1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(cpu_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 109 */ 110 static int get_a64_user_mem_index(DisasContext *s) 111 { 112 /* 113 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 114 * which is the usual mmu_idx for this cpu state. 115 */ 116 ARMMMUIdx useridx = s->mmu_idx; 117 118 if (s->unpriv) { 119 /* 120 * We have pre-computed the condition for AccType_UNPRIV. 121 * Therefore we should never get here with a mmu_idx for 122 * which we do not know the corresponding user mmu_idx. 123 */ 124 switch (useridx) { 125 case ARMMMUIdx_E10_1: 126 case ARMMMUIdx_E10_1_PAN: 127 useridx = ARMMMUIdx_E10_0; 128 break; 129 case ARMMMUIdx_E20_2: 130 case ARMMMUIdx_E20_2_PAN: 131 useridx = ARMMMUIdx_E20_0; 132 break; 133 default: 134 g_assert_not_reached(); 135 } 136 } 137 return arm_to_core_mmu_idx(useridx); 138 } 139 140 static void set_btype_raw(int val) 141 { 142 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 143 offsetof(CPUARMState, btype)); 144 } 145 146 static void set_btype(DisasContext *s, int val) 147 { 148 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 149 tcg_debug_assert(val >= 1 && val <= 3); 150 set_btype_raw(val); 151 s->btype = -1; 152 } 153 154 static void reset_btype(DisasContext *s) 155 { 156 if (s->btype != 0) { 157 set_btype_raw(0); 158 s->btype = 0; 159 } 160 } 161 162 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 163 { 164 assert(s->pc_save != -1); 165 if (tb_cflags(s->base.tb) & CF_PCREL) { 166 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 167 } else { 168 tcg_gen_movi_i64(dest, s->pc_curr + diff); 169 } 170 } 171 172 void gen_a64_update_pc(DisasContext *s, target_long diff) 173 { 174 gen_pc_plus_diff(s, cpu_pc, diff); 175 s->pc_save = s->pc_curr + diff; 176 } 177 178 /* 179 * Handle Top Byte Ignore (TBI) bits. 180 * 181 * If address tagging is enabled via the TCR TBI bits: 182 * + for EL2 and EL3 there is only one TBI bit, and if it is set 183 * then the address is zero-extended, clearing bits [63:56] 184 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 185 * and TBI1 controls addresses with bit 55 == 1. 186 * If the appropriate TBI bit is set for the address then 187 * the address is sign-extended from bit 55 into bits [63:56] 188 * 189 * Here We have concatenated TBI{1,0} into tbi. 190 */ 191 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 192 TCGv_i64 src, int tbi) 193 { 194 if (tbi == 0) { 195 /* Load unmodified address */ 196 tcg_gen_mov_i64(dst, src); 197 } else if (!regime_has_2_ranges(s->mmu_idx)) { 198 /* Force tag byte to all zero */ 199 tcg_gen_extract_i64(dst, src, 0, 56); 200 } else { 201 /* Sign-extend from bit 55. */ 202 tcg_gen_sextract_i64(dst, src, 0, 56); 203 204 switch (tbi) { 205 case 1: 206 /* tbi0 but !tbi1: only use the extension if positive */ 207 tcg_gen_and_i64(dst, dst, src); 208 break; 209 case 2: 210 /* !tbi0 but tbi1: only use the extension if negative */ 211 tcg_gen_or_i64(dst, dst, src); 212 break; 213 case 3: 214 /* tbi0 and tbi1: always use the extension */ 215 break; 216 default: 217 g_assert_not_reached(); 218 } 219 } 220 } 221 222 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 223 { 224 /* 225 * If address tagging is enabled for instructions via the TCR TBI bits, 226 * then loading an address into the PC will clear out any tag. 227 */ 228 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 229 s->pc_save = -1; 230 } 231 232 /* 233 * Handle MTE and/or TBI. 234 * 235 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 236 * for the tag to be present in the FAR_ELx register. But for user-only 237 * mode we do not have a TLB with which to implement this, so we must 238 * remove the top byte now. 239 * 240 * Always return a fresh temporary that we can increment independently 241 * of the write-back address. 242 */ 243 244 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 245 { 246 TCGv_i64 clean = tcg_temp_new_i64(); 247 #ifdef CONFIG_USER_ONLY 248 gen_top_byte_ignore(s, clean, addr, s->tbid); 249 #else 250 tcg_gen_mov_i64(clean, addr); 251 #endif 252 return clean; 253 } 254 255 /* Insert a zero tag into src, with the result at dst. */ 256 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 257 { 258 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 259 } 260 261 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 262 MMUAccessType acc, int log2_size) 263 { 264 gen_helper_probe_access(cpu_env, ptr, 265 tcg_constant_i32(acc), 266 tcg_constant_i32(get_mem_index(s)), 267 tcg_constant_i32(1 << log2_size)); 268 } 269 270 /* 271 * For MTE, check a single logical or atomic access. This probes a single 272 * address, the exact one specified. The size and alignment of the access 273 * is not relevant to MTE, per se, but watchpoints do require the size, 274 * and we want to recognize those before making any other changes to state. 275 */ 276 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 277 bool is_write, bool tag_checked, 278 MemOp memop, bool is_unpriv, 279 int core_idx) 280 { 281 if (tag_checked && s->mte_active[is_unpriv]) { 282 TCGv_i64 ret; 283 int desc = 0; 284 285 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 286 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 287 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 288 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 289 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 290 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 291 292 ret = tcg_temp_new_i64(); 293 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 294 295 return ret; 296 } 297 return clean_data_tbi(s, addr); 298 } 299 300 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 301 bool tag_checked, MemOp memop) 302 { 303 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 304 false, get_mem_index(s)); 305 } 306 307 /* 308 * For MTE, check multiple logical sequential accesses. 309 */ 310 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 311 bool tag_checked, int total_size, MemOp single_mop) 312 { 313 if (tag_checked && s->mte_active[0]) { 314 TCGv_i64 ret; 315 int desc = 0; 316 317 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 318 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 319 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 320 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 321 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 322 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 323 324 ret = tcg_temp_new_i64(); 325 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 326 327 return ret; 328 } 329 return clean_data_tbi(s, addr); 330 } 331 332 /* 333 * Generate the special alignment check that applies to AccType_ATOMIC 334 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 335 * naturally aligned, but it must not cross a 16-byte boundary. 336 * See AArch64.CheckAlignment(). 337 */ 338 static void check_lse2_align(DisasContext *s, int rn, int imm, 339 bool is_write, MemOp mop) 340 { 341 TCGv_i32 tmp; 342 TCGv_i64 addr; 343 TCGLabel *over_label; 344 MMUAccessType type; 345 int mmu_idx; 346 347 tmp = tcg_temp_new_i32(); 348 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 349 tcg_gen_addi_i32(tmp, tmp, imm & 15); 350 tcg_gen_andi_i32(tmp, tmp, 15); 351 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 352 353 over_label = gen_new_label(); 354 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 355 356 addr = tcg_temp_new_i64(); 357 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 358 359 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 360 mmu_idx = get_mem_index(s); 361 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 362 tcg_constant_i32(mmu_idx)); 363 364 gen_set_label(over_label); 365 366 } 367 368 /* Handle the alignment check for AccType_ATOMIC instructions. */ 369 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 370 { 371 MemOp size = mop & MO_SIZE; 372 373 if (size == MO_8) { 374 return mop; 375 } 376 377 /* 378 * If size == MO_128, this is a LDXP, and the operation is single-copy 379 * atomic for each doubleword, not the entire quadword; it still must 380 * be quadword aligned. 381 */ 382 if (size == MO_128) { 383 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 384 MO_ATOM_IFALIGN_PAIR); 385 } 386 if (dc_isar_feature(aa64_lse2, s)) { 387 check_lse2_align(s, rn, 0, true, mop); 388 } else { 389 mop |= MO_ALIGN; 390 } 391 return finalize_memop(s, mop); 392 } 393 394 /* Handle the alignment check for AccType_ORDERED instructions. */ 395 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 396 bool is_write, MemOp mop) 397 { 398 MemOp size = mop & MO_SIZE; 399 400 if (size == MO_8) { 401 return mop; 402 } 403 if (size == MO_128) { 404 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 405 MO_ATOM_IFALIGN_PAIR); 406 } 407 if (!dc_isar_feature(aa64_lse2, s)) { 408 mop |= MO_ALIGN; 409 } else if (!s->naa) { 410 check_lse2_align(s, rn, imm, is_write, mop); 411 } 412 return finalize_memop(s, mop); 413 } 414 415 typedef struct DisasCompare64 { 416 TCGCond cond; 417 TCGv_i64 value; 418 } DisasCompare64; 419 420 static void a64_test_cc(DisasCompare64 *c64, int cc) 421 { 422 DisasCompare c32; 423 424 arm_test_cc(&c32, cc); 425 426 /* 427 * Sign-extend the 32-bit value so that the GE/LT comparisons work 428 * properly. The NE/EQ comparisons are also fine with this choice. 429 */ 430 c64->cond = c32.cond; 431 c64->value = tcg_temp_new_i64(); 432 tcg_gen_ext_i32_i64(c64->value, c32.value); 433 } 434 435 static void gen_rebuild_hflags(DisasContext *s) 436 { 437 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 438 } 439 440 static void gen_exception_internal(int excp) 441 { 442 assert(excp_is_internal(excp)); 443 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 444 } 445 446 static void gen_exception_internal_insn(DisasContext *s, int excp) 447 { 448 gen_a64_update_pc(s, 0); 449 gen_exception_internal(excp); 450 s->base.is_jmp = DISAS_NORETURN; 451 } 452 453 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 454 { 455 gen_a64_update_pc(s, 0); 456 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 457 s->base.is_jmp = DISAS_NORETURN; 458 } 459 460 static void gen_step_complete_exception(DisasContext *s) 461 { 462 /* We just completed step of an insn. Move from Active-not-pending 463 * to Active-pending, and then also take the swstep exception. 464 * This corresponds to making the (IMPDEF) choice to prioritize 465 * swstep exceptions over asynchronous exceptions taken to an exception 466 * level where debug is disabled. This choice has the advantage that 467 * we do not need to maintain internal state corresponding to the 468 * ISV/EX syndrome bits between completion of the step and generation 469 * of the exception, and our syndrome information is always correct. 470 */ 471 gen_ss_advance(s); 472 gen_swstep_exception(s, 1, s->is_ldex); 473 s->base.is_jmp = DISAS_NORETURN; 474 } 475 476 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 477 { 478 if (s->ss_active) { 479 return false; 480 } 481 return translator_use_goto_tb(&s->base, dest); 482 } 483 484 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 485 { 486 if (use_goto_tb(s, s->pc_curr + diff)) { 487 /* 488 * For pcrel, the pc must always be up-to-date on entry to 489 * the linked TB, so that it can use simple additions for all 490 * further adjustments. For !pcrel, the linked TB is compiled 491 * to know its full virtual address, so we can delay the 492 * update to pc to the unlinked path. A long chain of links 493 * can thus avoid many updates to the PC. 494 */ 495 if (tb_cflags(s->base.tb) & CF_PCREL) { 496 gen_a64_update_pc(s, diff); 497 tcg_gen_goto_tb(n); 498 } else { 499 tcg_gen_goto_tb(n); 500 gen_a64_update_pc(s, diff); 501 } 502 tcg_gen_exit_tb(s->base.tb, n); 503 s->base.is_jmp = DISAS_NORETURN; 504 } else { 505 gen_a64_update_pc(s, diff); 506 if (s->ss_active) { 507 gen_step_complete_exception(s); 508 } else { 509 tcg_gen_lookup_and_goto_ptr(); 510 s->base.is_jmp = DISAS_NORETURN; 511 } 512 } 513 } 514 515 /* 516 * Register access functions 517 * 518 * These functions are used for directly accessing a register in where 519 * changes to the final register value are likely to be made. If you 520 * need to use a register for temporary calculation (e.g. index type 521 * operations) use the read_* form. 522 * 523 * B1.2.1 Register mappings 524 * 525 * In instruction register encoding 31 can refer to ZR (zero register) or 526 * the SP (stack pointer) depending on context. In QEMU's case we map SP 527 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 528 * This is the point of the _sp forms. 529 */ 530 TCGv_i64 cpu_reg(DisasContext *s, int reg) 531 { 532 if (reg == 31) { 533 TCGv_i64 t = tcg_temp_new_i64(); 534 tcg_gen_movi_i64(t, 0); 535 return t; 536 } else { 537 return cpu_X[reg]; 538 } 539 } 540 541 /* register access for when 31 == SP */ 542 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 543 { 544 return cpu_X[reg]; 545 } 546 547 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 548 * representing the register contents. This TCGv is an auto-freed 549 * temporary so it need not be explicitly freed, and may be modified. 550 */ 551 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 552 { 553 TCGv_i64 v = tcg_temp_new_i64(); 554 if (reg != 31) { 555 if (sf) { 556 tcg_gen_mov_i64(v, cpu_X[reg]); 557 } else { 558 tcg_gen_ext32u_i64(v, cpu_X[reg]); 559 } 560 } else { 561 tcg_gen_movi_i64(v, 0); 562 } 563 return v; 564 } 565 566 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 567 { 568 TCGv_i64 v = tcg_temp_new_i64(); 569 if (sf) { 570 tcg_gen_mov_i64(v, cpu_X[reg]); 571 } else { 572 tcg_gen_ext32u_i64(v, cpu_X[reg]); 573 } 574 return v; 575 } 576 577 /* Return the offset into CPUARMState of a slice (from 578 * the least significant end) of FP register Qn (ie 579 * Dn, Sn, Hn or Bn). 580 * (Note that this is not the same mapping as for A32; see cpu.h) 581 */ 582 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 583 { 584 return vec_reg_offset(s, regno, 0, size); 585 } 586 587 /* Offset of the high half of the 128 bit vector Qn */ 588 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 589 { 590 return vec_reg_offset(s, regno, 1, MO_64); 591 } 592 593 /* Convenience accessors for reading and writing single and double 594 * FP registers. Writing clears the upper parts of the associated 595 * 128 bit vector register, as required by the architecture. 596 * Note that unlike the GP register accessors, the values returned 597 * by the read functions must be manually freed. 598 */ 599 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 600 { 601 TCGv_i64 v = tcg_temp_new_i64(); 602 603 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 604 return v; 605 } 606 607 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 608 { 609 TCGv_i32 v = tcg_temp_new_i32(); 610 611 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 620 return v; 621 } 622 623 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 624 * If SVE is not enabled, then there are only 128 bits in the vector. 625 */ 626 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 627 { 628 unsigned ofs = fp_reg_offset(s, rd, MO_64); 629 unsigned vsz = vec_full_reg_size(s); 630 631 /* Nop move, with side effect of clearing the tail. */ 632 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 633 } 634 635 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 636 { 637 unsigned ofs = fp_reg_offset(s, reg, MO_64); 638 639 tcg_gen_st_i64(v, cpu_env, ofs); 640 clear_vec_high(s, false, reg); 641 } 642 643 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 644 { 645 TCGv_i64 tmp = tcg_temp_new_i64(); 646 647 tcg_gen_extu_i32_i64(tmp, v); 648 write_fp_dreg(s, reg, tmp); 649 } 650 651 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 652 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 653 GVecGen2Fn *gvec_fn, int vece) 654 { 655 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 656 is_q ? 16 : 8, vec_full_reg_size(s)); 657 } 658 659 /* Expand a 2-operand + immediate AdvSIMD vector operation using 660 * an expander function. 661 */ 662 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 663 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 664 { 665 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 666 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 667 } 668 669 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 670 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 671 GVecGen3Fn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 int rx, GVecGen4Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 683 is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 2-operand operation using an out-of-line helper. */ 687 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 688 int rn, int data, gen_helper_gvec_2 *fn) 689 { 690 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 691 vec_full_reg_offset(s, rn), 692 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 693 } 694 695 /* Expand a 3-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int rm, int data, gen_helper_gvec_3 *fn) 698 { 699 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 vec_full_reg_offset(s, rm), 702 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 703 } 704 705 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 706 * an out-of-line helper. 707 */ 708 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 709 int rm, bool is_fp16, int data, 710 gen_helper_gvec_3_ptr *fn) 711 { 712 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 713 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 714 vec_full_reg_offset(s, rn), 715 vec_full_reg_offset(s, rm), fpst, 716 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 717 } 718 719 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 720 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 721 int rm, gen_helper_gvec_3_ptr *fn) 722 { 723 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 724 725 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 726 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 727 vec_full_reg_offset(s, rn), 728 vec_full_reg_offset(s, rm), qc_ptr, 729 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 730 } 731 732 /* Expand a 4-operand operation using an out-of-line helper. */ 733 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 734 int rm, int ra, int data, gen_helper_gvec_4 *fn) 735 { 736 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 737 vec_full_reg_offset(s, rn), 738 vec_full_reg_offset(s, rm), 739 vec_full_reg_offset(s, ra), 740 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 741 } 742 743 /* 744 * Expand a 4-operand + fpstatus pointer + simd data value operation using 745 * an out-of-line helper. 746 */ 747 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 748 int rm, int ra, bool is_fp16, int data, 749 gen_helper_gvec_4_ptr *fn) 750 { 751 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 752 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 753 vec_full_reg_offset(s, rn), 754 vec_full_reg_offset(s, rm), 755 vec_full_reg_offset(s, ra), fpst, 756 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 757 } 758 759 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 760 * than the 32 bit equivalent. 761 */ 762 static inline void gen_set_NZ64(TCGv_i64 result) 763 { 764 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 765 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 766 } 767 768 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 769 static inline void gen_logic_CC(int sf, TCGv_i64 result) 770 { 771 if (sf) { 772 gen_set_NZ64(result); 773 } else { 774 tcg_gen_extrl_i64_i32(cpu_ZF, result); 775 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 776 } 777 tcg_gen_movi_i32(cpu_CF, 0); 778 tcg_gen_movi_i32(cpu_VF, 0); 779 } 780 781 /* dest = T0 + T1; compute C, N, V and Z flags */ 782 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i64 result, flag, tmp; 785 result = tcg_temp_new_i64(); 786 flag = tcg_temp_new_i64(); 787 tmp = tcg_temp_new_i64(); 788 789 tcg_gen_movi_i64(tmp, 0); 790 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 791 792 tcg_gen_extrl_i64_i32(cpu_CF, flag); 793 794 gen_set_NZ64(result); 795 796 tcg_gen_xor_i64(flag, result, t0); 797 tcg_gen_xor_i64(tmp, t0, t1); 798 tcg_gen_andc_i64(flag, flag, tmp); 799 tcg_gen_extrh_i64_i32(cpu_VF, flag); 800 801 tcg_gen_mov_i64(dest, result); 802 } 803 804 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 805 { 806 TCGv_i32 t0_32 = tcg_temp_new_i32(); 807 TCGv_i32 t1_32 = tcg_temp_new_i32(); 808 TCGv_i32 tmp = tcg_temp_new_i32(); 809 810 tcg_gen_movi_i32(tmp, 0); 811 tcg_gen_extrl_i64_i32(t0_32, t0); 812 tcg_gen_extrl_i64_i32(t1_32, t1); 813 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 814 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 815 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 816 tcg_gen_xor_i32(tmp, t0_32, t1_32); 817 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 818 tcg_gen_extu_i32_i64(dest, cpu_NF); 819 } 820 821 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 822 { 823 if (sf) { 824 gen_add64_CC(dest, t0, t1); 825 } else { 826 gen_add32_CC(dest, t0, t1); 827 } 828 } 829 830 /* dest = T0 - T1; compute C, N, V and Z flags */ 831 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 64 bit arithmetic */ 834 TCGv_i64 result, flag, tmp; 835 836 result = tcg_temp_new_i64(); 837 flag = tcg_temp_new_i64(); 838 tcg_gen_sub_i64(result, t0, t1); 839 840 gen_set_NZ64(result); 841 842 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 843 tcg_gen_extrl_i64_i32(cpu_CF, flag); 844 845 tcg_gen_xor_i64(flag, result, t0); 846 tmp = tcg_temp_new_i64(); 847 tcg_gen_xor_i64(tmp, t0, t1); 848 tcg_gen_and_i64(flag, flag, tmp); 849 tcg_gen_extrh_i64_i32(cpu_VF, flag); 850 tcg_gen_mov_i64(dest, result); 851 } 852 853 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 854 { 855 /* 32 bit arithmetic */ 856 TCGv_i32 t0_32 = tcg_temp_new_i32(); 857 TCGv_i32 t1_32 = tcg_temp_new_i32(); 858 TCGv_i32 tmp; 859 860 tcg_gen_extrl_i64_i32(t0_32, t0); 861 tcg_gen_extrl_i64_i32(t1_32, t1); 862 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 863 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 864 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 865 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 866 tmp = tcg_temp_new_i32(); 867 tcg_gen_xor_i32(tmp, t0_32, t1_32); 868 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 869 tcg_gen_extu_i32_i64(dest, cpu_NF); 870 } 871 872 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 873 { 874 if (sf) { 875 gen_sub64_CC(dest, t0, t1); 876 } else { 877 gen_sub32_CC(dest, t0, t1); 878 } 879 } 880 881 /* dest = T0 + T1 + CF; do not compute flags. */ 882 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 883 { 884 TCGv_i64 flag = tcg_temp_new_i64(); 885 tcg_gen_extu_i32_i64(flag, cpu_CF); 886 tcg_gen_add_i64(dest, t0, t1); 887 tcg_gen_add_i64(dest, dest, flag); 888 889 if (!sf) { 890 tcg_gen_ext32u_i64(dest, dest); 891 } 892 } 893 894 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 895 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 896 { 897 if (sf) { 898 TCGv_i64 result = tcg_temp_new_i64(); 899 TCGv_i64 cf_64 = tcg_temp_new_i64(); 900 TCGv_i64 vf_64 = tcg_temp_new_i64(); 901 TCGv_i64 tmp = tcg_temp_new_i64(); 902 TCGv_i64 zero = tcg_constant_i64(0); 903 904 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 905 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 906 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 907 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 908 gen_set_NZ64(result); 909 910 tcg_gen_xor_i64(vf_64, result, t0); 911 tcg_gen_xor_i64(tmp, t0, t1); 912 tcg_gen_andc_i64(vf_64, vf_64, tmp); 913 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 914 915 tcg_gen_mov_i64(dest, result); 916 } else { 917 TCGv_i32 t0_32 = tcg_temp_new_i32(); 918 TCGv_i32 t1_32 = tcg_temp_new_i32(); 919 TCGv_i32 tmp = tcg_temp_new_i32(); 920 TCGv_i32 zero = tcg_constant_i32(0); 921 922 tcg_gen_extrl_i64_i32(t0_32, t0); 923 tcg_gen_extrl_i64_i32(t1_32, t1); 924 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 925 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 926 927 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 928 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 929 tcg_gen_xor_i32(tmp, t0_32, t1_32); 930 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 931 tcg_gen_extu_i32_i64(dest, cpu_NF); 932 } 933 } 934 935 /* 936 * Load/Store generators 937 */ 938 939 /* 940 * Store from GPR register to memory. 941 */ 942 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, int memidx, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 949 950 if (iss_valid) { 951 uint32_t syn; 952 953 syn = syn_data_abort_with_iss(0, 954 (memop & MO_SIZE), 955 false, 956 iss_srt, 957 iss_sf, 958 iss_ar, 959 0, 0, 0, 0, 0, false); 960 disas_set_insn_syndrome(s, syn); 961 } 962 } 963 964 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 965 TCGv_i64 tcg_addr, MemOp memop, 966 bool iss_valid, 967 unsigned int iss_srt, 968 bool iss_sf, bool iss_ar) 969 { 970 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 971 iss_valid, iss_srt, iss_sf, iss_ar); 972 } 973 974 /* 975 * Load from memory to GPR register 976 */ 977 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 978 MemOp memop, bool extend, int memidx, 979 bool iss_valid, unsigned int iss_srt, 980 bool iss_sf, bool iss_ar) 981 { 982 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 983 984 if (extend && (memop & MO_SIGN)) { 985 g_assert((memop & MO_SIZE) <= MO_32); 986 tcg_gen_ext32u_i64(dest, dest); 987 } 988 989 if (iss_valid) { 990 uint32_t syn; 991 992 syn = syn_data_abort_with_iss(0, 993 (memop & MO_SIZE), 994 (memop & MO_SIGN) != 0, 995 iss_srt, 996 iss_sf, 997 iss_ar, 998 0, 0, 0, 0, 0, false); 999 disas_set_insn_syndrome(s, syn); 1000 } 1001 } 1002 1003 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1004 MemOp memop, bool extend, 1005 bool iss_valid, unsigned int iss_srt, 1006 bool iss_sf, bool iss_ar) 1007 { 1008 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1009 iss_valid, iss_srt, iss_sf, iss_ar); 1010 } 1011 1012 /* 1013 * Store from FP register to memory 1014 */ 1015 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1016 { 1017 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1018 TCGv_i64 tmplo = tcg_temp_new_i64(); 1019 1020 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i64 tmphi = tcg_temp_new_i64(); 1026 TCGv_i128 t16 = tcg_temp_new_i128(); 1027 1028 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1029 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1030 1031 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1032 } 1033 } 1034 1035 /* 1036 * Load from memory to FP register 1037 */ 1038 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1039 { 1040 /* This always zero-extends and writes to a full 128 bit wide vector */ 1041 TCGv_i64 tmplo = tcg_temp_new_i64(); 1042 TCGv_i64 tmphi = NULL; 1043 1044 if ((mop & MO_SIZE) < MO_128) { 1045 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1046 } else { 1047 TCGv_i128 t16 = tcg_temp_new_i128(); 1048 1049 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1050 1051 tmphi = tcg_temp_new_i64(); 1052 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1053 } 1054 1055 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1056 1057 if (tmphi) { 1058 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1059 } 1060 clear_vec_high(s, tmphi != NULL, destidx); 1061 } 1062 1063 /* 1064 * Vector load/store helpers. 1065 * 1066 * The principal difference between this and a FP load is that we don't 1067 * zero extend as we are filling a partial chunk of the vector register. 1068 * These functions don't support 128 bit loads/stores, which would be 1069 * normal load/store operations. 1070 * 1071 * The _i32 versions are useful when operating on 32 bit quantities 1072 * (eg for floating point single or using Neon helper functions). 1073 */ 1074 1075 /* Get value of an element within a vector register */ 1076 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1077 int element, MemOp memop) 1078 { 1079 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1080 switch ((unsigned)memop) { 1081 case MO_8: 1082 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1083 break; 1084 case MO_16: 1085 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1086 break; 1087 case MO_32: 1088 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1089 break; 1090 case MO_8|MO_SIGN: 1091 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1092 break; 1093 case MO_16|MO_SIGN: 1094 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1095 break; 1096 case MO_32|MO_SIGN: 1097 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1098 break; 1099 case MO_64: 1100 case MO_64|MO_SIGN: 1101 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1102 break; 1103 default: 1104 g_assert_not_reached(); 1105 } 1106 } 1107 1108 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1109 int element, MemOp memop) 1110 { 1111 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1112 switch (memop) { 1113 case MO_8: 1114 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1115 break; 1116 case MO_16: 1117 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1118 break; 1119 case MO_8|MO_SIGN: 1120 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1121 break; 1122 case MO_16|MO_SIGN: 1123 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1124 break; 1125 case MO_32: 1126 case MO_32|MO_SIGN: 1127 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1128 break; 1129 default: 1130 g_assert_not_reached(); 1131 } 1132 } 1133 1134 /* Set value of an element within a vector register */ 1135 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1136 int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1148 break; 1149 case MO_64: 1150 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1151 break; 1152 default: 1153 g_assert_not_reached(); 1154 } 1155 } 1156 1157 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1158 int destidx, int element, MemOp memop) 1159 { 1160 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1161 switch (memop) { 1162 case MO_8: 1163 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1164 break; 1165 case MO_16: 1166 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1167 break; 1168 case MO_32: 1169 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1170 break; 1171 default: 1172 g_assert_not_reached(); 1173 } 1174 } 1175 1176 /* Store from vector register to memory */ 1177 static void do_vec_st(DisasContext *s, int srcidx, int element, 1178 TCGv_i64 tcg_addr, MemOp mop) 1179 { 1180 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1181 1182 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1183 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1184 } 1185 1186 /* Load from memory to vector register */ 1187 static void do_vec_ld(DisasContext *s, int destidx, int element, 1188 TCGv_i64 tcg_addr, MemOp mop) 1189 { 1190 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1191 1192 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1194 } 1195 1196 /* Check that FP/Neon access is enabled. If it is, return 1197 * true. If not, emit code to generate an appropriate exception, 1198 * and return false; the caller should not emit any code for 1199 * the instruction. Note that this check must happen after all 1200 * unallocated-encoding checks (otherwise the syndrome information 1201 * for the resulting exception will be incorrect). 1202 */ 1203 static bool fp_access_check_only(DisasContext *s) 1204 { 1205 if (s->fp_excp_el) { 1206 assert(!s->fp_access_checked); 1207 s->fp_access_checked = true; 1208 1209 gen_exception_insn_el(s, 0, EXCP_UDEF, 1210 syn_fp_access_trap(1, 0xe, false, 0), 1211 s->fp_excp_el); 1212 return false; 1213 } 1214 s->fp_access_checked = true; 1215 return true; 1216 } 1217 1218 static bool fp_access_check(DisasContext *s) 1219 { 1220 if (!fp_access_check_only(s)) { 1221 return false; 1222 } 1223 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1224 gen_exception_insn(s, 0, EXCP_UDEF, 1225 syn_smetrap(SME_ET_Streaming, false)); 1226 return false; 1227 } 1228 return true; 1229 } 1230 1231 /* 1232 * Check that SVE access is enabled. If it is, return true. 1233 * If not, emit code to generate an appropriate exception and return false. 1234 * This function corresponds to CheckSVEEnabled(). 1235 */ 1236 bool sve_access_check(DisasContext *s) 1237 { 1238 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1239 assert(dc_isar_feature(aa64_sme, s)); 1240 if (!sme_sm_enabled_check(s)) { 1241 goto fail_exit; 1242 } 1243 } else if (s->sve_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_sve_access_trap(), s->sve_excp_el); 1246 goto fail_exit; 1247 } 1248 s->sve_access_checked = true; 1249 return fp_access_check(s); 1250 1251 fail_exit: 1252 /* Assert that we only raise one exception per instruction. */ 1253 assert(!s->sve_access_checked); 1254 s->sve_access_checked = true; 1255 return false; 1256 } 1257 1258 /* 1259 * Check that SME access is enabled, raise an exception if not. 1260 * Note that this function corresponds to CheckSMEAccess and is 1261 * only used directly for cpregs. 1262 */ 1263 static bool sme_access_check(DisasContext *s) 1264 { 1265 if (s->sme_excp_el) { 1266 gen_exception_insn_el(s, 0, EXCP_UDEF, 1267 syn_smetrap(SME_ET_AccessTrap, false), 1268 s->sme_excp_el); 1269 return false; 1270 } 1271 return true; 1272 } 1273 1274 /* This function corresponds to CheckSMEEnabled. */ 1275 bool sme_enabled_check(DisasContext *s) 1276 { 1277 /* 1278 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1279 * to be zero when fp_excp_el has priority. This is because we need 1280 * sme_excp_el by itself for cpregs access checks. 1281 */ 1282 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1283 s->fp_access_checked = true; 1284 return sme_access_check(s); 1285 } 1286 return fp_access_check_only(s); 1287 } 1288 1289 /* Common subroutine for CheckSMEAnd*Enabled. */ 1290 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1291 { 1292 if (!sme_enabled_check(s)) { 1293 return false; 1294 } 1295 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1296 gen_exception_insn(s, 0, EXCP_UDEF, 1297 syn_smetrap(SME_ET_NotStreaming, false)); 1298 return false; 1299 } 1300 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1301 gen_exception_insn(s, 0, EXCP_UDEF, 1302 syn_smetrap(SME_ET_InactiveZA, false)); 1303 return false; 1304 } 1305 return true; 1306 } 1307 1308 /* 1309 * This utility function is for doing register extension with an 1310 * optional shift. You will likely want to pass a temporary for the 1311 * destination register. See DecodeRegExtend() in the ARM ARM. 1312 */ 1313 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1314 int option, unsigned int shift) 1315 { 1316 int extsize = extract32(option, 0, 2); 1317 bool is_signed = extract32(option, 2, 1); 1318 1319 if (is_signed) { 1320 switch (extsize) { 1321 case 0: 1322 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1323 break; 1324 case 1: 1325 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1326 break; 1327 case 2: 1328 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1329 break; 1330 case 3: 1331 tcg_gen_mov_i64(tcg_out, tcg_in); 1332 break; 1333 } 1334 } else { 1335 switch (extsize) { 1336 case 0: 1337 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1338 break; 1339 case 1: 1340 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1341 break; 1342 case 2: 1343 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1344 break; 1345 case 3: 1346 tcg_gen_mov_i64(tcg_out, tcg_in); 1347 break; 1348 } 1349 } 1350 1351 if (shift) { 1352 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1353 } 1354 } 1355 1356 static inline void gen_check_sp_alignment(DisasContext *s) 1357 { 1358 /* The AArch64 architecture mandates that (if enabled via PSTATE 1359 * or SCTLR bits) there is a check that SP is 16-aligned on every 1360 * SP-relative load or store (with an exception generated if it is not). 1361 * In line with general QEMU practice regarding misaligned accesses, 1362 * we omit these checks for the sake of guest program performance. 1363 * This function is provided as a hook so we can more easily add these 1364 * checks in future (possibly as a "favour catching guest program bugs 1365 * over speed" user selectable option). 1366 */ 1367 } 1368 1369 /* 1370 * This provides a simple table based table lookup decoder. It is 1371 * intended to be used when the relevant bits for decode are too 1372 * awkwardly placed and switch/if based logic would be confusing and 1373 * deeply nested. Since it's a linear search through the table, tables 1374 * should be kept small. 1375 * 1376 * It returns the first handler where insn & mask == pattern, or 1377 * NULL if there is no match. 1378 * The table is terminated by an empty mask (i.e. 0) 1379 */ 1380 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1381 uint32_t insn) 1382 { 1383 const AArch64DecodeTable *tptr = table; 1384 1385 while (tptr->mask) { 1386 if ((insn & tptr->mask) == tptr->pattern) { 1387 return tptr->disas_fn; 1388 } 1389 tptr++; 1390 } 1391 return NULL; 1392 } 1393 1394 /* 1395 * The instruction disassembly implemented here matches 1396 * the instruction encoding classifications in chapter C4 1397 * of the ARM Architecture Reference Manual (DDI0487B_a); 1398 * classification names and decode diagrams here should generally 1399 * match up with those in the manual. 1400 */ 1401 1402 static bool trans_B(DisasContext *s, arg_i *a) 1403 { 1404 reset_btype(s); 1405 gen_goto_tb(s, 0, a->imm); 1406 return true; 1407 } 1408 1409 static bool trans_BL(DisasContext *s, arg_i *a) 1410 { 1411 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1412 reset_btype(s); 1413 gen_goto_tb(s, 0, a->imm); 1414 return true; 1415 } 1416 1417 1418 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1419 { 1420 DisasLabel match; 1421 TCGv_i64 tcg_cmp; 1422 1423 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1424 reset_btype(s); 1425 1426 match = gen_disas_label(s); 1427 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1428 tcg_cmp, 0, match.label); 1429 gen_goto_tb(s, 0, 4); 1430 set_disas_label(s, match); 1431 gen_goto_tb(s, 1, a->imm); 1432 return true; 1433 } 1434 1435 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1436 { 1437 DisasLabel match; 1438 TCGv_i64 tcg_cmp; 1439 1440 tcg_cmp = tcg_temp_new_i64(); 1441 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1442 1443 reset_btype(s); 1444 1445 match = gen_disas_label(s); 1446 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1447 tcg_cmp, 0, match.label); 1448 gen_goto_tb(s, 0, 4); 1449 set_disas_label(s, match); 1450 gen_goto_tb(s, 1, a->imm); 1451 return true; 1452 } 1453 1454 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1455 { 1456 reset_btype(s); 1457 if (a->cond < 0x0e) { 1458 /* genuinely conditional branches */ 1459 DisasLabel match = gen_disas_label(s); 1460 arm_gen_test_cc(a->cond, match.label); 1461 gen_goto_tb(s, 0, 4); 1462 set_disas_label(s, match); 1463 gen_goto_tb(s, 1, a->imm); 1464 } else { 1465 /* 0xe and 0xf are both "always" conditions */ 1466 gen_goto_tb(s, 0, a->imm); 1467 } 1468 return true; 1469 } 1470 1471 static void set_btype_for_br(DisasContext *s, int rn) 1472 { 1473 if (dc_isar_feature(aa64_bti, s)) { 1474 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1475 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1476 } 1477 } 1478 1479 static void set_btype_for_blr(DisasContext *s) 1480 { 1481 if (dc_isar_feature(aa64_bti, s)) { 1482 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1483 set_btype(s, 2); 1484 } 1485 } 1486 1487 static bool trans_BR(DisasContext *s, arg_r *a) 1488 { 1489 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1490 set_btype_for_br(s, a->rn); 1491 s->base.is_jmp = DISAS_JUMP; 1492 return true; 1493 } 1494 1495 static bool trans_BLR(DisasContext *s, arg_r *a) 1496 { 1497 TCGv_i64 dst = cpu_reg(s, a->rn); 1498 TCGv_i64 lr = cpu_reg(s, 30); 1499 if (dst == lr) { 1500 TCGv_i64 tmp = tcg_temp_new_i64(); 1501 tcg_gen_mov_i64(tmp, dst); 1502 dst = tmp; 1503 } 1504 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1505 gen_a64_set_pc(s, dst); 1506 set_btype_for_blr(s); 1507 s->base.is_jmp = DISAS_JUMP; 1508 return true; 1509 } 1510 1511 static bool trans_RET(DisasContext *s, arg_r *a) 1512 { 1513 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1514 s->base.is_jmp = DISAS_JUMP; 1515 return true; 1516 } 1517 1518 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1519 TCGv_i64 modifier, bool use_key_a) 1520 { 1521 TCGv_i64 truedst; 1522 /* 1523 * Return the branch target for a BRAA/RETA/etc, which is either 1524 * just the destination dst, or that value with the pauth check 1525 * done and the code removed from the high bits. 1526 */ 1527 if (!s->pauth_active) { 1528 return dst; 1529 } 1530 1531 truedst = tcg_temp_new_i64(); 1532 if (use_key_a) { 1533 gen_helper_autia(truedst, cpu_env, dst, modifier); 1534 } else { 1535 gen_helper_autib(truedst, cpu_env, dst, modifier); 1536 } 1537 return truedst; 1538 } 1539 1540 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1541 { 1542 TCGv_i64 dst; 1543 1544 if (!dc_isar_feature(aa64_pauth, s)) { 1545 return false; 1546 } 1547 1548 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_br(s, a->rn); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1556 { 1557 TCGv_i64 dst, lr; 1558 1559 if (!dc_isar_feature(aa64_pauth, s)) { 1560 return false; 1561 } 1562 1563 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1564 lr = cpu_reg(s, 30); 1565 if (dst == lr) { 1566 TCGv_i64 tmp = tcg_temp_new_i64(); 1567 tcg_gen_mov_i64(tmp, dst); 1568 dst = tmp; 1569 } 1570 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1571 gen_a64_set_pc(s, dst); 1572 set_btype_for_blr(s); 1573 s->base.is_jmp = DISAS_JUMP; 1574 return true; 1575 } 1576 1577 static bool trans_RETA(DisasContext *s, arg_reta *a) 1578 { 1579 TCGv_i64 dst; 1580 1581 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1582 gen_a64_set_pc(s, dst); 1583 s->base.is_jmp = DISAS_JUMP; 1584 return true; 1585 } 1586 1587 static bool trans_BRA(DisasContext *s, arg_bra *a) 1588 { 1589 TCGv_i64 dst; 1590 1591 if (!dc_isar_feature(aa64_pauth, s)) { 1592 return false; 1593 } 1594 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1595 gen_a64_set_pc(s, dst); 1596 set_btype_for_br(s, a->rn); 1597 s->base.is_jmp = DISAS_JUMP; 1598 return true; 1599 } 1600 1601 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1602 { 1603 TCGv_i64 dst, lr; 1604 1605 if (!dc_isar_feature(aa64_pauth, s)) { 1606 return false; 1607 } 1608 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1609 lr = cpu_reg(s, 30); 1610 if (dst == lr) { 1611 TCGv_i64 tmp = tcg_temp_new_i64(); 1612 tcg_gen_mov_i64(tmp, dst); 1613 dst = tmp; 1614 } 1615 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1616 gen_a64_set_pc(s, dst); 1617 set_btype_for_blr(s); 1618 s->base.is_jmp = DISAS_JUMP; 1619 return true; 1620 } 1621 1622 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1623 { 1624 TCGv_i64 dst; 1625 1626 if (s->current_el == 0) { 1627 return false; 1628 } 1629 if (s->fgt_eret) { 1630 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1631 return true; 1632 } 1633 dst = tcg_temp_new_i64(); 1634 tcg_gen_ld_i64(dst, cpu_env, 1635 offsetof(CPUARMState, elr_el[s->current_el])); 1636 1637 translator_io_start(&s->base); 1638 1639 gen_helper_exception_return(cpu_env, dst); 1640 /* Must exit loop to check un-masked IRQs */ 1641 s->base.is_jmp = DISAS_EXIT; 1642 return true; 1643 } 1644 1645 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1646 { 1647 TCGv_i64 dst; 1648 1649 if (!dc_isar_feature(aa64_pauth, s)) { 1650 return false; 1651 } 1652 if (s->current_el == 0) { 1653 return false; 1654 } 1655 /* The FGT trap takes precedence over an auth trap. */ 1656 if (s->fgt_eret) { 1657 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1658 return true; 1659 } 1660 dst = tcg_temp_new_i64(); 1661 tcg_gen_ld_i64(dst, cpu_env, 1662 offsetof(CPUARMState, elr_el[s->current_el])); 1663 1664 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(cpu_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1675 { 1676 return true; 1677 } 1678 1679 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_YIELD; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1694 { 1695 s->base.is_jmp = DISAS_WFI; 1696 return true; 1697 } 1698 1699 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1700 { 1701 /* 1702 * When running in MTTCG we don't generate jumps to the yield and 1703 * WFE helpers as it won't affect the scheduling of other vCPUs. 1704 * If we wanted to more completely model WFE/SEV so we don't busy 1705 * spin unnecessarily we would need to do something more involved. 1706 */ 1707 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1708 s->base.is_jmp = DISAS_WFE; 1709 } 1710 return true; 1711 } 1712 1713 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1714 { 1715 if (s->pauth_active) { 1716 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1717 } 1718 return true; 1719 } 1720 1721 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1722 { 1723 if (s->pauth_active) { 1724 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1725 } 1726 return true; 1727 } 1728 1729 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1730 { 1731 if (s->pauth_active) { 1732 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1733 } 1734 return true; 1735 } 1736 1737 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1738 { 1739 if (s->pauth_active) { 1740 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1741 } 1742 return true; 1743 } 1744 1745 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1746 { 1747 if (s->pauth_active) { 1748 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1754 { 1755 /* Without RAS, we must implement this as NOP. */ 1756 if (dc_isar_feature(aa64_ras, s)) { 1757 /* 1758 * QEMU does not have a source of physical SErrors, 1759 * so we are only concerned with virtual SErrors. 1760 * The pseudocode in the ARM for this case is 1761 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1762 * AArch64.vESBOperation(); 1763 * Most of the condition can be evaluated at translation time. 1764 * Test for EL2 present, and defer test for SEL2 to runtime. 1765 */ 1766 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1767 gen_helper_vesb(cpu_env); 1768 } 1769 } 1770 return true; 1771 } 1772 1773 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1774 { 1775 if (s->pauth_active) { 1776 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1777 } 1778 return true; 1779 } 1780 1781 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1782 { 1783 if (s->pauth_active) { 1784 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1785 } 1786 return true; 1787 } 1788 1789 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1790 { 1791 if (s->pauth_active) { 1792 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1793 } 1794 return true; 1795 } 1796 1797 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1798 { 1799 if (s->pauth_active) { 1800 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1801 } 1802 return true; 1803 } 1804 1805 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1806 { 1807 if (s->pauth_active) { 1808 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1809 } 1810 return true; 1811 } 1812 1813 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1814 { 1815 if (s->pauth_active) { 1816 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1817 } 1818 return true; 1819 } 1820 1821 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1822 { 1823 if (s->pauth_active) { 1824 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1825 } 1826 return true; 1827 } 1828 1829 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1830 { 1831 if (s->pauth_active) { 1832 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1833 } 1834 return true; 1835 } 1836 1837 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1838 { 1839 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1840 return true; 1841 } 1842 1843 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1844 { 1845 /* We handle DSB and DMB the same way */ 1846 TCGBar bar; 1847 1848 switch (a->types) { 1849 case 1: /* MBReqTypes_Reads */ 1850 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1851 break; 1852 case 2: /* MBReqTypes_Writes */ 1853 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1854 break; 1855 default: /* MBReqTypes_All */ 1856 bar = TCG_BAR_SC | TCG_MO_ALL; 1857 break; 1858 } 1859 tcg_gen_mb(bar); 1860 return true; 1861 } 1862 1863 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1864 { 1865 /* 1866 * We need to break the TB after this insn to execute 1867 * self-modifying code correctly and also to take 1868 * any pending interrupts immediately. 1869 */ 1870 reset_btype(s); 1871 gen_goto_tb(s, 0, 4); 1872 return true; 1873 } 1874 1875 static bool trans_SB(DisasContext *s, arg_SB *a) 1876 { 1877 if (!dc_isar_feature(aa64_sb, s)) { 1878 return false; 1879 } 1880 /* 1881 * TODO: There is no speculation barrier opcode for TCG; 1882 * MB and end the TB instead. 1883 */ 1884 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1885 gen_goto_tb(s, 0, 4); 1886 return true; 1887 } 1888 1889 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1890 { 1891 if (!dc_isar_feature(aa64_condm_4, s)) { 1892 return false; 1893 } 1894 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1895 return true; 1896 } 1897 1898 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1899 { 1900 TCGv_i32 z; 1901 1902 if (!dc_isar_feature(aa64_condm_5, s)) { 1903 return false; 1904 } 1905 1906 z = tcg_temp_new_i32(); 1907 1908 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1909 1910 /* 1911 * (!C & !Z) << 31 1912 * (!(C | Z)) << 31 1913 * ~((C | Z) << 31) 1914 * ~-(C | Z) 1915 * (C | Z) - 1 1916 */ 1917 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1918 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1919 1920 /* !