1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "disas/disas.h" 26 #include "arm_ldst.h" 27 #include "semihosting/semihost.h" 28 #include "cpregs.h" 29 30 static TCGv_i64 cpu_X[32]; 31 static TCGv_i64 cpu_pc; 32 33 /* Load/store exclusive handling */ 34 static TCGv_i64 cpu_exclusive_high; 35 36 static const char *regnames[] = { 37 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 38 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 39 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 40 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 41 }; 42 43 enum a64_shift_type { 44 A64_SHIFT_TYPE_LSL = 0, 45 A64_SHIFT_TYPE_LSR = 1, 46 A64_SHIFT_TYPE_ASR = 2, 47 A64_SHIFT_TYPE_ROR = 3 48 }; 49 50 /* 51 * Helpers for extracting complex instruction fields 52 */ 53 54 /* 55 * For load/store with an unsigned 12 bit immediate scaled by the element 56 * size. The input has the immediate field in bits [14:3] and the element 57 * size in [2:0]. 58 */ 59 static int uimm_scaled(DisasContext *s, int x) 60 { 61 unsigned imm = x >> 3; 62 unsigned scale = extract32(x, 0, 3); 63 return imm << scale; 64 } 65 66 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 67 static int scale_by_log2_tag_granule(DisasContext *s, int x) 68 { 69 return x << LOG2_TAG_GRANULE; 70 } 71 72 /* 73 * Include the generated decoders. 74 */ 75 76 #include "decode-sme-fa64.c.inc" 77 #include "decode-a64.c.inc" 78 79 /* Table based decoder typedefs - used when the relevant bits for decode 80 * are too awkwardly scattered across the instruction (eg SIMD). 81 */ 82 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 83 84 typedef struct AArch64DecodeTable { 85 uint32_t pattern; 86 uint32_t mask; 87 AArch64DecodeFn *disas_fn; 88 } AArch64DecodeTable; 89 90 /* initialize TCG globals. */ 91 void a64_translate_init(void) 92 { 93 int i; 94 95 cpu_pc = tcg_global_mem_new_i64(tcg_env, 96 offsetof(CPUARMState, pc), 97 "pc"); 98 for (i = 0; i < 32; i++) { 99 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 100 offsetof(CPUARMState, xregs[i]), 101 regnames[i]); 102 } 103 104 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 105 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 106 } 107 108 /* 109 * Return the core mmu_idx to use for A64 load/store insns which 110 * have a "unprivileged load/store" variant. Those insns access 111 * EL0 if executed from an EL which has control over EL0 (usually 112 * EL1) but behave like normal loads and stores if executed from 113 * elsewhere (eg EL3). 114 * 115 * @unpriv : true for the unprivileged encoding; false for the 116 * normal encoding (in which case we will return the same 117 * thing as get_mem_index(). 118 */ 119 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 120 { 121 /* 122 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 123 * which is the usual mmu_idx for this cpu state. 124 */ 125 ARMMMUIdx useridx = s->mmu_idx; 126 127 if (unpriv && s->unpriv) { 128 /* 129 * We have pre-computed the condition for AccType_UNPRIV. 130 * Therefore we should never get here with a mmu_idx for 131 * which we do not know the corresponding user mmu_idx. 132 */ 133 switch (useridx) { 134 case ARMMMUIdx_E10_1: 135 case ARMMMUIdx_E10_1_PAN: 136 useridx = ARMMMUIdx_E10_0; 137 break; 138 case ARMMMUIdx_E20_2: 139 case ARMMMUIdx_E20_2_PAN: 140 useridx = ARMMMUIdx_E20_0; 141 break; 142 default: 143 g_assert_not_reached(); 144 } 145 } 146 return arm_to_core_mmu_idx(useridx); 147 } 148 149 static void set_btype_raw(int val) 150 { 151 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 152 offsetof(CPUARMState, btype)); 153 } 154 155 static void set_btype(DisasContext *s, int val) 156 { 157 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 158 tcg_debug_assert(val >= 1 && val <= 3); 159 set_btype_raw(val); 160 s->btype = -1; 161 } 162 163 static void reset_btype(DisasContext *s) 164 { 165 if (s->btype != 0) { 166 set_btype_raw(0); 167 s->btype = 0; 168 } 169 } 170 171 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 172 { 173 assert(s->pc_save != -1); 174 if (tb_cflags(s->base.tb) & CF_PCREL) { 175 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 176 } else { 177 tcg_gen_movi_i64(dest, s->pc_curr + diff); 178 } 179 } 180 181 void gen_a64_update_pc(DisasContext *s, target_long diff) 182 { 183 gen_pc_plus_diff(s, cpu_pc, diff); 184 s->pc_save = s->pc_curr + diff; 185 } 186 187 /* 188 * Handle Top Byte Ignore (TBI) bits. 189 * 190 * If address tagging is enabled via the TCR TBI bits: 191 * + for EL2 and EL3 there is only one TBI bit, and if it is set 192 * then the address is zero-extended, clearing bits [63:56] 193 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 194 * and TBI1 controls addresses with bit 55 == 1. 195 * If the appropriate TBI bit is set for the address then 196 * the address is sign-extended from bit 55 into bits [63:56] 197 * 198 * Here We have concatenated TBI{1,0} into tbi. 199 */ 200 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 201 TCGv_i64 src, int tbi) 202 { 203 if (tbi == 0) { 204 /* Load unmodified address */ 205 tcg_gen_mov_i64(dst, src); 206 } else if (!regime_has_2_ranges(s->mmu_idx)) { 207 /* Force tag byte to all zero */ 208 tcg_gen_extract_i64(dst, src, 0, 56); 209 } else { 210 /* Sign-extend from bit 55. */ 211 tcg_gen_sextract_i64(dst, src, 0, 56); 212 213 switch (tbi) { 214 case 1: 215 /* tbi0 but !tbi1: only use the extension if positive */ 216 tcg_gen_and_i64(dst, dst, src); 217 break; 218 case 2: 219 /* !tbi0 but tbi1: only use the extension if negative */ 220 tcg_gen_or_i64(dst, dst, src); 221 break; 222 case 3: 223 /* tbi0 and tbi1: always use the extension */ 224 break; 225 default: 226 g_assert_not_reached(); 227 } 228 } 229 } 230 231 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 232 { 233 /* 234 * If address tagging is enabled for instructions via the TCR TBI bits, 235 * then loading an address into the PC will clear out any tag. 236 */ 237 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 238 s->pc_save = -1; 239 } 240 241 /* 242 * Handle MTE and/or TBI. 243 * 244 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 245 * for the tag to be present in the FAR_ELx register. But for user-only 246 * mode we do not have a TLB with which to implement this, so we must 247 * remove the top byte now. 248 * 249 * Always return a fresh temporary that we can increment independently 250 * of the write-back address. 251 */ 252 253 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 254 { 255 TCGv_i64 clean = tcg_temp_new_i64(); 256 #ifdef CONFIG_USER_ONLY 257 gen_top_byte_ignore(s, clean, addr, s->tbid); 258 #else 259 tcg_gen_mov_i64(clean, addr); 260 #endif 261 return clean; 262 } 263 264 /* Insert a zero tag into src, with the result at dst. */ 265 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 266 { 267 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 268 } 269 270 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 271 MMUAccessType acc, int log2_size) 272 { 273 gen_helper_probe_access(tcg_env, ptr, 274 tcg_constant_i32(acc), 275 tcg_constant_i32(get_mem_index(s)), 276 tcg_constant_i32(1 << log2_size)); 277 } 278 279 /* 280 * For MTE, check a single logical or atomic access. This probes a single 281 * address, the exact one specified. The size and alignment of the access 282 * is not relevant to MTE, per se, but watchpoints do require the size, 283 * and we want to recognize those before making any other changes to state. 284 */ 285 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 286 bool is_write, bool tag_checked, 287 MemOp memop, bool is_unpriv, 288 int core_idx) 289 { 290 if (tag_checked && s->mte_active[is_unpriv]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 299 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 300 301 ret = tcg_temp_new_i64(); 302 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 303 304 return ret; 305 } 306 return clean_data_tbi(s, addr); 307 } 308 309 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 310 bool tag_checked, MemOp memop) 311 { 312 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 313 false, get_mem_index(s)); 314 } 315 316 /* 317 * For MTE, check multiple logical sequential accesses. 318 */ 319 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 320 bool tag_checked, int total_size, MemOp single_mop) 321 { 322 if (tag_checked && s->mte_active[0]) { 323 TCGv_i64 ret; 324 int desc = 0; 325 326 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 327 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 328 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 329 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 330 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 331 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 332 333 ret = tcg_temp_new_i64(); 334 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 335 336 return ret; 337 } 338 return clean_data_tbi(s, addr); 339 } 340 341 /* 342 * Generate the special alignment check that applies to AccType_ATOMIC 343 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 344 * naturally aligned, but it must not cross a 16-byte boundary. 345 * See AArch64.CheckAlignment(). 346 */ 347 static void check_lse2_align(DisasContext *s, int rn, int imm, 348 bool is_write, MemOp mop) 349 { 350 TCGv_i32 tmp; 351 TCGv_i64 addr; 352 TCGLabel *over_label; 353 MMUAccessType type; 354 int mmu_idx; 355 356 tmp = tcg_temp_new_i32(); 357 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 358 tcg_gen_addi_i32(tmp, tmp, imm & 15); 359 tcg_gen_andi_i32(tmp, tmp, 15); 360 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 361 362 over_label = gen_new_label(); 363 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 364 365 addr = tcg_temp_new_i64(); 366 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 367 368 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 369 mmu_idx = get_mem_index(s); 370 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 371 tcg_constant_i32(mmu_idx)); 372 373 gen_set_label(over_label); 374 375 } 376 377 /* Handle the alignment check for AccType_ATOMIC instructions. */ 378 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 379 { 380 MemOp size = mop & MO_SIZE; 381 382 if (size == MO_8) { 383 return mop; 384 } 385 386 /* 387 * If size == MO_128, this is a LDXP, and the operation is single-copy 388 * atomic for each doubleword, not the entire quadword; it still must 389 * be quadword aligned. 390 */ 391 if (size == MO_128) { 392 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 393 MO_ATOM_IFALIGN_PAIR); 394 } 395 if (dc_isar_feature(aa64_lse2, s)) { 396 check_lse2_align(s, rn, 0, true, mop); 397 } else { 398 mop |= MO_ALIGN; 399 } 400 return finalize_memop(s, mop); 401 } 402 403 /* Handle the alignment check for AccType_ORDERED instructions. */ 404 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 405 bool is_write, MemOp mop) 406 { 407 MemOp size = mop & MO_SIZE; 408 409 if (size == MO_8) { 410 return mop; 411 } 412 if (size == MO_128) { 413 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 414 MO_ATOM_IFALIGN_PAIR); 415 } 416 if (!dc_isar_feature(aa64_lse2, s)) { 417 mop |= MO_ALIGN; 418 } else if (!s->naa) { 419 check_lse2_align(s, rn, imm, is_write, mop); 420 } 421 return finalize_memop(s, mop); 422 } 423 424 typedef struct DisasCompare64 { 425 TCGCond cond; 426 TCGv_i64 value; 427 } DisasCompare64; 428 429 static void a64_test_cc(DisasCompare64 *c64, int cc) 430 { 431 DisasCompare c32; 432 433 arm_test_cc(&c32, cc); 434 435 /* 436 * Sign-extend the 32-bit value so that the GE/LT comparisons work 437 * properly. The NE/EQ comparisons are also fine with this choice. 438 */ 439 c64->cond = c32.cond; 440 c64->value = tcg_temp_new_i64(); 441 tcg_gen_ext_i32_i64(c64->value, c32.value); 442 } 443 444 static void gen_rebuild_hflags(DisasContext *s) 445 { 446 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 447 } 448 449 static void gen_exception_internal(int excp) 450 { 451 assert(excp_is_internal(excp)); 452 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 453 } 454 455 static void gen_exception_internal_insn(DisasContext *s, int excp) 456 { 457 gen_a64_update_pc(s, 0); 458 gen_exception_internal(excp); 459 s->base.is_jmp = DISAS_NORETURN; 460 } 461 462 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 463 { 464 gen_a64_update_pc(s, 0); 465 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 466 s->base.is_jmp = DISAS_NORETURN; 467 } 468 469 static void gen_step_complete_exception(DisasContext *s) 470 { 471 /* We just completed step of an insn. Move from Active-not-pending 472 * to Active-pending, and then also take the swstep exception. 473 * This corresponds to making the (IMPDEF) choice to prioritize 474 * swstep exceptions over asynchronous exceptions taken to an exception 475 * level where debug is disabled. This choice has the advantage that 476 * we do not need to maintain internal state corresponding to the 477 * ISV/EX syndrome bits between completion of the step and generation 478 * of the exception, and our syndrome information is always correct. 479 */ 480 gen_ss_advance(s); 481 gen_swstep_exception(s, 1, s->is_ldex); 482 s->base.is_jmp = DISAS_NORETURN; 483 } 484 485 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 486 { 487 if (s->ss_active) { 488 return false; 489 } 490 return translator_use_goto_tb(&s->base, dest); 491 } 492 493 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 494 { 495 if (use_goto_tb(s, s->pc_curr + diff)) { 496 /* 497 * For pcrel, the pc must always be up-to-date on entry to 498 * the linked TB, so that it can use simple additions for all 499 * further adjustments. For !pcrel, the linked TB is compiled 500 * to know its full virtual address, so we can delay the 501 * update to pc to the unlinked path. A long chain of links 502 * can thus avoid many updates to the PC. 503 */ 504 if (tb_cflags(s->base.tb) & CF_PCREL) { 505 gen_a64_update_pc(s, diff); 506 tcg_gen_goto_tb(n); 507 } else { 508 tcg_gen_goto_tb(n); 509 gen_a64_update_pc(s, diff); 510 } 511 tcg_gen_exit_tb(s->base.tb, n); 512 s->base.is_jmp = DISAS_NORETURN; 513 } else { 514 gen_a64_update_pc(s, diff); 515 if (s->ss_active) { 516 gen_step_complete_exception(s); 517 } else { 518 tcg_gen_lookup_and_goto_ptr(); 519 s->base.is_jmp = DISAS_NORETURN; 520 } 521 } 522 } 523 524 /* 525 * Register access functions 526 * 527 * These functions are used for directly accessing a register in where 528 * changes to the final register value are likely to be made. If you 529 * need to use a register for temporary calculation (e.g. index type 530 * operations) use the read_* form. 531 * 532 * B1.2.1 Register mappings 533 * 534 * In instruction register encoding 31 can refer to ZR (zero register) or 535 * the SP (stack pointer) depending on context. In QEMU's case we map SP 536 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 537 * This is the point of the _sp forms. 538 */ 539 TCGv_i64 cpu_reg(DisasContext *s, int reg) 540 { 541 if (reg == 31) { 542 TCGv_i64 t = tcg_temp_new_i64(); 543 tcg_gen_movi_i64(t, 0); 544 return t; 545 } else { 546 return cpu_X[reg]; 547 } 548 } 549 550 /* register access for when 31 == SP */ 551 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 552 { 553 return cpu_X[reg]; 554 } 555 556 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 557 * representing the register contents. This TCGv is an auto-freed 558 * temporary so it need not be explicitly freed, and may be modified. 559 */ 560 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 561 { 562 TCGv_i64 v = tcg_temp_new_i64(); 563 if (reg != 31) { 564 if (sf) { 565 tcg_gen_mov_i64(v, cpu_X[reg]); 566 } else { 567 tcg_gen_ext32u_i64(v, cpu_X[reg]); 568 } 569 } else { 570 tcg_gen_movi_i64(v, 0); 571 } 572 return v; 573 } 574 575 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 576 { 577 TCGv_i64 v = tcg_temp_new_i64(); 578 if (sf) { 579 tcg_gen_mov_i64(v, cpu_X[reg]); 580 } else { 581 tcg_gen_ext32u_i64(v, cpu_X[reg]); 582 } 583 return v; 584 } 585 586 /* Return the offset into CPUARMState of a slice (from 587 * the least significant end) of FP register Qn (ie 588 * Dn, Sn, Hn or Bn). 589 * (Note that this is not the same mapping as for A32; see cpu.h) 590 */ 591 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 592 { 593 return vec_reg_offset(s, regno, 0, size); 594 } 595 596 /* Offset of the high half of the 128 bit vector Qn */ 597 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 598 { 599 return vec_reg_offset(s, regno, 1, MO_64); 600 } 601 602 /* Convenience accessors for reading and writing single and double 603 * FP registers. Writing clears the upper parts of the associated 604 * 128 bit vector register, as required by the architecture. 605 * Note that unlike the GP register accessors, the values returned 606 * by the read functions must be manually freed. 607 */ 608 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 609 { 610 TCGv_i64 v = tcg_temp_new_i64(); 611 612 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 613 return v; 614 } 615 616 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 617 { 618 TCGv_i32 v = tcg_temp_new_i32(); 619 620 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 621 return v; 622 } 623 624 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 625 { 626 TCGv_i32 v = tcg_temp_new_i32(); 627 628 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 629 return v; 630 } 631 632 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 633 * If SVE is not enabled, then there are only 128 bits in the vector. 634 */ 635 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 636 { 637 unsigned ofs = fp_reg_offset(s, rd, MO_64); 638 unsigned vsz = vec_full_reg_size(s); 639 640 /* Nop move, with side effect of clearing the tail. */ 641 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 642 } 643 644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 645 { 646 unsigned ofs = fp_reg_offset(s, reg, MO_64); 647 648 tcg_gen_st_i64(v, tcg_env, ofs); 649 clear_vec_high(s, false, reg); 650 } 651 652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 653 { 654 TCGv_i64 tmp = tcg_temp_new_i64(); 655 656 tcg_gen_extu_i32_i64(tmp, v); 657 write_fp_dreg(s, reg, tmp); 658 } 659 660 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 661 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 662 GVecGen2Fn *gvec_fn, int vece) 663 { 664 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 665 is_q ? 16 : 8, vec_full_reg_size(s)); 666 } 667 668 /* Expand a 2-operand + immediate AdvSIMD vector operation using 669 * an expander function. 670 */ 671 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 672 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 673 { 674 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 675 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 676 } 677 678 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 679 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 680 GVecGen3Fn *gvec_fn, int vece) 681 { 682 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 683 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 687 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 688 int rx, GVecGen4Fn *gvec_fn, int vece) 689 { 690 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 691 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 692 is_q ? 16 : 8, vec_full_reg_size(s)); 693 } 694 695 /* Expand a 2-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int data, gen_helper_gvec_2 *fn) 698 { 699 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 702 } 703 704 /* Expand a 3-operand operation using an out-of-line helper. */ 705 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 706 int rn, int rm, int data, gen_helper_gvec_3 *fn) 707 { 708 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 709 vec_full_reg_offset(s, rn), 710 vec_full_reg_offset(s, rm), 711 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 712 } 713 714 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 715 * an out-of-line helper. 716 */ 717 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 718 int rm, bool is_fp16, int data, 719 gen_helper_gvec_3_ptr *fn) 720 { 721 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 723 vec_full_reg_offset(s, rn), 724 vec_full_reg_offset(s, rm), fpst, 725 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 726 } 727 728 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 729 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 730 int rm, gen_helper_gvec_3_ptr *fn) 731 { 732 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 733 734 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 735 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 736 vec_full_reg_offset(s, rn), 737 vec_full_reg_offset(s, rm), qc_ptr, 738 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 739 } 740 741 /* Expand a 4-operand operation using an out-of-line helper. */ 742 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, int data, gen_helper_gvec_4 *fn) 744 { 745 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 746 vec_full_reg_offset(s, rn), 747 vec_full_reg_offset(s, rm), 748 vec_full_reg_offset(s, ra), 749 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 750 } 751 752 /* 753 * Expand a 4-operand + fpstatus pointer + simd data value operation using 754 * an out-of-line helper. 755 */ 756 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 757 int rm, int ra, bool is_fp16, int data, 758 gen_helper_gvec_4_ptr *fn) 759 { 760 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 761 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 762 vec_full_reg_offset(s, rn), 763 vec_full_reg_offset(s, rm), 764 vec_full_reg_offset(s, ra), fpst, 765 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 766 } 767 768 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 769 * than the 32 bit equivalent. 770 */ 771 static inline void gen_set_NZ64(TCGv_i64 result) 772 { 773 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 774 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 775 } 776 777 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 778 static inline void gen_logic_CC(int sf, TCGv_i64 result) 779 { 780 if (sf) { 781 gen_set_NZ64(result); 782 } else { 783 tcg_gen_extrl_i64_i32(cpu_ZF, result); 784 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 785 } 786 tcg_gen_movi_i32(cpu_CF, 0); 787 tcg_gen_movi_i32(cpu_VF, 0); 788 } 789 790 /* dest = T0 + T1; compute C, N, V and Z flags */ 791 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 792 { 793 TCGv_i64 result, flag, tmp; 794 result = tcg_temp_new_i64(); 795 flag = tcg_temp_new_i64(); 796 tmp = tcg_temp_new_i64(); 797 798 tcg_gen_movi_i64(tmp, 0); 799 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 800 801 tcg_gen_extrl_i64_i32(cpu_CF, flag); 802 803 gen_set_NZ64(result); 804 805 tcg_gen_xor_i64(flag, result, t0); 806 tcg_gen_xor_i64(tmp, t0, t1); 807 tcg_gen_andc_i64(flag, flag, tmp); 808 tcg_gen_extrh_i64_i32(cpu_VF, flag); 809 810 tcg_gen_mov_i64(dest, result); 811 } 812 813 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 814 { 815 TCGv_i32 t0_32 = tcg_temp_new_i32(); 816 TCGv_i32 t1_32 = tcg_temp_new_i32(); 817 TCGv_i32 tmp = tcg_temp_new_i32(); 818 819 tcg_gen_movi_i32(tmp, 0); 820 tcg_gen_extrl_i64_i32(t0_32, t0); 821 tcg_gen_extrl_i64_i32(t1_32, t1); 822 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 823 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 824 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 825 tcg_gen_xor_i32(tmp, t0_32, t1_32); 826 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 827 tcg_gen_extu_i32_i64(dest, cpu_NF); 828 } 829 830 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 831 { 832 if (sf) { 833 gen_add64_CC(dest, t0, t1); 834 } else { 835 gen_add32_CC(dest, t0, t1); 836 } 837 } 838 839 /* dest = T0 - T1; compute C, N, V and Z flags */ 840 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 841 { 842 /* 64 bit arithmetic */ 843 TCGv_i64 result, flag, tmp; 844 845 result = tcg_temp_new_i64(); 846 flag = tcg_temp_new_i64(); 847 tcg_gen_sub_i64(result, t0, t1); 848 849 gen_set_NZ64(result); 850 851 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 852 tcg_gen_extrl_i64_i32(cpu_CF, flag); 853 854 tcg_gen_xor_i64(flag, result, t0); 855 tmp = tcg_temp_new_i64(); 856 tcg_gen_xor_i64(tmp, t0, t1); 857 tcg_gen_and_i64(flag, flag, tmp); 858 tcg_gen_extrh_i64_i32(cpu_VF, flag); 859 tcg_gen_mov_i64(dest, result); 860 } 861 862 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 863 { 864 /* 32 bit arithmetic */ 865 TCGv_i32 t0_32 = tcg_temp_new_i32(); 866 TCGv_i32 t1_32 = tcg_temp_new_i32(); 867 TCGv_i32 tmp; 868 869 tcg_gen_extrl_i64_i32(t0_32, t0); 870 tcg_gen_extrl_i64_i32(t1_32, t1); 871 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 872 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 873 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 874 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 875 tmp = tcg_temp_new_i32(); 876 tcg_gen_xor_i32(tmp, t0_32, t1_32); 877 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 878 tcg_gen_extu_i32_i64(dest, cpu_NF); 879 } 880 881 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 882 { 883 if (sf) { 884 gen_sub64_CC(dest, t0, t1); 885 } else { 886 gen_sub32_CC(dest, t0, t1); 887 } 888 } 889 890 /* dest = T0 + T1 + CF; do not compute flags. */ 891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 892 { 893 TCGv_i64 flag = tcg_temp_new_i64(); 894 tcg_gen_extu_i32_i64(flag, cpu_CF); 895 tcg_gen_add_i64(dest, t0, t1); 896 tcg_gen_add_i64(dest, dest, flag); 897 898 if (!sf) { 899 tcg_gen_ext32u_i64(dest, dest); 900 } 901 } 902 903 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 904 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 905 { 906 if (sf) { 907 TCGv_i64 result = tcg_temp_new_i64(); 908 TCGv_i64 cf_64 = tcg_temp_new_i64(); 909 TCGv_i64 vf_64 = tcg_temp_new_i64(); 910 TCGv_i64 tmp = tcg_temp_new_i64(); 911 TCGv_i64 zero = tcg_constant_i64(0); 912 913 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 914 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 915 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 916 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 917 gen_set_NZ64(result); 918 919 tcg_gen_xor_i64(vf_64, result, t0); 920 tcg_gen_xor_i64(tmp, t0, t1); 921 tcg_gen_andc_i64(vf_64, vf_64, tmp); 922 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 923 924 tcg_gen_mov_i64(dest, result); 925 } else { 926 TCGv_i32 t0_32 = tcg_temp_new_i32(); 927 TCGv_i32 t1_32 = tcg_temp_new_i32(); 928 TCGv_i32 tmp = tcg_temp_new_i32(); 929 TCGv_i32 zero = tcg_constant_i32(0); 930 931 tcg_gen_extrl_i64_i32(t0_32, t0); 932 tcg_gen_extrl_i64_i32(t1_32, t1); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 934 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 935 936 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 937 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 938 tcg_gen_xor_i32(tmp, t0_32, t1_32); 939 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 940 tcg_gen_extu_i32_i64(dest, cpu_NF); 941 } 942 } 943 944 /* 945 * Load/Store generators 946 */ 947 948 /* 949 * Store from GPR register to memory. 950 */ 951 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 952 TCGv_i64 tcg_addr, MemOp memop, int memidx, 953 bool iss_valid, 954 unsigned int iss_srt, 955 bool iss_sf, bool iss_ar) 956 { 957 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 958 959 if (iss_valid) { 960 uint32_t syn; 961 962 syn = syn_data_abort_with_iss(0, 963 (memop & MO_SIZE), 964 false, 965 iss_srt, 966 iss_sf, 967 iss_ar, 968 0, 0, 0, 0, 0, false); 969 disas_set_insn_syndrome(s, syn); 970 } 971 } 972 973 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 974 TCGv_i64 tcg_addr, MemOp memop, 975 bool iss_valid, 976 unsigned int iss_srt, 977 bool iss_sf, bool iss_ar) 978 { 979 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 980 iss_valid, iss_srt, iss_sf, iss_ar); 981 } 982 983 /* 984 * Load from memory to GPR register 985 */ 986 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 987 MemOp memop, bool extend, int memidx, 988 bool iss_valid, unsigned int iss_srt, 989 bool iss_sf, bool iss_ar) 990 { 991 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 992 993 if (extend && (memop & MO_SIGN)) { 994 g_assert((memop & MO_SIZE) <= MO_32); 995 tcg_gen_ext32u_i64(dest, dest); 996 } 997 998 if (iss_valid) { 999 uint32_t syn; 1000 1001 syn = syn_data_abort_with_iss(0, 1002 (memop & MO_SIZE), 1003 (memop & MO_SIGN) != 0, 1004 iss_srt, 1005 iss_sf, 1006 iss_ar, 1007 0, 0, 0, 0, 0, false); 1008 disas_set_insn_syndrome(s, syn); 1009 } 1010 } 1011 1012 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1013 MemOp memop, bool extend, 1014 bool iss_valid, unsigned int iss_srt, 1015 bool iss_sf, bool iss_ar) 1016 { 1017 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1018 iss_valid, iss_srt, iss_sf, iss_ar); 1019 } 1020 1021 /* 1022 * Store from FP register to memory 1023 */ 1024 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1025 { 1026 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1027 TCGv_i64 tmplo = tcg_temp_new_i64(); 1028 1029 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1030 1031 if ((mop & MO_SIZE) < MO_128) { 1032 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1033 } else { 1034 TCGv_i64 tmphi = tcg_temp_new_i64(); 1035 TCGv_i128 t16 = tcg_temp_new_i128(); 1036 1037 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1038 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1039 1040 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1041 } 1042 } 1043 1044 /* 1045 * Load from memory to FP register 1046 */ 1047 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1048 { 1049 /* This always zero-extends and writes to a full 128 bit wide vector */ 1050 TCGv_i64 tmplo = tcg_temp_new_i64(); 1051 TCGv_i64 tmphi = NULL; 1052 1053 if ((mop & MO_SIZE) < MO_128) { 1054 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1055 } else { 1056 TCGv_i128 t16 = tcg_temp_new_i128(); 1057 1058 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1059 1060 tmphi = tcg_temp_new_i64(); 1061 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1062 } 1063 1064 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1065 1066 if (tmphi) { 1067 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1068 } 1069 clear_vec_high(s, tmphi != NULL, destidx); 1070 } 1071 1072 /* 1073 * Vector load/store helpers. 1074 * 1075 * The principal difference between this and a FP load is that we don't 1076 * zero extend as we are filling a partial chunk of the vector register. 1077 * These functions don't support 128 bit loads/stores, which would be 1078 * normal load/store operations. 1079 * 1080 * The _i32 versions are useful when operating on 32 bit quantities 1081 * (eg for floating point single or using Neon helper functions). 1082 */ 1083 1084 /* Get value of an element within a vector register */ 1085 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1086 int element, MemOp memop) 1087 { 1088 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1089 switch ((unsigned)memop) { 1090 case MO_8: 1091 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1092 break; 1093 case MO_16: 1094 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1095 break; 1096 case MO_32: 1097 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1098 break; 1099 case MO_8|MO_SIGN: 1100 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1101 break; 1102 case MO_16|MO_SIGN: 1103 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1104 break; 1105 case MO_32|MO_SIGN: 1106 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1107 break; 1108 case MO_64: 1109 case MO_64|MO_SIGN: 1110 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1111 break; 1112 default: 1113 g_assert_not_reached(); 1114 } 1115 } 1116 1117 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1118 int element, MemOp memop) 1119 { 1120 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1121 switch (memop) { 1122 case MO_8: 1123 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1124 break; 1125 case MO_16: 1126 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1127 break; 1128 case MO_8|MO_SIGN: 1129 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1130 break; 1131 case MO_16|MO_SIGN: 1132 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1133 break; 1134 case MO_32: 1135 case MO_32|MO_SIGN: 1136 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1137 break; 1138 default: 1139 g_assert_not_reached(); 1140 } 1141 } 1142 1143 /* Set value of an element within a vector register */ 1144 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1145 int element, MemOp memop) 1146 { 1147 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1148 switch (memop) { 1149 case MO_8: 1150 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1151 break; 1152 case MO_16: 1153 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1154 break; 1155 case MO_32: 1156 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1157 break; 1158 case MO_64: 1159 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1160 break; 1161 default: 1162 g_assert_not_reached(); 1163 } 1164 } 1165 1166 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1167 int destidx, int element, MemOp memop) 1168 { 1169 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1170 switch (memop) { 1171 case MO_8: 1172 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1173 break; 1174 case MO_16: 1175 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1176 break; 1177 case MO_32: 1178 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1179 break; 1180 default: 1181 g_assert_not_reached(); 1182 } 1183 } 1184 1185 /* Store from vector register to memory */ 1186 static void do_vec_st(DisasContext *s, int srcidx, int element, 1187 TCGv_i64 tcg_addr, MemOp mop) 1188 { 1189 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1190 1191 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1192 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 } 1194 1195 /* Load from memory to vector register */ 1196 static void do_vec_ld(DisasContext *s, int destidx, int element, 1197 TCGv_i64 tcg_addr, MemOp mop) 1198 { 1199 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1200 1201 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1202 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1203 } 1204 1205 /* Check that FP/Neon access is enabled. If it is, return 1206 * true. If not, emit code to generate an appropriate exception, 1207 * and return false; the caller should not emit any code for 1208 * the instruction. Note that this check must happen after all 1209 * unallocated-encoding checks (otherwise the syndrome information 1210 * for the resulting exception will be incorrect). 1211 */ 1212 static bool fp_access_check_only(DisasContext *s) 1213 { 1214 if (s->fp_excp_el) { 1215 assert(!s->fp_access_checked); 1216 s->fp_access_checked = true; 1217 1218 gen_exception_insn_el(s, 0, EXCP_UDEF, 1219 syn_fp_access_trap(1, 0xe, false, 0), 1220 s->fp_excp_el); 1221 return false; 1222 } 1223 s->fp_access_checked = true; 1224 return true; 1225 } 1226 1227 static bool fp_access_check(DisasContext *s) 1228 { 1229 if (!fp_access_check_only(s)) { 1230 return false; 1231 } 1232 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1233 gen_exception_insn(s, 0, EXCP_UDEF, 1234 syn_smetrap(SME_ET_Streaming, false)); 1235 return false; 1236 } 1237 return true; 1238 } 1239 1240 /* 1241 * Check that SVE access is enabled. If it is, return true. 1242 * If not, emit code to generate an appropriate exception and return false. 1243 * This function corresponds to CheckSVEEnabled(). 1244 */ 1245 bool sve_access_check(DisasContext *s) 1246 { 1247 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1248 assert(dc_isar_feature(aa64_sme, s)); 1249 if (!sme_sm_enabled_check(s)) { 1250 goto fail_exit; 1251 } 1252 } else if (s->sve_excp_el) { 1253 gen_exception_insn_el(s, 0, EXCP_UDEF, 1254 syn_sve_access_trap(), s->sve_excp_el); 1255 goto fail_exit; 1256 } 1257 s->sve_access_checked = true; 1258 return fp_access_check(s); 1259 1260 fail_exit: 1261 /* Assert that we only raise one exception per instruction. */ 1262 assert(!s->sve_access_checked); 1263 s->sve_access_checked = true; 1264 return false; 1265 } 1266 1267 /* 1268 * Check that SME access is enabled, raise an exception if not. 1269 * Note that this function corresponds to CheckSMEAccess and is 1270 * only used directly for cpregs. 1271 */ 1272 static bool sme_access_check(DisasContext *s) 1273 { 1274 if (s->sme_excp_el) { 1275 gen_exception_insn_el(s, 0, EXCP_UDEF, 1276 syn_smetrap(SME_ET_AccessTrap, false), 1277 s->sme_excp_el); 1278 return false; 1279 } 1280 return true; 1281 } 1282 1283 /* This function corresponds to CheckSMEEnabled. */ 1284 bool sme_enabled_check(DisasContext *s) 1285 { 1286 /* 1287 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1288 * to be zero when fp_excp_el has priority. This is because we need 1289 * sme_excp_el by itself for cpregs access checks. 1290 */ 1291 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1292 s->fp_access_checked = true; 1293 return sme_access_check(s); 1294 } 1295 return fp_access_check_only(s); 1296 } 1297 1298 /* Common subroutine for CheckSMEAnd*Enabled. */ 1299 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1300 { 1301 if (!sme_enabled_check(s)) { 1302 return false; 1303 } 1304 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1305 gen_exception_insn(s, 0, EXCP_UDEF, 1306 syn_smetrap(SME_ET_NotStreaming, false)); 1307 return false; 1308 } 1309 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1310 gen_exception_insn(s, 0, EXCP_UDEF, 1311 syn_smetrap(SME_ET_InactiveZA, false)); 1312 return false; 1313 } 1314 return true; 1315 } 1316 1317 /* 1318 * This utility function is for doing register extension with an 1319 * optional shift. You will likely want to pass a temporary for the 1320 * destination register. See DecodeRegExtend() in the ARM ARM. 1321 */ 1322 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1323 int option, unsigned int shift) 1324 { 1325 int extsize = extract32(option, 0, 2); 1326 bool is_signed = extract32(option, 2, 1); 1327 1328 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1329 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1330 } 1331 1332 static inline void gen_check_sp_alignment(DisasContext *s) 1333 { 1334 /* The AArch64 architecture mandates that (if enabled via PSTATE 1335 * or SCTLR bits) there is a check that SP is 16-aligned on every 1336 * SP-relative load or store (with an exception generated if it is not). 1337 * In line with general QEMU practice regarding misaligned accesses, 1338 * we omit these checks for the sake of guest program performance. 1339 * This function is provided as a hook so we can more easily add these 1340 * checks in future (possibly as a "favour catching guest program bugs 1341 * over speed" user selectable option). 1342 */ 1343 } 1344 1345 /* 1346 * This provides a simple table based table lookup decoder. It is 1347 * intended to be used when the relevant bits for decode are too 1348 * awkwardly placed and switch/if based logic would be confusing and 1349 * deeply nested. Since it's a linear search through the table, tables 1350 * should be kept small. 1351 * 1352 * It returns the first handler where insn & mask == pattern, or 1353 * NULL if there is no match. 1354 * The table is terminated by an empty mask (i.e. 0) 1355 */ 1356 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1357 uint32_t insn) 1358 { 1359 const AArch64DecodeTable *tptr = table; 1360 1361 while (tptr->mask) { 1362 if ((insn & tptr->mask) == tptr->pattern) { 1363 return tptr->disas_fn; 1364 } 1365 tptr++; 1366 } 1367 return NULL; 1368 } 1369 1370 /* 1371 * The instruction disassembly implemented here matches 1372 * the instruction encoding classifications in chapter C4 1373 * of the ARM Architecture Reference Manual (DDI0487B_a); 1374 * classification names and decode diagrams here should generally 1375 * match up with those in the manual. 1376 */ 1377 1378 static bool trans_B(DisasContext *s, arg_i *a) 1379 { 1380 reset_btype(s); 1381 gen_goto_tb(s, 0, a->imm); 1382 return true; 1383 } 1384 1385 static bool trans_BL(DisasContext *s, arg_i *a) 1386 { 1387 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1388 reset_btype(s); 1389 gen_goto_tb(s, 0, a->imm); 1390 return true; 1391 } 1392 1393 1394 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1395 { 1396 DisasLabel match; 1397 TCGv_i64 tcg_cmp; 1398 1399 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1400 reset_btype(s); 1401 1402 match = gen_disas_label(s); 1403 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1404 tcg_cmp, 0, match.label); 1405 gen_goto_tb(s, 0, 4); 1406 set_disas_label(s, match); 1407 gen_goto_tb(s, 1, a->imm); 1408 return true; 1409 } 1410 1411 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1412 { 1413 DisasLabel match; 1414 TCGv_i64 tcg_cmp; 1415 1416 tcg_cmp = tcg_temp_new_i64(); 1417 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1418 1419 reset_btype(s); 1420 1421 match = gen_disas_label(s); 1422 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1423 tcg_cmp, 0, match.label); 1424 gen_goto_tb(s, 0, 4); 1425 set_disas_label(s, match); 1426 gen_goto_tb(s, 1, a->imm); 1427 return true; 1428 } 1429 1430 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1431 { 1432 /* BC.cond is only present with FEAT_HBC */ 1433 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1434 return false; 1435 } 1436 reset_btype(s); 1437 if (a->cond < 0x0e) { 1438 /* genuinely conditional branches */ 1439 DisasLabel match = gen_disas_label(s); 1440 arm_gen_test_cc(a->cond, match.label); 1441 gen_goto_tb(s, 0, 4); 1442 set_disas_label(s, match); 1443 gen_goto_tb(s, 1, a->imm); 1444 } else { 1445 /* 0xe and 0xf are both "always" conditions */ 1446 gen_goto_tb(s, 0, a->imm); 1447 } 1448 return true; 1449 } 1450 1451 static void set_btype_for_br(DisasContext *s, int rn) 1452 { 1453 if (dc_isar_feature(aa64_bti, s)) { 1454 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1455 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1456 } 1457 } 1458 1459 static void set_btype_for_blr(DisasContext *s) 1460 { 1461 if (dc_isar_feature(aa64_bti, s)) { 1462 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1463 set_btype(s, 2); 1464 } 1465 } 1466 1467 static bool trans_BR(DisasContext *s, arg_r *a) 1468 { 1469 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1470 set_btype_for_br(s, a->rn); 1471 s->base.is_jmp = DISAS_JUMP; 1472 return true; 1473 } 1474 1475 static bool trans_BLR(DisasContext *s, arg_r *a) 1476 { 1477 TCGv_i64 dst = cpu_reg(s, a->rn); 1478 TCGv_i64 lr = cpu_reg(s, 30); 1479 if (dst == lr) { 1480 TCGv_i64 tmp = tcg_temp_new_i64(); 1481 tcg_gen_mov_i64(tmp, dst); 1482 dst = tmp; 1483 } 1484 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1485 gen_a64_set_pc(s, dst); 1486 set_btype_for_blr(s); 1487 s->base.is_jmp = DISAS_JUMP; 1488 return true; 1489 } 1490 1491 static bool trans_RET(DisasContext *s, arg_r *a) 1492 { 1493 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1499 TCGv_i64 modifier, bool use_key_a) 1500 { 1501 TCGv_i64 truedst; 1502 /* 1503 * Return the branch target for a BRAA/RETA/etc, which is either 1504 * just the destination dst, or that value with the pauth check 1505 * done and the code removed from the high bits. 1506 */ 1507 if (!s->pauth_active) { 1508 return dst; 1509 } 1510 1511 truedst = tcg_temp_new_i64(); 1512 if (use_key_a) { 1513 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1514 } else { 1515 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1516 } 1517 return truedst; 1518 } 1519 1520 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1521 { 1522 TCGv_i64 dst; 1523 1524 if (!dc_isar_feature(aa64_pauth, s)) { 1525 return false; 1526 } 1527 1528 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1529 gen_a64_set_pc(s, dst); 1530 set_btype_for_br(s, a->rn); 1531 s->base.is_jmp = DISAS_JUMP; 1532 return true; 1533 } 1534 1535 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1536 { 1537 TCGv_i64 dst, lr; 1538 1539 if (!dc_isar_feature(aa64_pauth, s)) { 1540 return false; 1541 } 1542 1543 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1544 lr = cpu_reg(s, 30); 1545 if (dst == lr) { 1546 TCGv_i64 tmp = tcg_temp_new_i64(); 1547 tcg_gen_mov_i64(tmp, dst); 1548 dst = tmp; 1549 } 1550 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1551 gen_a64_set_pc(s, dst); 1552 set_btype_for_blr(s); 1553 s->base.is_jmp = DISAS_JUMP; 1554 return true; 1555 } 1556 1557 static bool trans_RETA(DisasContext *s, arg_reta *a) 1558 { 1559 TCGv_i64 dst; 1560 1561 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1562 gen_a64_set_pc(s, dst); 1563 s->base.is_jmp = DISAS_JUMP; 1564 return true; 1565 } 1566 1567 static bool trans_BRA(DisasContext *s, arg_bra *a) 1568 { 1569 TCGv_i64 dst; 1570 1571 if (!dc_isar_feature(aa64_pauth, s)) { 1572 return false; 1573 } 1574 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1575 gen_a64_set_pc(s, dst); 1576 set_btype_for_br(s, a->rn); 1577 s->base.is_jmp = DISAS_JUMP; 1578 return true; 1579 } 1580 1581 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1582 { 1583 TCGv_i64 dst, lr; 1584 1585 if (!dc_isar_feature(aa64_pauth, s)) { 1586 return false; 1587 } 1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1589 lr = cpu_reg(s, 30); 1590 if (dst == lr) { 1591 TCGv_i64 tmp = tcg_temp_new_i64(); 1592 tcg_gen_mov_i64(tmp, dst); 1593 dst = tmp; 1594 } 1595 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1596 gen_a64_set_pc(s, dst); 1597 set_btype_for_blr(s); 1598 s->base.is_jmp = DISAS_JUMP; 1599 return true; 1600 } 1601 1602 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1603 { 1604 TCGv_i64 dst; 1605 1606 if (s->current_el == 0) { 1607 return false; 1608 } 1609 if (s->fgt_eret) { 1610 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1611 return true; 1612 } 1613 dst = tcg_temp_new_i64(); 1614 tcg_gen_ld_i64(dst, tcg_env, 1615 offsetof(CPUARMState, elr_el[s->current_el])); 1616 1617 translator_io_start(&s->base); 1618 1619 gen_helper_exception_return(tcg_env, dst); 1620 /* Must exit loop to check un-masked IRQs */ 1621 s->base.is_jmp = DISAS_EXIT; 1622 return true; 1623 } 1624 1625 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1626 { 1627 TCGv_i64 dst; 1628 1629 if (!dc_isar_feature(aa64_pauth, s)) { 1630 return false; 1631 } 1632 if (s->current_el == 0) { 1633 return false; 1634 } 1635 /* The FGT trap takes precedence over an auth trap. */ 1636 if (s->fgt_eret) { 1637 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1638 return true; 1639 } 1640 dst = tcg_temp_new_i64(); 1641 tcg_gen_ld_i64(dst, tcg_env, 1642 offsetof(CPUARMState, elr_el[s->current_el])); 1643 1644 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1645 1646 translator_io_start(&s->base); 1647 1648 gen_helper_exception_return(tcg_env, dst); 1649 /* Must exit loop to check un-masked IRQs */ 1650 s->base.is_jmp = DISAS_EXIT; 1651 return true; 1652 } 1653 1654 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1655 { 1656 return true; 1657 } 1658 1659 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1660 { 1661 /* 1662 * When running in MTTCG we don't generate jumps to the yield and 1663 * WFE helpers as it won't affect the scheduling of other vCPUs. 1664 * If we wanted to more completely model WFE/SEV so we don't busy 1665 * spin unnecessarily we would need to do something more involved. 1666 */ 1667 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1668 s->base.is_jmp = DISAS_YIELD; 1669 } 1670 return true; 1671 } 1672 1673 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1674 { 1675 s->base.is_jmp = DISAS_WFI; 1676 return true; 1677 } 1678 1679 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_WFE; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1694 { 1695 if (s->pauth_active) { 1696 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1697 } 1698 return true; 1699 } 1700 1701 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1702 { 1703 if (s->pauth_active) { 1704 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1705 } 1706 return true; 1707 } 1708 1709 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1710 { 1711 if (s->pauth_active) { 1712 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1713 } 1714 return true; 1715 } 1716 1717 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1718 { 1719 if (s->pauth_active) { 1720 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1721 } 1722 return true; 1723 } 1724 1725 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1726 { 1727 if (s->pauth_active) { 1728 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1734 { 1735 /* Without RAS, we must implement this as NOP. */ 1736 if (dc_isar_feature(aa64_ras, s)) { 1737 /* 1738 * QEMU does not have a source of physical SErrors, 1739 * so we are only concerned with virtual SErrors. 