646     case 0x1f: /* SQRDMLSH */
12647         if (!dc_isar_feature(aa64_rdm, s)) {
12648             unallocated_encoding(s);
12649             return;
12650         }
12651         break;
12652     case 0x0e: /* SDOT */
12653     case 0x1e: /* UDOT */
12654         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12655             unallocated_encoding(s);
12656             return;
12657         }
12658         break;
12659     case 0x0f:
12660         switch (size) {
12661         case 0: /* SUDOT */
12662         case 2: /* USDOT */
12663             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12664                 unallocated_encoding(s);
12665                 return;
12666             }
12667             size = MO_32;
12668             break;
12669         case 1: /* BFDOT */
12670             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12671                 unallocated_encoding(s);
12672                 return;
12673             }
12674             size = MO_32;
12675             break;
12676         case 3: /* BFMLAL{B,T} */
12677             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12678                 unallocated_encoding(s);
12679                 return;
12680             }
12681             /* can't set is_fp without other incorrect size checks */
12682             size = MO_16;
12683             break;
12684         default:
12685             unallocated_encoding(s);
12686             return;
12687         }
12688         break;
12689     case 0x11: /* FCMLA #0 */
12690     case 0x13: /* FCMLA #90 */
12691     case 0x15: /* FCMLA #180 */
12692     case 0x17: /* FCMLA #270 */
12693         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12694             unallocated_encoding(s);
12695             return;
12696         }
12697         is_fp = 2;
12698         break;
12699     case 0x00: /* FMLAL */
12700     case 0x04: /* FMLSL */
12701     case 0x18: /* FMLAL2 */
12702     case 0x1c: /* FMLSL2 */
12703         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12704             unallocated_encoding(s);
12705             return;
12706         }
12707         size = MO_16;
12708         /* is_fp, but we pass tcg_env not fp_status.  */
12709         break;
12710     default:
12711     case 0x01: /* FMLA */
12712     case 0x05: /* FMLS */
12713     case 0x09: /* FMUL */
12714     case 0x19: /* FMULX */
12715         unallocated_encoding(s);
12716         return;
12717     }
12718 
12719     switch (is_fp) {
12720     case 1: /* normal fp */
12721         unallocated_encoding(s); /* in decodetree */
12722         return;
12723 
12724     case 2: /* complex fp */
12725         /* Each indexable element is a complex pair.  */
12726         size += 1;
12727         switch (size) {
12728         case MO_32:
12729             if (h && !is_q) {
12730                 unallocated_encoding(s);
12731                 return;
12732             }
12733             is_fp16 = true;
12734             break;
12735         case MO_64:
12736             break;
12737         default:
12738             unallocated_encoding(s);
12739             return;
12740         }
12741         break;
12742 
12743     default: /* integer */
12744         switch (size) {
12745         case MO_8:
12746         case MO_64:
12747             unallocated_encoding(s);
12748             return;
12749         }
12750         break;
12751     }
12752     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12753         unallocated_encoding(s);
12754         return;
12755     }
12756 
12757     /* Given MemOp size, adjust register and indexing.  */
12758     switch (size) {
12759     case MO_16:
12760         index = h << 2 | l << 1 | m;
12761         break;
12762     case MO_32:
12763         index = h << 1 | l;
12764         rm |= m << 4;
12765         break;
12766     case MO_64:
12767         if (l || !is_q) {
12768             unallocated_encoding(s);
12769             return;
12770         }
12771         index = h;
12772         rm |= m << 4;
12773         break;
12774     default:
12775         g_assert_not_reached();
12776     }
12777 
12778     if (!fp_access_check(s)) {
12779         return;
12780     }
12781 
12782     if (is_fp) {
12783         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12784     } else {
12785         fpst = NULL;
12786     }
12787 
12788     switch (16 * u + opcode) {
12789     case 0x0e: /* SDOT */
12790     case 0x1e: /* UDOT */
12791         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12792                          u ? gen_helper_gvec_udot_idx_b
12793                          : gen_helper_gvec_sdot_idx_b);
12794         return;
12795     case 0x0f:
12796         switch (extract32(insn, 22, 2)) {
12797         case 0: /* SUDOT */
12798             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12799                              gen_helper_gvec_sudot_idx_b);
12800             return;
12801         case 1: /* BFDOT */
12802             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12803                              gen_helper_gvec_bfdot_idx);
12804             return;
12805         case 2: /* USDOT */