(Z & C) */ 1921 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1922 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1923 1924 /* (!C & Z) << 31 -> -(Z & ~C) */ 1925 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1926 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1927 1928 /* C | Z */ 1929 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1930 1931 return true; 1932 } 1933 1934 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1935 { 1936 if (!dc_isar_feature(aa64_condm_5, s)) { 1937 return false; 1938 } 1939 1940 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1941 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1942 1943 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1944 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1945 1946 tcg_gen_movi_i32(cpu_NF, 0); 1947 tcg_gen_movi_i32(cpu_VF, 0); 1948 1949 return true; 1950 } 1951 1952 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1953 { 1954 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1955 return false; 1956 } 1957 if (a->imm & 1) { 1958 set_pstate_bits(PSTATE_UAO); 1959 } else { 1960 clear_pstate_bits(PSTATE_UAO); 1961 } 1962 gen_rebuild_hflags(s); 1963 s->base.is_jmp = DISAS_TOO_MANY; 1964 return true; 1965 } 1966 1967 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1968 { 1969 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1970 return false; 1971 } 1972 if (a->imm & 1) { 1973 set_pstate_bits(PSTATE_PAN); 1974 } else { 1975 clear_pstate_bits(PSTATE_PAN); 1976 } 1977 gen_rebuild_hflags(s); 1978 s->base.is_jmp = DISAS_TOO_MANY; 1979 return true; 1980 } 1981 1982 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1983 { 1984 if (s->current_el == 0) { 1985 return false; 1986 } 1987 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1988 s->base.is_jmp = DISAS_TOO_MANY; 1989 return true; 1990 } 1991 1992 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1993 { 1994 if (!dc_isar_feature(aa64_ssbs, s)) { 1995 return false; 1996 } 1997 if (a->imm & 1) { 1998 set_pstate_bits(PSTATE_SSBS); 1999 } else { 2000 clear_pstate_bits(PSTATE_SSBS); 2001 } 2002 /* Don't need to rebuild hflags since SSBS is a nop */ 2003 s->base.is_jmp = DISAS_TOO_MANY; 2004 return true; 2005 } 2006 2007 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2008 { 2009 if (!dc_isar_feature(aa64_dit, s)) { 2010 return false; 2011 } 2012 if (a->imm & 1) { 2013 set_pstate_bits(PSTATE_DIT); 2014 } else { 2015 clear_pstate_bits(PSTATE_DIT); 2016 } 2017 /* There's no need to rebuild hflags because DIT is a nop */ 2018 s->base.is_jmp = DISAS_TOO_MANY; 2019 return true; 2020 } 2021 2022 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2023 { 2024 if (dc_isar_feature(aa64_mte, s)) { 2025 /* Full MTE is enabled -- set the TCO bit as directed. */ 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_TCO); 2028 } else { 2029 clear_pstate_bits(PSTATE_TCO); 2030 } 2031 gen_rebuild_hflags(s); 2032 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2033 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2034 return true; 2035 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2036 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2037 return true; 2038 } else { 2039 /* Insn not present */ 2040 return false; 2041 } 2042 } 2043 2044 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2045 { 2046 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm)); 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2052 { 2053 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm)); 2054 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2055 s->base.is_jmp = DISAS_UPDATE_EXIT; 2056 return true; 2057 } 2058 2059 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2060 { 2061 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2062 return false; 2063 } 2064 if (sme_access_check(s)) { 2065 int old = s->pstate_sm | (s->pstate_za << 1); 2066 int new = a->imm * 3; 2067 2068 if ((old ^ new) & a->mask) { 2069 /* At least one bit changes. */ 2070 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2071 tcg_constant_i32(a->mask)); 2072 s->base.is_jmp = DISAS_TOO_MANY; 2073 } 2074 } 2075 return true; 2076 } 2077 2078 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2079 { 2080 TCGv_i32 tmp = tcg_temp_new_i32(); 2081 TCGv_i32 nzcv = tcg_temp_new_i32(); 2082 2083 /* build bit 31, N */ 2084 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2085 /* build bit 30, Z */ 2086 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2087 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2088 /* build bit 29, C */ 2089 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2090 /* build bit 28, V */ 2091 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2092 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2093 /* generate result */ 2094 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2095 } 2096 2097 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2098 { 2099 TCGv_i32 nzcv = tcg_temp_new_i32(); 2100 2101 /* take NZCV from R[t] */ 2102 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2103 2104 /* bit 31, N */ 2105 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2106 /* bit 30, Z */ 2107 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2108 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2109 /* bit 29, C */ 2110 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2111 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2112 /* bit 28, V */ 2113 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2114 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2115 } 2116 2117 static void gen_sysreg_undef(DisasContext *s, bool isread, 2118 uint8_t op0, uint8_t op1, uint8_t op2, 2119 uint8_t crn, uint8_t crm, uint8_t rt) 2120 { 2121 /* 2122 * Generate code to emit an UNDEF with correct syndrome 2123 * information for a failed system register access. 2124 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2125 * but if FEAT_IDST is implemented then read accesses to registers 2126 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2127 * syndrome. 2128 */ 2129 uint32_t syndrome; 2130 2131 if (isread && dc_isar_feature(aa64_ids, s) && 2132 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2133 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2134 } else { 2135 syndrome = syn_uncategorized(); 2136 } 2137 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2138 } 2139 2140 /* MRS - move from system register 2141 * MSR (register) - move to system register 2142 * SYS 2143 * SYSL 2144 * These are all essentially the same insn in 'read' and 'write' 2145 * versions, with varying op0 fields. 2146 */ 2147 static void handle_sys(DisasContext *s, bool isread, 2148 unsigned int op0, unsigned int op1, unsigned int op2, 2149 unsigned int crn, unsigned int crm, unsigned int rt) 2150 { 2151 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2152 crn, crm, op0, op1, op2); 2153 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2154 bool need_exit_tb = false; 2155 TCGv_ptr tcg_ri = NULL; 2156 TCGv_i64 tcg_rt; 2157 2158 if (!ri) { 2159 /* Unknown register; this might be a guest error or a QEMU 2160 * unimplemented feature. 2161 */ 2162 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2163 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2164 isread ? "read" : "write", op0, op1, crn, crm, op2); 2165 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2166 return; 2167 } 2168 2169 /* Check access permissions */ 2170 if (!cp_access_ok(s->current_el, ri, isread)) { 2171 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2172 return; 2173 } 2174 2175 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2176 /* Emit code to perform further access permissions checks at 2177 * runtime; this may result in an exception. 2178 */ 2179 uint32_t syndrome; 2180 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 gen_a64_update_pc(s, 0); 2183 tcg_ri = tcg_temp_new_ptr(); 2184 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2185 tcg_constant_i32(key), 2186 tcg_constant_i32(syndrome), 2187 tcg_constant_i32(isread)); 2188 } else if (ri->type & ARM_CP_RAISES_EXC) { 2189 /* 2190 * The readfn or writefn might raise an exception; 2191 * synchronize the CPU state in case it does. 2192 */ 2193 gen_a64_update_pc(s, 0); 2194 } 2195 2196 /* Handle special cases first */ 2197 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2198 case 0: 2199 break; 2200 case ARM_CP_NOP: 2201 return; 2202 case ARM_CP_NZCV: 2203 tcg_rt = cpu_reg(s, rt); 2204 if (isread) { 2205 gen_get_nzcv(tcg_rt); 2206 } else { 2207 gen_set_nzcv(tcg_rt); 2208 } 2209 return; 2210 case ARM_CP_CURRENTEL: 2211 /* Reads as current EL value from pstate, which is 2212 * guaranteed to be constant by the tb flags. 2213 */ 2214 tcg_rt = cpu_reg(s, rt); 2215 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2216 return; 2217 case ARM_CP_DC_ZVA: 2218 /* Writes clear the aligned block of memory which rt points into. */ 2219 if (s->mte_active[0]) { 2220 int desc = 0; 2221 2222 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2223 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2224 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2225 2226 tcg_rt = tcg_temp_new_i64(); 2227 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2228 tcg_constant_i32(desc), cpu_reg(s, rt)); 2229 } else { 2230 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2231 } 2232 gen_helper_dc_zva(cpu_env, tcg_rt); 2233 return; 2234 case ARM_CP_DC_GVA: 2235 { 2236 TCGv_i64 clean_addr, tag; 2237 2238 /* 2239 * DC_GVA, like DC_ZVA, requires that we supply the original 2240 * pointer for an invalid page. Probe that address first. 2241 */ 2242 tcg_rt = cpu_reg(s, rt); 2243 clean_addr = clean_data_tbi(s, tcg_rt); 2244 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2245 2246 if (s->ata) { 2247 /* Extract the tag from the register to match STZGM. */ 2248 tag = tcg_temp_new_i64(); 2249 tcg_gen_shri_i64(tag, tcg_rt, 56); 2250 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2251 } 2252 } 2253 return; 2254 case ARM_CP_DC_GZVA: 2255 { 2256 TCGv_i64 clean_addr, tag; 2257 2258 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2259 tcg_rt = cpu_reg(s, rt); 2260 clean_addr = clean_data_tbi(s, tcg_rt); 2261 gen_helper_dc_zva(cpu_env, clean_addr); 2262 2263 if (s->ata) { 2264 /* Extract the tag from the register to match STZGM. */ 2265 tag = tcg_temp_new_i64(); 2266 tcg_gen_shri_i64(tag, tcg_rt, 56); 2267 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2268 } 2269 } 2270 return; 2271 default: 2272 g_assert_not_reached(); 2273 } 2274 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2275 return; 2276 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2277 return; 2278 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2279 return; 2280 } 2281 2282 if (ri->type & ARM_CP_IO) { 2283 /* I/O operations must end the TB here (whether read or write) */ 2284 need_exit_tb = translator_io_start(&s->base); 2285 } 2286 2287 tcg_rt = cpu_reg(s, rt); 2288 2289 if (isread) { 2290 if (ri->type & ARM_CP_CONST) { 2291 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2292 } else if (ri->readfn) { 2293 if (!tcg_ri) { 2294 tcg_ri = gen_lookup_cp_reg(key); 2295 } 2296 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2297 } else { 2298 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2299 } 2300 } else { 2301 if (ri->type & ARM_CP_CONST) { 2302 /* If not forbidden by access permissions, treat as WI */ 2303 return; 2304 } else if (ri->writefn) { 2305 if (!tcg_ri) { 2306 tcg_ri = gen_lookup_cp_reg(key); 2307 } 2308 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2309 } else { 2310 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2311 } 2312 } 2313 2314 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2315 /* 2316 * A write to any coprocessor register that ends a TB 2317 * must rebuild the hflags for the next TB. 2318 */ 2319 gen_rebuild_hflags(s); 2320 /* 2321 * We default to ending the TB on a coprocessor register write, 2322 * but allow this to be suppressed by the register definition 2323 * (usually only necessary to work around guest bugs). 2324 */ 2325 need_exit_tb = true; 2326 } 2327 if (need_exit_tb) { 2328 s->base.is_jmp = DISAS_UPDATE_EXIT; 2329 } 2330 } 2331 2332 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2333 { 2334 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2335 return true; 2336 } 2337 2338 static bool trans_SVC(DisasContext *s, arg_i *a) 2339 { 2340 /* 2341 * For SVC, HVC and SMC we advance the single-step state 2342 * machine before taking the exception. This is architecturally 2343 * mandated, to ensure that single-stepping a system call 2344 * instruction works properly. 2345 */ 2346 uint32_t syndrome = syn_aa64_svc(a->imm); 2347 if (s->fgt_svc) { 2348 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2349 return true; 2350 } 2351 gen_ss_advance(s); 2352 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2353 return true; 2354 } 2355 2356 static bool trans_HVC(DisasContext *s, arg_i *a) 2357 { 2358 if (s->current_el == 0) { 2359 unallocated_encoding(s); 2360 return true; 2361 } 2362 /* 2363 * The pre HVC helper handles cases when HVC gets trapped 2364 * as an undefined insn by runtime configuration. 2365 */ 2366 gen_a64_update_pc(s, 0); 2367 gen_helper_pre_hvc(cpu_env); 2368 /* Architecture requires ss advance before we do the actual work */ 2369 gen_ss_advance(s); 2370 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2); 2371 return true; 2372 } 2373 2374 static bool trans_SMC(DisasContext *s, arg_i *a) 2375 { 2376 if (s->current_el == 0) { 2377 unallocated_encoding(s); 2378 return true; 2379 } 2380 gen_a64_update_pc(s, 0); 2381 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2382 /* Architecture requires ss advance before we do the actual work */ 2383 gen_ss_advance(s); 2384 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2385 return true; 2386 } 2387 2388 static bool trans_BRK(DisasContext *s, arg_i *a) 2389 { 2390 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2391 return true; 2392 } 2393 2394 static bool trans_HLT(DisasContext *s, arg_i *a) 2395 { 2396 /* 2397 * HLT. This has two purposes. 2398 * Architecturally, it is an external halting debug instruction. 2399 * Since QEMU doesn't implement external debug, we treat this as 2400 * it is required for halting debug disabled: it will UNDEF. 2401 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2402 */ 2403 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2404 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2405 } else { 2406 unallocated_encoding(s); 2407 } 2408 return true; 2409 } 2410 2411 /* 2412 * Load/Store exclusive instructions are implemented by remembering 2413 * the value/address loaded, and seeing if these are the same 2414 * when the store is performed. This is not actually the architecturally 2415 * mandated semantics, but it works for typical guest code sequences 2416 * and avoids having to monitor regular stores. 2417 * 2418 * The store exclusive uses the atomic cmpxchg primitives to avoid 2419 * races in multi-threaded linux-user and when MTTCG softmmu is 2420 * enabled. 2421 */ 2422 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2423 int size, bool is_pair) 2424 { 2425 int idx = get_mem_index(s); 2426 TCGv_i64 dirty_addr, clean_addr; 2427 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2428 2429 s->is_ldex = true; 2430 dirty_addr = cpu_reg_sp(s, rn); 2431 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2432 2433 g_assert(size <= 3); 2434 if (is_pair) { 2435 g_assert(size >= 2); 2436 if (size == 2) { 2437 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2438 if (s->be_data == MO_LE) { 2439 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2440 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2441 } else { 2442 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2443 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2444 } 2445 } else { 2446 TCGv_i128 t16 = tcg_temp_new_i128(); 2447 2448 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2449 2450 if (s->be_data == MO_LE) { 2451 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2452 cpu_exclusive_high, t16); 2453 } else { 2454 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2455 cpu_exclusive_val, t16); 2456 } 2457 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2458 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2459 } 2460 } else { 2461 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2462 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2463 } 2464 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2465 } 2466 2467 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2468 int rn, int size, int is_pair) 2469 { 2470 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2471 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2472 * [addr] = {Rt}; 2473 * if (is_pair) { 2474 * [addr + datasize] = {Rt2}; 2475 * } 2476 * {Rd} = 0; 2477 * } else { 2478 * {Rd} = 1; 2479 * } 2480 * env->exclusive_addr = -1; 2481 */ 2482 TCGLabel *fail_label = gen_new_label(); 2483 TCGLabel *done_label = gen_new_label(); 2484 TCGv_i64 tmp, clean_addr; 2485 MemOp memop; 2486 2487 /* 2488 * FIXME: We are out of spec here. We have recorded only the address 2489 * from load_exclusive, not the entire range, and we assume that the 2490 * size of the access on both sides match. The architecture allows the 2491 * store to be smaller than the load, so long as the stored bytes are 2492 * within the range recorded by the load. 2493 */ 2494 2495 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2496 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2497 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2498 2499 /* 2500 * The write, and any associated faults, only happen if the virtual 2501 * and physical addresses pass the exclusive monitor check. These 2502 * faults are exceedingly unlikely, because normally the guest uses 2503 * the exact same address register for the load_exclusive, and we 2504 * would have recognized these faults there. 2505 * 2506 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2507 * unaligned 4-byte write within the range of an aligned 8-byte load. 2508 * With LSE2, the store would need to cross a 16-byte boundary when the 2509 * load did not, which would mean the store is outside the range 2510 * recorded for the monitor, which would have failed a corrected monitor 2511 * check above. For now, we assume no size change and retain the 2512 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2513 * 2514 * It is possible to trigger an MTE fault, by performing the load with 2515 * a virtual address with a valid tag and performing the store with the 2516 * same virtual address and a different invalid tag. 2517 */ 2518 memop = size + is_pair; 2519 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2520 memop |= MO_ALIGN; 2521 } 2522 memop = finalize_memop(s, memop); 2523 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2524 2525 tmp = tcg_temp_new_i64(); 2526 if (is_pair) { 2527 if (size == 2) { 2528 if (s->be_data == MO_LE) { 2529 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2530 } else { 2531 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2532 } 2533 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2534 cpu_exclusive_val, tmp, 2535 get_mem_index(s), memop); 2536 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2537 } else { 2538 TCGv_i128 t16 = tcg_temp_new_i128(); 2539 TCGv_i128 c16 = tcg_temp_new_i128(); 2540 TCGv_i64 a, b; 2541 2542 if (s->be_data == MO_LE) { 2543 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2544 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2545 cpu_exclusive_high); 2546 } else { 2547 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2548 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2549 cpu_exclusive_val); 2550 } 2551 2552 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2553 get_mem_index(s), memop); 2554 2555 a = tcg_temp_new_i64(); 2556 b = tcg_temp_new_i64(); 2557 if (s->be_data == MO_LE) { 2558 tcg_gen_extr_i128_i64(a, b, t16); 2559 } else { 2560 tcg_gen_extr_i128_i64(b, a, t16); 2561 } 2562 2563 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2564 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2565 tcg_gen_or_i64(tmp, a, b); 2566 2567 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2568 } 2569 } else { 2570 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2571 cpu_reg(s, rt), get_mem_index(s), memop); 2572 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2573 } 2574 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2575 tcg_gen_br(done_label); 2576 2577 gen_set_label(fail_label); 2578 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2579 gen_set_label(done_label); 2580 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2581 } 2582 2583 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2584 int rn, int size) 2585 { 2586 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2587 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2588 int memidx = get_mem_index(s); 2589 TCGv_i64 clean_addr; 2590 MemOp memop; 2591 2592 if (rn == 31) { 2593 gen_check_sp_alignment(s); 2594 } 2595 memop = check_atomic_align(s, rn, size); 2596 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2597 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2598 memidx, memop); 2599 } 2600 2601 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2602 int rn, int size) 2603 { 2604 TCGv_i64 s1 = cpu_reg(s, rs); 2605 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2606 TCGv_i64 t1 = cpu_reg(s, rt); 2607 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2608 TCGv_i64 clean_addr; 2609 int memidx = get_mem_index(s); 2610 MemOp memop; 2611 2612 if (rn == 31) { 2613 gen_check_sp_alignment(s); 2614 } 2615 2616 /* This is a single atomic access, despite the "pair". */ 2617 memop = check_atomic_align(s, rn, size + 1); 2618 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2619 2620 if (size == 2) { 2621 TCGv_i64 cmp = tcg_temp_new_i64(); 2622 TCGv_i64 val = tcg_temp_new_i64(); 2623 2624 if (s->be_data == MO_LE) { 2625 tcg_gen_concat32_i64(val, t1, t2); 2626 tcg_gen_concat32_i64(cmp, s1, s2); 2627 } else { 2628 tcg_gen_concat32_i64(val, t2, t1); 2629 tcg_gen_concat32_i64(cmp, s2, s1); 2630 } 2631 2632 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2633 2634 if (s->be_data == MO_LE) { 2635 tcg_gen_extr32_i64(s1, s2, cmp); 2636 } else { 2637 tcg_gen_extr32_i64(s2, s1, cmp); 2638 } 2639 } else { 2640 TCGv_i128 cmp = tcg_temp_new_i128(); 2641 TCGv_i128 val = tcg_temp_new_i128(); 2642 2643 if (s->be_data == MO_LE) { 2644 tcg_gen_concat_i64_i128(val, t1, t2); 2645 tcg_gen_concat_i64_i128(cmp, s1, s2); 2646 } else { 2647 tcg_gen_concat_i64_i128(val, t2, t1); 2648 tcg_gen_concat_i64_i128(cmp, s2, s1); 2649 } 2650 2651 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2652 2653 if (s->be_data == MO_LE) { 2654 tcg_gen_extr_i128_i64(s1, s2, cmp); 2655 } else { 2656 tcg_gen_extr_i128_i64(s2, s1, cmp); 2657 } 2658 } 2659 } 2660 2661 /* 2662 * Compute the ISS.SF bit for syndrome information if an exception 2663 * is taken on a load or store. This indicates whether the instruction 2664 * is accessing a 32-bit or 64-bit register. This logic is derived 2665 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2666 */ 2667 static bool ldst_iss_sf(int size, bool sign, bool ext) 2668 { 2669 2670 if (sign) { 2671 /* 2672 * Signed loads are 64 bit results if we are not going to 2673 * do a zero-extend from 32 to 64 after the load. 2674 * (For a store, sign and ext are always false.) 2675 */ 2676 return !ext; 2677 } else { 2678 /* Unsigned loads/stores work at the specified size */ 2679 return size == MO_64; 2680 } 2681 } 2682 2683 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2684 { 2685 if (a->rn == 31) { 2686 gen_check_sp_alignment(s); 2687 } 2688 if (a->lasr) { 2689 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2690 } 2691 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2692 return true; 2693 } 2694 2695 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2696 { 2697 if (a->rn == 31) { 2698 gen_check_sp_alignment(s); 2699 } 2700 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2701 if (a->lasr) { 2702 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2703 } 2704 return true; 2705 } 2706 2707 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2708 { 2709 TCGv_i64 clean_addr; 2710 MemOp memop; 2711 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2712 2713 /* 2714 * StoreLORelease is the same as Store-Release for QEMU, but 2715 * needs the feature-test. 2716 */ 2717 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2718 return false; 2719 } 2720 /* Generate ISS for non-exclusive accesses including LASR. */ 2721 if (a->rn == 31) { 2722 gen_check_sp_alignment(s); 2723 } 2724 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2725 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2726 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2727 true, a->rn != 31, memop); 2728 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2729 iss_sf, a->lasr); 2730 return true; 2731 } 2732 2733 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2734 { 2735 TCGv_i64 clean_addr; 2736 MemOp memop; 2737 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2738 2739 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2740 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2741 return false; 2742 } 2743 /* Generate ISS for non-exclusive accesses including LASR. */ 2744 if (a->rn == 31) { 2745 gen_check_sp_alignment(s); 2746 } 2747 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2748 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2749 false, a->rn != 31, memop); 2750 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2751 a->rt, iss_sf, a->lasr); 2752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2753 return true; 2754 } 2755 2756 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2757 { 2758 if (a->rn == 31) { 2759 gen_check_sp_alignment(s); 2760 } 2761 if (a->lasr) { 2762 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2763 } 2764 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2765 return true; 2766 } 2767 2768 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2769 { 2770 if (a->rn == 31) { 2771 gen_check_sp_alignment(s); 2772 } 2773 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2774 if (a->lasr) { 2775 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2776 } 2777 return true; 2778 } 2779 2780 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2781 { 2782 if (!dc_isar_feature(aa64_atomics, s)) { 2783 return false; 2784 } 2785 if (((a->rt | a->rs) & 1) != 0) { 2786 return false; 2787 } 2788 2789 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2790 return true; 2791 } 2792 2793 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2794 { 2795 if (!dc_isar_feature(aa64_atomics, s)) { 2796 return false; 2797 } 2798 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2799 return true; 2800 } 2801 2802 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2803 { 2804 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2805 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2806 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2807 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2808 2809 gen_pc_plus_diff(s, clean_addr, a->imm); 2810 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2811 false, true, a->rt, iss_sf, false); 2812 return true; 2813 } 2814 2815 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2816 { 2817 /* Load register (literal), vector version */ 2818 TCGv_i64 clean_addr; 2819 MemOp memop; 2820 2821 if (!fp_access_check(s)) { 2822 return true; 2823 } 2824 memop = finalize_memop_asimd(s, a->sz); 2825 clean_addr = tcg_temp_new_i64(); 2826 gen_pc_plus_diff(s, clean_addr, a->imm); 2827 do_fp_ld(s, a->rt, clean_addr, memop); 2828 return true; 2829 } 2830 2831 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2832 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2833 uint64_t offset, bool is_store, MemOp mop) 2834 { 2835 if (a->rn == 31) { 2836 gen_check_sp_alignment(s); 2837 } 2838 2839 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2840 if (!a->p) { 2841 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2842 } 2843 2844 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2845 (a->w || a->rn != 31), 2 << a->sz, mop); 2846 } 2847 2848 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2849 TCGv_i64 dirty_addr, uint64_t offset) 2850 { 2851 if (a->w) { 2852 if (a->p) { 2853 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2854 } 2855 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2856 } 2857 } 2858 2859 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2860 { 2861 uint64_t offset = a->imm << a->sz; 2862 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2863 MemOp mop = finalize_memop(s, a->sz); 2864 2865 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2866 tcg_rt = cpu_reg(s, a->rt); 2867 tcg_rt2 = cpu_reg(s, a->rt2); 2868 /* 2869 * We built mop above for the single logical access -- rebuild it 2870 * now for the paired operation. 2871 * 2872 * With LSE2, non-sign-extending pairs are treated atomically if 2873 * aligned, and if unaligned one of the pair will be completely 2874 * within a 16-byte block and that element will be atomic. 2875 * Otherwise each element is separately atomic. 2876 * In all cases, issue one operation with the correct atomicity. 2877 */ 2878 mop = a->sz + 1; 2879 if (s->align_mem) { 2880 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2881 } 2882 mop = finalize_memop_pair(s, mop); 2883 if (a->sz == 2) { 2884 TCGv_i64 tmp = tcg_temp_new_i64(); 2885 2886 if (s->be_data == MO_LE) { 2887 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2888 } else { 2889 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2890 } 2891 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2892 } else { 2893 TCGv_i128 tmp = tcg_temp_new_i128(); 2894 2895 if (s->be_data == MO_LE) { 2896 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 2897 } else { 2898 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 2899 } 2900 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 2901 } 2902 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2903 return true; 2904 } 2905 2906 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 2907 { 2908 uint64_t offset = a->imm << a->sz; 2909 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2910 MemOp mop = finalize_memop(s, a->sz); 2911 2912 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2913 tcg_rt = cpu_reg(s, a->rt); 2914 tcg_rt2 = cpu_reg(s, a->rt2); 2915 2916 /* 2917 * We built mop above for the single logical access -- rebuild it 2918 * now for the paired operation. 2919 * 2920 * With LSE2, non-sign-extending pairs are treated atomically if 2921 * aligned, and if unaligned one of the pair will be completely 2922 * within a 16-byte block and that element will be atomic. 2923 * Otherwise each element is separately atomic. 2924 * In all cases, issue one operation with the correct atomicity. 2925 * 2926 * This treats sign-extending loads like zero-extending loads, 2927 * since that reuses the most code below. 2928 */ 2929 mop = a->sz + 1; 2930 if (s->align_mem) { 2931 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2932 } 2933 mop = finalize_memop_pair(s, mop); 2934 if (a->sz == 2) { 2935 int o2 = s->be_data == MO_LE ? 32 : 0; 2936 int o1 = o2 ^ 32; 2937 2938 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2939 if (a->sign) { 2940 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2941 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2942 } else { 2943 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2944 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2945 } 2946 } else { 2947 TCGv_i128 tmp = tcg_temp_new_i128(); 2948 2949 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2950 if (s->be_data == MO_LE) { 2951 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2952 } else { 2953 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2954 } 2955 } 2956 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2957 return true; 2958 } 2959 2960 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 2961 { 2962 uint64_t offset = a->imm << a->sz; 2963 TCGv_i64 clean_addr, dirty_addr; 2964 MemOp mop; 2965 2966 if (!fp_access_check(s)) { 2967 return true; 2968 } 2969 2970 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2971 mop = finalize_memop_asimd(s, a->sz); 2972 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2973 do_fp_st(s, a->rt, clean_addr, mop); 2974 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2975 do_fp_st(s, a->rt2, clean_addr, mop); 2976 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2977 return true; 2978 } 2979 2980 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 2981 { 2982 uint64_t offset = a->imm << a->sz; 2983 TCGv_i64 clean_addr, dirty_addr; 2984 MemOp mop; 2985 2986 if (!fp_access_check(s)) { 2987 return true; 2988 } 2989 2990 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2991 mop = finalize_memop_asimd(s, a->sz); 2992 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2993 do_fp_ld(s, a->rt, clean_addr, mop); 2994 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2995 do_fp_ld(s, a->rt2, clean_addr, mop); 2996 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2997 return true; 2998 } 2999 3000 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3001 { 3002 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3003 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3004 MemOp mop; 3005 TCGv_i128 tmp; 3006 3007 /* STGP only comes in one size. */ 3008 tcg_debug_assert(a->sz == MO_64); 3009 3010 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3011 return false; 3012 } 3013 3014 if (a->rn == 31) { 3015 gen_check_sp_alignment(s); 3016 } 3017 3018 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3019 if (!a->p) { 3020 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3021 } 3022 3023 if (!s->ata) { 3024 /* 3025 * TODO: We could rely on the stores below, at least for 3026 * system mode, if we arrange to add MO_ALIGN_16. 3027 */ 3028 gen_helper_stg_stub(cpu_env, dirty_addr); 3029 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3030 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3031 } else { 3032 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3033 } 3034 3035 mop = finalize_memop(s, MO_64); 3036 clean_addr = gen_mte_checkN(s, dirty_addr, true, false, 2 << MO_64, mop); 3037 3038 tcg_rt = cpu_reg(s, a->rt); 3039 tcg_rt2 = cpu_reg(s, a->rt2); 3040 3041 /* 3042 * STGP is defined as two 8-byte memory operations and one tag operation. 3043 * We implement it as one single 16-byte memory operation for convenience. 3044 * Rebuild mop as for STP. 3045 * TODO: The atomicity with LSE2 is stronger than required. 3046 * Need a form of MO_ATOM_WITHIN16_PAIR that never requires 3047 * 16-byte atomicity. 3048 */ 3049 mop = MO_128; 3050 if (s->align_mem) { 3051 mop |= MO_ALIGN_8; 3052 } 3053 mop = finalize_memop_pair(s, mop); 3054 3055 tmp = tcg_temp_new_i128(); 3056 if (s->be_data == MO_LE) { 3057 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3058 } else { 3059 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3060 } 3061 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3062 3063 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3064 return true; 3065 } 3066 3067 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3068 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3069 uint64_t offset, bool is_store, MemOp mop) 3070 { 3071 int memidx; 3072 3073 if (a->rn == 31) { 3074 gen_check_sp_alignment(s); 3075 } 3076 3077 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3078 if (!a->p) { 3079 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3080 } 3081 memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3082 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3083 a->w || a->rn != 31, 3084 mop, a->unpriv, memidx); 3085 } 3086 3087 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3088 TCGv_i64 dirty_addr, uint64_t offset) 3089 { 3090 if (a->w) { 3091 if (a->p) { 3092 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3093 } 3094 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3095 } 3096 } 3097 3098 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3099 { 3100 bool iss_sf, iss_valid = !a->w; 3101 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3102 int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3103 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3104 3105 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3106 3107 tcg_rt = cpu_reg(s, a->rt); 3108 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3109 3110 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3111 iss_valid, a->rt, iss_sf, false); 3112 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3113 return true; 3114 } 3115 3116 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3117 { 3118 bool iss_sf, iss_valid = !a->w; 3119 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3120 int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3121 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3122 3123 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3124 3125 tcg_rt = cpu_reg(s, a->rt); 3126 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3127 3128 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3129 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3130 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3131 return true; 3132 } 3133 3134 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3135 { 3136 TCGv_i64 clean_addr, dirty_addr; 3137 MemOp mop; 3138 3139 if (!fp_access_check(s)) { 3140 return true; 3141 } 3142 mop = finalize_memop_asimd(s, a->sz); 3143 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3144 do_fp_st(s, a->rt, clean_addr, mop); 3145 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3146 return true; 3147 } 3148 3149 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3150 { 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 mop = finalize_memop_asimd(s, a->sz); 3158 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3159 do_fp_ld(s, a->rt, clean_addr, mop); 3160 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3161 return true; 3162 } 3163 3164 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3165 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3166 bool is_store, MemOp memop) 3167 { 3168 TCGv_i64 tcg_rm; 3169 3170 if (a->rn == 31) { 3171 gen_check_sp_alignment(s); 3172 } 3173 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3174 3175 tcg_rm = read_cpu_reg(s, a->rm, 1); 3176 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3177 3178 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3179 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3180 } 3181 3182 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3183 { 3184 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3185 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3186 MemOp memop; 3187 3188 if (extract32(a->opt, 1, 1) == 0) { 3189 return false; 3190 } 3191 3192 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3193 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3194 tcg_rt = cpu_reg(s, a->rt); 3195 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3196 a->ext, true, a->rt, iss_sf, false); 3197 return true; 3198 } 3199 3200 static bool trans_STR(DisasContext *s, arg_ldst *a) 3201 { 3202 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3203 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3204 MemOp memop; 3205 3206 if (extract32(a->opt, 1, 1) == 0) { 3207 return false; 3208 } 3209 3210 memop = finalize_memop(s, a->sz); 3211 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3214 return true; 3215 } 3216 3217 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3218 { 3219 TCGv_i64 clean_addr, dirty_addr; 3220 MemOp memop; 3221 3222 if (extract32(a->opt, 1, 1) == 0) { 3223 return false; 3224 } 3225 3226 if (!fp_access_check(s)) { 3227 return true; 3228 } 3229 3230 memop = finalize_memop_asimd(s, a->sz); 3231 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3232 do_fp_ld(s, a->rt, clean_addr, memop); 3233 return true; 3234 } 3235 3236 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3237 { 3238 TCGv_i64 clean_addr, dirty_addr; 3239 MemOp memop; 3240 3241 if (extract32(a->opt, 1, 1) == 0) { 3242 return false; 3243 } 3244 3245 if (!fp_access_check(s)) { 3246 return true; 3247 } 3248 3249 memop = finalize_memop_asimd(s, a->sz); 3250 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3251 do_fp_st(s, a->rt, clean_addr, memop); 3252 return true; 3253 } 3254 3255 3256 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3257 int sign, bool invert) 3258 { 3259 MemOp mop = a->sz | sign; 3260 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3261 3262 if (a->rn == 31) { 3263 gen_check_sp_alignment(s); 3264 } 3265 mop = check_atomic_align(s, a->rn, mop); 3266 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3267 a->rn != 31, mop); 3268 tcg_rs = read_cpu_reg(s, a->rs, true); 3269 tcg_rt = cpu_reg(s, a->rt); 3270 if (invert) { 3271 tcg_gen_not_i64(tcg_rs, tcg_rs); 3272 } 3273 /* 3274 * The tcg atomic primitives are all full barriers. Therefore we 3275 * can ignore the Acquire and Release bits of this instruction. 3276 */ 3277 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3278 3279 if (mop & MO_SIGN) { 3280 switch (a->sz) { 3281 case MO_8: 3282 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3283 break; 3284 case MO_16: 3285 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3286 break; 3287 case MO_32: 3288 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3289 break; 3290 case MO_64: 3291 break; 3292 default: 3293 g_assert_not_reached(); 3294 } 3295 } 3296 return true; 3297 } 3298 3299 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3300 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3301 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3302 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3303 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3304 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3305 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3306 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3307 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3308 3309 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3310 { 3311 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3312 TCGv_i64 clean_addr; 3313 MemOp mop; 3314 3315 if (!dc_isar_feature(aa64_atomics, s) || 3316 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3317 return false; 3318 } 3319 if (a->rn == 31) { 3320 gen_check_sp_alignment(s); 3321 } 3322 mop = check_atomic_align(s, a->rn, a->sz); 3323 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3324 a->rn != 31, mop); 3325 /* 3326 * LDAPR* are a special case because they are a simple load, not a 3327 * fetch-and-do-something op. 3328 * The architectural consistency requirements here are weaker than 3329 * full load-acquire (we only need "load-acquire processor consistent"), 3330 * but we choose to implement them as full LDAQ. 3331 */ 3332 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3333 true, a->rt, iss_sf, true); 3334 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3335 return true; 3336 } 3337 3338 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3339 { 3340 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3341 MemOp memop; 3342 3343 /* Load with pointer authentication */ 3344 if (!dc_isar_feature(aa64_pauth, s)) { 3345 return false; 3346 } 3347 3348 if (a->rn == 31) { 3349 gen_check_sp_alignment(s); 3350 } 3351 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3352 3353 if (s->pauth_active) { 3354 if (!a->m) { 3355 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3356 tcg_constant_i64(0)); 3357 } else { 3358 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3359 tcg_constant_i64(0)); 3360 } 3361 } 3362 3363 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3364 3365 memop = finalize_memop(s, MO_64); 3366 3367 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3368 clean_addr = gen_mte_check1(s, dirty_addr, false, 3369 a->w || a->rn != 31, memop); 3370 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 /* extend */ false, /* iss_valid */ !a->w, 3374 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3375 3376 if (a->w) { 3377 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3378 } 3379 return true; 3380 } 3381 3382 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3383 { 3384 TCGv_i64 clean_addr, dirty_addr; 3385 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3386 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3387 3388 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3389 return false; 3390 } 3391 3392 if (a->rn == 31) { 3393 gen_check_sp_alignment(s); 3394 } 3395 3396 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3397 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3398 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3399 clean_addr = clean_data_tbi(s, dirty_addr); 3400 3401 /* 3402 * Load-AcquirePC semantics; we implement as the slightly more 3403 * restrictive Load-Acquire. 3404 */ 3405 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3406 a->rt, iss_sf, true); 3407 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3408 return true; 3409 } 3410 3411 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3412 { 3413 TCGv_i64 clean_addr, dirty_addr; 3414 MemOp mop = a->sz; 3415 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3416 3417 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3418 return false; 3419 } 3420 3421 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3422 3423 if (a->rn == 31) { 3424 gen_check_sp_alignment(s); 3425 } 3426 3427 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3428 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3429 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3430 clean_addr = clean_data_tbi(s, dirty_addr); 3431 3432 /* Store-Release semantics */ 3433 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3434 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3435 return true; 3436 } 3437 3438 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3439 { 3440 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3441 MemOp endian, align, mop; 3442 3443 int total; /* total bytes */ 3444 int elements; /* elements per vector */ 3445 int r; 3446 int size = a->sz; 3447 3448 if (!a->p && a->rm != 0) { 3449 /* For non-postindexed accesses the Rm field must be 0 */ 3450 return false; 3451 } 3452 if (size == 3 && !a->q && a->selem != 1) { 3453 return false; 3454 } 3455 if (!fp_access_check(s)) { 3456 return true; 3457 } 3458 3459 if (a->rn == 31) { 3460 gen_check_sp_alignment(s); 3461 } 3462 3463 /* For our purposes, bytes are always little-endian. */ 3464 endian = s->be_data; 3465 if (size == 0) { 3466 endian = MO_LE; 3467 } 3468 3469 total = a->rpt * a->selem * (a->q ? 16 : 8); 3470 tcg_rn = cpu_reg_sp(s, a->rn); 3471 3472 /* 3473 * Issue the MTE check vs the logical repeat count, before we 3474 * promote consecutive little-endian elements below. 3475 */ 3476 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3477 finalize_memop_asimd(s, size)); 3478 3479 /* 3480 * Consecutive little-endian elements from a single register 3481 * can be promoted to a larger little-endian operation. 3482 */ 3483 align = MO_ALIGN; 3484 if (a->selem == 1 && endian == MO_LE) { 3485 align = pow2_align(size); 3486 size = 3; 3487 } 3488 if (!s->align_mem) { 3489 align = 0; 3490 } 3491 mop = endian | size | align; 3492 3493 elements = (a->q ? 16 : 8) >> size; 3494 tcg_ebytes = tcg_constant_i64(1 << size); 3495 for (r = 0; r < a->rpt; r++) { 3496 int e; 3497 for (e = 0; e < elements; e++) { 3498 int xs; 3499 for (xs = 0; xs < a->selem; xs++) { 3500 int tt = (a->rt + r + xs) % 32; 3501 do_vec_ld(s, tt, e, clean_addr, mop); 3502 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3503 } 3504 } 3505 } 3506 3507 /* 3508 * For non-quad operations, setting a slice of the low 64 bits of 3509 * the register clears the high 64 bits (in the ARM ARM pseudocode 3510 * this is implicit in the fact that 'rval' is a 64 bit wide 3511 * variable). For quad operations, we might still need to zero 3512 * the high bits of SVE. 3513 */ 3514 for (r = 0; r < a->rpt * a->selem; r++) { 3515 int tt = (a->rt + r) % 32; 3516 clear_vec_high(s, a->q, tt); 3517 } 3518 3519 if (a->p) { 3520 if (a->rm == 31) { 3521 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3522 } else { 3523 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3524 } 3525 } 3526 return true; 3527 } 3528 3529 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3530 { 3531 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3532 MemOp endian, align, mop; 3533 3534 int total; /* total bytes */ 3535 int elements; /* elements per vector */ 3536 int r; 3537 int size = a->sz; 3538 3539 if (!a->p && a->rm != 0) { 3540 /* For non-postindexed accesses the Rm field must be 0 */ 3541 return false; 3542 } 3543 if (size == 3 && !a->q && a->selem != 1) { 3544 return false; 3545 } 3546 if (!fp_access_check(s)) { 3547 return true; 3548 } 3549 3550 if (a->rn == 31) { 3551 gen_check_sp_alignment(s); 3552 } 3553 3554 /* For our purposes, bytes are always little-endian. */ 3555 endian = s->be_data; 3556 if (size == 0) { 3557 endian = MO_LE; 3558 } 3559 3560 total = a->rpt * a->selem * (a->q ? 16 : 8); 3561 tcg_rn = cpu_reg_sp(s, a->rn); 3562 3563 /* 3564 * Issue the MTE check vs the logical repeat count, before we 3565 * promote consecutive little-endian elements below. 3566 */ 3567 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3568 finalize_memop_asimd(s, size)); 3569 3570 /* 3571 * Consecutive little-endian elements from a single register 3572 * can be promoted to a larger little-endian operation. 3573 */ 3574 align = MO_ALIGN; 3575 if (a->selem == 1 && endian == MO_LE) { 3576 align = pow2_align(size); 3577 size = 3; 3578 } 3579 if (!s->align_mem) { 3580 align = 0; 3581 } 3582 mop = endian | size | align; 3583 3584 elements = (a->q ? 