1740 * The pseudocode in the ARM for this case is 1741 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1742 * AArch64.vESBOperation(); 1743 * Most of the condition can be evaluated at translation time. 1744 * Test for EL2 present, and defer test for SEL2 to runtime. 1745 */ 1746 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1747 gen_helper_vesb(tcg_env); 1748 } 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1754 { 1755 if (s->pauth_active) { 1756 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1757 } 1758 return true; 1759 } 1760 1761 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1762 { 1763 if (s->pauth_active) { 1764 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1765 } 1766 return true; 1767 } 1768 1769 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1770 { 1771 if (s->pauth_active) { 1772 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1773 } 1774 return true; 1775 } 1776 1777 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1778 { 1779 if (s->pauth_active) { 1780 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1794 { 1795 if (s->pauth_active) { 1796 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1797 } 1798 return true; 1799 } 1800 1801 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1802 { 1803 if (s->pauth_active) { 1804 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1805 } 1806 return true; 1807 } 1808 1809 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1810 { 1811 if (s->pauth_active) { 1812 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1813 } 1814 return true; 1815 } 1816 1817 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1818 { 1819 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1820 return true; 1821 } 1822 1823 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1824 { 1825 /* We handle DSB and DMB the same way */ 1826 TCGBar bar; 1827 1828 switch (a->types) { 1829 case 1: /* MBReqTypes_Reads */ 1830 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1831 break; 1832 case 2: /* MBReqTypes_Writes */ 1833 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1834 break; 1835 default: /* MBReqTypes_All */ 1836 bar = TCG_BAR_SC | TCG_MO_ALL; 1837 break; 1838 } 1839 tcg_gen_mb(bar); 1840 return true; 1841 } 1842 1843 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1844 { 1845 /* 1846 * We need to break the TB after this insn to execute 1847 * self-modifying code correctly and also to take 1848 * any pending interrupts immediately. 1849 */ 1850 reset_btype(s); 1851 gen_goto_tb(s, 0, 4); 1852 return true; 1853 } 1854 1855 static bool trans_SB(DisasContext *s, arg_SB *a) 1856 { 1857 if (!dc_isar_feature(aa64_sb, s)) { 1858 return false; 1859 } 1860 /* 1861 * TODO: There is no speculation barrier opcode for TCG; 1862 * MB and end the TB instead. 1863 */ 1864 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1865 gen_goto_tb(s, 0, 4); 1866 return true; 1867 } 1868 1869 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1870 { 1871 if (!dc_isar_feature(aa64_condm_4, s)) { 1872 return false; 1873 } 1874 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1875 return true; 1876 } 1877 1878 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1879 { 1880 TCGv_i32 z; 1881 1882 if (!dc_isar_feature(aa64_condm_5, s)) { 1883 return false; 1884 } 1885 1886 z = tcg_temp_new_i32(); 1887 1888 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1889 1890 /* 1891 * (!C & !Z) << 31 1892 * (!(C | Z)) << 31 1893 * ~((C | Z) << 31) 1894 * ~-(C | Z) 1895 * (C | Z) - 1 1896 */ 1897 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1898 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1899 1900 /* !(Z & C) */ 1901 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1902 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1903 1904 /* (!C & Z) << 31 -> -(Z & ~C) */ 1905 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1906 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1907 1908 /* C | Z */ 1909 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1910 1911 return true; 1912 } 1913 1914 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1915 { 1916 if (!dc_isar_feature(aa64_condm_5, s)) { 1917 return false; 1918 } 1919 1920 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1921 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1922 1923 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1924 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1925 1926 tcg_gen_movi_i32(cpu_NF, 0); 1927 tcg_gen_movi_i32(cpu_VF, 0); 1928 1929 return true; 1930 } 1931 1932 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1933 { 1934 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1935 return false; 1936 } 1937 if (a->imm & 1) { 1938 set_pstate_bits(PSTATE_UAO); 1939 } else { 1940 clear_pstate_bits(PSTATE_UAO); 1941 } 1942 gen_rebuild_hflags(s); 1943 s->base.is_jmp = DISAS_TOO_MANY; 1944 return true; 1945 } 1946 1947 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1948 { 1949 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1950 return false; 1951 } 1952 if (a->imm & 1) { 1953 set_pstate_bits(PSTATE_PAN); 1954 } else { 1955 clear_pstate_bits(PSTATE_PAN); 1956 } 1957 gen_rebuild_hflags(s); 1958 s->base.is_jmp = DISAS_TOO_MANY; 1959 return true; 1960 } 1961 1962 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1963 { 1964 if (s->current_el == 0) { 1965 return false; 1966 } 1967 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1968 s->base.is_jmp = DISAS_TOO_MANY; 1969 return true; 1970 } 1971 1972 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1973 { 1974 if (!dc_isar_feature(aa64_ssbs, s)) { 1975 return false; 1976 } 1977 if (a->imm & 1) { 1978 set_pstate_bits(PSTATE_SSBS); 1979 } else { 1980 clear_pstate_bits(PSTATE_SSBS); 1981 } 1982 /* Don't need to rebuild hflags since SSBS is a nop */ 1983 s->base.is_jmp = DISAS_TOO_MANY; 1984 return true; 1985 } 1986 1987 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1988 { 1989 if (!dc_isar_feature(aa64_dit, s)) { 1990 return false; 1991 } 1992 if (a->imm & 1) { 1993 set_pstate_bits(PSTATE_DIT); 1994 } else { 1995 clear_pstate_bits(PSTATE_DIT); 1996 } 1997 /* There's no need to rebuild hflags because DIT is a nop */ 1998 s->base.is_jmp = DISAS_TOO_MANY; 1999 return true; 2000 } 2001 2002 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2003 { 2004 if (dc_isar_feature(aa64_mte, s)) { 2005 /* Full MTE is enabled -- set the TCO bit as directed. */ 2006 if (a->imm & 1) { 2007 set_pstate_bits(PSTATE_TCO); 2008 } else { 2009 clear_pstate_bits(PSTATE_TCO); 2010 } 2011 gen_rebuild_hflags(s); 2012 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2013 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2014 return true; 2015 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2016 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2017 return true; 2018 } else { 2019 /* Insn not present */ 2020 return false; 2021 } 2022 } 2023 2024 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2025 { 2026 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2027 s->base.is_jmp = DISAS_TOO_MANY; 2028 return true; 2029 } 2030 2031 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2032 { 2033 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2034 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2035 s->base.is_jmp = DISAS_UPDATE_EXIT; 2036 return true; 2037 } 2038 2039 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2040 { 2041 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2042 return false; 2043 } 2044 if (sme_access_check(s)) { 2045 int old = s->pstate_sm | (s->pstate_za << 1); 2046 int new = a->imm * 3; 2047 2048 if ((old ^ new) & a->mask) { 2049 /* At least one bit changes. */ 2050 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2051 tcg_constant_i32(a->mask)); 2052 s->base.is_jmp = DISAS_TOO_MANY; 2053 } 2054 } 2055 return true; 2056 } 2057 2058 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2059 { 2060 TCGv_i32 tmp = tcg_temp_new_i32(); 2061 TCGv_i32 nzcv = tcg_temp_new_i32(); 2062 2063 /* build bit 31, N */ 2064 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2065 /* build bit 30, Z */ 2066 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2067 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2068 /* build bit 29, C */ 2069 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2070 /* build bit 28, V */ 2071 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2072 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2073 /* generate result */ 2074 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2075 } 2076 2077 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2078 { 2079 TCGv_i32 nzcv = tcg_temp_new_i32(); 2080 2081 /* take NZCV from R[t] */ 2082 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2083 2084 /* bit 31, N */ 2085 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2086 /* bit 30, Z */ 2087 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2088 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2089 /* bit 29, C */ 2090 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2091 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2092 /* bit 28, V */ 2093 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2094 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2095 } 2096 2097 static void gen_sysreg_undef(DisasContext *s, bool isread, 2098 uint8_t op0, uint8_t op1, uint8_t op2, 2099 uint8_t crn, uint8_t crm, uint8_t rt) 2100 { 2101 /* 2102 * Generate code to emit an UNDEF with correct syndrome 2103 * information for a failed system register access. 2104 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2105 * but if FEAT_IDST is implemented then read accesses to registers 2106 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2107 * syndrome. 2108 */ 2109 uint32_t syndrome; 2110 2111 if (isread && dc_isar_feature(aa64_ids, s) && 2112 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2113 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2114 } else { 2115 syndrome = syn_uncategorized(); 2116 } 2117 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2118 } 2119 2120 /* MRS - move from system register 2121 * MSR (register) - move to system register 2122 * SYS 2123 * SYSL 2124 * These are all essentially the same insn in 'read' and 'write' 2125 * versions, with varying op0 fields. 2126 */ 2127 static void handle_sys(DisasContext *s, bool isread, 2128 unsigned int op0, unsigned int op1, unsigned int op2, 2129 unsigned int crn, unsigned int crm, unsigned int rt) 2130 { 2131 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2132 crn, crm, op0, op1, op2); 2133 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2134 bool need_exit_tb = false; 2135 TCGv_ptr tcg_ri = NULL; 2136 TCGv_i64 tcg_rt; 2137 uint32_t syndrome; 2138 2139 if (crn == 11 || crn == 15) { 2140 /* 2141 * Check for TIDCP trap, which must take precedence over 2142 * the UNDEF for "no such register" etc. 2143 */ 2144 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2145 switch (s->current_el) { 2146 case 0: 2147 if (dc_isar_feature(aa64_tidcp1, s)) { 2148 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2149 } 2150 break; 2151 case 1: 2152 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2153 break; 2154 } 2155 } 2156 2157 if (!ri) { 2158 /* Unknown register; this might be a guest error or a QEMU 2159 * unimplemented feature. 2160 */ 2161 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2162 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2163 isread ? "read" : "write", op0, op1, crn, crm, op2); 2164 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2165 return; 2166 } 2167 2168 /* Check access permissions */ 2169 if (!cp_access_ok(s->current_el, ri, isread)) { 2170 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2171 return; 2172 } 2173 2174 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2175 /* Emit code to perform further access permissions checks at 2176 * runtime; this may result in an exception. 2177 */ 2178 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2179 gen_a64_update_pc(s, 0); 2180 tcg_ri = tcg_temp_new_ptr(); 2181 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2182 tcg_constant_i32(key), 2183 tcg_constant_i32(syndrome), 2184 tcg_constant_i32(isread)); 2185 } else if (ri->type & ARM_CP_RAISES_EXC) { 2186 /* 2187 * The readfn or writefn might raise an exception; 2188 * synchronize the CPU state in case it does. 2189 */ 2190 gen_a64_update_pc(s, 0); 2191 } 2192 2193 /* Handle special cases first */ 2194 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2195 case 0: 2196 break; 2197 case ARM_CP_NOP: 2198 return; 2199 case ARM_CP_NZCV: 2200 tcg_rt = cpu_reg(s, rt); 2201 if (isread) { 2202 gen_get_nzcv(tcg_rt); 2203 } else { 2204 gen_set_nzcv(tcg_rt); 2205 } 2206 return; 2207 case ARM_CP_CURRENTEL: 2208 /* Reads as current EL value from pstate, which is 2209 * guaranteed to be constant by the tb flags. 2210 */ 2211 tcg_rt = cpu_reg(s, rt); 2212 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2213 return; 2214 case ARM_CP_DC_ZVA: 2215 /* Writes clear the aligned block of memory which rt points into. */ 2216 if (s->mte_active[0]) { 2217 int desc = 0; 2218 2219 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2220 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2221 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2222 2223 tcg_rt = tcg_temp_new_i64(); 2224 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2225 tcg_constant_i32(desc), cpu_reg(s, rt)); 2226 } else { 2227 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2228 } 2229 gen_helper_dc_zva(tcg_env, tcg_rt); 2230 return; 2231 case ARM_CP_DC_GVA: 2232 { 2233 TCGv_i64 clean_addr, tag; 2234 2235 /* 2236 * DC_GVA, like DC_ZVA, requires that we supply the original 2237 * pointer for an invalid page. Probe that address first. 2238 */ 2239 tcg_rt = cpu_reg(s, rt); 2240 clean_addr = clean_data_tbi(s, tcg_rt); 2241 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2242 2243 if (s->ata[0]) { 2244 /* Extract the tag from the register to match STZGM. */ 2245 tag = tcg_temp_new_i64(); 2246 tcg_gen_shri_i64(tag, tcg_rt, 56); 2247 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2248 } 2249 } 2250 return; 2251 case ARM_CP_DC_GZVA: 2252 { 2253 TCGv_i64 clean_addr, tag; 2254 2255 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2256 tcg_rt = cpu_reg(s, rt); 2257 clean_addr = clean_data_tbi(s, tcg_rt); 2258 gen_helper_dc_zva(tcg_env, clean_addr); 2259 2260 if (s->ata[0]) { 2261 /* Extract the tag from the register to match STZGM. */ 2262 tag = tcg_temp_new_i64(); 2263 tcg_gen_shri_i64(tag, tcg_rt, 56); 2264 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2265 } 2266 } 2267 return; 2268 default: 2269 g_assert_not_reached(); 2270 } 2271 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2272 return; 2273 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2274 return; 2275 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2276 return; 2277 } 2278 2279 if (ri->type & ARM_CP_IO) { 2280 /* I/O operations must end the TB here (whether read or write) */ 2281 need_exit_tb = translator_io_start(&s->base); 2282 } 2283 2284 tcg_rt = cpu_reg(s, rt); 2285 2286 if (isread) { 2287 if (ri->type & ARM_CP_CONST) { 2288 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2289 } else if (ri->readfn) { 2290 if (!tcg_ri) { 2291 tcg_ri = gen_lookup_cp_reg(key); 2292 } 2293 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2294 } else { 2295 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2296 } 2297 } else { 2298 if (ri->type & ARM_CP_CONST) { 2299 /* If not forbidden by access permissions, treat as WI */ 2300 return; 2301 } else if (ri->writefn) { 2302 if (!tcg_ri) { 2303 tcg_ri = gen_lookup_cp_reg(key); 2304 } 2305 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2306 } else { 2307 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2308 } 2309 } 2310 2311 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2312 /* 2313 * A write to any coprocessor register that ends a TB 2314 * must rebuild the hflags for the next TB. 2315 */ 2316 gen_rebuild_hflags(s); 2317 /* 2318 * We default to ending the TB on a coprocessor register write, 2319 * but allow this to be suppressed by the register definition 2320 * (usually only necessary to work around guest bugs). 2321 */ 2322 need_exit_tb = true; 2323 } 2324 if (need_exit_tb) { 2325 s->base.is_jmp = DISAS_UPDATE_EXIT; 2326 } 2327 } 2328 2329 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2330 { 2331 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2332 return true; 2333 } 2334 2335 static bool trans_SVC(DisasContext *s, arg_i *a) 2336 { 2337 /* 2338 * For SVC, HVC and SMC we advance the single-step state 2339 * machine before taking the exception. This is architecturally 2340 * mandated, to ensure that single-stepping a system call 2341 * instruction works properly. 2342 */ 2343 uint32_t syndrome = syn_aa64_svc(a->imm); 2344 if (s->fgt_svc) { 2345 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2346 return true; 2347 } 2348 gen_ss_advance(s); 2349 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2350 return true; 2351 } 2352 2353 static bool trans_HVC(DisasContext *s, arg_i *a) 2354 { 2355 int target_el = s->current_el == 3 ? 3 : 2; 2356 2357 if (s->current_el == 0) { 2358 unallocated_encoding(s); 2359 return true; 2360 } 2361 /* 2362 * The pre HVC helper handles cases when HVC gets trapped 2363 * as an undefined insn by runtime configuration. 2364 */ 2365 gen_a64_update_pc(s, 0); 2366 gen_helper_pre_hvc(tcg_env); 2367 /* Architecture requires ss advance before we do the actual work */ 2368 gen_ss_advance(s); 2369 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2370 return true; 2371 } 2372 2373 static bool trans_SMC(DisasContext *s, arg_i *a) 2374 { 2375 if (s->current_el == 0) { 2376 unallocated_encoding(s); 2377 return true; 2378 } 2379 gen_a64_update_pc(s, 0); 2380 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2381 /* Architecture requires ss advance before we do the actual work */ 2382 gen_ss_advance(s); 2383 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2384 return true; 2385 } 2386 2387 static bool trans_BRK(DisasContext *s, arg_i *a) 2388 { 2389 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2390 return true; 2391 } 2392 2393 static bool trans_HLT(DisasContext *s, arg_i *a) 2394 { 2395 /* 2396 * HLT. This has two purposes. 2397 * Architecturally, it is an external halting debug instruction. 2398 * Since QEMU doesn't implement external debug, we treat this as 2399 * it is required for halting debug disabled: it will UNDEF. 2400 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2401 */ 2402 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2403 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2404 } else { 2405 unallocated_encoding(s); 2406 } 2407 return true; 2408 } 2409 2410 /* 2411 * Load/Store exclusive instructions are implemented by remembering 2412 * the value/address loaded, and seeing if these are the same 2413 * when the store is performed. This is not actually the architecturally 2414 * mandated semantics, but it works for typical guest code sequences 2415 * and avoids having to monitor regular stores. 2416 * 2417 * The store exclusive uses the atomic cmpxchg primitives to avoid 2418 * races in multi-threaded linux-user and when MTTCG softmmu is 2419 * enabled. 2420 */ 2421 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2422 int size, bool is_pair) 2423 { 2424 int idx = get_mem_index(s); 2425 TCGv_i64 dirty_addr, clean_addr; 2426 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2427 2428 s->is_ldex = true; 2429 dirty_addr = cpu_reg_sp(s, rn); 2430 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2431 2432 g_assert(size <= 3); 2433 if (is_pair) { 2434 g_assert(size >= 2); 2435 if (size == 2) { 2436 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2437 if (s->be_data == MO_LE) { 2438 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2439 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2440 } else { 2441 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2442 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2443 } 2444 } else { 2445 TCGv_i128 t16 = tcg_temp_new_i128(); 2446 2447 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2448 2449 if (s->be_data == MO_LE) { 2450 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2451 cpu_exclusive_high, t16); 2452 } else { 2453 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2454 cpu_exclusive_val, t16); 2455 } 2456 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2457 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2458 } 2459 } else { 2460 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2461 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2462 } 2463 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2464 } 2465 2466 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2467 int rn, int size, int is_pair) 2468 { 2469 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2470 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2471 * [addr] = {Rt}; 2472 * if (is_pair) { 2473 * [addr + datasize] = {Rt2}; 2474 * } 2475 * {Rd} = 0; 2476 * } else { 2477 * {Rd} = 1; 2478 * } 2479 * env->exclusive_addr = -1; 2480 */ 2481 TCGLabel *fail_label = gen_new_label(); 2482 TCGLabel *done_label = gen_new_label(); 2483 TCGv_i64 tmp, clean_addr; 2484 MemOp memop; 2485 2486 /* 2487 * FIXME: We are out of spec here. We have recorded only the address 2488 * from load_exclusive, not the entire range, and we assume that the 2489 * size of the access on both sides match. The architecture allows the 2490 * store to be smaller than the load, so long as the stored bytes are 2491 * within the range recorded by the load. 2492 */ 2493 2494 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2495 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2496 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2497 2498 /* 2499 * The write, and any associated faults, only happen if the virtual 2500 * and physical addresses pass the exclusive monitor check. These 2501 * faults are exceedingly unlikely, because normally the guest uses 2502 * the exact same address register for the load_exclusive, and we 2503 * would have recognized these faults there. 2504 * 2505 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2506 * unaligned 4-byte write within the range of an aligned 8-byte load. 2507 * With LSE2, the store would need to cross a 16-byte boundary when the 2508 * load did not, which would mean the store is outside the range 2509 * recorded for the monitor, which would have failed a corrected monitor 2510 * check above. For now, we assume no size change and retain the 2511 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2512 * 2513 * It is possible to trigger an MTE fault, by performing the load with 2514 * a virtual address with a valid tag and performing the store with the 2515 * same virtual address and a different invalid tag. 2516 */ 2517 memop = size + is_pair; 2518 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2519 memop |= MO_ALIGN; 2520 } 2521 memop = finalize_memop(s, memop); 2522 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2523 2524 tmp = tcg_temp_new_i64(); 2525 if (is_pair) { 2526 if (size == 2) { 2527 if (s->be_data == MO_LE) { 2528 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2529 } else { 2530 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2531 } 2532 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2533 cpu_exclusive_val, tmp, 2534 get_mem_index(s), memop); 2535 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2536 } else { 2537 TCGv_i128 t16 = tcg_temp_new_i128(); 2538 TCGv_i128 c16 = tcg_temp_new_i128(); 2539 TCGv_i64 a, b; 2540 2541 if (s->be_data == MO_LE) { 2542 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2543 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2544 cpu_exclusive_high); 2545 } else { 2546 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2547 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2548 cpu_exclusive_val); 2549 } 2550 2551 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2552 get_mem_index(s), memop); 2553 2554 a = tcg_temp_new_i64(); 2555 b = tcg_temp_new_i64(); 2556 if (s->be_data == MO_LE) { 2557 tcg_gen_extr_i128_i64(a, b, t16); 2558 } else { 2559 tcg_gen_extr_i128_i64(b, a, t16); 2560 } 2561 2562 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2563 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2564 tcg_gen_or_i64(tmp, a, b); 2565 2566 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2567 } 2568 } else { 2569 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2570 cpu_reg(s, rt), get_mem_index(s), memop); 2571 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2572 } 2573 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2574 tcg_gen_br(done_label); 2575 2576 gen_set_label(fail_label); 2577 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2578 gen_set_label(done_label); 2579 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2580 } 2581 2582 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2583 int rn, int size) 2584 { 2585 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2586 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2587 int memidx = get_mem_index(s); 2588 TCGv_i64 clean_addr; 2589 MemOp memop; 2590 2591 if (rn == 31) { 2592 gen_check_sp_alignment(s); 2593 } 2594 memop = check_atomic_align(s, rn, size); 2595 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2596 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2597 memidx, memop); 2598 } 2599 2600 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2601 int rn, int size) 2602 { 2603 TCGv_i64 s1 = cpu_reg(s, rs); 2604 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2605 TCGv_i64 t1 = cpu_reg(s, rt); 2606 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2607 TCGv_i64 clean_addr; 2608 int memidx = get_mem_index(s); 2609 MemOp memop; 2610 2611 if (rn == 31) { 2612 gen_check_sp_alignment(s); 2613 } 2614 2615 /* This is a single atomic access, despite the "pair". */ 2616 memop = check_atomic_align(s, rn, size + 1); 2617 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2618 2619 if (size == 2) { 2620 TCGv_i64 cmp = tcg_temp_new_i64(); 2621 TCGv_i64 val = tcg_temp_new_i64(); 2622 2623 if (s->be_data == MO_LE) { 2624 tcg_gen_concat32_i64(val, t1, t2); 2625 tcg_gen_concat32_i64(cmp, s1, s2); 2626 } else { 2627 tcg_gen_concat32_i64(val, t2, t1); 2628 tcg_gen_concat32_i64(cmp, s2, s1); 2629 } 2630 2631 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2632 2633 if (s->be_data == MO_LE) { 2634 tcg_gen_extr32_i64(s1, s2, cmp); 2635 } else { 2636 tcg_gen_extr32_i64(s2, s1, cmp); 2637 } 2638 } else { 2639 TCGv_i128 cmp = tcg_temp_new_i128(); 2640 TCGv_i128 val = tcg_temp_new_i128(); 2641 2642 if (s->be_data == MO_LE) { 2643 tcg_gen_concat_i64_i128(val, t1, t2); 2644 tcg_gen_concat_i64_i128(cmp, s1, s2); 2645 } else { 2646 tcg_gen_concat_i64_i128(val, t2, t1); 2647 tcg_gen_concat_i64_i128(cmp, s2, s1); 2648 } 2649 2650 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2651 2652 if (s->be_data == MO_LE) { 2653 tcg_gen_extr_i128_i64(s1, s2, cmp); 2654 } else { 2655 tcg_gen_extr_i128_i64(s2, s1, cmp); 2656 } 2657 } 2658 } 2659 2660 /* 2661 * Compute the ISS.SF bit for syndrome information if an exception 2662 * is taken on a load or store. This indicates whether the instruction 2663 * is accessing a 32-bit or 64-bit register. This logic is derived 2664 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2665 */ 2666 static bool ldst_iss_sf(int size, bool sign, bool ext) 2667 { 2668 2669 if (sign) { 2670 /* 2671 * Signed loads are 64 bit results if we are not going to 2672 * do a zero-extend from 32 to 64 after the load. 2673 * (For a store, sign and ext are always false.) 2674 */ 2675 return !ext; 2676 } else { 2677 /* Unsigned loads/stores work at the specified size */ 2678 return size == MO_64; 2679 } 2680 } 2681 2682 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2683 { 2684 if (a->rn == 31) { 2685 gen_check_sp_alignment(s); 2686 } 2687 if (a->lasr) { 2688 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2689 } 2690 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2691 return true; 2692 } 2693 2694 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2695 { 2696 if (a->rn == 31) { 2697 gen_check_sp_alignment(s); 2698 } 2699 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2700 if (a->lasr) { 2701 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2702 } 2703 return true; 2704 } 2705 2706 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2707 { 2708 TCGv_i64 clean_addr; 2709 MemOp memop; 2710 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2711 2712 /* 2713 * StoreLORelease is the same as Store-Release for QEMU, but 2714 * needs the feature-test. 2715 */ 2716 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2717 return false; 2718 } 2719 /* Generate ISS for non-exclusive accesses including LASR. */ 2720 if (a->rn == 31) { 2721 gen_check_sp_alignment(s); 2722 } 2723 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2724 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2725 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2726 true, a->rn != 31, memop); 2727 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2728 iss_sf, a->lasr); 2729 return true; 2730 } 2731 2732 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2733 { 2734 TCGv_i64 clean_addr; 2735 MemOp memop; 2736 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2737 2738 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2739 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2740 return false; 2741 } 2742 /* Generate ISS for non-exclusive accesses including LASR. */ 2743 if (a->rn == 31) { 2744 gen_check_sp_alignment(s); 2745 } 2746 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2747 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2748 false, a->rn != 31, memop); 2749 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2750 a->rt, iss_sf, a->lasr); 2751 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2752 return true; 2753 } 2754 2755 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2756 { 2757 if (a->rn == 31) { 2758 gen_check_sp_alignment(s); 2759 } 2760 if (a->lasr) { 2761 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2762 } 2763 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2764 return true; 2765 } 2766 2767 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2768 { 2769 if (a->rn == 31) { 2770 gen_check_sp_alignment(s); 2771 } 2772 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2773 if (a->lasr) { 2774 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2775 } 2776 return true; 2777 } 2778 2779 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2780 { 2781 if (!dc_isar_feature(aa64_atomics, s)) { 2782 return false; 2783 } 2784 if (((a->rt | a->rs) & 1) != 0) { 2785 return false; 2786 } 2787 2788 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2789 return true; 2790 } 2791 2792 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2793 { 2794 if (!dc_isar_feature(aa64_atomics, s)) { 2795 return false; 2796 } 2797 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2798 return true; 2799 } 2800 2801 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2802 { 2803 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2804 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2805 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2806 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2807 2808 gen_pc_plus_diff(s, clean_addr, a->imm); 2809 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2810 false, true, a->rt, iss_sf, false); 2811 return true; 2812 } 2813 2814 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2815 { 2816 /* Load register (literal), vector version */ 2817 TCGv_i64 clean_addr; 2818 MemOp memop; 2819 2820 if (!fp_access_check(s)) { 2821 return true; 2822 } 2823 memop = finalize_memop_asimd(s, a->sz); 2824 clean_addr = tcg_temp_new_i64(); 2825 gen_pc_plus_diff(s, clean_addr, a->imm); 2826 do_fp_ld(s, a->rt, clean_addr, memop); 2827 return true; 2828 } 2829 2830 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2831 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2832 uint64_t offset, bool is_store, MemOp mop) 2833 { 2834 if (a->rn == 31) { 2835 gen_check_sp_alignment(s); 2836 } 2837 2838 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2839 if (!a->p) { 2840 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2841 } 2842 2843 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2844 (a->w || a->rn != 31), 2 << a->sz, mop); 2845 } 2846 2847 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2848 TCGv_i64 dirty_addr, uint64_t offset) 2849 { 2850 if (a->w) { 2851 if (a->p) { 2852 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2853 } 2854 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2855 } 2856 } 2857 2858 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2859 { 2860 uint64_t offset = a->imm << a->sz; 2861 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2862 MemOp mop = finalize_memop(s, a->sz); 2863 2864 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2865 tcg_rt = cpu_reg(s, a->rt); 2866 tcg_rt2 = cpu_reg(s, a->rt2); 2867 /* 2868 * We built mop above for the single logical access -- rebuild it 2869 * now for the paired operation. 2870 * 2871 * With LSE2, non-sign-extending pairs are treated atomically if 2872 * aligned, and if unaligned one of the pair will be completely 2873 * within a 16-byte block and that element will be atomic. 2874 * Otherwise each element is separately atomic. 2875 * In all cases, issue one operation with the correct atomicity. 2876 */ 2877 mop = a->sz + 1; 2878 if (s->align_mem) { 2879 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2880 } 2881 mop = finalize_memop_pair(s, mop); 2882 if (a->sz == 2) { 2883 TCGv_i64 tmp = tcg_temp_new_i64(); 2884 2885 if (s->be_data == MO_LE) { 2886 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2887 } else { 2888 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2889 } 2890 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2891 } else { 2892 TCGv_i128 tmp = tcg_temp_new_i128(); 2893 2894 if (s->be_data == MO_LE) { 2895 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 2896 } else { 2897 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 2898 } 2899 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 2900 } 2901 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2902 return true; 2903 } 2904 2905 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 2906 { 2907 uint64_t offset = a->imm << a->sz; 2908 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2909 MemOp mop = finalize_memop(s, a->sz); 2910 2911 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2912 tcg_rt = cpu_reg(s, a->rt); 2913 tcg_rt2 = cpu_reg(s, a->rt2); 2914 2915 /* 2916 * We built mop above for the single logical access -- rebuild it 2917 * now for the paired operation. 2918 * 2919 * With LSE2, non-sign-extending pairs are treated atomically if 2920 * aligned, and if unaligned one of the pair will be completely 2921 * within a 16-byte block and that element will be atomic. 2922 * Otherwise each element is separately atomic. 2923 * In all cases, issue one operation with the correct atomicity. 2924 * 2925 * This treats sign-extending loads like zero-extending loads, 2926 * since that reuses the most code below. 2927 */ 2928 mop = a->sz + 1; 2929 if (s->align_mem) { 2930 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2931 } 2932 mop = finalize_memop_pair(s, mop); 2933 if (a->sz == 2) { 2934 int o2 = s->be_data == MO_LE ? 32 : 0; 2935 int o1 = o2 ^ 32; 2936 2937 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2938 if (a->sign) { 2939 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2940 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2941 } else { 2942 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2943 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2944 } 2945 } else { 2946 TCGv_i128 tmp = tcg_temp_new_i128(); 2947 2948 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2949 if (s->be_data == MO_LE) { 2950 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2951 } else { 2952 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2953 } 2954 } 2955 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2956 return true; 2957 } 2958 2959 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 2960 { 2961 uint64_t offset = a->imm << a->sz; 2962 TCGv_i64 clean_addr, dirty_addr; 2963 MemOp mop; 2964 2965 if (!fp_access_check(s)) { 2966 return true; 2967 } 2968 2969 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2970 mop = finalize_memop_asimd(s, a->sz); 2971 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2972 do_fp_st(s, a->rt, clean_addr, mop); 2973 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2974 do_fp_st(s, a->rt2, clean_addr, mop); 2975 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2976 return true; 2977 } 2978 2979 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 2980 { 2981 uint64_t offset = a->imm << a->sz; 2982 TCGv_i64 clean_addr, dirty_addr; 2983 MemOp mop; 2984 2985 if (!fp_access_check(s)) { 2986 return true; 2987 } 2988 2989 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2990 mop = finalize_memop_asimd(s, a->sz); 2991 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2992 do_fp_ld(s, a->rt, clean_addr, mop); 2993 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2994 do_fp_ld(s, a->rt2, clean_addr, mop); 2995 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2996 return true; 2997 } 2998 2999 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3000 { 3001 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3002 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3003 MemOp mop; 3004 TCGv_i128 tmp; 3005 3006 /* STGP only comes in one size. */ 3007 tcg_debug_assert(a->sz == MO_64); 3008 3009 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3010 return false; 3011 } 3012 3013 if (a->rn == 31) { 3014 gen_check_sp_alignment(s); 3015 } 3016 3017 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3018 if (!a->p) { 3019 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3020 } 3021 3022 clean_addr = clean_data_tbi(s, dirty_addr); 3023 tcg_rt = cpu_reg(s, a->rt); 3024 tcg_rt2 = cpu_reg(s, a->rt2); 3025 3026 /* 3027 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3028 * and one tag operation. We implement it as one single aligned 16-byte 3029 * memory operation for convenience. Note that the alignment ensures 3030 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3031 */ 3032 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3033 3034 tmp = tcg_temp_new_i128(); 3035 if (s->be_data == MO_LE) { 3036 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3037 } else { 3038 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3039 } 3040 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3041 3042 /* Perform the tag store, if tag access enabled. */ 3043 if (s->ata[0]) { 3044 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3045 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3046 } else { 3047 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3048 } 3049 } 3050 3051 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3052 return true; 3053 } 3054 3055 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3056 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3057 uint64_t offset, bool is_store, MemOp mop) 3058 { 3059 int memidx; 3060 3061 if (a->rn == 31) { 3062 gen_check_sp_alignment(s); 3063 } 3064 3065 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3066 if (!a->p) { 3067 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3068 } 3069 memidx = get_a64_user_mem_index(s, a->unpriv); 3070 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3071 a->w || a->rn != 31, 3072 mop, a->unpriv, memidx); 3073 } 3074 3075 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3076 TCGv_i64 dirty_addr, uint64_t offset) 3077 { 3078 if (a->w) { 3079 if (a->p) { 3080 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3081 } 3082 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3083 } 3084 } 3085 3086 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3087 { 3088 bool iss_sf, iss_valid = !a->w; 3089 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3090 int memidx = get_a64_user_mem_index(s, a->unpriv); 3091 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3092 3093 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3094 3095 tcg_rt = cpu_reg(s, a->rt); 3096 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3097 3098 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3099 iss_valid, a->rt, iss_sf, false); 3100 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3101 return true; 3102 } 3103 3104 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3105 { 3106 bool iss_sf, iss_valid = !a->w; 3107 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3108 int memidx = get_a64_user_mem_index(s, a->unpriv); 3109 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3110 3111 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3112 3113 tcg_rt = cpu_reg(s, a->rt); 3114 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3115 3116 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3117 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3118 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3119 return true; 3120 } 3121 3122 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3123 { 3124 TCGv_i64 clean_addr, dirty_addr; 3125 MemOp mop; 3126 3127 if (!fp_access_check(s)) { 3128 return true; 3129 } 3130 mop = finalize_memop_asimd(s, a->sz); 3131 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3132 do_fp_st(s, a->rt, clean_addr, mop); 3133 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3134 return true; 3135 } 3136 3137 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3138 { 3139 TCGv_i64 clean_addr, dirty_addr; 3140 MemOp mop; 3141 3142 if (!fp_access_check(s)) { 3143 return true; 3144 } 3145 mop = finalize_memop_asimd(s, a->sz); 3146 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3147 do_fp_ld(s, a->rt, clean_addr, mop); 3148 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3149 return true; 3150 } 3151 3152 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3153 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3154 bool is_store, MemOp memop) 3155 { 3156 TCGv_i64 tcg_rm; 3157 3158 if (a->rn == 31) { 3159 gen_check_sp_alignment(s); 3160 } 3161 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3162 3163 tcg_rm = read_cpu_reg(s, a->rm, 1); 3164 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3165 3166 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3167 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3168 } 3169 3170 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3171 { 3172 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3173 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3174 MemOp memop; 3175 3176 if (extract32(a->opt, 1, 1) == 0) { 3177 return false; 3178 } 3179 3180 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3181 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3182 tcg_rt = cpu_reg(s, a->rt); 3183 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3184 a->ext, true, a->rt, iss_sf, false); 3185 return true; 3186 } 3187 3188 static bool trans_STR(DisasContext *s, arg_ldst *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3191 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3192 MemOp memop; 3193 3194 if (extract32(a->opt, 1, 1) == 0) { 3195 return false; 3196 } 3197 3198 memop = finalize_memop(s, a->sz); 3199 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3200 tcg_rt = cpu_reg(s, a->rt); 3201 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3202 return true; 3203 } 3204 3205 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3206 { 3207 TCGv_i64 clean_addr, dirty_addr; 3208 MemOp memop; 3209 3210 if (extract32(a->opt, 1, 1) == 0) { 3211 return false; 3212 } 3213 3214 if (!fp_access_check(s)) { 3215 return true; 3216 } 3217 3218 memop = finalize_memop_asimd(s, a->sz); 3219 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3220 do_fp_ld(s, a->rt, clean_addr, memop); 3221 return true; 3222 } 3223 3224 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3225 { 3226 TCGv_i64 clean_addr, dirty_addr; 3227 MemOp memop; 3228 3229 if (extract32(a->opt, 1, 1) == 0) { 3230 return false; 3231 } 3232 3233 if (!fp_access_check(s)) { 3234 return true; 3235 } 3236 3237 memop = finalize_memop_asimd(s, a->sz); 3238 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3239 do_fp_st(s, a->rt, clean_addr, memop); 3240 return true; 3241 } 3242 3243 3244 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3245 int sign, bool invert) 3246 { 3247 MemOp mop = a->sz | sign; 3248 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 mop = check_atomic_align(s, a->rn, mop); 3254 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3255 a->rn != 31, mop); 3256 tcg_rs = read_cpu_reg(s, a->rs, true); 3257 tcg_rt = cpu_reg(s, a->rt); 3258 if (invert) { 3259 tcg_gen_not_i64(tcg_rs, tcg_rs); 3260 } 3261 /* 3262 * The tcg atomic primitives are all full barriers. Therefore we 3263 * can ignore the Acquire and Release bits of this instruction. 3264 */ 3265 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3266 3267 if (mop & MO_SIGN) { 3268 switch (a->sz) { 3269 case MO_8: 3270 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3271 break; 3272 case MO_16: 3273 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3274 break; 3275 case MO_32: 3276 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3277 break; 3278 case MO_64: 3279 break; 3280 default: 3281 g_assert_not_reached(); 3282 } 3283 } 3284 return true; 3285 } 3286 3287 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3288 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3289 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3290 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3291 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3292 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3293 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3294 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3295 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3296 3297 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3298 { 3299 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3300 TCGv_i64 clean_addr; 3301 MemOp mop; 3302 3303 if (!dc_isar_feature(aa64_atomics, s) || 3304 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3305 return false; 3306 } 3307 if (a->rn == 31) { 3308 gen_check_sp_alignment(s); 3309 } 3310 mop = check_atomic_align(s, a->rn, a->sz); 3311 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3312 a->rn != 31, mop); 3313 /* 3314 * LDAPR* are a special case because they are a simple load, not a 3315 * fetch-and-do-something op. 3316 * The architectural consistency requirements here are weaker than 3317 * full load-acquire (we only need "load-acquire processor consistent"), 3318 * but we choose to implement them as full LDAQ. 3319 */ 3320 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3321 true, a->rt, iss_sf, true); 3322 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3323 return true; 3324 } 3325 3326 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3329 MemOp memop; 3330 3331 /* Load with pointer authentication */ 3332 if (!dc_isar_feature(aa64_pauth, s)) { 3333 return false; 3334 } 3335 3336 if (a->rn == 31) { 3337 gen_check_sp_alignment(s); 3338 } 3339 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3340 3341 if (s->pauth_active) { 3342 if (!a->m) { 3343 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3344 tcg_constant_i64(0)); 3345 } else { 3346 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3347 tcg_constant_i64(0)); 3348 } 3349 } 3350 3351 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3352 3353 memop = finalize_memop(s, MO_64); 3354 3355 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3356 clean_addr = gen_mte_check1(s, dirty_addr, false, 3357 a->w || a->rn != 31, memop); 3358 3359 tcg_rt = cpu_reg(s, a->rt); 3360 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3361 /* extend */ false, /* iss_valid */ !a->w, 3362 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3363 3364 if (a->w) { 3365 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3366 } 3367 return true; 3368 } 3369 3370 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3371 { 3372 TCGv_i64 clean_addr, dirty_addr; 3373 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3374 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3375 3376 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3377 return false; 3378 } 3379 3380 if (a->rn == 31) { 3381 gen_check_sp_alignment(s); 3382 } 3383 3384 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3385 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3386 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3387 clean_addr = clean_data_tbi(s, dirty_addr); 3388 3389 /* 3390 * Load-AcquirePC semantics; we implement as the slightly more 3391 * restrictive Load-Acquire. 