12806             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12807                              gen_helper_gvec_usdot_idx_b);
12808             return;
12809         case 3: /* BFMLAL{B,T} */
12810             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12811                               gen_helper_gvec_bfmlal_idx);
12812             return;
12813         }
12814         g_assert_not_reached();
12815     case 0x11: /* FCMLA #0 */
12816     case 0x13: /* FCMLA #90 */
12817     case 0x15: /* FCMLA #180 */
12818     case 0x17: /* FCMLA #270 */
12819         {
12820             int rot = extract32(insn, 13, 2);
12821             int data = (index << 2) | rot;
12822             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12823                                vec_full_reg_offset(s, rn),
12824                                vec_full_reg_offset(s, rm),
12825                                vec_full_reg_offset(s, rd), fpst,
12826                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12827                                size == MO_64
12828                                ? gen_helper_gvec_fcmlas_idx
12829                                : gen_helper_gvec_fcmlah_idx);
12830         }
12831         return;
12832 
12833     case 0x00: /* FMLAL */
12834     case 0x04: /* FMLSL */
12835     case 0x18: /* FMLAL2 */
12836     case 0x1c: /* FMLSL2 */
12837         {
12838             int is_s = extract32(opcode, 2, 1);
12839             int is_2 = u;
12840             int data = (index << 2) | (is_2 << 1) | is_s;
12841             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12842                                vec_full_reg_offset(s, rn),
12843                                vec_full_reg_offset(s, rm), tcg_env,
12844                                is_q ? 16 : 8, vec_full_reg_size(s),
12845                                data, gen_helper_gvec_fmlal_idx_a64);
12846         }
12847         return;
12848 
12849     case 0x08: /* MUL */
12850         if (!is_long && !is_scalar) {
12851             static gen_helper_gvec_3 * const fns[3] = {
12852                 gen_helper_gvec_mul_idx_h,
12853                 gen_helper_gvec_mul_idx_s,
12854                 gen_helper_gvec_mul_idx_d,
12855             };
12856             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12857                                vec_full_reg_offset(s, rn),
12858                                vec_full_reg_offset(s, rm),
12859                                is_q ? 16 : 8, vec_full_reg_size(s),
12860                                index, fns[size - 1]);
12861             return;
12862         }
12863         break;
12864 
12865     case 0x10: /* MLA */
12866         if (!is_long && !is_scalar) {
12867             static gen_helper_gvec_4 * const fns[3] = {
12868                 gen_helper_gvec_mla_idx_h,
12869                 gen_helper_gvec_mla_idx_s,
12870                 gen_helper_gvec_mla_idx_d,
12871             };
12872             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12873                                vec_full_reg_offset(s, rn),
12874                                vec_full_reg_offset(s, rm),
12875                                vec_full_reg_offset(s, rd),
12876                                is_q ? 16 : 8, vec_full_reg_size(s),
12877                                index, fns[size - 1]);
12878             return;
12879         }
12880         break;
12881 
12882     case 0x14: /* MLS */
12883         if (!is_long && !is_scalar) {
12884             static gen_helper_gvec_4 * const fns[3] = {
12885                 gen_helper_gvec_mls_idx_h,
12886                 gen_helper_gvec_mls_idx_s,
12887                 gen_helper_gvec_mls_idx_d,
12888             };
12889             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12890                                vec_full_reg_offset(s, rn),
12891                                vec_full_reg_offset(s, rm),
12892                                vec_full_reg_offset(s, rd),
12893                                is_q ? 16 : 8, vec_full_reg_size(s),
12894                                index, fns[size - 1]);
12895             return;
12896         }
12897         break;
12898     }
12899 
12900     if (size == 3) {
12901         g_assert_not_reached();
12902     } else if (!is_long) {
12903         /* 32 bit floating point, or 16 or 32 bit integer.
12904          * For the 16 bit scalar case we use the usual Neon helpers and
12905          * rely on the fact that 0 op 0 == 0 with no side effects.
12906          */
12907         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12908         int pass, maxpasses;
12909 
12910         if (is_scalar) {
12911             maxpasses = 1;
12912         } else {
12913             maxpasses = is_q ? 4 : 2;
12914         }
12915 
12916         read_vec_element_i32(s, tcg_idx, rm, index, size);
12917 
12918         if (size == 1 && !is_scalar) {
12919             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12920              * the index into both halves of the 32 bit tcg_idx and then use
12921              * the usual Neon helpers.