16 : 8) >> size; 3585 tcg_ebytes = tcg_constant_i64(1 << size); 3586 for (r = 0; r < a->rpt; r++) { 3587 int e; 3588 for (e = 0; e < elements; e++) { 3589 int xs; 3590 for (xs = 0; xs < a->selem; xs++) { 3591 int tt = (a->rt + r + xs) % 32; 3592 do_vec_st(s, tt, e, clean_addr, mop); 3593 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3594 } 3595 } 3596 } 3597 3598 if (a->p) { 3599 if (a->rm == 31) { 3600 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3601 } else { 3602 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3603 } 3604 } 3605 return true; 3606 } 3607 3608 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3609 { 3610 int xs, total, rt; 3611 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3612 MemOp mop; 3613 3614 if (!a->p && a->rm != 0) { 3615 return false; 3616 } 3617 if (!fp_access_check(s)) { 3618 return true; 3619 } 3620 3621 if (a->rn == 31) { 3622 gen_check_sp_alignment(s); 3623 } 3624 3625 total = a->selem << a->scale; 3626 tcg_rn = cpu_reg_sp(s, a->rn); 3627 3628 mop = finalize_memop_asimd(s, a->scale); 3629 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3630 total, mop); 3631 3632 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3633 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3634 do_vec_st(s, rt, a->index, clean_addr, mop); 3635 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3636 } 3637 3638 if (a->p) { 3639 if (a->rm == 31) { 3640 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3641 } else { 3642 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3643 } 3644 } 3645 return true; 3646 } 3647 3648 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3649 { 3650 int xs, total, rt; 3651 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3652 MemOp mop; 3653 3654 if (!a->p && a->rm != 0) { 3655 return false; 3656 } 3657 if (!fp_access_check(s)) { 3658 return true; 3659 } 3660 3661 if (a->rn == 31) { 3662 gen_check_sp_alignment(s); 3663 } 3664 3665 total = a->selem << a->scale; 3666 tcg_rn = cpu_reg_sp(s, a->rn); 3667 3668 mop = finalize_memop_asimd(s, a->scale); 3669 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3670 total, mop); 3671 3672 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3673 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3674 do_vec_ld(s, rt, a->index, clean_addr, mop); 3675 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3676 } 3677 3678 if (a->p) { 3679 if (a->rm == 31) { 3680 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3681 } else { 3682 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3683 } 3684 } 3685 return true; 3686 } 3687 3688 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3689 { 3690 int xs, total, rt; 3691 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3692 MemOp mop; 3693 3694 if (!a->p && a->rm != 0) { 3695 return false; 3696 } 3697 if (!fp_access_check(s)) { 3698 return true; 3699 } 3700 3701 if (a->rn == 31) { 3702 gen_check_sp_alignment(s); 3703 } 3704 3705 total = a->selem << a->scale; 3706 tcg_rn = cpu_reg_sp(s, a->rn); 3707 3708 mop = finalize_memop_asimd(s, a->scale); 3709 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3710 total, mop); 3711 3712 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3713 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3714 /* Load and replicate to all elements */ 3715 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3716 3717 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3718 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3719 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3720 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3721 } 3722 3723 if (a->p) { 3724 if (a->rm == 31) { 3725 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3726 } else { 3727 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3728 } 3729 } 3730 return true; 3731 } 3732 3733 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3734 { 3735 TCGv_i64 addr, clean_addr, tcg_rt; 3736 int size = 4 << s->dcz_blocksize; 3737 3738 if (!dc_isar_feature(aa64_mte, s)) { 3739 return false; 3740 } 3741 if (s->current_el == 0) { 3742 return false; 3743 } 3744 3745 if (a->rn == 31) { 3746 gen_check_sp_alignment(s); 3747 } 3748 3749 addr = read_cpu_reg_sp(s, a->rn, true); 3750 tcg_gen_addi_i64(addr, addr, a->imm); 3751 tcg_rt = cpu_reg(s, a->rt); 3752 3753 if (s->ata) { 3754 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 3755 } 3756 /* 3757 * The non-tags portion of STZGM is mostly like DC_ZVA, 3758 * except the alignment happens before the access. 3759 */ 3760 clean_addr = clean_data_tbi(s, addr); 3761 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3762 gen_helper_dc_zva(cpu_env, clean_addr); 3763 return true; 3764 } 3765 3766 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3767 { 3768 TCGv_i64 addr, clean_addr, tcg_rt; 3769 3770 if (!dc_isar_feature(aa64_mte, s)) { 3771 return false; 3772 } 3773 if (s->current_el == 0) { 3774 return false; 3775 } 3776 3777 if (a->rn == 31) { 3778 gen_check_sp_alignment(s); 3779 } 3780 3781 addr = read_cpu_reg_sp(s, a->rn, true); 3782 tcg_gen_addi_i64(addr, addr, a->imm); 3783 tcg_rt = cpu_reg(s, a->rt); 3784 3785 if (s->ata) { 3786 gen_helper_stgm(cpu_env, addr, tcg_rt); 3787 } else { 3788 MMUAccessType acc = MMU_DATA_STORE; 3789 int size = 4 << GMID_EL1_BS; 3790 3791 clean_addr = clean_data_tbi(s, addr); 3792 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3793 gen_probe_access(s, clean_addr, acc, size); 3794 } 3795 return true; 3796 } 3797 3798 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3799 { 3800 TCGv_i64 addr, clean_addr, tcg_rt; 3801 3802 if (!dc_isar_feature(aa64_mte, s)) { 3803 return false; 3804 } 3805 if (s->current_el == 0) { 3806 return false; 3807 } 3808 3809 if (a->rn == 31) { 3810 gen_check_sp_alignment(s); 3811 } 3812 3813 addr = read_cpu_reg_sp(s, a->rn, true); 3814 tcg_gen_addi_i64(addr, addr, a->imm); 3815 tcg_rt = cpu_reg(s, a->rt); 3816 3817 if (s->ata) { 3818 gen_helper_ldgm(tcg_rt, cpu_env, addr); 3819 } else { 3820 MMUAccessType acc = MMU_DATA_LOAD; 3821 int size = 4 << GMID_EL1_BS; 3822 3823 clean_addr = clean_data_tbi(s, addr); 3824 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3825 gen_probe_access(s, clean_addr, acc, size); 3826 /* The result tags are zeros. */ 3827 tcg_gen_movi_i64(tcg_rt, 0); 3828 } 3829 return true; 3830 } 3831 3832 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3833 { 3834 TCGv_i64 addr, clean_addr, tcg_rt; 3835 3836 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3837 return false; 3838 } 3839 3840 if (a->rn == 31) { 3841 gen_check_sp_alignment(s); 3842 } 3843 3844 addr = read_cpu_reg_sp(s, a->rn, true); 3845 if (!a->p) { 3846 /* pre-index or signed offset */ 3847 tcg_gen_addi_i64(addr, addr, a->imm); 3848 } 3849 3850 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3851 tcg_rt = cpu_reg(s, a->rt); 3852 if (s->ata) { 3853 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 3854 } else { 3855 /* 3856 * Tag access disabled: we must check for aborts on the load 3857 * load from [rn+offset], and then insert a 0 tag into rt. 3858 */ 3859 clean_addr = clean_data_tbi(s, addr); 3860 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3861 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3862 } 3863 3864 if (a->w) { 3865 /* pre-index or post-index */ 3866 if (a->p) { 3867 /* post-index */ 3868 tcg_gen_addi_i64(addr, addr, a->imm); 3869 } 3870 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3871 } 3872 return true; 3873 } 3874 3875 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3876 { 3877 TCGv_i64 addr, tcg_rt; 3878 3879 if (a->rn == 31) { 3880 gen_check_sp_alignment(s); 3881 } 3882 3883 addr = read_cpu_reg_sp(s, a->rn, true); 3884 if (!a->p) { 3885 /* pre-index or signed offset */ 3886 tcg_gen_addi_i64(addr, addr, a->imm); 3887 } 3888 tcg_rt = cpu_reg_sp(s, a->rt); 3889 if (!s->ata) { 3890 /* 3891 * For STG and ST2G, we need to check alignment and probe memory. 3892 * TODO: For STZG and STZ2G, we could rely on the stores below, 3893 * at least for system mode; user-only won't enforce alignment. 3894 */ 3895 if (is_pair) { 3896 gen_helper_st2g_stub(cpu_env, addr); 3897 } else { 3898 gen_helper_stg_stub(cpu_env, addr); 3899 } 3900 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3901 if (is_pair) { 3902 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 3903 } else { 3904 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 3905 } 3906 } else { 3907 if (is_pair) { 3908 gen_helper_st2g(cpu_env, addr, tcg_rt); 3909 } else { 3910 gen_helper_stg(cpu_env, addr, tcg_rt); 3911 } 3912 } 3913 3914 if (is_zero) { 3915 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 3916 TCGv_i64 zero64 = tcg_constant_i64(0); 3917 TCGv_i128 zero128 = tcg_temp_new_i128(); 3918 int mem_index = get_mem_index(s); 3919 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 3920 3921 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 3922 3923 /* This is 1 or 2 atomic 16-byte operations. */ 3924 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3925 if (is_pair) { 3926 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 3927 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3928 } 3929 } 3930 3931 if (a->w) { 3932 /* pre-index or post-index */ 3933 if (a->p) { 3934 /* post-index */ 3935 tcg_gen_addi_i64(addr, addr, a->imm); 3936 } 3937 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3938 } 3939 return true; 3940 } 3941 3942 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 3943 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 3944 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 3945 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 3946 3947 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 3948 3949 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 3950 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 3951 { 3952 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 3953 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 3954 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 3955 3956 fn(tcg_rd, tcg_rn, tcg_imm); 3957 if (!a->sf) { 3958 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 3959 } 3960 return true; 3961 } 3962 3963 /* 3964 * PC-rel. addressing 3965 */ 3966 3967 static bool trans_ADR(DisasContext *s, arg_ri *a) 3968 { 3969 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 3970 return true; 3971 } 3972 3973 static bool trans_ADRP(DisasContext *s, arg_ri *a) 3974 { 3975 int64_t offset = (int64_t)a->imm << 12; 3976 3977 /* The page offset is ok for CF_PCREL. */ 3978 offset -= s->pc_curr & 0xfff; 3979 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 3980 return true; 3981 } 3982 3983 /* 3984 * Add/subtract (immediate) 3985 */ 3986 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 3987 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 3988 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 3989 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 3990 3991 /* 3992 * Add/subtract (immediate, with tags) 3993 */ 3994 3995 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 3996 bool sub_op) 3997 { 3998 TCGv_i64 tcg_rn, tcg_rd; 3999 int imm; 4000 4001 imm = a->uimm6 << LOG2_TAG_GRANULE; 4002 if (sub_op) { 4003 imm = -imm; 4004 } 4005 4006 tcg_rn = cpu_reg_sp(s, a->rn); 4007 tcg_rd = cpu_reg_sp(s, a->rd); 4008 4009 if (s->ata) { 4010 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4011 tcg_constant_i32(imm), 4012 tcg_constant_i32(a->uimm4)); 4013 } else { 4014 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4015 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4016 } 4017 return true; 4018 } 4019 4020 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4021 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4022 4023 /* The input should be a value in the bottom e bits (with higher 4024 * bits zero); returns that value replicated into every element 4025 * of size e in a 64 bit integer. 4026 */ 4027 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4028 { 4029 assert(e != 0); 4030 while (e < 64) { 4031 mask |= mask << e; 4032 e *= 2; 4033 } 4034 return mask; 4035 } 4036 4037 /* 4038 * Logical (immediate) 4039 */ 4040 4041 /* 4042 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4043 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4044 * value (ie should cause a guest UNDEF exception), and true if they are 4045 * valid, in which case the decoded bit pattern is written to result. 4046 */ 4047 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4048 unsigned int imms, unsigned int immr) 4049 { 4050 uint64_t mask; 4051 unsigned e, levels, s, r; 4052 int len; 4053 4054 assert(immn < 2 && imms < 64 && immr < 64); 4055 4056 /* The bit patterns we create here are 64 bit patterns which 4057 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4058 * 64 bits each. Each element contains the same value: a run 4059 * of between 1 and e-1 non-zero bits, rotated within the 4060 * element by between 0 and e-1 bits. 4061 * 4062 * The element size and run length are encoded into immn (1 bit) 4063 * and imms (6 bits) as follows: 4064 * 64 bit elements: immn = 1, imms = <length of run - 1> 4065 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4066 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4067 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4068 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4069 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4070 * Notice that immn = 0, imms = 11111x is the only combination 4071 * not covered by one of the above options; this is reserved. 4072 * Further, <length of run - 1> all-ones is a reserved pattern. 4073 * 4074 * In all cases the rotation is by immr % e (and immr is 6 bits). 4075 */ 4076 4077 /* First determine the element size */ 4078 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4079 if (len < 1) { 4080 /* This is the immn == 0, imms == 0x11111x case */ 4081 return false; 4082 } 4083 e = 1 << len; 4084 4085 levels = e - 1; 4086 s = imms & levels; 4087 r = immr & levels; 4088 4089 if (s == levels) { 4090 /* <length of run - 1> mustn't be all-ones. */ 4091 return false; 4092 } 4093 4094 /* Create the value of one element: s+1 set bits rotated 4095 * by r within the element (which is e bits wide)... 4096 */ 4097 mask = MAKE_64BIT_MASK(0, s + 1); 4098 if (r) { 4099 mask = (mask >> r) | (mask << (e - r)); 4100 mask &= MAKE_64BIT_MASK(0, e); 4101 } 4102 /* ...then replicate the element over the whole 64 bit value */ 4103 mask = bitfield_replicate(mask, e); 4104 *result = mask; 4105 return true; 4106 } 4107 4108 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4109 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4110 { 4111 TCGv_i64 tcg_rd, tcg_rn; 4112 uint64_t imm; 4113 4114 /* Some immediate field values are reserved. */ 4115 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4116 extract32(a->dbm, 0, 6), 4117 extract32(a->dbm, 6, 6))) { 4118 return false; 4119 } 4120 if (!a->sf) { 4121 imm &= 0xffffffffull; 4122 } 4123 4124 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4125 tcg_rn = cpu_reg(s, a->rn); 4126 4127 fn(tcg_rd, tcg_rn, imm); 4128 if (set_cc) { 4129 gen_logic_CC(a->sf, tcg_rd); 4130 } 4131 if (!a->sf) { 4132 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4133 } 4134 return true; 4135 } 4136 4137 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4138 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4139 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4140 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4141 4142 /* 4143 * Move wide (immediate) 4144 */ 4145 4146 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4147 { 4148 int pos = a->hw << 4; 4149 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4150 return true; 4151 } 4152 4153 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4154 { 4155 int pos = a->hw << 4; 4156 uint64_t imm = a->imm; 4157 4158 imm = ~(imm << pos); 4159 if (!a->sf) { 4160 imm = (uint32_t)imm; 4161 } 4162 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4163 return true; 4164 } 4165 4166 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4167 { 4168 int pos = a->hw << 4; 4169 TCGv_i64 tcg_rd, tcg_im; 4170 4171 tcg_rd = cpu_reg(s, a->rd); 4172 tcg_im = tcg_constant_i64(a->imm); 4173 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4174 if (!a->sf) { 4175 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4176 } 4177 return true; 4178 } 4179 4180 /* 4181 * Bitfield 4182 */ 4183 4184 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4185 { 4186 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4187 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4188 unsigned int bitsize = a->sf ? 64 : 32; 4189 unsigned int ri = a->immr; 4190 unsigned int si = a->imms; 4191 unsigned int pos, len; 4192 4193 if (si >= ri) { 4194 /* Wd<s-r:0> = Wn<s:r> */ 4195 len = (si - ri) + 1; 4196 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4197 if (!a->sf) { 4198 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4199 } 4200 } else { 4201 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4202 len = si + 1; 4203 pos = (bitsize - ri) & (bitsize - 1); 4204 4205 if (len < ri) { 4206 /* 4207 * Sign extend the destination field from len to fill the 4208 * balance of the word. Let the deposit below insert all 4209 * of those sign bits. 4210 */ 4211 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4212 len = ri; 4213 } 4214 4215 /* 4216 * We start with zero, and we haven't modified any bits outside 4217 * bitsize, therefore no final zero-extension is unneeded for !sf. 4218 */ 4219 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4220 } 4221 return true; 4222 } 4223 4224 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4225 { 4226 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4227 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4228 unsigned int bitsize = a->sf ? 64 : 32; 4229 unsigned int ri = a->immr; 4230 unsigned int si = a->imms; 4231 unsigned int pos, len; 4232 4233 tcg_rd = cpu_reg(s, a->rd); 4234 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4235 4236 if (si >= ri) { 4237 /* Wd<s-r:0> = Wn<s:r> */ 4238 len = (si - ri) + 1; 4239 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4240 } else { 4241 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4242 len = si + 1; 4243 pos = (bitsize - ri) & (bitsize - 1); 4244 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4245 } 4246 return true; 4247 } 4248 4249 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4250 { 4251 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4252 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4253 unsigned int bitsize = a->sf ? 64 : 32; 4254 unsigned int ri = a->immr; 4255 unsigned int si = a->imms; 4256 unsigned int pos, len; 4257 4258 tcg_rd = cpu_reg(s, a->rd); 4259 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4260 4261 if (si >= ri) { 4262 /* Wd<s-r:0> = Wn<s:r> */ 4263 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4264 len = (si - ri) + 1; 4265 pos = 0; 4266 } else { 4267 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4268 len = si + 1; 4269 pos = (bitsize - ri) & (bitsize - 1); 4270 } 4271 4272 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4273 if (!a->sf) { 4274 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4275 } 4276 return true; 4277 } 4278 4279 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4280 { 4281 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4282 4283 tcg_rd = cpu_reg(s, a->rd); 4284 4285 if (unlikely(a->imm == 0)) { 4286 /* 4287 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4288 * so an extract from bit 0 is a special case. 4289 */ 4290 if (a->sf) { 4291 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4292 } else { 4293 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4294 } 4295 } else { 4296 tcg_rm = cpu_reg(s, a->rm); 4297 tcg_rn = cpu_reg(s, a->rn); 4298 4299 if (a->sf) { 4300 /* Specialization to ROR happens in EXTRACT2. */ 4301 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4302 } else { 4303 TCGv_i32 t0 = tcg_temp_new_i32(); 4304 4305 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4306 if (a->rm == a->rn) { 4307 tcg_gen_rotri_i32(t0, t0, a->imm); 4308 } else { 4309 TCGv_i32 t1 = tcg_temp_new_i32(); 4310 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4311 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4312 } 4313 tcg_gen_extu_i32_i64(tcg_rd, t0); 4314 } 4315 } 4316 return true; 4317 } 4318 4319 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4320 * Note that it is the caller's responsibility to ensure that the 4321 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4322 * mandated semantics for out of range shifts. 4323 */ 4324 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4325 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4326 { 4327 switch (shift_type) { 4328 case A64_SHIFT_TYPE_LSL: 4329 tcg_gen_shl_i64(dst, src, shift_amount); 4330 break; 4331 case A64_SHIFT_TYPE_LSR: 4332 tcg_gen_shr_i64(dst, src, shift_amount); 4333 break; 4334 case A64_SHIFT_TYPE_ASR: 4335 if (!sf) { 4336 tcg_gen_ext32s_i64(dst, src); 4337 } 4338 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4339 break; 4340 case A64_SHIFT_TYPE_ROR: 4341 if (sf) { 4342 tcg_gen_rotr_i64(dst, src, shift_amount); 4343 } else { 4344 TCGv_i32 t0, t1; 4345 t0 = tcg_temp_new_i32(); 4346 t1 = tcg_temp_new_i32(); 4347 tcg_gen_extrl_i64_i32(t0, src); 4348 tcg_gen_extrl_i64_i32(t1, shift_amount); 4349 tcg_gen_rotr_i32(t0, t0, t1); 4350 tcg_gen_extu_i32_i64(dst, t0); 4351 } 4352 break; 4353 default: 4354 assert(FALSE); /* all shift types should be handled */ 4355 break; 4356 } 4357 4358 if (!sf) { /* zero extend final result */ 4359 tcg_gen_ext32u_i64(dst, dst); 4360 } 4361 } 4362 4363 /* Shift a TCGv src by immediate, put result in dst. 4364 * The shift amount must be in range (this should always be true as the 4365 * relevant instructions will UNDEF on bad shift immediates). 4366 */ 4367 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4368 enum a64_shift_type shift_type, unsigned int shift_i) 4369 { 4370 assert(shift_i < (sf ? 64 : 32)); 4371 4372 if (shift_i == 0) { 4373 tcg_gen_mov_i64(dst, src); 4374 } else { 4375 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4376 } 4377 } 4378 4379 /* Logical (shifted register) 4380 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4381 * +----+-----+-----------+-------+---+------+--------+------+------+ 4382 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4383 * +----+-----+-----------+-------+---+------+--------+------+------+ 4384 */ 4385 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4386 { 4387 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4388 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4389 4390 sf = extract32(insn, 31, 1); 4391 opc = extract32(insn, 29, 2); 4392 shift_type = extract32(insn, 22, 2); 4393 invert = extract32(insn, 21, 1); 4394 rm = extract32(insn, 16, 5); 4395 shift_amount = extract32(insn, 10, 6); 4396 rn = extract32(insn, 5, 5); 4397 rd = extract32(insn, 0, 5); 4398 4399 if (!sf && (shift_amount & (1 << 5))) { 4400 unallocated_encoding(s); 4401 return; 4402 } 4403 4404 tcg_rd = cpu_reg(s, rd); 4405 4406 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4407 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4408 * register-register MOV and MVN, so it is worth special casing. 4409 */ 4410 tcg_rm = cpu_reg(s, rm); 4411 if (invert) { 4412 tcg_gen_not_i64(tcg_rd, tcg_rm); 4413 if (!sf) { 4414 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4415 } 4416 } else { 4417 if (sf) { 4418 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4419 } else { 4420 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4421 } 4422 } 4423 return; 4424 } 4425 4426 tcg_rm = read_cpu_reg(s, rm, sf); 4427 4428 if (shift_amount) { 4429 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4430 } 4431 4432 tcg_rn = cpu_reg(s, rn); 4433 4434 switch (opc | (invert << 2)) { 4435 case 0: /* AND */ 4436 case 3: /* ANDS */ 4437 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4438 break; 4439 case 1: /* ORR */ 4440 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4441 break; 4442 case 2: /* EOR */ 4443 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4444 break; 4445 case 4: /* BIC */ 4446 case 7: /* BICS */ 4447 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4448 break; 4449 case 5: /* ORN */ 4450 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4451 break; 4452 case 6: /* EON */ 4453 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4454 break; 4455 default: 4456 assert(FALSE); 4457 break; 4458 } 4459 4460 if (!sf) { 4461 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4462 } 4463 4464 if (opc == 3) { 4465 gen_logic_CC(sf, tcg_rd); 4466 } 4467 } 4468 4469 /* 4470 * Add/subtract (extended register) 4471 * 4472 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4473 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4474 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4475 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4476 * 4477 * sf: 0 -> 32bit, 1 -> 64bit 4478 * op: 0 -> add , 1 -> sub 4479 * S: 1 -> set flags 4480 * opt: 00 4481 * option: extension type (see DecodeRegExtend) 4482 * imm3: optional shift to Rm 4483 * 4484 * Rd = Rn + LSL(extend(Rm), amount) 4485 */ 4486 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4487 { 4488 int rd = extract32(insn, 0, 5); 4489 int rn = extract32(insn, 5, 5); 4490 int imm3 = extract32(insn, 10, 3); 4491 int option = extract32(insn, 13, 3); 4492 int rm = extract32(insn, 16, 5); 4493 int opt = extract32(insn, 22, 2); 4494 bool setflags = extract32(insn, 29, 1); 4495 bool sub_op = extract32(insn, 30, 1); 4496 bool sf = extract32(insn, 31, 1); 4497 4498 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4499 TCGv_i64 tcg_rd; 4500 TCGv_i64 tcg_result; 4501 4502 if (imm3 > 4 || opt != 0) { 4503 unallocated_encoding(s); 4504 return; 4505 } 4506 4507 /* non-flag setting ops may use SP */ 4508 if (!setflags) { 4509 tcg_rd = cpu_reg_sp(s, rd); 4510 } else { 4511 tcg_rd = cpu_reg(s, rd); 4512 } 4513 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4514 4515 tcg_rm = read_cpu_reg(s, rm, sf); 4516 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4517 4518 tcg_result = tcg_temp_new_i64(); 4519 4520 if (!setflags) { 4521 if (sub_op) { 4522 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4523 } else { 4524 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4525 } 4526 } else { 4527 if (sub_op) { 4528 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4529 } else { 4530 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4531 } 4532 } 4533 4534 if (sf) { 4535 tcg_gen_mov_i64(tcg_rd, tcg_result); 4536 } else { 4537 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4538 } 4539 } 4540 4541 /* 4542 * Add/subtract (shifted register) 4543 * 4544 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4545 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4546 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4547 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4548 * 4549 * sf: 0 -> 32bit, 1 -> 64bit 4550 * op: 0 -> add , 1 -> sub 4551 * S: 1 -> set flags 4552 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4553 * imm6: Shift amount to apply to Rm before the add/sub 4554 */ 4555 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4556 { 4557 int rd = extract32(insn, 0, 5); 4558 int rn = extract32(insn, 5, 5); 4559 int imm6 = extract32(insn, 10, 6); 4560 int rm = extract32(insn, 16, 5); 4561 int shift_type = extract32(insn, 22, 2); 4562 bool setflags = extract32(insn, 29, 1); 4563 bool sub_op = extract32(insn, 30, 1); 4564 bool sf = extract32(insn, 31, 1); 4565 4566 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4567 TCGv_i64 tcg_rn, tcg_rm; 4568 TCGv_i64 tcg_result; 4569 4570 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4571 unallocated_encoding(s); 4572 return; 4573 } 4574 4575 tcg_rn = read_cpu_reg(s, rn, sf); 4576 tcg_rm = read_cpu_reg(s, rm, sf); 4577 4578 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4579 4580 tcg_result = tcg_temp_new_i64(); 4581 4582 if (!setflags) { 4583 if (sub_op) { 4584 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4585 } else { 4586 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4587 } 4588 } else { 4589 if (sub_op) { 4590 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4591 } else { 4592 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4593 } 4594 } 4595 4596 if (sf) { 4597 tcg_gen_mov_i64(tcg_rd, tcg_result); 4598 } else { 4599 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4600 } 4601 } 4602 4603 /* Data-processing (3 source) 4604 * 4605 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4606 * +--+------+-----------+------+------+----+------+------+------+ 4607 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4608 * +--+------+-----------+------+------+----+------+------+------+ 4609 */ 4610 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4611 { 4612 int rd = extract32(insn, 0, 5); 4613 int rn = extract32(insn, 5, 5); 4614 int ra = extract32(insn, 10, 5); 4615 int rm = extract32(insn, 16, 5); 4616 int op_id = (extract32(insn, 29, 3) << 4) | 4617 (extract32(insn, 21, 3) << 1) | 4618 extract32(insn, 15, 1); 4619 bool sf = extract32(insn, 31, 1); 4620 bool is_sub = extract32(op_id, 0, 1); 4621 bool is_high = extract32(op_id, 2, 1); 4622 bool is_signed = false; 4623 TCGv_i64 tcg_op1; 4624 TCGv_i64 tcg_op2; 4625 TCGv_i64 tcg_tmp; 4626 4627 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4628 switch (op_id) { 4629 case 0x42: /* SMADDL */ 4630 case 0x43: /* SMSUBL */ 4631 case 0x44: /* SMULH */ 4632 is_signed = true; 4633 break; 4634 case 0x0: /* MADD (32bit) */ 4635 case 0x1: /* MSUB (32bit) */ 4636 case 0x40: /* MADD (64bit) */ 4637 case 0x41: /* MSUB (64bit) */ 4638 case 0x4a: /* UMADDL */ 4639 case 0x4b: /* UMSUBL */ 4640 case 0x4c: /* UMULH */ 4641 break; 4642 default: 4643 unallocated_encoding(s); 4644 return; 4645 } 4646 4647 if (is_high) { 4648 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4649 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4650 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4651 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4652 4653 if (is_signed) { 4654 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4655 } else { 4656 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4657 } 4658 return; 4659 } 4660 4661 tcg_op1 = tcg_temp_new_i64(); 4662 tcg_op2 = tcg_temp_new_i64(); 4663 tcg_tmp = tcg_temp_new_i64(); 4664 4665 if (op_id < 0x42) { 4666 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4667 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4668 } else { 4669 if (is_signed) { 4670 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4671 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4672 } else { 4673 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4674 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4675 } 4676 } 4677 4678 if (ra == 31 && !is_sub) { 4679 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4680 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4681 } else { 4682 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4683 if (is_sub) { 4684 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4685 } else { 4686 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4687 } 4688 } 4689 4690 if (!sf) { 4691 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4692 } 4693 } 4694 4695 /* Add/subtract (with carry) 4696 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4697 * +--+--+--+------------------------+------+-------------+------+-----+ 4698 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4699 * +--+--+--+------------------------+------+-------------+------+-----+ 4700 */ 4701 4702 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4703 { 4704 unsigned int sf, op, setflags, rm, rn, rd; 4705 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4706 4707 sf = extract32(insn, 31, 1); 4708 op = extract32(insn, 30, 1); 4709 setflags = extract32(insn, 29, 1); 4710 rm = extract32(insn, 16, 5); 4711 rn = extract32(insn, 5, 5); 4712 rd = extract32(insn, 0, 5); 4713 4714 tcg_rd = cpu_reg(s, rd); 4715 tcg_rn = cpu_reg(s, rn); 4716 4717 if (op) { 4718 tcg_y = tcg_temp_new_i64(); 4719 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4720 } else { 4721 tcg_y = cpu_reg(s, rm); 4722 } 4723 4724 if (setflags) { 4725 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4726 } else { 4727 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4728 } 4729 } 4730 4731 /* 4732 * Rotate right into flags 4733 * 31 30 29 21 15 10 5 4 0 4734 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4735 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4736 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4737 */ 4738 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4739 { 4740 int mask = extract32(insn, 0, 4); 4741 int o2 = extract32(insn, 4, 1); 4742 int rn = extract32(insn, 5, 5); 4743 int imm6 = extract32(insn, 15, 6); 4744 int sf_op_s = extract32(insn, 29, 3); 4745 TCGv_i64 tcg_rn; 4746 TCGv_i32 nzcv; 4747 4748 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4749 unallocated_encoding(s); 4750 return; 4751 } 4752 4753 tcg_rn = read_cpu_reg(s, rn, 1); 4754 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4755 4756 nzcv = tcg_temp_new_i32(); 4757 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4758 4759 if (mask & 8) { /* N */ 4760 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4761 } 4762 if (mask & 4) { /* Z */ 4763 tcg_gen_not_i32(cpu_ZF, nzcv); 4764 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4765 } 4766 if (mask & 2) { /* C */ 4767 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4768 } 4769 if (mask & 1) { /* V */ 4770 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4771 } 4772 } 4773 4774 /* 4775 * Evaluate into flags 4776 * 31 30 29 21 15 14 10 5 4 0 4777 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4778 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4779 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4780 */ 4781 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4782 { 4783 int o3_mask = extract32(insn, 0, 5); 4784 int rn = extract32(insn, 5, 5); 4785 int o2 = extract32(insn, 15, 6); 4786 int sz = extract32(insn, 14, 1); 4787 int sf_op_s = extract32(insn, 29, 3); 4788 TCGv_i32 tmp; 4789 int shift; 4790 4791 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4792 !dc_isar_feature(aa64_condm_4, s)) { 4793 unallocated_encoding(s); 4794 return; 4795 } 4796 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4797 4798 tmp = tcg_temp_new_i32(); 4799 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4800 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4801 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4802 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4803 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4804 } 4805 4806 /* Conditional compare (immediate / register) 4807 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4808 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4809 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4810 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4811 * [1] y [0] [0] 4812 */ 4813 static void disas_cc(DisasContext *s, uint32_t insn) 4814 { 4815 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4816 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4817 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4818 DisasCompare c; 4819 4820 if (!extract32(insn, 29, 1)) { 4821 unallocated_encoding(s); 4822 return; 4823 } 4824 if (insn & (1 << 10 | 1 << 4)) { 4825 unallocated_encoding(s); 4826 return; 4827 } 4828 sf = extract32(insn, 31, 1); 4829 op = extract32(insn, 30, 1); 4830 is_imm = extract32(insn, 11, 1); 4831 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 4832 cond = extract32(insn, 12, 4); 4833 rn = extract32(insn, 5, 5); 4834 nzcv = extract32(insn, 0, 4); 4835 4836 /* Set T0 = !COND. */ 4837 tcg_t0 = tcg_temp_new_i32(); 4838 arm_test_cc(&c, cond); 4839 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 4840 4841 /* Load the arguments for the new comparison. */ 4842 if (is_imm) { 4843 tcg_y = tcg_temp_new_i64(); 4844 tcg_gen_movi_i64(tcg_y, y); 4845 } else { 4846 tcg_y = cpu_reg(s, y); 4847 } 4848 tcg_rn = cpu_reg(s, rn); 4849 4850 /* Set the flags for the new comparison. */ 4851 tcg_tmp = tcg_temp_new_i64(); 4852 if (op) { 4853 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4854 } else { 4855 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4856 } 4857 4858 /* If COND was false, force the flags to #nzcv. Compute two masks 4859 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 4860 * For tcg hosts that support ANDC, we can make do with just T1. 4861 * In either case, allow the tcg optimizer to delete any unused mask. 4862 */ 4863 tcg_t1 = tcg_temp_new_i32(); 4864 tcg_t2 = tcg_temp_new_i32(); 4865 tcg_gen_neg_i32(tcg_t1, tcg_t0); 4866 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 4867 4868 if (nzcv & 8) { /* N */ 4869 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 4870 } else { 4871 if (TCG_TARGET_HAS_andc_i32) { 4872 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 4873 } else { 4874 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 4875 } 4876 } 4877 if (nzcv & 4) { /* Z */ 4878 if (TCG_TARGET_HAS_andc_i32) { 4879 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 4880 } else { 4881 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 4882 } 4883 } else { 4884 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 4885 } 4886 if (nzcv & 2) { /* C */ 4887 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 4888 } else { 4889 if (TCG_TARGET_HAS_andc_i32) { 4890 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 4891 } else { 4892 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 4893 } 4894 } 4895 if (nzcv & 1) { /* V */ 4896 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 4897 } else { 4898 if (TCG_TARGET_HAS_andc_i32) { 4899 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 4900 } else { 4901 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 4902 } 4903 } 4904 } 4905 4906 /* Conditional select 4907 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 4908 * +----+----+---+-----------------+------+------+-----+------+------+ 4909 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 4910 * +----+----+---+-----------------+------+------+-----+------+------+ 4911 */ 4912 static void disas_cond_select(DisasContext *s, uint32_t insn) 4913 { 4914 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 4915 TCGv_i64 tcg_rd, zero; 4916 DisasCompare64 c; 4917 4918 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 4919 /* S == 1 or op2<1> == 1 */ 4920 unallocated_encoding(s); 4921 return; 4922 } 4923 sf = extract32(insn, 31, 1); 4924 else_inv = extract32(insn, 30, 1); 4925 rm = extract32(insn, 16, 5); 4926 cond = extract32(insn, 12, 4); 4927 else_inc = extract32(insn, 10, 1); 4928 rn = extract32(insn, 5, 5); 4929 rd = extract32(insn, 0, 5); 4930 4931 tcg_rd = cpu_reg(s, rd); 4932 4933 a64_test_cc(&c, cond); 4934 zero = tcg_constant_i64(0); 4935 4936 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 4937 /* CSET & CSETM. */ 4938 if (else_inv) { 4939 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 4940 tcg_rd, c.value, zero); 4941 } else { 4942 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 4943 tcg_rd, c.value, zero); 4944 } 4945 } else { 4946 TCGv_i64 t_true = cpu_reg(s, rn); 4947 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 4948 if (else_inv && else_inc) { 4949 tcg_gen_neg_i64(t_false, t_false); 4950 } else if (else_inv) { 4951 tcg_gen_not_i64(t_false, t_false); 4952 } else if (else_inc) { 4953 tcg_gen_addi_i64(t_false, t_false, 1); 4954 } 4955 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 4956 } 4957 4958 if (!sf) { 4959 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4960 } 4961 } 4962 4963 static void handle_clz(DisasContext *s, unsigned int sf, 4964 unsigned int rn, unsigned int rd) 4965 { 4966 TCGv_i64 tcg_rd, tcg_rn; 4967 tcg_rd = cpu_reg(s, rd); 4968 tcg_rn = cpu_reg(s, rn); 4969 4970 if (sf) { 4971 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 4972 } else { 4973 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4974 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4975 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 4976 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 4977 } 4978 } 4979 4980 static void handle_cls(DisasContext *s, unsigned int sf, 4981 unsigned int rn, unsigned int rd) 4982 { 4983 TCGv_i64 tcg_rd, tcg_rn; 4984 tcg_rd = cpu_reg(s, rd); 4985 tcg_rn = cpu_reg(s, rn); 4986 4987 if (sf) { 4988 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 4989 } else { 4990 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4991 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4992 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 4993 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 4994 } 4995 } 4996 4997 static void handle_rbit(DisasContext *s, unsigned int sf, 4998 unsigned int rn, unsigned int rd) 4999 { 5000 TCGv_i64 tcg_rd, tcg_rn; 5001 tcg_rd = cpu_reg(s, rd); 5002 tcg_rn = cpu_reg(s, rn); 5003 5004 if (sf) { 5005 gen_helper_rbit64(tcg_rd, tcg_rn); 5006 } else { 5007 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5008 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5009 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5010 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5011 } 5012 } 5013 5014 /* REV with sf==1, opcode==3 ("REV64") */ 5015 static void handle_rev64(DisasContext *s, unsigned int sf, 5016 unsigned int rn, unsigned int rd) 5017 { 5018 if (!sf) { 5019 unallocated_encoding(s); 5020 return; 5021 } 5022 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5023 } 5024 5025 /* REV with sf==0, opcode==2 5026 * REV32 (sf==1, opcode==2) 5027 */ 5028 static void handle_rev32(DisasContext *s, unsigned int sf, 5029 unsigned int rn, unsigned int rd) 5030 { 5031 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5032 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5033 5034 if (sf) { 5035 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5036 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5037 } else { 5038 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5039 } 5040 } 5041 5042 /* REV16 (opcode==1) */ 5043 static void handle_rev16(DisasContext *s, unsigned int sf, 5044 unsigned int rn, unsigned int rd) 5045 { 5046 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5047 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5048 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5049 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5050 5051 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5052 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5053 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5054 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5055 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5056 } 5057 5058 /* Data-processing (1 source) 5059 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5060 * +----+---+---+-----------------+---------+--------+------+------+ 5061 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5062 * +----+---+---+-----------------+---------+--------+------+------+ 5063 */ 5064 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5065 { 5066 unsigned int sf, opcode, opcode2, rn, rd; 5067 TCGv_i64 tcg_rd; 5068 5069 if (extract32(insn, 29, 1)) { 5070 unallocated_encoding(s); 5071 return; 5072 } 5073 5074 sf = extract32(insn, 31, 1); 5075 opcode = extract32(insn, 10, 6); 5076 opcode2 = extract32(insn, 16, 5); 5077 rn = extract32(insn, 5, 5); 5078 rd = extract32(insn, 0, 5); 5079 5080 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5081 5082 switch (MAP(sf, opcode2, opcode)) { 5083 case MAP(0, 0x00, 0x00): /* RBIT */ 5084 case MAP(1, 0x00, 0x00): 5085 handle_rbit(s, sf, rn, rd); 5086 break; 5087 case MAP(0, 0x00, 0x01): /* REV16 */ 5088 case MAP(1, 0x00, 0x01): 5089 handle_rev16(s, sf, rn, rd); 5090 break; 5091 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5092 case MAP(1, 0x00, 0x02): 5093 handle_rev32(s, sf, rn, rd); 5094 break; 5095 case MAP(1, 0x00, 0x03): /* REV64 */ 5096 handle_rev64(s, sf, rn, rd); 5097 break; 5098 case MAP(0, 0x00, 0x04): /* CLZ */ 5099 case MAP(1, 0x00, 0x04): 5100 handle_clz(s, sf, rn, rd); 5101 break; 5102 case MAP(0, 0x00, 0x05): /* CLS */ 5103 case MAP(1, 0x00, 0x05): 5104 handle_cls(s, sf, rn, rd); 5105 break; 5106 case MAP(1, 0x01, 0x00): /* PACIA */ 5107 if (s->pauth_active) { 5108 tcg_rd = cpu_reg(s, rd); 5109 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5110 } else if (!dc_isar_feature(aa64_pauth, s)) { 5111 goto do_unallocated; 5112 } 5113 break; 5114 case MAP(1, 0x01, 0x01): /* PACIB */ 5115 if (s->pauth_active) { 5116 tcg_rd = cpu_reg(s, rd); 5117 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5118 } else if (!dc_isar_feature(aa64_pauth, s)) { 5119 goto do_unallocated; 5120 } 5121 break; 5122 case MAP(1, 0x01, 0x02): /* PACDA */ 5123 if (s->pauth_active) { 5124 tcg_rd = cpu_reg(s, rd); 5125 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5126 } else if (!dc_isar_feature(aa64_pauth, s)) { 5127 goto do_unallocated; 5128 } 5129 break; 5130 case MAP(1, 0x01, 0x03): /* PACDB */ 5131 if (s->pauth_active) { 5132 tcg_rd = cpu_reg(s, rd); 5133 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5134 } else if (!dc_isar_feature(aa64_pauth, s)) { 5135 goto do_unallocated; 5136 } 5137 break; 5138 case MAP(1, 0x01, 0x04): /* AUTIA */ 5139 if (s->pauth_active) { 5140 tcg_rd = cpu_reg(s, rd); 5141 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5142 } else if (!dc_isar_feature(aa64_pauth, s)) { 5143 goto do_unallocated; 5144 } 5145 break; 5146 case MAP(1, 0x01, 0x05): /* AUTIB */ 5147 if (s->pauth_active) { 5148 tcg_rd = cpu_reg(s, rd); 5149 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5150 } else if (!dc_isar_feature(aa64_pauth, s)) { 5151 goto do_unallocated; 5152 } 5153 break; 5154 case MAP(1, 0x01, 0x06): /* AUTDA */ 5155 if (s->pauth_active) { 5156 tcg_rd = cpu_reg(s, rd); 5157 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5158 } else if (!dc_isar_feature(aa64_pauth, s)) { 5159 goto do_unallocated; 5160 } 5161 break; 5162 case MAP(1, 0x01, 0x07): /* AUTDB */ 5163 if (s->pauth_active) { 5164 tcg_rd = cpu_reg(s, rd); 5165 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5166 } else if (!dc_isar_feature(aa64_pauth, s)) { 5167 goto do_unallocated; 5168 } 5169 break; 5170 case MAP(1, 0x01, 0x08): /* PACIZA */ 5171 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5172 goto do_unallocated; 5173 } else if (s->pauth_active) { 5174 tcg_rd = cpu_reg(s, rd); 5175 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5176 } 5177 break; 5178 case MAP(1, 0x01, 0x09): /* PACIZB */ 5179 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5180 goto do_unallocated; 5181 } else if (s->pauth_active) { 5182 tcg_rd = cpu_reg(s, rd); 5183 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5184 } 5185 break; 5186 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5187 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5188 goto do_unallocated; 5189 } else if (s->pauth_active) { 5190 tcg_rd = cpu_reg(s, rd); 5191 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5192 } 5193 break; 5194 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5195 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5196 goto do_unallocated; 5197 } else if (s->pauth_active) { 5198 tcg_rd = cpu_reg(s, rd); 5199 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5200 } 5201 break; 5202 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5203 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5204 goto do_unallocated; 5205 } else if (s->pauth_active) { 5206 tcg_rd = cpu_reg(s, rd); 5207 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5208 } 5209 break; 5210 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5211 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5212 goto do_unallocated; 5213 } else if (s->pauth_active) { 5214 tcg_rd = cpu_reg(s, rd); 5215 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5216 } 5217 break; 5218 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5219 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5220 goto do_unallocated; 5221 } else if (s->pauth_active) { 5222 tcg_rd = cpu_reg(s, rd); 5223 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5224 } 5225 break; 5226 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5227 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5228 goto do_unallocated; 5229 } else if (s->pauth_active) { 5230 tcg_rd = cpu_reg(s, rd); 5231 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5232 } 5233 break; 5234 case MAP(1, 0x01, 0x10): /* XPACI */ 5235 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5236 goto do_unallocated; 5237 } else if (s->pauth_active) { 5238 tcg_rd = cpu_reg(s, rd); 5239 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5240 } 5241 break; 5242 case MAP(1, 0x01, 0x11): /* XPACD */ 5243 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5244 goto do_unallocated; 5245 } else if (s->pauth_active) { 5246 tcg_rd = cpu_reg(s, rd); 5247 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5248 } 5249 break; 5250 default: 5251 do_unallocated: 5252 unallocated_encoding(s); 5253 break; 5254 } 5255 5256 #undef MAP 5257 } 5258 5259 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5260 unsigned int rm, unsigned int rn, unsigned int rd) 5261 { 5262 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5263 tcg_rd = cpu_reg(s, rd); 5264 5265 if (!sf && is_signed) { 5266 tcg_n = tcg_temp_new_i64(); 5267 tcg_m = tcg_temp_new_i64(); 5268 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5269 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5270 } else { 5271 tcg_n = read_cpu_reg(s, rn, sf); 5272 tcg_m = read_cpu_reg(s, rm, sf); 5273 } 5274 5275 if (is_signed) { 5276 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5277 } else { 5278 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5279 } 5280 5281 if (!sf) { /* zero extend final result */ 5282 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5283 } 5284 } 5285 5286 /* LSLV, LSRV, ASRV, RORV */ 5287 static void handle_shift_reg(DisasContext *s, 5288 enum a64_shift_type shift_type, unsigned int sf, 5289 unsigned int rm, unsigned int rn, unsigned int rd) 5290 { 5291 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5292 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5293 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5294 5295 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5296 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5297 } 5298 5299 /* CRC32[BHWX], CRC32C[BHWX] */ 5300 static void handle_crc32(DisasContext *s, 5301 unsigned int sf, unsigned int sz, bool crc32c, 5302 unsigned int rm, unsigned int rn, unsigned int rd) 5303 { 5304 TCGv_i64 tcg_acc, tcg_val; 5305 TCGv_i32 tcg_bytes; 5306 5307 if (!dc_isar_feature(aa64_crc32, s) 5308 || (sf == 1 && sz != 3) 5309 || (sf == 0 && sz == 3)) { 5310 unallocated_encoding(s); 5311 return; 5312 } 5313 5314 if (sz == 3) { 5315 tcg_val = cpu_reg(s, rm); 5316 } else { 5317 uint64_t mask; 5318 switch (sz) { 5319 case 0: 5320 mask = 0xFF; 5321 break; 5322 case 1: 5323 mask = 0xFFFF; 5324 break; 5325 case 2: 5326 mask = 0xFFFFFFFF; 5327 break; 5328 default: 5329 g_assert_not_reached(); 5330 } 5331 tcg_val = tcg_temp_new_i64(); 5332 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5333 } 5334 5335 tcg_acc = cpu_reg(s, rn); 5336 tcg_bytes = tcg_constant_i32(1 << sz); 5337 5338 if (crc32c) { 5339 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5340 } else { 5341 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5342 } 5343 } 5344 5345 /* Data-processing (2 source) 5346 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5347 * +----+---+---+-----------------+------+--------+------+------+ 5348 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5349 * +----+---+---+-----------------+------+--------+------+------+ 5350 */ 5351 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5352 { 5353 unsigned int sf, rm, opcode, rn, rd, setflag; 5354 sf = extract32(insn, 31, 1); 5355 setflag = extract32(insn, 29, 1); 5356 rm = extract32(insn, 16, 5); 5357 opcode = extract32(insn, 10, 6); 5358 rn = extract32(insn, 5, 5); 5359 rd = extract32(insn, 0, 5); 5360 5361 if (setflag && opcode != 0) { 5362 unallocated_encoding(s); 5363 return; 5364 } 5365 5366 switch (opcode) { 5367 case 0: /* SUBP(S) */ 5368 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5369 goto do_unallocated; 5370 } else { 5371 TCGv_i64 tcg_n, tcg_m, tcg_d; 5372 5373 tcg_n = read_cpu_reg_sp(s, rn, true); 5374 tcg_m = read_cpu_reg_sp(s, rm, true); 5375 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5376 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5377 tcg_d = cpu_reg(s, rd); 5378 5379 if (setflag) { 5380 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5381 } else { 5382 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5383 } 5384 } 5385 break; 5386 case 2: /* UDIV */ 5387 handle_div(s, false, sf, rm, rn, rd); 5388 break; 5389 case 3: /* SDIV */ 5390 handle_div(s, true, sf, rm, rn, rd); 5391 break; 5392 case 4: /* IRG */ 5393 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5394 goto do_unallocated; 5395 } 5396 if (s->ata) { 5397 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5398 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5399 } else { 5400 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5401 cpu_reg_sp(s, rn)); 5402 } 5403 break; 5404 case 5: /* GMI */ 5405 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5406 goto do_unallocated; 5407 } else { 5408 TCGv_i64 t = tcg_temp_new_i64(); 5409 5410 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5411 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5412 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5413 } 5414 break; 5415 case 8: /* LSLV */ 5416 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5417 break; 5418 case 9: /* LSRV */ 5419 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5420 break; 5421 case 10: /* ASRV */ 5422 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5423 break; 5424 case 11: /* RORV */ 5425 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5426 break; 5427 case 12: /* PACGA */ 5428 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5429 goto do_unallocated; 5430 } 5431 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5432 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5433 break; 5434 case 16: 5435 case 17: 5436 case 18: 5437 case 19: 5438 case 20: 5439 case 21: 5440 case 22: 5441 case 23: /* CRC32 */ 5442 { 5443 int sz = extract32(opcode, 0, 2); 5444 bool crc32c = extract32(opcode, 2, 1); 5445 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5446 break; 5447 } 5448 default: 5449 do_unallocated: 5450 unallocated_encoding(s); 5451 break; 5452 } 5453 } 5454 5455 /* 5456 * Data processing - register 5457 * 31 30 29 28 25 21 20 16 10 0 5458 * +--+---+--+---+-------+-----+-------+-------+---------+ 5459 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5460 * +--+---+--+---+-------+-----+-------+-------+---------+ 5461 */ 5462 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5463 { 5464 int op0 = extract32(insn, 30, 1); 5465 int op1 = extract32(insn, 28, 1); 5466 int op2 = extract32(insn, 21, 4); 5467 int op3 = extract32(insn, 10, 6); 5468 5469 if (!op1) { 5470 if (op2 & 8) { 5471 if (op2 & 1) { 5472 /* Add/sub (extended register) */ 5473 disas_add_sub_ext_reg(s, insn); 5474 } else { 5475 /* Add/sub (shifted register) */ 5476 disas_add_sub_reg(s, insn); 5477 } 5478 } else { 5479 /* Logical (shifted register) */ 5480 disas_logic_reg(s, insn); 5481 } 5482 return; 5483 } 5484 5485 switch (op2) { 5486 case 0x0: 5487 switch (op3) { 5488 case 0x00: /* Add/subtract (with carry) */ 5489 disas_adc_sbc(s, insn); 5490 break; 5491 5492 case 0x01: /* Rotate right into flags */ 5493 case 0x21: 5494 disas_rotate_right_into_flags(s, insn); 5495 break; 5496 5497 case 0x02: /* Evaluate into flags */ 5498 case 0x12: 5499 case 0x22: 5500 case 0x32: 5501 disas_evaluate_into_flags(s, insn); 5502 break; 5503 5504 default: 5505 goto do_unallocated; 5506 } 5507 break; 5508 5509 case 0x2: /* Conditional compare */ 5510 disas_cc(s, insn); /* both imm and reg forms */ 5511 break; 5512 5513 case 0x4: /* Conditional select */ 5514 disas_cond_select(s, insn); 5515 break; 5516 5517 case 0x6: /* Data-processing */ 5518 if (op0) { /* (1 source) */ 5519 disas_data_proc_1src(s, insn); 5520 } else { /* (2 source) */ 5521 disas_data_proc_2src(s, insn); 5522 } 5523 break; 5524 case 0x8 ... 