3392 */ 3393 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3394 a->rt, iss_sf, true); 3395 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3396 return true; 3397 } 3398 3399 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3400 { 3401 TCGv_i64 clean_addr, dirty_addr; 3402 MemOp mop = a->sz; 3403 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3404 3405 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3406 return false; 3407 } 3408 3409 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3410 3411 if (a->rn == 31) { 3412 gen_check_sp_alignment(s); 3413 } 3414 3415 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3416 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3417 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3418 clean_addr = clean_data_tbi(s, dirty_addr); 3419 3420 /* Store-Release semantics */ 3421 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3422 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3423 return true; 3424 } 3425 3426 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3427 { 3428 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3429 MemOp endian, align, mop; 3430 3431 int total; /* total bytes */ 3432 int elements; /* elements per vector */ 3433 int r; 3434 int size = a->sz; 3435 3436 if (!a->p && a->rm != 0) { 3437 /* For non-postindexed accesses the Rm field must be 0 */ 3438 return false; 3439 } 3440 if (size == 3 && !a->q && a->selem != 1) { 3441 return false; 3442 } 3443 if (!fp_access_check(s)) { 3444 return true; 3445 } 3446 3447 if (a->rn == 31) { 3448 gen_check_sp_alignment(s); 3449 } 3450 3451 /* For our purposes, bytes are always little-endian. */ 3452 endian = s->be_data; 3453 if (size == 0) { 3454 endian = MO_LE; 3455 } 3456 3457 total = a->rpt * a->selem * (a->q ? 16 : 8); 3458 tcg_rn = cpu_reg_sp(s, a->rn); 3459 3460 /* 3461 * Issue the MTE check vs the logical repeat count, before we 3462 * promote consecutive little-endian elements below. 3463 */ 3464 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3465 finalize_memop_asimd(s, size)); 3466 3467 /* 3468 * Consecutive little-endian elements from a single register 3469 * can be promoted to a larger little-endian operation. 3470 */ 3471 align = MO_ALIGN; 3472 if (a->selem == 1 && endian == MO_LE) { 3473 align = pow2_align(size); 3474 size = 3; 3475 } 3476 if (!s->align_mem) { 3477 align = 0; 3478 } 3479 mop = endian | size | align; 3480 3481 elements = (a->q ? 16 : 8) >> size; 3482 tcg_ebytes = tcg_constant_i64(1 << size); 3483 for (r = 0; r < a->rpt; r++) { 3484 int e; 3485 for (e = 0; e < elements; e++) { 3486 int xs; 3487 for (xs = 0; xs < a->selem; xs++) { 3488 int tt = (a->rt + r + xs) % 32; 3489 do_vec_ld(s, tt, e, clean_addr, mop); 3490 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3491 } 3492 } 3493 } 3494 3495 /* 3496 * For non-quad operations, setting a slice of the low 64 bits of 3497 * the register clears the high 64 bits (in the ARM ARM pseudocode 3498 * this is implicit in the fact that 'rval' is a 64 bit wide 3499 * variable). For quad operations, we might still need to zero 3500 * the high bits of SVE. 3501 */ 3502 for (r = 0; r < a->rpt * a->selem; r++) { 3503 int tt = (a->rt + r) % 32; 3504 clear_vec_high(s, a->q, tt); 3505 } 3506 3507 if (a->p) { 3508 if (a->rm == 31) { 3509 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3510 } else { 3511 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3512 } 3513 } 3514 return true; 3515 } 3516 3517 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3518 { 3519 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3520 MemOp endian, align, mop; 3521 3522 int total; /* total bytes */ 3523 int elements; /* elements per vector */ 3524 int r; 3525 int size = a->sz; 3526 3527 if (!a->p && a->rm != 0) { 3528 /* For non-postindexed accesses the Rm field must be 0 */ 3529 return false; 3530 } 3531 if (size == 3 && !a->q && a->selem != 1) { 3532 return false; 3533 } 3534 if (!fp_access_check(s)) { 3535 return true; 3536 } 3537 3538 if (a->rn == 31) { 3539 gen_check_sp_alignment(s); 3540 } 3541 3542 /* For our purposes, bytes are always little-endian. */ 3543 endian = s->be_data; 3544 if (size == 0) { 3545 endian = MO_LE; 3546 } 3547 3548 total = a->rpt * a->selem * (a->q ? 16 : 8); 3549 tcg_rn = cpu_reg_sp(s, a->rn); 3550 3551 /* 3552 * Issue the MTE check vs the logical repeat count, before we 3553 * promote consecutive little-endian elements below. 3554 */ 3555 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3556 finalize_memop_asimd(s, size)); 3557 3558 /* 3559 * Consecutive little-endian elements from a single register 3560 * can be promoted to a larger little-endian operation. 3561 */ 3562 align = MO_ALIGN; 3563 if (a->selem == 1 && endian == MO_LE) { 3564 align = pow2_align(size); 3565 size = 3; 3566 } 3567 if (!s->align_mem) { 3568 align = 0; 3569 } 3570 mop = endian | size | align; 3571 3572 elements = (a->q ? 16 : 8) >> size; 3573 tcg_ebytes = tcg_constant_i64(1 << size); 3574 for (r = 0; r < a->rpt; r++) { 3575 int e; 3576 for (e = 0; e < elements; e++) { 3577 int xs; 3578 for (xs = 0; xs < a->selem; xs++) { 3579 int tt = (a->rt + r + xs) % 32; 3580 do_vec_st(s, tt, e, clean_addr, mop); 3581 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3582 } 3583 } 3584 } 3585 3586 if (a->p) { 3587 if (a->rm == 31) { 3588 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3589 } else { 3590 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3591 } 3592 } 3593 return true; 3594 } 3595 3596 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3597 { 3598 int xs, total, rt; 3599 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3600 MemOp mop; 3601 3602 if (!a->p && a->rm != 0) { 3603 return false; 3604 } 3605 if (!fp_access_check(s)) { 3606 return true; 3607 } 3608 3609 if (a->rn == 31) { 3610 gen_check_sp_alignment(s); 3611 } 3612 3613 total = a->selem << a->scale; 3614 tcg_rn = cpu_reg_sp(s, a->rn); 3615 3616 mop = finalize_memop_asimd(s, a->scale); 3617 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3618 total, mop); 3619 3620 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3621 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3622 do_vec_st(s, rt, a->index, clean_addr, mop); 3623 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3624 } 3625 3626 if (a->p) { 3627 if (a->rm == 31) { 3628 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3629 } else { 3630 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3631 } 3632 } 3633 return true; 3634 } 3635 3636 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3637 { 3638 int xs, total, rt; 3639 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3640 MemOp mop; 3641 3642 if (!a->p && a->rm != 0) { 3643 return false; 3644 } 3645 if (!fp_access_check(s)) { 3646 return true; 3647 } 3648 3649 if (a->rn == 31) { 3650 gen_check_sp_alignment(s); 3651 } 3652 3653 total = a->selem << a->scale; 3654 tcg_rn = cpu_reg_sp(s, a->rn); 3655 3656 mop = finalize_memop_asimd(s, a->scale); 3657 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3658 total, mop); 3659 3660 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3661 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3662 do_vec_ld(s, rt, a->index, clean_addr, mop); 3663 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3664 } 3665 3666 if (a->p) { 3667 if (a->rm == 31) { 3668 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3669 } else { 3670 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3671 } 3672 } 3673 return true; 3674 } 3675 3676 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3677 { 3678 int xs, total, rt; 3679 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3680 MemOp mop; 3681 3682 if (!a->p && a->rm != 0) { 3683 return false; 3684 } 3685 if (!fp_access_check(s)) { 3686 return true; 3687 } 3688 3689 if (a->rn == 31) { 3690 gen_check_sp_alignment(s); 3691 } 3692 3693 total = a->selem << a->scale; 3694 tcg_rn = cpu_reg_sp(s, a->rn); 3695 3696 mop = finalize_memop_asimd(s, a->scale); 3697 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3698 total, mop); 3699 3700 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3701 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3702 /* Load and replicate to all elements */ 3703 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3704 3705 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3706 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3707 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3708 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3709 } 3710 3711 if (a->p) { 3712 if (a->rm == 31) { 3713 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3714 } else { 3715 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3716 } 3717 } 3718 return true; 3719 } 3720 3721 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3722 { 3723 TCGv_i64 addr, clean_addr, tcg_rt; 3724 int size = 4 << s->dcz_blocksize; 3725 3726 if (!dc_isar_feature(aa64_mte, s)) { 3727 return false; 3728 } 3729 if (s->current_el == 0) { 3730 return false; 3731 } 3732 3733 if (a->rn == 31) { 3734 gen_check_sp_alignment(s); 3735 } 3736 3737 addr = read_cpu_reg_sp(s, a->rn, true); 3738 tcg_gen_addi_i64(addr, addr, a->imm); 3739 tcg_rt = cpu_reg(s, a->rt); 3740 3741 if (s->ata[0]) { 3742 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3743 } 3744 /* 3745 * The non-tags portion of STZGM is mostly like DC_ZVA, 3746 * except the alignment happens before the access. 3747 */ 3748 clean_addr = clean_data_tbi(s, addr); 3749 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3750 gen_helper_dc_zva(tcg_env, clean_addr); 3751 return true; 3752 } 3753 3754 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3755 { 3756 TCGv_i64 addr, clean_addr, tcg_rt; 3757 3758 if (!dc_isar_feature(aa64_mte, s)) { 3759 return false; 3760 } 3761 if (s->current_el == 0) { 3762 return false; 3763 } 3764 3765 if (a->rn == 31) { 3766 gen_check_sp_alignment(s); 3767 } 3768 3769 addr = read_cpu_reg_sp(s, a->rn, true); 3770 tcg_gen_addi_i64(addr, addr, a->imm); 3771 tcg_rt = cpu_reg(s, a->rt); 3772 3773 if (s->ata[0]) { 3774 gen_helper_stgm(tcg_env, addr, tcg_rt); 3775 } else { 3776 MMUAccessType acc = MMU_DATA_STORE; 3777 int size = 4 << s->gm_blocksize; 3778 3779 clean_addr = clean_data_tbi(s, addr); 3780 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3781 gen_probe_access(s, clean_addr, acc, size); 3782 } 3783 return true; 3784 } 3785 3786 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3787 { 3788 TCGv_i64 addr, clean_addr, tcg_rt; 3789 3790 if (!dc_isar_feature(aa64_mte, s)) { 3791 return false; 3792 } 3793 if (s->current_el == 0) { 3794 return false; 3795 } 3796 3797 if (a->rn == 31) { 3798 gen_check_sp_alignment(s); 3799 } 3800 3801 addr = read_cpu_reg_sp(s, a->rn, true); 3802 tcg_gen_addi_i64(addr, addr, a->imm); 3803 tcg_rt = cpu_reg(s, a->rt); 3804 3805 if (s->ata[0]) { 3806 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3807 } else { 3808 MMUAccessType acc = MMU_DATA_LOAD; 3809 int size = 4 << s->gm_blocksize; 3810 3811 clean_addr = clean_data_tbi(s, addr); 3812 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3813 gen_probe_access(s, clean_addr, acc, size); 3814 /* The result tags are zeros. */ 3815 tcg_gen_movi_i64(tcg_rt, 0); 3816 } 3817 return true; 3818 } 3819 3820 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3821 { 3822 TCGv_i64 addr, clean_addr, tcg_rt; 3823 3824 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3825 return false; 3826 } 3827 3828 if (a->rn == 31) { 3829 gen_check_sp_alignment(s); 3830 } 3831 3832 addr = read_cpu_reg_sp(s, a->rn, true); 3833 if (!a->p) { 3834 /* pre-index or signed offset */ 3835 tcg_gen_addi_i64(addr, addr, a->imm); 3836 } 3837 3838 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3839 tcg_rt = cpu_reg(s, a->rt); 3840 if (s->ata[0]) { 3841 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 3842 } else { 3843 /* 3844 * Tag access disabled: we must check for aborts on the load 3845 * load from [rn+offset], and then insert a 0 tag into rt. 3846 */ 3847 clean_addr = clean_data_tbi(s, addr); 3848 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3849 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3850 } 3851 3852 if (a->w) { 3853 /* pre-index or post-index */ 3854 if (a->p) { 3855 /* post-index */ 3856 tcg_gen_addi_i64(addr, addr, a->imm); 3857 } 3858 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3859 } 3860 return true; 3861 } 3862 3863 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3864 { 3865 TCGv_i64 addr, tcg_rt; 3866 3867 if (a->rn == 31) { 3868 gen_check_sp_alignment(s); 3869 } 3870 3871 addr = read_cpu_reg_sp(s, a->rn, true); 3872 if (!a->p) { 3873 /* pre-index or signed offset */ 3874 tcg_gen_addi_i64(addr, addr, a->imm); 3875 } 3876 tcg_rt = cpu_reg_sp(s, a->rt); 3877 if (!s->ata[0]) { 3878 /* 3879 * For STG and ST2G, we need to check alignment and probe memory. 3880 * TODO: For STZG and STZ2G, we could rely on the stores below, 3881 * at least for system mode; user-only won't enforce alignment. 3882 */ 3883 if (is_pair) { 3884 gen_helper_st2g_stub(tcg_env, addr); 3885 } else { 3886 gen_helper_stg_stub(tcg_env, addr); 3887 } 3888 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3889 if (is_pair) { 3890 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 3891 } else { 3892 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 3893 } 3894 } else { 3895 if (is_pair) { 3896 gen_helper_st2g(tcg_env, addr, tcg_rt); 3897 } else { 3898 gen_helper_stg(tcg_env, addr, tcg_rt); 3899 } 3900 } 3901 3902 if (is_zero) { 3903 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 3904 TCGv_i64 zero64 = tcg_constant_i64(0); 3905 TCGv_i128 zero128 = tcg_temp_new_i128(); 3906 int mem_index = get_mem_index(s); 3907 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 3908 3909 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 3910 3911 /* This is 1 or 2 atomic 16-byte operations. */ 3912 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3913 if (is_pair) { 3914 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 3915 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3916 } 3917 } 3918 3919 if (a->w) { 3920 /* pre-index or post-index */ 3921 if (a->p) { 3922 /* post-index */ 3923 tcg_gen_addi_i64(addr, addr, a->imm); 3924 } 3925 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3926 } 3927 return true; 3928 } 3929 3930 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 3931 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 3932 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 3933 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 3934 3935 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 3936 3937 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 3938 bool is_setg, SetFn fn) 3939 { 3940 int memidx; 3941 uint32_t syndrome, desc = 0; 3942 3943 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 3944 return false; 3945 } 3946 3947 /* 3948 * UNPREDICTABLE cases: we choose to UNDEF, which allows 3949 * us to pull this check before the CheckMOPSEnabled() test 3950 * (which we do in the helper function) 3951 */ 3952 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 3953 a->rd == 31 || a->rn == 31) { 3954 return false; 3955 } 3956 3957 memidx = get_a64_user_mem_index(s, a->unpriv); 3958 3959 /* 3960 * We pass option_a == true, matching our implementation; 3961 * we pass wrong_option == false: helper function may set that bit. 3962 */ 3963 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 3964 is_epilogue, false, true, a->rd, a->rs, a->rn); 3965 3966 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 3967 /* We may need to do MTE tag checking, so assemble the descriptor */ 3968 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 3969 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 3970 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 3971 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 3972 } 3973 /* The helper function always needs the memidx even with MTE disabled */ 3974 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 3975 3976 /* 3977 * The helper needs the register numbers, but since they're in 3978 * the syndrome anyway, we let it extract them from there rather 3979 * than passing in an extra three integer arguments. 3980 */ 3981 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 3982 return true; 3983 } 3984 3985 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 3986 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 3987 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 3988 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 3989 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 3990 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 3991 3992 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 3993 3994 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 3995 { 3996 int rmemidx, wmemidx; 3997 uint32_t syndrome, rdesc = 0, wdesc = 0; 3998 bool wunpriv = extract32(a->options, 0, 1); 3999 bool runpriv = extract32(a->options, 1, 1); 4000 4001 /* 4002 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4003 * us to pull this check before the CheckMOPSEnabled() test 4004 * (which we do in the helper function) 4005 */ 4006 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4007 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4008 return false; 4009 } 4010 4011 rmemidx = get_a64_user_mem_index(s, runpriv); 4012 wmemidx = get_a64_user_mem_index(s, wunpriv); 4013 4014 /* 4015 * We pass option_a == true, matching our implementation; 4016 * we pass wrong_option == false: helper function may set that bit. 4017 */ 4018 syndrome = syn_mop(false, false, a->options, is_epilogue, 4019 false, true, a->rd, a->rs, a->rn); 4020 4021 /* If we need to do MTE tag checking, assemble the descriptors */ 4022 if (s->mte_active[runpriv]) { 4023 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4024 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4025 } 4026 if (s->mte_active[wunpriv]) { 4027 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4028 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4029 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4030 } 4031 /* The helper function needs these parts of the descriptor regardless */ 4032 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4033 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4034 4035 /* 4036 * The helper needs the register numbers, but since they're in 4037 * the syndrome anyway, we let it extract them from there rather 4038 * than passing in an extra three integer arguments. 4039 */ 4040 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4041 tcg_constant_i32(rdesc)); 4042 return true; 4043 } 4044 4045 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4046 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4047 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4048 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4049 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4050 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4051 4052 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4053 4054 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4055 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4056 { 4057 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4058 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4059 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4060 4061 fn(tcg_rd, tcg_rn, tcg_imm); 4062 if (!a->sf) { 4063 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4064 } 4065 return true; 4066 } 4067 4068 /* 4069 * PC-rel. addressing 4070 */ 4071 4072 static bool trans_ADR(DisasContext *s, arg_ri *a) 4073 { 4074 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4075 return true; 4076 } 4077 4078 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4079 { 4080 int64_t offset = (int64_t)a->imm << 12; 4081 4082 /* The page offset is ok for CF_PCREL. */ 4083 offset -= s->pc_curr & 0xfff; 4084 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4085 return true; 4086 } 4087 4088 /* 4089 * Add/subtract (immediate) 4090 */ 4091 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4092 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4093 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4094 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4095 4096 /* 4097 * Add/subtract (immediate, with tags) 4098 */ 4099 4100 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4101 bool sub_op) 4102 { 4103 TCGv_i64 tcg_rn, tcg_rd; 4104 int imm; 4105 4106 imm = a->uimm6 << LOG2_TAG_GRANULE; 4107 if (sub_op) { 4108 imm = -imm; 4109 } 4110 4111 tcg_rn = cpu_reg_sp(s, a->rn); 4112 tcg_rd = cpu_reg_sp(s, a->rd); 4113 4114 if (s->ata[0]) { 4115 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4116 tcg_constant_i32(imm), 4117 tcg_constant_i32(a->uimm4)); 4118 } else { 4119 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4120 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4121 } 4122 return true; 4123 } 4124 4125 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4126 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4127 4128 /* The input should be a value in the bottom e bits (with higher 4129 * bits zero); returns that value replicated into every element 4130 * of size e in a 64 bit integer. 4131 */ 4132 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4133 { 4134 assert(e != 0); 4135 while (e < 64) { 4136 mask |= mask << e; 4137 e *= 2; 4138 } 4139 return mask; 4140 } 4141 4142 /* 4143 * Logical (immediate) 4144 */ 4145 4146 /* 4147 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4148 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4149 * value (ie should cause a guest UNDEF exception), and true if they are 4150 * valid, in which case the decoded bit pattern is written to result. 4151 */ 4152 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4153 unsigned int imms, unsigned int immr) 4154 { 4155 uint64_t mask; 4156 unsigned e, levels, s, r; 4157 int len; 4158 4159 assert(immn < 2 && imms < 64 && immr < 64); 4160 4161 /* The bit patterns we create here are 64 bit patterns which 4162 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4163 * 64 bits each. Each element contains the same value: a run 4164 * of between 1 and e-1 non-zero bits, rotated within the 4165 * element by between 0 and e-1 bits. 4166 * 4167 * The element size and run length are encoded into immn (1 bit) 4168 * and imms (6 bits) as follows: 4169 * 64 bit elements: immn = 1, imms = <length of run - 1> 4170 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4171 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4172 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4173 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4174 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4175 * Notice that immn = 0, imms = 11111x is the only combination 4176 * not covered by one of the above options; this is reserved. 4177 * Further, <length of run - 1> all-ones is a reserved pattern. 4178 * 4179 * In all cases the rotation is by immr % e (and immr is 6 bits). 4180 */ 4181 4182 /* First determine the element size */ 4183 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4184 if (len < 1) { 4185 /* This is the immn == 0, imms == 0x11111x case */ 4186 return false; 4187 } 4188 e = 1 << len; 4189 4190 levels = e - 1; 4191 s = imms & levels; 4192 r = immr & levels; 4193 4194 if (s == levels) { 4195 /* <length of run - 1> mustn't be all-ones. */ 4196 return false; 4197 } 4198 4199 /* Create the value of one element: s+1 set bits rotated 4200 * by r within the element (which is e bits wide)... 4201 */ 4202 mask = MAKE_64BIT_MASK(0, s + 1); 4203 if (r) { 4204 mask = (mask >> r) | (mask << (e - r)); 4205 mask &= MAKE_64BIT_MASK(0, e); 4206 } 4207 /* ...then replicate the element over the whole 64 bit value */ 4208 mask = bitfield_replicate(mask, e); 4209 *result = mask; 4210 return true; 4211 } 4212 4213 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4214 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4215 { 4216 TCGv_i64 tcg_rd, tcg_rn; 4217 uint64_t imm; 4218 4219 /* Some immediate field values are reserved. */ 4220 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4221 extract32(a->dbm, 0, 6), 4222 extract32(a->dbm, 6, 6))) { 4223 return false; 4224 } 4225 if (!a->sf) { 4226 imm &= 0xffffffffull; 4227 } 4228 4229 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4230 tcg_rn = cpu_reg(s, a->rn); 4231 4232 fn(tcg_rd, tcg_rn, imm); 4233 if (set_cc) { 4234 gen_logic_CC(a->sf, tcg_rd); 4235 } 4236 if (!a->sf) { 4237 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4238 } 4239 return true; 4240 } 4241 4242 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4243 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4244 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4245 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4246 4247 /* 4248 * Move wide (immediate) 4249 */ 4250 4251 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4252 { 4253 int pos = a->hw << 4; 4254 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4255 return true; 4256 } 4257 4258 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4259 { 4260 int pos = a->hw << 4; 4261 uint64_t imm = a->imm; 4262 4263 imm = ~(imm << pos); 4264 if (!a->sf) { 4265 imm = (uint32_t)imm; 4266 } 4267 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4268 return true; 4269 } 4270 4271 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4272 { 4273 int pos = a->hw << 4; 4274 TCGv_i64 tcg_rd, tcg_im; 4275 4276 tcg_rd = cpu_reg(s, a->rd); 4277 tcg_im = tcg_constant_i64(a->imm); 4278 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4279 if (!a->sf) { 4280 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4281 } 4282 return true; 4283 } 4284 4285 /* 4286 * Bitfield 4287 */ 4288 4289 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4290 { 4291 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4292 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4293 unsigned int bitsize = a->sf ? 64 : 32; 4294 unsigned int ri = a->immr; 4295 unsigned int si = a->imms; 4296 unsigned int pos, len; 4297 4298 if (si >= ri) { 4299 /* Wd<s-r:0> = Wn<s:r> */ 4300 len = (si - ri) + 1; 4301 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4302 if (!a->sf) { 4303 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4304 } 4305 } else { 4306 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4307 len = si + 1; 4308 pos = (bitsize - ri) & (bitsize - 1); 4309 4310 if (len < ri) { 4311 /* 4312 * Sign extend the destination field from len to fill the 4313 * balance of the word. Let the deposit below insert all 4314 * of those sign bits. 4315 */ 4316 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4317 len = ri; 4318 } 4319 4320 /* 4321 * We start with zero, and we haven't modified any bits outside 4322 * bitsize, therefore no final zero-extension is unneeded for !sf. 4323 */ 4324 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4325 } 4326 return true; 4327 } 4328 4329 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4330 { 4331 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4332 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4333 unsigned int bitsize = a->sf ? 64 : 32; 4334 unsigned int ri = a->immr; 4335 unsigned int si = a->imms; 4336 unsigned int pos, len; 4337 4338 tcg_rd = cpu_reg(s, a->rd); 4339 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4340 4341 if (si >= ri) { 4342 /* Wd<s-r:0> = Wn<s:r> */ 4343 len = (si - ri) + 1; 4344 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4345 } else { 4346 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4347 len = si + 1; 4348 pos = (bitsize - ri) & (bitsize - 1); 4349 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4350 } 4351 return true; 4352 } 4353 4354 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4355 { 4356 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4357 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4358 unsigned int bitsize = a->sf ? 64 : 32; 4359 unsigned int ri = a->immr; 4360 unsigned int si = a->imms; 4361 unsigned int pos, len; 4362 4363 tcg_rd = cpu_reg(s, a->rd); 4364 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4365 4366 if (si >= ri) { 4367 /* Wd<s-r:0> = Wn<s:r> */ 4368 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4369 len = (si - ri) + 1; 4370 pos = 0; 4371 } else { 4372 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4373 len = si + 1; 4374 pos = (bitsize - ri) & (bitsize - 1); 4375 } 4376 4377 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4378 if (!a->sf) { 4379 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4380 } 4381 return true; 4382 } 4383 4384 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4385 { 4386 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4387 4388 tcg_rd = cpu_reg(s, a->rd); 4389 4390 if (unlikely(a->imm == 0)) { 4391 /* 4392 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4393 * so an extract from bit 0 is a special case. 4394 */ 4395 if (a->sf) { 4396 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4397 } else { 4398 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4399 } 4400 } else { 4401 tcg_rm = cpu_reg(s, a->rm); 4402 tcg_rn = cpu_reg(s, a->rn); 4403 4404 if (a->sf) { 4405 /* Specialization to ROR happens in EXTRACT2. */ 4406 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4407 } else { 4408 TCGv_i32 t0 = tcg_temp_new_i32(); 4409 4410 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4411 if (a->rm == a->rn) { 4412 tcg_gen_rotri_i32(t0, t0, a->imm); 4413 } else { 4414 TCGv_i32 t1 = tcg_temp_new_i32(); 4415 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4416 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4417 } 4418 tcg_gen_extu_i32_i64(tcg_rd, t0); 4419 } 4420 } 4421 return true; 4422 } 4423 4424 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4425 * Note that it is the caller's responsibility to ensure that the 4426 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4427 * mandated semantics for out of range shifts. 4428 */ 4429 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4430 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4431 { 4432 switch (shift_type) { 4433 case A64_SHIFT_TYPE_LSL: 4434 tcg_gen_shl_i64(dst, src, shift_amount); 4435 break; 4436 case A64_SHIFT_TYPE_LSR: 4437 tcg_gen_shr_i64(dst, src, shift_amount); 4438 break; 4439 case A64_SHIFT_TYPE_ASR: 4440 if (!sf) { 4441 tcg_gen_ext32s_i64(dst, src); 4442 } 4443 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4444 break; 4445 case A64_SHIFT_TYPE_ROR: 4446 if (sf) { 4447 tcg_gen_rotr_i64(dst, src, shift_amount); 4448 } else { 4449 TCGv_i32 t0, t1; 4450 t0 = tcg_temp_new_i32(); 4451 t1 = tcg_temp_new_i32(); 4452 tcg_gen_extrl_i64_i32(t0, src); 4453 tcg_gen_extrl_i64_i32(t1, shift_amount); 4454 tcg_gen_rotr_i32(t0, t0, t1); 4455 tcg_gen_extu_i32_i64(dst, t0); 4456 } 4457 break; 4458 default: 4459 assert(FALSE); /* all shift types should be handled */ 4460 break; 4461 } 4462 4463 if (!sf) { /* zero extend final result */ 4464 tcg_gen_ext32u_i64(dst, dst); 4465 } 4466 } 4467 4468 /* Shift a TCGv src by immediate, put result in dst. 4469 * The shift amount must be in range (this should always be true as the 4470 * relevant instructions will UNDEF on bad shift immediates). 4471 */ 4472 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4473 enum a64_shift_type shift_type, unsigned int shift_i) 4474 { 4475 assert(shift_i < (sf ? 64 : 32)); 4476 4477 if (shift_i == 0) { 4478 tcg_gen_mov_i64(dst, src); 4479 } else { 4480 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4481 } 4482 } 4483 4484 /* Logical (shifted register) 4485 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4486 * +----+-----+-----------+-------+---+------+--------+------+------+ 4487 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4488 * +----+-----+-----------+-------+---+------+--------+------+------+ 4489 */ 4490 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4491 { 4492 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4493 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4494 4495 sf = extract32(insn, 31, 1); 4496 opc = extract32(insn, 29, 2); 4497 shift_type = extract32(insn, 22, 2); 4498 invert = extract32(insn, 21, 1); 4499 rm = extract32(insn, 16, 5); 4500 shift_amount = extract32(insn, 10, 6); 4501 rn = extract32(insn, 5, 5); 4502 rd = extract32(insn, 0, 5); 4503 4504 if (!sf && (shift_amount & (1 << 5))) { 4505 unallocated_encoding(s); 4506 return; 4507 } 4508 4509 tcg_rd = cpu_reg(s, rd); 4510 4511 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4512 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4513 * register-register MOV and MVN, so it is worth special casing. 4514 */ 4515 tcg_rm = cpu_reg(s, rm); 4516 if (invert) { 4517 tcg_gen_not_i64(tcg_rd, tcg_rm); 4518 if (!sf) { 4519 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4520 } 4521 } else { 4522 if (sf) { 4523 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4524 } else { 4525 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4526 } 4527 } 4528 return; 4529 } 4530 4531 tcg_rm = read_cpu_reg(s, rm, sf); 4532 4533 if (shift_amount) { 4534 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4535 } 4536 4537 tcg_rn = cpu_reg(s, rn); 4538 4539 switch (opc | (invert << 2)) { 4540 case 0: /* AND */ 4541 case 3: /* ANDS */ 4542 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4543 break; 4544 case 1: /* ORR */ 4545 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4546 break; 4547 case 2: /* EOR */ 4548 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4549 break; 4550 case 4: /* BIC */ 4551 case 7: /* BICS */ 4552 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4553 break; 4554 case 5: /* ORN */ 4555 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4556 break; 4557 case 6: /* EON */ 4558 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4559 break; 4560 default: 4561 assert(FALSE); 4562 break; 4563 } 4564 4565 if (!sf) { 4566 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4567 } 4568 4569 if (opc == 3) { 4570 gen_logic_CC(sf, tcg_rd); 4571 } 4572 } 4573 4574 /* 4575 * Add/subtract (extended register) 4576 * 4577 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4578 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4579 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4580 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4581 * 4582 * sf: 0 -> 32bit, 1 -> 64bit 4583 * op: 0 -> add , 1 -> sub 4584 * S: 1 -> set flags 4585 * opt: 00 4586 * option: extension type (see DecodeRegExtend) 4587 * imm3: optional shift to Rm 4588 * 4589 * Rd = Rn + LSL(extend(Rm), amount) 4590 */ 4591 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4592 { 4593 int rd = extract32(insn, 0, 5); 4594 int rn = extract32(insn, 5, 5); 4595 int imm3 = extract32(insn, 10, 3); 4596 int option = extract32(insn, 13, 3); 4597 int rm = extract32(insn, 16, 5); 4598 int opt = extract32(insn, 22, 2); 4599 bool setflags = extract32(insn, 29, 1); 4600 bool sub_op = extract32(insn, 30, 1); 4601 bool sf = extract32(insn, 31, 1); 4602 4603 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4604 TCGv_i64 tcg_rd; 4605 TCGv_i64 tcg_result; 4606 4607 if (imm3 > 4 || opt != 0) { 4608 unallocated_encoding(s); 4609 return; 4610 } 4611 4612 /* non-flag setting ops may use SP */ 4613 if (!setflags) { 4614 tcg_rd = cpu_reg_sp(s, rd); 4615 } else { 4616 tcg_rd = cpu_reg(s, rd); 4617 } 4618 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4619 4620 tcg_rm = read_cpu_reg(s, rm, sf); 4621 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4622 4623 tcg_result = tcg_temp_new_i64(); 4624 4625 if (!setflags) { 4626 if (sub_op) { 4627 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4628 } else { 4629 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4630 } 4631 } else { 4632 if (sub_op) { 4633 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4634 } else { 4635 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4636 } 4637 } 4638 4639 if (sf) { 4640 tcg_gen_mov_i64(tcg_rd, tcg_result); 4641 } else { 4642 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4643 } 4644 } 4645 4646 /* 4647 * Add/subtract (shifted register) 4648 * 4649 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4650 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4651 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4652 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4653 * 4654 * sf: 0 -> 32bit, 1 -> 64bit 4655 * op: 0 -> add , 1 -> sub 4656 * S: 1 -> set flags 4657 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4658 * imm6: Shift amount to apply to Rm before the add/sub 4659 */ 4660 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4661 { 4662 int rd = extract32(insn, 0, 5); 4663 int rn = extract32(insn, 5, 5); 4664 int imm6 = extract32(insn, 10, 6); 4665 int rm = extract32(insn, 16, 5); 4666 int shift_type = extract32(insn, 22, 2); 4667 bool setflags = extract32(insn, 29, 1); 4668 bool sub_op = extract32(insn, 30, 1); 4669 bool sf = extract32(insn, 31, 1); 4670 4671 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4672 TCGv_i64 tcg_rn, tcg_rm; 4673 TCGv_i64 tcg_result; 4674 4675 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4676 unallocated_encoding(s); 4677 return; 4678 } 4679 4680 tcg_rn = read_cpu_reg(s, rn, sf); 4681 tcg_rm = read_cpu_reg(s, rm, sf); 4682 4683 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4684 4685 tcg_result = tcg_temp_new_i64(); 4686 4687 if (!setflags) { 4688 if (sub_op) { 4689 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4690 } else { 4691 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4692 } 4693 } else { 4694 if (sub_op) { 4695 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4696 } else { 4697 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4698 } 4699 } 4700 4701 if (sf) { 4702 tcg_gen_mov_i64(tcg_rd, tcg_result); 4703 } else { 4704 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4705 } 4706 } 4707 4708 /* Data-processing (3 source) 4709 * 4710 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4711 * +--+------+-----------+------+------+----+------+------+------+ 4712 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4713 * +--+------+-----------+------+------+----+------+------+------+ 4714 */ 4715 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4716 { 4717 int rd = extract32(insn, 0, 5); 4718 int rn = extract32(insn, 5, 5); 4719 int ra = extract32(insn, 10, 5); 4720 int rm = extract32(insn, 16, 5); 4721 int op_id = (extract32(insn, 29, 3) << 4) | 4722 (extract32(insn, 21, 3) << 1) | 4723 extract32(insn, 15, 1); 4724 bool sf = extract32(insn, 31, 1); 4725 bool is_sub = extract32(op_id, 0, 1); 4726 bool is_high = extract32(op_id, 2, 1); 4727 bool is_signed = false; 4728 TCGv_i64 tcg_op1; 4729 TCGv_i64 tcg_op2; 4730 TCGv_i64 tcg_tmp; 4731 4732 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4733 switch (op_id) { 4734 case 0x42: /* SMADDL */ 4735 case 0x43: /* SMSUBL */ 4736 case 0x44: /* SMULH */ 4737 is_signed = true; 4738 break; 4739 case 0x0: /* MADD (32bit) */ 4740 case 0x1: /* MSUB (32bit) */ 4741 case 0x40: /* MADD (64bit) */ 4742 case 0x41: /* MSUB (64bit) */ 4743 case 0x4a: /* UMADDL */ 4744 case 0x4b: /* UMSUBL */ 4745 case 0x4c: /* UMULH */ 4746 break; 4747 default: 4748 unallocated_encoding(s); 4749 return; 4750 } 4751 4752 if (is_high) { 4753 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4754 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4755 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4756 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4757 4758 if (is_signed) { 4759 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4760 } else { 4761 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4762 } 4763 return; 4764 } 4765 4766 tcg_op1 = tcg_temp_new_i64(); 4767 tcg_op2 = tcg_temp_new_i64(); 4768 tcg_tmp = tcg_temp_new_i64(); 4769 4770 if (op_id < 0x42) { 4771 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4772 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4773 } else { 4774 if (is_signed) { 4775 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4776 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4777 } else { 4778 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4779 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4780 } 4781 } 4782 4783 if (ra == 31 && !is_sub) { 4784 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4785 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4786 } else { 4787 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4788 if (is_sub) { 4789 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4790 } else { 4791 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4792 } 4793 } 4794 4795 if (!sf) { 4796 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4797 } 4798 } 4799 4800 /* Add/subtract (with carry) 4801 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4802 * +--+--+--+------------------------+------+-------------+------+-----+ 4803 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4804 * +--+--+--+------------------------+------+-------------+------+-----+ 4805 */ 4806 4807 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4808 { 4809 unsigned int sf, op, setflags, rm, rn, rd; 4810 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4811 4812 sf = extract32(insn, 31, 1); 4813 op = extract32(insn, 30, 1); 4814 setflags = extract32(insn, 29, 1); 4815 rm = extract32(insn, 16, 5); 4816 rn = extract32(insn, 5, 5); 4817 rd = extract32(insn, 0, 5); 4818 4819 tcg_rd = cpu_reg(s, rd); 4820 tcg_rn = cpu_reg(s, rn); 4821 4822 if (op) { 4823 tcg_y = tcg_temp_new_i64(); 4824 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4825 } else { 4826 tcg_y = cpu_reg(s, rm); 4827 } 4828 4829 if (setflags) { 4830 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4831 } else { 4832 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4833 } 4834 } 4835 4836 /* 4837 * Rotate right into flags 4838 * 31 30 29 21 15 10 5 4 0 4839 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4840 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4841 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4842 */ 4843 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4844 { 4845 int mask = extract32(insn, 0, 4); 4846 int o2 = extract32(insn, 4, 1); 4847 int rn = extract32(insn, 5, 5); 4848 int imm6 = extract32(insn, 15, 6); 4849 int sf_op_s = extract32(insn, 29, 3); 4850 TCGv_i64 tcg_rn; 4851 TCGv_i32 nzcv; 4852 4853 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4854 unallocated_encoding(s); 4855 return; 4856 } 4857 4858 tcg_rn = read_cpu_reg(s, rn, 1); 4859 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4860 4861 nzcv = tcg_temp_new_i32(); 4862 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4863 4864 if (mask & 8) { /* N */ 4865 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4866 } 4867 if (mask & 4) { /* Z */ 4868 tcg_gen_not_i32(cpu_ZF, nzcv); 4869 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4870 } 4871 if (mask & 2) { /* C */ 4872 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4873 } 4874 if (mask & 1) { /* V */ 4875 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4876 } 4877 } 4878 4879 /* 4880 * Evaluate into flags 4881 * 31 30 29 21 15 14 10 5 4 0 4882 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4883 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4884 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4885 */ 4886 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4887 { 4888 int o3_mask = extract32(insn, 0, 5); 4889 int rn = extract32(insn, 5, 5); 4890 int o2 = extract32(insn, 15, 6); 4891 int sz = extract32(insn, 14, 1); 4892 int sf_op_s = extract32(insn, 29, 3); 4893 TCGv_i32 tmp; 4894 int shift; 4895 4896 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4897 !dc_isar_feature(aa64_condm_4, s)) { 4898 unallocated_encoding(s); 4899 return; 4900 } 4901 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4902 4903 tmp = tcg_temp_new_i32(); 4904 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4905 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4906 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4907 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4908 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4909 } 4910 4911 /* Conditional compare (immediate / register) 4912 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4913 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4914 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4915 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4916 * [1] y [0] [0] 4917 */ 4918 static void disas_cc(DisasContext *s, uint32_t insn) 4919 { 4920 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4921 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4922 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4923 DisasCompare c; 4924 4925 if (!extract32(insn, 29, 1)) { 4926 unallocated_encoding(s); 4927 return; 4928 } 4929 if (insn & (1 << 10 | 1 << 4)) { 4930 unallocated_encoding(s); 4931 return; 4932 } 4933 sf = extract32(insn, 31, 1); 4934 op = extract32(insn, 30, 1); 4935 is_imm = extract32(insn, 11, 1); 4936 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 4937 cond = extract32(insn, 12, 4); 4938 rn = extract32(insn, 5, 5); 4939 nzcv = extract32(insn, 0, 4); 4940 4941 /* Set T0 = !COND. */ 4942 tcg_t0 = tcg_temp_new_i32(); 4943 arm_test_cc(&c, cond); 4944 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 4945 4946 /* Load the arguments for the new comparison. */ 4947 if (is_imm) { 4948 tcg_y = tcg_temp_new_i64(); 4949 tcg_gen_movi_i64(tcg_y, y); 4950 } else { 4951 tcg_y = cpu_reg(s, y); 4952 } 4953 tcg_rn = cpu_reg(s, rn); 4954 4955 /* Set the flags for the new comparison. */ 4956 tcg_tmp = tcg_temp_new_i64(); 4957 if (op) { 4958 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4959 } else { 4960 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4961 } 4962 4963 /* If COND was false, force the flags to #nzcv. Compute two masks 4964 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 4965 * For tcg hosts that support ANDC, we can make do with just T1. 