12922              */
12923             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12924         }
12925 
12926         for (pass = 0; pass < maxpasses; pass++) {
12927             TCGv_i32 tcg_op = tcg_temp_new_i32();
12928             TCGv_i32 tcg_res = tcg_temp_new_i32();
12929 
12930             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12931 
12932             switch (16 * u + opcode) {
12933             case 0x08: /* MUL */
12934             case 0x10: /* MLA */
12935             case 0x14: /* MLS */
12936             {
12937                 static NeonGenTwoOpFn * const fns[2][2] = {
12938                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12939                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12940                 };
12941                 NeonGenTwoOpFn *genfn;
12942                 bool is_sub = opcode == 0x4;
12943 
12944                 if (size == 1) {
12945                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12946                 } else {
12947                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12948                 }
12949                 if (opcode == 0x8) {
12950                     break;
12951                 }
12952                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12953                 genfn = fns[size - 1][is_sub];
12954                 genfn(tcg_res, tcg_op, tcg_res);
12955                 break;
12956             }
12957             case 0x0c: /* SQDMULH */
12958                 if (size == 1) {
12959                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12960                                                tcg_op, tcg_idx);
12961                 } else {
12962                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12963                                                tcg_op, tcg_idx);
12964                 }
12965                 break;
12966             case 0x0d: /* SQRDMULH */
12967                 if (size == 1) {
12968                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12969                                                 tcg_op, tcg_idx);
12970                 } else {
12971                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12972                                                 tcg_op, tcg_idx);
12973                 }
12974                 break;
12975             case 0x1d: /* SQRDMLAH */
12976                 read_vec_element_i32(s, tcg_res, rd, pass,
12977                                      is_scalar ? size : MO_32);
12978                 if (size == 1) {
12979                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
12980                                                 tcg_op, tcg_idx, tcg_res);
12981                 } else {
12982                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
12983                                                 tcg_op, tcg_idx, tcg_res);
12984                 }
12985                 break;
12986             case 0x1f: /* SQRDMLSH */
12987                 read_vec_element_i32(s, tcg_res, rd, pass,
12988                                      is_scalar ? size : MO_32);
12989                 if (size == 1) {
12990                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
12991                                                 tcg_op, tcg_idx, tcg_res);
12992                 } else {
12993                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
12994                                                 tcg_op, tcg_idx, tcg_res);
12995                 }
12996                 break;
12997             default:
12998             case 0x01: /* FMLA */
12999             case 0x05: /* FMLS */
13000             case 0x09: /* FMUL */
13001             case 0x19: /* FMULX */
13002                 g_assert_not_reached();
13003             }
13004 
13005             if (is_scalar) {
13006                 write_fp_sreg(s, rd, tcg_res);
13007             } else {
13008                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13009             }
13010         }
13011 
13012         clear_vec_high(s, is_q, rd);
13013     } else {
13014         /* long ops: 16x16->32 or 32x32->64 */
13015         TCGv_i64 tcg_res[2];
13016         int pass;
13017         bool satop = extract32(opcode, 0, 1);
13018         MemOp memop = MO_32;
13019 
13020         if (satop || !u) {
13021             memop |= MO_SIGN;
13022         }
13023 
13024         if (size == 2) {
13025             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13026 
13027             read_vec_element(s, tcg_idx, rm, index, memop);
13028 
13029             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13030                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13031                 TCGv_i64 tcg_passres;
13032                 int passelt;
13033 
13034                 if (is_scalar) {
13035                     passelt = 0;
13036                 } else {
13037                     passelt = pass + (is_q * 2);
13038                 }
13039 
13040                 read_vec_element(s, tcg_op, rn, passelt, memop);
13041 
13042                 tcg_res[pass] = tcg_temp_new_i64();
13043 
13044                 if (opcode == 0xa || opcode == 0xb) {
13045                     /* Non-accumulating ops */
13046                     tcg_passres = tcg_res[pass];
13047                 } else {
13048                     tcg_passres = tcg_temp_new_i64();
13049                 }
13050 
13051                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13052 
13053                 if (satop) {
13054                     /* saturating, doubling */
13055                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13056                                                       tcg_passres, tcg_passres);
13057                 }
13058 
13059                 if (opcode == 0xa || opcode == 0xb) {
13060                     continue;
13061                 }
13062 
13063                 /* Accumulating op: handle accumulate step */
13064                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13065 
13066                 switch (opcode) {
13067                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13068                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13069                     break;
13070                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13071                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13072                     break;
13073                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13074                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13075                     /* fall through */
13076                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13077                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13078                                                       tcg_res[pass],
13079                                                       tcg_passres);
13080                     break;
13081                 default:
13082                     g_assert_not_reached();
13083                 }
13084             }
13085 
13086             clear_vec_high(s, !is_scalar, rd);
13087         } else {
13088             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13089 
13090             assert(size == 1);
13091             read_vec_element_i32(s, tcg_idx, rm, index, size);
13092 
13093             if (!is_scalar) {
13094                 /* The simplest way to handle the 16x16 indexed ops is to
13095                  * duplicate the index into both halves of the 32 bit tcg_idx
13096                  * and then use the usual Neon helpers.