0xf: /* (3 source) */ 5525 disas_data_proc_3src(s, insn); 5526 break; 5527 5528 default: 5529 do_unallocated: 5530 unallocated_encoding(s); 5531 break; 5532 } 5533 } 5534 5535 static void handle_fp_compare(DisasContext *s, int size, 5536 unsigned int rn, unsigned int rm, 5537 bool cmp_with_zero, bool signal_all_nans) 5538 { 5539 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5540 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5541 5542 if (size == MO_64) { 5543 TCGv_i64 tcg_vn, tcg_vm; 5544 5545 tcg_vn = read_fp_dreg(s, rn); 5546 if (cmp_with_zero) { 5547 tcg_vm = tcg_constant_i64(0); 5548 } else { 5549 tcg_vm = read_fp_dreg(s, rm); 5550 } 5551 if (signal_all_nans) { 5552 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5553 } else { 5554 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5555 } 5556 } else { 5557 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5558 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5559 5560 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5561 if (cmp_with_zero) { 5562 tcg_gen_movi_i32(tcg_vm, 0); 5563 } else { 5564 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5565 } 5566 5567 switch (size) { 5568 case MO_32: 5569 if (signal_all_nans) { 5570 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5571 } else { 5572 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5573 } 5574 break; 5575 case MO_16: 5576 if (signal_all_nans) { 5577 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5578 } else { 5579 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5580 } 5581 break; 5582 default: 5583 g_assert_not_reached(); 5584 } 5585 } 5586 5587 gen_set_nzcv(tcg_flags); 5588 } 5589 5590 /* Floating point compare 5591 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5592 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5593 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5594 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5595 */ 5596 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5597 { 5598 unsigned int mos, type, rm, op, rn, opc, op2r; 5599 int size; 5600 5601 mos = extract32(insn, 29, 3); 5602 type = extract32(insn, 22, 2); 5603 rm = extract32(insn, 16, 5); 5604 op = extract32(insn, 14, 2); 5605 rn = extract32(insn, 5, 5); 5606 opc = extract32(insn, 3, 2); 5607 op2r = extract32(insn, 0, 3); 5608 5609 if (mos || op || op2r) { 5610 unallocated_encoding(s); 5611 return; 5612 } 5613 5614 switch (type) { 5615 case 0: 5616 size = MO_32; 5617 break; 5618 case 1: 5619 size = MO_64; 5620 break; 5621 case 3: 5622 size = MO_16; 5623 if (dc_isar_feature(aa64_fp16, s)) { 5624 break; 5625 } 5626 /* fallthru */ 5627 default: 5628 unallocated_encoding(s); 5629 return; 5630 } 5631 5632 if (!fp_access_check(s)) { 5633 return; 5634 } 5635 5636 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5637 } 5638 5639 /* Floating point conditional compare 5640 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5641 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5642 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5643 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5644 */ 5645 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5646 { 5647 unsigned int mos, type, rm, cond, rn, op, nzcv; 5648 TCGLabel *label_continue = NULL; 5649 int size; 5650 5651 mos = extract32(insn, 29, 3); 5652 type = extract32(insn, 22, 2); 5653 rm = extract32(insn, 16, 5); 5654 cond = extract32(insn, 12, 4); 5655 rn = extract32(insn, 5, 5); 5656 op = extract32(insn, 4, 1); 5657 nzcv = extract32(insn, 0, 4); 5658 5659 if (mos) { 5660 unallocated_encoding(s); 5661 return; 5662 } 5663 5664 switch (type) { 5665 case 0: 5666 size = MO_32; 5667 break; 5668 case 1: 5669 size = MO_64; 5670 break; 5671 case 3: 5672 size = MO_16; 5673 if (dc_isar_feature(aa64_fp16, s)) { 5674 break; 5675 } 5676 /* fallthru */ 5677 default: 5678 unallocated_encoding(s); 5679 return; 5680 } 5681 5682 if (!fp_access_check(s)) { 5683 return; 5684 } 5685 5686 if (cond < 0x0e) { /* not always */ 5687 TCGLabel *label_match = gen_new_label(); 5688 label_continue = gen_new_label(); 5689 arm_gen_test_cc(cond, label_match); 5690 /* nomatch: */ 5691 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5692 tcg_gen_br(label_continue); 5693 gen_set_label(label_match); 5694 } 5695 5696 handle_fp_compare(s, size, rn, rm, false, op); 5697 5698 if (cond < 0x0e) { 5699 gen_set_label(label_continue); 5700 } 5701 } 5702 5703 /* Floating point conditional select 5704 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5705 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5706 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5707 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5708 */ 5709 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5710 { 5711 unsigned int mos, type, rm, cond, rn, rd; 5712 TCGv_i64 t_true, t_false; 5713 DisasCompare64 c; 5714 MemOp sz; 5715 5716 mos = extract32(insn, 29, 3); 5717 type = extract32(insn, 22, 2); 5718 rm = extract32(insn, 16, 5); 5719 cond = extract32(insn, 12, 4); 5720 rn = extract32(insn, 5, 5); 5721 rd = extract32(insn, 0, 5); 5722 5723 if (mos) { 5724 unallocated_encoding(s); 5725 return; 5726 } 5727 5728 switch (type) { 5729 case 0: 5730 sz = MO_32; 5731 break; 5732 case 1: 5733 sz = MO_64; 5734 break; 5735 case 3: 5736 sz = MO_16; 5737 if (dc_isar_feature(aa64_fp16, s)) { 5738 break; 5739 } 5740 /* fallthru */ 5741 default: 5742 unallocated_encoding(s); 5743 return; 5744 } 5745 5746 if (!fp_access_check(s)) { 5747 return; 5748 } 5749 5750 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5751 t_true = tcg_temp_new_i64(); 5752 t_false = tcg_temp_new_i64(); 5753 read_vec_element(s, t_true, rn, 0, sz); 5754 read_vec_element(s, t_false, rm, 0, sz); 5755 5756 a64_test_cc(&c, cond); 5757 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5758 t_true, t_false); 5759 5760 /* Note that sregs & hregs write back zeros to the high bits, 5761 and we've already done the zero-extension. */ 5762 write_fp_dreg(s, rd, t_true); 5763 } 5764 5765 /* Floating-point data-processing (1 source) - half precision */ 5766 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5767 { 5768 TCGv_ptr fpst = NULL; 5769 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5770 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5771 5772 switch (opcode) { 5773 case 0x0: /* FMOV */ 5774 tcg_gen_mov_i32(tcg_res, tcg_op); 5775 break; 5776 case 0x1: /* FABS */ 5777 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5778 break; 5779 case 0x2: /* FNEG */ 5780 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5781 break; 5782 case 0x3: /* FSQRT */ 5783 fpst = fpstatus_ptr(FPST_FPCR_F16); 5784 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5785 break; 5786 case 0x8: /* FRINTN */ 5787 case 0x9: /* FRINTP */ 5788 case 0xa: /* FRINTM */ 5789 case 0xb: /* FRINTZ */ 5790 case 0xc: /* FRINTA */ 5791 { 5792 TCGv_i32 tcg_rmode; 5793 5794 fpst = fpstatus_ptr(FPST_FPCR_F16); 5795 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5796 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5797 gen_restore_rmode(tcg_rmode, fpst); 5798 break; 5799 } 5800 case 0xe: /* FRINTX */ 5801 fpst = fpstatus_ptr(FPST_FPCR_F16); 5802 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5803 break; 5804 case 0xf: /* FRINTI */ 5805 fpst = fpstatus_ptr(FPST_FPCR_F16); 5806 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5807 break; 5808 default: 5809 g_assert_not_reached(); 5810 } 5811 5812 write_fp_sreg(s, rd, tcg_res); 5813 } 5814 5815 /* Floating-point data-processing (1 source) - single precision */ 5816 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5817 { 5818 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5819 TCGv_i32 tcg_op, tcg_res; 5820 TCGv_ptr fpst; 5821 int rmode = -1; 5822 5823 tcg_op = read_fp_sreg(s, rn); 5824 tcg_res = tcg_temp_new_i32(); 5825 5826 switch (opcode) { 5827 case 0x0: /* FMOV */ 5828 tcg_gen_mov_i32(tcg_res, tcg_op); 5829 goto done; 5830 case 0x1: /* FABS */ 5831 gen_helper_vfp_abss(tcg_res, tcg_op); 5832 goto done; 5833 case 0x2: /* FNEG */ 5834 gen_helper_vfp_negs(tcg_res, tcg_op); 5835 goto done; 5836 case 0x3: /* FSQRT */ 5837 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 5838 goto done; 5839 case 0x6: /* BFCVT */ 5840 gen_fpst = gen_helper_bfcvt; 5841 break; 5842 case 0x8: /* FRINTN */ 5843 case 0x9: /* FRINTP */ 5844 case 0xa: /* FRINTM */ 5845 case 0xb: /* FRINTZ */ 5846 case 0xc: /* FRINTA */ 5847 rmode = opcode & 7; 5848 gen_fpst = gen_helper_rints; 5849 break; 5850 case 0xe: /* FRINTX */ 5851 gen_fpst = gen_helper_rints_exact; 5852 break; 5853 case 0xf: /* FRINTI */ 5854 gen_fpst = gen_helper_rints; 5855 break; 5856 case 0x10: /* FRINT32Z */ 5857 rmode = FPROUNDING_ZERO; 5858 gen_fpst = gen_helper_frint32_s; 5859 break; 5860 case 0x11: /* FRINT32X */ 5861 gen_fpst = gen_helper_frint32_s; 5862 break; 5863 case 0x12: /* FRINT64Z */ 5864 rmode = FPROUNDING_ZERO; 5865 gen_fpst = gen_helper_frint64_s; 5866 break; 5867 case 0x13: /* FRINT64X */ 5868 gen_fpst = gen_helper_frint64_s; 5869 break; 5870 default: 5871 g_assert_not_reached(); 5872 } 5873 5874 fpst = fpstatus_ptr(FPST_FPCR); 5875 if (rmode >= 0) { 5876 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5877 gen_fpst(tcg_res, tcg_op, fpst); 5878 gen_restore_rmode(tcg_rmode, fpst); 5879 } else { 5880 gen_fpst(tcg_res, tcg_op, fpst); 5881 } 5882 5883 done: 5884 write_fp_sreg(s, rd, tcg_res); 5885 } 5886 5887 /* Floating-point data-processing (1 source) - double precision */ 5888 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 5889 { 5890 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 5891 TCGv_i64 tcg_op, tcg_res; 5892 TCGv_ptr fpst; 5893 int rmode = -1; 5894 5895 switch (opcode) { 5896 case 0x0: /* FMOV */ 5897 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 5898 return; 5899 } 5900 5901 tcg_op = read_fp_dreg(s, rn); 5902 tcg_res = tcg_temp_new_i64(); 5903 5904 switch (opcode) { 5905 case 0x1: /* FABS */ 5906 gen_helper_vfp_absd(tcg_res, tcg_op); 5907 goto done; 5908 case 0x2: /* FNEG */ 5909 gen_helper_vfp_negd(tcg_res, tcg_op); 5910 goto done; 5911 case 0x3: /* FSQRT */ 5912 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 5913 goto done; 5914 case 0x8: /* FRINTN */ 5915 case 0x9: /* FRINTP */ 5916 case 0xa: /* FRINTM */ 5917 case 0xb: /* FRINTZ */ 5918 case 0xc: /* FRINTA */ 5919 rmode = opcode & 7; 5920 gen_fpst = gen_helper_rintd; 5921 break; 5922 case 0xe: /* FRINTX */ 5923 gen_fpst = gen_helper_rintd_exact; 5924 break; 5925 case 0xf: /* FRINTI */ 5926 gen_fpst = gen_helper_rintd; 5927 break; 5928 case 0x10: /* FRINT32Z */ 5929 rmode = FPROUNDING_ZERO; 5930 gen_fpst = gen_helper_frint32_d; 5931 break; 5932 case 0x11: /* FRINT32X */ 5933 gen_fpst = gen_helper_frint32_d; 5934 break; 5935 case 0x12: /* FRINT64Z */ 5936 rmode = FPROUNDING_ZERO; 5937 gen_fpst = gen_helper_frint64_d; 5938 break; 5939 case 0x13: /* FRINT64X */ 5940 gen_fpst = gen_helper_frint64_d; 5941 break; 5942 default: 5943 g_assert_not_reached(); 5944 } 5945 5946 fpst = fpstatus_ptr(FPST_FPCR); 5947 if (rmode >= 0) { 5948 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5949 gen_fpst(tcg_res, tcg_op, fpst); 5950 gen_restore_rmode(tcg_rmode, fpst); 5951 } else { 5952 gen_fpst(tcg_res, tcg_op, fpst); 5953 } 5954 5955 done: 5956 write_fp_dreg(s, rd, tcg_res); 5957 } 5958 5959 static void handle_fp_fcvt(DisasContext *s, int opcode, 5960 int rd, int rn, int dtype, int ntype) 5961 { 5962 switch (ntype) { 5963 case 0x0: 5964 { 5965 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 5966 if (dtype == 1) { 5967 /* Single to double */ 5968 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 5969 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 5970 write_fp_dreg(s, rd, tcg_rd); 5971 } else { 5972 /* Single to half */ 5973 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5974 TCGv_i32 ahp = get_ahp_flag(); 5975 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 5976 5977 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 5978 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 5979 write_fp_sreg(s, rd, tcg_rd); 5980 } 5981 break; 5982 } 5983 case 0x1: 5984 { 5985 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 5986 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5987 if (dtype == 0) { 5988 /* Double to single */ 5989 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 5990 } else { 5991 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 5992 TCGv_i32 ahp = get_ahp_flag(); 5993 /* Double to half */ 5994 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 5995 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 5996 } 5997 write_fp_sreg(s, rd, tcg_rd); 5998 break; 5999 } 6000 case 0x3: 6001 { 6002 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6003 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6004 TCGv_i32 tcg_ahp = get_ahp_flag(); 6005 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6006 if (dtype == 0) { 6007 /* Half to single */ 6008 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6009 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6010 write_fp_sreg(s, rd, tcg_rd); 6011 } else { 6012 /* Half to double */ 6013 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6014 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6015 write_fp_dreg(s, rd, tcg_rd); 6016 } 6017 break; 6018 } 6019 default: 6020 g_assert_not_reached(); 6021 } 6022 } 6023 6024 /* Floating point data-processing (1 source) 6025 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6026 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6027 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6028 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6029 */ 6030 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6031 { 6032 int mos = extract32(insn, 29, 3); 6033 int type = extract32(insn, 22, 2); 6034 int opcode = extract32(insn, 15, 6); 6035 int rn = extract32(insn, 5, 5); 6036 int rd = extract32(insn, 0, 5); 6037 6038 if (mos) { 6039 goto do_unallocated; 6040 } 6041 6042 switch (opcode) { 6043 case 0x4: case 0x5: case 0x7: 6044 { 6045 /* FCVT between half, single and double precision */ 6046 int dtype = extract32(opcode, 0, 2); 6047 if (type == 2 || dtype == type) { 6048 goto do_unallocated; 6049 } 6050 if (!fp_access_check(s)) { 6051 return; 6052 } 6053 6054 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6055 break; 6056 } 6057 6058 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6059 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6060 goto do_unallocated; 6061 } 6062 /* fall through */ 6063 case 0x0 ... 0x3: 6064 case 0x8 ... 0xc: 6065 case 0xe ... 0xf: 6066 /* 32-to-32 and 64-to-64 ops */ 6067 switch (type) { 6068 case 0: 6069 if (!fp_access_check(s)) { 6070 return; 6071 } 6072 handle_fp_1src_single(s, opcode, rd, rn); 6073 break; 6074 case 1: 6075 if (!fp_access_check(s)) { 6076 return; 6077 } 6078 handle_fp_1src_double(s, opcode, rd, rn); 6079 break; 6080 case 3: 6081 if (!dc_isar_feature(aa64_fp16, s)) { 6082 goto do_unallocated; 6083 } 6084 6085 if (!fp_access_check(s)) { 6086 return; 6087 } 6088 handle_fp_1src_half(s, opcode, rd, rn); 6089 break; 6090 default: 6091 goto do_unallocated; 6092 } 6093 break; 6094 6095 case 0x6: 6096 switch (type) { 6097 case 1: /* BFCVT */ 6098 if (!dc_isar_feature(aa64_bf16, s)) { 6099 goto do_unallocated; 6100 } 6101 if (!fp_access_check(s)) { 6102 return; 6103 } 6104 handle_fp_1src_single(s, opcode, rd, rn); 6105 break; 6106 default: 6107 goto do_unallocated; 6108 } 6109 break; 6110 6111 default: 6112 do_unallocated: 6113 unallocated_encoding(s); 6114 break; 6115 } 6116 } 6117 6118 /* Floating-point data-processing (2 source) - single precision */ 6119 static void handle_fp_2src_single(DisasContext *s, int opcode, 6120 int rd, int rn, int rm) 6121 { 6122 TCGv_i32 tcg_op1; 6123 TCGv_i32 tcg_op2; 6124 TCGv_i32 tcg_res; 6125 TCGv_ptr fpst; 6126 6127 tcg_res = tcg_temp_new_i32(); 6128 fpst = fpstatus_ptr(FPST_FPCR); 6129 tcg_op1 = read_fp_sreg(s, rn); 6130 tcg_op2 = read_fp_sreg(s, rm); 6131 6132 switch (opcode) { 6133 case 0x0: /* FMUL */ 6134 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6135 break; 6136 case 0x1: /* FDIV */ 6137 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6138 break; 6139 case 0x2: /* FADD */ 6140 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6141 break; 6142 case 0x3: /* FSUB */ 6143 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6144 break; 6145 case 0x4: /* FMAX */ 6146 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6147 break; 6148 case 0x5: /* FMIN */ 6149 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6150 break; 6151 case 0x6: /* FMAXNM */ 6152 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6153 break; 6154 case 0x7: /* FMINNM */ 6155 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6156 break; 6157 case 0x8: /* FNMUL */ 6158 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6159 gen_helper_vfp_negs(tcg_res, tcg_res); 6160 break; 6161 } 6162 6163 write_fp_sreg(s, rd, tcg_res); 6164 } 6165 6166 /* Floating-point data-processing (2 source) - double precision */ 6167 static void handle_fp_2src_double(DisasContext *s, int opcode, 6168 int rd, int rn, int rm) 6169 { 6170 TCGv_i64 tcg_op1; 6171 TCGv_i64 tcg_op2; 6172 TCGv_i64 tcg_res; 6173 TCGv_ptr fpst; 6174 6175 tcg_res = tcg_temp_new_i64(); 6176 fpst = fpstatus_ptr(FPST_FPCR); 6177 tcg_op1 = read_fp_dreg(s, rn); 6178 tcg_op2 = read_fp_dreg(s, rm); 6179 6180 switch (opcode) { 6181 case 0x0: /* FMUL */ 6182 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6183 break; 6184 case 0x1: /* FDIV */ 6185 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6186 break; 6187 case 0x2: /* FADD */ 6188 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6189 break; 6190 case 0x3: /* FSUB */ 6191 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6192 break; 6193 case 0x4: /* FMAX */ 6194 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6195 break; 6196 case 0x5: /* FMIN */ 6197 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6198 break; 6199 case 0x6: /* FMAXNM */ 6200 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6201 break; 6202 case 0x7: /* FMINNM */ 6203 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6204 break; 6205 case 0x8: /* FNMUL */ 6206 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6207 gen_helper_vfp_negd(tcg_res, tcg_res); 6208 break; 6209 } 6210 6211 write_fp_dreg(s, rd, tcg_res); 6212 } 6213 6214 /* Floating-point data-processing (2 source) - half precision */ 6215 static void handle_fp_2src_half(DisasContext *s, int opcode, 6216 int rd, int rn, int rm) 6217 { 6218 TCGv_i32 tcg_op1; 6219 TCGv_i32 tcg_op2; 6220 TCGv_i32 tcg_res; 6221 TCGv_ptr fpst; 6222 6223 tcg_res = tcg_temp_new_i32(); 6224 fpst = fpstatus_ptr(FPST_FPCR_F16); 6225 tcg_op1 = read_fp_hreg(s, rn); 6226 tcg_op2 = read_fp_hreg(s, rm); 6227 6228 switch (opcode) { 6229 case 0x0: /* FMUL */ 6230 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6231 break; 6232 case 0x1: /* FDIV */ 6233 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6234 break; 6235 case 0x2: /* FADD */ 6236 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6237 break; 6238 case 0x3: /* FSUB */ 6239 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6240 break; 6241 case 0x4: /* FMAX */ 6242 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6243 break; 6244 case 0x5: /* FMIN */ 6245 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6246 break; 6247 case 0x6: /* FMAXNM */ 6248 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6249 break; 6250 case 0x7: /* FMINNM */ 6251 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6252 break; 6253 case 0x8: /* FNMUL */ 6254 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6255 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6256 break; 6257 default: 6258 g_assert_not_reached(); 6259 } 6260 6261 write_fp_sreg(s, rd, tcg_res); 6262 } 6263 6264 /* Floating point data-processing (2 source) 6265 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6266 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6267 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6268 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6269 */ 6270 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6271 { 6272 int mos = extract32(insn, 29, 3); 6273 int type = extract32(insn, 22, 2); 6274 int rd = extract32(insn, 0, 5); 6275 int rn = extract32(insn, 5, 5); 6276 int rm = extract32(insn, 16, 5); 6277 int opcode = extract32(insn, 12, 4); 6278 6279 if (opcode > 8 || mos) { 6280 unallocated_encoding(s); 6281 return; 6282 } 6283 6284 switch (type) { 6285 case 0: 6286 if (!fp_access_check(s)) { 6287 return; 6288 } 6289 handle_fp_2src_single(s, opcode, rd, rn, rm); 6290 break; 6291 case 1: 6292 if (!fp_access_check(s)) { 6293 return; 6294 } 6295 handle_fp_2src_double(s, opcode, rd, rn, rm); 6296 break; 6297 case 3: 6298 if (!dc_isar_feature(aa64_fp16, s)) { 6299 unallocated_encoding(s); 6300 return; 6301 } 6302 if (!fp_access_check(s)) { 6303 return; 6304 } 6305 handle_fp_2src_half(s, opcode, rd, rn, rm); 6306 break; 6307 default: 6308 unallocated_encoding(s); 6309 } 6310 } 6311 6312 /* Floating-point data-processing (3 source) - single precision */ 6313 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6314 int rd, int rn, int rm, int ra) 6315 { 6316 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6317 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6318 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6319 6320 tcg_op1 = read_fp_sreg(s, rn); 6321 tcg_op2 = read_fp_sreg(s, rm); 6322 tcg_op3 = read_fp_sreg(s, ra); 6323 6324 /* These are fused multiply-add, and must be done as one 6325 * floating point operation with no rounding between the 6326 * multiplication and addition steps. 6327 * NB that doing the negations here as separate steps is 6328 * correct : an input NaN should come out with its sign bit 6329 * flipped if it is a negated-input. 6330 */ 6331 if (o1 == true) { 6332 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6333 } 6334 6335 if (o0 != o1) { 6336 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6337 } 6338 6339 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6340 6341 write_fp_sreg(s, rd, tcg_res); 6342 } 6343 6344 /* Floating-point data-processing (3 source) - double precision */ 6345 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6346 int rd, int rn, int rm, int ra) 6347 { 6348 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6349 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6350 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6351 6352 tcg_op1 = read_fp_dreg(s, rn); 6353 tcg_op2 = read_fp_dreg(s, rm); 6354 tcg_op3 = read_fp_dreg(s, ra); 6355 6356 /* These are fused multiply-add, and must be done as one 6357 * floating point operation with no rounding between the 6358 * multiplication and addition steps. 6359 * NB that doing the negations here as separate steps is 6360 * correct : an input NaN should come out with its sign bit 6361 * flipped if it is a negated-input. 6362 */ 6363 if (o1 == true) { 6364 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6365 } 6366 6367 if (o0 != o1) { 6368 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6369 } 6370 6371 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6372 6373 write_fp_dreg(s, rd, tcg_res); 6374 } 6375 6376 /* Floating-point data-processing (3 source) - half precision */ 6377 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6378 int rd, int rn, int rm, int ra) 6379 { 6380 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6381 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6382 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6383 6384 tcg_op1 = read_fp_hreg(s, rn); 6385 tcg_op2 = read_fp_hreg(s, rm); 6386 tcg_op3 = read_fp_hreg(s, ra); 6387 6388 /* These are fused multiply-add, and must be done as one 6389 * floating point operation with no rounding between the 6390 * multiplication and addition steps. 6391 * NB that doing the negations here as separate steps is 6392 * correct : an input NaN should come out with its sign bit 6393 * flipped if it is a negated-input. 6394 */ 6395 if (o1 == true) { 6396 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6397 } 6398 6399 if (o0 != o1) { 6400 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6401 } 6402 6403 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6404 6405 write_fp_sreg(s, rd, tcg_res); 6406 } 6407 6408 /* Floating point data-processing (3 source) 6409 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6410 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6411 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6412 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6413 */ 6414 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6415 { 6416 int mos = extract32(insn, 29, 3); 6417 int type = extract32(insn, 22, 2); 6418 int rd = extract32(insn, 0, 5); 6419 int rn = extract32(insn, 5, 5); 6420 int ra = extract32(insn, 10, 5); 6421 int rm = extract32(insn, 16, 5); 6422 bool o0 = extract32(insn, 15, 1); 6423 bool o1 = extract32(insn, 21, 1); 6424 6425 if (mos) { 6426 unallocated_encoding(s); 6427 return; 6428 } 6429 6430 switch (type) { 6431 case 0: 6432 if (!fp_access_check(s)) { 6433 return; 6434 } 6435 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6436 break; 6437 case 1: 6438 if (!fp_access_check(s)) { 6439 return; 6440 } 6441 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6442 break; 6443 case 3: 6444 if (!dc_isar_feature(aa64_fp16, s)) { 6445 unallocated_encoding(s); 6446 return; 6447 } 6448 if (!fp_access_check(s)) { 6449 return; 6450 } 6451 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6452 break; 6453 default: 6454 unallocated_encoding(s); 6455 } 6456 } 6457 6458 /* Floating point immediate 6459 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6460 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6461 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6462 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6463 */ 6464 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6465 { 6466 int rd = extract32(insn, 0, 5); 6467 int imm5 = extract32(insn, 5, 5); 6468 int imm8 = extract32(insn, 13, 8); 6469 int type = extract32(insn, 22, 2); 6470 int mos = extract32(insn, 29, 3); 6471 uint64_t imm; 6472 MemOp sz; 6473 6474 if (mos || imm5) { 6475 unallocated_encoding(s); 6476 return; 6477 } 6478 6479 switch (type) { 6480 case 0: 6481 sz = MO_32; 6482 break; 6483 case 1: 6484 sz = MO_64; 6485 break; 6486 case 3: 6487 sz = MO_16; 6488 if (dc_isar_feature(aa64_fp16, s)) { 6489 break; 6490 } 6491 /* fallthru */ 6492 default: 6493 unallocated_encoding(s); 6494 return; 6495 } 6496 6497 if (!fp_access_check(s)) { 6498 return; 6499 } 6500 6501 imm = vfp_expand_imm(sz, imm8); 6502 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6503 } 6504 6505 /* Handle floating point <=> fixed point conversions. Note that we can 6506 * also deal with fp <=> integer conversions as a special case (scale == 64) 6507 * OPTME: consider handling that special case specially or at least skipping 6508 * the call to scalbn in the helpers for zero shifts. 6509 */ 6510 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6511 bool itof, int rmode, int scale, int sf, int type) 6512 { 6513 bool is_signed = !(opcode & 1); 6514 TCGv_ptr tcg_fpstatus; 6515 TCGv_i32 tcg_shift, tcg_single; 6516 TCGv_i64 tcg_double; 6517 6518 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6519 6520 tcg_shift = tcg_constant_i32(64 - scale); 6521 6522 if (itof) { 6523 TCGv_i64 tcg_int = cpu_reg(s, rn); 6524 if (!sf) { 6525 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6526 6527 if (is_signed) { 6528 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6529 } else { 6530 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6531 } 6532 6533 tcg_int = tcg_extend; 6534 } 6535 6536 switch (type) { 6537 case 1: /* float64 */ 6538 tcg_double = tcg_temp_new_i64(); 6539 if (is_signed) { 6540 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6541 tcg_shift, tcg_fpstatus); 6542 } else { 6543 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6544 tcg_shift, tcg_fpstatus); 6545 } 6546 write_fp_dreg(s, rd, tcg_double); 6547 break; 6548 6549 case 0: /* float32 */ 6550 tcg_single = tcg_temp_new_i32(); 6551 if (is_signed) { 6552 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6553 tcg_shift, tcg_fpstatus); 6554 } else { 6555 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6556 tcg_shift, tcg_fpstatus); 6557 } 6558 write_fp_sreg(s, rd, tcg_single); 6559 break; 6560 6561 case 3: /* float16 */ 6562 tcg_single = tcg_temp_new_i32(); 6563 if (is_signed) { 6564 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6565 tcg_shift, tcg_fpstatus); 6566 } else { 6567 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6568 tcg_shift, tcg_fpstatus); 6569 } 6570 write_fp_sreg(s, rd, tcg_single); 6571 break; 6572 6573 default: 6574 g_assert_not_reached(); 6575 } 6576 } else { 6577 TCGv_i64 tcg_int = cpu_reg(s, rd); 6578 TCGv_i32 tcg_rmode; 6579 6580 if (extract32(opcode, 2, 1)) { 6581 /* There are too many rounding modes to all fit into rmode, 6582 * so FCVTA[US] is a special case. 6583 */ 6584 rmode = FPROUNDING_TIEAWAY; 6585 } 6586 6587 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6588 6589 switch (type) { 6590 case 1: /* float64 */ 6591 tcg_double = read_fp_dreg(s, rn); 6592 if (is_signed) { 6593 if (!sf) { 6594 gen_helper_vfp_tosld(tcg_int, tcg_double, 6595 tcg_shift, tcg_fpstatus); 6596 } else { 6597 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6598 tcg_shift, tcg_fpstatus); 6599 } 6600 } else { 6601 if (!sf) { 6602 gen_helper_vfp_tould(tcg_int, tcg_double, 6603 tcg_shift, tcg_fpstatus); 6604 } else { 6605 gen_helper_vfp_touqd(tcg_int, tcg_double, 6606 tcg_shift, tcg_fpstatus); 6607 } 6608 } 6609 if (!sf) { 6610 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6611 } 6612 break; 6613 6614 case 0: /* float32 */ 6615 tcg_single = read_fp_sreg(s, rn); 6616 if (sf) { 6617 if (is_signed) { 6618 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6619 tcg_shift, tcg_fpstatus); 6620 } else { 6621 gen_helper_vfp_touqs(tcg_int, tcg_single, 6622 tcg_shift, tcg_fpstatus); 6623 } 6624 } else { 6625 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6626 if (is_signed) { 6627 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6628 tcg_shift, tcg_fpstatus); 6629 } else { 6630 gen_helper_vfp_touls(tcg_dest, tcg_single, 6631 tcg_shift, tcg_fpstatus); 6632 } 6633 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6634 } 6635 break; 6636 6637 case 3: /* float16 */ 6638 tcg_single = read_fp_sreg(s, rn); 6639 if (sf) { 6640 if (is_signed) { 6641 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6642 tcg_shift, tcg_fpstatus); 6643 } else { 6644 gen_helper_vfp_touqh(tcg_int, tcg_single, 6645 tcg_shift, tcg_fpstatus); 6646 } 6647 } else { 6648 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6649 if (is_signed) { 6650 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6651 tcg_shift, tcg_fpstatus); 6652 } else { 6653 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6654 tcg_shift, tcg_fpstatus); 6655 } 6656 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6657 } 6658 break; 6659 6660 default: 6661 g_assert_not_reached(); 6662 } 6663 6664 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6665 } 6666 } 6667 6668 /* Floating point <-> fixed point conversions 6669 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6670 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6671 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6672 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6673 */ 6674 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6675 { 6676 int rd = extract32(insn, 0, 5); 6677 int rn = extract32(insn, 5, 5); 6678 int scale = extract32(insn, 10, 6); 6679 int opcode = extract32(insn, 16, 3); 6680 int rmode = extract32(insn, 19, 2); 6681 int type = extract32(insn, 22, 2); 6682 bool sbit = extract32(insn, 29, 1); 6683 bool sf = extract32(insn, 31, 1); 6684 bool itof; 6685 6686 if (sbit || (!sf && scale < 32)) { 6687 unallocated_encoding(s); 6688 return; 6689 } 6690 6691 switch (type) { 6692 case 0: /* float32 */ 6693 case 1: /* float64 */ 6694 break; 6695 case 3: /* float16 */ 6696 if (dc_isar_feature(aa64_fp16, s)) { 6697 break; 6698 } 6699 /* fallthru */ 6700 default: 6701 unallocated_encoding(s); 6702 return; 6703 } 6704 6705 switch ((rmode << 3) | opcode) { 6706 case 0x2: /* SCVTF */ 6707 case 0x3: /* UCVTF */ 6708 itof = true; 6709 break; 6710 case 0x18: /* FCVTZS */ 6711 case 0x19: /* FCVTZU */ 6712 itof = false; 6713 break; 6714 default: 6715 unallocated_encoding(s); 6716 return; 6717 } 6718 6719 if (!fp_access_check(s)) { 6720 return; 6721 } 6722 6723 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6724 } 6725 6726 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6727 { 6728 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6729 * without conversion. 6730 */ 6731 6732 if (itof) { 6733 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6734 TCGv_i64 tmp; 6735 6736 switch (type) { 6737 case 0: 6738 /* 32 bit */ 6739 tmp = tcg_temp_new_i64(); 6740 tcg_gen_ext32u_i64(tmp, tcg_rn); 6741 write_fp_dreg(s, rd, tmp); 6742 break; 6743 case 1: 6744 /* 64 bit */ 6745 write_fp_dreg(s, rd, tcg_rn); 6746 break; 6747 case 2: 6748 /* 64 bit to top half. */ 6749 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6750 clear_vec_high(s, true, rd); 6751 break; 6752 case 3: 6753 /* 16 bit */ 6754 tmp = tcg_temp_new_i64(); 6755 tcg_gen_ext16u_i64(tmp, tcg_rn); 6756 write_fp_dreg(s, rd, tmp); 6757 break; 6758 default: 6759 g_assert_not_reached(); 6760 } 6761 } else { 6762 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6763 6764 switch (type) { 6765 case 0: 6766 /* 32 bit */ 6767 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6768 break; 6769 case 1: 6770 /* 64 bit */ 6771 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6772 break; 6773 case 2: 6774 /* 64 bits from top half */ 6775 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6776 break; 6777 case 3: 6778 /* 16 bit */ 6779 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6780 break; 6781 default: 6782 g_assert_not_reached(); 6783 } 6784 } 6785 } 6786 6787 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6788 { 6789 TCGv_i64 t = read_fp_dreg(s, rn); 6790 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6791 6792 gen_helper_fjcvtzs(t, t, fpstatus); 6793 6794 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6795 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6796 tcg_gen_movi_i32(cpu_CF, 0); 6797 tcg_gen_movi_i32(cpu_NF, 0); 6798 tcg_gen_movi_i32(cpu_VF, 0); 6799 } 6800 6801 /* Floating point <-> integer conversions 6802 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6803 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6804 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6805 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6806 */ 6807 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6808 { 6809 int rd = extract32(insn, 0, 5); 6810 int rn = extract32(insn, 5, 5); 6811 int opcode = extract32(insn, 16, 3); 6812 int rmode = extract32(insn, 19, 2); 6813 int type = extract32(insn, 22, 2); 6814 bool sbit = extract32(insn, 29, 1); 6815 bool sf = extract32(insn, 31, 1); 6816 bool itof = false; 6817 6818 if (sbit) { 6819 goto do_unallocated; 6820 } 6821 6822 switch (opcode) { 6823 case 2: /* SCVTF */ 6824 case 3: /* UCVTF */ 6825 itof = true; 6826 /* fallthru */ 6827 case 4: /* FCVTAS */ 6828 case 5: /* FCVTAU */ 6829 if (rmode != 0) { 6830 goto do_unallocated; 6831 } 6832 /* fallthru */ 6833 case 0: /* FCVT[NPMZ]S */ 6834 case 1: /* FCVT[NPMZ]U */ 6835 switch (type) { 6836 case 0: /* float32 */ 6837 case 1: /* float64 */ 6838 break; 6839 case 3: /* float16 */ 6840 if (!dc_isar_feature(aa64_fp16, s)) { 6841 goto do_unallocated; 6842 } 6843 break; 6844 default: 6845 goto do_unallocated; 6846 } 6847 if (!fp_access_check(s)) { 6848 return; 6849 } 6850 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 6851 break; 6852 6853 default: 6854 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 6855 case 0b01100110: /* FMOV half <-> 32-bit int */ 6856 case 0b01100111: 6857 case 0b11100110: /* FMOV half <-> 64-bit int */ 6858 case 0b11100111: 6859 if (!dc_isar_feature(aa64_fp16, s)) { 6860 goto do_unallocated; 6861 } 6862 /* fallthru */ 6863 case 0b00000110: /* FMOV 32-bit */ 6864 case 0b00000111: 6865 case 0b10100110: /* FMOV 64-bit */ 6866 case 0b10100111: 6867 case 0b11001110: /* FMOV top half of 128-bit */ 6868 case 0b11001111: 6869 if (!fp_access_check(s)) { 6870 return; 6871 } 6872 itof = opcode & 1; 6873 handle_fmov(s, rd, rn, type, itof); 6874 break; 6875 6876 case 0b00111110: /* FJCVTZS */ 6877 if (!dc_isar_feature(aa64_jscvt, s)) { 6878 goto do_unallocated; 6879 } else if (fp_access_check(s)) { 6880 handle_fjcvtzs(s, rd, rn); 6881 } 6882 break; 6883 6884 default: 6885 do_unallocated: 6886 unallocated_encoding(s); 6887 return; 6888 } 6889 break; 6890 } 6891 } 6892 6893 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 6894 * 31 30 29 28 25 24 0 6895 * +---+---+---+---------+-----------------------------+ 6896 * | | 0 | | 1 1 1 1 | | 6897 * +---+---+---+---------+-----------------------------+ 6898 */ 6899 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 6900 { 6901 if (extract32(insn, 24, 1)) { 6902 /* Floating point data-processing (3 source) */ 6903 disas_fp_3src(s, insn); 6904 } else if (extract32(insn, 21, 1) == 0) { 6905 /* Floating point to fixed point conversions */ 6906 disas_fp_fixed_conv(s, insn); 6907 } else { 6908 switch (extract32(insn, 10, 2)) { 6909 case 1: 6910 /* Floating point conditional compare */ 6911 disas_fp_ccomp(s, insn); 6912 break; 6913 case 2: 6914 /* Floating point data-processing (2 source) */ 6915 disas_fp_2src(s, insn); 6916 break; 6917 case 3: 6918 /* Floating point conditional select */ 6919 disas_fp_csel(s, insn); 6920 break; 6921 case 0: 6922 switch (ctz32(extract32(insn, 12, 4))) { 6923 case 0: /* [15:12] == xxx1 */ 6924 /* Floating point immediate */ 6925 disas_fp_imm(s, insn); 6926 break; 6927 case 1: /* [15:12] == xx10 */ 6928 /* Floating point compare */ 6929 disas_fp_compare(s, insn); 6930 break; 6931 case 2: /* [15:12] == x100 */ 6932 /* Floating point data-processing (1 source) */ 6933 disas_fp_1src(s, insn); 6934 break; 6935 case 3: /* [15:12] == 1000 */ 6936 unallocated_encoding(s); 6937 break; 6938 default: /* [15:12] == 0000 */ 6939 /* Floating point <-> integer conversions */ 6940 disas_fp_int_conv(s, insn); 6941 break; 6942 } 6943 break; 6944 } 6945 } 6946 } 6947 6948 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 6949 int pos) 6950 { 6951 /* Extract 64 bits from the middle of two concatenated 64 bit 6952 * vector register slices left:right. The extracted bits start 6953 * at 'pos' bits into the right (least significant) side. 6954 * We return the result in tcg_right, and guarantee not to 6955 * trash tcg_left. 6956 */ 6957 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6958 assert(pos > 0 && pos < 64); 6959 6960 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 6961 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 6962 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 6963 } 6964 6965 /* EXT 6966 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 6967 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 6968 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 6969 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 6970 */ 6971 static void disas_simd_ext(DisasContext *s, uint32_t insn) 6972 { 6973 int is_q = extract32(insn, 30, 1); 6974 int op2 = extract32(insn, 22, 2); 6975 int imm4 = extract32(insn, 11, 4); 6976 int rm = extract32(insn, 16, 5); 6977 int rn = extract32(insn, 5, 5); 6978 int rd = extract32(insn, 0, 5); 6979 int pos = imm4 << 3; 6980 TCGv_i64 tcg_resl, tcg_resh; 6981 6982 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 6983 unallocated_encoding(s); 6984 return; 6985 } 6986 6987 if (!fp_access_check(s)) { 6988 return; 6989 } 6990 6991 tcg_resh = tcg_temp_new_i64(); 6992 tcg_resl = tcg_temp_new_i64(); 6993 6994 /* Vd gets bits starting at pos bits into Vm:Vn. This is 6995 * either extracting 128 bits from a 128:128 concatenation, or 6996 * extracting 64 bits from a 64:64 concatenation. 6997 */ 6998 if (!is_q) { 6999 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7000 if (pos != 0) { 7001 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7002 do_ext64(s, tcg_resh, tcg_resl, pos); 7003 } 7004 } else { 7005 TCGv_i64 tcg_hh; 7006 typedef struct { 7007 int reg; 7008 int elt; 7009 } EltPosns; 7010 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7011 EltPosns *elt = eltposns; 7012 7013 if (pos >= 64) { 7014 elt++; 7015 pos -= 64; 7016 } 7017 7018 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7019 elt++; 7020 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7021 elt++; 7022 if (pos != 0) { 7023 do_ext64(s, tcg_resh, tcg_resl, pos); 7024 tcg_hh = tcg_temp_new_i64(); 7025 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7026 do_ext64(s, tcg_hh, tcg_resh, pos); 7027 } 7028 } 7029 7030 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7031 if (is_q) { 7032 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7033 } 7034 clear_vec_high(s, is_q, rd); 7035 } 7036 7037 /* TBL/TBX 7038 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7039 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7040 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7041 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7042 */ 7043 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7044 { 7045 int op2 = extract32(insn, 22, 2); 7046 int is_q = extract32(insn, 30, 1); 7047 int rm = extract32(insn, 16, 5); 7048 int rn = extract32(insn, 5, 5); 7049 int rd = extract32(insn, 0, 5); 7050 int is_tbx = extract32(insn, 12, 1); 7051 int len = (extract32(insn, 13, 2) + 1) * 16; 7052 7053 if (op2 != 0) { 7054 unallocated_encoding(s); 7055 return; 7056 } 7057 7058 if (!fp_access_check(s)) { 7059 return; 7060 } 7061 7062 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7063 vec_full_reg_offset(s, rm), cpu_env, 7064 is_q ? 16 : 8, vec_full_reg_size(s), 7065 (len << 6) | (is_tbx << 5) | rn, 7066 gen_helper_simd_tblx); 7067 } 7068 7069 /* ZIP/UZP/TRN 7070 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7071 * +---+---+-------------+------+---+------+---+------------------+------+ 7072 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7073 * +---+---+-------------+------+---+------+---+------------------+------+ 7074 */ 7075 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7076 { 7077 int rd = extract32(insn, 0, 5); 7078 int rn = extract32(insn, 5, 5); 7079 int rm = extract32(insn, 16, 5); 7080 int size = extract32(insn, 22, 2); 7081 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7082 * bit 2 indicates 1 vs 2 variant of the insn. 7083 */ 7084 int opcode = extract32(insn, 12, 2); 7085 bool part = extract32(insn, 14, 1); 7086 bool is_q = extract32(insn, 30, 1); 7087 int esize = 8 << size; 7088 int i; 7089 int datasize = is_q ? 128 : 64; 7090 int elements = datasize / esize; 7091 TCGv_i64 tcg_res[2], tcg_ele; 7092 7093 if (opcode == 0 || (size == 3 && !is_q)) { 7094 unallocated_encoding(s); 7095 return; 7096 } 7097 7098 if (!fp_access_check(s)) { 7099 return; 7100 } 7101 7102 tcg_res[0] = tcg_temp_new_i64(); 7103 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7104 tcg_ele = tcg_temp_new_i64(); 7105 7106 for (i = 0; i < elements; i++) { 7107 int o, w; 7108 7109 switch (opcode) { 7110 case 1: /* UZP1/2 */ 7111 { 7112 int midpoint = elements / 2; 7113 if (i < midpoint) { 7114 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7115 } else { 7116 read_vec_element(s, tcg_ele, rm, 7117 2 * (i - midpoint) + part, size); 7118 } 7119 break; 7120 } 7121 case 2: /* TRN1/2 */ 7122 if (i & 1) { 7123 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7124 } else { 7125 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7126 } 7127 break; 7128 case 3: /* ZIP1/2 */ 7129 { 7130 int base = part * elements / 2; 7131 if (i & 1) { 7132 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7133 } else { 7134 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7135 } 7136 break; 7137 } 7138 default: 7139 g_assert_not_reached(); 7140 } 7141 7142 w = (i * esize) / 64; 7143 o = (i * esize) % 64; 7144 if (o == 0) { 7145 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7146 } else { 7147 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7148 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7149 } 7150 } 7151 7152 for (i = 0; i <= is_q; ++i) { 7153 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7154 } 7155 clear_vec_high(s, is_q, rd); 7156 } 7157 7158 /* 7159 * do_reduction_op helper 7160 * 7161 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7162 * important for correct NaN propagation that we do these 7163 * operations in exactly the order specified by the pseudocode. 7164 * 7165 * This is a recursive function, TCG temps should be freed by the 7166 * calling function once it is done with the values. 7167 */ 7168 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7169 int esize, int size, int vmap, TCGv_ptr fpst) 7170 { 7171 if (esize == size) { 7172 int element; 7173 MemOp msize = esize == 16 ? MO_16 : MO_32; 7174 TCGv_i32 tcg_elem; 7175 7176 /* We should have one register left here */ 7177 assert(ctpop8(vmap) == 1); 7178 element = ctz32(vmap); 7179 assert(element < 8); 7180 7181 tcg_elem = tcg_temp_new_i32(); 7182 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7183 return tcg_elem; 7184 } else { 7185 int bits = size / 2; 7186 int shift = ctpop8(vmap) / 2; 7187 int vmap_lo = (vmap >> shift) & vmap; 7188 int vmap_hi = (vmap & ~vmap_lo); 7189 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7190 7191 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7192 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7193 tcg_res = tcg_temp_new_i32(); 7194 7195 switch (fpopcode) { 7196 case 0x0c: /* fmaxnmv half-precision */ 7197 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7198 break; 7199 case 0x0f: /* fmaxv half-precision */ 7200 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7201 break; 7202 case 0x1c: /* fminnmv half-precision */ 7203 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7204 break; 7205 case 0x1f: /* fminv half-precision */ 7206 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7207 break; 7208 case 0x2c: /* fmaxnmv */ 7209 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7210 break; 7211 case 0x2f: /* fmaxv */ 7212 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7213 break; 7214 case 0x3c: /* fminnmv */ 7215 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7216 break; 7217 case 0x3f: /* fminv */ 7218 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7219 break; 7220 default: 7221 g_assert_not_reached(); 7222 } 7223 return tcg_res; 7224 } 7225 } 7226 7227 /* AdvSIMD across lanes 7228 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7229 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7230 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7231 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7232 */ 7233 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7234 { 7235 int rd = extract32(insn, 0, 5); 7236 int rn = extract32(insn, 5, 5); 7237 int size = extract32(insn, 22, 2); 7238 int opcode = extract32(insn, 12, 5); 7239 bool is_q = extract32(insn, 30, 1); 7240 bool is_u = extract32(insn, 29, 1); 7241 bool is_fp = false; 7242 bool is_min = false; 7243 int esize; 7244 int elements; 7245 int i; 7246 TCGv_i64 tcg_res, tcg_elt; 7247 7248 switch (opcode) { 7249 case 0x1b: /* ADDV */ 7250 if (is_u) { 7251 unallocated_encoding(s); 7252 return; 7253 } 7254 /* fall through */ 7255 case 0x3: /* SADDLV, UADDLV */ 7256 case 0xa: /* SMAXV, UMAXV */ 7257 case 0x1a: /* SMINV, UMINV */ 7258 if (size == 3 || (size == 2 && !is_q)) { 7259 unallocated_encoding(s); 7260 return; 7261 } 7262 break; 7263 case 0xc: /* FMAXNMV, FMINNMV */ 7264 case 0xf: /* FMAXV, FMINV */ 7265 /* Bit 1 of size field encodes min vs max and the actual size 7266 * depends on the encoding of the U bit. If not set (and FP16 7267 * enabled) then we do half-precision float instead of single 7268 * precision. 