4966 * In either case, allow the tcg optimizer to delete any unused mask. 4967 */ 4968 tcg_t1 = tcg_temp_new_i32(); 4969 tcg_t2 = tcg_temp_new_i32(); 4970 tcg_gen_neg_i32(tcg_t1, tcg_t0); 4971 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 4972 4973 if (nzcv & 8) { /* N */ 4974 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 4975 } else { 4976 if (TCG_TARGET_HAS_andc_i32) { 4977 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 4978 } else { 4979 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 4980 } 4981 } 4982 if (nzcv & 4) { /* Z */ 4983 if (TCG_TARGET_HAS_andc_i32) { 4984 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 4985 } else { 4986 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 4987 } 4988 } else { 4989 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 4990 } 4991 if (nzcv & 2) { /* C */ 4992 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 4993 } else { 4994 if (TCG_TARGET_HAS_andc_i32) { 4995 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 4996 } else { 4997 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 4998 } 4999 } 5000 if (nzcv & 1) { /* V */ 5001 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5002 } else { 5003 if (TCG_TARGET_HAS_andc_i32) { 5004 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5005 } else { 5006 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5007 } 5008 } 5009 } 5010 5011 /* Conditional select 5012 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5013 * +----+----+---+-----------------+------+------+-----+------+------+ 5014 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5015 * +----+----+---+-----------------+------+------+-----+------+------+ 5016 */ 5017 static void disas_cond_select(DisasContext *s, uint32_t insn) 5018 { 5019 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5020 TCGv_i64 tcg_rd, zero; 5021 DisasCompare64 c; 5022 5023 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5024 /* S == 1 or op2<1> == 1 */ 5025 unallocated_encoding(s); 5026 return; 5027 } 5028 sf = extract32(insn, 31, 1); 5029 else_inv = extract32(insn, 30, 1); 5030 rm = extract32(insn, 16, 5); 5031 cond = extract32(insn, 12, 4); 5032 else_inc = extract32(insn, 10, 1); 5033 rn = extract32(insn, 5, 5); 5034 rd = extract32(insn, 0, 5); 5035 5036 tcg_rd = cpu_reg(s, rd); 5037 5038 a64_test_cc(&c, cond); 5039 zero = tcg_constant_i64(0); 5040 5041 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5042 /* CSET & CSETM. */ 5043 if (else_inv) { 5044 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5045 tcg_rd, c.value, zero); 5046 } else { 5047 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5048 tcg_rd, c.value, zero); 5049 } 5050 } else { 5051 TCGv_i64 t_true = cpu_reg(s, rn); 5052 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5053 if (else_inv && else_inc) { 5054 tcg_gen_neg_i64(t_false, t_false); 5055 } else if (else_inv) { 5056 tcg_gen_not_i64(t_false, t_false); 5057 } else if (else_inc) { 5058 tcg_gen_addi_i64(t_false, t_false, 1); 5059 } 5060 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5061 } 5062 5063 if (!sf) { 5064 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5065 } 5066 } 5067 5068 static void handle_clz(DisasContext *s, unsigned int sf, 5069 unsigned int rn, unsigned int rd) 5070 { 5071 TCGv_i64 tcg_rd, tcg_rn; 5072 tcg_rd = cpu_reg(s, rd); 5073 tcg_rn = cpu_reg(s, rn); 5074 5075 if (sf) { 5076 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5077 } else { 5078 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5079 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5080 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5081 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5082 } 5083 } 5084 5085 static void handle_cls(DisasContext *s, unsigned int sf, 5086 unsigned int rn, unsigned int rd) 5087 { 5088 TCGv_i64 tcg_rd, tcg_rn; 5089 tcg_rd = cpu_reg(s, rd); 5090 tcg_rn = cpu_reg(s, rn); 5091 5092 if (sf) { 5093 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5094 } else { 5095 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5096 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5097 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5098 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5099 } 5100 } 5101 5102 static void handle_rbit(DisasContext *s, unsigned int sf, 5103 unsigned int rn, unsigned int rd) 5104 { 5105 TCGv_i64 tcg_rd, tcg_rn; 5106 tcg_rd = cpu_reg(s, rd); 5107 tcg_rn = cpu_reg(s, rn); 5108 5109 if (sf) { 5110 gen_helper_rbit64(tcg_rd, tcg_rn); 5111 } else { 5112 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5113 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5114 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5115 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5116 } 5117 } 5118 5119 /* REV with sf==1, opcode==3 ("REV64") */ 5120 static void handle_rev64(DisasContext *s, unsigned int sf, 5121 unsigned int rn, unsigned int rd) 5122 { 5123 if (!sf) { 5124 unallocated_encoding(s); 5125 return; 5126 } 5127 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5128 } 5129 5130 /* REV with sf==0, opcode==2 5131 * REV32 (sf==1, opcode==2) 5132 */ 5133 static void handle_rev32(DisasContext *s, unsigned int sf, 5134 unsigned int rn, unsigned int rd) 5135 { 5136 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5137 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5138 5139 if (sf) { 5140 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5141 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5142 } else { 5143 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5144 } 5145 } 5146 5147 /* REV16 (opcode==1) */ 5148 static void handle_rev16(DisasContext *s, unsigned int sf, 5149 unsigned int rn, unsigned int rd) 5150 { 5151 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5152 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5153 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5154 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5155 5156 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5157 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5158 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5159 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5160 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5161 } 5162 5163 /* Data-processing (1 source) 5164 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5165 * +----+---+---+-----------------+---------+--------+------+------+ 5166 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5167 * +----+---+---+-----------------+---------+--------+------+------+ 5168 */ 5169 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5170 { 5171 unsigned int sf, opcode, opcode2, rn, rd; 5172 TCGv_i64 tcg_rd; 5173 5174 if (extract32(insn, 29, 1)) { 5175 unallocated_encoding(s); 5176 return; 5177 } 5178 5179 sf = extract32(insn, 31, 1); 5180 opcode = extract32(insn, 10, 6); 5181 opcode2 = extract32(insn, 16, 5); 5182 rn = extract32(insn, 5, 5); 5183 rd = extract32(insn, 0, 5); 5184 5185 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5186 5187 switch (MAP(sf, opcode2, opcode)) { 5188 case MAP(0, 0x00, 0x00): /* RBIT */ 5189 case MAP(1, 0x00, 0x00): 5190 handle_rbit(s, sf, rn, rd); 5191 break; 5192 case MAP(0, 0x00, 0x01): /* REV16 */ 5193 case MAP(1, 0x00, 0x01): 5194 handle_rev16(s, sf, rn, rd); 5195 break; 5196 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5197 case MAP(1, 0x00, 0x02): 5198 handle_rev32(s, sf, rn, rd); 5199 break; 5200 case MAP(1, 0x00, 0x03): /* REV64 */ 5201 handle_rev64(s, sf, rn, rd); 5202 break; 5203 case MAP(0, 0x00, 0x04): /* CLZ */ 5204 case MAP(1, 0x00, 0x04): 5205 handle_clz(s, sf, rn, rd); 5206 break; 5207 case MAP(0, 0x00, 0x05): /* CLS */ 5208 case MAP(1, 0x00, 0x05): 5209 handle_cls(s, sf, rn, rd); 5210 break; 5211 case MAP(1, 0x01, 0x00): /* PACIA */ 5212 if (s->pauth_active) { 5213 tcg_rd = cpu_reg(s, rd); 5214 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5215 } else if (!dc_isar_feature(aa64_pauth, s)) { 5216 goto do_unallocated; 5217 } 5218 break; 5219 case MAP(1, 0x01, 0x01): /* PACIB */ 5220 if (s->pauth_active) { 5221 tcg_rd = cpu_reg(s, rd); 5222 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5223 } else if (!dc_isar_feature(aa64_pauth, s)) { 5224 goto do_unallocated; 5225 } 5226 break; 5227 case MAP(1, 0x01, 0x02): /* PACDA */ 5228 if (s->pauth_active) { 5229 tcg_rd = cpu_reg(s, rd); 5230 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5231 } else if (!dc_isar_feature(aa64_pauth, s)) { 5232 goto do_unallocated; 5233 } 5234 break; 5235 case MAP(1, 0x01, 0x03): /* PACDB */ 5236 if (s->pauth_active) { 5237 tcg_rd = cpu_reg(s, rd); 5238 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5239 } else if (!dc_isar_feature(aa64_pauth, s)) { 5240 goto do_unallocated; 5241 } 5242 break; 5243 case MAP(1, 0x01, 0x04): /* AUTIA */ 5244 if (s->pauth_active) { 5245 tcg_rd = cpu_reg(s, rd); 5246 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5247 } else if (!dc_isar_feature(aa64_pauth, s)) { 5248 goto do_unallocated; 5249 } 5250 break; 5251 case MAP(1, 0x01, 0x05): /* AUTIB */ 5252 if (s->pauth_active) { 5253 tcg_rd = cpu_reg(s, rd); 5254 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5255 } else if (!dc_isar_feature(aa64_pauth, s)) { 5256 goto do_unallocated; 5257 } 5258 break; 5259 case MAP(1, 0x01, 0x06): /* AUTDA */ 5260 if (s->pauth_active) { 5261 tcg_rd = cpu_reg(s, rd); 5262 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5263 } else if (!dc_isar_feature(aa64_pauth, s)) { 5264 goto do_unallocated; 5265 } 5266 break; 5267 case MAP(1, 0x01, 0x07): /* AUTDB */ 5268 if (s->pauth_active) { 5269 tcg_rd = cpu_reg(s, rd); 5270 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5271 } else if (!dc_isar_feature(aa64_pauth, s)) { 5272 goto do_unallocated; 5273 } 5274 break; 5275 case MAP(1, 0x01, 0x08): /* PACIZA */ 5276 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5277 goto do_unallocated; 5278 } else if (s->pauth_active) { 5279 tcg_rd = cpu_reg(s, rd); 5280 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5281 } 5282 break; 5283 case MAP(1, 0x01, 0x09): /* PACIZB */ 5284 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5285 goto do_unallocated; 5286 } else if (s->pauth_active) { 5287 tcg_rd = cpu_reg(s, rd); 5288 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5289 } 5290 break; 5291 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5292 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5293 goto do_unallocated; 5294 } else if (s->pauth_active) { 5295 tcg_rd = cpu_reg(s, rd); 5296 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5297 } 5298 break; 5299 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5300 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5301 goto do_unallocated; 5302 } else if (s->pauth_active) { 5303 tcg_rd = cpu_reg(s, rd); 5304 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5305 } 5306 break; 5307 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5308 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5309 goto do_unallocated; 5310 } else if (s->pauth_active) { 5311 tcg_rd = cpu_reg(s, rd); 5312 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5313 } 5314 break; 5315 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5316 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5317 goto do_unallocated; 5318 } else if (s->pauth_active) { 5319 tcg_rd = cpu_reg(s, rd); 5320 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5321 } 5322 break; 5323 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5324 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5325 goto do_unallocated; 5326 } else if (s->pauth_active) { 5327 tcg_rd = cpu_reg(s, rd); 5328 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5329 } 5330 break; 5331 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5332 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5333 goto do_unallocated; 5334 } else if (s->pauth_active) { 5335 tcg_rd = cpu_reg(s, rd); 5336 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5337 } 5338 break; 5339 case MAP(1, 0x01, 0x10): /* XPACI */ 5340 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5341 goto do_unallocated; 5342 } else if (s->pauth_active) { 5343 tcg_rd = cpu_reg(s, rd); 5344 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5345 } 5346 break; 5347 case MAP(1, 0x01, 0x11): /* XPACD */ 5348 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5349 goto do_unallocated; 5350 } else if (s->pauth_active) { 5351 tcg_rd = cpu_reg(s, rd); 5352 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5353 } 5354 break; 5355 default: 5356 do_unallocated: 5357 unallocated_encoding(s); 5358 break; 5359 } 5360 5361 #undef MAP 5362 } 5363 5364 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5365 unsigned int rm, unsigned int rn, unsigned int rd) 5366 { 5367 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5368 tcg_rd = cpu_reg(s, rd); 5369 5370 if (!sf && is_signed) { 5371 tcg_n = tcg_temp_new_i64(); 5372 tcg_m = tcg_temp_new_i64(); 5373 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5374 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5375 } else { 5376 tcg_n = read_cpu_reg(s, rn, sf); 5377 tcg_m = read_cpu_reg(s, rm, sf); 5378 } 5379 5380 if (is_signed) { 5381 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5382 } else { 5383 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5384 } 5385 5386 if (!sf) { /* zero extend final result */ 5387 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5388 } 5389 } 5390 5391 /* LSLV, LSRV, ASRV, RORV */ 5392 static void handle_shift_reg(DisasContext *s, 5393 enum a64_shift_type shift_type, unsigned int sf, 5394 unsigned int rm, unsigned int rn, unsigned int rd) 5395 { 5396 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5397 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5398 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5399 5400 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5401 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5402 } 5403 5404 /* CRC32[BHWX], CRC32C[BHWX] */ 5405 static void handle_crc32(DisasContext *s, 5406 unsigned int sf, unsigned int sz, bool crc32c, 5407 unsigned int rm, unsigned int rn, unsigned int rd) 5408 { 5409 TCGv_i64 tcg_acc, tcg_val; 5410 TCGv_i32 tcg_bytes; 5411 5412 if (!dc_isar_feature(aa64_crc32, s) 5413 || (sf == 1 && sz != 3) 5414 || (sf == 0 && sz == 3)) { 5415 unallocated_encoding(s); 5416 return; 5417 } 5418 5419 if (sz == 3) { 5420 tcg_val = cpu_reg(s, rm); 5421 } else { 5422 uint64_t mask; 5423 switch (sz) { 5424 case 0: 5425 mask = 0xFF; 5426 break; 5427 case 1: 5428 mask = 0xFFFF; 5429 break; 5430 case 2: 5431 mask = 0xFFFFFFFF; 5432 break; 5433 default: 5434 g_assert_not_reached(); 5435 } 5436 tcg_val = tcg_temp_new_i64(); 5437 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5438 } 5439 5440 tcg_acc = cpu_reg(s, rn); 5441 tcg_bytes = tcg_constant_i32(1 << sz); 5442 5443 if (crc32c) { 5444 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5445 } else { 5446 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5447 } 5448 } 5449 5450 /* Data-processing (2 source) 5451 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5452 * +----+---+---+-----------------+------+--------+------+------+ 5453 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5454 * +----+---+---+-----------------+------+--------+------+------+ 5455 */ 5456 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5457 { 5458 unsigned int sf, rm, opcode, rn, rd, setflag; 5459 sf = extract32(insn, 31, 1); 5460 setflag = extract32(insn, 29, 1); 5461 rm = extract32(insn, 16, 5); 5462 opcode = extract32(insn, 10, 6); 5463 rn = extract32(insn, 5, 5); 5464 rd = extract32(insn, 0, 5); 5465 5466 if (setflag && opcode != 0) { 5467 unallocated_encoding(s); 5468 return; 5469 } 5470 5471 switch (opcode) { 5472 case 0: /* SUBP(S) */ 5473 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5474 goto do_unallocated; 5475 } else { 5476 TCGv_i64 tcg_n, tcg_m, tcg_d; 5477 5478 tcg_n = read_cpu_reg_sp(s, rn, true); 5479 tcg_m = read_cpu_reg_sp(s, rm, true); 5480 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5481 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5482 tcg_d = cpu_reg(s, rd); 5483 5484 if (setflag) { 5485 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5486 } else { 5487 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5488 } 5489 } 5490 break; 5491 case 2: /* UDIV */ 5492 handle_div(s, false, sf, rm, rn, rd); 5493 break; 5494 case 3: /* SDIV */ 5495 handle_div(s, true, sf, rm, rn, rd); 5496 break; 5497 case 4: /* IRG */ 5498 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5499 goto do_unallocated; 5500 } 5501 if (s->ata[0]) { 5502 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5503 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5504 } else { 5505 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5506 cpu_reg_sp(s, rn)); 5507 } 5508 break; 5509 case 5: /* GMI */ 5510 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5511 goto do_unallocated; 5512 } else { 5513 TCGv_i64 t = tcg_temp_new_i64(); 5514 5515 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5516 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5517 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5518 } 5519 break; 5520 case 8: /* LSLV */ 5521 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5522 break; 5523 case 9: /* LSRV */ 5524 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5525 break; 5526 case 10: /* ASRV */ 5527 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5528 break; 5529 case 11: /* RORV */ 5530 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5531 break; 5532 case 12: /* PACGA */ 5533 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5534 goto do_unallocated; 5535 } 5536 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5537 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5538 break; 5539 case 16: 5540 case 17: 5541 case 18: 5542 case 19: 5543 case 20: 5544 case 21: 5545 case 22: 5546 case 23: /* CRC32 */ 5547 { 5548 int sz = extract32(opcode, 0, 2); 5549 bool crc32c = extract32(opcode, 2, 1); 5550 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5551 break; 5552 } 5553 default: 5554 do_unallocated: 5555 unallocated_encoding(s); 5556 break; 5557 } 5558 } 5559 5560 /* 5561 * Data processing - register 5562 * 31 30 29 28 25 21 20 16 10 0 5563 * +--+---+--+---+-------+-----+-------+-------+---------+ 5564 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5565 * +--+---+--+---+-------+-----+-------+-------+---------+ 5566 */ 5567 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5568 { 5569 int op0 = extract32(insn, 30, 1); 5570 int op1 = extract32(insn, 28, 1); 5571 int op2 = extract32(insn, 21, 4); 5572 int op3 = extract32(insn, 10, 6); 5573 5574 if (!op1) { 5575 if (op2 & 8) { 5576 if (op2 & 1) { 5577 /* Add/sub (extended register) */ 5578 disas_add_sub_ext_reg(s, insn); 5579 } else { 5580 /* Add/sub (shifted register) */ 5581 disas_add_sub_reg(s, insn); 5582 } 5583 } else { 5584 /* Logical (shifted register) */ 5585 disas_logic_reg(s, insn); 5586 } 5587 return; 5588 } 5589 5590 switch (op2) { 5591 case 0x0: 5592 switch (op3) { 5593 case 0x00: /* Add/subtract (with carry) */ 5594 disas_adc_sbc(s, insn); 5595 break; 5596 5597 case 0x01: /* Rotate right into flags */ 5598 case 0x21: 5599 disas_rotate_right_into_flags(s, insn); 5600 break; 5601 5602 case 0x02: /* Evaluate into flags */ 5603 case 0x12: 5604 case 0x22: 5605 case 0x32: 5606 disas_evaluate_into_flags(s, insn); 5607 break; 5608 5609 default: 5610 goto do_unallocated; 5611 } 5612 break; 5613 5614 case 0x2: /* Conditional compare */ 5615 disas_cc(s, insn); /* both imm and reg forms */ 5616 break; 5617 5618 case 0x4: /* Conditional select */ 5619 disas_cond_select(s, insn); 5620 break; 5621 5622 case 0x6: /* Data-processing */ 5623 if (op0) { /* (1 source) */ 5624 disas_data_proc_1src(s, insn); 5625 } else { /* (2 source) */ 5626 disas_data_proc_2src(s, insn); 5627 } 5628 break; 5629 case 0x8 ... 0xf: /* (3 source) */ 5630 disas_data_proc_3src(s, insn); 5631 break; 5632 5633 default: 5634 do_unallocated: 5635 unallocated_encoding(s); 5636 break; 5637 } 5638 } 5639 5640 static void handle_fp_compare(DisasContext *s, int size, 5641 unsigned int rn, unsigned int rm, 5642 bool cmp_with_zero, bool signal_all_nans) 5643 { 5644 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5645 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5646 5647 if (size == MO_64) { 5648 TCGv_i64 tcg_vn, tcg_vm; 5649 5650 tcg_vn = read_fp_dreg(s, rn); 5651 if (cmp_with_zero) { 5652 tcg_vm = tcg_constant_i64(0); 5653 } else { 5654 tcg_vm = read_fp_dreg(s, rm); 5655 } 5656 if (signal_all_nans) { 5657 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5658 } else { 5659 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5660 } 5661 } else { 5662 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5663 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5664 5665 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5666 if (cmp_with_zero) { 5667 tcg_gen_movi_i32(tcg_vm, 0); 5668 } else { 5669 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5670 } 5671 5672 switch (size) { 5673 case MO_32: 5674 if (signal_all_nans) { 5675 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5676 } else { 5677 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5678 } 5679 break; 5680 case MO_16: 5681 if (signal_all_nans) { 5682 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5683 } else { 5684 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5685 } 5686 break; 5687 default: 5688 g_assert_not_reached(); 5689 } 5690 } 5691 5692 gen_set_nzcv(tcg_flags); 5693 } 5694 5695 /* Floating point compare 5696 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5697 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5698 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5699 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5700 */ 5701 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5702 { 5703 unsigned int mos, type, rm, op, rn, opc, op2r; 5704 int size; 5705 5706 mos = extract32(insn, 29, 3); 5707 type = extract32(insn, 22, 2); 5708 rm = extract32(insn, 16, 5); 5709 op = extract32(insn, 14, 2); 5710 rn = extract32(insn, 5, 5); 5711 opc = extract32(insn, 3, 2); 5712 op2r = extract32(insn, 0, 3); 5713 5714 if (mos || op || op2r) { 5715 unallocated_encoding(s); 5716 return; 5717 } 5718 5719 switch (type) { 5720 case 0: 5721 size = MO_32; 5722 break; 5723 case 1: 5724 size = MO_64; 5725 break; 5726 case 3: 5727 size = MO_16; 5728 if (dc_isar_feature(aa64_fp16, s)) { 5729 break; 5730 } 5731 /* fallthru */ 5732 default: 5733 unallocated_encoding(s); 5734 return; 5735 } 5736 5737 if (!fp_access_check(s)) { 5738 return; 5739 } 5740 5741 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5742 } 5743 5744 /* Floating point conditional compare 5745 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5746 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5747 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5748 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5749 */ 5750 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5751 { 5752 unsigned int mos, type, rm, cond, rn, op, nzcv; 5753 TCGLabel *label_continue = NULL; 5754 int size; 5755 5756 mos = extract32(insn, 29, 3); 5757 type = extract32(insn, 22, 2); 5758 rm = extract32(insn, 16, 5); 5759 cond = extract32(insn, 12, 4); 5760 rn = extract32(insn, 5, 5); 5761 op = extract32(insn, 4, 1); 5762 nzcv = extract32(insn, 0, 4); 5763 5764 if (mos) { 5765 unallocated_encoding(s); 5766 return; 5767 } 5768 5769 switch (type) { 5770 case 0: 5771 size = MO_32; 5772 break; 5773 case 1: 5774 size = MO_64; 5775 break; 5776 case 3: 5777 size = MO_16; 5778 if (dc_isar_feature(aa64_fp16, s)) { 5779 break; 5780 } 5781 /* fallthru */ 5782 default: 5783 unallocated_encoding(s); 5784 return; 5785 } 5786 5787 if (!fp_access_check(s)) { 5788 return; 5789 } 5790 5791 if (cond < 0x0e) { /* not always */ 5792 TCGLabel *label_match = gen_new_label(); 5793 label_continue = gen_new_label(); 5794 arm_gen_test_cc(cond, label_match); 5795 /* nomatch: */ 5796 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5797 tcg_gen_br(label_continue); 5798 gen_set_label(label_match); 5799 } 5800 5801 handle_fp_compare(s, size, rn, rm, false, op); 5802 5803 if (cond < 0x0e) { 5804 gen_set_label(label_continue); 5805 } 5806 } 5807 5808 /* Floating point conditional select 5809 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5810 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5811 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5812 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5813 */ 5814 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5815 { 5816 unsigned int mos, type, rm, cond, rn, rd; 5817 TCGv_i64 t_true, t_false; 5818 DisasCompare64 c; 5819 MemOp sz; 5820 5821 mos = extract32(insn, 29, 3); 5822 type = extract32(insn, 22, 2); 5823 rm = extract32(insn, 16, 5); 5824 cond = extract32(insn, 12, 4); 5825 rn = extract32(insn, 5, 5); 5826 rd = extract32(insn, 0, 5); 5827 5828 if (mos) { 5829 unallocated_encoding(s); 5830 return; 5831 } 5832 5833 switch (type) { 5834 case 0: 5835 sz = MO_32; 5836 break; 5837 case 1: 5838 sz = MO_64; 5839 break; 5840 case 3: 5841 sz = MO_16; 5842 if (dc_isar_feature(aa64_fp16, s)) { 5843 break; 5844 } 5845 /* fallthru */ 5846 default: 5847 unallocated_encoding(s); 5848 return; 5849 } 5850 5851 if (!fp_access_check(s)) { 5852 return; 5853 } 5854 5855 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5856 t_true = tcg_temp_new_i64(); 5857 t_false = tcg_temp_new_i64(); 5858 read_vec_element(s, t_true, rn, 0, sz); 5859 read_vec_element(s, t_false, rm, 0, sz); 5860 5861 a64_test_cc(&c, cond); 5862 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5863 t_true, t_false); 5864 5865 /* Note that sregs & hregs write back zeros to the high bits, 5866 and we've already done the zero-extension. */ 5867 write_fp_dreg(s, rd, t_true); 5868 } 5869 5870 /* Floating-point data-processing (1 source) - half precision */ 5871 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5872 { 5873 TCGv_ptr fpst = NULL; 5874 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5875 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5876 5877 switch (opcode) { 5878 case 0x0: /* FMOV */ 5879 tcg_gen_mov_i32(tcg_res, tcg_op); 5880 break; 5881 case 0x1: /* FABS */ 5882 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5883 break; 5884 case 0x2: /* FNEG */ 5885 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5886 break; 5887 case 0x3: /* FSQRT */ 5888 fpst = fpstatus_ptr(FPST_FPCR_F16); 5889 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5890 break; 5891 case 0x8: /* FRINTN */ 5892 case 0x9: /* FRINTP */ 5893 case 0xa: /* FRINTM */ 5894 case 0xb: /* FRINTZ */ 5895 case 0xc: /* FRINTA */ 5896 { 5897 TCGv_i32 tcg_rmode; 5898 5899 fpst = fpstatus_ptr(FPST_FPCR_F16); 5900 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5901 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5902 gen_restore_rmode(tcg_rmode, fpst); 5903 break; 5904 } 5905 case 0xe: /* FRINTX */ 5906 fpst = fpstatus_ptr(FPST_FPCR_F16); 5907 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5908 break; 5909 case 0xf: /* FRINTI */ 5910 fpst = fpstatus_ptr(FPST_FPCR_F16); 5911 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5912 break; 5913 default: 5914 g_assert_not_reached(); 5915 } 5916 5917 write_fp_sreg(s, rd, tcg_res); 5918 } 5919 5920 /* Floating-point data-processing (1 source) - single precision */ 5921 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5922 { 5923 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5924 TCGv_i32 tcg_op, tcg_res; 5925 TCGv_ptr fpst; 5926 int rmode = -1; 5927 5928 tcg_op = read_fp_sreg(s, rn); 5929 tcg_res = tcg_temp_new_i32(); 5930 5931 switch (opcode) { 5932 case 0x0: /* FMOV */ 5933 tcg_gen_mov_i32(tcg_res, tcg_op); 5934 goto done; 5935 case 0x1: /* FABS */ 5936 gen_helper_vfp_abss(tcg_res, tcg_op); 5937 goto done; 5938 case 0x2: /* FNEG */ 5939 gen_helper_vfp_negs(tcg_res, tcg_op); 5940 goto done; 5941 case 0x3: /* FSQRT */ 5942 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 5943 goto done; 5944 case 0x6: /* BFCVT */ 5945 gen_fpst = gen_helper_bfcvt; 5946 break; 5947 case 0x8: /* FRINTN */ 5948 case 0x9: /* FRINTP */ 5949 case 0xa: /* FRINTM */ 5950 case 0xb: /* FRINTZ */ 5951 case 0xc: /* FRINTA */ 5952 rmode = opcode & 7; 5953 gen_fpst = gen_helper_rints; 5954 break; 5955 case 0xe: /* FRINTX */ 5956 gen_fpst = gen_helper_rints_exact; 5957 break; 5958 case 0xf: /* FRINTI */ 5959 gen_fpst = gen_helper_rints; 5960 break; 5961 case 0x10: /* FRINT32Z */ 5962 rmode = FPROUNDING_ZERO; 5963 gen_fpst = gen_helper_frint32_s; 5964 break; 5965 case 0x11: /* FRINT32X */ 5966 gen_fpst = gen_helper_frint32_s; 5967 break; 5968 case 0x12: /* FRINT64Z */ 5969 rmode = FPROUNDING_ZERO; 5970 gen_fpst = gen_helper_frint64_s; 5971 break; 5972 case 0x13: /* FRINT64X */ 5973 gen_fpst = gen_helper_frint64_s; 5974 break; 5975 default: 5976 g_assert_not_reached(); 5977 } 5978 5979 fpst = fpstatus_ptr(FPST_FPCR); 5980 if (rmode >= 0) { 5981 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5982 gen_fpst(tcg_res, tcg_op, fpst); 5983 gen_restore_rmode(tcg_rmode, fpst); 5984 } else { 5985 gen_fpst(tcg_res, tcg_op, fpst); 5986 } 5987 5988 done: 5989 write_fp_sreg(s, rd, tcg_res); 5990 } 5991 5992 /* Floating-point data-processing (1 source) - double precision */ 5993 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 5994 { 5995 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 5996 TCGv_i64 tcg_op, tcg_res; 5997 TCGv_ptr fpst; 5998 int rmode = -1; 5999 6000 switch (opcode) { 6001 case 0x0: /* FMOV */ 6002 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6003 return; 6004 } 6005 6006 tcg_op = read_fp_dreg(s, rn); 6007 tcg_res = tcg_temp_new_i64(); 6008 6009 switch (opcode) { 6010 case 0x1: /* FABS */ 6011 gen_helper_vfp_absd(tcg_res, tcg_op); 6012 goto done; 6013 case 0x2: /* FNEG */ 6014 gen_helper_vfp_negd(tcg_res, tcg_op); 6015 goto done; 6016 case 0x3: /* FSQRT */ 6017 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6018 goto done; 6019 case 0x8: /* FRINTN */ 6020 case 0x9: /* FRINTP */ 6021 case 0xa: /* FRINTM */ 6022 case 0xb: /* FRINTZ */ 6023 case 0xc: /* FRINTA */ 6024 rmode = opcode & 7; 6025 gen_fpst = gen_helper_rintd; 6026 break; 6027 case 0xe: /* FRINTX */ 6028 gen_fpst = gen_helper_rintd_exact; 6029 break; 6030 case 0xf: /* FRINTI */ 6031 gen_fpst = gen_helper_rintd; 6032 break; 6033 case 0x10: /* FRINT32Z */ 6034 rmode = FPROUNDING_ZERO; 6035 gen_fpst = gen_helper_frint32_d; 6036 break; 6037 case 0x11: /* FRINT32X */ 6038 gen_fpst = gen_helper_frint32_d; 6039 break; 6040 case 0x12: /* FRINT64Z */ 6041 rmode = FPROUNDING_ZERO; 6042 gen_fpst = gen_helper_frint64_d; 6043 break; 6044 case 0x13: /* FRINT64X */ 6045 gen_fpst = gen_helper_frint64_d; 6046 break; 6047 default: 6048 g_assert_not_reached(); 6049 } 6050 6051 fpst = fpstatus_ptr(FPST_FPCR); 6052 if (rmode >= 0) { 6053 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6054 gen_fpst(tcg_res, tcg_op, fpst); 6055 gen_restore_rmode(tcg_rmode, fpst); 6056 } else { 6057 gen_fpst(tcg_res, tcg_op, fpst); 6058 } 6059 6060 done: 6061 write_fp_dreg(s, rd, tcg_res); 6062 } 6063 6064 static void handle_fp_fcvt(DisasContext *s, int opcode, 6065 int rd, int rn, int dtype, int ntype) 6066 { 6067 switch (ntype) { 6068 case 0x0: 6069 { 6070 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6071 if (dtype == 1) { 6072 /* Single to double */ 6073 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6074 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6075 write_fp_dreg(s, rd, tcg_rd); 6076 } else { 6077 /* Single to half */ 6078 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6079 TCGv_i32 ahp = get_ahp_flag(); 6080 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6081 6082 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6083 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6084 write_fp_sreg(s, rd, tcg_rd); 6085 } 6086 break; 6087 } 6088 case 0x1: 6089 { 6090 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6091 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6092 if (dtype == 0) { 6093 /* Double to single */ 6094 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6095 } else { 6096 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6097 TCGv_i32 ahp = get_ahp_flag(); 6098 /* Double to half */ 6099 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6100 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6101 } 6102 write_fp_sreg(s, rd, tcg_rd); 6103 break; 6104 } 6105 case 0x3: 6106 { 6107 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6108 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6109 TCGv_i32 tcg_ahp = get_ahp_flag(); 6110 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6111 if (dtype == 0) { 6112 /* Half to single */ 6113 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6114 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6115 write_fp_sreg(s, rd, tcg_rd); 6116 } else { 6117 /* Half to double */ 6118 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6119 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6120 write_fp_dreg(s, rd, tcg_rd); 6121 } 6122 break; 6123 } 6124 default: 6125 g_assert_not_reached(); 6126 } 6127 } 6128 6129 /* Floating point data-processing (1 source) 6130 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6131 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6132 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6133 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6134 */ 6135 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6136 { 6137 int mos = extract32(insn, 29, 3); 6138 int type = extract32(insn, 22, 2); 6139 int opcode = extract32(insn, 15, 6); 6140 int rn = extract32(insn, 5, 5); 6141 int rd = extract32(insn, 0, 5); 6142 6143 if (mos) { 6144 goto do_unallocated; 6145 } 6146 6147 switch (opcode) { 6148 case 0x4: case 0x5: case 0x7: 6149 { 6150 /* FCVT between half, single and double precision */ 6151 int dtype = extract32(opcode, 0, 2); 6152 if (type == 2 || dtype == type) { 6153 goto do_unallocated; 6154 } 6155 if (!fp_access_check(s)) { 6156 return; 6157 } 6158 6159 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6160 break; 6161 } 6162 6163 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6164 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6165 goto do_unallocated; 6166 } 6167 /* fall through */ 6168 case 0x0 ... 0x3: 6169 case 0x8 ... 0xc: 6170 case 0xe ... 0xf: 6171 /* 32-to-32 and 64-to-64 ops */ 6172 switch (type) { 6173 case 0: 6174 if (!fp_access_check(s)) { 6175 return; 6176 } 6177 handle_fp_1src_single(s, opcode, rd, rn); 6178 break; 6179 case 1: 6180 if (!fp_access_check(s)) { 6181 return; 6182 } 6183 handle_fp_1src_double(s, opcode, rd, rn); 6184 break; 6185 case 3: 6186 if (!dc_isar_feature(aa64_fp16, s)) { 6187 goto do_unallocated; 6188 } 6189 6190 if (!fp_access_check(s)) { 6191 return; 6192 } 6193 handle_fp_1src_half(s, opcode, rd, rn); 6194 break; 6195 default: 6196 goto do_unallocated; 6197 } 6198 break; 6199 6200 case 0x6: 6201 switch (type) { 6202 case 1: /* BFCVT */ 6203 if (!dc_isar_feature(aa64_bf16, s)) { 6204 goto do_unallocated; 6205 } 6206 if (!fp_access_check(s)) { 6207 return; 6208 } 6209 handle_fp_1src_single(s, opcode, rd, rn); 6210 break; 6211 default: 6212 goto do_unallocated; 6213 } 6214 break; 6215 6216 default: 6217 do_unallocated: 6218 unallocated_encoding(s); 6219 break; 6220 } 6221 } 6222 6223 /* Floating-point data-processing (2 source) - single precision */ 6224 static void handle_fp_2src_single(DisasContext *s, int opcode, 6225 int rd, int rn, int rm) 6226 { 6227 TCGv_i32 tcg_op1; 6228 TCGv_i32 tcg_op2; 6229 TCGv_i32 tcg_res; 6230 TCGv_ptr fpst; 6231 6232 tcg_res = tcg_temp_new_i32(); 6233 fpst = fpstatus_ptr(FPST_FPCR); 6234 tcg_op1 = read_fp_sreg(s, rn); 6235 tcg_op2 = read_fp_sreg(s, rm); 6236 6237 switch (opcode) { 6238 case 0x0: /* FMUL */ 6239 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6240 break; 6241 case 0x1: /* FDIV */ 6242 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6243 break; 6244 case 0x2: /* FADD */ 6245 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6246 break; 6247 case 0x3: /* FSUB */ 6248 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6249 break; 6250 case 0x4: /* FMAX */ 6251 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6252 break; 6253 case 0x5: /* FMIN */ 6254 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6255 break; 6256 case 0x6: /* FMAXNM */ 6257 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6258 break; 6259 case 0x7: /* FMINNM */ 6260 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6261 break; 6262 case 0x8: /* FNMUL */ 6263 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6264 gen_helper_vfp_negs(tcg_res, tcg_res); 6265 break; 6266 } 6267 6268 write_fp_sreg(s, rd, tcg_res); 6269 } 6270 6271 /* Floating-point data-processing (2 source) - double precision */ 6272 static void handle_fp_2src_double(DisasContext *s, int opcode, 6273 int rd, int rn, int rm) 6274 { 6275 TCGv_i64 tcg_op1; 6276 TCGv_i64 tcg_op2; 6277 TCGv_i64 tcg_res; 6278 TCGv_ptr fpst; 6279 6280 tcg_res = tcg_temp_new_i64(); 6281 fpst = fpstatus_ptr(FPST_FPCR); 6282 tcg_op1 = read_fp_dreg(s, rn); 6283 tcg_op2 = read_fp_dreg(s, rm); 6284 6285 switch (opcode) { 6286 case 0x0: /* FMUL */ 6287 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6288 break; 6289 case 0x1: /* FDIV */ 6290 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6291 break; 6292 case 0x2: /* FADD */ 6293 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6294 break; 6295 case 0x3: /* FSUB */ 6296 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6297 break; 6298 case 0x4: /* FMAX */ 6299 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6300 break; 6301 case 0x5: /* FMIN */ 6302 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6303 break; 6304 case 0x6: /* FMAXNM */ 6305 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6306 break; 6307 case 0x7: /* FMINNM */ 6308 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6309 break; 6310 case 0x8: /* FNMUL */ 6311 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6312 gen_helper_vfp_negd(tcg_res, tcg_res); 6313 break; 6314 } 6315 6316 write_fp_dreg(s, rd, tcg_res); 6317 } 6318 6319 /* Floating-point data-processing (2 source) - half precision */ 6320 static void handle_fp_2src_half(DisasContext *s, int opcode, 6321 int rd, int rn, int rm) 6322 { 6323 TCGv_i32 tcg_op1; 6324 TCGv_i32 tcg_op2; 6325 TCGv_i32 tcg_res; 6326 TCGv_ptr fpst; 6327 6328 tcg_res = tcg_temp_new_i32(); 6329 fpst = fpstatus_ptr(FPST_FPCR_F16); 6330 tcg_op1 = read_fp_hreg(s, rn); 6331 tcg_op2 = read_fp_hreg(s, rm); 6332 6333 switch (opcode) { 6334 case 0x0: /* FMUL */ 6335 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6336 break; 6337 case 0x1: /* FDIV */ 6338 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6339 break; 6340 case 0x2: /* FADD */ 6341 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6342 break; 6343 case 0x3: /* FSUB */ 6344 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6345 break; 6346 case 0x4: /* FMAX */ 6347 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6348 break; 6349 case 0x5: /* FMIN */ 6350 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6351 break; 6352 case 0x6: /* FMAXNM */ 6353 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6354 break; 6355 case 0x7: /* FMINNM */ 6356 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6357 break; 6358 case 0x8: /* FNMUL */ 6359 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6360 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6361 break; 6362 default: 6363 g_assert_not_reached(); 6364 } 6365 6366 write_fp_sreg(s, rd, tcg_res); 6367 } 6368 6369 /* Floating point data-processing (2 source) 6370 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6371 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6372 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6373 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6374 */ 6375 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6376 { 6377 int mos = extract32(insn, 29, 3); 6378 int type = extract32(insn, 22, 2); 6379 int rd = extract32(insn, 0, 5); 6380 int rn = extract32(insn, 5, 5); 6381 int rm = extract32(insn, 16, 5); 6382 int opcode = extract32(insn, 12, 4); 6383 6384 if (opcode > 8 || mos) { 6385 unallocated_encoding(s); 6386 return; 6387 } 6388 6389 switch (type) { 6390 case 0: 6391 if (!fp_access_check(s)) { 6392 return; 6393 } 6394 handle_fp_2src_single(s, opcode, rd, rn, rm); 6395 break; 6396 case 1: 6397 if (!fp_access_check(s)) { 6398 return; 6399 } 6400 handle_fp_2src_double(s, opcode, rd, rn, rm); 6401 break; 6402 case 3: 6403 if (!dc_isar_feature(aa64_fp16, s)) { 6404 unallocated_encoding(s); 6405 return; 6406 } 6407 if (!fp_access_check(s)) { 6408 return; 6409 } 6410 handle_fp_2src_half(s, opcode, rd, rn, rm); 6411 break; 6412 default: 6413 unallocated_encoding(s); 6414 } 6415 } 6416 6417 /* Floating-point data-processing (3 source) - single precision */ 6418 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6419 int rd, int rn, int rm, int ra) 6420 { 6421 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6422 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6423 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6424 6425 tcg_op1 = read_fp_sreg(s, rn); 6426 tcg_op2 = read_fp_sreg(s, rm); 6427 tcg_op3 = read_fp_sreg(s, ra); 6428 6429 /* These are fused multiply-add, and must be done as one 6430 * floating point operation with no rounding between the 6431 * multiplication and addition steps. 6432 * NB that doing the negations here as separate steps is 6433 * correct : an input NaN should come out with its sign bit 6434 * flipped if it is a negated-input. 6435 */ 6436 if (o1 == true) { 6437 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6438 } 6439 6440 if (o0 != o1) { 6441 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6442 } 6443 6444 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6445 6446 write_fp_sreg(s, rd, tcg_res); 6447 } 6448 6449 /* Floating-point data-processing (3 source) - double precision */ 6450 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6451 int rd, int rn, int rm, int ra) 6452 { 6453 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6454 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6455 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6456 6457 tcg_op1 = read_fp_dreg(s, rn); 6458 tcg_op2 = read_fp_dreg(s, rm); 6459 tcg_op3 = read_fp_dreg(s, ra); 6460 6461 /* These are fused multiply-add, and must be done as one 6462 * floating point operation with no rounding between the 6463 * multiplication and addition steps. 6464 * NB that doing the negations here as separate steps is 6465 * correct : an input NaN should come out with its sign bit 6466 * flipped if it is a negated-input. 6467 */ 6468 if (o1 == true) { 6469 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6470 } 6471 6472 if (o0 != o1) { 6473 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6474 } 6475 6476 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6477 6478 write_fp_dreg(s, rd, tcg_res); 6479 } 6480 6481 /* Floating-point data-processing (3 source) - half precision */ 6482 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6483 int rd, int rn, int rm, int ra) 6484 { 6485 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6486 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6487 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6488 6489 tcg_op1 = read_fp_hreg(s, rn); 6490 tcg_op2 = read_fp_hreg(s, rm); 6491 tcg_op3 = read_fp_hreg(s, ra); 6492 6493 /* These are fused multiply-add, and must be done as one 6494 * floating point operation with no rounding between the 6495 * multiplication and addition steps. 6496 * NB that doing the negations here as separate steps is 6497 * correct : an input NaN should come out with its sign bit 6498 * flipped if it is a negated-input. 6499 */ 6500 if (o1 == true) { 6501 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6502 } 6503 6504 if (o0 != o1) { 6505 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6506 } 6507 6508 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6509 6510 write_fp_sreg(s, rd, tcg_res); 6511 } 6512 6513 /* Floating point data-processing (3 source) 6514 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6515 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6516 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6517 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6518 */ 6519 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6520 { 6521 int mos = extract32(insn, 29, 3); 6522 int type = extract32(insn, 22, 2); 6523 int rd = extract32(insn, 0, 5); 6524 int rn = extract32(insn, 5, 5); 6525 int ra = extract32(insn, 10, 5); 6526 int rm = extract32(insn, 16, 5); 6527 bool o0 = extract32(insn, 15, 1); 6528 bool o1 = extract32(insn, 21, 1); 6529 6530 if (mos) { 6531 unallocated_encoding(s); 6532 return; 6533 } 6534 6535 switch (type) { 6536 case 0: 6537 if (!fp_access_check(s)) { 6538 return; 6539 } 6540 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6541 break; 6542 case 1: 6543 if (!fp_access_check(s)) { 6544 return; 6545 } 6546 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6547 break; 6548 case 3: 6549 if (!dc_isar_feature(aa64_fp16, s)) { 6550 unallocated_encoding(s); 6551 return; 6552 } 6553 if (!fp_access_check(s)) { 6554 return; 6555 } 6556 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6557 break; 6558 default: 6559 unallocated_encoding(s); 6560 } 6561 } 6562 6563 /* Floating point immediate 6564 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6565 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6566 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6567 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6568 */ 6569 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6570 { 6571 int rd = extract32(insn, 0, 5); 6572 int imm5 = extract32(insn, 5, 5); 6573 int imm8 = extract32(insn, 13, 8); 6574 int type = extract32(insn, 22, 2); 6575 int mos = extract32(insn, 29, 3); 6576 uint64_t imm; 6577 MemOp sz; 6578 6579 if (mos || imm5) { 6580 unallocated_encoding(s); 6581 return; 6582 } 6583 6584 switch (type) { 6585 case 0: 6586 sz = MO_32; 6587 break; 6588 case 1: 6589 sz = MO_64; 6590 break; 6591 case 3: 6592 sz = MO_16; 6593 if (dc_isar_feature(aa64_fp16, s)) { 6594 break; 6595 } 6596 /* fallthru */ 6597 default: 6598 unallocated_encoding(s); 6599 return; 6600 } 6601 6602 if (!fp_access_check(s)) { 6603 return; 6604 } 6605 6606 imm = vfp_expand_imm(sz, imm8); 6607 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6608 } 6609 6610 /* Handle floating point <=> fixed point conversions. Note that we can 6611 * also deal with fp <=> integer conversions as a special case (scale == 64) 6612 * OPTME: consider handling that special case specially or at least skipping 6613 * the call to scalbn in the helpers for zero shifts. 6614 */ 6615 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6616 bool itof, int rmode, int scale, int sf, int type) 6617 { 6618 bool is_signed = !