13097                  */
13098                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13099             }
13100 
13101             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13102                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13103                 TCGv_i64 tcg_passres;
13104 
13105                 if (is_scalar) {
13106                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13107                 } else {
13108                     read_vec_element_i32(s, tcg_op, rn,
13109                                          pass + (is_q * 2), MO_32);
13110                 }
13111 
13112                 tcg_res[pass] = tcg_temp_new_i64();
13113 
13114                 if (opcode == 0xa || opcode == 0xb) {
13115                     /* Non-accumulating ops */
13116                     tcg_passres = tcg_res[pass];
13117                 } else {
13118                     tcg_passres = tcg_temp_new_i64();
13119                 }
13120 
13121                 if (memop & MO_SIGN) {
13122                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13123                 } else {
13124                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13125                 }
13126                 if (satop) {
13127                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13128                                                       tcg_passres, tcg_passres);
13129                 }
13130 
13131                 if (opcode == 0xa || opcode == 0xb) {
13132                     continue;
13133                 }
13134 
13135                 /* Accumulating op: handle accumulate step */
13136                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13137 
13138                 switch (opcode) {
13139                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13140                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13141                                              tcg_passres);
13142                     break;
13143                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13144                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13145                                              tcg_passres);
13146                     break;
13147                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13148                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13149                     /* fall through */
13150                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13151                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13152                                                       tcg_res[pass],
13153                                                       tcg_passres);
13154                     break;
13155                 default:
13156                     g_assert_not_reached();
13157                 }
13158             }
13159 
13160             if (is_scalar) {
13161                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13162             }
13163         }
13164 
13165         if (is_scalar) {
13166             tcg_res[1] = tcg_constant_i64(0);
13167         }
13168 
13169         for (pass = 0; pass < 2; pass++) {
13170             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13171         }
13172     }
13173 }
13174 
13175 /* C3.6 Data processing - SIMD, inc Crypto
13176  *
13177  * As the decode gets a little complex we are using a table based
13178  * approach for this part of the decode.
13179  */
13180 static const AArch64DecodeTable data_proc_simd[] = {
13181     /* pattern  ,  mask     ,  fn                        */
13182     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13183     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13184     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13185     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13186     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13187     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13188     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13189     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13190     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13191     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13192     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13193     { 0x2e000000, 0xbf208400, disas_simd_ext },
13194     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13195     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13196     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13197     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13198     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13199     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13200     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13201     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13202     { 0x00000000, 0x00000000, NULL }
13203 };
13204 
13205 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13206 {
13207     /* Note that this is called with all non-FP cases from
13208      * table C3-6 so it must UNDEF for entries not specifically
13209      * allocated to instructions in that table.
13210      */
13211     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13212     if (fn) {
13213         fn(s, insn);
13214     } else {
13215         unallocated_encoding(s);
13216     }
13217 }
13218 
13219 /* C3.6 Data processing - SIMD and floating point */
13220 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13221 {
13222     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13223         disas_data_proc_fp(s, insn);
13224     } else {
13225         /* SIMD, including crypto */
13226         disas_data_proc_simd(s, insn);
13227     }
13228 }
13229 
13230 static bool trans_OK(DisasContext *s, arg_OK *a)
13231 {
13232     return true;
13233 }
13234 
13235 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13236 {
13237     s->is_nonstreaming = true;
13238     return true;
13239 }
13240 
13241 /**
13242  * is_guarded_page:
13243  * @env: The cpu environment
13244  * @s: The DisasContext
13245  *
13246  * Return true if the page is guarded.