7269 */ 7270 is_min = extract32(size, 1, 1); 7271 is_fp = true; 7272 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7273 size = 1; 7274 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7275 unallocated_encoding(s); 7276 return; 7277 } else { 7278 size = 2; 7279 } 7280 break; 7281 default: 7282 unallocated_encoding(s); 7283 return; 7284 } 7285 7286 if (!fp_access_check(s)) { 7287 return; 7288 } 7289 7290 esize = 8 << size; 7291 elements = (is_q ? 128 : 64) / esize; 7292 7293 tcg_res = tcg_temp_new_i64(); 7294 tcg_elt = tcg_temp_new_i64(); 7295 7296 /* These instructions operate across all lanes of a vector 7297 * to produce a single result. We can guarantee that a 64 7298 * bit intermediate is sufficient: 7299 * + for [US]ADDLV the maximum element size is 32 bits, and 7300 * the result type is 64 bits 7301 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7302 * same as the element size, which is 32 bits at most 7303 * For the integer operations we can choose to work at 64 7304 * or 32 bits and truncate at the end; for simplicity 7305 * we use 64 bits always. The floating point 7306 * ops do require 32 bit intermediates, though. 7307 */ 7308 if (!is_fp) { 7309 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7310 7311 for (i = 1; i < elements; i++) { 7312 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7313 7314 switch (opcode) { 7315 case 0x03: /* SADDLV / UADDLV */ 7316 case 0x1b: /* ADDV */ 7317 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7318 break; 7319 case 0x0a: /* SMAXV / UMAXV */ 7320 if (is_u) { 7321 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7322 } else { 7323 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7324 } 7325 break; 7326 case 0x1a: /* SMINV / UMINV */ 7327 if (is_u) { 7328 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7329 } else { 7330 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7331 } 7332 break; 7333 default: 7334 g_assert_not_reached(); 7335 } 7336 7337 } 7338 } else { 7339 /* Floating point vector reduction ops which work across 32 7340 * bit (single) or 16 bit (half-precision) intermediates. 7341 * Note that correct NaN propagation requires that we do these 7342 * operations in exactly the order specified by the pseudocode. 7343 */ 7344 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7345 int fpopcode = opcode | is_min << 4 | is_u << 5; 7346 int vmap = (1 << elements) - 1; 7347 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7348 (is_q ? 128 : 64), vmap, fpst); 7349 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7350 } 7351 7352 /* Now truncate the result to the width required for the final output */ 7353 if (opcode == 0x03) { 7354 /* SADDLV, UADDLV: result is 2*esize */ 7355 size++; 7356 } 7357 7358 switch (size) { 7359 case 0: 7360 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7361 break; 7362 case 1: 7363 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7364 break; 7365 case 2: 7366 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7367 break; 7368 case 3: 7369 break; 7370 default: 7371 g_assert_not_reached(); 7372 } 7373 7374 write_fp_dreg(s, rd, tcg_res); 7375 } 7376 7377 /* DUP (Element, Vector) 7378 * 7379 * 31 30 29 21 20 16 15 10 9 5 4 0 7380 * +---+---+-------------------+--------+-------------+------+------+ 7381 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7382 * +---+---+-------------------+--------+-------------+------+------+ 7383 * 7384 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7385 */ 7386 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7387 int imm5) 7388 { 7389 int size = ctz32(imm5); 7390 int index; 7391 7392 if (size > 3 || (size == 3 && !is_q)) { 7393 unallocated_encoding(s); 7394 return; 7395 } 7396 7397 if (!fp_access_check(s)) { 7398 return; 7399 } 7400 7401 index = imm5 >> (size + 1); 7402 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7403 vec_reg_offset(s, rn, index, size), 7404 is_q ? 16 : 8, vec_full_reg_size(s)); 7405 } 7406 7407 /* DUP (element, scalar) 7408 * 31 21 20 16 15 10 9 5 4 0 7409 * +-----------------------+--------+-------------+------+------+ 7410 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7411 * +-----------------------+--------+-------------+------+------+ 7412 */ 7413 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7414 int imm5) 7415 { 7416 int size = ctz32(imm5); 7417 int index; 7418 TCGv_i64 tmp; 7419 7420 if (size > 3) { 7421 unallocated_encoding(s); 7422 return; 7423 } 7424 7425 if (!fp_access_check(s)) { 7426 return; 7427 } 7428 7429 index = imm5 >> (size + 1); 7430 7431 /* This instruction just extracts the specified element and 7432 * zero-extends it into the bottom of the destination register. 7433 */ 7434 tmp = tcg_temp_new_i64(); 7435 read_vec_element(s, tmp, rn, index, size); 7436 write_fp_dreg(s, rd, tmp); 7437 } 7438 7439 /* DUP (General) 7440 * 7441 * 31 30 29 21 20 16 15 10 9 5 4 0 7442 * +---+---+-------------------+--------+-------------+------+------+ 7443 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7444 * +---+---+-------------------+--------+-------------+------+------+ 7445 * 7446 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7447 */ 7448 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7449 int imm5) 7450 { 7451 int size = ctz32(imm5); 7452 uint32_t dofs, oprsz, maxsz; 7453 7454 if (size > 3 || ((size == 3) && !is_q)) { 7455 unallocated_encoding(s); 7456 return; 7457 } 7458 7459 if (!fp_access_check(s)) { 7460 return; 7461 } 7462 7463 dofs = vec_full_reg_offset(s, rd); 7464 oprsz = is_q ? 16 : 8; 7465 maxsz = vec_full_reg_size(s); 7466 7467 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7468 } 7469 7470 /* INS (Element) 7471 * 7472 * 31 21 20 16 15 14 11 10 9 5 4 0 7473 * +-----------------------+--------+------------+---+------+------+ 7474 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7475 * +-----------------------+--------+------------+---+------+------+ 7476 * 7477 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7478 * index: encoded in imm5<4:size+1> 7479 */ 7480 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7481 int imm4, int imm5) 7482 { 7483 int size = ctz32(imm5); 7484 int src_index, dst_index; 7485 TCGv_i64 tmp; 7486 7487 if (size > 3) { 7488 unallocated_encoding(s); 7489 return; 7490 } 7491 7492 if (!fp_access_check(s)) { 7493 return; 7494 } 7495 7496 dst_index = extract32(imm5, 1+size, 5); 7497 src_index = extract32(imm4, size, 4); 7498 7499 tmp = tcg_temp_new_i64(); 7500 7501 read_vec_element(s, tmp, rn, src_index, size); 7502 write_vec_element(s, tmp, rd, dst_index, size); 7503 7504 /* INS is considered a 128-bit write for SVE. */ 7505 clear_vec_high(s, true, rd); 7506 } 7507 7508 7509 /* INS (General) 7510 * 7511 * 31 21 20 16 15 10 9 5 4 0 7512 * +-----------------------+--------+-------------+------+------+ 7513 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7514 * +-----------------------+--------+-------------+------+------+ 7515 * 7516 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7517 * index: encoded in imm5<4:size+1> 7518 */ 7519 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7520 { 7521 int size = ctz32(imm5); 7522 int idx; 7523 7524 if (size > 3) { 7525 unallocated_encoding(s); 7526 return; 7527 } 7528 7529 if (!fp_access_check(s)) { 7530 return; 7531 } 7532 7533 idx = extract32(imm5, 1 + size, 4 - size); 7534 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7535 7536 /* INS is considered a 128-bit write for SVE. */ 7537 clear_vec_high(s, true, rd); 7538 } 7539 7540 /* 7541 * UMOV (General) 7542 * SMOV (General) 7543 * 7544 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7545 * +---+---+-------------------+--------+-------------+------+------+ 7546 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7547 * +---+---+-------------------+--------+-------------+------+------+ 7548 * 7549 * U: unsigned when set 7550 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7551 */ 7552 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7553 int rn, int rd, int imm5) 7554 { 7555 int size = ctz32(imm5); 7556 int element; 7557 TCGv_i64 tcg_rd; 7558 7559 /* Check for UnallocatedEncodings */ 7560 if (is_signed) { 7561 if (size > 2 || (size == 2 && !is_q)) { 7562 unallocated_encoding(s); 7563 return; 7564 } 7565 } else { 7566 if (size > 3 7567 || (size < 3 && is_q) 7568 || (size == 3 && !is_q)) { 7569 unallocated_encoding(s); 7570 return; 7571 } 7572 } 7573 7574 if (!fp_access_check(s)) { 7575 return; 7576 } 7577 7578 element = extract32(imm5, 1+size, 4); 7579 7580 tcg_rd = cpu_reg(s, rd); 7581 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7582 if (is_signed && !is_q) { 7583 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7584 } 7585 } 7586 7587 /* AdvSIMD copy 7588 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7589 * +---+---+----+-----------------+------+---+------+---+------+------+ 7590 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7591 * +---+---+----+-----------------+------+---+------+---+------+------+ 7592 */ 7593 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7594 { 7595 int rd = extract32(insn, 0, 5); 7596 int rn = extract32(insn, 5, 5); 7597 int imm4 = extract32(insn, 11, 4); 7598 int op = extract32(insn, 29, 1); 7599 int is_q = extract32(insn, 30, 1); 7600 int imm5 = extract32(insn, 16, 5); 7601 7602 if (op) { 7603 if (is_q) { 7604 /* INS (element) */ 7605 handle_simd_inse(s, rd, rn, imm4, imm5); 7606 } else { 7607 unallocated_encoding(s); 7608 } 7609 } else { 7610 switch (imm4) { 7611 case 0: 7612 /* DUP (element - vector) */ 7613 handle_simd_dupe(s, is_q, rd, rn, imm5); 7614 break; 7615 case 1: 7616 /* DUP (general) */ 7617 handle_simd_dupg(s, is_q, rd, rn, imm5); 7618 break; 7619 case 3: 7620 if (is_q) { 7621 /* INS (general) */ 7622 handle_simd_insg(s, rd, rn, imm5); 7623 } else { 7624 unallocated_encoding(s); 7625 } 7626 break; 7627 case 5: 7628 case 7: 7629 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7630 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7631 break; 7632 default: 7633 unallocated_encoding(s); 7634 break; 7635 } 7636 } 7637 } 7638 7639 /* AdvSIMD modified immediate 7640 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7641 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7642 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7643 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7644 * 7645 * There are a number of operations that can be carried out here: 7646 * MOVI - move (shifted) imm into register 7647 * MVNI - move inverted (shifted) imm into register 7648 * ORR - bitwise OR of (shifted) imm with register 7649 * BIC - bitwise clear of (shifted) imm with register 7650 * With ARMv8.2 we also have: 7651 * FMOV half-precision 7652 */ 7653 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7654 { 7655 int rd = extract32(insn, 0, 5); 7656 int cmode = extract32(insn, 12, 4); 7657 int o2 = extract32(insn, 11, 1); 7658 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7659 bool is_neg = extract32(insn, 29, 1); 7660 bool is_q = extract32(insn, 30, 1); 7661 uint64_t imm = 0; 7662 7663 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7664 /* Check for FMOV (vector, immediate) - half-precision */ 7665 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7666 unallocated_encoding(s); 7667 return; 7668 } 7669 } 7670 7671 if (!fp_access_check(s)) { 7672 return; 7673 } 7674 7675 if (cmode == 15 && o2 && !is_neg) { 7676 /* FMOV (vector, immediate) - half-precision */ 7677 imm = vfp_expand_imm(MO_16, abcdefgh); 7678 /* now duplicate across the lanes */ 7679 imm = dup_const(MO_16, imm); 7680 } else { 7681 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7682 } 7683 7684 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7685 /* MOVI or MVNI, with MVNI negation handled above. */ 7686 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7687 vec_full_reg_size(s), imm); 7688 } else { 7689 /* ORR or BIC, with BIC negation to AND handled above. */ 7690 if (is_neg) { 7691 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7692 } else { 7693 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7694 } 7695 } 7696 } 7697 7698 /* AdvSIMD scalar copy 7699 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7700 * +-----+----+-----------------+------+---+------+---+------+------+ 7701 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7702 * +-----+----+-----------------+------+---+------+---+------+------+ 7703 */ 7704 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7705 { 7706 int rd = extract32(insn, 0, 5); 7707 int rn = extract32(insn, 5, 5); 7708 int imm4 = extract32(insn, 11, 4); 7709 int imm5 = extract32(insn, 16, 5); 7710 int op = extract32(insn, 29, 1); 7711 7712 if (op != 0 || imm4 != 0) { 7713 unallocated_encoding(s); 7714 return; 7715 } 7716 7717 /* DUP (element, scalar) */ 7718 handle_simd_dupes(s, rd, rn, imm5); 7719 } 7720 7721 /* AdvSIMD scalar pairwise 7722 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7723 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7724 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7725 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7726 */ 7727 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7728 { 7729 int u = extract32(insn, 29, 1); 7730 int size = extract32(insn, 22, 2); 7731 int opcode = extract32(insn, 12, 5); 7732 int rn = extract32(insn, 5, 5); 7733 int rd = extract32(insn, 0, 5); 7734 TCGv_ptr fpst; 7735 7736 /* For some ops (the FP ones), size[1] is part of the encoding. 7737 * For ADDP strictly it is not but size[1] is always 1 for valid 7738 * encodings. 7739 */ 7740 opcode |= (extract32(size, 1, 1) << 5); 7741 7742 switch (opcode) { 7743 case 0x3b: /* ADDP */ 7744 if (u || size != 3) { 7745 unallocated_encoding(s); 7746 return; 7747 } 7748 if (!fp_access_check(s)) { 7749 return; 7750 } 7751 7752 fpst = NULL; 7753 break; 7754 case 0xc: /* FMAXNMP */ 7755 case 0xd: /* FADDP */ 7756 case 0xf: /* FMAXP */ 7757 case 0x2c: /* FMINNMP */ 7758 case 0x2f: /* FMINP */ 7759 /* FP op, size[0] is 32 or 64 bit*/ 7760 if (!u) { 7761 if (!dc_isar_feature(aa64_fp16, s)) { 7762 unallocated_encoding(s); 7763 return; 7764 } else { 7765 size = MO_16; 7766 } 7767 } else { 7768 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7769 } 7770 7771 if (!fp_access_check(s)) { 7772 return; 7773 } 7774 7775 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7776 break; 7777 default: 7778 unallocated_encoding(s); 7779 return; 7780 } 7781 7782 if (size == MO_64) { 7783 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7784 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7785 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7786 7787 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7788 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7789 7790 switch (opcode) { 7791 case 0x3b: /* ADDP */ 7792 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7793 break; 7794 case 0xc: /* FMAXNMP */ 7795 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7796 break; 7797 case 0xd: /* FADDP */ 7798 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7799 break; 7800 case 0xf: /* FMAXP */ 7801 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7802 break; 7803 case 0x2c: /* FMINNMP */ 7804 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7805 break; 7806 case 0x2f: /* FMINP */ 7807 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7808 break; 7809 default: 7810 g_assert_not_reached(); 7811 } 7812 7813 write_fp_dreg(s, rd, tcg_res); 7814 } else { 7815 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7816 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7817 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7818 7819 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7820 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7821 7822 if (size == MO_16) { 7823 switch (opcode) { 7824 case 0xc: /* FMAXNMP */ 7825 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7826 break; 7827 case 0xd: /* FADDP */ 7828 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 7829 break; 7830 case 0xf: /* FMAXP */ 7831 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 7832 break; 7833 case 0x2c: /* FMINNMP */ 7834 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7835 break; 7836 case 0x2f: /* FMINP */ 7837 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 7838 break; 7839 default: 7840 g_assert_not_reached(); 7841 } 7842 } else { 7843 switch (opcode) { 7844 case 0xc: /* FMAXNMP */ 7845 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 7846 break; 7847 case 0xd: /* FADDP */ 7848 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 7849 break; 7850 case 0xf: /* FMAXP */ 7851 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 7852 break; 7853 case 0x2c: /* FMINNMP */ 7854 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 7855 break; 7856 case 0x2f: /* FMINP */ 7857 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 7858 break; 7859 default: 7860 g_assert_not_reached(); 7861 } 7862 } 7863 7864 write_fp_sreg(s, rd, tcg_res); 7865 } 7866 } 7867 7868 /* 7869 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 7870 * 7871 * This code is handles the common shifting code and is used by both 7872 * the vector and scalar code. 7873 */ 7874 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 7875 TCGv_i64 tcg_rnd, bool accumulate, 7876 bool is_u, int size, int shift) 7877 { 7878 bool extended_result = false; 7879 bool round = tcg_rnd != NULL; 7880 int ext_lshift = 0; 7881 TCGv_i64 tcg_src_hi; 7882 7883 if (round && size == 3) { 7884 extended_result = true; 7885 ext_lshift = 64 - shift; 7886 tcg_src_hi = tcg_temp_new_i64(); 7887 } else if (shift == 64) { 7888 if (!accumulate && is_u) { 7889 /* result is zero */ 7890 tcg_gen_movi_i64(tcg_res, 0); 7891 return; 7892 } 7893 } 7894 7895 /* Deal with the rounding step */ 7896 if (round) { 7897 if (extended_result) { 7898 TCGv_i64 tcg_zero = tcg_constant_i64(0); 7899 if (!is_u) { 7900 /* take care of sign extending tcg_res */ 7901 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 7902 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 7903 tcg_src, tcg_src_hi, 7904 tcg_rnd, tcg_zero); 7905 } else { 7906 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 7907 tcg_src, tcg_zero, 7908 tcg_rnd, tcg_zero); 7909 } 7910 } else { 7911 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 7912 } 7913 } 7914 7915 /* Now do the shift right */ 7916 if (round && extended_result) { 7917 /* extended case, >64 bit precision required */ 7918 if (ext_lshift == 0) { 7919 /* special case, only high bits matter */ 7920 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 7921 } else { 7922 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 7923 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 7924 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 7925 } 7926 } else { 7927 if (is_u) { 7928 if (shift == 64) { 7929 /* essentially shifting in 64 zeros */ 7930 tcg_gen_movi_i64(tcg_src, 0); 7931 } else { 7932 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 7933 } 7934 } else { 7935 if (shift == 64) { 7936 /* effectively extending the sign-bit */ 7937 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 7938 } else { 7939 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 7940 } 7941 } 7942 } 7943 7944 if (accumulate) { 7945 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 7946 } else { 7947 tcg_gen_mov_i64(tcg_res, tcg_src); 7948 } 7949 } 7950 7951 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 7952 static void handle_scalar_simd_shri(DisasContext *s, 7953 bool is_u, int immh, int immb, 7954 int opcode, int rn, int rd) 7955 { 7956 const int size = 3; 7957 int immhb = immh << 3 | immb; 7958 int shift = 2 * (8 << size) - immhb; 7959 bool accumulate = false; 7960 bool round = false; 7961 bool insert = false; 7962 TCGv_i64 tcg_rn; 7963 TCGv_i64 tcg_rd; 7964 TCGv_i64 tcg_round; 7965 7966 if (!extract32(immh, 3, 1)) { 7967 unallocated_encoding(s); 7968 return; 7969 } 7970 7971 if (!fp_access_check(s)) { 7972 return; 7973 } 7974 7975 switch (opcode) { 7976 case 0x02: /* SSRA / USRA (accumulate) */ 7977 accumulate = true; 7978 break; 7979 case 0x04: /* SRSHR / URSHR (rounding) */ 7980 round = true; 7981 break; 7982 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 7983 accumulate = round = true; 7984 break; 7985 case 0x08: /* SRI */ 7986 insert = true; 7987 break; 7988 } 7989 7990 if (round) { 7991 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 7992 } else { 7993 tcg_round = NULL; 7994 } 7995 7996 tcg_rn = read_fp_dreg(s, rn); 7997 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 7998 7999 if (insert) { 8000 /* shift count same as element size is valid but does nothing; 8001 * special case to avoid potential shift by 64. 8002 */ 8003 int esize = 8 << size; 8004 if (shift != esize) { 8005 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8006 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8007 } 8008 } else { 8009 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8010 accumulate, is_u, size, shift); 8011 } 8012 8013 write_fp_dreg(s, rd, tcg_rd); 8014 } 8015 8016 /* SHL/SLI - Scalar shift left */ 8017 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8018 int immh, int immb, int opcode, 8019 int rn, int rd) 8020 { 8021 int size = 32 - clz32(immh) - 1; 8022 int immhb = immh << 3 | immb; 8023 int shift = immhb - (8 << size); 8024 TCGv_i64 tcg_rn; 8025 TCGv_i64 tcg_rd; 8026 8027 if (!extract32(immh, 3, 1)) { 8028 unallocated_encoding(s); 8029 return; 8030 } 8031 8032 if (!fp_access_check(s)) { 8033 return; 8034 } 8035 8036 tcg_rn = read_fp_dreg(s, rn); 8037 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8038 8039 if (insert) { 8040 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8041 } else { 8042 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8043 } 8044 8045 write_fp_dreg(s, rd, tcg_rd); 8046 } 8047 8048 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8049 * (signed/unsigned) narrowing */ 8050 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8051 bool is_u_shift, bool is_u_narrow, 8052 int immh, int immb, int opcode, 8053 int rn, int rd) 8054 { 8055 int immhb = immh << 3 | immb; 8056 int size = 32 - clz32(immh) - 1; 8057 int esize = 8 << size; 8058 int shift = (2 * esize) - immhb; 8059 int elements = is_scalar ? 1 : (64 / esize); 8060 bool round = extract32(opcode, 0, 1); 8061 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8062 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8063 TCGv_i32 tcg_rd_narrowed; 8064 TCGv_i64 tcg_final; 8065 8066 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8067 { gen_helper_neon_narrow_sat_s8, 8068 gen_helper_neon_unarrow_sat8 }, 8069 { gen_helper_neon_narrow_sat_s16, 8070 gen_helper_neon_unarrow_sat16 }, 8071 { gen_helper_neon_narrow_sat_s32, 8072 gen_helper_neon_unarrow_sat32 }, 8073 { NULL, NULL }, 8074 }; 8075 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8076 gen_helper_neon_narrow_sat_u8, 8077 gen_helper_neon_narrow_sat_u16, 8078 gen_helper_neon_narrow_sat_u32, 8079 NULL 8080 }; 8081 NeonGenNarrowEnvFn *narrowfn; 8082 8083 int i; 8084 8085 assert(size < 4); 8086 8087 if (extract32(immh, 3, 1)) { 8088 unallocated_encoding(s); 8089 return; 8090 } 8091 8092 if (!fp_access_check(s)) { 8093 return; 8094 } 8095 8096 if (is_u_shift) { 8097 narrowfn = unsigned_narrow_fns[size]; 8098 } else { 8099 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8100 } 8101 8102 tcg_rn = tcg_temp_new_i64(); 8103 tcg_rd = tcg_temp_new_i64(); 8104 tcg_rd_narrowed = tcg_temp_new_i32(); 8105 tcg_final = tcg_temp_new_i64(); 8106 8107 if (round) { 8108 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8109 } else { 8110 tcg_round = NULL; 8111 } 8112 8113 for (i = 0; i < elements; i++) { 8114 read_vec_element(s, tcg_rn, rn, i, ldop); 8115 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8116 false, is_u_shift, size+1, shift); 8117 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8118 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8119 if (i == 0) { 8120 tcg_gen_mov_i64(tcg_final, tcg_rd); 8121 } else { 8122 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8123 } 8124 } 8125 8126 if (!is_q) { 8127 write_vec_element(s, tcg_final, rd, 0, MO_64); 8128 } else { 8129 write_vec_element(s, tcg_final, rd, 1, MO_64); 8130 } 8131 clear_vec_high(s, is_q, rd); 8132 } 8133 8134 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8135 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8136 bool src_unsigned, bool dst_unsigned, 8137 int immh, int immb, int rn, int rd) 8138 { 8139 int immhb = immh << 3 | immb; 8140 int size = 32 - clz32(immh) - 1; 8141 int shift = immhb - (8 << size); 8142 int pass; 8143 8144 assert(immh != 0); 8145 assert(!(scalar && is_q)); 8146 8147 if (!scalar) { 8148 if (!is_q && extract32(immh, 3, 1)) { 8149 unallocated_encoding(s); 8150 return; 8151 } 8152 8153 /* Since we use the variable-shift helpers we must 8154 * replicate the shift count into each element of 8155 * the tcg_shift value. 8156 */ 8157 switch (size) { 8158 case 0: 8159 shift |= shift << 8; 8160 /* fall through */ 8161 case 1: 8162 shift |= shift << 16; 8163 break; 8164 case 2: 8165 case 3: 8166 break; 8167 default: 8168 g_assert_not_reached(); 8169 } 8170 } 8171 8172 if (!fp_access_check(s)) { 8173 return; 8174 } 8175 8176 if (size == 3) { 8177 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8178 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8179 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8180 { NULL, gen_helper_neon_qshl_u64 }, 8181 }; 8182 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8183 int maxpass = is_q ? 2 : 1; 8184 8185 for (pass = 0; pass < maxpass; pass++) { 8186 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8187 8188 read_vec_element(s, tcg_op, rn, pass, MO_64); 8189 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8190 write_vec_element(s, tcg_op, rd, pass, MO_64); 8191 } 8192 clear_vec_high(s, is_q, rd); 8193 } else { 8194 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8195 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8196 { 8197 { gen_helper_neon_qshl_s8, 8198 gen_helper_neon_qshl_s16, 8199 gen_helper_neon_qshl_s32 }, 8200 { gen_helper_neon_qshlu_s8, 8201 gen_helper_neon_qshlu_s16, 8202 gen_helper_neon_qshlu_s32 } 8203 }, { 8204 { NULL, NULL, NULL }, 8205 { gen_helper_neon_qshl_u8, 8206 gen_helper_neon_qshl_u16, 8207 gen_helper_neon_qshl_u32 } 8208 } 8209 }; 8210 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8211 MemOp memop = scalar ? size : MO_32; 8212 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8213 8214 for (pass = 0; pass < maxpass; pass++) { 8215 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8216 8217 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8218 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8219 if (scalar) { 8220 switch (size) { 8221 case 0: 8222 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8223 break; 8224 case 1: 8225 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8226 break; 8227 case 2: 8228 break; 8229 default: 8230 g_assert_not_reached(); 8231 } 8232 write_fp_sreg(s, rd, tcg_op); 8233 } else { 8234 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8235 } 8236 } 8237 8238 if (!scalar) { 8239 clear_vec_high(s, is_q, rd); 8240 } 8241 } 8242 } 8243 8244 /* Common vector code for handling integer to FP conversion */ 8245 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8246 int elements, int is_signed, 8247 int fracbits, int size) 8248 { 8249 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8250 TCGv_i32 tcg_shift = NULL; 8251 8252 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8253 int pass; 8254 8255 if (fracbits || size == MO_64) { 8256 tcg_shift = tcg_constant_i32(fracbits); 8257 } 8258 8259 if (size == MO_64) { 8260 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8261 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8262 8263 for (pass = 0; pass < elements; pass++) { 8264 read_vec_element(s, tcg_int64, rn, pass, mop); 8265 8266 if (is_signed) { 8267 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8268 tcg_shift, tcg_fpst); 8269 } else { 8270 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8271 tcg_shift, tcg_fpst); 8272 } 8273 if (elements == 1) { 8274 write_fp_dreg(s, rd, tcg_double); 8275 } else { 8276 write_vec_element(s, tcg_double, rd, pass, MO_64); 8277 } 8278 } 8279 } else { 8280 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8281 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8282 8283 for (pass = 0; pass < elements; pass++) { 8284 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8285 8286 switch (size) { 8287 case MO_32: 8288 if (fracbits) { 8289 if (is_signed) { 8290 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8291 tcg_shift, tcg_fpst); 8292 } else { 8293 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8294 tcg_shift, tcg_fpst); 8295 } 8296 } else { 8297 if (is_signed) { 8298 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8299 } else { 8300 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8301 } 8302 } 8303 break; 8304 case MO_16: 8305 if (fracbits) { 8306 if (is_signed) { 8307 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8308 tcg_shift, tcg_fpst); 8309 } else { 8310 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8311 tcg_shift, tcg_fpst); 8312 } 8313 } else { 8314 if (is_signed) { 8315 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8316 } else { 8317 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8318 } 8319 } 8320 break; 8321 default: 8322 g_assert_not_reached(); 8323 } 8324 8325 if (elements == 1) { 8326 write_fp_sreg(s, rd, tcg_float); 8327 } else { 8328 write_vec_element_i32(s, tcg_float, rd, pass, size); 8329 } 8330 } 8331 } 8332 8333 clear_vec_high(s, elements << size == 16, rd); 8334 } 8335 8336 /* UCVTF/SCVTF - Integer to FP conversion */ 8337 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8338 bool is_q, bool is_u, 8339 int immh, int immb, int opcode, 8340 int rn, int rd) 8341 { 8342 int size, elements, fracbits; 8343 int immhb = immh << 3 | immb; 8344 8345 if (immh & 8) { 8346 size = MO_64; 8347 if (!is_scalar && !is_q) { 8348 unallocated_encoding(s); 8349 return; 8350 } 8351 } else if (immh & 4) { 8352 size = MO_32; 8353 } else if (immh & 2) { 8354 size = MO_16; 8355 if (!dc_isar_feature(aa64_fp16, s)) { 8356 unallocated_encoding(s); 8357 return; 8358 } 8359 } else { 8360 /* immh == 0 would be a failure of the decode logic */ 8361 g_assert(immh == 1); 8362 unallocated_encoding(s); 8363 return; 8364 } 8365 8366 if (is_scalar) { 8367 elements = 1; 8368 } else { 8369 elements = (8 << is_q) >> size; 8370 } 8371 fracbits = (16 << size) - immhb; 8372 8373 if (!fp_access_check(s)) { 8374 return; 8375 } 8376 8377 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8378 } 8379 8380 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8381 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8382 bool is_q, bool is_u, 8383 int immh, int immb, int rn, int rd) 8384 { 8385 int immhb = immh << 3 | immb; 8386 int pass, size, fracbits; 8387 TCGv_ptr tcg_fpstatus; 8388 TCGv_i32 tcg_rmode, tcg_shift; 8389 8390 if (immh & 0x8) { 8391 size = MO_64; 8392 if (!is_scalar && !is_q) { 8393 unallocated_encoding(s); 8394 return; 8395 } 8396 } else if (immh & 0x4) { 8397 size = MO_32; 8398 } else if (immh & 0x2) { 8399 size = MO_16; 8400 if (!dc_isar_feature(aa64_fp16, s)) { 8401 unallocated_encoding(s); 8402 return; 8403 } 8404 } else { 8405 /* Should have split out AdvSIMD modified immediate earlier. */ 8406 assert(immh == 1); 8407 unallocated_encoding(s); 8408 return; 8409 } 8410 8411 if (!fp_access_check(s)) { 8412 return; 8413 } 8414 8415 assert(!(is_scalar && is_q)); 8416 8417 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8418 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8419 fracbits = (16 << size) - immhb; 8420 tcg_shift = tcg_constant_i32(fracbits); 8421 8422 if (size == MO_64) { 8423 int maxpass = is_scalar ? 1 : 2; 8424 8425 for (pass = 0; pass < maxpass; pass++) { 8426 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8427 8428 read_vec_element(s, tcg_op, rn, pass, MO_64); 8429 if (is_u) { 8430 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8431 } else { 8432 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8433 } 8434 write_vec_element(s, tcg_op, rd, pass, MO_64); 8435 } 8436 clear_vec_high(s, is_q, rd); 8437 } else { 8438 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8439 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8440 8441 switch (size) { 8442 case MO_16: 8443 if (is_u) { 8444 fn = gen_helper_vfp_touhh; 8445 } else { 8446 fn = gen_helper_vfp_toshh; 8447 } 8448 break; 8449 case MO_32: 8450 if (is_u) { 8451 fn = gen_helper_vfp_touls; 8452 } else { 8453 fn = gen_helper_vfp_tosls; 8454 } 8455 break; 8456 default: 8457 g_assert_not_reached(); 8458 } 8459 8460 for (pass = 0; pass < maxpass; pass++) { 8461 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8462 8463 read_vec_element_i32(s, tcg_op, rn, pass, size); 8464 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8465 if (is_scalar) { 8466 write_fp_sreg(s, rd, tcg_op); 8467 } else { 8468 write_vec_element_i32(s, tcg_op, rd, pass, size); 8469 } 8470 } 8471 if (!is_scalar) { 8472 clear_vec_high(s, is_q, rd); 8473 } 8474 } 8475 8476 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8477 } 8478 8479 /* AdvSIMD scalar shift by immediate 8480 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8481 * +-----+---+-------------+------+------+--------+---+------+------+ 8482 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8483 * +-----+---+-------------+------+------+--------+---+------+------+ 8484 * 8485 * This is the scalar version so it works on a fixed sized registers 8486 */ 8487 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8488 { 8489 int rd = extract32(insn, 0, 5); 8490 int rn = extract32(insn, 5, 5); 8491 int opcode = extract32(insn, 11, 5); 8492 int immb = extract32(insn, 16, 3); 8493 int immh = extract32(insn, 19, 4); 8494 bool is_u = extract32(insn, 29, 1); 8495 8496 if (immh == 0) { 8497 unallocated_encoding(s); 8498 return; 8499 } 8500 8501 switch (opcode) { 8502 case 0x08: /* SRI */ 8503 if (!is_u) { 8504 unallocated_encoding(s); 8505 return; 8506 } 8507 /* fall through */ 8508 case 0x00: /* SSHR / USHR */ 8509 case 0x02: /* SSRA / USRA */ 8510 case 0x04: /* SRSHR / URSHR */ 8511 case 0x06: /* SRSRA / URSRA */ 8512 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8513 break; 8514 case 0x0a: /* SHL / SLI */ 8515 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8516 break; 8517 case 0x1c: /* SCVTF, UCVTF */ 8518 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8519 opcode, rn, rd); 8520 break; 8521 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8522 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8523 if (!is_u) { 8524 unallocated_encoding(s); 8525 return; 8526 } 8527 handle_vec_simd_sqshrn(s, true, false, false, true, 8528 immh, immb, opcode, rn, rd); 8529 break; 8530 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8531 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8532 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8533 immh, immb, opcode, rn, rd); 8534 break; 8535 case 0xc: /* SQSHLU */ 8536 if (!is_u) { 8537 unallocated_encoding(s); 8538 return; 8539 } 8540 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8541 break; 8542 case 0xe: /* SQSHL, UQSHL */ 8543 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8544 break; 8545 case 0x1f: /* FCVTZS, FCVTZU */ 8546 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8547 break; 8548 default: 8549 unallocated_encoding(s); 8550 break; 8551 } 8552 } 8553 8554 /* AdvSIMD scalar three different 8555 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8556 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8557 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8558 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8559 */ 8560 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8561 { 8562 bool is_u = extract32(insn, 29, 1); 8563 int size = extract32(insn, 22, 2); 8564 int opcode = extract32(insn, 12, 4); 8565 int rm = extract32(insn, 16, 5); 8566 int rn = extract32(insn, 5, 5); 8567 int rd = extract32(insn, 0, 5); 8568 8569 if (is_u) { 8570 unallocated_encoding(s); 8571 return; 8572 } 8573 8574 switch (opcode) { 8575 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8576 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8577 case 0xd: /* SQDMULL, SQDMULL2 */ 8578 if (size == 0 || size == 3) { 8579 unallocated_encoding(s); 8580 return; 8581 } 8582 break; 8583 default: 8584 unallocated_encoding(s); 8585 return; 8586 } 8587 8588 if (!fp_access_check(s)) { 8589 return; 8590 } 8591 8592 if (size == 2) { 8593 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8594 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8595 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8596 8597 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8598 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8599 8600 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8601 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8602 8603 switch (opcode) { 8604 case 0xd: /* SQDMULL, SQDMULL2 */ 8605 break; 8606 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8607 tcg_gen_neg_i64(tcg_res, tcg_res); 8608 /* fall through */ 8609 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8610 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8611 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8612 tcg_res, tcg_op1); 8613 break; 8614 default: 8615 g_assert_not_reached(); 8616 } 8617 8618 write_fp_dreg(s, rd, tcg_res); 8619 } else { 8620 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8621 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8622 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8623 8624 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8625 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8626 8627 switch (opcode) { 8628 case 0xd: /* SQDMULL, SQDMULL2 */ 8629 break; 8630 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8631 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8632 /* fall through */ 8633 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8634 { 8635 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8636 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8637 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8638 tcg_res, tcg_op3); 8639 break; 8640 } 8641 default: 8642 g_assert_not_reached(); 8643 } 8644 8645 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8646 write_fp_dreg(s, rd, tcg_res); 8647 } 8648 } 8649 8650 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8651 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8652 { 8653 /* Handle 64x64->64 opcodes which are shared between the scalar 8654 * and vector 3-same groups. We cover every opcode where size == 3 8655 * is valid in either the three-reg-same (integer, not pairwise) 8656 * or scalar-three-reg-same groups. 8657 */ 8658 TCGCond cond; 8659 8660 switch (opcode) { 8661 case 0x1: /* SQADD */ 8662 if (u) { 8663 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8664 } else { 8665 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8666 } 8667 break; 8668 case 0x5: /* SQSUB */ 8669 if (u) { 8670 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8671 } else { 8672 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8673 } 8674 break; 8675 case 0x6: /* CMGT, CMHI */ 8676 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8677 do_cmop: 8678 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8679 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8680 break; 8681 case 0x7: /* CMGE, CMHS */ 8682 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8683 goto do_cmop; 8684 case 0x11: /* CMTST, CMEQ */ 8685 if (u) { 8686 cond = TCG_COND_EQ; 8687 goto do_cmop; 8688 } 8689 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8690 break; 8691 case 0x8: /* SSHL, USHL */ 8692 if (u) { 8693 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8694 } else { 8695 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8696 } 8697 break; 8698 case 0x9: /* SQSHL, UQSHL */ 8699 if (u) { 8700 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8701 } else { 8702 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8703 } 8704 break; 8705 case 0xa: /* SRSHL, URSHL */ 8706 if (u) { 8707 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8708 } else { 8709 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8710 } 8711 break; 8712 case 0xb: /* SQRSHL, UQRSHL */ 8713 if (u) { 8714 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8715 } else { 8716 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8717 } 8718 break; 8719 case 0x10: /* ADD, SUB */ 8720 if (u) { 8721 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8722 } else { 8723 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8724 } 8725 break; 8726 default: 8727 g_assert_not_reached(); 8728 } 8729 } 8730 8731 /* Handle the 3-same-operands float operations; shared by the scalar 8732 * and vector encodings. The caller must filter out any encodings 8733 * not allocated for the encoding it is dealing with. 8734 */ 8735 static void handle_3same_float(DisasContext *s, int size, int elements, 8736 int fpopcode, int rd, int rn, int rm) 8737 { 8738 int pass; 8739 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8740 8741 for (pass = 0; pass < elements; pass++) { 8742 if (size) { 8743 /* Double */ 8744 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8745 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8746 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8747 8748 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8749 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8750 8751 switch (fpopcode) { 8752 case 0x39: /* FMLS */ 8753 /* As usual for ARM, separate negation for fused multiply-add */ 8754 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8755 /* fall through */ 8756 case 0x19: /* FMLA */ 8757 read_vec_element(s, tcg_res, rd, pass, MO_64); 8758 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8759 tcg_res, fpst); 8760 break; 8761 case 0x18: /* FMAXNM */ 8762 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8763 break; 8764 case 0x1a: /* FADD */ 8765 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8766 break; 8767 case 0x1b: /* FMULX */ 8768 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8769 break; 8770 case 0x1c: /* FCMEQ */ 8771 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8772 break; 8773 case 0x1e: /* FMAX */ 8774 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8775 break; 8776 case 0x1f: /* FRECPS */ 8777 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8778 break; 8779 case 0x38: /* FMINNM */ 8780 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8781 break; 8782 case 0x3a: /* FSUB */ 8783 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8784 break; 8785 case 0x3e: /* FMIN */ 8786 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8787 break; 8788 case 0x3f: /* FRSQRTS */ 8789 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8790 break; 8791 case 0x5b: /* FMUL */ 8792 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8793 break; 8794 case 0x5c: /* FCMGE */ 8795 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8796 break; 8797 case 0x5d: /* FACGE */ 8798 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8799 break; 8800 case 0x5f: /* FDIV */ 8801 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8802 break; 8803 case 0x7a: /* FABD */ 8804 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8805 gen_helper_vfp_absd(tcg_res, tcg_res); 8806 break; 8807 case 0x7c: /* FCMGT */ 8808 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8809 break; 8810 case 0x7d: /* FACGT */ 8811 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8812 break; 8813 default: 8814 g_assert_not_reached(); 8815 } 8816 8817 write_vec_element(s, tcg_res, rd, pass, MO_64); 8818 } else { 8819 /* Single */ 8820 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8821 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8822 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8823 8824 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 8825 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 8826 8827 switch (fpopcode) { 8828 case 0x39: /* FMLS */ 8829 /* As usual for ARM, separate negation for fused multiply-add */ 8830 gen_helper_vfp_negs(tcg_op1, tcg_op1); 8831 /* fall through */ 8832 case 0x19: /* FMLA */ 8833 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8834 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 8835 tcg_res, fpst); 8836 break; 8837 case 0x1a: /* FADD */ 8838 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8839 break; 8840 case 0x1b: /* FMULX */ 8841 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 8842 break; 8843 case 0x1c: /* FCMEQ */ 8844 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8845 break; 8846 case 0x1e: /* FMAX */ 8847 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8848 break; 8849 case 0x1f: /* FRECPS */ 8850 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8851 break; 8852 case 0x18: /* FMAXNM */ 8853 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8854 break; 8855 case 0x38: /* FMINNM */ 8856 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8857 break; 8858 case 0x3a: /* FSUB */ 8859 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8860 break; 8861 case 0x3e: /* FMIN */ 8862 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8863 break; 8864 case 0x3f: /* FRSQRTS */ 8865 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8866 break; 8867 case 0x5b: /* FMUL */ 8868 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 8869 break; 8870 case 0x5c: /* FCMGE */ 8871 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8872 break; 8873 case 0x5d: /* FACGE */ 8874 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8875 break; 8876 case 0x5f: /* FDIV */ 8877 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 8878 break; 8879 case 0x7a: /* FABD */ 8880 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8881 gen_helper_vfp_abss(tcg_res, tcg_res); 8882 break; 8883 case 0x7c: /* FCMGT */ 8884 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8885 break; 8886 case 0x7d: /* FACGT */ 8887 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8888 break; 8889 default: 8890 g_assert_not_reached(); 8891 } 8892 8893 if (elements == 1) { 8894 /* scalar single so clear high part */ 8895 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8896 8897 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 8898 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 8899 } else { 8900 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8901 } 8902 } 8903 } 8904 8905 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 8906 } 8907 8908 /* AdvSIMD scalar three same 8909 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 8910 * +-----+---+-----------+------+---+------+--------+---+------+------+ 8911 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 8912 * +-----+---+-----------+------+---+------+--------+---+------+------+ 8913 */ 8914 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 8915 { 8916 int rd = extract32(insn, 0, 5); 8917 int rn = extract32(insn, 5, 5); 8918 int opcode = extract32(insn, 11, 5); 8919 int rm = extract32(insn, 16, 5); 8920 int size = extract32(insn, 22, 2); 8921 bool u = extract32(insn, 29, 1); 8922 TCGv_i64 tcg_rd; 8923 8924 if (opcode >= 0x18) { 8925 /* Floating point: U, size[1] and opcode indicate operation */ 8926 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 8927 switch (fpopcode) { 8928 case 0x1b: /* FMULX */ 8929 case 0x1f: /* FRECPS */ 8930 case 0x3f: /* FRSQRTS */ 8931 case 0x5d: /* FACGE */ 8932 case 0x7d: /* FACGT */ 8933 case 0x1c: /* FCMEQ */ 8934 case 0x5c: /* FCMGE */ 8935 case 0x7c: /* FCMGT */ 8936 case 0x7a: /* FABD */ 8937 break; 8938 default: 8939 unallocated_encoding(s); 8940 return; 8941 } 8942 8943 if (!fp_access_check(s)) { 8944 return; 8945 } 8946 8947 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 8948 return; 8949 } 8950 8951 switch (opcode) { 8952 case 0x1: /* SQADD, UQADD */ 8953 case 0x5: /* SQSUB, UQSUB */ 8954 case 0x9: /* SQSHL, UQSHL */ 8955 case 0xb: /* SQRSHL, UQRSHL */ 8956 break; 8957 case 0x8: /* SSHL, USHL */ 8958 case 0xa: /* SRSHL, URSHL */ 8959 case 0x6: /* CMGT, CMHI */ 8960 case 0x7: /* CMGE, CMHS */ 8961 case 0x11: /* CMTST, CMEQ */ 8962 case 0x10: /* ADD, SUB (vector) */ 8963 if (size != 3) { 8964 unallocated_encoding(s); 8965 return; 8966 } 8967 break; 8968 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 8969 if (size != 1 && size != 2) { 8970 unallocated_encoding(s); 8971 return; 8972 } 8973 break; 8974 default: 8975 unallocated_encoding(s); 8976 return; 8977 } 8978 8979 if (!fp_access_check(s)) { 8980 return; 8981 } 8982 8983 tcg_rd = tcg_temp_new_i64(); 8984 8985 if (size == 3) { 8986 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 8987 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 8988 8989 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 8990 } else { 8991 /* Do a single operation on the lowest element in the vector. 8992 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 8993 * no side effects for all these operations. 