(opcode & 1); 6619 TCGv_ptr tcg_fpstatus; 6620 TCGv_i32 tcg_shift, tcg_single; 6621 TCGv_i64 tcg_double; 6622 6623 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6624 6625 tcg_shift = tcg_constant_i32(64 - scale); 6626 6627 if (itof) { 6628 TCGv_i64 tcg_int = cpu_reg(s, rn); 6629 if (!sf) { 6630 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6631 6632 if (is_signed) { 6633 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6634 } else { 6635 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6636 } 6637 6638 tcg_int = tcg_extend; 6639 } 6640 6641 switch (type) { 6642 case 1: /* float64 */ 6643 tcg_double = tcg_temp_new_i64(); 6644 if (is_signed) { 6645 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6646 tcg_shift, tcg_fpstatus); 6647 } else { 6648 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6649 tcg_shift, tcg_fpstatus); 6650 } 6651 write_fp_dreg(s, rd, tcg_double); 6652 break; 6653 6654 case 0: /* float32 */ 6655 tcg_single = tcg_temp_new_i32(); 6656 if (is_signed) { 6657 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6658 tcg_shift, tcg_fpstatus); 6659 } else { 6660 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6661 tcg_shift, tcg_fpstatus); 6662 } 6663 write_fp_sreg(s, rd, tcg_single); 6664 break; 6665 6666 case 3: /* float16 */ 6667 tcg_single = tcg_temp_new_i32(); 6668 if (is_signed) { 6669 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6670 tcg_shift, tcg_fpstatus); 6671 } else { 6672 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6673 tcg_shift, tcg_fpstatus); 6674 } 6675 write_fp_sreg(s, rd, tcg_single); 6676 break; 6677 6678 default: 6679 g_assert_not_reached(); 6680 } 6681 } else { 6682 TCGv_i64 tcg_int = cpu_reg(s, rd); 6683 TCGv_i32 tcg_rmode; 6684 6685 if (extract32(opcode, 2, 1)) { 6686 /* There are too many rounding modes to all fit into rmode, 6687 * so FCVTA[US] is a special case. 6688 */ 6689 rmode = FPROUNDING_TIEAWAY; 6690 } 6691 6692 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6693 6694 switch (type) { 6695 case 1: /* float64 */ 6696 tcg_double = read_fp_dreg(s, rn); 6697 if (is_signed) { 6698 if (!sf) { 6699 gen_helper_vfp_tosld(tcg_int, tcg_double, 6700 tcg_shift, tcg_fpstatus); 6701 } else { 6702 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6703 tcg_shift, tcg_fpstatus); 6704 } 6705 } else { 6706 if (!sf) { 6707 gen_helper_vfp_tould(tcg_int, tcg_double, 6708 tcg_shift, tcg_fpstatus); 6709 } else { 6710 gen_helper_vfp_touqd(tcg_int, tcg_double, 6711 tcg_shift, tcg_fpstatus); 6712 } 6713 } 6714 if (!sf) { 6715 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6716 } 6717 break; 6718 6719 case 0: /* float32 */ 6720 tcg_single = read_fp_sreg(s, rn); 6721 if (sf) { 6722 if (is_signed) { 6723 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6724 tcg_shift, tcg_fpstatus); 6725 } else { 6726 gen_helper_vfp_touqs(tcg_int, tcg_single, 6727 tcg_shift, tcg_fpstatus); 6728 } 6729 } else { 6730 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6731 if (is_signed) { 6732 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6733 tcg_shift, tcg_fpstatus); 6734 } else { 6735 gen_helper_vfp_touls(tcg_dest, tcg_single, 6736 tcg_shift, tcg_fpstatus); 6737 } 6738 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6739 } 6740 break; 6741 6742 case 3: /* float16 */ 6743 tcg_single = read_fp_sreg(s, rn); 6744 if (sf) { 6745 if (is_signed) { 6746 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6747 tcg_shift, tcg_fpstatus); 6748 } else { 6749 gen_helper_vfp_touqh(tcg_int, tcg_single, 6750 tcg_shift, tcg_fpstatus); 6751 } 6752 } else { 6753 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6754 if (is_signed) { 6755 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6756 tcg_shift, tcg_fpstatus); 6757 } else { 6758 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6759 tcg_shift, tcg_fpstatus); 6760 } 6761 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6762 } 6763 break; 6764 6765 default: 6766 g_assert_not_reached(); 6767 } 6768 6769 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6770 } 6771 } 6772 6773 /* Floating point <-> fixed point conversions 6774 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6775 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6776 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6777 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6778 */ 6779 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6780 { 6781 int rd = extract32(insn, 0, 5); 6782 int rn = extract32(insn, 5, 5); 6783 int scale = extract32(insn, 10, 6); 6784 int opcode = extract32(insn, 16, 3); 6785 int rmode = extract32(insn, 19, 2); 6786 int type = extract32(insn, 22, 2); 6787 bool sbit = extract32(insn, 29, 1); 6788 bool sf = extract32(insn, 31, 1); 6789 bool itof; 6790 6791 if (sbit || (!sf && scale < 32)) { 6792 unallocated_encoding(s); 6793 return; 6794 } 6795 6796 switch (type) { 6797 case 0: /* float32 */ 6798 case 1: /* float64 */ 6799 break; 6800 case 3: /* float16 */ 6801 if (dc_isar_feature(aa64_fp16, s)) { 6802 break; 6803 } 6804 /* fallthru */ 6805 default: 6806 unallocated_encoding(s); 6807 return; 6808 } 6809 6810 switch ((rmode << 3) | opcode) { 6811 case 0x2: /* SCVTF */ 6812 case 0x3: /* UCVTF */ 6813 itof = true; 6814 break; 6815 case 0x18: /* FCVTZS */ 6816 case 0x19: /* FCVTZU */ 6817 itof = false; 6818 break; 6819 default: 6820 unallocated_encoding(s); 6821 return; 6822 } 6823 6824 if (!fp_access_check(s)) { 6825 return; 6826 } 6827 6828 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6829 } 6830 6831 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6832 { 6833 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6834 * without conversion. 6835 */ 6836 6837 if (itof) { 6838 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6839 TCGv_i64 tmp; 6840 6841 switch (type) { 6842 case 0: 6843 /* 32 bit */ 6844 tmp = tcg_temp_new_i64(); 6845 tcg_gen_ext32u_i64(tmp, tcg_rn); 6846 write_fp_dreg(s, rd, tmp); 6847 break; 6848 case 1: 6849 /* 64 bit */ 6850 write_fp_dreg(s, rd, tcg_rn); 6851 break; 6852 case 2: 6853 /* 64 bit to top half. */ 6854 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 6855 clear_vec_high(s, true, rd); 6856 break; 6857 case 3: 6858 /* 16 bit */ 6859 tmp = tcg_temp_new_i64(); 6860 tcg_gen_ext16u_i64(tmp, tcg_rn); 6861 write_fp_dreg(s, rd, tmp); 6862 break; 6863 default: 6864 g_assert_not_reached(); 6865 } 6866 } else { 6867 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6868 6869 switch (type) { 6870 case 0: 6871 /* 32 bit */ 6872 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 6873 break; 6874 case 1: 6875 /* 64 bit */ 6876 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 6877 break; 6878 case 2: 6879 /* 64 bits from top half */ 6880 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 6881 break; 6882 case 3: 6883 /* 16 bit */ 6884 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 6885 break; 6886 default: 6887 g_assert_not_reached(); 6888 } 6889 } 6890 } 6891 6892 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6893 { 6894 TCGv_i64 t = read_fp_dreg(s, rn); 6895 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6896 6897 gen_helper_fjcvtzs(t, t, fpstatus); 6898 6899 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6900 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6901 tcg_gen_movi_i32(cpu_CF, 0); 6902 tcg_gen_movi_i32(cpu_NF, 0); 6903 tcg_gen_movi_i32(cpu_VF, 0); 6904 } 6905 6906 /* Floating point <-> integer conversions 6907 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6908 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6909 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6910 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6911 */ 6912 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6913 { 6914 int rd = extract32(insn, 0, 5); 6915 int rn = extract32(insn, 5, 5); 6916 int opcode = extract32(insn, 16, 3); 6917 int rmode = extract32(insn, 19, 2); 6918 int type = extract32(insn, 22, 2); 6919 bool sbit = extract32(insn, 29, 1); 6920 bool sf = extract32(insn, 31, 1); 6921 bool itof = false; 6922 6923 if (sbit) { 6924 goto do_unallocated; 6925 } 6926 6927 switch (opcode) { 6928 case 2: /* SCVTF */ 6929 case 3: /* UCVTF */ 6930 itof = true; 6931 /* fallthru */ 6932 case 4: /* FCVTAS */ 6933 case 5: /* FCVTAU */ 6934 if (rmode != 0) { 6935 goto do_unallocated; 6936 } 6937 /* fallthru */ 6938 case 0: /* FCVT[NPMZ]S */ 6939 case 1: /* FCVT[NPMZ]U */ 6940 switch (type) { 6941 case 0: /* float32 */ 6942 case 1: /* float64 */ 6943 break; 6944 case 3: /* float16 */ 6945 if (!dc_isar_feature(aa64_fp16, s)) { 6946 goto do_unallocated; 6947 } 6948 break; 6949 default: 6950 goto do_unallocated; 6951 } 6952 if (!fp_access_check(s)) { 6953 return; 6954 } 6955 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 6956 break; 6957 6958 default: 6959 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 6960 case 0b01100110: /* FMOV half <-> 32-bit int */ 6961 case 0b01100111: 6962 case 0b11100110: /* FMOV half <-> 64-bit int */ 6963 case 0b11100111: 6964 if (!dc_isar_feature(aa64_fp16, s)) { 6965 goto do_unallocated; 6966 } 6967 /* fallthru */ 6968 case 0b00000110: /* FMOV 32-bit */ 6969 case 0b00000111: 6970 case 0b10100110: /* FMOV 64-bit */ 6971 case 0b10100111: 6972 case 0b11001110: /* FMOV top half of 128-bit */ 6973 case 0b11001111: 6974 if (!fp_access_check(s)) { 6975 return; 6976 } 6977 itof = opcode & 1; 6978 handle_fmov(s, rd, rn, type, itof); 6979 break; 6980 6981 case 0b00111110: /* FJCVTZS */ 6982 if (!dc_isar_feature(aa64_jscvt, s)) { 6983 goto do_unallocated; 6984 } else if (fp_access_check(s)) { 6985 handle_fjcvtzs(s, rd, rn); 6986 } 6987 break; 6988 6989 default: 6990 do_unallocated: 6991 unallocated_encoding(s); 6992 return; 6993 } 6994 break; 6995 } 6996 } 6997 6998 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 6999 * 31 30 29 28 25 24 0 7000 * +---+---+---+---------+-----------------------------+ 7001 * | | 0 | | 1 1 1 1 | | 7002 * +---+---+---+---------+-----------------------------+ 7003 */ 7004 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7005 { 7006 if (extract32(insn, 24, 1)) { 7007 /* Floating point data-processing (3 source) */ 7008 disas_fp_3src(s, insn); 7009 } else if (extract32(insn, 21, 1) == 0) { 7010 /* Floating point to fixed point conversions */ 7011 disas_fp_fixed_conv(s, insn); 7012 } else { 7013 switch (extract32(insn, 10, 2)) { 7014 case 1: 7015 /* Floating point conditional compare */ 7016 disas_fp_ccomp(s, insn); 7017 break; 7018 case 2: 7019 /* Floating point data-processing (2 source) */ 7020 disas_fp_2src(s, insn); 7021 break; 7022 case 3: 7023 /* Floating point conditional select */ 7024 disas_fp_csel(s, insn); 7025 break; 7026 case 0: 7027 switch (ctz32(extract32(insn, 12, 4))) { 7028 case 0: /* [15:12] == xxx1 */ 7029 /* Floating point immediate */ 7030 disas_fp_imm(s, insn); 7031 break; 7032 case 1: /* [15:12] == xx10 */ 7033 /* Floating point compare */ 7034 disas_fp_compare(s, insn); 7035 break; 7036 case 2: /* [15:12] == x100 */ 7037 /* Floating point data-processing (1 source) */ 7038 disas_fp_1src(s, insn); 7039 break; 7040 case 3: /* [15:12] == 1000 */ 7041 unallocated_encoding(s); 7042 break; 7043 default: /* [15:12] == 0000 */ 7044 /* Floating point <-> integer conversions */ 7045 disas_fp_int_conv(s, insn); 7046 break; 7047 } 7048 break; 7049 } 7050 } 7051 } 7052 7053 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7054 int pos) 7055 { 7056 /* Extract 64 bits from the middle of two concatenated 64 bit 7057 * vector register slices left:right. The extracted bits start 7058 * at 'pos' bits into the right (least significant) side. 7059 * We return the result in tcg_right, and guarantee not to 7060 * trash tcg_left. 7061 */ 7062 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7063 assert(pos > 0 && pos < 64); 7064 7065 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7066 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7067 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7068 } 7069 7070 /* EXT 7071 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7072 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7073 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7074 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7075 */ 7076 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7077 { 7078 int is_q = extract32(insn, 30, 1); 7079 int op2 = extract32(insn, 22, 2); 7080 int imm4 = extract32(insn, 11, 4); 7081 int rm = extract32(insn, 16, 5); 7082 int rn = extract32(insn, 5, 5); 7083 int rd = extract32(insn, 0, 5); 7084 int pos = imm4 << 3; 7085 TCGv_i64 tcg_resl, tcg_resh; 7086 7087 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7088 unallocated_encoding(s); 7089 return; 7090 } 7091 7092 if (!fp_access_check(s)) { 7093 return; 7094 } 7095 7096 tcg_resh = tcg_temp_new_i64(); 7097 tcg_resl = tcg_temp_new_i64(); 7098 7099 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7100 * either extracting 128 bits from a 128:128 concatenation, or 7101 * extracting 64 bits from a 64:64 concatenation. 7102 */ 7103 if (!is_q) { 7104 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7105 if (pos != 0) { 7106 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7107 do_ext64(s, tcg_resh, tcg_resl, pos); 7108 } 7109 } else { 7110 TCGv_i64 tcg_hh; 7111 typedef struct { 7112 int reg; 7113 int elt; 7114 } EltPosns; 7115 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7116 EltPosns *elt = eltposns; 7117 7118 if (pos >= 64) { 7119 elt++; 7120 pos -= 64; 7121 } 7122 7123 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7124 elt++; 7125 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7126 elt++; 7127 if (pos != 0) { 7128 do_ext64(s, tcg_resh, tcg_resl, pos); 7129 tcg_hh = tcg_temp_new_i64(); 7130 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7131 do_ext64(s, tcg_hh, tcg_resh, pos); 7132 } 7133 } 7134 7135 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7136 if (is_q) { 7137 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7138 } 7139 clear_vec_high(s, is_q, rd); 7140 } 7141 7142 /* TBL/TBX 7143 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7144 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7145 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7146 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7147 */ 7148 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7149 { 7150 int op2 = extract32(insn, 22, 2); 7151 int is_q = extract32(insn, 30, 1); 7152 int rm = extract32(insn, 16, 5); 7153 int rn = extract32(insn, 5, 5); 7154 int rd = extract32(insn, 0, 5); 7155 int is_tbx = extract32(insn, 12, 1); 7156 int len = (extract32(insn, 13, 2) + 1) * 16; 7157 7158 if (op2 != 0) { 7159 unallocated_encoding(s); 7160 return; 7161 } 7162 7163 if (!fp_access_check(s)) { 7164 return; 7165 } 7166 7167 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7168 vec_full_reg_offset(s, rm), tcg_env, 7169 is_q ? 16 : 8, vec_full_reg_size(s), 7170 (len << 6) | (is_tbx << 5) | rn, 7171 gen_helper_simd_tblx); 7172 } 7173 7174 /* ZIP/UZP/TRN 7175 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7176 * +---+---+-------------+------+---+------+---+------------------+------+ 7177 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7178 * +---+---+-------------+------+---+------+---+------------------+------+ 7179 */ 7180 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7181 { 7182 int rd = extract32(insn, 0, 5); 7183 int rn = extract32(insn, 5, 5); 7184 int rm = extract32(insn, 16, 5); 7185 int size = extract32(insn, 22, 2); 7186 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7187 * bit 2 indicates 1 vs 2 variant of the insn. 7188 */ 7189 int opcode = extract32(insn, 12, 2); 7190 bool part = extract32(insn, 14, 1); 7191 bool is_q = extract32(insn, 30, 1); 7192 int esize = 8 << size; 7193 int i; 7194 int datasize = is_q ? 128 : 64; 7195 int elements = datasize / esize; 7196 TCGv_i64 tcg_res[2], tcg_ele; 7197 7198 if (opcode == 0 || (size == 3 && !is_q)) { 7199 unallocated_encoding(s); 7200 return; 7201 } 7202 7203 if (!fp_access_check(s)) { 7204 return; 7205 } 7206 7207 tcg_res[0] = tcg_temp_new_i64(); 7208 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7209 tcg_ele = tcg_temp_new_i64(); 7210 7211 for (i = 0; i < elements; i++) { 7212 int o, w; 7213 7214 switch (opcode) { 7215 case 1: /* UZP1/2 */ 7216 { 7217 int midpoint = elements / 2; 7218 if (i < midpoint) { 7219 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7220 } else { 7221 read_vec_element(s, tcg_ele, rm, 7222 2 * (i - midpoint) + part, size); 7223 } 7224 break; 7225 } 7226 case 2: /* TRN1/2 */ 7227 if (i & 1) { 7228 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7229 } else { 7230 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7231 } 7232 break; 7233 case 3: /* ZIP1/2 */ 7234 { 7235 int base = part * elements / 2; 7236 if (i & 1) { 7237 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7238 } else { 7239 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7240 } 7241 break; 7242 } 7243 default: 7244 g_assert_not_reached(); 7245 } 7246 7247 w = (i * esize) / 64; 7248 o = (i * esize) % 64; 7249 if (o == 0) { 7250 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7251 } else { 7252 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7253 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7254 } 7255 } 7256 7257 for (i = 0; i <= is_q; ++i) { 7258 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7259 } 7260 clear_vec_high(s, is_q, rd); 7261 } 7262 7263 /* 7264 * do_reduction_op helper 7265 * 7266 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7267 * important for correct NaN propagation that we do these 7268 * operations in exactly the order specified by the pseudocode. 7269 * 7270 * This is a recursive function, TCG temps should be freed by the 7271 * calling function once it is done with the values. 7272 */ 7273 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7274 int esize, int size, int vmap, TCGv_ptr fpst) 7275 { 7276 if (esize == size) { 7277 int element; 7278 MemOp msize = esize == 16 ? MO_16 : MO_32; 7279 TCGv_i32 tcg_elem; 7280 7281 /* We should have one register left here */ 7282 assert(ctpop8(vmap) == 1); 7283 element = ctz32(vmap); 7284 assert(element < 8); 7285 7286 tcg_elem = tcg_temp_new_i32(); 7287 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7288 return tcg_elem; 7289 } else { 7290 int bits = size / 2; 7291 int shift = ctpop8(vmap) / 2; 7292 int vmap_lo = (vmap >> shift) & vmap; 7293 int vmap_hi = (vmap & ~vmap_lo); 7294 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7295 7296 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7297 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7298 tcg_res = tcg_temp_new_i32(); 7299 7300 switch (fpopcode) { 7301 case 0x0c: /* fmaxnmv half-precision */ 7302 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7303 break; 7304 case 0x0f: /* fmaxv half-precision */ 7305 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7306 break; 7307 case 0x1c: /* fminnmv half-precision */ 7308 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7309 break; 7310 case 0x1f: /* fminv half-precision */ 7311 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7312 break; 7313 case 0x2c: /* fmaxnmv */ 7314 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7315 break; 7316 case 0x2f: /* fmaxv */ 7317 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7318 break; 7319 case 0x3c: /* fminnmv */ 7320 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7321 break; 7322 case 0x3f: /* fminv */ 7323 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7324 break; 7325 default: 7326 g_assert_not_reached(); 7327 } 7328 return tcg_res; 7329 } 7330 } 7331 7332 /* AdvSIMD across lanes 7333 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7334 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7335 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7336 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7337 */ 7338 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7339 { 7340 int rd = extract32(insn, 0, 5); 7341 int rn = extract32(insn, 5, 5); 7342 int size = extract32(insn, 22, 2); 7343 int opcode = extract32(insn, 12, 5); 7344 bool is_q = extract32(insn, 30, 1); 7345 bool is_u = extract32(insn, 29, 1); 7346 bool is_fp = false; 7347 bool is_min = false; 7348 int esize; 7349 int elements; 7350 int i; 7351 TCGv_i64 tcg_res, tcg_elt; 7352 7353 switch (opcode) { 7354 case 0x1b: /* ADDV */ 7355 if (is_u) { 7356 unallocated_encoding(s); 7357 return; 7358 } 7359 /* fall through */ 7360 case 0x3: /* SADDLV, UADDLV */ 7361 case 0xa: /* SMAXV, UMAXV */ 7362 case 0x1a: /* SMINV, UMINV */ 7363 if (size == 3 || (size == 2 && !is_q)) { 7364 unallocated_encoding(s); 7365 return; 7366 } 7367 break; 7368 case 0xc: /* FMAXNMV, FMINNMV */ 7369 case 0xf: /* FMAXV, FMINV */ 7370 /* Bit 1 of size field encodes min vs max and the actual size 7371 * depends on the encoding of the U bit. If not set (and FP16 7372 * enabled) then we do half-precision float instead of single 7373 * precision. 7374 */ 7375 is_min = extract32(size, 1, 1); 7376 is_fp = true; 7377 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7378 size = 1; 7379 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7380 unallocated_encoding(s); 7381 return; 7382 } else { 7383 size = 2; 7384 } 7385 break; 7386 default: 7387 unallocated_encoding(s); 7388 return; 7389 } 7390 7391 if (!fp_access_check(s)) { 7392 return; 7393 } 7394 7395 esize = 8 << size; 7396 elements = (is_q ? 128 : 64) / esize; 7397 7398 tcg_res = tcg_temp_new_i64(); 7399 tcg_elt = tcg_temp_new_i64(); 7400 7401 /* These instructions operate across all lanes of a vector 7402 * to produce a single result. We can guarantee that a 64 7403 * bit intermediate is sufficient: 7404 * + for [US]ADDLV the maximum element size is 32 bits, and 7405 * the result type is 64 bits 7406 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7407 * same as the element size, which is 32 bits at most 7408 * For the integer operations we can choose to work at 64 7409 * or 32 bits and truncate at the end; for simplicity 7410 * we use 64 bits always. The floating point 7411 * ops do require 32 bit intermediates, though. 7412 */ 7413 if (!is_fp) { 7414 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7415 7416 for (i = 1; i < elements; i++) { 7417 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7418 7419 switch (opcode) { 7420 case 0x03: /* SADDLV / UADDLV */ 7421 case 0x1b: /* ADDV */ 7422 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7423 break; 7424 case 0x0a: /* SMAXV / UMAXV */ 7425 if (is_u) { 7426 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7427 } else { 7428 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7429 } 7430 break; 7431 case 0x1a: /* SMINV / UMINV */ 7432 if (is_u) { 7433 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7434 } else { 7435 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7436 } 7437 break; 7438 default: 7439 g_assert_not_reached(); 7440 } 7441 7442 } 7443 } else { 7444 /* Floating point vector reduction ops which work across 32 7445 * bit (single) or 16 bit (half-precision) intermediates. 7446 * Note that correct NaN propagation requires that we do these 7447 * operations in exactly the order specified by the pseudocode. 7448 */ 7449 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7450 int fpopcode = opcode | is_min << 4 | is_u << 5; 7451 int vmap = (1 << elements) - 1; 7452 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7453 (is_q ? 128 : 64), vmap, fpst); 7454 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7455 } 7456 7457 /* Now truncate the result to the width required for the final output */ 7458 if (opcode == 0x03) { 7459 /* SADDLV, UADDLV: result is 2*esize */ 7460 size++; 7461 } 7462 7463 switch (size) { 7464 case 0: 7465 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7466 break; 7467 case 1: 7468 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7469 break; 7470 case 2: 7471 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7472 break; 7473 case 3: 7474 break; 7475 default: 7476 g_assert_not_reached(); 7477 } 7478 7479 write_fp_dreg(s, rd, tcg_res); 7480 } 7481 7482 /* DUP (Element, Vector) 7483 * 7484 * 31 30 29 21 20 16 15 10 9 5 4 0 7485 * +---+---+-------------------+--------+-------------+------+------+ 7486 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7487 * +---+---+-------------------+--------+-------------+------+------+ 7488 * 7489 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7490 */ 7491 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7492 int imm5) 7493 { 7494 int size = ctz32(imm5); 7495 int index; 7496 7497 if (size > 3 || (size == 3 && !is_q)) { 7498 unallocated_encoding(s); 7499 return; 7500 } 7501 7502 if (!fp_access_check(s)) { 7503 return; 7504 } 7505 7506 index = imm5 >> (size + 1); 7507 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7508 vec_reg_offset(s, rn, index, size), 7509 is_q ? 16 : 8, vec_full_reg_size(s)); 7510 } 7511 7512 /* DUP (element, scalar) 7513 * 31 21 20 16 15 10 9 5 4 0 7514 * +-----------------------+--------+-------------+------+------+ 7515 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7516 * +-----------------------+--------+-------------+------+------+ 7517 */ 7518 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7519 int imm5) 7520 { 7521 int size = ctz32(imm5); 7522 int index; 7523 TCGv_i64 tmp; 7524 7525 if (size > 3) { 7526 unallocated_encoding(s); 7527 return; 7528 } 7529 7530 if (!fp_access_check(s)) { 7531 return; 7532 } 7533 7534 index = imm5 >> (size + 1); 7535 7536 /* This instruction just extracts the specified element and 7537 * zero-extends it into the bottom of the destination register. 7538 */ 7539 tmp = tcg_temp_new_i64(); 7540 read_vec_element(s, tmp, rn, index, size); 7541 write_fp_dreg(s, rd, tmp); 7542 } 7543 7544 /* DUP (General) 7545 * 7546 * 31 30 29 21 20 16 15 10 9 5 4 0 7547 * +---+---+-------------------+--------+-------------+------+------+ 7548 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7549 * +---+---+-------------------+--------+-------------+------+------+ 7550 * 7551 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7552 */ 7553 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7554 int imm5) 7555 { 7556 int size = ctz32(imm5); 7557 uint32_t dofs, oprsz, maxsz; 7558 7559 if (size > 3 || ((size == 3) && !is_q)) { 7560 unallocated_encoding(s); 7561 return; 7562 } 7563 7564 if (!fp_access_check(s)) { 7565 return; 7566 } 7567 7568 dofs = vec_full_reg_offset(s, rd); 7569 oprsz = is_q ? 16 : 8; 7570 maxsz = vec_full_reg_size(s); 7571 7572 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7573 } 7574 7575 /* INS (Element) 7576 * 7577 * 31 21 20 16 15 14 11 10 9 5 4 0 7578 * +-----------------------+--------+------------+---+------+------+ 7579 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7580 * +-----------------------+--------+------------+---+------+------+ 7581 * 7582 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7583 * index: encoded in imm5<4:size+1> 7584 */ 7585 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7586 int imm4, int imm5) 7587 { 7588 int size = ctz32(imm5); 7589 int src_index, dst_index; 7590 TCGv_i64 tmp; 7591 7592 if (size > 3) { 7593 unallocated_encoding(s); 7594 return; 7595 } 7596 7597 if (!fp_access_check(s)) { 7598 return; 7599 } 7600 7601 dst_index = extract32(imm5, 1+size, 5); 7602 src_index = extract32(imm4, size, 4); 7603 7604 tmp = tcg_temp_new_i64(); 7605 7606 read_vec_element(s, tmp, rn, src_index, size); 7607 write_vec_element(s, tmp, rd, dst_index, size); 7608 7609 /* INS is considered a 128-bit write for SVE. */ 7610 clear_vec_high(s, true, rd); 7611 } 7612 7613 7614 /* INS (General) 7615 * 7616 * 31 21 20 16 15 10 9 5 4 0 7617 * +-----------------------+--------+-------------+------+------+ 7618 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7619 * +-----------------------+--------+-------------+------+------+ 7620 * 7621 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7622 * index: encoded in imm5<4:size+1> 7623 */ 7624 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7625 { 7626 int size = ctz32(imm5); 7627 int idx; 7628 7629 if (size > 3) { 7630 unallocated_encoding(s); 7631 return; 7632 } 7633 7634 if (!fp_access_check(s)) { 7635 return; 7636 } 7637 7638 idx = extract32(imm5, 1 + size, 4 - size); 7639 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7640 7641 /* INS is considered a 128-bit write for SVE. */ 7642 clear_vec_high(s, true, rd); 7643 } 7644 7645 /* 7646 * UMOV (General) 7647 * SMOV (General) 7648 * 7649 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7650 * +---+---+-------------------+--------+-------------+------+------+ 7651 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7652 * +---+---+-------------------+--------+-------------+------+------+ 7653 * 7654 * U: unsigned when set 7655 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7656 */ 7657 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7658 int rn, int rd, int imm5) 7659 { 7660 int size = ctz32(imm5); 7661 int element; 7662 TCGv_i64 tcg_rd; 7663 7664 /* Check for UnallocatedEncodings */ 7665 if (is_signed) { 7666 if (size > 2 || (size == 2 && !is_q)) { 7667 unallocated_encoding(s); 7668 return; 7669 } 7670 } else { 7671 if (size > 3 7672 || (size < 3 && is_q) 7673 || (size == 3 && !is_q)) { 7674 unallocated_encoding(s); 7675 return; 7676 } 7677 } 7678 7679 if (!fp_access_check(s)) { 7680 return; 7681 } 7682 7683 element = extract32(imm5, 1+size, 4); 7684 7685 tcg_rd = cpu_reg(s, rd); 7686 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7687 if (is_signed && !is_q) { 7688 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7689 } 7690 } 7691 7692 /* AdvSIMD copy 7693 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7694 * +---+---+----+-----------------+------+---+------+---+------+------+ 7695 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7696 * +---+---+----+-----------------+------+---+------+---+------+------+ 7697 */ 7698 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7699 { 7700 int rd = extract32(insn, 0, 5); 7701 int rn = extract32(insn, 5, 5); 7702 int imm4 = extract32(insn, 11, 4); 7703 int op = extract32(insn, 29, 1); 7704 int is_q = extract32(insn, 30, 1); 7705 int imm5 = extract32(insn, 16, 5); 7706 7707 if (op) { 7708 if (is_q) { 7709 /* INS (element) */ 7710 handle_simd_inse(s, rd, rn, imm4, imm5); 7711 } else { 7712 unallocated_encoding(s); 7713 } 7714 } else { 7715 switch (imm4) { 7716 case 0: 7717 /* DUP (element - vector) */ 7718 handle_simd_dupe(s, is_q, rd, rn, imm5); 7719 break; 7720 case 1: 7721 /* DUP (general) */ 7722 handle_simd_dupg(s, is_q, rd, rn, imm5); 7723 break; 7724 case 3: 7725 if (is_q) { 7726 /* INS (general) */ 7727 handle_simd_insg(s, rd, rn, imm5); 7728 } else { 7729 unallocated_encoding(s); 7730 } 7731 break; 7732 case 5: 7733 case 7: 7734 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7735 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7736 break; 7737 default: 7738 unallocated_encoding(s); 7739 break; 7740 } 7741 } 7742 } 7743 7744 /* AdvSIMD modified immediate 7745 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7746 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7747 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7748 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7749 * 7750 * There are a number of operations that can be carried out here: 7751 * MOVI - move (shifted) imm into register 7752 * MVNI - move inverted (shifted) imm into register 7753 * ORR - bitwise OR of (shifted) imm with register 7754 * BIC - bitwise clear of (shifted) imm with register 7755 * With ARMv8.2 we also have: 7756 * FMOV half-precision 7757 */ 7758 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7759 { 7760 int rd = extract32(insn, 0, 5); 7761 int cmode = extract32(insn, 12, 4); 7762 int o2 = extract32(insn, 11, 1); 7763 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7764 bool is_neg = extract32(insn, 29, 1); 7765 bool is_q = extract32(insn, 30, 1); 7766 uint64_t imm = 0; 7767 7768 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7769 /* Check for FMOV (vector, immediate) - half-precision */ 7770 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7771 unallocated_encoding(s); 7772 return; 7773 } 7774 } 7775 7776 if (!fp_access_check(s)) { 7777 return; 7778 } 7779 7780 if (cmode == 15 && o2 && !is_neg) { 7781 /* FMOV (vector, immediate) - half-precision */ 7782 imm = vfp_expand_imm(MO_16, abcdefgh); 7783 /* now duplicate across the lanes */ 7784 imm = dup_const(MO_16, imm); 7785 } else { 7786 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7787 } 7788 7789 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7790 /* MOVI or MVNI, with MVNI negation handled above. */ 7791 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7792 vec_full_reg_size(s), imm); 7793 } else { 7794 /* ORR or BIC, with BIC negation to AND handled above. */ 7795 if (is_neg) { 7796 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7797 } else { 7798 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7799 } 7800 } 7801 } 7802 7803 /* AdvSIMD scalar copy 7804 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7805 * +-----+----+-----------------+------+---+------+---+------+------+ 7806 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7807 * +-----+----+-----------------+------+---+------+---+------+------+ 7808 */ 7809 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7810 { 7811 int rd = extract32(insn, 0, 5); 7812 int rn = extract32(insn, 5, 5); 7813 int imm4 = extract32(insn, 11, 4); 7814 int imm5 = extract32(insn, 16, 5); 7815 int op = extract32(insn, 29, 1); 7816 7817 if (op != 0 || imm4 != 0) { 7818 unallocated_encoding(s); 7819 return; 7820 } 7821 7822 /* DUP (element, scalar) */ 7823 handle_simd_dupes(s, rd, rn, imm5); 7824 } 7825 7826 /* AdvSIMD scalar pairwise 7827 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7828 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7829 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7830 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7831 */ 7832 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7833 { 7834 int u = extract32(insn, 29, 1); 7835 int size = extract32(insn, 22, 2); 7836 int opcode = extract32(insn, 12, 5); 7837 int rn = extract32(insn, 5, 5); 7838 int rd = extract32(insn, 0, 5); 7839 TCGv_ptr fpst; 7840 7841 /* For some ops (the FP ones), size[1] is part of the encoding. 7842 * For ADDP strictly it is not but size[1] is always 1 for valid 7843 * encodings. 7844 */ 7845 opcode |= (extract32(size, 1, 1) << 5); 7846 7847 switch (opcode) { 7848 case 0x3b: /* ADDP */ 7849 if (u || size != 3) { 7850 unallocated_encoding(s); 7851 return; 7852 } 7853 if (!fp_access_check(s)) { 7854 return; 7855 } 7856 7857 fpst = NULL; 7858 break; 7859 case 0xc: /* FMAXNMP */ 7860 case 0xd: /* FADDP */ 7861 case 0xf: /* FMAXP */ 7862 case 0x2c: /* FMINNMP */ 7863 case 0x2f: /* FMINP */ 7864 /* FP op, size[0] is 32 or 64 bit*/ 7865 if (!u) { 7866 if (!dc_isar_feature(aa64_fp16, s)) { 7867 unallocated_encoding(s); 7868 return; 7869 } else { 7870 size = MO_16; 7871 } 7872 } else { 7873 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7874 } 7875 7876 if (!fp_access_check(s)) { 7877 return; 7878 } 7879 7880 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7881 break; 7882 default: 7883 unallocated_encoding(s); 7884 return; 7885 } 7886 7887 if (size == MO_64) { 7888 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7889 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7890 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7891 7892 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7893 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7894 7895 switch (opcode) { 7896 case 0x3b: /* ADDP */ 7897 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7898 break; 7899 case 0xc: /* FMAXNMP */ 7900 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7901 break; 7902 case 0xd: /* FADDP */ 7903 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7904 break; 7905 case 0xf: /* FMAXP */ 7906 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7907 break; 7908 case 0x2c: /* FMINNMP */ 7909 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7910 break; 7911 case 0x2f: /* FMINP */ 7912 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7913 break; 7914 default: 7915 g_assert_not_reached(); 7916 } 7917 7918 write_fp_dreg(s, rd, tcg_res); 7919 } else { 7920 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7921 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7922 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7923 7924 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7925 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7926 7927 if (size == MO_16) { 7928 switch (opcode) { 7929 case 0xc: /* FMAXNMP */ 7930 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7931 break; 7932 case 0xd: /* FADDP */ 7933 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 7934 break; 7935 case 0xf: /* FMAXP */ 7936 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 7937 break; 7938 case 0x2c: /* FMINNMP */ 7939 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7940 break; 7941 case 0x2f: /* FMINP */ 7942 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 7943 break; 7944 default: 7945 g_assert_not_reached(); 7946 } 7947 } else { 7948 switch (opcode) { 7949 case 0xc: /* FMAXNMP */ 7950 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 7951 break; 7952 case 0xd: /* FADDP */ 7953 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 7954 break; 7955 case 0xf: /* FMAXP */ 7956 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 7957 break; 7958 case 0x2c: /* FMINNMP */ 7959 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 7960 break; 7961 case 0x2f: /* FMINP */ 7962 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 7963 break; 7964 default: 7965 g_assert_not_reached(); 7966 } 7967 } 7968 7969 write_fp_sreg(s, rd, tcg_res); 7970 } 7971 } 7972 7973 /* 7974 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 7975 * 7976 * This code is handles the common shifting code and is used by both 7977 * the vector and scalar code. 7978 */ 7979 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 7980 TCGv_i64 tcg_rnd, bool accumulate, 7981 bool is_u, int size, int shift) 7982 { 7983 bool extended_result = false; 7984 bool round = tcg_rnd != NULL; 7985 int ext_lshift = 0; 7986 TCGv_i64 tcg_src_hi; 7987 7988 if (round && size == 3) { 7989 extended_result = true; 7990 ext_lshift = 64 - shift; 7991 tcg_src_hi = tcg_temp_new_i64(); 7992 } else if (shift == 64) { 7993 if (!accumulate && is_u) { 7994 /* result is zero */ 7995 tcg_gen_movi_i64(tcg_res, 0); 7996 return; 7997 } 7998 } 7999 8000 /* Deal with the rounding step */ 8001 if (round) { 8002 if (extended_result) { 8003 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8004 if (!is_u) { 8005 /* take care of sign extending tcg_res */ 8006 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8007 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8008 tcg_src, tcg_src_hi, 8009 tcg_rnd, tcg_zero); 8010 } else { 8011 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8012 tcg_src, tcg_zero, 8013 tcg_rnd, tcg_zero); 8014 } 8015 } else { 8016 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8017 } 8018 } 8019 8020 /* Now do the shift right */ 8021 if (round && extended_result) { 8022 /* extended case, >64 bit precision required */ 8023 if (ext_lshift == 0) { 8024 /* special case, only high bits matter */ 8025 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8026 } else { 8027 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8028 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8029 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8030 } 8031 } else { 8032 if (is_u) { 8033 if (shift == 64) { 8034 /* essentially shifting in 64 zeros */ 8035 tcg_gen_movi_i64(tcg_src, 0); 8036 } else { 8037 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8038 } 8039 } else { 8040 if (shift == 64) { 8041 /* effectively extending the sign-bit */ 8042 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8043 } else { 8044 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8045 } 8046 } 8047 } 8048 8049 if (accumulate) { 8050 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8051 } else { 8052 tcg_gen_mov_i64(tcg_res, tcg_src); 8053 } 8054 } 8055 8056 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8057 static void handle_scalar_simd_shri(DisasContext *s, 8058 bool is_u, int immh, int immb, 8059 int opcode, int rn, int rd) 8060 { 8061 const int size = 3; 8062 int immhb = immh << 3 | immb; 8063 int shift = 2 * (8 << size) - immhb; 8064 bool accumulate = false; 8065 bool round = false; 8066 bool insert = false; 8067 TCGv_i64 tcg_rn; 8068 TCGv_i64 tcg_rd; 8069 TCGv_i64 tcg_round; 8070 8071 if (!extract32(immh, 3, 1)) { 8072 unallocated_encoding(s); 8073 return; 8074 } 8075 8076 if (!fp_access_check(s)) { 8077 return; 8078 } 8079 8080 switch (opcode) { 8081 case 0x02: /* SSRA / USRA (accumulate) */ 8082 accumulate = true; 8083 break; 8084 case 0x04: /* SRSHR / URSHR (rounding) */ 8085 round = true; 8086 break; 8087 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8088 accumulate = round = true; 8089 break; 8090 case 0x08: /* SRI */ 8091 insert = true; 8092 break; 8093 } 8094 8095 if (round) { 8096 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8097 } else { 8098 tcg_round = NULL; 8099 } 8100 8101 tcg_rn = read_fp_dreg(s, rn); 8102 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8103 8104 if (insert) { 8105 /* shift count same as element size is valid but does nothing; 8106 * special case to avoid potential shift by 64. 8107 */ 8108 int esize = 8 << size; 8109 if (shift != esize) { 8110 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8111 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8112 } 8113 } else { 8114 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8115 accumulate, is_u, size, shift); 8116 } 8117 8118 write_fp_dreg(s, rd, tcg_rd); 8119 } 8120 8121 /* SHL/SLI - Scalar shift left */ 8122 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8123 int immh, int immb, int opcode, 8124 int rn, int rd) 8125 { 8126 int size = 32 - clz32(immh) - 1; 8127 int immhb = immh << 3 | immb; 8128 int shift = immhb - (8 << size); 8129 TCGv_i64 tcg_rn; 8130 TCGv_i64 tcg_rd; 8131 8132 if (!extract32(immh, 3, 1)) { 8133 unallocated_encoding(s); 8134 return; 8135 } 8136 8137 if (!fp_access_check(s)) { 8138 return; 8139 } 8140 8141 tcg_rn = read_fp_dreg(s, rn); 8142 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8143 8144 if (insert) { 8145 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8146 } else { 8147 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8148 } 8149 8150 write_fp_dreg(s, rd, tcg_rd); 8151 } 8152 8153 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8154 * (signed/unsigned) narrowing */ 8155 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8156 bool is_u_shift, bool is_u_narrow, 8157 int immh, int immb, int opcode, 8158 int rn, int rd) 8159 { 8160 int immhb = immh << 3 | immb; 8161 int size = 32 - clz32(immh) - 1; 8162 int esize = 8 << size; 8163 int shift = (2 * esize) - immhb; 8164 int elements = is_scalar ? 1 : (64 / esize); 8165 bool round = extract32(opcode, 0, 1); 8166 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8167 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8168 TCGv_i32 tcg_rd_narrowed; 8169 TCGv_i64 tcg_final; 8170 8171 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8172 { gen_helper_neon_narrow_sat_s8, 8173 gen_helper_neon_unarrow_sat8 }, 8174 { gen_helper_neon_narrow_sat_s16, 8175 gen_helper_neon_unarrow_sat16 }, 8176 { gen_helper_neon_narrow_sat_s32, 8177 gen_helper_neon_unarrow_sat32 }, 8178 { NULL, NULL }, 8179 }; 8180 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8181 gen_helper_neon_narrow_sat_u8, 8182 gen_helper_neon_narrow_sat_u16, 8183 gen_helper_neon_narrow_sat_u32, 8184 NULL 8185 }; 8186 NeonGenNarrowEnvFn *narrowfn; 8187 8188 int i; 8189 8190 assert(size < 4); 8191 8192 if (extract32(immh, 3, 1)) { 8193 unallocated_encoding(s); 8194 return; 8195 } 8196 8197 if (!fp_access_check(s)) { 8198 return; 8199 } 8200 8201 if (is_u_shift) { 8202 narrowfn = unsigned_narrow_fns[size]; 8203 } else { 8204 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8205 } 8206 8207 tcg_rn = tcg_temp_new_i64(); 8208 tcg_rd = tcg_temp_new_i64(); 8209 tcg_rd_narrowed = tcg_temp_new_i32(); 8210 tcg_final = tcg_temp_new_i64(); 8211 8212 if (round) { 8213 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8214 } else { 8215 tcg_round = NULL; 8216 } 8217 8218 for (i = 0; i < elements; i++) { 8219 read_vec_element(s, tcg_rn, rn, i, ldop); 8220 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8221 false, is_u_shift, size+1, shift); 8222 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8223 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8224 if (i == 0) { 8225 tcg_gen_mov_i64(tcg_final, tcg_rd); 8226 } else { 8227 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8228 } 8229 } 8230 8231 if (!is_q) { 8232 write_vec_element(s, tcg_final, rd, 0, MO_64); 8233 } else { 8234 write_vec_element(s, tcg_final, rd, 1, MO_64); 8235 } 8236 clear_vec_high(s, is_q, rd); 8237 } 8238 8239 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8240 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8241 bool src_unsigned, bool dst_unsigned, 8242 int immh, int immb, int rn, int rd) 8243 { 8244 int immhb = immh << 3 | immb; 8245 int size = 32 - clz32(immh) - 1; 8246 int shift = immhb - (8 << size); 8247 int pass; 8248 8249 assert(immh != 0); 8250 assert(!(scalar && is_q)); 8251 8252 if (!scalar) { 8253 if (!is_q && extract32(immh, 3, 1)) { 8254 unallocated_encoding(s); 8255 return; 8256 } 8257 8258 /* Since we use the variable-shift helpers we must 8259 * replicate the shift count into each element of 8260 * the tcg_shift value. 8261 */ 8262 switch (size) { 8263 case 0: 8264 shift |= shift << 8; 8265 /* fall through */ 8266 case 1: 8267 shift |= shift << 16; 8268 break; 8269 case 2: 8270 case 3: 8271 break; 8272 default: 8273 g_assert_not_reached(); 8274 } 8275 } 8276 8277 if (!fp_access_check(s)) { 8278 return; 8279 } 8280 8281 if (size == 3) { 8282 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8283 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8284 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8285 { NULL, gen_helper_neon_qshl_u64 }, 8286 }; 8287 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8288 int maxpass = is_q ? 2 : 1; 8289 8290 for (pass = 0; pass < maxpass; pass++) { 8291 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8292 8293 read_vec_element(s, tcg_op, rn, pass, MO_64); 8294 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8295 write_vec_element(s, tcg_op, rd, pass, MO_64); 8296 } 8297 clear_vec_high(s, is_q, rd); 8298 } else { 8299 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8300 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8301 { 8302 { gen_helper_neon_qshl_s8, 8303 gen_helper_neon_qshl_s16, 8304 gen_helper_neon_qshl_s32 }, 8305 { gen_helper_neon_qshlu_s8, 8306 gen_helper_neon_qshlu_s16, 8307 gen_helper_neon_qshlu_s32 } 8308 }, { 8309 { NULL, NULL, NULL }, 8310 { gen_helper_neon_qshl_u8, 8311 gen_helper_neon_qshl_u16, 8312 gen_helper_neon_qshl_u32 } 8313 } 8314 }; 8315 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8316 MemOp memop = scalar ? size : MO_32; 8317 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8318 8319 for (pass = 0; pass < maxpass; pass++) { 8320 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8321 8322 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8323 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8324 if (scalar) { 8325 switch (size) { 8326 case 0: 8327 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8328 break; 8329 case 1: 8330 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8331 break; 8332 case 2: 8333 break; 8334 default: 8335 g_assert_not_reached(); 8336 } 8337 write_fp_sreg(s, rd, tcg_op); 8338 } else { 8339 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8340 } 8341 } 8342 8343 if (!scalar) { 8344 clear_vec_high(s, is_q, rd); 8345 } 8346 } 8347 } 8348 8349 /* Common vector code for handling integer to FP conversion */ 8350 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8351 int elements, int is_signed, 8352 int fracbits, int size) 8353 { 8354 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8355 TCGv_i32 tcg_shift = NULL; 8356 8357 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8358 int pass; 8359 8360 if (fracbits || size == MO_64) { 8361 tcg_shift = tcg_constant_i32(fracbits); 8362 } 8363 8364 if (size == MO_64) { 8365 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8366 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8367 8368 for (pass = 0; pass < elements; pass++) { 8369 read_vec_element(s, tcg_int64, rn, pass, mop); 8370 8371 if (is_signed) { 8372 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8373 tcg_shift, tcg_fpst); 8374 } else { 8375 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8376 tcg_shift, tcg_fpst); 8377 } 8378 if (elements == 1) { 8379 write_fp_dreg(s, rd, tcg_double); 8380 } else { 8381 write_vec_element(s, tcg_double, rd, pass, MO_64); 8382 } 8383 } 8384 } else { 8385 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8386 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8387 8388 for (pass = 0; pass < elements; pass++) { 8389 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8390 8391 switch (size) { 8392 case MO_32: 8393 if (fracbits) { 8394 if (is_signed) { 8395 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8396 tcg_shift, tcg_fpst); 8397 } else { 8398 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8399 tcg_shift, tcg_fpst); 8400 } 8401 } else { 8402 if (is_signed) { 8403 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8404 } else { 8405 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8406 } 8407 } 8408 break; 8409 case MO_16: 8410 if (fracbits) { 8411 if (is_signed) { 8412 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8413 tcg_shift, tcg_fpst); 8414 } else { 8415 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8416 tcg_shift, tcg_fpst); 8417 } 8418 } else { 8419 if (is_signed) { 8420 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8421 } else { 8422 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8423 } 8424 } 8425 break; 8426 default: 8427 g_assert_not_reached(); 8428 } 8429 8430 if (elements == 1) { 8431 write_fp_sreg(s, rd, tcg_float); 8432 } else { 8433 write_vec_element_i32(s, tcg_float, rd, pass, size); 8434 } 8435 } 8436 } 8437 8438 clear_vec_high(s, elements << size == 16, rd); 8439 } 8440 8441 /* UCVTF/SCVTF - Integer to FP conversion */ 8442 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8443 bool is_q, bool is_u, 8444 int immh, int immb, int opcode, 8445 int rn, int rd) 8446 { 8447 int size, elements, fracbits; 8448 int immhb = immh << 3 | immb; 8449 8450 if (immh & 8) { 8451 size = MO_64; 8452 if (!is_scalar && !is_q) { 8453 unallocated_encoding(s); 8454 return; 8455 } 8456 } else if (immh & 4) { 8457 size = MO_32; 8458 } else if (immh & 2) { 8459 size = MO_16; 8460 if (!dc_isar_feature(aa64_fp16, s)) { 8461 unallocated_encoding(s); 8462 return; 8463 } 8464 } else { 8465 /* immh == 0 would be a failure of the decode logic */ 8466 g_assert(immh == 1); 8467 unallocated_encoding(s); 8468 return; 8469 } 8470 8471 if (is_scalar) { 8472 elements = 1; 8473 } else { 8474 elements = (8 << is_q) >> size; 8475 } 8476 fracbits = (16 << size) - immhb; 8477 8478 if (!fp_access_check(s)) { 8479 return; 8480 } 8481 8482 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8483 } 8484 8485 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8486 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8487 bool is_q, bool is_u, 8488 int immh, int immb, int rn, int rd) 8489 { 8490 int immhb = immh << 3 | immb; 8491 int pass, size, fracbits; 8492 TCGv_ptr tcg_fpstatus; 8493 TCGv_i32 tcg_rmode, tcg_shift; 8494 8495 if (immh & 0x8) { 8496 size = MO_64; 8497 if (!is_scalar && !is_q) { 8498 unallocated_encoding(s); 8499 return; 8500 } 8501 } else if (immh & 0x4) { 8502 size = MO_32; 8503 } else if (immh & 0x2) { 8504 size = MO_16; 8505 if (!dc_isar_feature(aa64_fp16, s)) { 8506 unallocated_encoding(s); 8507 return; 8508 } 8509 } else { 8510 /* Should have split out AdvSIMD modified immediate earlier. */ 8511 assert(immh == 1); 8512 unallocated_encoding(s); 8513 return; 8514 } 8515 8516 if (!fp_access_check(s)) { 8517 return; 8518 } 8519 8520 assert(!