13247  */
13248 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13249 {
13250     uint64_t addr = s->base.pc_first;
13251 #ifdef CONFIG_USER_ONLY
13252     return page_get_flags(addr) & PAGE_BTI;
13253 #else
13254     CPUTLBEntryFull *full;
13255     void *host;
13256     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13257     int flags;
13258 
13259     /*
13260      * We test this immediately after reading an insn, which means
13261      * that the TLB entry must be present and valid, and thus this
13262      * access will never raise an exception.
13263      */
13264     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13265                               false, &host, &full, 0);
13266     assert(!(flags & TLB_INVALID_MASK));
13267 
13268     return full->extra.arm.guarded;
13269 #endif
13270 }
13271 
13272 /**
13273  * btype_destination_ok:
13274  * @insn: The instruction at the branch destination
13275  * @bt: SCTLR_ELx.BT
13276  * @btype: PSTATE.BTYPE, and is non-zero
13277  *
13278  * On a guarded page, there are a limited number of insns
13279  * that may be present at the branch target:
13280  *   - branch target identifiers,
13281  *   - paciasp, pacibsp,
13282  *   - BRK insn
13283  *   - HLT insn
13284  * Anything else causes a Branch Target Exception.
13285  *
13286  * Return true if the branch is compatible, false to raise BTITRAP.
13287  */
13288 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13289 {
13290     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13291         /* HINT space */
13292         switch (extract32(insn, 5, 7)) {
13293         case 0b011001: /* PACIASP */
13294         case 0b011011: /* PACIBSP */
13295             /*
13296              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13297              * with btype == 3.  Otherwise all btype are ok.
13298              */
13299             return !bt || btype != 3;
13300         case 0b100000: /* BTI */
13301             /* Not compatible with any btype.  */
13302             return false;
13303         case 0b100010: /* BTI c */
13304             /* Not compatible with btype == 3 */
13305             return btype != 3;
13306         case 0b100100: /* BTI j */
13307             /* Not compatible with btype == 2 */
13308             return btype != 2;
13309         case 0b100110: /* BTI jc */
13310             /* Compatible with any btype.  */
13311             return true;
13312         }
13313     } else {
13314         switch (insn & 0xffe0001fu) {
13315         case 0xd4200000u: /* BRK */
13316         case 0xd4400000u: /* HLT */
13317             /* Give priority to the breakpoint exception.  */
13318             return true;
13319         }
13320     }
13321     return false;
13322 }
13323 
13324 /* C3.1 A64 instruction index by encoding */
13325 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13326 {
13327     switch (extract32(insn, 25, 4)) {
13328     case 0x5:
13329     case 0xd:      /* Data processing - register */
13330         disas_data_proc_reg(s, insn);
13331         break;
13332     case 0x7:
13333     case 0xf:      /* Data processing - SIMD and floating point */
13334         disas_data_proc_simd_fp(s, insn);
13335         break;
13336     default:
13337         unallocated_encoding(s);
13338         break;
13339     }
13340 }
13341 
13342 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13343                                           CPUState *cpu)
13344 {
13345     DisasContext *dc = container_of(dcbase, DisasContext, base);
13346     CPUARMState *env = cpu_env(cpu);
13347     ARMCPU *arm_cpu = env_archcpu(env);
13348     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13349     int bound, core_mmu_idx;
13350 
13351     dc->isar = &arm_cpu->isar;
13352     dc->condjmp = 0;
13353     dc->pc_save = dc->base.pc_first;
13354     dc->aarch64 = true;
13355     dc->thumb = false;
13356     dc->sctlr_b = 0;
13357     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13358     dc->condexec_mask = 0;
13359     dc->condexec_cond = 0;
13360     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13361     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13362     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13363     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13364     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13365     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13366 #if !defined(CONFIG_USER_ONLY)
13367     dc->user = (dc->current_el == 0);
13368 #endif
13369     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13370     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13371     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13372     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13373     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13374     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13375     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13376     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13377     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13378     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13379     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13380     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13381     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13382     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13383     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13384     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13385     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13386     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13387     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13388     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13389     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13390     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13391     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13392     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13393     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13394     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13395     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13396     dc->vec_len = 0;
13397     dc->vec_stride = 0;
13398     dc->cp_regs = arm_cpu->cp_regs;
13399     dc->features = env->features;
13400     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13401     dc->gm_blocksize = arm_cpu->gm_blocksize;
13402 
13403 #ifdef CONFIG_USER_ONLY
13404     /* In sve_probe_page, we assume TBI is enabled. */
13405     tcg_debug_assert(dc->tbid & 1);
13406 #endif
13407 
13408     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13409 
13410     /* Single step state. The code-generation logic here is:
13411      *  SS_ACTIVE == 0:
13412      *   generate code with no special handling for single-stepping (except
13413      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13414      *   this happens anyway because those changes are all system register or
13415      *   PSTATE writes).