8994 * OPTME: special-purpose helpers would avoid doing some 8995 * unnecessary work in the helper for the 8 and 16 bit cases. 8996 */ 8997 NeonGenTwoOpEnvFn *genenvfn; 8998 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 8999 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9000 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9001 9002 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9003 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9004 9005 switch (opcode) { 9006 case 0x1: /* SQADD, UQADD */ 9007 { 9008 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9009 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9010 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9011 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9012 }; 9013 genenvfn = fns[size][u]; 9014 break; 9015 } 9016 case 0x5: /* SQSUB, UQSUB */ 9017 { 9018 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9019 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9020 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9021 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9022 }; 9023 genenvfn = fns[size][u]; 9024 break; 9025 } 9026 case 0x9: /* SQSHL, UQSHL */ 9027 { 9028 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9029 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9030 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9031 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9032 }; 9033 genenvfn = fns[size][u]; 9034 break; 9035 } 9036 case 0xb: /* SQRSHL, UQRSHL */ 9037 { 9038 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9039 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9040 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9041 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9042 }; 9043 genenvfn = fns[size][u]; 9044 break; 9045 } 9046 case 0x16: /* SQDMULH, SQRDMULH */ 9047 { 9048 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9049 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9050 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9051 }; 9052 assert(size == 1 || size == 2); 9053 genenvfn = fns[size - 1][u]; 9054 break; 9055 } 9056 default: 9057 g_assert_not_reached(); 9058 } 9059 9060 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9061 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9062 } 9063 9064 write_fp_dreg(s, rd, tcg_rd); 9065 } 9066 9067 /* AdvSIMD scalar three same FP16 9068 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9069 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9070 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9071 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9072 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9073 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9074 */ 9075 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9076 uint32_t insn) 9077 { 9078 int rd = extract32(insn, 0, 5); 9079 int rn = extract32(insn, 5, 5); 9080 int opcode = extract32(insn, 11, 3); 9081 int rm = extract32(insn, 16, 5); 9082 bool u = extract32(insn, 29, 1); 9083 bool a = extract32(insn, 23, 1); 9084 int fpopcode = opcode | (a << 3) | (u << 4); 9085 TCGv_ptr fpst; 9086 TCGv_i32 tcg_op1; 9087 TCGv_i32 tcg_op2; 9088 TCGv_i32 tcg_res; 9089 9090 switch (fpopcode) { 9091 case 0x03: /* FMULX */ 9092 case 0x04: /* FCMEQ (reg) */ 9093 case 0x07: /* FRECPS */ 9094 case 0x0f: /* FRSQRTS */ 9095 case 0x14: /* FCMGE (reg) */ 9096 case 0x15: /* FACGE */ 9097 case 0x1a: /* FABD */ 9098 case 0x1c: /* FCMGT (reg) */ 9099 case 0x1d: /* FACGT */ 9100 break; 9101 default: 9102 unallocated_encoding(s); 9103 return; 9104 } 9105 9106 if (!dc_isar_feature(aa64_fp16, s)) { 9107 unallocated_encoding(s); 9108 } 9109 9110 if (!fp_access_check(s)) { 9111 return; 9112 } 9113 9114 fpst = fpstatus_ptr(FPST_FPCR_F16); 9115 9116 tcg_op1 = read_fp_hreg(s, rn); 9117 tcg_op2 = read_fp_hreg(s, rm); 9118 tcg_res = tcg_temp_new_i32(); 9119 9120 switch (fpopcode) { 9121 case 0x03: /* FMULX */ 9122 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9123 break; 9124 case 0x04: /* FCMEQ (reg) */ 9125 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9126 break; 9127 case 0x07: /* FRECPS */ 9128 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9129 break; 9130 case 0x0f: /* FRSQRTS */ 9131 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9132 break; 9133 case 0x14: /* FCMGE (reg) */ 9134 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9135 break; 9136 case 0x15: /* FACGE */ 9137 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9138 break; 9139 case 0x1a: /* FABD */ 9140 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9141 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9142 break; 9143 case 0x1c: /* FCMGT (reg) */ 9144 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9145 break; 9146 case 0x1d: /* FACGT */ 9147 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9148 break; 9149 default: 9150 g_assert_not_reached(); 9151 } 9152 9153 write_fp_sreg(s, rd, tcg_res); 9154 } 9155 9156 /* AdvSIMD scalar three same extra 9157 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9158 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9159 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9160 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9161 */ 9162 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9163 uint32_t insn) 9164 { 9165 int rd = extract32(insn, 0, 5); 9166 int rn = extract32(insn, 5, 5); 9167 int opcode = extract32(insn, 11, 4); 9168 int rm = extract32(insn, 16, 5); 9169 int size = extract32(insn, 22, 2); 9170 bool u = extract32(insn, 29, 1); 9171 TCGv_i32 ele1, ele2, ele3; 9172 TCGv_i64 res; 9173 bool feature; 9174 9175 switch (u * 16 + opcode) { 9176 case 0x10: /* SQRDMLAH (vector) */ 9177 case 0x11: /* SQRDMLSH (vector) */ 9178 if (size != 1 && size != 2) { 9179 unallocated_encoding(s); 9180 return; 9181 } 9182 feature = dc_isar_feature(aa64_rdm, s); 9183 break; 9184 default: 9185 unallocated_encoding(s); 9186 return; 9187 } 9188 if (!feature) { 9189 unallocated_encoding(s); 9190 return; 9191 } 9192 if (!fp_access_check(s)) { 9193 return; 9194 } 9195 9196 /* Do a single operation on the lowest element in the vector. 9197 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9198 * with no side effects for all these operations. 9199 * OPTME: special-purpose helpers would avoid doing some 9200 * unnecessary work in the helper for the 16 bit cases. 9201 */ 9202 ele1 = tcg_temp_new_i32(); 9203 ele2 = tcg_temp_new_i32(); 9204 ele3 = tcg_temp_new_i32(); 9205 9206 read_vec_element_i32(s, ele1, rn, 0, size); 9207 read_vec_element_i32(s, ele2, rm, 0, size); 9208 read_vec_element_i32(s, ele3, rd, 0, size); 9209 9210 switch (opcode) { 9211 case 0x0: /* SQRDMLAH */ 9212 if (size == 1) { 9213 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9214 } else { 9215 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9216 } 9217 break; 9218 case 0x1: /* SQRDMLSH */ 9219 if (size == 1) { 9220 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9221 } else { 9222 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9223 } 9224 break; 9225 default: 9226 g_assert_not_reached(); 9227 } 9228 9229 res = tcg_temp_new_i64(); 9230 tcg_gen_extu_i32_i64(res, ele3); 9231 write_fp_dreg(s, rd, res); 9232 } 9233 9234 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9235 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9236 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9237 { 9238 /* Handle 64->64 opcodes which are shared between the scalar and 9239 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9240 * is valid in either group and also the double-precision fp ops. 9241 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9242 * requires them. 9243 */ 9244 TCGCond cond; 9245 9246 switch (opcode) { 9247 case 0x4: /* CLS, CLZ */ 9248 if (u) { 9249 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9250 } else { 9251 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9252 } 9253 break; 9254 case 0x5: /* NOT */ 9255 /* This opcode is shared with CNT and RBIT but we have earlier 9256 * enforced that size == 3 if and only if this is the NOT insn. 9257 */ 9258 tcg_gen_not_i64(tcg_rd, tcg_rn); 9259 break; 9260 case 0x7: /* SQABS, SQNEG */ 9261 if (u) { 9262 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9263 } else { 9264 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9265 } 9266 break; 9267 case 0xa: /* CMLT */ 9268 cond = TCG_COND_LT; 9269 do_cmop: 9270 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9271 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9272 break; 9273 case 0x8: /* CMGT, CMGE */ 9274 cond = u ? TCG_COND_GE : TCG_COND_GT; 9275 goto do_cmop; 9276 case 0x9: /* CMEQ, CMLE */ 9277 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9278 goto do_cmop; 9279 case 0xb: /* ABS, NEG */ 9280 if (u) { 9281 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9282 } else { 9283 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9284 } 9285 break; 9286 case 0x2f: /* FABS */ 9287 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9288 break; 9289 case 0x6f: /* FNEG */ 9290 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9291 break; 9292 case 0x7f: /* FSQRT */ 9293 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9294 break; 9295 case 0x1a: /* FCVTNS */ 9296 case 0x1b: /* FCVTMS */ 9297 case 0x1c: /* FCVTAS */ 9298 case 0x3a: /* FCVTPS */ 9299 case 0x3b: /* FCVTZS */ 9300 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9301 break; 9302 case 0x5a: /* FCVTNU */ 9303 case 0x5b: /* FCVTMU */ 9304 case 0x5c: /* FCVTAU */ 9305 case 0x7a: /* FCVTPU */ 9306 case 0x7b: /* FCVTZU */ 9307 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9308 break; 9309 case 0x18: /* FRINTN */ 9310 case 0x19: /* FRINTM */ 9311 case 0x38: /* FRINTP */ 9312 case 0x39: /* FRINTZ */ 9313 case 0x58: /* FRINTA */ 9314 case 0x79: /* FRINTI */ 9315 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9316 break; 9317 case 0x59: /* FRINTX */ 9318 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9319 break; 9320 case 0x1e: /* FRINT32Z */ 9321 case 0x5e: /* FRINT32X */ 9322 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9323 break; 9324 case 0x1f: /* FRINT64Z */ 9325 case 0x5f: /* FRINT64X */ 9326 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9327 break; 9328 default: 9329 g_assert_not_reached(); 9330 } 9331 } 9332 9333 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9334 bool is_scalar, bool is_u, bool is_q, 9335 int size, int rn, int rd) 9336 { 9337 bool is_double = (size == MO_64); 9338 TCGv_ptr fpst; 9339 9340 if (!fp_access_check(s)) { 9341 return; 9342 } 9343 9344 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9345 9346 if (is_double) { 9347 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9348 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9349 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9350 NeonGenTwoDoubleOpFn *genfn; 9351 bool swap = false; 9352 int pass; 9353 9354 switch (opcode) { 9355 case 0x2e: /* FCMLT (zero) */ 9356 swap = true; 9357 /* fallthrough */ 9358 case 0x2c: /* FCMGT (zero) */ 9359 genfn = gen_helper_neon_cgt_f64; 9360 break; 9361 case 0x2d: /* FCMEQ (zero) */ 9362 genfn = gen_helper_neon_ceq_f64; 9363 break; 9364 case 0x6d: /* FCMLE (zero) */ 9365 swap = true; 9366 /* fall through */ 9367 case 0x6c: /* FCMGE (zero) */ 9368 genfn = gen_helper_neon_cge_f64; 9369 break; 9370 default: 9371 g_assert_not_reached(); 9372 } 9373 9374 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9375 read_vec_element(s, tcg_op, rn, pass, MO_64); 9376 if (swap) { 9377 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9378 } else { 9379 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9380 } 9381 write_vec_element(s, tcg_res, rd, pass, MO_64); 9382 } 9383 9384 clear_vec_high(s, !is_scalar, rd); 9385 } else { 9386 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9387 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9388 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9389 NeonGenTwoSingleOpFn *genfn; 9390 bool swap = false; 9391 int pass, maxpasses; 9392 9393 if (size == MO_16) { 9394 switch (opcode) { 9395 case 0x2e: /* FCMLT (zero) */ 9396 swap = true; 9397 /* fall through */ 9398 case 0x2c: /* FCMGT (zero) */ 9399 genfn = gen_helper_advsimd_cgt_f16; 9400 break; 9401 case 0x2d: /* FCMEQ (zero) */ 9402 genfn = gen_helper_advsimd_ceq_f16; 9403 break; 9404 case 0x6d: /* FCMLE (zero) */ 9405 swap = true; 9406 /* fall through */ 9407 case 0x6c: /* FCMGE (zero) */ 9408 genfn = gen_helper_advsimd_cge_f16; 9409 break; 9410 default: 9411 g_assert_not_reached(); 9412 } 9413 } else { 9414 switch (opcode) { 9415 case 0x2e: /* FCMLT (zero) */ 9416 swap = true; 9417 /* fall through */ 9418 case 0x2c: /* FCMGT (zero) */ 9419 genfn = gen_helper_neon_cgt_f32; 9420 break; 9421 case 0x2d: /* FCMEQ (zero) */ 9422 genfn = gen_helper_neon_ceq_f32; 9423 break; 9424 case 0x6d: /* FCMLE (zero) */ 9425 swap = true; 9426 /* fall through */ 9427 case 0x6c: /* FCMGE (zero) */ 9428 genfn = gen_helper_neon_cge_f32; 9429 break; 9430 default: 9431 g_assert_not_reached(); 9432 } 9433 } 9434 9435 if (is_scalar) { 9436 maxpasses = 1; 9437 } else { 9438 int vector_size = 8 << is_q; 9439 maxpasses = vector_size >> size; 9440 } 9441 9442 for (pass = 0; pass < maxpasses; pass++) { 9443 read_vec_element_i32(s, tcg_op, rn, pass, size); 9444 if (swap) { 9445 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9446 } else { 9447 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9448 } 9449 if (is_scalar) { 9450 write_fp_sreg(s, rd, tcg_res); 9451 } else { 9452 write_vec_element_i32(s, tcg_res, rd, pass, size); 9453 } 9454 } 9455 9456 if (!is_scalar) { 9457 clear_vec_high(s, is_q, rd); 9458 } 9459 } 9460 } 9461 9462 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9463 bool is_scalar, bool is_u, bool is_q, 9464 int size, int rn, int rd) 9465 { 9466 bool is_double = (size == 3); 9467 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9468 9469 if (is_double) { 9470 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9471 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9472 int pass; 9473 9474 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9475 read_vec_element(s, tcg_op, rn, pass, MO_64); 9476 switch (opcode) { 9477 case 0x3d: /* FRECPE */ 9478 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9479 break; 9480 case 0x3f: /* FRECPX */ 9481 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9482 break; 9483 case 0x7d: /* FRSQRTE */ 9484 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9485 break; 9486 default: 9487 g_assert_not_reached(); 9488 } 9489 write_vec_element(s, tcg_res, rd, pass, MO_64); 9490 } 9491 clear_vec_high(s, !is_scalar, rd); 9492 } else { 9493 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9494 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9495 int pass, maxpasses; 9496 9497 if (is_scalar) { 9498 maxpasses = 1; 9499 } else { 9500 maxpasses = is_q ? 4 : 2; 9501 } 9502 9503 for (pass = 0; pass < maxpasses; pass++) { 9504 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9505 9506 switch (opcode) { 9507 case 0x3c: /* URECPE */ 9508 gen_helper_recpe_u32(tcg_res, tcg_op); 9509 break; 9510 case 0x3d: /* FRECPE */ 9511 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9512 break; 9513 case 0x3f: /* FRECPX */ 9514 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9515 break; 9516 case 0x7d: /* FRSQRTE */ 9517 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9518 break; 9519 default: 9520 g_assert_not_reached(); 9521 } 9522 9523 if (is_scalar) { 9524 write_fp_sreg(s, rd, tcg_res); 9525 } else { 9526 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9527 } 9528 } 9529 if (!is_scalar) { 9530 clear_vec_high(s, is_q, rd); 9531 } 9532 } 9533 } 9534 9535 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9536 int opcode, bool u, bool is_q, 9537 int size, int rn, int rd) 9538 { 9539 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9540 * in the source becomes a size element in the destination). 9541 */ 9542 int pass; 9543 TCGv_i32 tcg_res[2]; 9544 int destelt = is_q ? 2 : 0; 9545 int passes = scalar ? 1 : 2; 9546 9547 if (scalar) { 9548 tcg_res[1] = tcg_constant_i32(0); 9549 } 9550 9551 for (pass = 0; pass < passes; pass++) { 9552 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9553 NeonGenNarrowFn *genfn = NULL; 9554 NeonGenNarrowEnvFn *genenvfn = NULL; 9555 9556 if (scalar) { 9557 read_vec_element(s, tcg_op, rn, pass, size + 1); 9558 } else { 9559 read_vec_element(s, tcg_op, rn, pass, MO_64); 9560 } 9561 tcg_res[pass] = tcg_temp_new_i32(); 9562 9563 switch (opcode) { 9564 case 0x12: /* XTN, SQXTUN */ 9565 { 9566 static NeonGenNarrowFn * const xtnfns[3] = { 9567 gen_helper_neon_narrow_u8, 9568 gen_helper_neon_narrow_u16, 9569 tcg_gen_extrl_i64_i32, 9570 }; 9571 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9572 gen_helper_neon_unarrow_sat8, 9573 gen_helper_neon_unarrow_sat16, 9574 gen_helper_neon_unarrow_sat32, 9575 }; 9576 if (u) { 9577 genenvfn = sqxtunfns[size]; 9578 } else { 9579 genfn = xtnfns[size]; 9580 } 9581 break; 9582 } 9583 case 0x14: /* SQXTN, UQXTN */ 9584 { 9585 static NeonGenNarrowEnvFn * const fns[3][2] = { 9586 { gen_helper_neon_narrow_sat_s8, 9587 gen_helper_neon_narrow_sat_u8 }, 9588 { gen_helper_neon_narrow_sat_s16, 9589 gen_helper_neon_narrow_sat_u16 }, 9590 { gen_helper_neon_narrow_sat_s32, 9591 gen_helper_neon_narrow_sat_u32 }, 9592 }; 9593 genenvfn = fns[size][u]; 9594 break; 9595 } 9596 case 0x16: /* FCVTN, FCVTN2 */ 9597 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9598 if (size == 2) { 9599 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9600 } else { 9601 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9602 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9603 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9604 TCGv_i32 ahp = get_ahp_flag(); 9605 9606 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9607 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9608 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9609 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9610 } 9611 break; 9612 case 0x36: /* BFCVTN, BFCVTN2 */ 9613 { 9614 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9615 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9616 } 9617 break; 9618 case 0x56: /* FCVTXN, FCVTXN2 */ 9619 /* 64 bit to 32 bit float conversion 9620 * with von Neumann rounding (round to odd) 9621 */ 9622 assert(size == 2); 9623 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9624 break; 9625 default: 9626 g_assert_not_reached(); 9627 } 9628 9629 if (genfn) { 9630 genfn(tcg_res[pass], tcg_op); 9631 } else if (genenvfn) { 9632 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9633 } 9634 } 9635 9636 for (pass = 0; pass < 2; pass++) { 9637 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9638 } 9639 clear_vec_high(s, is_q, rd); 9640 } 9641 9642 /* Remaining saturating accumulating ops */ 9643 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9644 bool is_q, int size, int rn, int rd) 9645 { 9646 bool is_double = (size == 3); 9647 9648 if (is_double) { 9649 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9650 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9651 int pass; 9652 9653 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9654 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9655 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9656 9657 if (is_u) { /* USQADD */ 9658 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9659 } else { /* SUQADD */ 9660 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9661 } 9662 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9663 } 9664 clear_vec_high(s, !is_scalar, rd); 9665 } else { 9666 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9667 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9668 int pass, maxpasses; 9669 9670 if (is_scalar) { 9671 maxpasses = 1; 9672 } else { 9673 maxpasses = is_q ? 4 : 2; 9674 } 9675 9676 for (pass = 0; pass < maxpasses; pass++) { 9677 if (is_scalar) { 9678 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9679 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9680 } else { 9681 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9682 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9683 } 9684 9685 if (is_u) { /* USQADD */ 9686 switch (size) { 9687 case 0: 9688 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9689 break; 9690 case 1: 9691 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9692 break; 9693 case 2: 9694 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9695 break; 9696 default: 9697 g_assert_not_reached(); 9698 } 9699 } else { /* SUQADD */ 9700 switch (size) { 9701 case 0: 9702 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9703 break; 9704 case 1: 9705 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9706 break; 9707 case 2: 9708 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9709 break; 9710 default: 9711 g_assert_not_reached(); 9712 } 9713 } 9714 9715 if (is_scalar) { 9716 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9717 } 9718 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9719 } 9720 clear_vec_high(s, is_q, rd); 9721 } 9722 } 9723 9724 /* AdvSIMD scalar two reg misc 9725 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9726 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9727 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9728 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9729 */ 9730 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9731 { 9732 int rd = extract32(insn, 0, 5); 9733 int rn = extract32(insn, 5, 5); 9734 int opcode = extract32(insn, 12, 5); 9735 int size = extract32(insn, 22, 2); 9736 bool u = extract32(insn, 29, 1); 9737 bool is_fcvt = false; 9738 int rmode; 9739 TCGv_i32 tcg_rmode; 9740 TCGv_ptr tcg_fpstatus; 9741 9742 switch (opcode) { 9743 case 0x3: /* USQADD / SUQADD*/ 9744 if (!fp_access_check(s)) { 9745 return; 9746 } 9747 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9748 return; 9749 case 0x7: /* SQABS / SQNEG */ 9750 break; 9751 case 0xa: /* CMLT */ 9752 if (u) { 9753 unallocated_encoding(s); 9754 return; 9755 } 9756 /* fall through */ 9757 case 0x8: /* CMGT, CMGE */ 9758 case 0x9: /* CMEQ, CMLE */ 9759 case 0xb: /* ABS, NEG */ 9760 if (size != 3) { 9761 unallocated_encoding(s); 9762 return; 9763 } 9764 break; 9765 case 0x12: /* SQXTUN */ 9766 if (!u) { 9767 unallocated_encoding(s); 9768 return; 9769 } 9770 /* fall through */ 9771 case 0x14: /* SQXTN, UQXTN */ 9772 if (size == 3) { 9773 unallocated_encoding(s); 9774 return; 9775 } 9776 if (!fp_access_check(s)) { 9777 return; 9778 } 9779 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9780 return; 9781 case 0xc ... 0xf: 9782 case 0x16 ... 0x1d: 9783 case 0x1f: 9784 /* Floating point: U, size[1] and opcode indicate operation; 9785 * size[0] indicates single or double precision. 9786 */ 9787 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9788 size = extract32(size, 0, 1) ? 3 : 2; 9789 switch (opcode) { 9790 case 0x2c: /* FCMGT (zero) */ 9791 case 0x2d: /* FCMEQ (zero) */ 9792 case 0x2e: /* FCMLT (zero) */ 9793 case 0x6c: /* FCMGE (zero) */ 9794 case 0x6d: /* FCMLE (zero) */ 9795 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9796 return; 9797 case 0x1d: /* SCVTF */ 9798 case 0x5d: /* UCVTF */ 9799 { 9800 bool is_signed = (opcode == 0x1d); 9801 if (!fp_access_check(s)) { 9802 return; 9803 } 9804 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9805 return; 9806 } 9807 case 0x3d: /* FRECPE */ 9808 case 0x3f: /* FRECPX */ 9809 case 0x7d: /* FRSQRTE */ 9810 if (!fp_access_check(s)) { 9811 return; 9812 } 9813 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9814 return; 9815 case 0x1a: /* FCVTNS */ 9816 case 0x1b: /* FCVTMS */ 9817 case 0x3a: /* FCVTPS */ 9818 case 0x3b: /* FCVTZS */ 9819 case 0x5a: /* FCVTNU */ 9820 case 0x5b: /* FCVTMU */ 9821 case 0x7a: /* FCVTPU */ 9822 case 0x7b: /* FCVTZU */ 9823 is_fcvt = true; 9824 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 9825 break; 9826 case 0x1c: /* FCVTAS */ 9827 case 0x5c: /* FCVTAU */ 9828 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 9829 is_fcvt = true; 9830 rmode = FPROUNDING_TIEAWAY; 9831 break; 9832 case 0x56: /* FCVTXN, FCVTXN2 */ 9833 if (size == 2) { 9834 unallocated_encoding(s); 9835 return; 9836 } 9837 if (!fp_access_check(s)) { 9838 return; 9839 } 9840 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 9841 return; 9842 default: 9843 unallocated_encoding(s); 9844 return; 9845 } 9846 break; 9847 default: 9848 unallocated_encoding(s); 9849 return; 9850 } 9851 9852 if (!fp_access_check(s)) { 9853 return; 9854 } 9855 9856 if (is_fcvt) { 9857 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 9858 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9859 } else { 9860 tcg_fpstatus = NULL; 9861 tcg_rmode = NULL; 9862 } 9863 9864 if (size == 3) { 9865 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9866 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9867 9868 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 9869 write_fp_dreg(s, rd, tcg_rd); 9870 } else { 9871 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9872 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9873 9874 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9875 9876 switch (opcode) { 9877 case 0x7: /* SQABS, SQNEG */ 9878 { 9879 NeonGenOneOpEnvFn *genfn; 9880 static NeonGenOneOpEnvFn * const fns[3][2] = { 9881 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 9882 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 9883 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 9884 }; 9885 genfn = fns[size][u]; 9886 genfn(tcg_rd, cpu_env, tcg_rn); 9887 break; 9888 } 9889 case 0x1a: /* FCVTNS */ 9890 case 0x1b: /* FCVTMS */ 9891 case 0x1c: /* FCVTAS */ 9892 case 0x3a: /* FCVTPS */ 9893 case 0x3b: /* FCVTZS */ 9894 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 9895 tcg_fpstatus); 9896 break; 9897 case 0x5a: /* FCVTNU */ 9898 case 0x5b: /* FCVTMU */ 9899 case 0x5c: /* FCVTAU */ 9900 case 0x7a: /* FCVTPU */ 9901 case 0x7b: /* FCVTZU */ 9902 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 9903 tcg_fpstatus); 9904 break; 9905 default: 9906 g_assert_not_reached(); 9907 } 9908 9909 write_fp_sreg(s, rd, tcg_rd); 9910 } 9911 9912 if (is_fcvt) { 9913 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9914 } 9915 } 9916 9917 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 9918 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 9919 int immh, int immb, int opcode, int rn, int rd) 9920 { 9921 int size = 32 - clz32(immh) - 1; 9922 int immhb = immh << 3 | immb; 9923 int shift = 2 * (8 << size) - immhb; 9924 GVecGen2iFn *gvec_fn; 9925 9926 if (extract32(immh, 3, 1) && !is_q) { 9927 unallocated_encoding(s); 9928 return; 9929 } 9930 tcg_debug_assert(size <= 3); 9931 9932 if (!fp_access_check(s)) { 9933 return; 9934 } 9935 9936 switch (opcode) { 9937 case 0x02: /* SSRA / USRA (accumulate) */ 9938 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 9939 break; 9940 9941 case 0x08: /* SRI */ 9942 gvec_fn = gen_gvec_sri; 9943 break; 9944 9945 case 0x00: /* SSHR / USHR */ 9946 if (is_u) { 9947 if (shift == 8 << size) { 9948 /* Shift count the same size as element size produces zero. */ 9949 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 9950 is_q ? 16 : 8, vec_full_reg_size(s), 0); 9951 return; 9952 } 9953 gvec_fn = tcg_gen_gvec_shri; 9954 } else { 9955 /* Shift count the same size as element size produces all sign. */ 9956 if (shift == 8 << size) { 9957 shift -= 1; 9958 } 9959 gvec_fn = tcg_gen_gvec_sari; 9960 } 9961 break; 9962 9963 case 0x04: /* SRSHR / URSHR (rounding) */ 9964 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 9965 break; 9966 9967 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 9968 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 9969 break; 9970 9971 default: 9972 g_assert_not_reached(); 9973 } 9974 9975 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 9976 } 9977 9978 /* SHL/SLI - Vector shift left */ 9979 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 9980 int immh, int immb, int opcode, int rn, int rd) 9981 { 9982 int size = 32 - clz32(immh) - 1; 9983 int immhb = immh << 3 | immb; 9984 int shift = immhb - (8 << size); 9985 9986 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 9987 assert(size >= 0 && size <= 3); 9988 9989 if (extract32(immh, 3, 1) && !is_q) { 9990 unallocated_encoding(s); 9991 return; 9992 } 9993 9994 if (!fp_access_check(s)) { 9995 return; 9996 } 9997 9998 if (insert) { 9999 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10000 } else { 10001 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10002 } 10003 } 10004 10005 /* USHLL/SHLL - Vector shift left with widening */ 10006 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10007 int immh, int immb, int opcode, int rn, int rd) 10008 { 10009 int size = 32 - clz32(immh) - 1; 10010 int immhb = immh << 3 | immb; 10011 int shift = immhb - (8 << size); 10012 int dsize = 64; 10013 int esize = 8 << size; 10014 int elements = dsize/esize; 10015 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10016 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10017 int i; 10018 10019 if (size >= 3) { 10020 unallocated_encoding(s); 10021 return; 10022 } 10023 10024 if (!fp_access_check(s)) { 10025 return; 10026 } 10027 10028 /* For the LL variants the store is larger than the load, 10029 * so if rd == rn we would overwrite parts of our input. 10030 * So load everything right now and use shifts in the main loop. 10031 */ 10032 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10033 10034 for (i = 0; i < elements; i++) { 10035 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10036 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10037 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10038 write_vec_element(s, tcg_rd, rd, i, size + 1); 10039 } 10040 } 10041 10042 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10043 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10044 int immh, int immb, int opcode, int rn, int rd) 10045 { 10046 int immhb = immh << 3 | immb; 10047 int size = 32 - clz32(immh) - 1; 10048 int dsize = 64; 10049 int esize = 8 << size; 10050 int elements = dsize/esize; 10051 int shift = (2 * esize) - immhb; 10052 bool round = extract32(opcode, 0, 1); 10053 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10054 TCGv_i64 tcg_round; 10055 int i; 10056 10057 if (extract32(immh, 3, 1)) { 10058 unallocated_encoding(s); 10059 return; 10060 } 10061 10062 if (!fp_access_check(s)) { 10063 return; 10064 } 10065 10066 tcg_rn = tcg_temp_new_i64(); 10067 tcg_rd = tcg_temp_new_i64(); 10068 tcg_final = tcg_temp_new_i64(); 10069 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10070 10071 if (round) { 10072 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10073 } else { 10074 tcg_round = NULL; 10075 } 10076 10077 for (i = 0; i < elements; i++) { 10078 read_vec_element(s, tcg_rn, rn, i, size+1); 10079 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10080 false, true, size+1, shift); 10081 10082 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10083 } 10084 10085 if (!is_q) { 10086 write_vec_element(s, tcg_final, rd, 0, MO_64); 10087 } else { 10088 write_vec_element(s, tcg_final, rd, 1, MO_64); 10089 } 10090 10091 clear_vec_high(s, is_q, rd); 10092 } 10093 10094 10095 /* AdvSIMD shift by immediate 10096 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10097 * +---+---+---+-------------+------+------+--------+---+------+------+ 10098 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10099 * +---+---+---+-------------+------+------+--------+---+------+------+ 10100 */ 10101 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10102 { 10103 int rd = extract32(insn, 0, 5); 10104 int rn = extract32(insn, 5, 5); 10105 int opcode = extract32(insn, 11, 5); 10106 int immb = extract32(insn, 16, 3); 10107 int immh = extract32(insn, 19, 4); 10108 bool is_u = extract32(insn, 29, 1); 10109 bool is_q = extract32(insn, 30, 1); 10110 10111 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10112 assert(immh != 0); 10113 10114 switch (opcode) { 10115 case 0x08: /* SRI */ 10116 if (!is_u) { 10117 unallocated_encoding(s); 10118 return; 10119 } 10120 /* fall through */ 10121 case 0x00: /* SSHR / USHR */ 10122 case 0x02: /* SSRA / USRA (accumulate) */ 10123 case 0x04: /* SRSHR / URSHR (rounding) */ 10124 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10125 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10126 break; 10127 case 0x0a: /* SHL / SLI */ 10128 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10129 break; 10130 case 0x10: /* SHRN */ 10131 case 0x11: /* RSHRN / SQRSHRUN */ 10132 if (is_u) { 10133 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10134 opcode, rn, rd); 10135 } else { 10136 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10137 } 10138 break; 10139 case 0x12: /* SQSHRN / UQSHRN */ 10140 case 0x13: /* SQRSHRN / UQRSHRN */ 10141 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10142 opcode, rn, rd); 10143 break; 10144 case 0x14: /* SSHLL / USHLL */ 10145 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10146 break; 10147 case 0x1c: /* SCVTF / UCVTF */ 10148 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10149 opcode, rn, rd); 10150 break; 10151 case 0xc: /* SQSHLU */ 10152 if (!is_u) { 10153 unallocated_encoding(s); 10154 return; 10155 } 10156 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10157 break; 10158 case 0xe: /* SQSHL, UQSHL */ 10159 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10160 break; 10161 case 0x1f: /* FCVTZS/ FCVTZU */ 10162 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10163 return; 10164 default: 10165 unallocated_encoding(s); 10166 return; 10167 } 10168 } 10169 10170 /* Generate code to do a "long" addition or subtraction, ie one done in 10171 * TCGv_i64 on vector lanes twice the width specified by size. 10172 */ 10173 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10174 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10175 { 10176 static NeonGenTwo64OpFn * const fns[3][2] = { 10177 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10178 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10179 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10180 }; 10181 NeonGenTwo64OpFn *genfn; 10182 assert(size < 3); 10183 10184 genfn = fns[size][is_sub]; 10185 genfn(tcg_res, tcg_op1, tcg_op2); 10186 } 10187 10188 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10189 int opcode, int rd, int rn, int rm) 10190 { 10191 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10192 TCGv_i64 tcg_res[2]; 10193 int pass, accop; 10194 10195 tcg_res[0] = tcg_temp_new_i64(); 10196 tcg_res[1] = tcg_temp_new_i64(); 10197 10198 /* Does this op do an adding accumulate, a subtracting accumulate, 10199 * or no accumulate at all? 10200 */ 10201 switch (opcode) { 10202 case 5: 10203 case 8: 10204 case 9: 10205 accop = 1; 10206 break; 10207 case 10: 10208 case 11: 10209 accop = -1; 10210 break; 10211 default: 10212 accop = 0; 10213 break; 10214 } 10215 10216 if (accop != 0) { 10217 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10218 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10219 } 10220 10221 /* size == 2 means two 32x32->64 operations; this is worth special 10222 * casing because we can generally handle it inline. 10223 */ 10224 if (size == 2) { 10225 for (pass = 0; pass < 2; pass++) { 10226 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10227 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10228 TCGv_i64 tcg_passres; 10229 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10230 10231 int elt = pass + is_q * 2; 10232 10233 read_vec_element(s, tcg_op1, rn, elt, memop); 10234 read_vec_element(s, tcg_op2, rm, elt, memop); 10235 10236 if (accop == 0) { 10237 tcg_passres = tcg_res[pass]; 10238 } else { 10239 tcg_passres = tcg_temp_new_i64(); 10240 } 10241 10242 switch (opcode) { 10243 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10244 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10245 break; 10246 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10247 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10248 break; 10249 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10250 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10251 { 10252 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10253 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10254 10255 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10256 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10257 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10258 tcg_passres, 10259 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10260 break; 10261 } 10262 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10263 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10264 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10265 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10266 break; 10267 case 9: /* SQDMLAL, SQDMLAL2 */ 10268 case 11: /* SQDMLSL, SQDMLSL2 */ 10269 case 13: /* SQDMULL, SQDMULL2 */ 10270 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10271 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10272 tcg_passres, tcg_passres); 10273 break; 10274 default: 10275 g_assert_not_reached(); 10276 } 10277 10278 if (opcode == 9 || opcode == 11) { 10279 /* saturating accumulate ops */ 10280 if (accop < 0) { 10281 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10282 } 10283 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10284 tcg_res[pass], tcg_passres); 10285 } else if (accop > 0) { 10286 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10287 } else if (accop < 0) { 10288 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10289 } 10290 } 10291 } else { 10292 /* size 0 or 1, generally helper functions */ 10293 for (pass = 0; pass < 2; pass++) { 10294 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10295 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10296 TCGv_i64 tcg_passres; 10297 int elt = pass + is_q * 2; 10298 10299 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10300 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10301 10302 if (accop == 0) { 10303 tcg_passres = tcg_res[pass]; 10304 } else { 10305 tcg_passres = tcg_temp_new_i64(); 10306 } 10307 10308 switch (opcode) { 10309 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10310 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10311 { 10312 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10313 static NeonGenWidenFn * const widenfns[2][2] = { 10314 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10315 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10316 }; 10317 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10318 10319 widenfn(tcg_op2_64, tcg_op2); 10320 widenfn(tcg_passres, tcg_op1); 10321 gen_neon_addl(size, (opcode == 2), tcg_passres, 10322 tcg_passres, tcg_op2_64); 10323 break; 10324 } 10325 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10326 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10327 if (size == 0) { 10328 if (is_u) { 10329 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10330 } else { 10331 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10332 } 10333 } else { 10334 if (is_u) { 10335 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10336 } else { 10337 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10338 } 10339 } 10340 break; 10341 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10342 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10343 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10344 if (size == 0) { 10345 if (is_u) { 10346 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10347 } else { 10348 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10349 } 10350 } else { 10351 if (is_u) { 10352 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10353 } else { 10354 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10355 } 10356 } 10357 break; 10358 case 9: /* SQDMLAL, SQDMLAL2 */ 10359 case 11: /* SQDMLSL, SQDMLSL2 */ 10360 case 13: /* SQDMULL, SQDMULL2 */ 10361 assert(size == 1); 10362 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10363 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10364 tcg_passres, tcg_passres); 10365 break; 10366 default: 10367 g_assert_not_reached(); 10368 } 10369 10370 if (accop != 0) { 10371 if (opcode == 9 || opcode == 11) { 10372 /* saturating accumulate ops */ 10373 if (accop < 0) { 10374 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10375 } 10376 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10377 tcg_res[pass], 10378 tcg_passres); 10379 } else { 10380 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10381 tcg_res[pass], tcg_passres); 10382 } 10383 } 10384 } 10385 } 10386 10387 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10388 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10389 } 10390 10391 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10392 int opcode, int rd, int rn, int rm) 10393 { 10394 TCGv_i64 tcg_res[2]; 10395 int part = is_q ? 2 : 0; 10396 int pass; 10397 10398 for (pass = 0; pass < 2; pass++) { 10399 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10400 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10401 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10402 static NeonGenWidenFn * const widenfns[3][2] = { 10403 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10404 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10405 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10406 }; 10407 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10408 10409 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10410 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10411 widenfn(tcg_op2_wide, tcg_op2); 10412 tcg_res[pass] = tcg_temp_new_i64(); 10413 gen_neon_addl(size, (opcode == 3), 10414 tcg_res[pass], tcg_op1, tcg_op2_wide); 10415 } 10416 10417 for (pass = 0; pass < 2; pass++) { 10418 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10419 } 10420 } 10421 10422 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10423 { 10424 tcg_gen_addi_i64(in, in, 1U << 31); 10425 tcg_gen_extrh_i64_i32(res, in); 10426 } 10427 10428 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10429 int opcode, int rd, int rn, int rm) 10430 { 10431 TCGv_i32 tcg_res[2]; 10432 int part = is_q ? 2 : 0; 10433 int pass; 10434 10435 for (pass = 0; pass < 2; pass++) { 10436 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10437 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10438 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10439 static NeonGenNarrowFn * const narrowfns[3][2] = { 10440 { gen_helper_neon_narrow_high_u8, 10441 gen_helper_neon_narrow_round_high_u8 }, 10442 { gen_helper_neon_narrow_high_u16, 10443 gen_helper_neon_narrow_round_high_u16 }, 10444 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10445 }; 10446 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10447 10448 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10449 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10450 10451 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10452 10453 tcg_res[pass] = tcg_temp_new_i32(); 10454 gennarrow(tcg_res[pass], tcg_wideres); 10455 } 10456 10457 for (pass = 0; pass < 2; pass++) { 10458 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10459 } 10460 clear_vec_high(s, is_q, rd); 10461 } 10462 10463 /* AdvSIMD three different 10464 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10465 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10466 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10467 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10468 */ 10469 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10470 { 10471 /* Instructions in this group fall into three basic classes 10472 * (in each case with the operation working on each element in 10473 * the input vectors): 10474 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10475 * 128 bit input) 10476 * (2) wide 64 x 128 -> 128 10477 * (3) narrowing 128 x 128 -> 64 10478 * Here we do initial decode, catch unallocated cases and 10479 * dispatch to separate functions for each class. 10480 */ 10481 int is_q = extract32(insn, 30, 1); 10482 int is_u = extract32(insn, 29, 1); 10483 int size = extract32(insn, 22, 2); 10484 int opcode = extract32(insn, 12, 4); 10485 int rm = extract32(insn, 16, 5); 10486 int rn = extract32(insn, 5, 5); 10487 int rd = extract32(insn, 0, 5); 10488 10489 switch (opcode) { 10490 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10491 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10492 /* 64 x 128 -> 128 */ 10493 if (size == 3) { 10494 unallocated_encoding(s); 10495 return; 10496 } 10497 if (!fp_access_check(s)) { 10498 return; 10499 } 10500 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10501 break; 10502 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10503 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10504 /* 128 x 128 -> 64 */ 10505 if (size == 3) { 10506 unallocated_encoding(s); 10507 return; 10508 } 10509 if (!fp_access_check(s)) { 10510 return; 10511 } 10512 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10513 break; 10514 case 14: /* PMULL, PMULL2 */ 10515 if (is_u) { 10516 unallocated_encoding(s); 10517 return; 10518 } 10519 switch (size) { 10520 case 0: /* PMULL.P8 */ 10521 if (!fp_access_check(s)) { 10522 return; 10523 } 10524 /* The Q field specifies lo/hi half input for this insn. */ 10525 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10526 gen_helper_neon_pmull_h); 10527 break; 10528 10529 case 3: /* PMULL.P64 */ 10530 if (!dc_isar_feature(aa64_pmull, s)) { 10531 unallocated_encoding(s); 10532 return; 10533 } 10534 if (!fp_access_check(s)) { 10535 return; 10536 } 10537 /* The Q field specifies lo/hi half input for this insn. */ 10538 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10539 gen_helper_gvec_pmull_q); 10540 break; 10541 10542 default: 10543 unallocated_encoding(s); 10544 break; 10545 } 10546 return; 10547 case 9: /* SQDMLAL, SQDMLAL2 */ 10548 case 11: /* SQDMLSL, SQDMLSL2 */ 10549 case 13: /* SQDMULL, SQDMULL2 */ 10550 if (is_u || size == 0) { 10551 unallocated_encoding(s); 10552 return; 10553 } 10554 /* fall through */ 10555 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10556 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10557 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10558 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10559 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10560 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10561 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10562 /* 64 x 64 -> 128 */ 10563 if (size == 3) { 10564 unallocated_encoding(s); 10565 return; 10566 } 10567 if (!fp_access_check(s)) { 10568 return; 10569 } 10570 10571 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10572 break; 10573 default: 10574 /* opcode 15 not allocated */ 10575 unallocated_encoding(s); 10576 break; 10577 } 10578 } 10579 10580 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10581 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10582 { 10583 int rd = extract32(insn, 0, 5); 10584 int rn = extract32(insn, 5, 5); 10585 int rm = extract32(insn, 16, 5); 10586 int size = extract32(insn, 22, 2); 10587 bool is_u = extract32(insn, 29, 1); 10588 bool is_q = extract32(insn, 30, 1); 10589 10590 if (!fp_access_check(s)) { 10591 return; 10592 } 10593 10594 switch (size + 4 * is_u) { 10595 case 0: /* AND */ 10596 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10597 return; 10598 case 1: /* BIC */ 10599 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10600 return; 10601 case 2: /* ORR */ 10602 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10603 return; 10604 case 3: /* ORN */ 10605 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10606 return; 10607 case 4: /* EOR */ 10608 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10609 return; 10610 10611 case 5: /* BSL bitwise select */ 10612 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10613 return; 10614 case 6: /* BIT, bitwise insert if true */ 10615 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10616 return; 10617 case 7: /* BIF, bitwise insert if false */ 10618 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10619 return; 10620 10621 default: 10622 g_assert_not_reached(); 10623 } 10624 } 10625 10626 /* Pairwise op subgroup of C3.6.16. 10627 * 10628 * This is called directly or via the handle_3same_float for float pairwise 10629 * operations where the opcode and size are calculated differently. 10630 */ 10631 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10632 int size, int rn, int rm, int rd) 10633 { 10634 TCGv_ptr fpst; 10635 int pass; 10636 10637 /* Floating point operations need fpst */ 10638 if (opcode >= 0x58) { 10639 fpst = fpstatus_ptr(FPST_FPCR); 10640 } else { 10641 fpst = NULL; 10642 } 10643 10644 if (!fp_access_check(s)) { 10645 return; 10646 } 10647 10648 /* These operations work on the concatenated rm:rn, with each pair of 10649 * adjacent elements being operated on to produce an element in the result. 10650 */ 10651 if (size == 3) { 10652 TCGv_i64 tcg_res[2]; 10653 10654 for (pass = 0; pass < 2; pass++) { 10655 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10656 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10657 int passreg = (pass == 0) ? rn : rm; 10658 10659 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10660 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10661 tcg_res[pass] = tcg_temp_new_i64(); 10662 10663 switch (opcode) { 10664 case 0x17: /* ADDP */ 10665 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10666 break; 10667 case 0x58: /* FMAXNMP */ 10668 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10669 break; 10670 case 0x5a: /* FADDP */ 10671 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10672 break; 10673 case 0x5e: /* FMAXP */ 10674 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10675 break; 10676 case 0x78: /* FMINNMP */ 10677 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10678 break; 10679 case 0x7e: /* FMINP */ 10680 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10681 break; 10682 default: 10683 g_assert_not_reached(); 10684 } 10685 } 10686 10687 for (pass = 0; pass < 2; pass++) { 10688 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10689 } 10690 } else { 10691 int maxpass = is_q ? 