(is_scalar && is_q)); 8521 8522 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8523 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8524 fracbits = (16 << size) - immhb; 8525 tcg_shift = tcg_constant_i32(fracbits); 8526 8527 if (size == MO_64) { 8528 int maxpass = is_scalar ? 1 : 2; 8529 8530 for (pass = 0; pass < maxpass; pass++) { 8531 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8532 8533 read_vec_element(s, tcg_op, rn, pass, MO_64); 8534 if (is_u) { 8535 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8536 } else { 8537 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8538 } 8539 write_vec_element(s, tcg_op, rd, pass, MO_64); 8540 } 8541 clear_vec_high(s, is_q, rd); 8542 } else { 8543 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8544 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8545 8546 switch (size) { 8547 case MO_16: 8548 if (is_u) { 8549 fn = gen_helper_vfp_touhh; 8550 } else { 8551 fn = gen_helper_vfp_toshh; 8552 } 8553 break; 8554 case MO_32: 8555 if (is_u) { 8556 fn = gen_helper_vfp_touls; 8557 } else { 8558 fn = gen_helper_vfp_tosls; 8559 } 8560 break; 8561 default: 8562 g_assert_not_reached(); 8563 } 8564 8565 for (pass = 0; pass < maxpass; pass++) { 8566 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8567 8568 read_vec_element_i32(s, tcg_op, rn, pass, size); 8569 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8570 if (is_scalar) { 8571 write_fp_sreg(s, rd, tcg_op); 8572 } else { 8573 write_vec_element_i32(s, tcg_op, rd, pass, size); 8574 } 8575 } 8576 if (!is_scalar) { 8577 clear_vec_high(s, is_q, rd); 8578 } 8579 } 8580 8581 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8582 } 8583 8584 /* AdvSIMD scalar shift by immediate 8585 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8586 * +-----+---+-------------+------+------+--------+---+------+------+ 8587 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8588 * +-----+---+-------------+------+------+--------+---+------+------+ 8589 * 8590 * This is the scalar version so it works on a fixed sized registers 8591 */ 8592 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8593 { 8594 int rd = extract32(insn, 0, 5); 8595 int rn = extract32(insn, 5, 5); 8596 int opcode = extract32(insn, 11, 5); 8597 int immb = extract32(insn, 16, 3); 8598 int immh = extract32(insn, 19, 4); 8599 bool is_u = extract32(insn, 29, 1); 8600 8601 if (immh == 0) { 8602 unallocated_encoding(s); 8603 return; 8604 } 8605 8606 switch (opcode) { 8607 case 0x08: /* SRI */ 8608 if (!is_u) { 8609 unallocated_encoding(s); 8610 return; 8611 } 8612 /* fall through */ 8613 case 0x00: /* SSHR / USHR */ 8614 case 0x02: /* SSRA / USRA */ 8615 case 0x04: /* SRSHR / URSHR */ 8616 case 0x06: /* SRSRA / URSRA */ 8617 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8618 break; 8619 case 0x0a: /* SHL / SLI */ 8620 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8621 break; 8622 case 0x1c: /* SCVTF, UCVTF */ 8623 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8624 opcode, rn, rd); 8625 break; 8626 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8627 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8628 if (!is_u) { 8629 unallocated_encoding(s); 8630 return; 8631 } 8632 handle_vec_simd_sqshrn(s, true, false, false, true, 8633 immh, immb, opcode, rn, rd); 8634 break; 8635 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8636 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8637 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8638 immh, immb, opcode, rn, rd); 8639 break; 8640 case 0xc: /* SQSHLU */ 8641 if (!is_u) { 8642 unallocated_encoding(s); 8643 return; 8644 } 8645 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8646 break; 8647 case 0xe: /* SQSHL, UQSHL */ 8648 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8649 break; 8650 case 0x1f: /* FCVTZS, FCVTZU */ 8651 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8652 break; 8653 default: 8654 unallocated_encoding(s); 8655 break; 8656 } 8657 } 8658 8659 /* AdvSIMD scalar three different 8660 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8661 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8662 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8663 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8664 */ 8665 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8666 { 8667 bool is_u = extract32(insn, 29, 1); 8668 int size = extract32(insn, 22, 2); 8669 int opcode = extract32(insn, 12, 4); 8670 int rm = extract32(insn, 16, 5); 8671 int rn = extract32(insn, 5, 5); 8672 int rd = extract32(insn, 0, 5); 8673 8674 if (is_u) { 8675 unallocated_encoding(s); 8676 return; 8677 } 8678 8679 switch (opcode) { 8680 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8681 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8682 case 0xd: /* SQDMULL, SQDMULL2 */ 8683 if (size == 0 || size == 3) { 8684 unallocated_encoding(s); 8685 return; 8686 } 8687 break; 8688 default: 8689 unallocated_encoding(s); 8690 return; 8691 } 8692 8693 if (!fp_access_check(s)) { 8694 return; 8695 } 8696 8697 if (size == 2) { 8698 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8699 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8700 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8701 8702 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8703 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8704 8705 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8706 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8707 8708 switch (opcode) { 8709 case 0xd: /* SQDMULL, SQDMULL2 */ 8710 break; 8711 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8712 tcg_gen_neg_i64(tcg_res, tcg_res); 8713 /* fall through */ 8714 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8715 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8716 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8717 tcg_res, tcg_op1); 8718 break; 8719 default: 8720 g_assert_not_reached(); 8721 } 8722 8723 write_fp_dreg(s, rd, tcg_res); 8724 } else { 8725 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8726 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8727 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8728 8729 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8730 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8731 8732 switch (opcode) { 8733 case 0xd: /* SQDMULL, SQDMULL2 */ 8734 break; 8735 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8736 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8737 /* fall through */ 8738 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8739 { 8740 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8741 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8742 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 8743 tcg_res, tcg_op3); 8744 break; 8745 } 8746 default: 8747 g_assert_not_reached(); 8748 } 8749 8750 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8751 write_fp_dreg(s, rd, tcg_res); 8752 } 8753 } 8754 8755 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8756 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8757 { 8758 /* Handle 64x64->64 opcodes which are shared between the scalar 8759 * and vector 3-same groups. We cover every opcode where size == 3 8760 * is valid in either the three-reg-same (integer, not pairwise) 8761 * or scalar-three-reg-same groups. 8762 */ 8763 TCGCond cond; 8764 8765 switch (opcode) { 8766 case 0x1: /* SQADD */ 8767 if (u) { 8768 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8769 } else { 8770 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8771 } 8772 break; 8773 case 0x5: /* SQSUB */ 8774 if (u) { 8775 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8776 } else { 8777 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8778 } 8779 break; 8780 case 0x6: /* CMGT, CMHI */ 8781 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8782 do_cmop: 8783 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8784 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8785 break; 8786 case 0x7: /* CMGE, CMHS */ 8787 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8788 goto do_cmop; 8789 case 0x11: /* CMTST, CMEQ */ 8790 if (u) { 8791 cond = TCG_COND_EQ; 8792 goto do_cmop; 8793 } 8794 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8795 break; 8796 case 0x8: /* SSHL, USHL */ 8797 if (u) { 8798 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8799 } else { 8800 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8801 } 8802 break; 8803 case 0x9: /* SQSHL, UQSHL */ 8804 if (u) { 8805 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8806 } else { 8807 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8808 } 8809 break; 8810 case 0xa: /* SRSHL, URSHL */ 8811 if (u) { 8812 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8813 } else { 8814 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8815 } 8816 break; 8817 case 0xb: /* SQRSHL, UQRSHL */ 8818 if (u) { 8819 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8820 } else { 8821 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8822 } 8823 break; 8824 case 0x10: /* ADD, SUB */ 8825 if (u) { 8826 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8827 } else { 8828 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8829 } 8830 break; 8831 default: 8832 g_assert_not_reached(); 8833 } 8834 } 8835 8836 /* Handle the 3-same-operands float operations; shared by the scalar 8837 * and vector encodings. The caller must filter out any encodings 8838 * not allocated for the encoding it is dealing with. 8839 */ 8840 static void handle_3same_float(DisasContext *s, int size, int elements, 8841 int fpopcode, int rd, int rn, int rm) 8842 { 8843 int pass; 8844 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8845 8846 for (pass = 0; pass < elements; pass++) { 8847 if (size) { 8848 /* Double */ 8849 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8850 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8851 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8852 8853 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8854 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8855 8856 switch (fpopcode) { 8857 case 0x39: /* FMLS */ 8858 /* As usual for ARM, separate negation for fused multiply-add */ 8859 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8860 /* fall through */ 8861 case 0x19: /* FMLA */ 8862 read_vec_element(s, tcg_res, rd, pass, MO_64); 8863 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8864 tcg_res, fpst); 8865 break; 8866 case 0x18: /* FMAXNM */ 8867 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8868 break; 8869 case 0x1a: /* FADD */ 8870 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8871 break; 8872 case 0x1b: /* FMULX */ 8873 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8874 break; 8875 case 0x1c: /* FCMEQ */ 8876 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8877 break; 8878 case 0x1e: /* FMAX */ 8879 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8880 break; 8881 case 0x1f: /* FRECPS */ 8882 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8883 break; 8884 case 0x38: /* FMINNM */ 8885 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8886 break; 8887 case 0x3a: /* FSUB */ 8888 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8889 break; 8890 case 0x3e: /* FMIN */ 8891 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8892 break; 8893 case 0x3f: /* FRSQRTS */ 8894 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8895 break; 8896 case 0x5b: /* FMUL */ 8897 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8898 break; 8899 case 0x5c: /* FCMGE */ 8900 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8901 break; 8902 case 0x5d: /* FACGE */ 8903 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8904 break; 8905 case 0x5f: /* FDIV */ 8906 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8907 break; 8908 case 0x7a: /* FABD */ 8909 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8910 gen_helper_vfp_absd(tcg_res, tcg_res); 8911 break; 8912 case 0x7c: /* FCMGT */ 8913 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8914 break; 8915 case 0x7d: /* FACGT */ 8916 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8917 break; 8918 default: 8919 g_assert_not_reached(); 8920 } 8921 8922 write_vec_element(s, tcg_res, rd, pass, MO_64); 8923 } else { 8924 /* Single */ 8925 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8926 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8927 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8928 8929 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 8930 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 8931 8932 switch (fpopcode) { 8933 case 0x39: /* FMLS */ 8934 /* As usual for ARM, separate negation for fused multiply-add */ 8935 gen_helper_vfp_negs(tcg_op1, tcg_op1); 8936 /* fall through */ 8937 case 0x19: /* FMLA */ 8938 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8939 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 8940 tcg_res, fpst); 8941 break; 8942 case 0x1a: /* FADD */ 8943 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8944 break; 8945 case 0x1b: /* FMULX */ 8946 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 8947 break; 8948 case 0x1c: /* FCMEQ */ 8949 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8950 break; 8951 case 0x1e: /* FMAX */ 8952 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8953 break; 8954 case 0x1f: /* FRECPS */ 8955 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8956 break; 8957 case 0x18: /* FMAXNM */ 8958 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8959 break; 8960 case 0x38: /* FMINNM */ 8961 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8962 break; 8963 case 0x3a: /* FSUB */ 8964 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8965 break; 8966 case 0x3e: /* FMIN */ 8967 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8968 break; 8969 case 0x3f: /* FRSQRTS */ 8970 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8971 break; 8972 case 0x5b: /* FMUL */ 8973 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 8974 break; 8975 case 0x5c: /* FCMGE */ 8976 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8977 break; 8978 case 0x5d: /* FACGE */ 8979 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8980 break; 8981 case 0x5f: /* FDIV */ 8982 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 8983 break; 8984 case 0x7a: /* FABD */ 8985 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8986 gen_helper_vfp_abss(tcg_res, tcg_res); 8987 break; 8988 case 0x7c: /* FCMGT */ 8989 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8990 break; 8991 case 0x7d: /* FACGT */ 8992 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8993 break; 8994 default: 8995 g_assert_not_reached(); 8996 } 8997 8998 if (elements == 1) { 8999 /* scalar single so clear high part */ 9000 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9001 9002 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9003 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9004 } else { 9005 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9006 } 9007 } 9008 } 9009 9010 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9011 } 9012 9013 /* AdvSIMD scalar three same 9014 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9015 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9016 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9017 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9018 */ 9019 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9020 { 9021 int rd = extract32(insn, 0, 5); 9022 int rn = extract32(insn, 5, 5); 9023 int opcode = extract32(insn, 11, 5); 9024 int rm = extract32(insn, 16, 5); 9025 int size = extract32(insn, 22, 2); 9026 bool u = extract32(insn, 29, 1); 9027 TCGv_i64 tcg_rd; 9028 9029 if (opcode >= 0x18) { 9030 /* Floating point: U, size[1] and opcode indicate operation */ 9031 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9032 switch (fpopcode) { 9033 case 0x1b: /* FMULX */ 9034 case 0x1f: /* FRECPS */ 9035 case 0x3f: /* FRSQRTS */ 9036 case 0x5d: /* FACGE */ 9037 case 0x7d: /* FACGT */ 9038 case 0x1c: /* FCMEQ */ 9039 case 0x5c: /* FCMGE */ 9040 case 0x7c: /* FCMGT */ 9041 case 0x7a: /* FABD */ 9042 break; 9043 default: 9044 unallocated_encoding(s); 9045 return; 9046 } 9047 9048 if (!fp_access_check(s)) { 9049 return; 9050 } 9051 9052 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9053 return; 9054 } 9055 9056 switch (opcode) { 9057 case 0x1: /* SQADD, UQADD */ 9058 case 0x5: /* SQSUB, UQSUB */ 9059 case 0x9: /* SQSHL, UQSHL */ 9060 case 0xb: /* SQRSHL, UQRSHL */ 9061 break; 9062 case 0x8: /* SSHL, USHL */ 9063 case 0xa: /* SRSHL, URSHL */ 9064 case 0x6: /* CMGT, CMHI */ 9065 case 0x7: /* CMGE, CMHS */ 9066 case 0x11: /* CMTST, CMEQ */ 9067 case 0x10: /* ADD, SUB (vector) */ 9068 if (size != 3) { 9069 unallocated_encoding(s); 9070 return; 9071 } 9072 break; 9073 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9074 if (size != 1 && size != 2) { 9075 unallocated_encoding(s); 9076 return; 9077 } 9078 break; 9079 default: 9080 unallocated_encoding(s); 9081 return; 9082 } 9083 9084 if (!fp_access_check(s)) { 9085 return; 9086 } 9087 9088 tcg_rd = tcg_temp_new_i64(); 9089 9090 if (size == 3) { 9091 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9092 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9093 9094 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9095 } else { 9096 /* Do a single operation on the lowest element in the vector. 9097 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9098 * no side effects for all these operations. 9099 * OPTME: special-purpose helpers would avoid doing some 9100 * unnecessary work in the helper for the 8 and 16 bit cases. 9101 */ 9102 NeonGenTwoOpEnvFn *genenvfn; 9103 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9104 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9105 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9106 9107 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9108 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9109 9110 switch (opcode) { 9111 case 0x1: /* SQADD, UQADD */ 9112 { 9113 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9114 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9115 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9116 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9117 }; 9118 genenvfn = fns[size][u]; 9119 break; 9120 } 9121 case 0x5: /* SQSUB, UQSUB */ 9122 { 9123 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9124 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9125 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9126 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9127 }; 9128 genenvfn = fns[size][u]; 9129 break; 9130 } 9131 case 0x9: /* SQSHL, UQSHL */ 9132 { 9133 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9134 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9135 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9136 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9137 }; 9138 genenvfn = fns[size][u]; 9139 break; 9140 } 9141 case 0xb: /* SQRSHL, UQRSHL */ 9142 { 9143 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9144 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9145 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9146 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9147 }; 9148 genenvfn = fns[size][u]; 9149 break; 9150 } 9151 case 0x16: /* SQDMULH, SQRDMULH */ 9152 { 9153 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9154 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9155 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9156 }; 9157 assert(size == 1 || size == 2); 9158 genenvfn = fns[size - 1][u]; 9159 break; 9160 } 9161 default: 9162 g_assert_not_reached(); 9163 } 9164 9165 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9166 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9167 } 9168 9169 write_fp_dreg(s, rd, tcg_rd); 9170 } 9171 9172 /* AdvSIMD scalar three same FP16 9173 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9174 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9175 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9176 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9177 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9178 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9179 */ 9180 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9181 uint32_t insn) 9182 { 9183 int rd = extract32(insn, 0, 5); 9184 int rn = extract32(insn, 5, 5); 9185 int opcode = extract32(insn, 11, 3); 9186 int rm = extract32(insn, 16, 5); 9187 bool u = extract32(insn, 29, 1); 9188 bool a = extract32(insn, 23, 1); 9189 int fpopcode = opcode | (a << 3) | (u << 4); 9190 TCGv_ptr fpst; 9191 TCGv_i32 tcg_op1; 9192 TCGv_i32 tcg_op2; 9193 TCGv_i32 tcg_res; 9194 9195 switch (fpopcode) { 9196 case 0x03: /* FMULX */ 9197 case 0x04: /* FCMEQ (reg) */ 9198 case 0x07: /* FRECPS */ 9199 case 0x0f: /* FRSQRTS */ 9200 case 0x14: /* FCMGE (reg) */ 9201 case 0x15: /* FACGE */ 9202 case 0x1a: /* FABD */ 9203 case 0x1c: /* FCMGT (reg) */ 9204 case 0x1d: /* FACGT */ 9205 break; 9206 default: 9207 unallocated_encoding(s); 9208 return; 9209 } 9210 9211 if (!dc_isar_feature(aa64_fp16, s)) { 9212 unallocated_encoding(s); 9213 } 9214 9215 if (!fp_access_check(s)) { 9216 return; 9217 } 9218 9219 fpst = fpstatus_ptr(FPST_FPCR_F16); 9220 9221 tcg_op1 = read_fp_hreg(s, rn); 9222 tcg_op2 = read_fp_hreg(s, rm); 9223 tcg_res = tcg_temp_new_i32(); 9224 9225 switch (fpopcode) { 9226 case 0x03: /* FMULX */ 9227 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9228 break; 9229 case 0x04: /* FCMEQ (reg) */ 9230 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9231 break; 9232 case 0x07: /* FRECPS */ 9233 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9234 break; 9235 case 0x0f: /* FRSQRTS */ 9236 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9237 break; 9238 case 0x14: /* FCMGE (reg) */ 9239 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9240 break; 9241 case 0x15: /* FACGE */ 9242 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9243 break; 9244 case 0x1a: /* FABD */ 9245 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9246 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9247 break; 9248 case 0x1c: /* FCMGT (reg) */ 9249 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9250 break; 9251 case 0x1d: /* FACGT */ 9252 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9253 break; 9254 default: 9255 g_assert_not_reached(); 9256 } 9257 9258 write_fp_sreg(s, rd, tcg_res); 9259 } 9260 9261 /* AdvSIMD scalar three same extra 9262 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9263 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9264 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9265 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9266 */ 9267 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9268 uint32_t insn) 9269 { 9270 int rd = extract32(insn, 0, 5); 9271 int rn = extract32(insn, 5, 5); 9272 int opcode = extract32(insn, 11, 4); 9273 int rm = extract32(insn, 16, 5); 9274 int size = extract32(insn, 22, 2); 9275 bool u = extract32(insn, 29, 1); 9276 TCGv_i32 ele1, ele2, ele3; 9277 TCGv_i64 res; 9278 bool feature; 9279 9280 switch (u * 16 + opcode) { 9281 case 0x10: /* SQRDMLAH (vector) */ 9282 case 0x11: /* SQRDMLSH (vector) */ 9283 if (size != 1 && size != 2) { 9284 unallocated_encoding(s); 9285 return; 9286 } 9287 feature = dc_isar_feature(aa64_rdm, s); 9288 break; 9289 default: 9290 unallocated_encoding(s); 9291 return; 9292 } 9293 if (!feature) { 9294 unallocated_encoding(s); 9295 return; 9296 } 9297 if (!fp_access_check(s)) { 9298 return; 9299 } 9300 9301 /* Do a single operation on the lowest element in the vector. 9302 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9303 * with no side effects for all these operations. 9304 * OPTME: special-purpose helpers would avoid doing some 9305 * unnecessary work in the helper for the 16 bit cases. 9306 */ 9307 ele1 = tcg_temp_new_i32(); 9308 ele2 = tcg_temp_new_i32(); 9309 ele3 = tcg_temp_new_i32(); 9310 9311 read_vec_element_i32(s, ele1, rn, 0, size); 9312 read_vec_element_i32(s, ele2, rm, 0, size); 9313 read_vec_element_i32(s, ele3, rd, 0, size); 9314 9315 switch (opcode) { 9316 case 0x0: /* SQRDMLAH */ 9317 if (size == 1) { 9318 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9319 } else { 9320 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9321 } 9322 break; 9323 case 0x1: /* SQRDMLSH */ 9324 if (size == 1) { 9325 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9326 } else { 9327 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9328 } 9329 break; 9330 default: 9331 g_assert_not_reached(); 9332 } 9333 9334 res = tcg_temp_new_i64(); 9335 tcg_gen_extu_i32_i64(res, ele3); 9336 write_fp_dreg(s, rd, res); 9337 } 9338 9339 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9340 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9341 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9342 { 9343 /* Handle 64->64 opcodes which are shared between the scalar and 9344 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9345 * is valid in either group and also the double-precision fp ops. 9346 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9347 * requires them. 9348 */ 9349 TCGCond cond; 9350 9351 switch (opcode) { 9352 case 0x4: /* CLS, CLZ */ 9353 if (u) { 9354 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9355 } else { 9356 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9357 } 9358 break; 9359 case 0x5: /* NOT */ 9360 /* This opcode is shared with CNT and RBIT but we have earlier 9361 * enforced that size == 3 if and only if this is the NOT insn. 9362 */ 9363 tcg_gen_not_i64(tcg_rd, tcg_rn); 9364 break; 9365 case 0x7: /* SQABS, SQNEG */ 9366 if (u) { 9367 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9368 } else { 9369 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9370 } 9371 break; 9372 case 0xa: /* CMLT */ 9373 cond = TCG_COND_LT; 9374 do_cmop: 9375 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9376 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9377 break; 9378 case 0x8: /* CMGT, CMGE */ 9379 cond = u ? TCG_COND_GE : TCG_COND_GT; 9380 goto do_cmop; 9381 case 0x9: /* CMEQ, CMLE */ 9382 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9383 goto do_cmop; 9384 case 0xb: /* ABS, NEG */ 9385 if (u) { 9386 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9387 } else { 9388 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9389 } 9390 break; 9391 case 0x2f: /* FABS */ 9392 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9393 break; 9394 case 0x6f: /* FNEG */ 9395 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9396 break; 9397 case 0x7f: /* FSQRT */ 9398 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9399 break; 9400 case 0x1a: /* FCVTNS */ 9401 case 0x1b: /* FCVTMS */ 9402 case 0x1c: /* FCVTAS */ 9403 case 0x3a: /* FCVTPS */ 9404 case 0x3b: /* FCVTZS */ 9405 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9406 break; 9407 case 0x5a: /* FCVTNU */ 9408 case 0x5b: /* FCVTMU */ 9409 case 0x5c: /* FCVTAU */ 9410 case 0x7a: /* FCVTPU */ 9411 case 0x7b: /* FCVTZU */ 9412 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9413 break; 9414 case 0x18: /* FRINTN */ 9415 case 0x19: /* FRINTM */ 9416 case 0x38: /* FRINTP */ 9417 case 0x39: /* FRINTZ */ 9418 case 0x58: /* FRINTA */ 9419 case 0x79: /* FRINTI */ 9420 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9421 break; 9422 case 0x59: /* FRINTX */ 9423 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9424 break; 9425 case 0x1e: /* FRINT32Z */ 9426 case 0x5e: /* FRINT32X */ 9427 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9428 break; 9429 case 0x1f: /* FRINT64Z */ 9430 case 0x5f: /* FRINT64X */ 9431 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9432 break; 9433 default: 9434 g_assert_not_reached(); 9435 } 9436 } 9437 9438 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9439 bool is_scalar, bool is_u, bool is_q, 9440 int size, int rn, int rd) 9441 { 9442 bool is_double = (size == MO_64); 9443 TCGv_ptr fpst; 9444 9445 if (!fp_access_check(s)) { 9446 return; 9447 } 9448 9449 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9450 9451 if (is_double) { 9452 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9453 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9454 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9455 NeonGenTwoDoubleOpFn *genfn; 9456 bool swap = false; 9457 int pass; 9458 9459 switch (opcode) { 9460 case 0x2e: /* FCMLT (zero) */ 9461 swap = true; 9462 /* fallthrough */ 9463 case 0x2c: /* FCMGT (zero) */ 9464 genfn = gen_helper_neon_cgt_f64; 9465 break; 9466 case 0x2d: /* FCMEQ (zero) */ 9467 genfn = gen_helper_neon_ceq_f64; 9468 break; 9469 case 0x6d: /* FCMLE (zero) */ 9470 swap = true; 9471 /* fall through */ 9472 case 0x6c: /* FCMGE (zero) */ 9473 genfn = gen_helper_neon_cge_f64; 9474 break; 9475 default: 9476 g_assert_not_reached(); 9477 } 9478 9479 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9480 read_vec_element(s, tcg_op, rn, pass, MO_64); 9481 if (swap) { 9482 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9483 } else { 9484 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9485 } 9486 write_vec_element(s, tcg_res, rd, pass, MO_64); 9487 } 9488 9489 clear_vec_high(s, !is_scalar, rd); 9490 } else { 9491 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9492 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9493 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9494 NeonGenTwoSingleOpFn *genfn; 9495 bool swap = false; 9496 int pass, maxpasses; 9497 9498 if (size == MO_16) { 9499 switch (opcode) { 9500 case 0x2e: /* FCMLT (zero) */ 9501 swap = true; 9502 /* fall through */ 9503 case 0x2c: /* FCMGT (zero) */ 9504 genfn = gen_helper_advsimd_cgt_f16; 9505 break; 9506 case 0x2d: /* FCMEQ (zero) */ 9507 genfn = gen_helper_advsimd_ceq_f16; 9508 break; 9509 case 0x6d: /* FCMLE (zero) */ 9510 swap = true; 9511 /* fall through */ 9512 case 0x6c: /* FCMGE (zero) */ 9513 genfn = gen_helper_advsimd_cge_f16; 9514 break; 9515 default: 9516 g_assert_not_reached(); 9517 } 9518 } else { 9519 switch (opcode) { 9520 case 0x2e: /* FCMLT (zero) */ 9521 swap = true; 9522 /* fall through */ 9523 case 0x2c: /* FCMGT (zero) */ 9524 genfn = gen_helper_neon_cgt_f32; 9525 break; 9526 case 0x2d: /* FCMEQ (zero) */ 9527 genfn = gen_helper_neon_ceq_f32; 9528 break; 9529 case 0x6d: /* FCMLE (zero) */ 9530 swap = true; 9531 /* fall through */ 9532 case 0x6c: /* FCMGE (zero) */ 9533 genfn = gen_helper_neon_cge_f32; 9534 break; 9535 default: 9536 g_assert_not_reached(); 9537 } 9538 } 9539 9540 if (is_scalar) { 9541 maxpasses = 1; 9542 } else { 9543 int vector_size = 8 << is_q; 9544 maxpasses = vector_size >> size; 9545 } 9546 9547 for (pass = 0; pass < maxpasses; pass++) { 9548 read_vec_element_i32(s, tcg_op, rn, pass, size); 9549 if (swap) { 9550 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9551 } else { 9552 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9553 } 9554 if (is_scalar) { 9555 write_fp_sreg(s, rd, tcg_res); 9556 } else { 9557 write_vec_element_i32(s, tcg_res, rd, pass, size); 9558 } 9559 } 9560 9561 if (!is_scalar) { 9562 clear_vec_high(s, is_q, rd); 9563 } 9564 } 9565 } 9566 9567 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9568 bool is_scalar, bool is_u, bool is_q, 9569 int size, int rn, int rd) 9570 { 9571 bool is_double = (size == 3); 9572 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9573 9574 if (is_double) { 9575 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9576 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9577 int pass; 9578 9579 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9580 read_vec_element(s, tcg_op, rn, pass, MO_64); 9581 switch (opcode) { 9582 case 0x3d: /* FRECPE */ 9583 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9584 break; 9585 case 0x3f: /* FRECPX */ 9586 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9587 break; 9588 case 0x7d: /* FRSQRTE */ 9589 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9590 break; 9591 default: 9592 g_assert_not_reached(); 9593 } 9594 write_vec_element(s, tcg_res, rd, pass, MO_64); 9595 } 9596 clear_vec_high(s, !is_scalar, rd); 9597 } else { 9598 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9599 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9600 int pass, maxpasses; 9601 9602 if (is_scalar) { 9603 maxpasses = 1; 9604 } else { 9605 maxpasses = is_q ? 4 : 2; 9606 } 9607 9608 for (pass = 0; pass < maxpasses; pass++) { 9609 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9610 9611 switch (opcode) { 9612 case 0x3c: /* URECPE */ 9613 gen_helper_recpe_u32(tcg_res, tcg_op); 9614 break; 9615 case 0x3d: /* FRECPE */ 9616 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9617 break; 9618 case 0x3f: /* FRECPX */ 9619 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9620 break; 9621 case 0x7d: /* FRSQRTE */ 9622 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9623 break; 9624 default: 9625 g_assert_not_reached(); 9626 } 9627 9628 if (is_scalar) { 9629 write_fp_sreg(s, rd, tcg_res); 9630 } else { 9631 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9632 } 9633 } 9634 if (!is_scalar) { 9635 clear_vec_high(s, is_q, rd); 9636 } 9637 } 9638 } 9639 9640 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9641 int opcode, bool u, bool is_q, 9642 int size, int rn, int rd) 9643 { 9644 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9645 * in the source becomes a size element in the destination). 9646 */ 9647 int pass; 9648 TCGv_i32 tcg_res[2]; 9649 int destelt = is_q ? 2 : 0; 9650 int passes = scalar ? 1 : 2; 9651 9652 if (scalar) { 9653 tcg_res[1] = tcg_constant_i32(0); 9654 } 9655 9656 for (pass = 0; pass < passes; pass++) { 9657 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9658 NeonGenNarrowFn *genfn = NULL; 9659 NeonGenNarrowEnvFn *genenvfn = NULL; 9660 9661 if (scalar) { 9662 read_vec_element(s, tcg_op, rn, pass, size + 1); 9663 } else { 9664 read_vec_element(s, tcg_op, rn, pass, MO_64); 9665 } 9666 tcg_res[pass] = tcg_temp_new_i32(); 9667 9668 switch (opcode) { 9669 case 0x12: /* XTN, SQXTUN */ 9670 { 9671 static NeonGenNarrowFn * const xtnfns[3] = { 9672 gen_helper_neon_narrow_u8, 9673 gen_helper_neon_narrow_u16, 9674 tcg_gen_extrl_i64_i32, 9675 }; 9676 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9677 gen_helper_neon_unarrow_sat8, 9678 gen_helper_neon_unarrow_sat16, 9679 gen_helper_neon_unarrow_sat32, 9680 }; 9681 if (u) { 9682 genenvfn = sqxtunfns[size]; 9683 } else { 9684 genfn = xtnfns[size]; 9685 } 9686 break; 9687 } 9688 case 0x14: /* SQXTN, UQXTN */ 9689 { 9690 static NeonGenNarrowEnvFn * const fns[3][2] = { 9691 { gen_helper_neon_narrow_sat_s8, 9692 gen_helper_neon_narrow_sat_u8 }, 9693 { gen_helper_neon_narrow_sat_s16, 9694 gen_helper_neon_narrow_sat_u16 }, 9695 { gen_helper_neon_narrow_sat_s32, 9696 gen_helper_neon_narrow_sat_u32 }, 9697 }; 9698 genenvfn = fns[size][u]; 9699 break; 9700 } 9701 case 0x16: /* FCVTN, FCVTN2 */ 9702 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9703 if (size == 2) { 9704 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9705 } else { 9706 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9707 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9708 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9709 TCGv_i32 ahp = get_ahp_flag(); 9710 9711 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9712 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9713 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9714 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9715 } 9716 break; 9717 case 0x36: /* BFCVTN, BFCVTN2 */ 9718 { 9719 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9720 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9721 } 9722 break; 9723 case 0x56: /* FCVTXN, FCVTXN2 */ 9724 /* 64 bit to 32 bit float conversion 9725 * with von Neumann rounding (round to odd) 9726 */ 9727 assert(size == 2); 9728 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9729 break; 9730 default: 9731 g_assert_not_reached(); 9732 } 9733 9734 if (genfn) { 9735 genfn(tcg_res[pass], tcg_op); 9736 } else if (genenvfn) { 9737 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9738 } 9739 } 9740 9741 for (pass = 0; pass < 2; pass++) { 9742 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9743 } 9744 clear_vec_high(s, is_q, rd); 9745 } 9746 9747 /* Remaining saturating accumulating ops */ 9748 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9749 bool is_q, int size, int rn, int rd) 9750 { 9751 bool is_double = (size == 3); 9752 9753 if (is_double) { 9754 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9755 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9756 int pass; 9757 9758 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9759 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9760 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9761 9762 if (is_u) { /* USQADD */ 9763 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9764 } else { /* SUQADD */ 9765 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9766 } 9767 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9768 } 9769 clear_vec_high(s, !is_scalar, rd); 9770 } else { 9771 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9772 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9773 int pass, maxpasses; 9774 9775 if (is_scalar) { 9776 maxpasses = 1; 9777 } else { 9778 maxpasses = is_q ? 4 : 2; 9779 } 9780 9781 for (pass = 0; pass < maxpasses; pass++) { 9782 if (is_scalar) { 9783 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9784 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9785 } else { 9786 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9787 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9788 } 9789 9790 if (is_u) { /* USQADD */ 9791 switch (size) { 9792 case 0: 9793 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9794 break; 9795 case 1: 9796 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9797 break; 9798 case 2: 9799 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9800 break; 9801 default: 9802 g_assert_not_reached(); 9803 } 9804 } else { /* SUQADD */ 9805 switch (size) { 9806 case 0: 9807 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9808 break; 9809 case 1: 9810 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9811 break; 9812 case 2: 9813 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9814 break; 9815 default: 9816 g_assert_not_reached(); 9817 } 9818 } 9819 9820 if (is_scalar) { 9821 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9822 } 9823 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9824 } 9825 clear_vec_high(s, is_q, rd); 9826 } 9827 } 9828 9829 /* AdvSIMD scalar two reg misc 9830 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9831 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9832 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9833 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9834 */ 9835 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9836 { 9837 int rd = extract32(insn, 0, 5); 9838 int rn = extract32(insn, 5, 5); 9839 int opcode = extract32(insn, 12, 5); 9840 int size = extract32(insn, 22, 2); 9841 bool u = extract32(insn, 29, 1); 9842 bool is_fcvt = false; 9843 int rmode; 9844 TCGv_i32 tcg_rmode; 9845 TCGv_ptr tcg_fpstatus; 9846 9847 switch (opcode) { 9848 case 0x3: /* USQADD / SUQADD*/ 9849 if (!fp_access_check(s)) { 9850 return; 9851 } 9852 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9853 return; 9854 case 0x7: /* SQABS / SQNEG */ 9855 break; 9856 case 0xa: /* CMLT */ 9857 if (u) { 9858 unallocated_encoding(s); 9859 return; 9860 } 9861 /* fall through */ 9862 case 0x8: /* CMGT, CMGE */ 9863 case 0x9: /* CMEQ, CMLE */ 9864 case 0xb: /* ABS, NEG */ 9865 if (size != 3) { 9866 unallocated_encoding(s); 9867 return; 9868 } 9869 break; 9870 case 0x12: /* SQXTUN */ 9871 if (!u) { 9872 unallocated_encoding(s); 9873 return; 9874 } 9875 /* fall through */ 9876 case 0x14: /* SQXTN, UQXTN */ 9877 if (size == 3) { 9878 unallocated_encoding(s); 9879 return; 9880 } 9881 if (!fp_access_check(s)) { 9882 return; 9883 } 9884 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9885 return; 9886 case 0xc ... 0xf: 9887 case 0x16 ... 0x1d: 9888 case 0x1f: 9889 /* Floating point: U, size[1] and opcode indicate operation; 9890 * size[0] indicates single or double precision. 9891 */ 9892 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9893 size = extract32(size, 0, 1) ? 3 : 2; 9894 switch (opcode) { 9895 case 0x2c: /* FCMGT (zero) */ 9896 case 0x2d: /* FCMEQ (zero) */ 9897 case 0x2e: /* FCMLT (zero) */ 9898 case 0x6c: /* FCMGE (zero) */ 9899 case 0x6d: /* FCMLE (zero) */ 9900 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9901 return; 9902 case 0x1d: /* SCVTF */ 9903 case 0x5d: /* UCVTF */ 9904 { 9905 bool is_signed = (opcode == 0x1d); 9906 if (!fp_access_check(s)) { 9907 return; 9908 } 9909 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9910 return; 9911 } 9912 case 0x3d: /* FRECPE */ 9913 case 0x3f: /* FRECPX */ 9914 case 0x7d: /* FRSQRTE */ 9915 if (!fp_access_check(s)) { 9916 return; 9917 } 9918 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9919 return; 9920 case 0x1a: /* FCVTNS */ 9921 case 0x1b: /* FCVTMS */ 9922 case 0x3a: /* FCVTPS */ 9923 case 0x3b: /* FCVTZS */ 9924 case 0x5a: /* FCVTNU */ 9925 case 0x5b: /* FCVTMU */ 9926 case 0x7a: /* FCVTPU */ 9927 case 0x7b: /* FCVTZU */ 9928 is_fcvt = true; 9929 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 9930 break; 9931 case 0x1c: /* FCVTAS */ 9932 case 0x5c: /* FCVTAU */ 9933 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 9934 is_fcvt = true; 9935 rmode = FPROUNDING_TIEAWAY; 9936 break; 9937 case 0x56: /* FCVTXN, FCVTXN2 */ 9938 if (size == 2) { 9939 unallocated_encoding(s); 9940 return; 9941 } 9942 if (!fp_access_check(s)) { 9943 return; 9944 } 9945 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 9946 return; 9947 default: 9948 unallocated_encoding(s); 9949 return; 9950 } 9951 break; 9952 default: 9953 unallocated_encoding(s); 9954 return; 9955 } 9956 9957 if (!fp_access_check(s)) { 9958 return; 9959 } 9960 9961 if (is_fcvt) { 9962 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 9963 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9964 } else { 9965 tcg_fpstatus = NULL; 9966 tcg_rmode = NULL; 9967 } 9968 9969 if (size == 3) { 9970 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9971 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9972 9973 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 9974 write_fp_dreg(s, rd, tcg_rd); 9975 } else { 9976 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9977 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9978 9979 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9980 9981 switch (opcode) { 9982 case 0x7: /* SQABS, SQNEG */ 9983 { 9984 NeonGenOneOpEnvFn *genfn; 9985 static NeonGenOneOpEnvFn * const fns[3][2] = { 9986 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 9987 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 9988 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 9989 }; 9990 genfn = fns[size][u]; 9991 genfn(tcg_rd, tcg_env, tcg_rn); 9992 break; 9993 } 9994 case 0x1a: /* FCVTNS */ 9995 case 0x1b: /* FCVTMS */ 9996 case 0x1c: /* FCVTAS */ 9997 case 0x3a: /* FCVTPS */ 9998 case 0x3b: /* FCVTZS */ 9999 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10000 tcg_fpstatus); 10001 break; 10002 case 0x5a: /* FCVTNU */ 10003 case 0x5b: /* FCVTMU */ 10004 case 0x5c: /* FCVTAU */ 10005 case 0x7a: /* FCVTPU */ 10006 case 0x7b: /* FCVTZU */ 10007 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10008 tcg_fpstatus); 10009 break; 10010 default: 10011 g_assert_not_reached(); 10012 } 10013 10014 write_fp_sreg(s, rd, tcg_rd); 10015 } 10016 10017 if (is_fcvt) { 10018 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10019 } 10020 } 10021 10022 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10023 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10024 int immh, int immb, int opcode, int rn, int rd) 10025 { 10026 int size = 32 - clz32(immh) - 1; 10027 int immhb = immh << 3 | immb; 10028 int shift = 2 * (8 << size) - immhb; 10029 GVecGen2iFn *gvec_fn; 10030 10031 if (extract32(immh, 3, 1) && !is_q) { 10032 unallocated_encoding(s); 10033 return; 10034 } 10035 tcg_debug_assert(size <= 3); 10036 10037 if (!fp_access_check(s)) { 10038 return; 10039 } 10040 10041 switch (opcode) { 10042 case 0x02: /* SSRA / USRA (accumulate) */ 10043 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10044 break; 10045 10046 case 0x08: /* SRI */ 10047 gvec_fn = gen_gvec_sri; 10048 break; 10049 10050 case 0x00: /* SSHR / USHR */ 10051 if (is_u) { 10052 if (shift == 8 << size) { 10053 /* Shift count the same size as element size produces zero. */ 10054 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10055 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10056 return; 10057 } 10058 gvec_fn = tcg_gen_gvec_shri; 10059 } else { 10060 /* Shift count the same size as element size produces all sign. */ 10061 if (shift == 8 << size) { 10062 shift -= 1; 10063 } 10064 gvec_fn = tcg_gen_gvec_sari; 10065 } 10066 break; 10067 10068 case 0x04: /* SRSHR / URSHR (rounding) */ 10069 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10070 break; 10071 10072 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10073 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10074 break; 10075 10076 default: 10077 g_assert_not_reached(); 10078 } 10079 10080 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10081 } 10082 10083 /* SHL/SLI - Vector shift left */ 10084 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10085 int immh, int immb, int opcode, int rn, int rd) 10086 { 10087 int size = 32 - clz32(immh) - 1; 10088 int immhb = immh << 3 | immb; 10089 int shift = immhb - (8 << size); 10090 10091 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10092 assert(size >= 0 && size <= 3); 10093 10094 if (extract32(immh, 3, 1) && !is_q) { 10095 unallocated_encoding(s); 10096 return; 10097 } 10098 10099 if (!fp_access_check(s)) { 10100 return; 10101 } 10102 10103 if (insert) { 10104 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10105 } else { 10106 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10107 } 10108 } 10109 10110 /* USHLL/SHLL - Vector shift left with widening */ 10111 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10112 int immh, int immb, int opcode, int rn, int rd) 10113 { 10114 int size = 32 - clz32(immh) - 1; 10115 int immhb = immh << 3 | immb; 10116 int shift = immhb - (8 << size); 10117 int dsize = 64; 10118 int esize = 8 << size; 10119 int elements = dsize/esize; 10120 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10121 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10122 int i; 10123 10124 if (size >= 3) { 10125 unallocated_encoding(s); 10126 return; 10127 } 10128 10129 if (!fp_access_check(s)) { 10130 return; 10131 } 10132 10133 /* For the LL variants the store is larger than the load, 10134 * so if rd == rn we would overwrite parts of our input. 