13416      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13417      *   emit code for one insn
13418      *   emit code to clear PSTATE.SS
13419      *   emit code to generate software step exception for completed step
13420      *   end TB (as usual for having generated an exception)
13421      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13422      *   emit code to generate a software step exception
13423      *   end the TB
13424      */
13425     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13426     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13427     dc->is_ldex = false;
13428 
13429     /* Bound the number of insns to execute to those left on the page.  */
13430     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13431 
13432     /* If architectural single step active, limit to 1.  */
13433     if (dc->ss_active) {
13434         bound = 1;
13435     }
13436     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13437 }
13438 
13439 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13440 {
13441 }
13442 
13443 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13444 {
13445     DisasContext *dc = container_of(dcbase, DisasContext, base);
13446     target_ulong pc_arg = dc->base.pc_next;
13447 
13448     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13449         pc_arg &= ~TARGET_PAGE_MASK;
13450     }
13451     tcg_gen_insn_start(pc_arg, 0, 0);
13452     dc->insn_start_updated = false;
13453 }
13454 
13455 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13456 {
13457     DisasContext *s = container_of(dcbase, DisasContext, base);
13458     CPUARMState *env = cpu_env(cpu);
13459     uint64_t pc = s->base.pc_next;
13460     uint32_t insn;
13461 
13462     /* Singlestep exceptions have the highest priority. */
13463     if (s->ss_active && !s->pstate_ss) {
13464         /* Singlestep state is Active-pending.
13465          * If we're in this state at the start of a TB then either
13466          *  a) we just took an exception to an EL which is being debugged
13467          *     and this is the first insn in the exception handler
13468          *  b) debug exceptions were masked and we just unmasked them
13469          *     without changing EL (eg by clearing PSTATE.D)
13470          * In either case we're going to take a swstep exception in the
13471          * "did not step an insn" case, and so the syndrome ISV and EX
13472          * bits should be zero.
13473          */
13474         assert(s->base.num_insns == 1);
13475         gen_swstep_exception(s, 0, 0);
13476         s->base.is_jmp = DISAS_NORETURN;
13477         s->base.pc_next = pc + 4;
13478         return;
13479     }
13480 
13481     if (pc & 3) {
13482         /*
13483          * PC alignment fault.  This has priority over the instruction abort
13484          * that we would receive from a translation fault via arm_ldl_code.
13485          * This should only be possible after an indirect branch, at the
13486          * start of the TB.
13487          */
13488         assert(s->base.num_insns == 1);
13489         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13490         s->base.is_jmp = DISAS_NORETURN;
13491         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13492         return;
13493     }
13494 
13495     s->pc_curr = pc;
13496     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13497     s->insn = insn;
13498     s->base.pc_next = pc + 4;
13499 
13500     s->fp_access_checked = false;
13501     s->sve_access_checked = false;
13502 
13503     if (s->pstate_il) {
13504         /*
13505          * Illegal execution state. This has priority over BTI
13506          * exceptions, but comes after instruction abort exceptions.
13507          */
13508         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13509         return;
13510     }
13511 
13512     if (dc_isar_feature(aa64_bti, s)) {
13513         if (s->base.num_insns == 1) {
13514             /*
13515              * At the first insn of the TB, compute s->guarded_page.
13516              * We delayed computing this until successfully reading
13517              * the first insn of the TB, above.  This (mostly) ensures
13518              * that the softmmu tlb entry has been populated, and the
13519              * page table GP bit is available.