4 : 2; 10692 TCGv_i32 tcg_res[4]; 10693 10694 for (pass = 0; pass < maxpass; pass++) { 10695 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10696 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10697 NeonGenTwoOpFn *genfn = NULL; 10698 int passreg = pass < (maxpass / 2) ? rn : rm; 10699 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10700 10701 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10702 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10703 tcg_res[pass] = tcg_temp_new_i32(); 10704 10705 switch (opcode) { 10706 case 0x17: /* ADDP */ 10707 { 10708 static NeonGenTwoOpFn * const fns[3] = { 10709 gen_helper_neon_padd_u8, 10710 gen_helper_neon_padd_u16, 10711 tcg_gen_add_i32, 10712 }; 10713 genfn = fns[size]; 10714 break; 10715 } 10716 case 0x14: /* SMAXP, UMAXP */ 10717 { 10718 static NeonGenTwoOpFn * const fns[3][2] = { 10719 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10720 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10721 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10722 }; 10723 genfn = fns[size][u]; 10724 break; 10725 } 10726 case 0x15: /* SMINP, UMINP */ 10727 { 10728 static NeonGenTwoOpFn * const fns[3][2] = { 10729 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10730 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10731 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10732 }; 10733 genfn = fns[size][u]; 10734 break; 10735 } 10736 /* The FP operations are all on single floats (32 bit) */ 10737 case 0x58: /* FMAXNMP */ 10738 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10739 break; 10740 case 0x5a: /* FADDP */ 10741 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10742 break; 10743 case 0x5e: /* FMAXP */ 10744 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10745 break; 10746 case 0x78: /* FMINNMP */ 10747 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10748 break; 10749 case 0x7e: /* FMINP */ 10750 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10751 break; 10752 default: 10753 g_assert_not_reached(); 10754 } 10755 10756 /* FP ops called directly, otherwise call now */ 10757 if (genfn) { 10758 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10759 } 10760 } 10761 10762 for (pass = 0; pass < maxpass; pass++) { 10763 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10764 } 10765 clear_vec_high(s, is_q, rd); 10766 } 10767 } 10768 10769 /* Floating point op subgroup of C3.6.16. */ 10770 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10771 { 10772 /* For floating point ops, the U, size[1] and opcode bits 10773 * together indicate the operation. size[0] indicates single 10774 * or double. 10775 */ 10776 int fpopcode = extract32(insn, 11, 5) 10777 | (extract32(insn, 23, 1) << 5) 10778 | (extract32(insn, 29, 1) << 6); 10779 int is_q = extract32(insn, 30, 1); 10780 int size = extract32(insn, 22, 1); 10781 int rm = extract32(insn, 16, 5); 10782 int rn = extract32(insn, 5, 5); 10783 int rd = extract32(insn, 0, 5); 10784 10785 int datasize = is_q ? 128 : 64; 10786 int esize = 32 << size; 10787 int elements = datasize / esize; 10788 10789 if (size == 1 && !is_q) { 10790 unallocated_encoding(s); 10791 return; 10792 } 10793 10794 switch (fpopcode) { 10795 case 0x58: /* FMAXNMP */ 10796 case 0x5a: /* FADDP */ 10797 case 0x5e: /* FMAXP */ 10798 case 0x78: /* FMINNMP */ 10799 case 0x7e: /* FMINP */ 10800 if (size && !is_q) { 10801 unallocated_encoding(s); 10802 return; 10803 } 10804 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10805 rn, rm, rd); 10806 return; 10807 case 0x1b: /* FMULX */ 10808 case 0x1f: /* FRECPS */ 10809 case 0x3f: /* FRSQRTS */ 10810 case 0x5d: /* FACGE */ 10811 case 0x7d: /* FACGT */ 10812 case 0x19: /* FMLA */ 10813 case 0x39: /* FMLS */ 10814 case 0x18: /* FMAXNM */ 10815 case 0x1a: /* FADD */ 10816 case 0x1c: /* FCMEQ */ 10817 case 0x1e: /* FMAX */ 10818 case 0x38: /* FMINNM */ 10819 case 0x3a: /* FSUB */ 10820 case 0x3e: /* FMIN */ 10821 case 0x5b: /* FMUL */ 10822 case 0x5c: /* FCMGE */ 10823 case 0x5f: /* FDIV */ 10824 case 0x7a: /* FABD */ 10825 case 0x7c: /* FCMGT */ 10826 if (!fp_access_check(s)) { 10827 return; 10828 } 10829 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 10830 return; 10831 10832 case 0x1d: /* FMLAL */ 10833 case 0x3d: /* FMLSL */ 10834 case 0x59: /* FMLAL2 */ 10835 case 0x79: /* FMLSL2 */ 10836 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10837 unallocated_encoding(s); 10838 return; 10839 } 10840 if (fp_access_check(s)) { 10841 int is_s = extract32(insn, 23, 1); 10842 int is_2 = extract32(insn, 29, 1); 10843 int data = (is_2 << 1) | is_s; 10844 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10845 vec_full_reg_offset(s, rn), 10846 vec_full_reg_offset(s, rm), cpu_env, 10847 is_q ? 16 : 8, vec_full_reg_size(s), 10848 data, gen_helper_gvec_fmlal_a64); 10849 } 10850 return; 10851 10852 default: 10853 unallocated_encoding(s); 10854 return; 10855 } 10856 } 10857 10858 /* Integer op subgroup of C3.6.16. */ 10859 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10860 { 10861 int is_q = extract32(insn, 30, 1); 10862 int u = extract32(insn, 29, 1); 10863 int size = extract32(insn, 22, 2); 10864 int opcode = extract32(insn, 11, 5); 10865 int rm = extract32(insn, 16, 5); 10866 int rn = extract32(insn, 5, 5); 10867 int rd = extract32(insn, 0, 5); 10868 int pass; 10869 TCGCond cond; 10870 10871 switch (opcode) { 10872 case 0x13: /* MUL, PMUL */ 10873 if (u && size != 0) { 10874 unallocated_encoding(s); 10875 return; 10876 } 10877 /* fall through */ 10878 case 0x0: /* SHADD, UHADD */ 10879 case 0x2: /* SRHADD, URHADD */ 10880 case 0x4: /* SHSUB, UHSUB */ 10881 case 0xc: /* SMAX, UMAX */ 10882 case 0xd: /* SMIN, UMIN */ 10883 case 0xe: /* SABD, UABD */ 10884 case 0xf: /* SABA, UABA */ 10885 case 0x12: /* MLA, MLS */ 10886 if (size == 3) { 10887 unallocated_encoding(s); 10888 return; 10889 } 10890 break; 10891 case 0x16: /* SQDMULH, SQRDMULH */ 10892 if (size == 0 || size == 3) { 10893 unallocated_encoding(s); 10894 return; 10895 } 10896 break; 10897 default: 10898 if (size == 3 && !is_q) { 10899 unallocated_encoding(s); 10900 return; 10901 } 10902 break; 10903 } 10904 10905 if (!fp_access_check(s)) { 10906 return; 10907 } 10908 10909 switch (opcode) { 10910 case 0x01: /* SQADD, UQADD */ 10911 if (u) { 10912 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 10913 } else { 10914 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 10915 } 10916 return; 10917 case 0x05: /* SQSUB, UQSUB */ 10918 if (u) { 10919 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 10920 } else { 10921 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 10922 } 10923 return; 10924 case 0x08: /* SSHL, USHL */ 10925 if (u) { 10926 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 10927 } else { 10928 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 10929 } 10930 return; 10931 case 0x0c: /* SMAX, UMAX */ 10932 if (u) { 10933 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 10934 } else { 10935 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 10936 } 10937 return; 10938 case 0x0d: /* SMIN, UMIN */ 10939 if (u) { 10940 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 10941 } else { 10942 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 10943 } 10944 return; 10945 case 0xe: /* SABD, UABD */ 10946 if (u) { 10947 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 10948 } else { 10949 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 10950 } 10951 return; 10952 case 0xf: /* SABA, UABA */ 10953 if (u) { 10954 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 10955 } else { 10956 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 10957 } 10958 return; 10959 case 0x10: /* ADD, SUB */ 10960 if (u) { 10961 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 10962 } else { 10963 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 10964 } 10965 return; 10966 case 0x13: /* MUL, PMUL */ 10967 if (!u) { /* MUL */ 10968 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 10969 } else { /* PMUL */ 10970 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 10971 } 10972 return; 10973 case 0x12: /* MLA, MLS */ 10974 if (u) { 10975 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 10976 } else { 10977 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 10978 } 10979 return; 10980 case 0x16: /* SQDMULH, SQRDMULH */ 10981 { 10982 static gen_helper_gvec_3_ptr * const fns[2][2] = { 10983 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 10984 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 10985 }; 10986 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 10987 } 10988 return; 10989 case 0x11: 10990 if (!u) { /* CMTST */ 10991 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 10992 return; 10993 } 10994 /* else CMEQ */ 10995 cond = TCG_COND_EQ; 10996 goto do_gvec_cmp; 10997 case 0x06: /* CMGT, CMHI */ 10998 cond = u ? TCG_COND_GTU : TCG_COND_GT; 10999 goto do_gvec_cmp; 11000 case 0x07: /* CMGE, CMHS */ 11001 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11002 do_gvec_cmp: 11003 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11004 vec_full_reg_offset(s, rn), 11005 vec_full_reg_offset(s, rm), 11006 is_q ? 16 : 8, vec_full_reg_size(s)); 11007 return; 11008 } 11009 11010 if (size == 3) { 11011 assert(is_q); 11012 for (pass = 0; pass < 2; pass++) { 11013 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11014 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11015 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11016 11017 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11018 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11019 11020 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11021 11022 write_vec_element(s, tcg_res, rd, pass, MO_64); 11023 } 11024 } else { 11025 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11026 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11027 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11028 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11029 NeonGenTwoOpFn *genfn = NULL; 11030 NeonGenTwoOpEnvFn *genenvfn = NULL; 11031 11032 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11033 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11034 11035 switch (opcode) { 11036 case 0x0: /* SHADD, UHADD */ 11037 { 11038 static NeonGenTwoOpFn * const fns[3][2] = { 11039 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11040 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11041 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11042 }; 11043 genfn = fns[size][u]; 11044 break; 11045 } 11046 case 0x2: /* SRHADD, URHADD */ 11047 { 11048 static NeonGenTwoOpFn * const fns[3][2] = { 11049 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11050 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11051 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11052 }; 11053 genfn = fns[size][u]; 11054 break; 11055 } 11056 case 0x4: /* SHSUB, UHSUB */ 11057 { 11058 static NeonGenTwoOpFn * const fns[3][2] = { 11059 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11060 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11061 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11062 }; 11063 genfn = fns[size][u]; 11064 break; 11065 } 11066 case 0x9: /* SQSHL, UQSHL */ 11067 { 11068 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11069 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11070 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11071 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11072 }; 11073 genenvfn = fns[size][u]; 11074 break; 11075 } 11076 case 0xa: /* SRSHL, URSHL */ 11077 { 11078 static NeonGenTwoOpFn * const fns[3][2] = { 11079 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11080 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11081 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11082 }; 11083 genfn = fns[size][u]; 11084 break; 11085 } 11086 case 0xb: /* SQRSHL, UQRSHL */ 11087 { 11088 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11089 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11090 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11091 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11092 }; 11093 genenvfn = fns[size][u]; 11094 break; 11095 } 11096 default: 11097 g_assert_not_reached(); 11098 } 11099 11100 if (genenvfn) { 11101 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11102 } else { 11103 genfn(tcg_res, tcg_op1, tcg_op2); 11104 } 11105 11106 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11107 } 11108 } 11109 clear_vec_high(s, is_q, rd); 11110 } 11111 11112 /* AdvSIMD three same 11113 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11114 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11115 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11116 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11117 */ 11118 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11119 { 11120 int opcode = extract32(insn, 11, 5); 11121 11122 switch (opcode) { 11123 case 0x3: /* logic ops */ 11124 disas_simd_3same_logic(s, insn); 11125 break; 11126 case 0x17: /* ADDP */ 11127 case 0x14: /* SMAXP, UMAXP */ 11128 case 0x15: /* SMINP, UMINP */ 11129 { 11130 /* Pairwise operations */ 11131 int is_q = extract32(insn, 30, 1); 11132 int u = extract32(insn, 29, 1); 11133 int size = extract32(insn, 22, 2); 11134 int rm = extract32(insn, 16, 5); 11135 int rn = extract32(insn, 5, 5); 11136 int rd = extract32(insn, 0, 5); 11137 if (opcode == 0x17) { 11138 if (u || (size == 3 && !is_q)) { 11139 unallocated_encoding(s); 11140 return; 11141 } 11142 } else { 11143 if (size == 3) { 11144 unallocated_encoding(s); 11145 return; 11146 } 11147 } 11148 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11149 break; 11150 } 11151 case 0x18 ... 0x31: 11152 /* floating point ops, sz[1] and U are part of opcode */ 11153 disas_simd_3same_float(s, insn); 11154 break; 11155 default: 11156 disas_simd_3same_int(s, insn); 11157 break; 11158 } 11159 } 11160 11161 /* 11162 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11163 * 11164 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11165 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11166 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11167 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11168 * 11169 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11170 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11171 * 11172 */ 11173 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11174 { 11175 int opcode = extract32(insn, 11, 3); 11176 int u = extract32(insn, 29, 1); 11177 int a = extract32(insn, 23, 1); 11178 int is_q = extract32(insn, 30, 1); 11179 int rm = extract32(insn, 16, 5); 11180 int rn = extract32(insn, 5, 5); 11181 int rd = extract32(insn, 0, 5); 11182 /* 11183 * For these floating point ops, the U, a and opcode bits 11184 * together indicate the operation. 11185 */ 11186 int fpopcode = opcode | (a << 3) | (u << 4); 11187 int datasize = is_q ? 128 : 64; 11188 int elements = datasize / 16; 11189 bool pairwise; 11190 TCGv_ptr fpst; 11191 int pass; 11192 11193 switch (fpopcode) { 11194 case 0x0: /* FMAXNM */ 11195 case 0x1: /* FMLA */ 11196 case 0x2: /* FADD */ 11197 case 0x3: /* FMULX */ 11198 case 0x4: /* FCMEQ */ 11199 case 0x6: /* FMAX */ 11200 case 0x7: /* FRECPS */ 11201 case 0x8: /* FMINNM */ 11202 case 0x9: /* FMLS */ 11203 case 0xa: /* FSUB */ 11204 case 0xe: /* FMIN */ 11205 case 0xf: /* FRSQRTS */ 11206 case 0x13: /* FMUL */ 11207 case 0x14: /* FCMGE */ 11208 case 0x15: /* FACGE */ 11209 case 0x17: /* FDIV */ 11210 case 0x1a: /* FABD */ 11211 case 0x1c: /* FCMGT */ 11212 case 0x1d: /* FACGT */ 11213 pairwise = false; 11214 break; 11215 case 0x10: /* FMAXNMP */ 11216 case 0x12: /* FADDP */ 11217 case 0x16: /* FMAXP */ 11218 case 0x18: /* FMINNMP */ 11219 case 0x1e: /* FMINP */ 11220 pairwise = true; 11221 break; 11222 default: 11223 unallocated_encoding(s); 11224 return; 11225 } 11226 11227 if (!dc_isar_feature(aa64_fp16, s)) { 11228 unallocated_encoding(s); 11229 return; 11230 } 11231 11232 if (!fp_access_check(s)) { 11233 return; 11234 } 11235 11236 fpst = fpstatus_ptr(FPST_FPCR_F16); 11237 11238 if (pairwise) { 11239 int maxpass = is_q ? 8 : 4; 11240 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11241 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11242 TCGv_i32 tcg_res[8]; 11243 11244 for (pass = 0; pass < maxpass; pass++) { 11245 int passreg = pass < (maxpass / 2) ? rn : rm; 11246 int passelt = (pass << 1) & (maxpass - 1); 11247 11248 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11249 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11250 tcg_res[pass] = tcg_temp_new_i32(); 11251 11252 switch (fpopcode) { 11253 case 0x10: /* FMAXNMP */ 11254 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11255 fpst); 11256 break; 11257 case 0x12: /* FADDP */ 11258 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11259 break; 11260 case 0x16: /* FMAXP */ 11261 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11262 break; 11263 case 0x18: /* FMINNMP */ 11264 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11265 fpst); 11266 break; 11267 case 0x1e: /* FMINP */ 11268 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11269 break; 11270 default: 11271 g_assert_not_reached(); 11272 } 11273 } 11274 11275 for (pass = 0; pass < maxpass; pass++) { 11276 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11277 } 11278 } else { 11279 for (pass = 0; pass < elements; pass++) { 11280 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11281 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11282 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11283 11284 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11285 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11286 11287 switch (fpopcode) { 11288 case 0x0: /* FMAXNM */ 11289 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11290 break; 11291 case 0x1: /* FMLA */ 11292 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11293 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11294 fpst); 11295 break; 11296 case 0x2: /* FADD */ 11297 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11298 break; 11299 case 0x3: /* FMULX */ 11300 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11301 break; 11302 case 0x4: /* FCMEQ */ 11303 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11304 break; 11305 case 0x6: /* FMAX */ 11306 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11307 break; 11308 case 0x7: /* FRECPS */ 11309 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11310 break; 11311 case 0x8: /* FMINNM */ 11312 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11313 break; 11314 case 0x9: /* FMLS */ 11315 /* As usual for ARM, separate negation for fused multiply-add */ 11316 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11317 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11318 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11319 fpst); 11320 break; 11321 case 0xa: /* FSUB */ 11322 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11323 break; 11324 case 0xe: /* FMIN */ 11325 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11326 break; 11327 case 0xf: /* FRSQRTS */ 11328 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11329 break; 11330 case 0x13: /* FMUL */ 11331 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11332 break; 11333 case 0x14: /* FCMGE */ 11334 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11335 break; 11336 case 0x15: /* FACGE */ 11337 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11338 break; 11339 case 0x17: /* FDIV */ 11340 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11341 break; 11342 case 0x1a: /* FABD */ 11343 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11344 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11345 break; 11346 case 0x1c: /* FCMGT */ 11347 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11348 break; 11349 case 0x1d: /* FACGT */ 11350 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11351 break; 11352 default: 11353 g_assert_not_reached(); 11354 } 11355 11356 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11357 } 11358 } 11359 11360 clear_vec_high(s, is_q, rd); 11361 } 11362 11363 /* AdvSIMD three same extra 11364 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11365 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11366 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11367 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11368 */ 11369 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11370 { 11371 int rd = extract32(insn, 0, 5); 11372 int rn = extract32(insn, 5, 5); 11373 int opcode = extract32(insn, 11, 4); 11374 int rm = extract32(insn, 16, 5); 11375 int size = extract32(insn, 22, 2); 11376 bool u = extract32(insn, 29, 1); 11377 bool is_q = extract32(insn, 30, 1); 11378 bool feature; 11379 int rot; 11380 11381 switch (u * 16 + opcode) { 11382 case 0x10: /* SQRDMLAH (vector) */ 11383 case 0x11: /* SQRDMLSH (vector) */ 11384 if (size != 1 && size != 2) { 11385 unallocated_encoding(s); 11386 return; 11387 } 11388 feature = dc_isar_feature(aa64_rdm, s); 11389 break; 11390 case 0x02: /* SDOT (vector) */ 11391 case 0x12: /* UDOT (vector) */ 11392 if (size != MO_32) { 11393 unallocated_encoding(s); 11394 return; 11395 } 11396 feature = dc_isar_feature(aa64_dp, s); 11397 break; 11398 case 0x03: /* USDOT */ 11399 if (size != MO_32) { 11400 unallocated_encoding(s); 11401 return; 11402 } 11403 feature = dc_isar_feature(aa64_i8mm, s); 11404 break; 11405 case 0x04: /* SMMLA */ 11406 case 0x14: /* UMMLA */ 11407 case 0x05: /* USMMLA */ 11408 if (!is_q || size != MO_32) { 11409 unallocated_encoding(s); 11410 return; 11411 } 11412 feature = dc_isar_feature(aa64_i8mm, s); 11413 break; 11414 case 0x18: /* FCMLA, #0 */ 11415 case 0x19: /* FCMLA, #90 */ 11416 case 0x1a: /* FCMLA, #180 */ 11417 case 0x1b: /* FCMLA, #270 */ 11418 case 0x1c: /* FCADD, #90 */ 11419 case 0x1e: /* FCADD, #270 */ 11420 if (size == 0 11421 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11422 || (size == 3 && !is_q)) { 11423 unallocated_encoding(s); 11424 return; 11425 } 11426 feature = dc_isar_feature(aa64_fcma, s); 11427 break; 11428 case 0x1d: /* BFMMLA */ 11429 if (size != MO_16 || !is_q) { 11430 unallocated_encoding(s); 11431 return; 11432 } 11433 feature = dc_isar_feature(aa64_bf16, s); 11434 break; 11435 case 0x1f: 11436 switch (size) { 11437 case 1: /* BFDOT */ 11438 case 3: /* BFMLAL{B,T} */ 11439 feature = dc_isar_feature(aa64_bf16, s); 11440 break; 11441 default: 11442 unallocated_encoding(s); 11443 return; 11444 } 11445 break; 11446 default: 11447 unallocated_encoding(s); 11448 return; 11449 } 11450 if (!feature) { 11451 unallocated_encoding(s); 11452 return; 11453 } 11454 if (!fp_access_check(s)) { 11455 return; 11456 } 11457 11458 switch (opcode) { 11459 case 0x0: /* SQRDMLAH (vector) */ 11460 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11461 return; 11462 11463 case 0x1: /* SQRDMLSH (vector) */ 11464 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11465 return; 11466 11467 case 0x2: /* SDOT / UDOT */ 11468 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11469 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11470 return; 11471 11472 case 0x3: /* USDOT */ 11473 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11474 return; 11475 11476 case 0x04: /* SMMLA, UMMLA */ 11477 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11478 u ? gen_helper_gvec_ummla_b 11479 : gen_helper_gvec_smmla_b); 11480 return; 11481 case 0x05: /* USMMLA */ 11482 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11483 return; 11484 11485 case 0x8: /* FCMLA, #0 */ 11486 case 0x9: /* FCMLA, #90 */ 11487 case 0xa: /* FCMLA, #180 */ 11488 case 0xb: /* FCMLA, #270 */ 11489 rot = extract32(opcode, 0, 2); 11490 switch (size) { 11491 case 1: 11492 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11493 gen_helper_gvec_fcmlah); 11494 break; 11495 case 2: 11496 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11497 gen_helper_gvec_fcmlas); 11498 break; 11499 case 3: 11500 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11501 gen_helper_gvec_fcmlad); 11502 break; 11503 default: 11504 g_assert_not_reached(); 11505 } 11506 return; 11507 11508 case 0xc: /* FCADD, #90 */ 11509 case 0xe: /* FCADD, #270 */ 11510 rot = extract32(opcode, 1, 1); 11511 switch (size) { 11512 case 1: 11513 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11514 gen_helper_gvec_fcaddh); 11515 break; 11516 case 2: 11517 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11518 gen_helper_gvec_fcadds); 11519 break; 11520 case 3: 11521 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11522 gen_helper_gvec_fcaddd); 11523 break; 11524 default: 11525 g_assert_not_reached(); 11526 } 11527 return; 11528 11529 case 0xd: /* BFMMLA */ 11530 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11531 return; 11532 case 0xf: 11533 switch (size) { 11534 case 1: /* BFDOT */ 11535 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11536 break; 11537 case 3: /* BFMLAL{B,T} */ 11538 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11539 gen_helper_gvec_bfmlal); 11540 break; 11541 default: 11542 g_assert_not_reached(); 11543 } 11544 return; 11545 11546 default: 11547 g_assert_not_reached(); 11548 } 11549 } 11550 11551 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11552 int size, int rn, int rd) 11553 { 11554 /* Handle 2-reg-misc ops which are widening (so each size element 11555 * in the source becomes a 2*size element in the destination. 11556 * The only instruction like this is FCVTL. 11557 */ 11558 int pass; 11559 11560 if (size == 3) { 11561 /* 32 -> 64 bit fp conversion */ 11562 TCGv_i64 tcg_res[2]; 11563 int srcelt = is_q ? 2 : 0; 11564 11565 for (pass = 0; pass < 2; pass++) { 11566 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11567 tcg_res[pass] = tcg_temp_new_i64(); 11568 11569 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11570 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11571 } 11572 for (pass = 0; pass < 2; pass++) { 11573 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11574 } 11575 } else { 11576 /* 16 -> 32 bit fp conversion */ 11577 int srcelt = is_q ? 4 : 0; 11578 TCGv_i32 tcg_res[4]; 11579 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11580 TCGv_i32 ahp = get_ahp_flag(); 11581 11582 for (pass = 0; pass < 4; pass++) { 11583 tcg_res[pass] = tcg_temp_new_i32(); 11584 11585 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11586 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11587 fpst, ahp); 11588 } 11589 for (pass = 0; pass < 4; pass++) { 11590 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11591 } 11592 } 11593 } 11594 11595 static void handle_rev(DisasContext *s, int opcode, bool u, 11596 bool is_q, int size, int rn, int rd) 11597 { 11598 int op = (opcode << 1) | u; 11599 int opsz = op + size; 11600 int grp_size = 3 - opsz; 11601 int dsize = is_q ? 128 : 64; 11602 int i; 11603 11604 if (opsz >= 3) { 11605 unallocated_encoding(s); 11606 return; 11607 } 11608 11609 if (!fp_access_check(s)) { 11610 return; 11611 } 11612 11613 if (size == 0) { 11614 /* Special case bytes, use bswap op on each group of elements */ 11615 int groups = dsize / (8 << grp_size); 11616 11617 for (i = 0; i < groups; i++) { 11618 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11619 11620 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11621 switch (grp_size) { 11622 case MO_16: 11623 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11624 break; 11625 case MO_32: 11626 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11627 break; 11628 case MO_64: 11629 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11630 break; 11631 default: 11632 g_assert_not_reached(); 11633 } 11634 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11635 } 11636 clear_vec_high(s, is_q, rd); 11637 } else { 11638 int revmask = (1 << grp_size) - 1; 11639 int esize = 8 << size; 11640 int elements = dsize / esize; 11641 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11642 TCGv_i64 tcg_rd[2]; 11643 11644 for (i = 0; i < 2; i++) { 11645 tcg_rd[i] = tcg_temp_new_i64(); 11646 tcg_gen_movi_i64(tcg_rd[i], 0); 11647 } 11648 11649 for (i = 0; i < elements; i++) { 11650 int e_rev = (i & 0xf) ^ revmask; 11651 int w = (e_rev * esize) / 64; 11652 int o = (e_rev * esize) % 64; 11653 11654 read_vec_element(s, tcg_rn, rn, i, size); 11655 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11656 } 11657 11658 for (i = 0; i < 2; i++) { 11659 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11660 } 11661 clear_vec_high(s, true, rd); 11662 } 11663 } 11664 11665 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11666 bool is_q, int size, int rn, int rd) 11667 { 11668 /* Implement the pairwise operations from 2-misc: 11669 * SADDLP, UADDLP, SADALP, UADALP. 11670 * These all add pairs of elements in the input to produce a 11671 * double-width result element in the output (possibly accumulating). 11672 */ 11673 bool accum = (opcode == 0x6); 11674 int maxpass = is_q ? 2 : 1; 11675 int pass; 11676 TCGv_i64 tcg_res[2]; 11677 11678 if (size == 2) { 11679 /* 32 + 32 -> 64 op */ 11680 MemOp memop = size + (u ? 0 : MO_SIGN); 11681 11682 for (pass = 0; pass < maxpass; pass++) { 11683 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11684 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11685 11686 tcg_res[pass] = tcg_temp_new_i64(); 11687 11688 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11689 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11690 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11691 if (accum) { 11692 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11693 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11694 } 11695 } 11696 } else { 11697 for (pass = 0; pass < maxpass; pass++) { 11698 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11699 NeonGenOne64OpFn *genfn; 11700 static NeonGenOne64OpFn * const fns[2][2] = { 11701 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11702 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11703 }; 11704 11705 genfn = fns[size][u]; 11706 11707 tcg_res[pass] = tcg_temp_new_i64(); 11708 11709 read_vec_element(s, tcg_op, rn, pass, MO_64); 11710 genfn(tcg_res[pass], tcg_op); 11711 11712 if (accum) { 11713 read_vec_element(s, tcg_op, rd, pass, MO_64); 11714 if (size == 0) { 11715 gen_helper_neon_addl_u16(tcg_res[pass], 11716 tcg_res[pass], tcg_op); 11717 } else { 11718 gen_helper_neon_addl_u32(tcg_res[pass], 11719 tcg_res[pass], tcg_op); 11720 } 11721 } 11722 } 11723 } 11724 if (!is_q) { 11725 tcg_res[1] = tcg_constant_i64(0); 11726 } 11727 for (pass = 0; pass < 2; pass++) { 11728 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11729 } 11730 } 11731 11732 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11733 { 11734 /* Implement SHLL and SHLL2 */ 11735 int pass; 11736 int part = is_q ? 2 : 0; 11737 TCGv_i64 tcg_res[2]; 11738 11739 for (pass = 0; pass < 2; pass++) { 11740 static NeonGenWidenFn * const widenfns[3] = { 11741 gen_helper_neon_widen_u8, 11742 gen_helper_neon_widen_u16, 11743 tcg_gen_extu_i32_i64, 11744 }; 11745 NeonGenWidenFn *widenfn = widenfns[size]; 11746 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11747 11748 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11749 tcg_res[pass] = tcg_temp_new_i64(); 11750 widenfn(tcg_res[pass], tcg_op); 11751 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11752 } 11753 11754 for (pass = 0; pass < 2; pass++) { 11755 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11756 } 11757 } 11758 11759 /* AdvSIMD two reg misc 11760 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11761 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11762 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11763 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11764 */ 11765 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11766 { 11767 int size = extract32(insn, 22, 2); 11768 int opcode = extract32(insn, 12, 5); 11769 bool u = extract32(insn, 29, 1); 11770 bool is_q = extract32(insn, 30, 1); 11771 int rn = extract32(insn, 5, 5); 11772 int rd = extract32(insn, 0, 5); 11773 bool need_fpstatus = false; 11774 int rmode = -1; 11775 TCGv_i32 tcg_rmode; 11776 TCGv_ptr tcg_fpstatus; 11777 11778 switch (opcode) { 11779 case 0x0: /* REV64, REV32 */ 11780 case 0x1: /* REV16 */ 11781 handle_rev(s, opcode, u, is_q, size, rn, rd); 11782 return; 11783 case 0x5: /* CNT, NOT, RBIT */ 11784 if (u && size == 0) { 11785 /* NOT */ 11786 break; 11787 } else if (u && size == 1) { 11788 /* RBIT */ 11789 break; 11790 } else if (!u && size == 0) { 11791 /* CNT */ 11792 break; 11793 } 11794 unallocated_encoding(s); 11795 return; 11796 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11797 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11798 if (size == 3) { 11799 unallocated_encoding(s); 11800 return; 11801 } 11802 if (!fp_access_check(s)) { 11803 return; 11804 } 11805 11806 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11807 return; 11808 case 0x4: /* CLS, CLZ */ 11809 if (size == 3) { 11810 unallocated_encoding(s); 11811 return; 11812 } 11813 break; 11814 case 0x2: /* SADDLP, UADDLP */ 11815 case 0x6: /* SADALP, UADALP */ 11816 if (size == 3) { 11817 unallocated_encoding(s); 11818 return; 11819 } 11820 if (!fp_access_check(s)) { 11821 return; 11822 } 11823 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11824 return; 11825 case 0x13: /* SHLL, SHLL2 */ 11826 if (u == 0 || size == 3) { 11827 unallocated_encoding(s); 11828 return; 11829 } 11830 if (!fp_access_check(s)) { 11831 return; 11832 } 11833 handle_shll(s, is_q, size, rn, rd); 11834 return; 11835 case 0xa: /* CMLT */ 11836 if (u == 1) { 11837 unallocated_encoding(s); 11838 return; 11839 } 11840 /* fall through */ 11841 case 0x8: /* CMGT, CMGE */ 11842 case 0x9: /* CMEQ, CMLE */ 11843 case 0xb: /* ABS, NEG */ 11844 if (size == 3 && !is_q) { 11845 unallocated_encoding(s); 11846 return; 11847 } 11848 break; 11849 case 0x3: /* SUQADD, USQADD */ 11850 if (size == 3 && !is_q) { 11851 unallocated_encoding(s); 11852 return; 11853 } 11854 if (!fp_access_check(s)) { 11855 return; 11856 } 11857 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11858 return; 11859 case 0x7: /* SQABS, SQNEG */ 11860 if (size == 3 && !is_q) { 11861 unallocated_encoding(s); 11862 return; 11863 } 11864 break; 11865 case 0xc ... 0xf: 11866 case 0x16 ... 0x1f: 11867 { 11868 /* Floating point: U, size[1] and opcode indicate operation; 11869 * size[0] indicates single or double precision. 11870 */ 11871 int is_double = extract32(size, 0, 1); 11872 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11873 size = is_double ? 3 : 2; 11874 switch (opcode) { 11875 case 0x2f: /* FABS */ 11876 case 0x6f: /* FNEG */ 11877 if (size == 3 && !is_q) { 11878 unallocated_encoding(s); 11879 return; 11880 } 11881 break; 11882 case 0x1d: /* SCVTF */ 11883 case 0x5d: /* UCVTF */ 11884 { 11885 bool is_signed = (opcode == 0x1d) ? true : false; 11886 int elements = is_double ? 2 : is_q ? 4 : 2; 11887 if (is_double && !is_q) { 11888 unallocated_encoding(s); 11889 return; 11890 } 11891 if (!fp_access_check(s)) { 11892 return; 11893 } 11894 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11895 return; 11896 } 11897 case 0x2c: /* FCMGT (zero) */ 11898 case 0x2d: /* FCMEQ (zero) */ 11899 case 0x2e: /* FCMLT (zero) */ 11900 case 0x6c: /* FCMGE (zero) */ 11901 case 0x6d: /* FCMLE (zero) */ 11902 if (size == 3 && !is_q) { 11903 unallocated_encoding(s); 11904 return; 11905 } 11906 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11907 return; 11908 case 0x7f: /* FSQRT */ 11909 if (size == 3 && !is_q) { 11910 unallocated_encoding(s); 11911 return; 11912 } 11913 break; 11914 case 0x1a: /* FCVTNS */ 11915 case 0x1b: /* FCVTMS */ 11916 case 0x3a: /* FCVTPS */ 11917 case 0x3b: /* FCVTZS */ 11918 case 0x5a: /* FCVTNU */ 11919 case 0x5b: /* FCVTMU */ 11920 case 0x7a: /* FCVTPU */ 11921 case 0x7b: /* FCVTZU */ 11922 need_fpstatus = true; 11923 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11924 if (size == 3 && !is_q) { 11925 unallocated_encoding(s); 11926 return; 11927 } 11928 break; 11929 case 0x5c: /* FCVTAU */ 11930 case 0x1c: /* FCVTAS */ 11931 need_fpstatus = true; 11932 rmode = FPROUNDING_TIEAWAY; 11933 if (size == 3 && !is_q) { 11934 unallocated_encoding(s); 11935 return; 11936 } 11937 break; 11938 case 0x3c: /* URECPE */ 11939 if (size == 3) { 11940 unallocated_encoding(s); 11941 return; 11942 } 11943 /* fall through */ 11944 case 0x3d: /* FRECPE */ 11945 case 0x7d: /* FRSQRTE */ 11946 if (size == 3 && !is_q) { 11947 unallocated_encoding(s); 11948 return; 11949 } 11950 if (!fp_access_check(s)) { 11951 return; 11952 } 11953 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11954 return; 11955 case 0x56: /* FCVTXN, FCVTXN2 */ 11956 if (size == 2) { 11957 unallocated_encoding(s); 11958 return; 11959 } 11960 /* fall through */ 11961 case 0x16: /* FCVTN, FCVTN2 */ 11962 /* handle_2misc_narrow does a 2*size -> size operation, but these 11963 * instructions encode the source size rather than dest size. 11964 */ 11965 if (!fp_access_check(s)) { 11966 return; 11967 } 11968 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11969 return; 11970 case 0x36: /* BFCVTN, BFCVTN2 */ 11971 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11972 unallocated_encoding(s); 11973 return; 11974 } 11975 if (!fp_access_check(s)) { 11976 return; 11977 } 11978 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11979 return; 11980 case 0x17: /* FCVTL, FCVTL2 */ 11981 if (!fp_access_check(s)) { 11982 return; 11983 } 11984 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11985 return; 11986 case 0x18: /* FRINTN */ 11987 case 0x19: /* FRINTM */ 11988 case 0x38: /* FRINTP */ 11989 case 0x39: /* FRINTZ */ 11990 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11991 /* fall through */ 11992 case 0x59: /* FRINTX */ 11993 case 0x79: /* FRINTI */ 11994 need_fpstatus = true; 11995 if (size == 3 && !is_q) { 11996 unallocated_encoding(s); 11997 return; 11998 } 11999 break; 12000 case 0x58: /* FRINTA */ 12001 rmode = FPROUNDING_TIEAWAY; 12002 need_fpstatus = true; 12003 if (size == 3 && !is_q) { 12004 unallocated_encoding(s); 12005 return; 12006 } 12007 break; 12008 case 0x7c: /* URSQRTE */ 12009 if (size == 3) { 12010 unallocated_encoding(s); 12011 return; 12012 } 12013 break; 12014 case 0x1e: /* FRINT32Z */ 12015 case 0x1f: /* FRINT64Z */ 12016 rmode = FPROUNDING_ZERO; 12017 /* fall through */ 12018 case 0x5e: /* FRINT32X */ 12019 case 0x5f: /* FRINT64X */ 12020 need_fpstatus = true; 12021 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12022 unallocated_encoding(s); 12023 return; 12024 } 12025 break; 12026 default: 12027 unallocated_encoding(s); 12028 return; 12029 } 12030 break; 12031 } 12032 default: 12033 unallocated_encoding(s); 12034 return; 12035 } 12036 12037 if (!fp_access_check(s)) { 12038 return; 12039 } 12040 12041 if (need_fpstatus || rmode >= 0) { 12042 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12043 } else { 12044 tcg_fpstatus = NULL; 12045 } 12046 if (rmode >= 0) { 12047 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12048 } else { 12049 tcg_rmode = NULL; 12050 } 12051 12052 switch (opcode) { 12053 case 0x5: 12054 if (u && size == 0) { /* NOT */ 12055 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12056 return; 12057 } 12058 break; 12059 case 0x8: /* CMGT, CMGE */ 12060 if (u) { 12061 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12062 } else { 12063 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12064 } 12065 return; 12066 case 0x9: /* CMEQ, CMLE */ 12067 if (u) { 12068 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12069 } else { 12070 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12071 } 12072 return; 12073 case 0xa: /* CMLT */ 12074 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12075 return; 12076 case 0xb: 12077 if (u) { /* ABS, NEG */ 12078 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12079 } else { 12080 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12081 } 12082 return; 12083 } 12084 12085 if (size == 3) { 12086 /* All 64-bit element operations can be shared with scalar 2misc */ 12087 int pass; 12088 12089 /* Coverity claims (size == 3 && !is_q) has been eliminated 12090 * from all paths leading to here. 12091 */ 12092 tcg_debug_assert(is_q); 12093 for (pass = 0; pass < 2; pass++) { 12094 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12095 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12096 12097 read_vec_element(s, tcg_op, rn, pass, MO_64); 12098 12099 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12100 tcg_rmode, tcg_fpstatus); 12101 12102 write_vec_element(s, tcg_res, rd, pass, MO_64); 12103 } 12104 } else { 12105 int pass; 12106 12107 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12108 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12109 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12110 12111 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12112 12113 if (size == 2) { 12114 /* Special cases for 32 bit elements */ 12115 switch (opcode) { 12116 case 0x4: /* CLS */ 12117 if (u) { 12118 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12119 } else { 12120 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12121 } 12122 break; 12123 case 0x7: /* SQABS, SQNEG */ 12124 if (u) { 12125 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12126 } else { 12127 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12128 } 12129 break; 12130 case 0x2f: /* FABS */ 12131 gen_helper_vfp_abss(tcg_res, tcg_op); 12132 break; 12133 case 0x6f: /* FNEG */ 12134 gen_helper_vfp_negs(tcg_res, tcg_op); 12135 break; 12136 case 0x7f: /* FSQRT */ 12137 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12138 break; 12139 case 0x1a: /* FCVTNS */ 12140 case 0x1b: /* FCVTMS */ 12141 case 0x1c: /* FCVTAS */ 12142 case 0x3a: /* FCVTPS */ 12143 case 0x3b: /* FCVTZS */ 12144 gen_helper_vfp_tosls(tcg_res, tcg_op, 12145 tcg_constant_i32(0), tcg_fpstatus); 12146 break; 12147 case 0x5a: /* FCVTNU */ 12148 case 0x5b: /* FCVTMU */ 12149 case 0x5c: /* FCVTAU */ 12150 case 0x7a: /* FCVTPU */ 12151 case 0x7b: /* FCVTZU */ 12152 gen_helper_vfp_touls(tcg_res, tcg_op, 12153 tcg_constant_i32(0), tcg_fpstatus); 12154 break; 12155 case 0x18: /* FRINTN */ 12156 case 0x19: /* FRINTM */ 12157 case 0x38: /* FRINTP */ 12158 case 0x39: /* FRINTZ */ 12159 case 0x58: /* FRINTA */ 12160 case 0x79: /* FRINTI */ 12161 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12162 break; 12163 case 0x59: /* FRINTX */ 12164 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12165 break; 12166 case 0x7c: /* URSQRTE */ 12167 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12168 break; 12169 case 0x1e: /* FRINT32Z */ 12170 case 0x5e: /* FRINT32X */ 12171 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12172 break; 12173 case 0x1f: /* FRINT64Z */ 12174 case 0x5f: /* FRINT64X */ 12175 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12176 break; 12177 default: 12178 g_assert_not_reached(); 12179 } 12180 } else { 12181 /* Use helpers for 8 and 16 bit elements */ 12182 switch (opcode) { 12183 case 0x5: /* CNT, RBIT */ 12184 /* For these two insns size is part of the opcode specifier 12185 * (handled earlier); they always operate on byte elements. 12186 */ 12187 if (u) { 12188 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12189 } else { 12190 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12191 } 12192 break; 12193 case 0x7: /* SQABS, SQNEG */ 12194 { 12195 NeonGenOneOpEnvFn *genfn; 12196 static NeonGenOneOpEnvFn * const fns[2][2] = { 12197 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12198 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12199 }; 12200 genfn = fns[size][u]; 12201 genfn(tcg_res, cpu_env, tcg_op); 12202 break; 12203 } 12204 case 0x4: /* CLS, CLZ */ 12205 if (u) { 12206 if (size == 0) { 12207 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12208 } else { 12209 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12210 } 12211 } else { 12212 if (size == 0) { 12213 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12214 } else { 12215 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12216 } 12217 } 12218 break; 12219 default: 12220 g_assert_not_reached(); 12221 } 12222 } 12223 12224 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12225 } 12226 } 12227 clear_vec_high(s, is_q, rd); 12228 12229 if (tcg_rmode) { 12230 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12231 } 12232 } 12233 12234 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12235 * 12236 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12237 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12238 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12239 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12240 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12241 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12242 * 12243 * This actually covers two groups where scalar access is governed by 12244 * bit 28. A bunch of the instructions (float to integral) only exist 12245 * in the vector form and are un-allocated for the scalar decode. Also 12246 * in the scalar decode Q is always 1. 12247 */ 12248 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12249 { 12250 int fpop, opcode, a, u; 12251 int rn, rd; 12252 bool is_q; 12253 bool is_scalar; 12254 bool only_in_vector = false; 12255 12256 int pass; 12257 TCGv_i32 tcg_rmode = NULL; 12258 TCGv_ptr tcg_fpstatus = NULL; 12259 bool need_fpst = true; 12260 int rmode = -1; 12261 12262 if (!dc_isar_feature(aa64_fp16, s)) { 12263 unallocated_encoding(s); 12264 return; 12265 } 12266 12267 rd = extract32(insn, 0, 5); 12268 rn = extract32(insn, 5, 5); 12269 12270 a = extract32(insn, 23, 1); 12271 u = extract32(insn, 29, 1); 12272 is_scalar = extract32(insn, 28, 1); 12273 is_q = extract32(insn, 30, 1); 12274 12275 opcode = extract32(insn, 12, 5); 12276 fpop = deposit32(opcode, 5, 1, a); 12277 fpop = deposit32(fpop, 6, 1, u); 12278 12279 switch (fpop) { 12280 case 0x1d: /* SCVTF */ 12281 case 0x5d: /* UCVTF */ 12282 { 12283 int elements; 12284 12285 if (is_scalar) { 12286 elements = 1; 12287 } else { 12288 elements = (is_q ? 