10135 * So load everything right now and use shifts in the main loop. 10136 */ 10137 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10138 10139 for (i = 0; i < elements; i++) { 10140 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10141 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10142 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10143 write_vec_element(s, tcg_rd, rd, i, size + 1); 10144 } 10145 } 10146 10147 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10148 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10149 int immh, int immb, int opcode, int rn, int rd) 10150 { 10151 int immhb = immh << 3 | immb; 10152 int size = 32 - clz32(immh) - 1; 10153 int dsize = 64; 10154 int esize = 8 << size; 10155 int elements = dsize/esize; 10156 int shift = (2 * esize) - immhb; 10157 bool round = extract32(opcode, 0, 1); 10158 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10159 TCGv_i64 tcg_round; 10160 int i; 10161 10162 if (extract32(immh, 3, 1)) { 10163 unallocated_encoding(s); 10164 return; 10165 } 10166 10167 if (!fp_access_check(s)) { 10168 return; 10169 } 10170 10171 tcg_rn = tcg_temp_new_i64(); 10172 tcg_rd = tcg_temp_new_i64(); 10173 tcg_final = tcg_temp_new_i64(); 10174 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10175 10176 if (round) { 10177 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10178 } else { 10179 tcg_round = NULL; 10180 } 10181 10182 for (i = 0; i < elements; i++) { 10183 read_vec_element(s, tcg_rn, rn, i, size+1); 10184 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10185 false, true, size+1, shift); 10186 10187 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10188 } 10189 10190 if (!is_q) { 10191 write_vec_element(s, tcg_final, rd, 0, MO_64); 10192 } else { 10193 write_vec_element(s, tcg_final, rd, 1, MO_64); 10194 } 10195 10196 clear_vec_high(s, is_q, rd); 10197 } 10198 10199 10200 /* AdvSIMD shift by immediate 10201 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10202 * +---+---+---+-------------+------+------+--------+---+------+------+ 10203 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10204 * +---+---+---+-------------+------+------+--------+---+------+------+ 10205 */ 10206 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10207 { 10208 int rd = extract32(insn, 0, 5); 10209 int rn = extract32(insn, 5, 5); 10210 int opcode = extract32(insn, 11, 5); 10211 int immb = extract32(insn, 16, 3); 10212 int immh = extract32(insn, 19, 4); 10213 bool is_u = extract32(insn, 29, 1); 10214 bool is_q = extract32(insn, 30, 1); 10215 10216 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10217 assert(immh != 0); 10218 10219 switch (opcode) { 10220 case 0x08: /* SRI */ 10221 if (!is_u) { 10222 unallocated_encoding(s); 10223 return; 10224 } 10225 /* fall through */ 10226 case 0x00: /* SSHR / USHR */ 10227 case 0x02: /* SSRA / USRA (accumulate) */ 10228 case 0x04: /* SRSHR / URSHR (rounding) */ 10229 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10230 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10231 break; 10232 case 0x0a: /* SHL / SLI */ 10233 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10234 break; 10235 case 0x10: /* SHRN */ 10236 case 0x11: /* RSHRN / SQRSHRUN */ 10237 if (is_u) { 10238 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10239 opcode, rn, rd); 10240 } else { 10241 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10242 } 10243 break; 10244 case 0x12: /* SQSHRN / UQSHRN */ 10245 case 0x13: /* SQRSHRN / UQRSHRN */ 10246 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10247 opcode, rn, rd); 10248 break; 10249 case 0x14: /* SSHLL / USHLL */ 10250 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10251 break; 10252 case 0x1c: /* SCVTF / UCVTF */ 10253 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10254 opcode, rn, rd); 10255 break; 10256 case 0xc: /* SQSHLU */ 10257 if (!is_u) { 10258 unallocated_encoding(s); 10259 return; 10260 } 10261 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10262 break; 10263 case 0xe: /* SQSHL, UQSHL */ 10264 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10265 break; 10266 case 0x1f: /* FCVTZS/ FCVTZU */ 10267 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10268 return; 10269 default: 10270 unallocated_encoding(s); 10271 return; 10272 } 10273 } 10274 10275 /* Generate code to do a "long" addition or subtraction, ie one done in 10276 * TCGv_i64 on vector lanes twice the width specified by size. 10277 */ 10278 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10279 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10280 { 10281 static NeonGenTwo64OpFn * const fns[3][2] = { 10282 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10283 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10284 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10285 }; 10286 NeonGenTwo64OpFn *genfn; 10287 assert(size < 3); 10288 10289 genfn = fns[size][is_sub]; 10290 genfn(tcg_res, tcg_op1, tcg_op2); 10291 } 10292 10293 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10294 int opcode, int rd, int rn, int rm) 10295 { 10296 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10297 TCGv_i64 tcg_res[2]; 10298 int pass, accop; 10299 10300 tcg_res[0] = tcg_temp_new_i64(); 10301 tcg_res[1] = tcg_temp_new_i64(); 10302 10303 /* Does this op do an adding accumulate, a subtracting accumulate, 10304 * or no accumulate at all? 10305 */ 10306 switch (opcode) { 10307 case 5: 10308 case 8: 10309 case 9: 10310 accop = 1; 10311 break; 10312 case 10: 10313 case 11: 10314 accop = -1; 10315 break; 10316 default: 10317 accop = 0; 10318 break; 10319 } 10320 10321 if (accop != 0) { 10322 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10323 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10324 } 10325 10326 /* size == 2 means two 32x32->64 operations; this is worth special 10327 * casing because we can generally handle it inline. 10328 */ 10329 if (size == 2) { 10330 for (pass = 0; pass < 2; pass++) { 10331 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10332 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10333 TCGv_i64 tcg_passres; 10334 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10335 10336 int elt = pass + is_q * 2; 10337 10338 read_vec_element(s, tcg_op1, rn, elt, memop); 10339 read_vec_element(s, tcg_op2, rm, elt, memop); 10340 10341 if (accop == 0) { 10342 tcg_passres = tcg_res[pass]; 10343 } else { 10344 tcg_passres = tcg_temp_new_i64(); 10345 } 10346 10347 switch (opcode) { 10348 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10349 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10350 break; 10351 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10352 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10353 break; 10354 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10355 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10356 { 10357 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10358 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10359 10360 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10361 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10362 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10363 tcg_passres, 10364 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10365 break; 10366 } 10367 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10368 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10369 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10370 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10371 break; 10372 case 9: /* SQDMLAL, SQDMLAL2 */ 10373 case 11: /* SQDMLSL, SQDMLSL2 */ 10374 case 13: /* SQDMULL, SQDMULL2 */ 10375 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10376 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10377 tcg_passres, tcg_passres); 10378 break; 10379 default: 10380 g_assert_not_reached(); 10381 } 10382 10383 if (opcode == 9 || opcode == 11) { 10384 /* saturating accumulate ops */ 10385 if (accop < 0) { 10386 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10387 } 10388 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10389 tcg_res[pass], tcg_passres); 10390 } else if (accop > 0) { 10391 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10392 } else if (accop < 0) { 10393 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10394 } 10395 } 10396 } else { 10397 /* size 0 or 1, generally helper functions */ 10398 for (pass = 0; pass < 2; pass++) { 10399 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10400 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10401 TCGv_i64 tcg_passres; 10402 int elt = pass + is_q * 2; 10403 10404 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10405 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10406 10407 if (accop == 0) { 10408 tcg_passres = tcg_res[pass]; 10409 } else { 10410 tcg_passres = tcg_temp_new_i64(); 10411 } 10412 10413 switch (opcode) { 10414 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10415 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10416 { 10417 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10418 static NeonGenWidenFn * const widenfns[2][2] = { 10419 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10420 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10421 }; 10422 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10423 10424 widenfn(tcg_op2_64, tcg_op2); 10425 widenfn(tcg_passres, tcg_op1); 10426 gen_neon_addl(size, (opcode == 2), tcg_passres, 10427 tcg_passres, tcg_op2_64); 10428 break; 10429 } 10430 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10431 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10432 if (size == 0) { 10433 if (is_u) { 10434 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10435 } else { 10436 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10437 } 10438 } else { 10439 if (is_u) { 10440 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10441 } else { 10442 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10443 } 10444 } 10445 break; 10446 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10447 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10448 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10449 if (size == 0) { 10450 if (is_u) { 10451 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10452 } else { 10453 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10454 } 10455 } else { 10456 if (is_u) { 10457 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10458 } else { 10459 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10460 } 10461 } 10462 break; 10463 case 9: /* SQDMLAL, SQDMLAL2 */ 10464 case 11: /* SQDMLSL, SQDMLSL2 */ 10465 case 13: /* SQDMULL, SQDMULL2 */ 10466 assert(size == 1); 10467 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10468 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10469 tcg_passres, tcg_passres); 10470 break; 10471 default: 10472 g_assert_not_reached(); 10473 } 10474 10475 if (accop != 0) { 10476 if (opcode == 9 || opcode == 11) { 10477 /* saturating accumulate ops */ 10478 if (accop < 0) { 10479 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10480 } 10481 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10482 tcg_res[pass], 10483 tcg_passres); 10484 } else { 10485 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10486 tcg_res[pass], tcg_passres); 10487 } 10488 } 10489 } 10490 } 10491 10492 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10493 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10494 } 10495 10496 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10497 int opcode, int rd, int rn, int rm) 10498 { 10499 TCGv_i64 tcg_res[2]; 10500 int part = is_q ? 2 : 0; 10501 int pass; 10502 10503 for (pass = 0; pass < 2; pass++) { 10504 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10505 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10506 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10507 static NeonGenWidenFn * const widenfns[3][2] = { 10508 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10509 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10510 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10511 }; 10512 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10513 10514 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10515 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10516 widenfn(tcg_op2_wide, tcg_op2); 10517 tcg_res[pass] = tcg_temp_new_i64(); 10518 gen_neon_addl(size, (opcode == 3), 10519 tcg_res[pass], tcg_op1, tcg_op2_wide); 10520 } 10521 10522 for (pass = 0; pass < 2; pass++) { 10523 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10524 } 10525 } 10526 10527 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10528 { 10529 tcg_gen_addi_i64(in, in, 1U << 31); 10530 tcg_gen_extrh_i64_i32(res, in); 10531 } 10532 10533 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10534 int opcode, int rd, int rn, int rm) 10535 { 10536 TCGv_i32 tcg_res[2]; 10537 int part = is_q ? 2 : 0; 10538 int pass; 10539 10540 for (pass = 0; pass < 2; pass++) { 10541 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10542 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10543 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10544 static NeonGenNarrowFn * const narrowfns[3][2] = { 10545 { gen_helper_neon_narrow_high_u8, 10546 gen_helper_neon_narrow_round_high_u8 }, 10547 { gen_helper_neon_narrow_high_u16, 10548 gen_helper_neon_narrow_round_high_u16 }, 10549 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10550 }; 10551 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10552 10553 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10554 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10555 10556 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10557 10558 tcg_res[pass] = tcg_temp_new_i32(); 10559 gennarrow(tcg_res[pass], tcg_wideres); 10560 } 10561 10562 for (pass = 0; pass < 2; pass++) { 10563 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10564 } 10565 clear_vec_high(s, is_q, rd); 10566 } 10567 10568 /* AdvSIMD three different 10569 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10570 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10571 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10572 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10573 */ 10574 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10575 { 10576 /* Instructions in this group fall into three basic classes 10577 * (in each case with the operation working on each element in 10578 * the input vectors): 10579 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10580 * 128 bit input) 10581 * (2) wide 64 x 128 -> 128 10582 * (3) narrowing 128 x 128 -> 64 10583 * Here we do initial decode, catch unallocated cases and 10584 * dispatch to separate functions for each class. 10585 */ 10586 int is_q = extract32(insn, 30, 1); 10587 int is_u = extract32(insn, 29, 1); 10588 int size = extract32(insn, 22, 2); 10589 int opcode = extract32(insn, 12, 4); 10590 int rm = extract32(insn, 16, 5); 10591 int rn = extract32(insn, 5, 5); 10592 int rd = extract32(insn, 0, 5); 10593 10594 switch (opcode) { 10595 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10596 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10597 /* 64 x 128 -> 128 */ 10598 if (size == 3) { 10599 unallocated_encoding(s); 10600 return; 10601 } 10602 if (!fp_access_check(s)) { 10603 return; 10604 } 10605 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10606 break; 10607 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10608 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10609 /* 128 x 128 -> 64 */ 10610 if (size == 3) { 10611 unallocated_encoding(s); 10612 return; 10613 } 10614 if (!fp_access_check(s)) { 10615 return; 10616 } 10617 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10618 break; 10619 case 14: /* PMULL, PMULL2 */ 10620 if (is_u) { 10621 unallocated_encoding(s); 10622 return; 10623 } 10624 switch (size) { 10625 case 0: /* PMULL.P8 */ 10626 if (!fp_access_check(s)) { 10627 return; 10628 } 10629 /* The Q field specifies lo/hi half input for this insn. */ 10630 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10631 gen_helper_neon_pmull_h); 10632 break; 10633 10634 case 3: /* PMULL.P64 */ 10635 if (!dc_isar_feature(aa64_pmull, s)) { 10636 unallocated_encoding(s); 10637 return; 10638 } 10639 if (!fp_access_check(s)) { 10640 return; 10641 } 10642 /* The Q field specifies lo/hi half input for this insn. */ 10643 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10644 gen_helper_gvec_pmull_q); 10645 break; 10646 10647 default: 10648 unallocated_encoding(s); 10649 break; 10650 } 10651 return; 10652 case 9: /* SQDMLAL, SQDMLAL2 */ 10653 case 11: /* SQDMLSL, SQDMLSL2 */ 10654 case 13: /* SQDMULL, SQDMULL2 */ 10655 if (is_u || size == 0) { 10656 unallocated_encoding(s); 10657 return; 10658 } 10659 /* fall through */ 10660 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10661 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10662 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10663 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10664 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10665 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10666 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10667 /* 64 x 64 -> 128 */ 10668 if (size == 3) { 10669 unallocated_encoding(s); 10670 return; 10671 } 10672 if (!fp_access_check(s)) { 10673 return; 10674 } 10675 10676 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10677 break; 10678 default: 10679 /* opcode 15 not allocated */ 10680 unallocated_encoding(s); 10681 break; 10682 } 10683 } 10684 10685 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10686 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10687 { 10688 int rd = extract32(insn, 0, 5); 10689 int rn = extract32(insn, 5, 5); 10690 int rm = extract32(insn, 16, 5); 10691 int size = extract32(insn, 22, 2); 10692 bool is_u = extract32(insn, 29, 1); 10693 bool is_q = extract32(insn, 30, 1); 10694 10695 if (!fp_access_check(s)) { 10696 return; 10697 } 10698 10699 switch (size + 4 * is_u) { 10700 case 0: /* AND */ 10701 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10702 return; 10703 case 1: /* BIC */ 10704 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10705 return; 10706 case 2: /* ORR */ 10707 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10708 return; 10709 case 3: /* ORN */ 10710 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10711 return; 10712 case 4: /* EOR */ 10713 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10714 return; 10715 10716 case 5: /* BSL bitwise select */ 10717 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10718 return; 10719 case 6: /* BIT, bitwise insert if true */ 10720 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10721 return; 10722 case 7: /* BIF, bitwise insert if false */ 10723 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10724 return; 10725 10726 default: 10727 g_assert_not_reached(); 10728 } 10729 } 10730 10731 /* Pairwise op subgroup of C3.6.16. 10732 * 10733 * This is called directly or via the handle_3same_float for float pairwise 10734 * operations where the opcode and size are calculated differently. 10735 */ 10736 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10737 int size, int rn, int rm, int rd) 10738 { 10739 TCGv_ptr fpst; 10740 int pass; 10741 10742 /* Floating point operations need fpst */ 10743 if (opcode >= 0x58) { 10744 fpst = fpstatus_ptr(FPST_FPCR); 10745 } else { 10746 fpst = NULL; 10747 } 10748 10749 if (!fp_access_check(s)) { 10750 return; 10751 } 10752 10753 /* These operations work on the concatenated rm:rn, with each pair of 10754 * adjacent elements being operated on to produce an element in the result. 10755 */ 10756 if (size == 3) { 10757 TCGv_i64 tcg_res[2]; 10758 10759 for (pass = 0; pass < 2; pass++) { 10760 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10761 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10762 int passreg = (pass == 0) ? rn : rm; 10763 10764 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10765 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10766 tcg_res[pass] = tcg_temp_new_i64(); 10767 10768 switch (opcode) { 10769 case 0x17: /* ADDP */ 10770 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10771 break; 10772 case 0x58: /* FMAXNMP */ 10773 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10774 break; 10775 case 0x5a: /* FADDP */ 10776 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10777 break; 10778 case 0x5e: /* FMAXP */ 10779 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10780 break; 10781 case 0x78: /* FMINNMP */ 10782 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10783 break; 10784 case 0x7e: /* FMINP */ 10785 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10786 break; 10787 default: 10788 g_assert_not_reached(); 10789 } 10790 } 10791 10792 for (pass = 0; pass < 2; pass++) { 10793 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10794 } 10795 } else { 10796 int maxpass = is_q ? 4 : 2; 10797 TCGv_i32 tcg_res[4]; 10798 10799 for (pass = 0; pass < maxpass; pass++) { 10800 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10801 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10802 NeonGenTwoOpFn *genfn = NULL; 10803 int passreg = pass < (maxpass / 2) ? rn : rm; 10804 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10805 10806 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10807 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10808 tcg_res[pass] = tcg_temp_new_i32(); 10809 10810 switch (opcode) { 10811 case 0x17: /* ADDP */ 10812 { 10813 static NeonGenTwoOpFn * const fns[3] = { 10814 gen_helper_neon_padd_u8, 10815 gen_helper_neon_padd_u16, 10816 tcg_gen_add_i32, 10817 }; 10818 genfn = fns[size]; 10819 break; 10820 } 10821 case 0x14: /* SMAXP, UMAXP */ 10822 { 10823 static NeonGenTwoOpFn * const fns[3][2] = { 10824 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10825 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10826 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10827 }; 10828 genfn = fns[size][u]; 10829 break; 10830 } 10831 case 0x15: /* SMINP, UMINP */ 10832 { 10833 static NeonGenTwoOpFn * const fns[3][2] = { 10834 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10835 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10836 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10837 }; 10838 genfn = fns[size][u]; 10839 break; 10840 } 10841 /* The FP operations are all on single floats (32 bit) */ 10842 case 0x58: /* FMAXNMP */ 10843 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10844 break; 10845 case 0x5a: /* FADDP */ 10846 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10847 break; 10848 case 0x5e: /* FMAXP */ 10849 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10850 break; 10851 case 0x78: /* FMINNMP */ 10852 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10853 break; 10854 case 0x7e: /* FMINP */ 10855 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10856 break; 10857 default: 10858 g_assert_not_reached(); 10859 } 10860 10861 /* FP ops called directly, otherwise call now */ 10862 if (genfn) { 10863 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10864 } 10865 } 10866 10867 for (pass = 0; pass < maxpass; pass++) { 10868 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10869 } 10870 clear_vec_high(s, is_q, rd); 10871 } 10872 } 10873 10874 /* Floating point op subgroup of C3.6.16. */ 10875 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10876 { 10877 /* For floating point ops, the U, size[1] and opcode bits 10878 * together indicate the operation. size[0] indicates single 10879 * or double. 10880 */ 10881 int fpopcode = extract32(insn, 11, 5) 10882 | (extract32(insn, 23, 1) << 5) 10883 | (extract32(insn, 29, 1) << 6); 10884 int is_q = extract32(insn, 30, 1); 10885 int size = extract32(insn, 22, 1); 10886 int rm = extract32(insn, 16, 5); 10887 int rn = extract32(insn, 5, 5); 10888 int rd = extract32(insn, 0, 5); 10889 10890 int datasize = is_q ? 128 : 64; 10891 int esize = 32 << size; 10892 int elements = datasize / esize; 10893 10894 if (size == 1 && !is_q) { 10895 unallocated_encoding(s); 10896 return; 10897 } 10898 10899 switch (fpopcode) { 10900 case 0x58: /* FMAXNMP */ 10901 case 0x5a: /* FADDP */ 10902 case 0x5e: /* FMAXP */ 10903 case 0x78: /* FMINNMP */ 10904 case 0x7e: /* FMINP */ 10905 if (size && !is_q) { 10906 unallocated_encoding(s); 10907 return; 10908 } 10909 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10910 rn, rm, rd); 10911 return; 10912 case 0x1b: /* FMULX */ 10913 case 0x1f: /* FRECPS */ 10914 case 0x3f: /* FRSQRTS */ 10915 case 0x5d: /* FACGE */ 10916 case 0x7d: /* FACGT */ 10917 case 0x19: /* FMLA */ 10918 case 0x39: /* FMLS */ 10919 case 0x18: /* FMAXNM */ 10920 case 0x1a: /* FADD */ 10921 case 0x1c: /* FCMEQ */ 10922 case 0x1e: /* FMAX */ 10923 case 0x38: /* FMINNM */ 10924 case 0x3a: /* FSUB */ 10925 case 0x3e: /* FMIN */ 10926 case 0x5b: /* FMUL */ 10927 case 0x5c: /* FCMGE */ 10928 case 0x5f: /* FDIV */ 10929 case 0x7a: /* FABD */ 10930 case 0x7c: /* FCMGT */ 10931 if (!fp_access_check(s)) { 10932 return; 10933 } 10934 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 10935 return; 10936 10937 case 0x1d: /* FMLAL */ 10938 case 0x3d: /* FMLSL */ 10939 case 0x59: /* FMLAL2 */ 10940 case 0x79: /* FMLSL2 */ 10941 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10942 unallocated_encoding(s); 10943 return; 10944 } 10945 if (fp_access_check(s)) { 10946 int is_s = extract32(insn, 23, 1); 10947 int is_2 = extract32(insn, 29, 1); 10948 int data = (is_2 << 1) | is_s; 10949 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10950 vec_full_reg_offset(s, rn), 10951 vec_full_reg_offset(s, rm), tcg_env, 10952 is_q ? 16 : 8, vec_full_reg_size(s), 10953 data, gen_helper_gvec_fmlal_a64); 10954 } 10955 return; 10956 10957 default: 10958 unallocated_encoding(s); 10959 return; 10960 } 10961 } 10962 10963 /* Integer op subgroup of C3.6.16. */ 10964 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10965 { 10966 int is_q = extract32(insn, 30, 1); 10967 int u = extract32(insn, 29, 1); 10968 int size = extract32(insn, 22, 2); 10969 int opcode = extract32(insn, 11, 5); 10970 int rm = extract32(insn, 16, 5); 10971 int rn = extract32(insn, 5, 5); 10972 int rd = extract32(insn, 0, 5); 10973 int pass; 10974 TCGCond cond; 10975 10976 switch (opcode) { 10977 case 0x13: /* MUL, PMUL */ 10978 if (u && size != 0) { 10979 unallocated_encoding(s); 10980 return; 10981 } 10982 /* fall through */ 10983 case 0x0: /* SHADD, UHADD */ 10984 case 0x2: /* SRHADD, URHADD */ 10985 case 0x4: /* SHSUB, UHSUB */ 10986 case 0xc: /* SMAX, UMAX */ 10987 case 0xd: /* SMIN, UMIN */ 10988 case 0xe: /* SABD, UABD */ 10989 case 0xf: /* SABA, UABA */ 10990 case 0x12: /* MLA, MLS */ 10991 if (size == 3) { 10992 unallocated_encoding(s); 10993 return; 10994 } 10995 break; 10996 case 0x16: /* SQDMULH, SQRDMULH */ 10997 if (size == 0 || size == 3) { 10998 unallocated_encoding(s); 10999 return; 11000 } 11001 break; 11002 default: 11003 if (size == 3 && !is_q) { 11004 unallocated_encoding(s); 11005 return; 11006 } 11007 break; 11008 } 11009 11010 if (!fp_access_check(s)) { 11011 return; 11012 } 11013 11014 switch (opcode) { 11015 case 0x01: /* SQADD, UQADD */ 11016 if (u) { 11017 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11018 } else { 11019 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11020 } 11021 return; 11022 case 0x05: /* SQSUB, UQSUB */ 11023 if (u) { 11024 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11025 } else { 11026 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11027 } 11028 return; 11029 case 0x08: /* SSHL, USHL */ 11030 if (u) { 11031 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11032 } else { 11033 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11034 } 11035 return; 11036 case 0x0c: /* SMAX, UMAX */ 11037 if (u) { 11038 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11039 } else { 11040 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11041 } 11042 return; 11043 case 0x0d: /* SMIN, UMIN */ 11044 if (u) { 11045 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11046 } else { 11047 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11048 } 11049 return; 11050 case 0xe: /* SABD, UABD */ 11051 if (u) { 11052 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11053 } else { 11054 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11055 } 11056 return; 11057 case 0xf: /* SABA, UABA */ 11058 if (u) { 11059 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11060 } else { 11061 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11062 } 11063 return; 11064 case 0x10: /* ADD, SUB */ 11065 if (u) { 11066 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11067 } else { 11068 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11069 } 11070 return; 11071 case 0x13: /* MUL, PMUL */ 11072 if (!u) { /* MUL */ 11073 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11074 } else { /* PMUL */ 11075 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11076 } 11077 return; 11078 case 0x12: /* MLA, MLS */ 11079 if (u) { 11080 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11081 } else { 11082 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11083 } 11084 return; 11085 case 0x16: /* SQDMULH, SQRDMULH */ 11086 { 11087 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11088 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11089 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11090 }; 11091 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11092 } 11093 return; 11094 case 0x11: 11095 if (!u) { /* CMTST */ 11096 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11097 return; 11098 } 11099 /* else CMEQ */ 11100 cond = TCG_COND_EQ; 11101 goto do_gvec_cmp; 11102 case 0x06: /* CMGT, CMHI */ 11103 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11104 goto do_gvec_cmp; 11105 case 0x07: /* CMGE, CMHS */ 11106 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11107 do_gvec_cmp: 11108 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11109 vec_full_reg_offset(s, rn), 11110 vec_full_reg_offset(s, rm), 11111 is_q ? 16 : 8, vec_full_reg_size(s)); 11112 return; 11113 } 11114 11115 if (size == 3) { 11116 assert(is_q); 11117 for (pass = 0; pass < 2; pass++) { 11118 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11119 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11120 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11121 11122 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11123 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11124 11125 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11126 11127 write_vec_element(s, tcg_res, rd, pass, MO_64); 11128 } 11129 } else { 11130 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11131 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11132 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11133 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11134 NeonGenTwoOpFn *genfn = NULL; 11135 NeonGenTwoOpEnvFn *genenvfn = NULL; 11136 11137 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11138 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11139 11140 switch (opcode) { 11141 case 0x0: /* SHADD, UHADD */ 11142 { 11143 static NeonGenTwoOpFn * const fns[3][2] = { 11144 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11145 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11146 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11147 }; 11148 genfn = fns[size][u]; 11149 break; 11150 } 11151 case 0x2: /* SRHADD, URHADD */ 11152 { 11153 static NeonGenTwoOpFn * const fns[3][2] = { 11154 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11155 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11156 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11157 }; 11158 genfn = fns[size][u]; 11159 break; 11160 } 11161 case 0x4: /* SHSUB, UHSUB */ 11162 { 11163 static NeonGenTwoOpFn * const fns[3][2] = { 11164 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11165 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11166 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11167 }; 11168 genfn = fns[size][u]; 11169 break; 11170 } 11171 case 0x9: /* SQSHL, UQSHL */ 11172 { 11173 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11174 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11175 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11176 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11177 }; 11178 genenvfn = fns[size][u]; 11179 break; 11180 } 11181 case 0xa: /* SRSHL, URSHL */ 11182 { 11183 static NeonGenTwoOpFn * const fns[3][2] = { 11184 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11185 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11186 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11187 }; 11188 genfn = fns[size][u]; 11189 break; 11190 } 11191 case 0xb: /* SQRSHL, UQRSHL */ 11192 { 11193 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11194 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11195 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11196 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11197 }; 11198 genenvfn = fns[size][u]; 11199 break; 11200 } 11201 default: 11202 g_assert_not_reached(); 11203 } 11204 11205 if (genenvfn) { 11206 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11207 } else { 11208 genfn(tcg_res, tcg_op1, tcg_op2); 11209 } 11210 11211 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11212 } 11213 } 11214 clear_vec_high(s, is_q, rd); 11215 } 11216 11217 /* AdvSIMD three same 11218 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11219 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11220 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11221 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11222 */ 11223 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11224 { 11225 int opcode = extract32(insn, 11, 5); 11226 11227 switch (opcode) { 11228 case 0x3: /* logic ops */ 11229 disas_simd_3same_logic(s, insn); 11230 break; 11231 case 0x17: /* ADDP */ 11232 case 0x14: /* SMAXP, UMAXP */ 11233 case 0x15: /* SMINP, UMINP */ 11234 { 11235 /* Pairwise operations */ 11236 int is_q = extract32(insn, 30, 1); 11237 int u = extract32(insn, 29, 1); 11238 int size = extract32(insn, 22, 2); 11239 int rm = extract32(insn, 16, 5); 11240 int rn = extract32(insn, 5, 5); 11241 int rd = extract32(insn, 0, 5); 11242 if (opcode == 0x17) { 11243 if (u || (size == 3 && !is_q)) { 11244 unallocated_encoding(s); 11245 return; 11246 } 11247 } else { 11248 if (size == 3) { 11249 unallocated_encoding(s); 11250 return; 11251 } 11252 } 11253 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11254 break; 11255 } 11256 case 0x18 ... 0x31: 11257 /* floating point ops, sz[1] and U are part of opcode */ 11258 disas_simd_3same_float(s, insn); 11259 break; 11260 default: 11261 disas_simd_3same_int(s, insn); 11262 break; 11263 } 11264 } 11265 11266 /* 11267 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11268 * 11269 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11270 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11271 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11272 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11273 * 11274 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11275 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11276 * 11277 */ 11278 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11279 { 11280 int opcode = extract32(insn, 11, 3); 11281 int u = extract32(insn, 29, 1); 11282 int a = extract32(insn, 23, 1); 11283 int is_q = extract32(insn, 30, 1); 11284 int rm = extract32(insn, 16, 5); 11285 int rn = extract32(insn, 5, 5); 11286 int rd = extract32(insn, 0, 5); 11287 /* 11288 * For these floating point ops, the U, a and opcode bits 11289 * together indicate the operation. 11290 */ 11291 int fpopcode = opcode | (a << 3) | (u << 4); 11292 int datasize = is_q ? 128 : 64; 11293 int elements = datasize / 16; 11294 bool pairwise; 11295 TCGv_ptr fpst; 11296 int pass; 11297 11298 switch (fpopcode) { 11299 case 0x0: /* FMAXNM */ 11300 case 0x1: /* FMLA */ 11301 case 0x2: /* FADD */ 11302 case 0x3: /* FMULX */ 11303 case 0x4: /* FCMEQ */ 11304 case 0x6: /* FMAX */ 11305 case 0x7: /* FRECPS */ 11306 case 0x8: /* FMINNM */ 11307 case 0x9: /* FMLS */ 11308 case 0xa: /* FSUB */ 11309 case 0xe: /* FMIN */ 11310 case 0xf: /* FRSQRTS */ 11311 case 0x13: /* FMUL */ 11312 case 0x14: /* FCMGE */ 11313 case 0x15: /* FACGE */ 11314 case 0x17: /* FDIV */ 11315 case 0x1a: /* FABD */ 11316 case 0x1c: /* FCMGT */ 11317 case 0x1d: /* FACGT */ 11318 pairwise = false; 11319 break; 11320 case 0x10: /* FMAXNMP */ 11321 case 0x12: /* FADDP */ 11322 case 0x16: /* FMAXP */ 11323 case 0x18: /* FMINNMP */ 11324 case 0x1e: /* FMINP */ 11325 pairwise = true; 11326 break; 11327 default: 11328 unallocated_encoding(s); 11329 return; 11330 } 11331 11332 if (!dc_isar_feature(aa64_fp16, s)) { 11333 unallocated_encoding(s); 11334 return; 11335 } 11336 11337 if (!fp_access_check(s)) { 11338 return; 11339 } 11340 11341 fpst = fpstatus_ptr(FPST_FPCR_F16); 11342 11343 if (pairwise) { 11344 int maxpass = is_q ? 8 : 4; 11345 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11346 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11347 TCGv_i32 tcg_res[8]; 11348 11349 for (pass = 0; pass < maxpass; pass++) { 11350 int passreg = pass < (maxpass / 2) ? rn : rm; 11351 int passelt = (pass << 1) & (maxpass - 1); 11352 11353 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11354 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11355 tcg_res[pass] = tcg_temp_new_i32(); 11356 11357 switch (fpopcode) { 11358 case 0x10: /* FMAXNMP */ 11359 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11360 fpst); 11361 break; 11362 case 0x12: /* FADDP */ 11363 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11364 break; 11365 case 0x16: /* FMAXP */ 11366 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11367 break; 11368 case 0x18: /* FMINNMP */ 11369 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11370 fpst); 11371 break; 11372 case 0x1e: /* FMINP */ 11373 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11374 break; 11375 default: 11376 g_assert_not_reached(); 11377 } 11378 } 11379 11380 for (pass = 0; pass < maxpass; pass++) { 11381 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11382 } 11383 } else { 11384 for (pass = 0; pass < elements; pass++) { 11385 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11386 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11387 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11388 11389 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11390 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11391 11392 switch (fpopcode) { 11393 case 0x0: /* FMAXNM */ 11394 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11395 break; 11396 case 0x1: /* FMLA */ 11397 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11398 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11399 fpst); 11400 break; 11401 case 0x2: /* FADD */ 11402 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11403 break; 11404 case 0x3: /* FMULX */ 11405 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11406 break; 11407 case 0x4: /* FCMEQ */ 11408 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11409 break; 11410 case 0x6: /* FMAX */ 11411 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11412 break; 11413 case 0x7: /* FRECPS */ 11414 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11415 break; 11416 case 0x8: /* FMINNM */ 11417 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11418 break; 11419 case 0x9: /* FMLS */ 11420 /* As usual for ARM, separate negation for fused multiply-add */ 11421 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11422 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11423 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11424 fpst); 11425 break; 11426 case 0xa: /* FSUB */ 11427 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11428 break; 11429 case 0xe: /* FMIN */ 11430 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11431 break; 11432 case 0xf: /* FRSQRTS */ 11433 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11434 break; 11435 case 0x13: /* FMUL */ 11436 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11437 break; 11438 case 0x14: /* FCMGE */ 11439 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11440 break; 11441 case 0x15: /* FACGE */ 11442 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11443 break; 11444 case 0x17: /* FDIV */ 11445 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11446 break; 11447 case 0x1a: /* FABD */ 11448 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11449 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11450 break; 11451 case 0x1c: /* FCMGT */ 11452 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11453 break; 11454 case 0x1d: /* FACGT */ 11455 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11456 break; 11457 default: 11458 g_assert_not_reached(); 11459 } 11460 11461 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11462 } 11463 } 11464 11465 clear_vec_high(s, is_q, rd); 11466 } 11467 11468 /* AdvSIMD three same extra 11469 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11470 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11471 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11472 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11473 */ 11474 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11475 { 11476 int rd = extract32(insn, 0, 5); 11477 int rn = extract32(insn, 5, 5); 11478 int opcode = extract32(insn, 11, 4); 11479 int rm = extract32(insn, 16, 5); 11480 int size = extract32(insn, 22, 2); 11481 bool u = extract32(insn, 29, 1); 11482 bool is_q = extract32(insn, 30, 1); 11483 bool feature; 11484 int rot; 11485 11486 switch (u * 16 + opcode) { 11487 case 0x10: /* SQRDMLAH (vector) */ 11488 case 0x11: /* SQRDMLSH (vector) */ 11489 if (size != 1 && size != 2) { 11490 unallocated_encoding(s); 11491 return; 11492 } 11493 feature = dc_isar_feature(aa64_rdm, s); 11494 break; 11495 case 0x02: /* SDOT (vector) */ 11496 case 0x12: /* UDOT (vector) */ 11497 if (size != MO_32) { 11498 unallocated_encoding(s); 11499 return; 11500 } 11501 feature = dc_isar_feature(aa64_dp, s); 11502 break; 11503 case 0x03: /* USDOT */ 11504 if (size != MO_32) { 11505 unallocated_encoding(s); 11506 return; 11507 } 11508 feature = dc_isar_feature(aa64_i8mm, s); 11509 break; 11510 case 0x04: /* SMMLA */ 11511 case 0x14: /* UMMLA */ 11512 case 0x05: /* USMMLA */ 11513 if (!is_q || size != MO_32) { 11514 unallocated_encoding(s); 11515 return; 11516 } 11517 feature = dc_isar_feature(aa64_i8mm, s); 11518 break; 11519 case 0x18: /* FCMLA, #0 */ 11520 case 0x19: /* FCMLA, #90 */ 11521 case 0x1a: /* FCMLA, #180 */ 11522 case 0x1b: /* FCMLA, #270 */ 11523 case 0x1c: /* FCADD, #90 */ 11524 case 0x1e: /* FCADD, #270 */ 11525 if (size == 0 11526 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11527 || (size == 3 && !is_q)) { 11528 unallocated_encoding(s); 11529 return; 11530 } 11531 feature = dc_isar_feature(aa64_fcma, s); 11532 break; 11533 case 0x1d: /* BFMMLA */ 11534 if (size != MO_16 || !is_q) { 11535 unallocated_encoding(s); 11536 return; 11537 } 11538 feature = dc_isar_feature(aa64_bf16, s); 11539 break; 11540 case 0x1f: 11541 switch (size) { 11542 case 1: /* BFDOT */ 11543 case 3: /* BFMLAL{B,T} */ 11544 feature = dc_isar_feature(aa64_bf16, s); 11545 break; 11546 default: 11547 unallocated_encoding(s); 11548 return; 11549 } 11550 break; 11551 default: 11552 unallocated_encoding(s); 11553 return; 11554 } 11555 if (!feature) { 11556 unallocated_encoding(s); 11557 return; 11558 } 11559 if (!fp_access_check(s)) { 11560 return; 11561 } 11562 11563 switch (opcode) { 11564 case 0x0: /* SQRDMLAH (vector) */ 11565 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11566 return; 11567 11568 case 0x1: /* SQRDMLSH (vector) */ 11569 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11570 return; 11571 11572 case 0x2: /* SDOT / UDOT */ 11573 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11574 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11575 return; 11576 11577 case 0x3: /* USDOT */ 11578 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11579 return; 11580 11581 case 0x04: /* SMMLA, UMMLA */ 11582 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11583 u ? gen_helper_gvec_ummla_b 11584 : gen_helper_gvec_smmla_b); 11585 return; 11586 case 0x05: /* USMMLA */ 11587 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11588 return; 11589 11590 case 0x8: /* FCMLA, #0 */ 11591 case 0x9: /* FCMLA, #90 */ 11592 case 0xa: /* FCMLA, #180 */ 11593 case 0xb: /* FCMLA, #270 */ 11594 rot = extract32(opcode, 0, 2); 11595 switch (size) { 11596 case 1: 11597 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11598 gen_helper_gvec_fcmlah); 11599 break; 11600 case 2: 11601 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11602 gen_helper_gvec_fcmlas); 11603 break; 11604 case 3: 11605 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11606 gen_helper_gvec_fcmlad); 11607 break; 11608 default: 11609 g_assert_not_reached(); 11610 } 11611 return; 11612 11613 case 0xc: /* FCADD, #90 */ 11614 case 0xe: /* FCADD, #270 */ 11615 rot = extract32(opcode, 1, 1); 11616 switch (size) { 11617 case 1: 11618 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11619 gen_helper_gvec_fcaddh); 11620 break; 11621 case 2: 11622 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11623 gen_helper_gvec_fcadds); 11624 break; 11625 case 3: 11626 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11627 gen_helper_gvec_fcaddd); 11628 break; 11629 default: 11630 g_assert_not_reached(); 11631 } 11632 return; 11633 11634 case 0xd: /* BFMMLA */ 11635 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11636 return; 11637 case 0xf: 11638 switch (size) { 11639 case 1: /* BFDOT */ 11640 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11641 break; 11642 case 3: /* BFMLAL{B,T} */ 11643 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11644 gen_helper_gvec_bfmlal); 11645 break; 11646 default: 11647 g_assert_not_reached(); 11648 } 11649 return; 11650 11651 default: 11652 g_assert_not_reached(); 11653 } 11654 } 11655 11656 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11657 int size, int rn, int rd) 11658 { 11659 /* Handle 2-reg-misc ops which are widening (so each size element 11660 * in the source becomes a 2*size element in the destination. 11661 * The only instruction like this is FCVTL. 11662 */ 11663 int pass; 11664 11665 if (size == 3) { 11666 /* 32 -> 64 bit fp conversion */ 11667 TCGv_i64 tcg_res[2]; 11668 int srcelt = is_q ? 