13520              *
13521              * Note that we need to compute this even if btype == 0,
13522              * because this value is used for BR instructions later
13523              * where ENV is not available.
13524              */
13525             s->guarded_page = is_guarded_page(env, s);
13526 
13527             /* First insn can have btype set to non-zero.  */
13528             tcg_debug_assert(s->btype >= 0);
13529 
13530             /*
13531              * Note that the Branch Target Exception has fairly high
13532              * priority -- below debugging exceptions but above most
13533              * everything else.  This allows us to handle this now
13534              * instead of waiting until the insn is otherwise decoded.
13535              */
13536             if (s->btype != 0
13537                 && s->guarded_page
13538                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13539                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13540                 return;
13541             }
13542         } else {
13543             /* Not the first insn: btype must be 0.  */
13544             tcg_debug_assert(s->btype == 0);
13545         }
13546     }
13547 
13548     s->is_nonstreaming = false;
13549     if (s->sme_trap_nonstreaming) {
13550         disas_sme_fa64(s, insn);
13551     }
13552 
13553     if (!disas_a64(s, insn) &&
13554         !disas_sme(s, insn) &&
13555         !disas_sve(s, insn)) {
13556         disas_a64_legacy(s, insn);
13557     }
13558 
13559     /*
13560      * After execution of most insns, btype is reset to 0.
13561      * Note that we set btype == -1 when the insn sets btype.
13562      */
13563     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13564         reset_btype(s);
13565     }
13566 }
13567 
13568 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13569 {
13570     DisasContext *dc = container_of(dcbase, DisasContext, base);
13571 
13572     if (unlikely(dc->ss_active)) {
13573         /* Note that this means single stepping WFI doesn't halt the CPU.
13574          * For conditional branch insns this is harmless unreachable code as
13575          * gen_goto_tb() has already handled emitting the debug exception
13576          * (and thus a tb-jump is not possible when singlestepping).
13577          */
13578         switch (dc->base.is_jmp) {
13579         default:
13580             gen_a64_update_pc(dc, 4);
13581             /* fall through */
13582         case DISAS_EXIT:
13583         case DISAS_JUMP:
13584             gen_step_complete_exception(dc);
13585             break;
13586         case DISAS_NORETURN:
13587             break;
13588         }
13589     } else {
13590         switch (dc->base.is_jmp) {
13591         case DISAS_NEXT:
13592         case DISAS_TOO_MANY:
13593             gen_goto_tb(dc, 1, 4);
13594             break;
13595         default:
13596         case DISAS_UPDATE_EXIT:
13597             gen_a64_update_pc(dc, 4);
13598             /* fall through */
13599         case DISAS_EXIT:
13600             tcg_gen_exit_tb(NULL, 0);
13601             break;
13602         case DISAS_UPDATE_NOCHAIN:
13603             gen_a64_update_pc(dc, 4);
13604             /* fall through */
13605         case DISAS_JUMP:
13606             tcg_gen_lookup_and_goto_ptr();
13607             break;
13608         case DISAS_NORETURN:
13609         case DISAS_SWI:
13610             break;
13611         case DISAS_WFE:
13612             gen_a64_update_pc(dc, 4);
13613             gen_helper_wfe(tcg_env);
13614             break;
13615         case DISAS_YIELD:
13616             gen_a64_update_pc(dc, 4);
13617             gen_helper_yield(tcg_env);
13618             break;
13619         case DISAS_WFI:
13620             /*
13621              * This is a special case because we don't want to just halt
13622              * the CPU if trying to debug across a WFI.
13623              */
13624             gen_a64_update_pc(dc, 4);
13625             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
13626             /*
13627              * The helper doesn't necessarily throw an exception, but we
13628              * must go back to the main loop to check for interrupts anyway.
13629              */
13630             tcg_gen_exit_tb(NULL, 0);
13631             break;
13632         }
13633     }
13634 }
13635 
13636 const TranslatorOps aarch64_translator_ops = {
13637     .init_disas_context = aarch64_tr_init_disas_context,
13638     .tb_start           = aarch64_tr_tb_start,
13639     .insn_start         = aarch64_tr_insn_start,
13640     .translate_insn     = aarch64_tr_translate_insn,
13641     .tb_stop            = aarch64_tr_tb_stop,
13642 };
13643