8 : 4); 12289 } 12290 12291 if (!fp_access_check(s)) { 12292 return; 12293 } 12294 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12295 return; 12296 } 12297 break; 12298 case 0x2c: /* FCMGT (zero) */ 12299 case 0x2d: /* FCMEQ (zero) */ 12300 case 0x2e: /* FCMLT (zero) */ 12301 case 0x6c: /* FCMGE (zero) */ 12302 case 0x6d: /* FCMLE (zero) */ 12303 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12304 return; 12305 case 0x3d: /* FRECPE */ 12306 case 0x3f: /* FRECPX */ 12307 break; 12308 case 0x18: /* FRINTN */ 12309 only_in_vector = true; 12310 rmode = FPROUNDING_TIEEVEN; 12311 break; 12312 case 0x19: /* FRINTM */ 12313 only_in_vector = true; 12314 rmode = FPROUNDING_NEGINF; 12315 break; 12316 case 0x38: /* FRINTP */ 12317 only_in_vector = true; 12318 rmode = FPROUNDING_POSINF; 12319 break; 12320 case 0x39: /* FRINTZ */ 12321 only_in_vector = true; 12322 rmode = FPROUNDING_ZERO; 12323 break; 12324 case 0x58: /* FRINTA */ 12325 only_in_vector = true; 12326 rmode = FPROUNDING_TIEAWAY; 12327 break; 12328 case 0x59: /* FRINTX */ 12329 case 0x79: /* FRINTI */ 12330 only_in_vector = true; 12331 /* current rounding mode */ 12332 break; 12333 case 0x1a: /* FCVTNS */ 12334 rmode = FPROUNDING_TIEEVEN; 12335 break; 12336 case 0x1b: /* FCVTMS */ 12337 rmode = FPROUNDING_NEGINF; 12338 break; 12339 case 0x1c: /* FCVTAS */ 12340 rmode = FPROUNDING_TIEAWAY; 12341 break; 12342 case 0x3a: /* FCVTPS */ 12343 rmode = FPROUNDING_POSINF; 12344 break; 12345 case 0x3b: /* FCVTZS */ 12346 rmode = FPROUNDING_ZERO; 12347 break; 12348 case 0x5a: /* FCVTNU */ 12349 rmode = FPROUNDING_TIEEVEN; 12350 break; 12351 case 0x5b: /* FCVTMU */ 12352 rmode = FPROUNDING_NEGINF; 12353 break; 12354 case 0x5c: /* FCVTAU */ 12355 rmode = FPROUNDING_TIEAWAY; 12356 break; 12357 case 0x7a: /* FCVTPU */ 12358 rmode = FPROUNDING_POSINF; 12359 break; 12360 case 0x7b: /* FCVTZU */ 12361 rmode = FPROUNDING_ZERO; 12362 break; 12363 case 0x2f: /* FABS */ 12364 case 0x6f: /* FNEG */ 12365 need_fpst = false; 12366 break; 12367 case 0x7d: /* FRSQRTE */ 12368 case 0x7f: /* FSQRT (vector) */ 12369 break; 12370 default: 12371 unallocated_encoding(s); 12372 return; 12373 } 12374 12375 12376 /* Check additional constraints for the scalar encoding */ 12377 if (is_scalar) { 12378 if (!is_q) { 12379 unallocated_encoding(s); 12380 return; 12381 } 12382 /* FRINTxx is only in the vector form */ 12383 if (only_in_vector) { 12384 unallocated_encoding(s); 12385 return; 12386 } 12387 } 12388 12389 if (!fp_access_check(s)) { 12390 return; 12391 } 12392 12393 if (rmode >= 0 || need_fpst) { 12394 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12395 } 12396 12397 if (rmode >= 0) { 12398 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12399 } 12400 12401 if (is_scalar) { 12402 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12403 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12404 12405 switch (fpop) { 12406 case 0x1a: /* FCVTNS */ 12407 case 0x1b: /* FCVTMS */ 12408 case 0x1c: /* FCVTAS */ 12409 case 0x3a: /* FCVTPS */ 12410 case 0x3b: /* FCVTZS */ 12411 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12412 break; 12413 case 0x3d: /* FRECPE */ 12414 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12415 break; 12416 case 0x3f: /* FRECPX */ 12417 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12418 break; 12419 case 0x5a: /* FCVTNU */ 12420 case 0x5b: /* FCVTMU */ 12421 case 0x5c: /* FCVTAU */ 12422 case 0x7a: /* FCVTPU */ 12423 case 0x7b: /* FCVTZU */ 12424 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12425 break; 12426 case 0x6f: /* FNEG */ 12427 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12428 break; 12429 case 0x7d: /* FRSQRTE */ 12430 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12431 break; 12432 default: 12433 g_assert_not_reached(); 12434 } 12435 12436 /* limit any sign extension going on */ 12437 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12438 write_fp_sreg(s, rd, tcg_res); 12439 } else { 12440 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12441 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12442 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12443 12444 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12445 12446 switch (fpop) { 12447 case 0x1a: /* FCVTNS */ 12448 case 0x1b: /* FCVTMS */ 12449 case 0x1c: /* FCVTAS */ 12450 case 0x3a: /* FCVTPS */ 12451 case 0x3b: /* FCVTZS */ 12452 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12453 break; 12454 case 0x3d: /* FRECPE */ 12455 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12456 break; 12457 case 0x5a: /* FCVTNU */ 12458 case 0x5b: /* FCVTMU */ 12459 case 0x5c: /* FCVTAU */ 12460 case 0x7a: /* FCVTPU */ 12461 case 0x7b: /* FCVTZU */ 12462 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12463 break; 12464 case 0x18: /* FRINTN */ 12465 case 0x19: /* FRINTM */ 12466 case 0x38: /* FRINTP */ 12467 case 0x39: /* FRINTZ */ 12468 case 0x58: /* FRINTA */ 12469 case 0x79: /* FRINTI */ 12470 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12471 break; 12472 case 0x59: /* FRINTX */ 12473 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12474 break; 12475 case 0x2f: /* FABS */ 12476 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12477 break; 12478 case 0x6f: /* FNEG */ 12479 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12480 break; 12481 case 0x7d: /* FRSQRTE */ 12482 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12483 break; 12484 case 0x7f: /* FSQRT */ 12485 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12486 break; 12487 default: 12488 g_assert_not_reached(); 12489 } 12490 12491 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12492 } 12493 12494 clear_vec_high(s, is_q, rd); 12495 } 12496 12497 if (tcg_rmode) { 12498 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12499 } 12500 } 12501 12502 /* AdvSIMD scalar x indexed element 12503 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12504 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12505 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12506 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12507 * AdvSIMD vector x indexed element 12508 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12509 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12510 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12511 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12512 */ 12513 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12514 { 12515 /* This encoding has two kinds of instruction: 12516 * normal, where we perform elt x idxelt => elt for each 12517 * element in the vector 12518 * long, where we perform elt x idxelt and generate a result of 12519 * double the width of the input element 12520 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12521 */ 12522 bool is_scalar = extract32(insn, 28, 1); 12523 bool is_q = extract32(insn, 30, 1); 12524 bool u = extract32(insn, 29, 1); 12525 int size = extract32(insn, 22, 2); 12526 int l = extract32(insn, 21, 1); 12527 int m = extract32(insn, 20, 1); 12528 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12529 int rm = extract32(insn, 16, 4); 12530 int opcode = extract32(insn, 12, 4); 12531 int h = extract32(insn, 11, 1); 12532 int rn = extract32(insn, 5, 5); 12533 int rd = extract32(insn, 0, 5); 12534 bool is_long = false; 12535 int is_fp = 0; 12536 bool is_fp16 = false; 12537 int index; 12538 TCGv_ptr fpst; 12539 12540 switch (16 * u + opcode) { 12541 case 0x08: /* MUL */ 12542 case 0x10: /* MLA */ 12543 case 0x14: /* MLS */ 12544 if (is_scalar) { 12545 unallocated_encoding(s); 12546 return; 12547 } 12548 break; 12549 case 0x02: /* SMLAL, SMLAL2 */ 12550 case 0x12: /* UMLAL, UMLAL2 */ 12551 case 0x06: /* SMLSL, SMLSL2 */ 12552 case 0x16: /* UMLSL, UMLSL2 */ 12553 case 0x0a: /* SMULL, SMULL2 */ 12554 case 0x1a: /* UMULL, UMULL2 */ 12555 if (is_scalar) { 12556 unallocated_encoding(s); 12557 return; 12558 } 12559 is_long = true; 12560 break; 12561 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12562 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12563 case 0x0b: /* SQDMULL, SQDMULL2 */ 12564 is_long = true; 12565 break; 12566 case 0x0c: /* SQDMULH */ 12567 case 0x0d: /* SQRDMULH */ 12568 break; 12569 case 0x01: /* FMLA */ 12570 case 0x05: /* FMLS */ 12571 case 0x09: /* FMUL */ 12572 case 0x19: /* FMULX */ 12573 is_fp = 1; 12574 break; 12575 case 0x1d: /* SQRDMLAH */ 12576 case 0x1f: /* SQRDMLSH */ 12577 if (!dc_isar_feature(aa64_rdm, s)) { 12578 unallocated_encoding(s); 12579 return; 12580 } 12581 break; 12582 case 0x0e: /* SDOT */ 12583 case 0x1e: /* UDOT */ 12584 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12585 unallocated_encoding(s); 12586 return; 12587 } 12588 break; 12589 case 0x0f: 12590 switch (size) { 12591 case 0: /* SUDOT */ 12592 case 2: /* USDOT */ 12593 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12594 unallocated_encoding(s); 12595 return; 12596 } 12597 size = MO_32; 12598 break; 12599 case 1: /* BFDOT */ 12600 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12601 unallocated_encoding(s); 12602 return; 12603 } 12604 size = MO_32; 12605 break; 12606 case 3: /* BFMLAL{B,T} */ 12607 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12608 unallocated_encoding(s); 12609 return; 12610 } 12611 /* can't set is_fp without other incorrect size checks */ 12612 size = MO_16; 12613 break; 12614 default: 12615 unallocated_encoding(s); 12616 return; 12617 } 12618 break; 12619 case 0x11: /* FCMLA #0 */ 12620 case 0x13: /* FCMLA #90 */ 12621 case 0x15: /* FCMLA #180 */ 12622 case 0x17: /* FCMLA #270 */ 12623 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12624 unallocated_encoding(s); 12625 return; 12626 } 12627 is_fp = 2; 12628 break; 12629 case 0x00: /* FMLAL */ 12630 case 0x04: /* FMLSL */ 12631 case 0x18: /* FMLAL2 */ 12632 case 0x1c: /* FMLSL2 */ 12633 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12634 unallocated_encoding(s); 12635 return; 12636 } 12637 size = MO_16; 12638 /* is_fp, but we pass cpu_env not fp_status. */ 12639 break; 12640 default: 12641 unallocated_encoding(s); 12642 return; 12643 } 12644 12645 switch (is_fp) { 12646 case 1: /* normal fp */ 12647 /* convert insn encoded size to MemOp size */ 12648 switch (size) { 12649 case 0: /* half-precision */ 12650 size = MO_16; 12651 is_fp16 = true; 12652 break; 12653 case MO_32: /* single precision */ 12654 case MO_64: /* double precision */ 12655 break; 12656 default: 12657 unallocated_encoding(s); 12658 return; 12659 } 12660 break; 12661 12662 case 2: /* complex fp */ 12663 /* Each indexable element is a complex pair. */ 12664 size += 1; 12665 switch (size) { 12666 case MO_32: 12667 if (h && !is_q) { 12668 unallocated_encoding(s); 12669 return; 12670 } 12671 is_fp16 = true; 12672 break; 12673 case MO_64: 12674 break; 12675 default: 12676 unallocated_encoding(s); 12677 return; 12678 } 12679 break; 12680 12681 default: /* integer */ 12682 switch (size) { 12683 case MO_8: 12684 case MO_64: 12685 unallocated_encoding(s); 12686 return; 12687 } 12688 break; 12689 } 12690 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12691 unallocated_encoding(s); 12692 return; 12693 } 12694 12695 /* Given MemOp size, adjust register and indexing. */ 12696 switch (size) { 12697 case MO_16: 12698 index = h << 2 | l << 1 | m; 12699 break; 12700 case MO_32: 12701 index = h << 1 | l; 12702 rm |= m << 4; 12703 break; 12704 case MO_64: 12705 if (l || !is_q) { 12706 unallocated_encoding(s); 12707 return; 12708 } 12709 index = h; 12710 rm |= m << 4; 12711 break; 12712 default: 12713 g_assert_not_reached(); 12714 } 12715 12716 if (!fp_access_check(s)) { 12717 return; 12718 } 12719 12720 if (is_fp) { 12721 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12722 } else { 12723 fpst = NULL; 12724 } 12725 12726 switch (16 * u + opcode) { 12727 case 0x0e: /* SDOT */ 12728 case 0x1e: /* UDOT */ 12729 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12730 u ? gen_helper_gvec_udot_idx_b 12731 : gen_helper_gvec_sdot_idx_b); 12732 return; 12733 case 0x0f: 12734 switch (extract32(insn, 22, 2)) { 12735 case 0: /* SUDOT */ 12736 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12737 gen_helper_gvec_sudot_idx_b); 12738 return; 12739 case 1: /* BFDOT */ 12740 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12741 gen_helper_gvec_bfdot_idx); 12742 return; 12743 case 2: /* USDOT */ 12744 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12745 gen_helper_gvec_usdot_idx_b); 12746 return; 12747 case 3: /* BFMLAL{B,T} */ 12748 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12749 gen_helper_gvec_bfmlal_idx); 12750 return; 12751 } 12752 g_assert_not_reached(); 12753 case 0x11: /* FCMLA #0 */ 12754 case 0x13: /* FCMLA #90 */ 12755 case 0x15: /* FCMLA #180 */ 12756 case 0x17: /* FCMLA #270 */ 12757 { 12758 int rot = extract32(insn, 13, 2); 12759 int data = (index << 2) | rot; 12760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12761 vec_full_reg_offset(s, rn), 12762 vec_full_reg_offset(s, rm), 12763 vec_full_reg_offset(s, rd), fpst, 12764 is_q ? 16 : 8, vec_full_reg_size(s), data, 12765 size == MO_64 12766 ? gen_helper_gvec_fcmlas_idx 12767 : gen_helper_gvec_fcmlah_idx); 12768 } 12769 return; 12770 12771 case 0x00: /* FMLAL */ 12772 case 0x04: /* FMLSL */ 12773 case 0x18: /* FMLAL2 */ 12774 case 0x1c: /* FMLSL2 */ 12775 { 12776 int is_s = extract32(opcode, 2, 1); 12777 int is_2 = u; 12778 int data = (index << 2) | (is_2 << 1) | is_s; 12779 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12780 vec_full_reg_offset(s, rn), 12781 vec_full_reg_offset(s, rm), cpu_env, 12782 is_q ? 16 : 8, vec_full_reg_size(s), 12783 data, gen_helper_gvec_fmlal_idx_a64); 12784 } 12785 return; 12786 12787 case 0x08: /* MUL */ 12788 if (!is_long && !is_scalar) { 12789 static gen_helper_gvec_3 * const fns[3] = { 12790 gen_helper_gvec_mul_idx_h, 12791 gen_helper_gvec_mul_idx_s, 12792 gen_helper_gvec_mul_idx_d, 12793 }; 12794 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12795 vec_full_reg_offset(s, rn), 12796 vec_full_reg_offset(s, rm), 12797 is_q ? 16 : 8, vec_full_reg_size(s), 12798 index, fns[size - 1]); 12799 return; 12800 } 12801 break; 12802 12803 case 0x10: /* MLA */ 12804 if (!is_long && !is_scalar) { 12805 static gen_helper_gvec_4 * const fns[3] = { 12806 gen_helper_gvec_mla_idx_h, 12807 gen_helper_gvec_mla_idx_s, 12808 gen_helper_gvec_mla_idx_d, 12809 }; 12810 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12811 vec_full_reg_offset(s, rn), 12812 vec_full_reg_offset(s, rm), 12813 vec_full_reg_offset(s, rd), 12814 is_q ? 16 : 8, vec_full_reg_size(s), 12815 index, fns[size - 1]); 12816 return; 12817 } 12818 break; 12819 12820 case 0x14: /* MLS */ 12821 if (!is_long && !is_scalar) { 12822 static gen_helper_gvec_4 * const fns[3] = { 12823 gen_helper_gvec_mls_idx_h, 12824 gen_helper_gvec_mls_idx_s, 12825 gen_helper_gvec_mls_idx_d, 12826 }; 12827 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12828 vec_full_reg_offset(s, rn), 12829 vec_full_reg_offset(s, rm), 12830 vec_full_reg_offset(s, rd), 12831 is_q ? 16 : 8, vec_full_reg_size(s), 12832 index, fns[size - 1]); 12833 return; 12834 } 12835 break; 12836 } 12837 12838 if (size == 3) { 12839 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12840 int pass; 12841 12842 assert(is_fp && is_q && !is_long); 12843 12844 read_vec_element(s, tcg_idx, rm, index, MO_64); 12845 12846 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12847 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12848 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12849 12850 read_vec_element(s, tcg_op, rn, pass, MO_64); 12851 12852 switch (16 * u + opcode) { 12853 case 0x05: /* FMLS */ 12854 /* As usual for ARM, separate negation for fused multiply-add */ 12855 gen_helper_vfp_negd(tcg_op, tcg_op); 12856 /* fall through */ 12857 case 0x01: /* FMLA */ 12858 read_vec_element(s, tcg_res, rd, pass, MO_64); 12859 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 12860 break; 12861 case 0x09: /* FMUL */ 12862 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 12863 break; 12864 case 0x19: /* FMULX */ 12865 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 12866 break; 12867 default: 12868 g_assert_not_reached(); 12869 } 12870 12871 write_vec_element(s, tcg_res, rd, pass, MO_64); 12872 } 12873 12874 clear_vec_high(s, !is_scalar, rd); 12875 } else if (!is_long) { 12876 /* 32 bit floating point, or 16 or 32 bit integer. 12877 * For the 16 bit scalar case we use the usual Neon helpers and 12878 * rely on the fact that 0 op 0 == 0 with no side effects. 12879 */ 12880 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12881 int pass, maxpasses; 12882 12883 if (is_scalar) { 12884 maxpasses = 1; 12885 } else { 12886 maxpasses = is_q ? 4 : 2; 12887 } 12888 12889 read_vec_element_i32(s, tcg_idx, rm, index, size); 12890 12891 if (size == 1 && !is_scalar) { 12892 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12893 * the index into both halves of the 32 bit tcg_idx and then use 12894 * the usual Neon helpers. 12895 */ 12896 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12897 } 12898 12899 for (pass = 0; pass < maxpasses; pass++) { 12900 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12901 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12902 12903 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12904 12905 switch (16 * u + opcode) { 12906 case 0x08: /* MUL */ 12907 case 0x10: /* MLA */ 12908 case 0x14: /* MLS */ 12909 { 12910 static NeonGenTwoOpFn * const fns[2][2] = { 12911 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12912 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12913 }; 12914 NeonGenTwoOpFn *genfn; 12915 bool is_sub = opcode == 0x4; 12916 12917 if (size == 1) { 12918 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12919 } else { 12920 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12921 } 12922 if (opcode == 0x8) { 12923 break; 12924 } 12925 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12926 genfn = fns[size - 1][is_sub]; 12927 genfn(tcg_res, tcg_op, tcg_res); 12928 break; 12929 } 12930 case 0x05: /* FMLS */ 12931 case 0x01: /* FMLA */ 12932 read_vec_element_i32(s, tcg_res, rd, pass, 12933 is_scalar ? size : MO_32); 12934 switch (size) { 12935 case 1: 12936 if (opcode == 0x5) { 12937 /* As usual for ARM, separate negation for fused 12938 * multiply-add */ 12939 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 12940 } 12941 if (is_scalar) { 12942 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 12943 tcg_res, fpst); 12944 } else { 12945 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 12946 tcg_res, fpst); 12947 } 12948 break; 12949 case 2: 12950 if (opcode == 0x5) { 12951 /* As usual for ARM, separate negation for 12952 * fused multiply-add */ 12953 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 12954 } 12955 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 12956 tcg_res, fpst); 12957 break; 12958 default: 12959 g_assert_not_reached(); 12960 } 12961 break; 12962 case 0x09: /* FMUL */ 12963 switch (size) { 12964 case 1: 12965 if (is_scalar) { 12966 gen_helper_advsimd_mulh(tcg_res, tcg_op, 12967 tcg_idx, fpst); 12968 } else { 12969 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 12970 tcg_idx, fpst); 12971 } 12972 break; 12973 case 2: 12974 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 12975 break; 12976 default: 12977 g_assert_not_reached(); 12978 } 12979 break; 12980 case 0x19: /* FMULX */ 12981 switch (size) { 12982 case 1: 12983 if (is_scalar) { 12984 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 12985 tcg_idx, fpst); 12986 } else { 12987 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 12988 tcg_idx, fpst); 12989 } 12990 break; 12991 case 2: 12992 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 12993 break; 12994 default: 12995 g_assert_not_reached(); 12996 } 12997 break; 12998 case 0x0c: /* SQDMULH */ 12999 if (size == 1) { 13000 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13001 tcg_op, tcg_idx); 13002 } else { 13003 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13004 tcg_op, tcg_idx); 13005 } 13006 break; 13007 case 0x0d: /* SQRDMULH */ 13008 if (size == 1) { 13009 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13010 tcg_op, tcg_idx); 13011 } else { 13012 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13013 tcg_op, tcg_idx); 13014 } 13015 break; 13016 case 0x1d: /* SQRDMLAH */ 13017 read_vec_element_i32(s, tcg_res, rd, pass, 13018 is_scalar ? size : MO_32); 13019 if (size == 1) { 13020 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13021 tcg_op, tcg_idx, tcg_res); 13022 } else { 13023 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13024 tcg_op, tcg_idx, tcg_res); 13025 } 13026 break; 13027 case 0x1f: /* SQRDMLSH */ 13028 read_vec_element_i32(s, tcg_res, rd, pass, 13029 is_scalar ? size : MO_32); 13030 if (size == 1) { 13031 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13032 tcg_op, tcg_idx, tcg_res); 13033 } else { 13034 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13035 tcg_op, tcg_idx, tcg_res); 13036 } 13037 break; 13038 default: 13039 g_assert_not_reached(); 13040 } 13041 13042 if (is_scalar) { 13043 write_fp_sreg(s, rd, tcg_res); 13044 } else { 13045 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13046 } 13047 } 13048 13049 clear_vec_high(s, is_q, rd); 13050 } else { 13051 /* long ops: 16x16->32 or 32x32->64 */ 13052 TCGv_i64 tcg_res[2]; 13053 int pass; 13054 bool satop = extract32(opcode, 0, 1); 13055 MemOp memop = MO_32; 13056 13057 if (satop || !u) { 13058 memop |= MO_SIGN; 13059 } 13060 13061 if (size == 2) { 13062 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13063 13064 read_vec_element(s, tcg_idx, rm, index, memop); 13065 13066 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13067 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13068 TCGv_i64 tcg_passres; 13069 int passelt; 13070 13071 if (is_scalar) { 13072 passelt = 0; 13073 } else { 13074 passelt = pass + (is_q * 2); 13075 } 13076 13077 read_vec_element(s, tcg_op, rn, passelt, memop); 13078 13079 tcg_res[pass] = tcg_temp_new_i64(); 13080 13081 if (opcode == 0xa || opcode == 0xb) { 13082 /* Non-accumulating ops */ 13083 tcg_passres = tcg_res[pass]; 13084 } else { 13085 tcg_passres = tcg_temp_new_i64(); 13086 } 13087 13088 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13089 13090 if (satop) { 13091 /* saturating, doubling */ 13092 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13093 tcg_passres, tcg_passres); 13094 } 13095 13096 if (opcode == 0xa || opcode == 0xb) { 13097 continue; 13098 } 13099 13100 /* Accumulating op: handle accumulate step */ 13101 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13102 13103 switch (opcode) { 13104 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13105 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13106 break; 13107 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13108 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13109 break; 13110 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13111 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13112 /* fall through */ 13113 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13114 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13115 tcg_res[pass], 13116 tcg_passres); 13117 break; 13118 default: 13119 g_assert_not_reached(); 13120 } 13121 } 13122 13123 clear_vec_high(s, !is_scalar, rd); 13124 } else { 13125 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13126 13127 assert(size == 1); 13128 read_vec_element_i32(s, tcg_idx, rm, index, size); 13129 13130 if (!is_scalar) { 13131 /* The simplest way to handle the 16x16 indexed ops is to 13132 * duplicate the index into both halves of the 32 bit tcg_idx 13133 * and then use the usual Neon helpers. 13134 */ 13135 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13136 } 13137 13138 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13139 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13140 TCGv_i64 tcg_passres; 13141 13142 if (is_scalar) { 13143 read_vec_element_i32(s, tcg_op, rn, pass, size); 13144 } else { 13145 read_vec_element_i32(s, tcg_op, rn, 13146 pass + (is_q * 2), MO_32); 13147 } 13148 13149 tcg_res[pass] = tcg_temp_new_i64(); 13150 13151 if (opcode == 0xa || opcode == 0xb) { 13152 /* Non-accumulating ops */ 13153 tcg_passres = tcg_res[pass]; 13154 } else { 13155 tcg_passres = tcg_temp_new_i64(); 13156 } 13157 13158 if (memop & MO_SIGN) { 13159 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13160 } else { 13161 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13162 } 13163 if (satop) { 13164 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13165 tcg_passres, tcg_passres); 13166 } 13167 13168 if (opcode == 0xa || opcode == 0xb) { 13169 continue; 13170 } 13171 13172 /* Accumulating op: handle accumulate step */ 13173 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13174 13175 switch (opcode) { 13176 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13177 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13178 tcg_passres); 13179 break; 13180 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13181 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13182 tcg_passres); 13183 break; 13184 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13185 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13186 /* fall through */ 13187 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13188 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13189 tcg_res[pass], 13190 tcg_passres); 13191 break; 13192 default: 13193 g_assert_not_reached(); 13194 } 13195 } 13196 13197 if (is_scalar) { 13198 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13199 } 13200 } 13201 13202 if (is_scalar) { 13203 tcg_res[1] = tcg_constant_i64(0); 13204 } 13205 13206 for (pass = 0; pass < 2; pass++) { 13207 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13208 } 13209 } 13210 } 13211 13212 /* Crypto AES 13213 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13214 * +-----------------+------+-----------+--------+-----+------+------+ 13215 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13216 * +-----------------+------+-----------+--------+-----+------+------+ 13217 */ 13218 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13219 { 13220 int size = extract32(insn, 22, 2); 13221 int opcode = extract32(insn, 12, 5); 13222 int rn = extract32(insn, 5, 5); 13223 int rd = extract32(insn, 0, 5); 13224 gen_helper_gvec_2 *genfn2 = NULL; 13225 gen_helper_gvec_3 *genfn3 = NULL; 13226 13227 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13228 unallocated_encoding(s); 13229 return; 13230 } 13231 13232 switch (opcode) { 13233 case 0x4: /* AESE */ 13234 genfn3 = gen_helper_crypto_aese; 13235 break; 13236 case 0x6: /* AESMC */ 13237 genfn2 = gen_helper_crypto_aesmc; 13238 break; 13239 case 0x5: /* AESD */ 13240 genfn3 = gen_helper_crypto_aesd; 13241 break; 13242 case 0x7: /* AESIMC */ 13243 genfn2 = gen_helper_crypto_aesimc; 13244 break; 13245 default: 13246 unallocated_encoding(s); 13247 return; 13248 } 13249 13250 if (!fp_access_check(s)) { 13251 return; 13252 } 13253 if (genfn2) { 13254 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13255 } else { 13256 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13257 } 13258 } 13259 13260 /* Crypto three-reg SHA 13261 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13262 * +-----------------+------+---+------+---+--------+-----+------+------+ 13263 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13264 * +-----------------+------+---+------+---+--------+-----+------+------+ 13265 */ 13266 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13267 { 13268 int size = extract32(insn, 22, 2); 13269 int opcode = extract32(insn, 12, 3); 13270 int rm = extract32(insn, 16, 5); 13271 int rn = extract32(insn, 5, 5); 13272 int rd = extract32(insn, 0, 5); 13273 gen_helper_gvec_3 *genfn; 13274 bool feature; 13275 13276 if (size != 0) { 13277 unallocated_encoding(s); 13278 return; 13279 } 13280 13281 switch (opcode) { 13282 case 0: /* SHA1C */ 13283 genfn = gen_helper_crypto_sha1c; 13284 feature = dc_isar_feature(aa64_sha1, s); 13285 break; 13286 case 1: /* SHA1P */ 13287 genfn = gen_helper_crypto_sha1p; 13288 feature = dc_isar_feature(aa64_sha1, s); 13289 break; 13290 case 2: /* SHA1M */ 13291 genfn = gen_helper_crypto_sha1m; 13292 feature = dc_isar_feature(aa64_sha1, s); 13293 break; 13294 case 3: /* SHA1SU0 */ 13295 genfn = gen_helper_crypto_sha1su0; 13296 feature = dc_isar_feature(aa64_sha1, s); 13297 break; 13298 case 4: /* SHA256H */ 13299 genfn = gen_helper_crypto_sha256h; 13300 feature = dc_isar_feature(aa64_sha256, s); 13301 break; 13302 case 5: /* SHA256H2 */ 13303 genfn = gen_helper_crypto_sha256h2; 13304 feature = dc_isar_feature(aa64_sha256, s); 13305 break; 13306 case 6: /* SHA256SU1 */ 13307 genfn = gen_helper_crypto_sha256su1; 13308 feature = dc_isar_feature(aa64_sha256, s); 13309 break; 13310 default: 13311 unallocated_encoding(s); 13312 return; 13313 } 13314 13315 if (!feature) { 13316 unallocated_encoding(s); 13317 return; 13318 } 13319 13320 if (!fp_access_check(s)) { 13321 return; 13322 } 13323 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13324 } 13325 13326 /* Crypto two-reg SHA 13327 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13328 * +-----------------+------+-----------+--------+-----+------+------+ 13329 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13330 * +-----------------+------+-----------+--------+-----+------+------+ 13331 */ 13332 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13333 { 13334 int size = extract32(insn, 22, 2); 13335 int opcode = extract32(insn, 12, 5); 13336 int rn = extract32(insn, 5, 5); 13337 int rd = extract32(insn, 0, 5); 13338 gen_helper_gvec_2 *genfn; 13339 bool feature; 13340 13341 if (size != 0) { 13342 unallocated_encoding(s); 13343 return; 13344 } 13345 13346 switch (opcode) { 13347 case 0: /* SHA1H */ 13348 feature = dc_isar_feature(aa64_sha1, s); 13349 genfn = gen_helper_crypto_sha1h; 13350 break; 13351 case 1: /* SHA1SU1 */ 13352 feature = dc_isar_feature(aa64_sha1, s); 13353 genfn = gen_helper_crypto_sha1su1; 13354 break; 13355 case 2: /* SHA256SU0 */ 13356 feature = dc_isar_feature(aa64_sha256, s); 13357 genfn = gen_helper_crypto_sha256su0; 13358 break; 13359 default: 13360 unallocated_encoding(s); 13361 return; 13362 } 13363 13364 if (!feature) { 13365 unallocated_encoding(s); 13366 return; 13367 } 13368 13369 if (!fp_access_check(s)) { 13370 return; 13371 } 13372 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13373 } 13374 13375 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13376 { 13377 tcg_gen_rotli_i64(d, m, 1); 13378 tcg_gen_xor_i64(d, d, n); 13379 } 13380 13381 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13382 { 13383 tcg_gen_rotli_vec(vece, d, m, 1); 13384 tcg_gen_xor_vec(vece, d, d, n); 13385 } 13386 13387 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13388 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13389 { 13390 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13391 static const GVecGen3 op = { 13392 .fni8 = gen_rax1_i64, 13393 .fniv = gen_rax1_vec, 13394 .opt_opc = vecop_list, 13395 .fno = gen_helper_crypto_rax1, 13396 .vece = MO_64, 13397 }; 13398 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13399 } 13400 13401 /* Crypto three-reg SHA512 13402 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13403 * +-----------------------+------+---+---+-----+--------+------+------+ 13404 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13405 * +-----------------------+------+---+---+-----+--------+------+------+ 13406 */ 13407 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13408 { 13409 int opcode = extract32(insn, 10, 2); 13410 int o = extract32(insn, 14, 1); 13411 int rm = extract32(insn, 16, 5); 13412 int rn = extract32(insn, 5, 5); 13413 int rd = extract32(insn, 0, 5); 13414 bool feature; 13415 gen_helper_gvec_3 *oolfn = NULL; 13416 GVecGen3Fn *gvecfn = NULL; 13417 13418 if (o == 0) { 13419 switch (opcode) { 13420 case 0: /* SHA512H */ 13421 feature = dc_isar_feature(aa64_sha512, s); 13422 oolfn = gen_helper_crypto_sha512h; 13423 break; 13424 case 1: /* SHA512H2 */ 13425 feature = dc_isar_feature(aa64_sha512, s); 13426 oolfn = gen_helper_crypto_sha512h2; 13427 break; 13428 case 2: /* SHA512SU1 */ 13429 feature = dc_isar_feature(aa64_sha512, s); 13430 oolfn = gen_helper_crypto_sha512su1; 13431 break; 13432 case 3: /* RAX1 */ 13433 feature = dc_isar_feature(aa64_sha3, s); 13434 gvecfn = gen_gvec_rax1; 13435 break; 13436 default: 13437 g_assert_not_reached(); 13438 } 13439 } else { 13440 switch (opcode) { 13441 case 0: /* SM3PARTW1 */ 13442 feature = dc_isar_feature(aa64_sm3, s); 13443 oolfn = gen_helper_crypto_sm3partw1; 13444 break; 13445 case 1: /* SM3PARTW2 */ 13446 feature = dc_isar_feature(aa64_sm3, s); 13447 oolfn = gen_helper_crypto_sm3partw2; 13448 break; 13449 case 2: /* SM4EKEY */ 13450 feature = dc_isar_feature(aa64_sm4, s); 13451 oolfn = gen_helper_crypto_sm4ekey; 13452 break; 13453 default: 13454 unallocated_encoding(s); 13455 return; 13456 } 13457 } 13458 13459 if (!feature) { 13460 unallocated_encoding(s); 13461 return; 13462 } 13463 13464 if (!fp_access_check(s)) { 13465 return; 13466 } 13467 13468 if (oolfn) { 13469 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13470 } else { 13471 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13472 } 13473 } 13474 13475 /* Crypto two-reg SHA512 13476 * 31 12 11 10 9 5 4 0 13477 * +-----------------------------------------+--------+------+------+ 13478 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13479 * +-----------------------------------------+--------+------+------+ 13480 */ 13481 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13482 { 13483 int opcode = extract32(insn, 10, 2); 13484 int rn = extract32(insn, 5, 5); 13485 int rd = extract32(insn, 0, 5); 13486 bool feature; 13487 13488 switch (opcode) { 13489 case 0: /* SHA512SU0 */ 13490 feature = dc_isar_feature(aa64_sha512, s); 13491 break; 13492 case 1: /* SM4E */ 13493 feature = dc_isar_feature(aa64_sm4, s); 13494 break; 13495 default: 13496 unallocated_encoding(s); 13497 return; 13498 } 13499 13500 if (!feature) { 13501 unallocated_encoding(s); 13502 return; 13503 } 13504 13505 if (!fp_access_check(s)) { 13506 return; 13507 } 13508 13509 switch (opcode) { 13510 case 0: /* SHA512SU0 */ 13511 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13512 break; 13513 case 1: /* SM4E */ 13514 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13515 break; 13516 default: 13517 g_assert_not_reached(); 13518 } 13519 } 13520 13521 /* Crypto four-register 13522 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13523 * +-------------------+-----+------+---+------+------+------+ 13524 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13525 * +-------------------+-----+------+---+------+------+------+ 13526 */ 13527 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13528 { 13529 int op0 = extract32(insn, 21, 2); 13530 int rm = extract32(insn, 16, 5); 13531 int ra = extract32(insn, 10, 5); 13532 int rn = extract32(insn, 5, 5); 13533 int rd = extract32(insn, 0, 5); 13534 bool feature; 13535 13536 switch (op0) { 13537 case 0: /* EOR3 */ 13538 case 1: /* BCAX */ 13539 feature = dc_isar_feature(aa64_sha3, s); 13540 break; 13541 case 2: /* SM3SS1 */ 13542 feature = dc_isar_feature(aa64_sm3, s); 13543 break; 13544 default: 13545 unallocated_encoding(s); 13546 return; 13547 } 13548 13549 if (!feature) { 13550 unallocated_encoding(s); 13551 return; 13552 } 13553 13554 if (!fp_access_check(s)) { 13555 return; 13556 } 13557 13558 if (op0 < 2) { 13559 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13560 int pass; 13561 13562 tcg_op1 = tcg_temp_new_i64(); 13563 tcg_op2 = tcg_temp_new_i64(); 13564 tcg_op3 = tcg_temp_new_i64(); 13565 tcg_res[0] = tcg_temp_new_i64(); 13566 tcg_res[1] = tcg_temp_new_i64(); 13567 13568 for (pass = 0; pass < 2; pass++) { 13569 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13570 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13571 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13572 13573 if (op0 == 0) { 13574 /* EOR3 */ 13575 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13576 } else { 13577 /* BCAX */ 13578 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13579 } 13580 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13581 } 13582 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13583 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13584 } else { 13585 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13586 13587 tcg_op1 = tcg_temp_new_i32(); 13588 tcg_op2 = tcg_temp_new_i32(); 13589 tcg_op3 = tcg_temp_new_i32(); 13590 tcg_res = tcg_temp_new_i32(); 13591 tcg_zero = tcg_constant_i32(0); 13592 13593 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13594 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13595 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13596 13597 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13598 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13599 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13600 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13601 13602 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13603 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13604 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13605 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13606 } 13607 } 13608 13609 /* Crypto XAR 13610 * 31 21 20 16 15 10 9 5 4 0 13611 * +-----------------------+------+--------+------+------+ 13612 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13613 * +-----------------------+------+--------+------+------+ 13614 */ 13615 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13616 { 13617 int rm = extract32(insn, 16, 5); 13618 int imm6 = extract32(insn, 10, 6); 13619 int rn = extract32(insn, 5, 5); 13620 int rd = extract32(insn, 0, 5); 13621 13622 if (!dc_isar_feature(aa64_sha3, s)) { 13623 unallocated_encoding(s); 13624 return; 13625 } 13626 13627 if (!fp_access_check(s)) { 13628 return; 13629 } 13630 13631 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13632 vec_full_reg_offset(s, rn), 13633 vec_full_reg_offset(s, rm), imm6, 16, 13634 vec_full_reg_size(s)); 13635 } 13636 13637 /* Crypto three-reg imm2 13638 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13639 * +-----------------------+------+-----+------+--------+------+------+ 13640 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13641 * +-----------------------+------+-----+------+--------+------+------+ 13642 */ 13643 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13644 { 13645 static gen_helper_gvec_3 * const fns[4] = { 13646 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13647 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13648 }; 13649 int opcode = extract32(insn, 10, 2); 13650 int imm2 = extract32(insn, 12, 2); 13651 int rm = extract32(insn, 16, 5); 13652 int rn = extract32(insn, 5, 5); 13653 int rd = extract32(insn, 0, 5); 13654 13655 if (!dc_isar_feature(aa64_sm3, s)) { 13656 unallocated_encoding(s); 13657 return; 13658 } 13659 13660 if (!fp_access_check(s)) { 13661 return; 13662 } 13663 13664 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13665 } 13666 13667 /* C3.6 Data processing - SIMD, inc Crypto 13668 * 13669 * As the decode gets a little complex we are using a table based 13670 * approach for this part of the decode. 13671 */ 13672 static const AArch64DecodeTable data_proc_simd[] = { 13673 /* pattern , mask , fn */ 13674 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13675 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13676 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13677 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13678 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13679 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13680 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13681 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13682 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13683 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13684 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13685 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13686 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13687 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13688 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13689 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13690 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13691 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13692 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13693 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13694 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13695 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13696 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13697 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13698 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13699 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13700 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13701 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13702 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13703 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13704 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13705 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13706 { 0x00000000, 0x00000000, NULL } 13707 }; 13708 13709 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13710 { 13711 /* Note that this is called with all non-FP cases from 13712 * table C3-6 so it must UNDEF for entries not specifically 13713 * allocated to instructions in that table. 13714 */ 13715 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13716 if (fn) { 13717 fn(s, insn); 13718 } else { 13719 unallocated_encoding(s); 13720 } 13721 } 13722 13723 /* C3.6 Data processing - SIMD and floating point */ 13724 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13725 { 13726 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13727 disas_data_proc_fp(s, insn); 13728 } else { 13729 /* SIMD, including crypto */ 13730 disas_data_proc_simd(s, insn); 13731 } 13732 } 13733 13734 static bool trans_OK(DisasContext *s, arg_OK *a) 13735 { 13736 return true; 13737 } 13738 13739 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13740 { 13741 s->is_nonstreaming = true; 13742 return true; 13743 } 13744 13745 /** 13746 * is_guarded_page: 13747 * @env: The cpu environment 13748 * @s: The DisasContext 13749 * 13750 * Return true if the page is guarded. 13751 */ 13752 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13753 { 13754 uint64_t addr = s->base.pc_first; 13755 #ifdef CONFIG_USER_ONLY 13756 return page_get_flags(addr) & PAGE_BTI; 13757 #else 13758 CPUTLBEntryFull *full; 13759 void *host; 13760 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13761 int flags; 13762 13763 /* 13764 * We test this immediately after reading an insn, which means 13765 * that the TLB entry must be present and valid, and thus this 13766 * access will never raise an exception. 13767 */ 13768 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13769 false, &host, &full, 0); 13770 assert(!(flags & TLB_INVALID_MASK)); 13771 13772 return full->guarded; 13773 #endif 13774 } 13775 13776 /** 13777 * btype_destination_ok: 13778 * @insn: The instruction at the branch destination 13779 * @bt: SCTLR_ELx.BT 13780 * @btype: PSTATE.BTYPE, and is non-zero 13781 * 13782 * On a guarded page, there are a limited number of insns 13783 * that may be present at the branch target: 13784 * - branch target identifiers, 13785 * - paciasp, pacibsp, 13786 * - BRK insn 13787 * - HLT insn 13788 * Anything else causes a Branch Target Exception. 13789 * 13790 * Return true if the branch is compatible, false to raise BTITRAP. 13791 */ 13792 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13793 { 13794 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13795 /* HINT space */ 13796 switch (extract32(insn, 5, 7)) { 13797 case 0b011001: /* PACIASP */ 13798 case 0b011011: /* PACIBSP */ 13799 /* 13800 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13801 * with btype == 3. Otherwise all btype are ok. 13802 */ 13803 return !bt || btype != 3; 13804 case 0b100000: /* BTI */ 13805 /* Not compatible with any btype. */ 13806 return false; 13807 case 0b100010: /* BTI c */ 13808 /* Not compatible with btype == 3 */ 13809 return btype != 3; 13810 case 0b100100: /* BTI j */ 13811 /* Not compatible with btype == 2 */ 13812 return btype != 2; 13813 case 0b100110: /* BTI jc */ 13814 /* Compatible with any btype. */ 13815 return true; 13816 } 13817 } else { 13818 switch (insn & 0xffe0001fu) { 13819 case 0xd4200000u: /* BRK */ 13820 case 0xd4400000u: /* HLT */ 13821 /* Give priority to the breakpoint exception. */ 13822 return true; 13823 } 13824 } 13825 return false; 13826 } 13827 13828 /* C3.1 A64 instruction index by encoding */ 13829 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13830 { 13831 switch (extract32(insn, 25, 4)) { 13832 case 0x5: 13833 case 0xd: /* Data processing - register */ 13834 disas_data_proc_reg(s, insn); 13835 break; 13836 case 0x7: 13837 case 0xf: /* Data processing - SIMD and floating point */ 13838 disas_data_proc_simd_fp(s, insn); 13839 break; 13840 default: 13841 unallocated_encoding(s); 13842 break; 13843 } 13844 } 13845 13846 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13847 CPUState *cpu) 13848 { 13849 DisasContext *dc = container_of(dcbase, DisasContext, base); 13850 CPUARMState *env = cpu->env_ptr; 13851 ARMCPU *arm_cpu = env_archcpu(env); 13852 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13853 int bound, core_mmu_idx; 13854 13855 dc->isar = &arm_cpu->isar; 13856 dc->condjmp = 0; 13857 dc->pc_save = dc->base.pc_first; 13858 dc->aarch64 = true; 13859 dc->thumb = false; 13860 dc->sctlr_b = 0; 13861 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13862 dc->condexec_mask = 0; 13863 dc->condexec_cond = 0; 13864 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13865 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13866 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13867 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13868 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13869 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13870 #if !defined(CONFIG_USER_ONLY) 13871 dc->user = (dc->current_el == 0); 13872 #endif 13873 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13874 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13875 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13876 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13877 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13878 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 13879 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13880 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13881 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13882 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13883 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13884 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13885 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13886 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13887 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 13888 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13889 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13890 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13891 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13892 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13893 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13894 dc->vec_len = 0; 13895 dc->vec_stride = 0; 13896 dc->cp_regs = arm_cpu->cp_regs; 13897 dc->features = env->features; 13898 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13899 13900 #ifdef CONFIG_USER_ONLY 13901 /* In sve_probe_page, we assume TBI is enabled. */ 13902 tcg_debug_assert(dc->tbid & 1); 13903 #endif 13904 13905 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13906 13907 /* Single step state. The code-generation logic here is: 13908 * SS_ACTIVE == 0: 13909 * generate code with no special handling for single-stepping (except 13910 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13911 * this happens anyway because those changes are all system register or 13912 * PSTATE writes). 13913 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13914 * emit code for one insn 13915 * emit code to clear PSTATE.SS 13916 * emit code to generate software step exception for completed step 13917 * end TB (as usual for having generated an exception) 13918 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13919 * emit code to generate a software step exception 13920 * end the TB 13921 */ 13922 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13923 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13924 dc->is_ldex = false; 13925 13926 /* Bound the number of insns to execute to those left on the page. */ 13927 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13928 13929 /* If architectural single step active, limit to 1. */ 13930 if (dc->ss_active) { 13931 bound = 1; 13932 } 13933 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13934 } 13935 13936 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13937 { 13938 } 13939 13940 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13941 { 13942 DisasContext *dc = container_of(dcbase, DisasContext, base); 13943 target_ulong pc_arg = dc->base.pc_next; 13944 13945 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13946 pc_arg &= ~TARGET_PAGE_MASK; 13947 } 13948 tcg_gen_insn_start(pc_arg, 0, 0); 13949 dc->insn_start = tcg_last_op(); 13950 } 13951 13952 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13953 { 13954 DisasContext *s = container_of(dcbase, DisasContext, base); 13955 CPUARMState *env = cpu->env_ptr; 13956 uint64_t pc = s->base.pc_next; 13957 uint32_t insn; 13958 13959 /* Singlestep exceptions have the highest priority. */ 13960 if (s->ss_active && !s->pstate_ss) { 13961 /* Singlestep state is Active-pending. 13962 * If we're in this state at the start of a TB then either 13963 * a) we just took an exception to an EL which is being debugged 13964 * and this is the first insn in the exception handler 13965 * b) debug exceptions were masked and we just unmasked them 13966 * without changing EL (eg by clearing PSTATE.D) 13967 * In either case we're going to take a swstep exception in the 13968 * "did not step an insn" case, and so the syndrome ISV and EX 13969 * bits should be zero. 13970 */ 13971 assert(s->base.num_insns == 1); 13972 gen_swstep_exception(s, 0, 0); 13973 s->base.is_jmp = DISAS_NORETURN; 13974 s->base.pc_next = pc + 4; 13975 return; 13976 } 13977 13978 if (pc & 3) { 13979 /* 13980 * PC alignment fault. This has priority over the instruction abort 13981 * that we would receive from a translation fault via arm_ldl_code. 13982 * This should only be possible after an indirect branch, at the 13983 * start of the TB. 13984 */ 13985 assert(s->base.num_insns == 1); 13986 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 13987 s->base.is_jmp = DISAS_NORETURN; 13988 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13989 return; 13990 } 13991 13992 s->pc_curr = pc; 13993 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13994 s->insn = insn; 13995 s->base.pc_next = pc + 4; 13996 13997 s->fp_access_checked = false; 13998 s->sve_access_checked = false; 13999 14000 if (s->pstate_il) { 14001 /* 14002 * Illegal execution state. This has priority over BTI 14003 * exceptions, but comes after instruction abort exceptions. 14004 */ 14005 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14006 return; 14007 } 14008 14009 if (dc_isar_feature(aa64_bti, s)) { 14010 if (s->base.num_insns == 1) { 14011 /* 14012 * At the first insn of the TB, compute s->guarded_page. 14013 * We delayed computing this until successfully reading 14014 * the first insn of the TB, above. This (mostly) ensures 14015 * that the softmmu tlb entry has been populated, and the 14016 * page table GP bit is available. 14017 * 14018 * Note that we need to compute this even if btype == 0, 14019 * because this value is used for BR instructions later 14020 * where ENV is not available. 14021 */ 14022 s->guarded_page = is_guarded_page(env, s); 14023 14024 /* First insn can have btype set to non-zero. */ 14025 tcg_debug_assert(s->btype >= 0); 14026 14027 /* 14028 * Note that the Branch Target Exception has fairly high 14029 * priority -- below debugging exceptions but above most 14030 * everything else. This allows us to handle this now 14031 * instead of waiting until the insn is otherwise decoded. 14032 */ 14033 if (s->btype != 0 14034 && s->guarded_page 14035 && !btype_destination_ok(insn, s->bt, s->btype)) { 14036 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14037 return; 14038 } 14039 } else { 14040 /* Not the first insn: btype must be 0. */ 14041 tcg_debug_assert(s->btype == 0); 14042 } 14043 } 14044 14045 s->is_nonstreaming = false; 14046 if (s->sme_trap_nonstreaming) { 14047 disas_sme_fa64(s, insn); 14048 } 14049 14050 if (!disas_a64(s, insn) && 14051 !disas_sme(s, insn) && 14052 !disas_sve(s, insn)) { 14053 disas_a64_legacy(s, insn); 14054 } 14055 14056 /* 14057 * After execution of most insns, btype is reset to 0. 14058 * Note that we set btype == -1 when the insn sets btype. 14059 */ 14060 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14061 reset_btype(s); 14062 } 14063 } 14064 14065 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14066 { 14067 DisasContext *dc = container_of(dcbase, DisasContext, base); 14068 14069 if (unlikely(dc->ss_active)) { 14070 /* Note that this means single stepping WFI doesn't halt the CPU. 14071 * For conditional branch insns this is harmless unreachable code as 14072 * gen_goto_tb() has already handled emitting the debug exception 14073 * (and thus a tb-jump is not possible when singlestepping). 14074 */ 14075 switch (dc->base.is_jmp) { 14076 default: 14077 gen_a64_update_pc(dc, 4); 14078 /* fall through */ 14079 case DISAS_EXIT: 14080 case DISAS_JUMP: 14081 gen_step_complete_exception(dc); 14082 break; 14083 case DISAS_NORETURN: 14084 break; 14085 } 14086 } else { 14087 switch (dc->base.is_jmp) { 14088 case DISAS_NEXT: 14089 case DISAS_TOO_MANY: 14090 gen_goto_tb(dc, 1, 4); 14091 break; 14092 default: 14093 case DISAS_UPDATE_EXIT: 14094 gen_a64_update_pc(dc, 4); 14095 /* fall through */ 14096 case DISAS_EXIT: 14097 tcg_gen_exit_tb(NULL, 0); 14098 break; 14099 case DISAS_UPDATE_NOCHAIN: 14100 gen_a64_update_pc(dc, 4); 14101 /* fall through */ 14102 case DISAS_JUMP: 14103 tcg_gen_lookup_and_goto_ptr(); 14104 break; 14105 case DISAS_NORETURN: 14106 case DISAS_SWI: 14107 break; 14108 case DISAS_WFE: 14109 gen_a64_update_pc(dc, 4); 14110 gen_helper_wfe(cpu_env); 14111 break; 14112 case DISAS_YIELD: 14113 gen_a64_update_pc(dc, 4); 14114 gen_helper_yield(cpu_env); 14115 break; 14116 case DISAS_WFI: 14117 /* 14118 * This is a special case because we don't want to just halt 14119 * the CPU if trying to debug across a WFI. 14120 */ 14121 gen_a64_update_pc(dc, 4); 14122 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14123 /* 14124 * The helper doesn't necessarily throw an exception, but we 14125 * must go back to the main loop to check for interrupts anyway. 14126 */ 14127 tcg_gen_exit_tb(NULL, 0); 14128 break; 14129 } 14130 } 14131 } 14132 14133 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14134 CPUState *cpu, FILE *logfile) 14135 { 14136 DisasContext *dc = container_of(dcbase, DisasContext, base); 14137 14138 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14139 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14140 } 14141 14142 const TranslatorOps aarch64_translator_ops = { 14143 .init_disas_context = aarch64_tr_init_disas_context, 14144 .tb_start = aarch64_tr_tb_start, 14145 .insn_start = aarch64_tr_insn_start, 14146 .translate_insn = aarch64_tr_translate_insn, 14147 .tb_stop = aarch64_tr_tb_stop, 14148 .disas_log = aarch64_tr_disas_log, 14149 }; 14150