2 : 0; 11669 11670 for (pass = 0; pass < 2; pass++) { 11671 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11672 tcg_res[pass] = tcg_temp_new_i64(); 11673 11674 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11675 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11676 } 11677 for (pass = 0; pass < 2; pass++) { 11678 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11679 } 11680 } else { 11681 /* 16 -> 32 bit fp conversion */ 11682 int srcelt = is_q ? 4 : 0; 11683 TCGv_i32 tcg_res[4]; 11684 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11685 TCGv_i32 ahp = get_ahp_flag(); 11686 11687 for (pass = 0; pass < 4; pass++) { 11688 tcg_res[pass] = tcg_temp_new_i32(); 11689 11690 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11691 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11692 fpst, ahp); 11693 } 11694 for (pass = 0; pass < 4; pass++) { 11695 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11696 } 11697 } 11698 } 11699 11700 static void handle_rev(DisasContext *s, int opcode, bool u, 11701 bool is_q, int size, int rn, int rd) 11702 { 11703 int op = (opcode << 1) | u; 11704 int opsz = op + size; 11705 int grp_size = 3 - opsz; 11706 int dsize = is_q ? 128 : 64; 11707 int i; 11708 11709 if (opsz >= 3) { 11710 unallocated_encoding(s); 11711 return; 11712 } 11713 11714 if (!fp_access_check(s)) { 11715 return; 11716 } 11717 11718 if (size == 0) { 11719 /* Special case bytes, use bswap op on each group of elements */ 11720 int groups = dsize / (8 << grp_size); 11721 11722 for (i = 0; i < groups; i++) { 11723 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11724 11725 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11726 switch (grp_size) { 11727 case MO_16: 11728 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11729 break; 11730 case MO_32: 11731 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11732 break; 11733 case MO_64: 11734 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11735 break; 11736 default: 11737 g_assert_not_reached(); 11738 } 11739 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11740 } 11741 clear_vec_high(s, is_q, rd); 11742 } else { 11743 int revmask = (1 << grp_size) - 1; 11744 int esize = 8 << size; 11745 int elements = dsize / esize; 11746 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11747 TCGv_i64 tcg_rd[2]; 11748 11749 for (i = 0; i < 2; i++) { 11750 tcg_rd[i] = tcg_temp_new_i64(); 11751 tcg_gen_movi_i64(tcg_rd[i], 0); 11752 } 11753 11754 for (i = 0; i < elements; i++) { 11755 int e_rev = (i & 0xf) ^ revmask; 11756 int w = (e_rev * esize) / 64; 11757 int o = (e_rev * esize) % 64; 11758 11759 read_vec_element(s, tcg_rn, rn, i, size); 11760 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11761 } 11762 11763 for (i = 0; i < 2; i++) { 11764 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11765 } 11766 clear_vec_high(s, true, rd); 11767 } 11768 } 11769 11770 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11771 bool is_q, int size, int rn, int rd) 11772 { 11773 /* Implement the pairwise operations from 2-misc: 11774 * SADDLP, UADDLP, SADALP, UADALP. 11775 * These all add pairs of elements in the input to produce a 11776 * double-width result element in the output (possibly accumulating). 11777 */ 11778 bool accum = (opcode == 0x6); 11779 int maxpass = is_q ? 2 : 1; 11780 int pass; 11781 TCGv_i64 tcg_res[2]; 11782 11783 if (size == 2) { 11784 /* 32 + 32 -> 64 op */ 11785 MemOp memop = size + (u ? 0 : MO_SIGN); 11786 11787 for (pass = 0; pass < maxpass; pass++) { 11788 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11789 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11790 11791 tcg_res[pass] = tcg_temp_new_i64(); 11792 11793 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11794 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11795 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11796 if (accum) { 11797 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11798 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11799 } 11800 } 11801 } else { 11802 for (pass = 0; pass < maxpass; pass++) { 11803 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11804 NeonGenOne64OpFn *genfn; 11805 static NeonGenOne64OpFn * const fns[2][2] = { 11806 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11807 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11808 }; 11809 11810 genfn = fns[size][u]; 11811 11812 tcg_res[pass] = tcg_temp_new_i64(); 11813 11814 read_vec_element(s, tcg_op, rn, pass, MO_64); 11815 genfn(tcg_res[pass], tcg_op); 11816 11817 if (accum) { 11818 read_vec_element(s, tcg_op, rd, pass, MO_64); 11819 if (size == 0) { 11820 gen_helper_neon_addl_u16(tcg_res[pass], 11821 tcg_res[pass], tcg_op); 11822 } else { 11823 gen_helper_neon_addl_u32(tcg_res[pass], 11824 tcg_res[pass], tcg_op); 11825 } 11826 } 11827 } 11828 } 11829 if (!is_q) { 11830 tcg_res[1] = tcg_constant_i64(0); 11831 } 11832 for (pass = 0; pass < 2; pass++) { 11833 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11834 } 11835 } 11836 11837 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11838 { 11839 /* Implement SHLL and SHLL2 */ 11840 int pass; 11841 int part = is_q ? 2 : 0; 11842 TCGv_i64 tcg_res[2]; 11843 11844 for (pass = 0; pass < 2; pass++) { 11845 static NeonGenWidenFn * const widenfns[3] = { 11846 gen_helper_neon_widen_u8, 11847 gen_helper_neon_widen_u16, 11848 tcg_gen_extu_i32_i64, 11849 }; 11850 NeonGenWidenFn *widenfn = widenfns[size]; 11851 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11852 11853 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11854 tcg_res[pass] = tcg_temp_new_i64(); 11855 widenfn(tcg_res[pass], tcg_op); 11856 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11857 } 11858 11859 for (pass = 0; pass < 2; pass++) { 11860 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11861 } 11862 } 11863 11864 /* AdvSIMD two reg misc 11865 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11866 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11867 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11868 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11869 */ 11870 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11871 { 11872 int size = extract32(insn, 22, 2); 11873 int opcode = extract32(insn, 12, 5); 11874 bool u = extract32(insn, 29, 1); 11875 bool is_q = extract32(insn, 30, 1); 11876 int rn = extract32(insn, 5, 5); 11877 int rd = extract32(insn, 0, 5); 11878 bool need_fpstatus = false; 11879 int rmode = -1; 11880 TCGv_i32 tcg_rmode; 11881 TCGv_ptr tcg_fpstatus; 11882 11883 switch (opcode) { 11884 case 0x0: /* REV64, REV32 */ 11885 case 0x1: /* REV16 */ 11886 handle_rev(s, opcode, u, is_q, size, rn, rd); 11887 return; 11888 case 0x5: /* CNT, NOT, RBIT */ 11889 if (u && size == 0) { 11890 /* NOT */ 11891 break; 11892 } else if (u && size == 1) { 11893 /* RBIT */ 11894 break; 11895 } else if (!u && size == 0) { 11896 /* CNT */ 11897 break; 11898 } 11899 unallocated_encoding(s); 11900 return; 11901 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11902 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11903 if (size == 3) { 11904 unallocated_encoding(s); 11905 return; 11906 } 11907 if (!fp_access_check(s)) { 11908 return; 11909 } 11910 11911 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11912 return; 11913 case 0x4: /* CLS, CLZ */ 11914 if (size == 3) { 11915 unallocated_encoding(s); 11916 return; 11917 } 11918 break; 11919 case 0x2: /* SADDLP, UADDLP */ 11920 case 0x6: /* SADALP, UADALP */ 11921 if (size == 3) { 11922 unallocated_encoding(s); 11923 return; 11924 } 11925 if (!fp_access_check(s)) { 11926 return; 11927 } 11928 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11929 return; 11930 case 0x13: /* SHLL, SHLL2 */ 11931 if (u == 0 || size == 3) { 11932 unallocated_encoding(s); 11933 return; 11934 } 11935 if (!fp_access_check(s)) { 11936 return; 11937 } 11938 handle_shll(s, is_q, size, rn, rd); 11939 return; 11940 case 0xa: /* CMLT */ 11941 if (u == 1) { 11942 unallocated_encoding(s); 11943 return; 11944 } 11945 /* fall through */ 11946 case 0x8: /* CMGT, CMGE */ 11947 case 0x9: /* CMEQ, CMLE */ 11948 case 0xb: /* ABS, NEG */ 11949 if (size == 3 && !is_q) { 11950 unallocated_encoding(s); 11951 return; 11952 } 11953 break; 11954 case 0x3: /* SUQADD, USQADD */ 11955 if (size == 3 && !is_q) { 11956 unallocated_encoding(s); 11957 return; 11958 } 11959 if (!fp_access_check(s)) { 11960 return; 11961 } 11962 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11963 return; 11964 case 0x7: /* SQABS, SQNEG */ 11965 if (size == 3 && !is_q) { 11966 unallocated_encoding(s); 11967 return; 11968 } 11969 break; 11970 case 0xc ... 0xf: 11971 case 0x16 ... 0x1f: 11972 { 11973 /* Floating point: U, size[1] and opcode indicate operation; 11974 * size[0] indicates single or double precision. 11975 */ 11976 int is_double = extract32(size, 0, 1); 11977 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11978 size = is_double ? 3 : 2; 11979 switch (opcode) { 11980 case 0x2f: /* FABS */ 11981 case 0x6f: /* FNEG */ 11982 if (size == 3 && !is_q) { 11983 unallocated_encoding(s); 11984 return; 11985 } 11986 break; 11987 case 0x1d: /* SCVTF */ 11988 case 0x5d: /* UCVTF */ 11989 { 11990 bool is_signed = (opcode == 0x1d) ? true : false; 11991 int elements = is_double ? 2 : is_q ? 4 : 2; 11992 if (is_double && !is_q) { 11993 unallocated_encoding(s); 11994 return; 11995 } 11996 if (!fp_access_check(s)) { 11997 return; 11998 } 11999 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12000 return; 12001 } 12002 case 0x2c: /* FCMGT (zero) */ 12003 case 0x2d: /* FCMEQ (zero) */ 12004 case 0x2e: /* FCMLT (zero) */ 12005 case 0x6c: /* FCMGE (zero) */ 12006 case 0x6d: /* FCMLE (zero) */ 12007 if (size == 3 && !is_q) { 12008 unallocated_encoding(s); 12009 return; 12010 } 12011 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12012 return; 12013 case 0x7f: /* FSQRT */ 12014 if (size == 3 && !is_q) { 12015 unallocated_encoding(s); 12016 return; 12017 } 12018 break; 12019 case 0x1a: /* FCVTNS */ 12020 case 0x1b: /* FCVTMS */ 12021 case 0x3a: /* FCVTPS */ 12022 case 0x3b: /* FCVTZS */ 12023 case 0x5a: /* FCVTNU */ 12024 case 0x5b: /* FCVTMU */ 12025 case 0x7a: /* FCVTPU */ 12026 case 0x7b: /* FCVTZU */ 12027 need_fpstatus = true; 12028 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12029 if (size == 3 && !is_q) { 12030 unallocated_encoding(s); 12031 return; 12032 } 12033 break; 12034 case 0x5c: /* FCVTAU */ 12035 case 0x1c: /* FCVTAS */ 12036 need_fpstatus = true; 12037 rmode = FPROUNDING_TIEAWAY; 12038 if (size == 3 && !is_q) { 12039 unallocated_encoding(s); 12040 return; 12041 } 12042 break; 12043 case 0x3c: /* URECPE */ 12044 if (size == 3) { 12045 unallocated_encoding(s); 12046 return; 12047 } 12048 /* fall through */ 12049 case 0x3d: /* FRECPE */ 12050 case 0x7d: /* FRSQRTE */ 12051 if (size == 3 && !is_q) { 12052 unallocated_encoding(s); 12053 return; 12054 } 12055 if (!fp_access_check(s)) { 12056 return; 12057 } 12058 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12059 return; 12060 case 0x56: /* FCVTXN, FCVTXN2 */ 12061 if (size == 2) { 12062 unallocated_encoding(s); 12063 return; 12064 } 12065 /* fall through */ 12066 case 0x16: /* FCVTN, FCVTN2 */ 12067 /* handle_2misc_narrow does a 2*size -> size operation, but these 12068 * instructions encode the source size rather than dest size. 12069 */ 12070 if (!fp_access_check(s)) { 12071 return; 12072 } 12073 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12074 return; 12075 case 0x36: /* BFCVTN, BFCVTN2 */ 12076 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12077 unallocated_encoding(s); 12078 return; 12079 } 12080 if (!fp_access_check(s)) { 12081 return; 12082 } 12083 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12084 return; 12085 case 0x17: /* FCVTL, FCVTL2 */ 12086 if (!fp_access_check(s)) { 12087 return; 12088 } 12089 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12090 return; 12091 case 0x18: /* FRINTN */ 12092 case 0x19: /* FRINTM */ 12093 case 0x38: /* FRINTP */ 12094 case 0x39: /* FRINTZ */ 12095 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12096 /* fall through */ 12097 case 0x59: /* FRINTX */ 12098 case 0x79: /* FRINTI */ 12099 need_fpstatus = true; 12100 if (size == 3 && !is_q) { 12101 unallocated_encoding(s); 12102 return; 12103 } 12104 break; 12105 case 0x58: /* FRINTA */ 12106 rmode = FPROUNDING_TIEAWAY; 12107 need_fpstatus = true; 12108 if (size == 3 && !is_q) { 12109 unallocated_encoding(s); 12110 return; 12111 } 12112 break; 12113 case 0x7c: /* URSQRTE */ 12114 if (size == 3) { 12115 unallocated_encoding(s); 12116 return; 12117 } 12118 break; 12119 case 0x1e: /* FRINT32Z */ 12120 case 0x1f: /* FRINT64Z */ 12121 rmode = FPROUNDING_ZERO; 12122 /* fall through */ 12123 case 0x5e: /* FRINT32X */ 12124 case 0x5f: /* FRINT64X */ 12125 need_fpstatus = true; 12126 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12127 unallocated_encoding(s); 12128 return; 12129 } 12130 break; 12131 default: 12132 unallocated_encoding(s); 12133 return; 12134 } 12135 break; 12136 } 12137 default: 12138 unallocated_encoding(s); 12139 return; 12140 } 12141 12142 if (!fp_access_check(s)) { 12143 return; 12144 } 12145 12146 if (need_fpstatus || rmode >= 0) { 12147 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12148 } else { 12149 tcg_fpstatus = NULL; 12150 } 12151 if (rmode >= 0) { 12152 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12153 } else { 12154 tcg_rmode = NULL; 12155 } 12156 12157 switch (opcode) { 12158 case 0x5: 12159 if (u && size == 0) { /* NOT */ 12160 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12161 return; 12162 } 12163 break; 12164 case 0x8: /* CMGT, CMGE */ 12165 if (u) { 12166 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12167 } else { 12168 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12169 } 12170 return; 12171 case 0x9: /* CMEQ, CMLE */ 12172 if (u) { 12173 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12174 } else { 12175 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12176 } 12177 return; 12178 case 0xa: /* CMLT */ 12179 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12180 return; 12181 case 0xb: 12182 if (u) { /* ABS, NEG */ 12183 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12184 } else { 12185 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12186 } 12187 return; 12188 } 12189 12190 if (size == 3) { 12191 /* All 64-bit element operations can be shared with scalar 2misc */ 12192 int pass; 12193 12194 /* Coverity claims (size == 3 && !is_q) has been eliminated 12195 * from all paths leading to here. 12196 */ 12197 tcg_debug_assert(is_q); 12198 for (pass = 0; pass < 2; pass++) { 12199 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12200 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12201 12202 read_vec_element(s, tcg_op, rn, pass, MO_64); 12203 12204 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12205 tcg_rmode, tcg_fpstatus); 12206 12207 write_vec_element(s, tcg_res, rd, pass, MO_64); 12208 } 12209 } else { 12210 int pass; 12211 12212 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12213 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12214 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12215 12216 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12217 12218 if (size == 2) { 12219 /* Special cases for 32 bit elements */ 12220 switch (opcode) { 12221 case 0x4: /* CLS */ 12222 if (u) { 12223 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12224 } else { 12225 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12226 } 12227 break; 12228 case 0x7: /* SQABS, SQNEG */ 12229 if (u) { 12230 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12231 } else { 12232 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12233 } 12234 break; 12235 case 0x2f: /* FABS */ 12236 gen_helper_vfp_abss(tcg_res, tcg_op); 12237 break; 12238 case 0x6f: /* FNEG */ 12239 gen_helper_vfp_negs(tcg_res, tcg_op); 12240 break; 12241 case 0x7f: /* FSQRT */ 12242 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12243 break; 12244 case 0x1a: /* FCVTNS */ 12245 case 0x1b: /* FCVTMS */ 12246 case 0x1c: /* FCVTAS */ 12247 case 0x3a: /* FCVTPS */ 12248 case 0x3b: /* FCVTZS */ 12249 gen_helper_vfp_tosls(tcg_res, tcg_op, 12250 tcg_constant_i32(0), tcg_fpstatus); 12251 break; 12252 case 0x5a: /* FCVTNU */ 12253 case 0x5b: /* FCVTMU */ 12254 case 0x5c: /* FCVTAU */ 12255 case 0x7a: /* FCVTPU */ 12256 case 0x7b: /* FCVTZU */ 12257 gen_helper_vfp_touls(tcg_res, tcg_op, 12258 tcg_constant_i32(0), tcg_fpstatus); 12259 break; 12260 case 0x18: /* FRINTN */ 12261 case 0x19: /* FRINTM */ 12262 case 0x38: /* FRINTP */ 12263 case 0x39: /* FRINTZ */ 12264 case 0x58: /* FRINTA */ 12265 case 0x79: /* FRINTI */ 12266 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12267 break; 12268 case 0x59: /* FRINTX */ 12269 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12270 break; 12271 case 0x7c: /* URSQRTE */ 12272 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12273 break; 12274 case 0x1e: /* FRINT32Z */ 12275 case 0x5e: /* FRINT32X */ 12276 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12277 break; 12278 case 0x1f: /* FRINT64Z */ 12279 case 0x5f: /* FRINT64X */ 12280 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12281 break; 12282 default: 12283 g_assert_not_reached(); 12284 } 12285 } else { 12286 /* Use helpers for 8 and 16 bit elements */ 12287 switch (opcode) { 12288 case 0x5: /* CNT, RBIT */ 12289 /* For these two insns size is part of the opcode specifier 12290 * (handled earlier); they always operate on byte elements. 12291 */ 12292 if (u) { 12293 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12294 } else { 12295 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12296 } 12297 break; 12298 case 0x7: /* SQABS, SQNEG */ 12299 { 12300 NeonGenOneOpEnvFn *genfn; 12301 static NeonGenOneOpEnvFn * const fns[2][2] = { 12302 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12303 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12304 }; 12305 genfn = fns[size][u]; 12306 genfn(tcg_res, tcg_env, tcg_op); 12307 break; 12308 } 12309 case 0x4: /* CLS, CLZ */ 12310 if (u) { 12311 if (size == 0) { 12312 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12313 } else { 12314 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12315 } 12316 } else { 12317 if (size == 0) { 12318 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12319 } else { 12320 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12321 } 12322 } 12323 break; 12324 default: 12325 g_assert_not_reached(); 12326 } 12327 } 12328 12329 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12330 } 12331 } 12332 clear_vec_high(s, is_q, rd); 12333 12334 if (tcg_rmode) { 12335 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12336 } 12337 } 12338 12339 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12340 * 12341 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12342 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12343 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12344 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12345 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12346 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12347 * 12348 * This actually covers two groups where scalar access is governed by 12349 * bit 28. A bunch of the instructions (float to integral) only exist 12350 * in the vector form and are un-allocated for the scalar decode. Also 12351 * in the scalar decode Q is always 1. 12352 */ 12353 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12354 { 12355 int fpop, opcode, a, u; 12356 int rn, rd; 12357 bool is_q; 12358 bool is_scalar; 12359 bool only_in_vector = false; 12360 12361 int pass; 12362 TCGv_i32 tcg_rmode = NULL; 12363 TCGv_ptr tcg_fpstatus = NULL; 12364 bool need_fpst = true; 12365 int rmode = -1; 12366 12367 if (!dc_isar_feature(aa64_fp16, s)) { 12368 unallocated_encoding(s); 12369 return; 12370 } 12371 12372 rd = extract32(insn, 0, 5); 12373 rn = extract32(insn, 5, 5); 12374 12375 a = extract32(insn, 23, 1); 12376 u = extract32(insn, 29, 1); 12377 is_scalar = extract32(insn, 28, 1); 12378 is_q = extract32(insn, 30, 1); 12379 12380 opcode = extract32(insn, 12, 5); 12381 fpop = deposit32(opcode, 5, 1, a); 12382 fpop = deposit32(fpop, 6, 1, u); 12383 12384 switch (fpop) { 12385 case 0x1d: /* SCVTF */ 12386 case 0x5d: /* UCVTF */ 12387 { 12388 int elements; 12389 12390 if (is_scalar) { 12391 elements = 1; 12392 } else { 12393 elements = (is_q ? 8 : 4); 12394 } 12395 12396 if (!fp_access_check(s)) { 12397 return; 12398 } 12399 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12400 return; 12401 } 12402 break; 12403 case 0x2c: /* FCMGT (zero) */ 12404 case 0x2d: /* FCMEQ (zero) */ 12405 case 0x2e: /* FCMLT (zero) */ 12406 case 0x6c: /* FCMGE (zero) */ 12407 case 0x6d: /* FCMLE (zero) */ 12408 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12409 return; 12410 case 0x3d: /* FRECPE */ 12411 case 0x3f: /* FRECPX */ 12412 break; 12413 case 0x18: /* FRINTN */ 12414 only_in_vector = true; 12415 rmode = FPROUNDING_TIEEVEN; 12416 break; 12417 case 0x19: /* FRINTM */ 12418 only_in_vector = true; 12419 rmode = FPROUNDING_NEGINF; 12420 break; 12421 case 0x38: /* FRINTP */ 12422 only_in_vector = true; 12423 rmode = FPROUNDING_POSINF; 12424 break; 12425 case 0x39: /* FRINTZ */ 12426 only_in_vector = true; 12427 rmode = FPROUNDING_ZERO; 12428 break; 12429 case 0x58: /* FRINTA */ 12430 only_in_vector = true; 12431 rmode = FPROUNDING_TIEAWAY; 12432 break; 12433 case 0x59: /* FRINTX */ 12434 case 0x79: /* FRINTI */ 12435 only_in_vector = true; 12436 /* current rounding mode */ 12437 break; 12438 case 0x1a: /* FCVTNS */ 12439 rmode = FPROUNDING_TIEEVEN; 12440 break; 12441 case 0x1b: /* FCVTMS */ 12442 rmode = FPROUNDING_NEGINF; 12443 break; 12444 case 0x1c: /* FCVTAS */ 12445 rmode = FPROUNDING_TIEAWAY; 12446 break; 12447 case 0x3a: /* FCVTPS */ 12448 rmode = FPROUNDING_POSINF; 12449 break; 12450 case 0x3b: /* FCVTZS */ 12451 rmode = FPROUNDING_ZERO; 12452 break; 12453 case 0x5a: /* FCVTNU */ 12454 rmode = FPROUNDING_TIEEVEN; 12455 break; 12456 case 0x5b: /* FCVTMU */ 12457 rmode = FPROUNDING_NEGINF; 12458 break; 12459 case 0x5c: /* FCVTAU */ 12460 rmode = FPROUNDING_TIEAWAY; 12461 break; 12462 case 0x7a: /* FCVTPU */ 12463 rmode = FPROUNDING_POSINF; 12464 break; 12465 case 0x7b: /* FCVTZU */ 12466 rmode = FPROUNDING_ZERO; 12467 break; 12468 case 0x2f: /* FABS */ 12469 case 0x6f: /* FNEG */ 12470 need_fpst = false; 12471 break; 12472 case 0x7d: /* FRSQRTE */ 12473 case 0x7f: /* FSQRT (vector) */ 12474 break; 12475 default: 12476 unallocated_encoding(s); 12477 return; 12478 } 12479 12480 12481 /* Check additional constraints for the scalar encoding */ 12482 if (is_scalar) { 12483 if (!is_q) { 12484 unallocated_encoding(s); 12485 return; 12486 } 12487 /* FRINTxx is only in the vector form */ 12488 if (only_in_vector) { 12489 unallocated_encoding(s); 12490 return; 12491 } 12492 } 12493 12494 if (!fp_access_check(s)) { 12495 return; 12496 } 12497 12498 if (rmode >= 0 || need_fpst) { 12499 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12500 } 12501 12502 if (rmode >= 0) { 12503 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12504 } 12505 12506 if (is_scalar) { 12507 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12508 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12509 12510 switch (fpop) { 12511 case 0x1a: /* FCVTNS */ 12512 case 0x1b: /* FCVTMS */ 12513 case 0x1c: /* FCVTAS */ 12514 case 0x3a: /* FCVTPS */ 12515 case 0x3b: /* FCVTZS */ 12516 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12517 break; 12518 case 0x3d: /* FRECPE */ 12519 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12520 break; 12521 case 0x3f: /* FRECPX */ 12522 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12523 break; 12524 case 0x5a: /* FCVTNU */ 12525 case 0x5b: /* FCVTMU */ 12526 case 0x5c: /* FCVTAU */ 12527 case 0x7a: /* FCVTPU */ 12528 case 0x7b: /* FCVTZU */ 12529 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12530 break; 12531 case 0x6f: /* FNEG */ 12532 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12533 break; 12534 case 0x7d: /* FRSQRTE */ 12535 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12536 break; 12537 default: 12538 g_assert_not_reached(); 12539 } 12540 12541 /* limit any sign extension going on */ 12542 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12543 write_fp_sreg(s, rd, tcg_res); 12544 } else { 12545 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12546 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12547 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12548 12549 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12550 12551 switch (fpop) { 12552 case 0x1a: /* FCVTNS */ 12553 case 0x1b: /* FCVTMS */ 12554 case 0x1c: /* FCVTAS */ 12555 case 0x3a: /* FCVTPS */ 12556 case 0x3b: /* FCVTZS */ 12557 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12558 break; 12559 case 0x3d: /* FRECPE */ 12560 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12561 break; 12562 case 0x5a: /* FCVTNU */ 12563 case 0x5b: /* FCVTMU */ 12564 case 0x5c: /* FCVTAU */ 12565 case 0x7a: /* FCVTPU */ 12566 case 0x7b: /* FCVTZU */ 12567 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12568 break; 12569 case 0x18: /* FRINTN */ 12570 case 0x19: /* FRINTM */ 12571 case 0x38: /* FRINTP */ 12572 case 0x39: /* FRINTZ */ 12573 case 0x58: /* FRINTA */ 12574 case 0x79: /* FRINTI */ 12575 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12576 break; 12577 case 0x59: /* FRINTX */ 12578 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12579 break; 12580 case 0x2f: /* FABS */ 12581 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12582 break; 12583 case 0x6f: /* FNEG */ 12584 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12585 break; 12586 case 0x7d: /* FRSQRTE */ 12587 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12588 break; 12589 case 0x7f: /* FSQRT */ 12590 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12591 break; 12592 default: 12593 g_assert_not_reached(); 12594 } 12595 12596 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12597 } 12598 12599 clear_vec_high(s, is_q, rd); 12600 } 12601 12602 if (tcg_rmode) { 12603 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12604 } 12605 } 12606 12607 /* AdvSIMD scalar x indexed element 12608 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12609 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12610 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12611 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12612 * AdvSIMD vector x indexed element 12613 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12614 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12615 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12616 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12617 */ 12618 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12619 { 12620 /* This encoding has two kinds of instruction: 12621 * normal, where we perform elt x idxelt => elt for each 12622 * element in the vector 12623 * long, where we perform elt x idxelt and generate a result of 12624 * double the width of the input element 12625 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12626 */ 12627 bool is_scalar = extract32(insn, 28, 1); 12628 bool is_q = extract32(insn, 30, 1); 12629 bool u = extract32(insn, 29, 1); 12630 int size = extract32(insn, 22, 2); 12631 int l = extract32(insn, 21, 1); 12632 int m = extract32(insn, 20, 1); 12633 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12634 int rm = extract32(insn, 16, 4); 12635 int opcode = extract32(insn, 12, 4); 12636 int h = extract32(insn, 11, 1); 12637 int rn = extract32(insn, 5, 5); 12638 int rd = extract32(insn, 0, 5); 12639 bool is_long = false; 12640 int is_fp = 0; 12641 bool is_fp16 = false; 12642 int index; 12643 TCGv_ptr fpst; 12644 12645 switch (16 * u + opcode) { 12646 case 0x08: /* MUL */ 12647 case 0x10: /* MLA */ 12648 case 0x14: /* MLS */ 12649 if (is_scalar) { 12650 unallocated_encoding(s); 12651 return; 12652 } 12653 break; 12654 case 0x02: /* SMLAL, SMLAL2 */ 12655 case 0x12: /* UMLAL, UMLAL2 */ 12656 case 0x06: /* SMLSL, SMLSL2 */ 12657 case 0x16: /* UMLSL, UMLSL2 */ 12658 case 0x0a: /* SMULL, SMULL2 */ 12659 case 0x1a: /* UMULL, UMULL2 */ 12660 if (is_scalar) { 12661 unallocated_encoding(s); 12662 return; 12663 } 12664 is_long = true; 12665 break; 12666 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12667 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12668 case 0x0b: /* SQDMULL, SQDMULL2 */ 12669 is_long = true; 12670 break; 12671 case 0x0c: /* SQDMULH */ 12672 case 0x0d: /* SQRDMULH */ 12673 break; 12674 case 0x01: /* FMLA */ 12675 case 0x05: /* FMLS */ 12676 case 0x09: /* FMUL */ 12677 case 0x19: /* FMULX */ 12678 is_fp = 1; 12679 break; 12680 case 0x1d: /* SQRDMLAH */ 12681 case 0x1f: /* SQRDMLSH */ 12682 if (!dc_isar_feature(aa64_rdm, s)) { 12683 unallocated_encoding(s); 12684 return; 12685 } 12686 break; 12687 case 0x0e: /* SDOT */ 12688 case 0x1e: /* UDOT */ 12689 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12690 unallocated_encoding(s); 12691 return; 12692 } 12693 break; 12694 case 0x0f: 12695 switch (size) { 12696 case 0: /* SUDOT */ 12697 case 2: /* USDOT */ 12698 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12699 unallocated_encoding(s); 12700 return; 12701 } 12702 size = MO_32; 12703 break; 12704 case 1: /* BFDOT */ 12705 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12706 unallocated_encoding(s); 12707 return; 12708 } 12709 size = MO_32; 12710 break; 12711 case 3: /* BFMLAL{B,T} */ 12712 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12713 unallocated_encoding(s); 12714 return; 12715 } 12716 /* can't set is_fp without other incorrect size checks */ 12717 size = MO_16; 12718 break; 12719 default: 12720 unallocated_encoding(s); 12721 return; 12722 } 12723 break; 12724 case 0x11: /* FCMLA #0 */ 12725 case 0x13: /* FCMLA #90 */ 12726 case 0x15: /* FCMLA #180 */ 12727 case 0x17: /* FCMLA #270 */ 12728 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12729 unallocated_encoding(s); 12730 return; 12731 } 12732 is_fp = 2; 12733 break; 12734 case 0x00: /* FMLAL */ 12735 case 0x04: /* FMLSL */ 12736 case 0x18: /* FMLAL2 */ 12737 case 0x1c: /* FMLSL2 */ 12738 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12739 unallocated_encoding(s); 12740 return; 12741 } 12742 size = MO_16; 12743 /* is_fp, but we pass tcg_env not fp_status. */ 12744 break; 12745 default: 12746 unallocated_encoding(s); 12747 return; 12748 } 12749 12750 switch (is_fp) { 12751 case 1: /* normal fp */ 12752 /* convert insn encoded size to MemOp size */ 12753 switch (size) { 12754 case 0: /* half-precision */ 12755 size = MO_16; 12756 is_fp16 = true; 12757 break; 12758 case MO_32: /* single precision */ 12759 case MO_64: /* double precision */ 12760 break; 12761 default: 12762 unallocated_encoding(s); 12763 return; 12764 } 12765 break; 12766 12767 case 2: /* complex fp */ 12768 /* Each indexable element is a complex pair. */ 12769 size += 1; 12770 switch (size) { 12771 case MO_32: 12772 if (h && !is_q) { 12773 unallocated_encoding(s); 12774 return; 12775 } 12776 is_fp16 = true; 12777 break; 12778 case MO_64: 12779 break; 12780 default: 12781 unallocated_encoding(s); 12782 return; 12783 } 12784 break; 12785 12786 default: /* integer */ 12787 switch (size) { 12788 case MO_8: 12789 case MO_64: 12790 unallocated_encoding(s); 12791 return; 12792 } 12793 break; 12794 } 12795 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12796 unallocated_encoding(s); 12797 return; 12798 } 12799 12800 /* Given MemOp size, adjust register and indexing. */ 12801 switch (size) { 12802 case MO_16: 12803 index = h << 2 | l << 1 | m; 12804 break; 12805 case MO_32: 12806 index = h << 1 | l; 12807 rm |= m << 4; 12808 break; 12809 case MO_64: 12810 if (l || !is_q) { 12811 unallocated_encoding(s); 12812 return; 12813 } 12814 index = h; 12815 rm |= m << 4; 12816 break; 12817 default: 12818 g_assert_not_reached(); 12819 } 12820 12821 if (!fp_access_check(s)) { 12822 return; 12823 } 12824 12825 if (is_fp) { 12826 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12827 } else { 12828 fpst = NULL; 12829 } 12830 12831 switch (16 * u + opcode) { 12832 case 0x0e: /* SDOT */ 12833 case 0x1e: /* UDOT */ 12834 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12835 u ? gen_helper_gvec_udot_idx_b 12836 : gen_helper_gvec_sdot_idx_b); 12837 return; 12838 case 0x0f: 12839 switch (extract32(insn, 22, 2)) { 12840 case 0: /* SUDOT */ 12841 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12842 gen_helper_gvec_sudot_idx_b); 12843 return; 12844 case 1: /* BFDOT */ 12845 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12846 gen_helper_gvec_bfdot_idx); 12847 return; 12848 case 2: /* USDOT */ 12849 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12850 gen_helper_gvec_usdot_idx_b); 12851 return; 12852 case 3: /* BFMLAL{B,T} */ 12853 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12854 gen_helper_gvec_bfmlal_idx); 12855 return; 12856 } 12857 g_assert_not_reached(); 12858 case 0x11: /* FCMLA #0 */ 12859 case 0x13: /* FCMLA #90 */ 12860 case 0x15: /* FCMLA #180 */ 12861 case 0x17: /* FCMLA #270 */ 12862 { 12863 int rot = extract32(insn, 13, 2); 12864 int data = (index << 2) | rot; 12865 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12866 vec_full_reg_offset(s, rn), 12867 vec_full_reg_offset(s, rm), 12868 vec_full_reg_offset(s, rd), fpst, 12869 is_q ? 16 : 8, vec_full_reg_size(s), data, 12870 size == MO_64 12871 ? gen_helper_gvec_fcmlas_idx 12872 : gen_helper_gvec_fcmlah_idx); 12873 } 12874 return; 12875 12876 case 0x00: /* FMLAL */ 12877 case 0x04: /* FMLSL */ 12878 case 0x18: /* FMLAL2 */ 12879 case 0x1c: /* FMLSL2 */ 12880 { 12881 int is_s = extract32(opcode, 2, 1); 12882 int is_2 = u; 12883 int data = (index << 2) | (is_2 << 1) | is_s; 12884 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12885 vec_full_reg_offset(s, rn), 12886 vec_full_reg_offset(s, rm), tcg_env, 12887 is_q ? 16 : 8, vec_full_reg_size(s), 12888 data, gen_helper_gvec_fmlal_idx_a64); 12889 } 12890 return; 12891 12892 case 0x08: /* MUL */ 12893 if (!is_long && !is_scalar) { 12894 static gen_helper_gvec_3 * const fns[3] = { 12895 gen_helper_gvec_mul_idx_h, 12896 gen_helper_gvec_mul_idx_s, 12897 gen_helper_gvec_mul_idx_d, 12898 }; 12899 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12900 vec_full_reg_offset(s, rn), 12901 vec_full_reg_offset(s, rm), 12902 is_q ? 16 : 8, vec_full_reg_size(s), 12903 index, fns[size - 1]); 12904 return; 12905 } 12906 break; 12907 12908 case 0x10: /* MLA */ 12909 if (!is_long && !is_scalar) { 12910 static gen_helper_gvec_4 * const fns[3] = { 12911 gen_helper_gvec_mla_idx_h, 12912 gen_helper_gvec_mla_idx_s, 12913 gen_helper_gvec_mla_idx_d, 12914 }; 12915 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12916 vec_full_reg_offset(s, rn), 12917 vec_full_reg_offset(s, rm), 12918 vec_full_reg_offset(s, rd), 12919 is_q ? 16 : 8, vec_full_reg_size(s), 12920 index, fns[size - 1]); 12921 return; 12922 } 12923 break; 12924 12925 case 0x14: /* MLS */ 12926 if (!is_long && !is_scalar) { 12927 static gen_helper_gvec_4 * const fns[3] = { 12928 gen_helper_gvec_mls_idx_h, 12929 gen_helper_gvec_mls_idx_s, 12930 gen_helper_gvec_mls_idx_d, 12931 }; 12932 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12933 vec_full_reg_offset(s, rn), 12934 vec_full_reg_offset(s, rm), 12935 vec_full_reg_offset(s, rd), 12936 is_q ? 16 : 8, vec_full_reg_size(s), 12937 index, fns[size - 1]); 12938 return; 12939 } 12940 break; 12941 } 12942 12943 if (size == 3) { 12944 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12945 int pass; 12946 12947 assert(is_fp && is_q && !is_long); 12948 12949 read_vec_element(s, tcg_idx, rm, index, MO_64); 12950 12951 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12952 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12953 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12954 12955 read_vec_element(s, tcg_op, rn, pass, MO_64); 12956 12957 switch (16 * u + opcode) { 12958 case 0x05: /* FMLS */ 12959 /* As usual for ARM, separate negation for fused multiply-add */ 12960 gen_helper_vfp_negd(tcg_op, tcg_op); 12961 /* fall through */ 12962 case 0x01: /* FMLA */ 12963 read_vec_element(s, tcg_res, rd, pass, MO_64); 12964 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 12965 break; 12966 case 0x09: /* FMUL */ 12967 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 12968 break; 12969 case 0x19: /* FMULX */ 12970 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 12971 break; 12972 default: 12973 g_assert_not_reached(); 12974 } 12975 12976 write_vec_element(s, tcg_res, rd, pass, MO_64); 12977 } 12978 12979 clear_vec_high(s, !is_scalar, rd); 12980 } else if (!is_long) { 12981 /* 32 bit floating point, or 16 or 32 bit integer. 12982 * For the 16 bit scalar case we use the usual Neon helpers and 12983 * rely on the fact that 0 op 0 == 0 with no side effects. 12984 */ 12985 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12986 int pass, maxpasses; 12987 12988 if (is_scalar) { 12989 maxpasses = 1; 12990 } else { 12991 maxpasses = is_q ? 4 : 2; 12992 } 12993 12994 read_vec_element_i32(s, tcg_idx, rm, index, size); 12995 12996 if (size == 1 && !is_scalar) { 12997 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12998 * the index into both halves of the 32 bit tcg_idx and then use 12999 * the usual Neon helpers. 13000 */ 13001 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13002 } 13003 13004 for (pass = 0; pass < maxpasses; pass++) { 13005 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13006 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13007 13008 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13009 13010 switch (16 * u + opcode) { 13011 case 0x08: /* MUL */ 13012 case 0x10: /* MLA */ 13013 case 0x14: /* MLS */ 13014 { 13015 static NeonGenTwoOpFn * const fns[2][2] = { 13016 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13017 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13018 }; 13019 NeonGenTwoOpFn *genfn; 13020 bool is_sub = opcode == 0x4; 13021 13022 if (size == 1) { 13023 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13024 } else { 13025 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13026 } 13027 if (opcode == 0x8) { 13028 break; 13029 } 13030 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13031 genfn = fns[size - 1][is_sub]; 13032 genfn(tcg_res, tcg_op, tcg_res); 13033 break; 13034 } 13035 case 0x05: /* FMLS */ 13036 case 0x01: /* FMLA */ 13037 read_vec_element_i32(s, tcg_res, rd, pass, 13038 is_scalar ? size : MO_32); 13039 switch (size) { 13040 case 1: 13041 if (opcode == 0x5) { 13042 /* As usual for ARM, separate negation for fused 13043 * multiply-add */ 13044 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13045 } 13046 if (is_scalar) { 13047 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13048 tcg_res, fpst); 13049 } else { 13050 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13051 tcg_res, fpst); 13052 } 13053 break; 13054 case 2: 13055 if (opcode == 0x5) { 13056 /* As usual for ARM, separate negation for 13057 * fused multiply-add */ 13058 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13059 } 13060 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13061 tcg_res, fpst); 13062 break; 13063 default: 13064 g_assert_not_reached(); 13065 } 13066 break; 13067 case 0x09: /* FMUL */ 13068 switch (size) { 13069 case 1: 13070 if (is_scalar) { 13071 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13072 tcg_idx, fpst); 13073 } else { 13074 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13075 tcg_idx, fpst); 13076 } 13077 break; 13078 case 2: 13079 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13080 break; 13081 default: 13082 g_assert_not_reached(); 13083 } 13084 break; 13085 case 0x19: /* FMULX */ 13086 switch (size) { 13087 case 1: 13088 if (is_scalar) { 13089 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13090 tcg_idx, fpst); 13091 } else { 13092 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13093 tcg_idx, fpst); 13094 } 13095 break; 13096 case 2: 13097 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13098 break; 13099 default: 13100 g_assert_not_reached(); 13101 } 13102 break; 13103 case 0x0c: /* SQDMULH */ 13104 if (size == 1) { 13105 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13106 tcg_op, tcg_idx); 13107 } else { 13108 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13109 tcg_op, tcg_idx); 13110 } 13111 break; 13112 case 0x0d: /* SQRDMULH */ 13113 if (size == 1) { 13114 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13115 tcg_op, tcg_idx); 13116 } else { 13117 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13118 tcg_op, tcg_idx); 13119 } 13120 break; 13121 case 0x1d: /* SQRDMLAH */ 13122 read_vec_element_i32(s, tcg_res, rd, pass, 13123 is_scalar ? size : MO_32); 13124 if (size == 1) { 13125 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13126 tcg_op, tcg_idx, tcg_res); 13127 } else { 13128 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13129 tcg_op, tcg_idx, tcg_res); 13130 } 13131 break; 13132 case 0x1f: /* SQRDMLSH */ 13133 read_vec_element_i32(s, tcg_res, rd, pass, 13134 is_scalar ? size : MO_32); 13135 if (size == 1) { 13136 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13137 tcg_op, tcg_idx, tcg_res); 13138 } else { 13139 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13140 tcg_op, tcg_idx, tcg_res); 13141 } 13142 break; 13143 default: 13144 g_assert_not_reached(); 13145 } 13146 13147 if (is_scalar) { 13148 write_fp_sreg(s, rd, tcg_res); 13149 } else { 13150 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13151 } 13152 } 13153 13154 clear_vec_high(s, is_q, rd); 13155 } else { 13156 /* long ops: 16x16->32 or 32x32->64 */ 13157 TCGv_i64 tcg_res[2]; 13158 int pass; 13159 bool satop = extract32(opcode, 0, 1); 13160 MemOp memop = MO_32; 13161 13162 if (satop || !u) { 13163 memop |= MO_SIGN; 13164 } 13165 13166 if (size == 2) { 13167 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13168 13169 read_vec_element(s, tcg_idx, rm, index, memop); 13170 13171 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13172 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13173 TCGv_i64 tcg_passres; 13174 int passelt; 13175 13176 if (is_scalar) { 13177 passelt = 0; 13178 } else { 13179 passelt = pass + (is_q * 2); 13180 } 13181 13182 read_vec_element(s, tcg_op, rn, passelt, memop); 13183 13184 tcg_res[pass] = tcg_temp_new_i64(); 13185 13186 if (opcode == 0xa || opcode == 0xb) { 13187 /* Non-accumulating ops */ 13188 tcg_passres = tcg_res[pass]; 13189 } else { 13190 tcg_passres = tcg_temp_new_i64(); 13191 } 13192 13193 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13194 13195 if (satop) { 13196 /* saturating, doubling */ 13197 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13198 tcg_passres, tcg_passres); 13199 } 13200 13201 if (opcode == 0xa || opcode == 0xb) { 13202 continue; 13203 } 13204 13205 /* Accumulating op: handle accumulate step */ 13206 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13207 13208 switch (opcode) { 13209 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13210 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13211 break; 13212 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13213 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13214 break; 13215 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13216 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13217 /* fall through */ 13218 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13219 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13220 tcg_res[pass], 13221 tcg_passres); 13222 break; 13223 default: 13224 g_assert_not_reached(); 13225 } 13226 } 13227 13228 clear_vec_high(s, !is_scalar, rd); 13229 } else { 13230 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13231 13232 assert(size == 1); 13233 read_vec_element_i32(s, tcg_idx, rm, index, size); 13234 13235 if (!is_scalar) { 13236 /* The simplest way to handle the 16x16 indexed ops is to 13237 * duplicate the index into both halves of the 32 bit tcg_idx 13238 * and then use the usual Neon helpers. 13239 */ 13240 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13241 } 13242 13243 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13244 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13245 TCGv_i64 tcg_passres; 13246 13247 if (is_scalar) { 13248 read_vec_element_i32(s, tcg_op, rn, pass, size); 13249 } else { 13250 read_vec_element_i32(s, tcg_op, rn, 13251 pass + (is_q * 2), MO_32); 13252 } 13253 13254 tcg_res[pass] = tcg_temp_new_i64(); 13255 13256 if (opcode == 0xa || opcode == 0xb) { 13257 /* Non-accumulating ops */ 13258 tcg_passres = tcg_res[pass]; 13259 } else { 13260 tcg_passres = tcg_temp_new_i64(); 13261 } 13262 13263 if (memop & MO_SIGN) { 13264 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13265 } else { 13266 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13267 } 13268 if (satop) { 13269 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13270 tcg_passres, tcg_passres); 13271 } 13272 13273 if (opcode == 0xa || opcode == 0xb) { 13274 continue; 13275 } 13276 13277 /* Accumulating op: handle accumulate step */ 13278 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13279 13280 switch (opcode) { 13281 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13282 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13283 tcg_passres); 13284 break; 13285 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13286 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13287 tcg_passres); 13288 break; 13289 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13290 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13291 /* fall through */ 13292 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13293 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13294 tcg_res[pass], 13295 tcg_passres); 13296 break; 13297 default: 13298 g_assert_not_reached(); 13299 } 13300 } 13301 13302 if (is_scalar) { 13303 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13304 } 13305 } 13306 13307 if (is_scalar) { 13308 tcg_res[1] = tcg_constant_i64(0); 13309 } 13310 13311 for (pass = 0; pass < 2; pass++) { 13312 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13313 } 13314 } 13315 } 13316 13317 /* Crypto AES 13318 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13319 * +-----------------+------+-----------+--------+-----+------+------+ 13320 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13321 * +-----------------+------+-----------+--------+-----+------+------+ 13322 */ 13323 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13324 { 13325 int size = extract32(insn, 22, 2); 13326 int opcode = extract32(insn, 12, 5); 13327 int rn = extract32(insn, 5, 5); 13328 int rd = extract32(insn, 0, 5); 13329 gen_helper_gvec_2 *genfn2 = NULL; 13330 gen_helper_gvec_3 *genfn3 = NULL; 13331 13332 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13333 unallocated_encoding(s); 13334 return; 13335 } 13336 13337 switch (opcode) { 13338 case 0x4: /* AESE */ 13339 genfn3 = gen_helper_crypto_aese; 13340 break; 13341 case 0x6: /* AESMC */ 13342 genfn2 = gen_helper_crypto_aesmc; 13343 break; 13344 case 0x5: /* AESD */ 13345 genfn3 = gen_helper_crypto_aesd; 13346 break; 13347 case 0x7: /* AESIMC */ 13348 genfn2 = gen_helper_crypto_aesimc; 13349 break; 13350 default: 13351 unallocated_encoding(s); 13352 return; 13353 } 13354 13355 if (!fp_access_check(s)) { 13356 return; 13357 } 13358 if (genfn2) { 13359 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13360 } else { 13361 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13362 } 13363 } 13364 13365 /* Crypto three-reg SHA 13366 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13367 * +-----------------+------+---+------+---+--------+-----+------+------+ 13368 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13369 * +-----------------+------+---+------+---+--------+-----+------+------+ 13370 */ 13371 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13372 { 13373 int size = extract32(insn, 22, 2); 13374 int opcode = extract32(insn, 12, 3); 13375 int rm = extract32(insn, 16, 5); 13376 int rn = extract32(insn, 5, 5); 13377 int rd = extract32(insn, 0, 5); 13378 gen_helper_gvec_3 *genfn; 13379 bool feature; 13380 13381 if (size != 0) { 13382 unallocated_encoding(s); 13383 return; 13384 } 13385 13386 switch (opcode) { 13387 case 0: /* SHA1C */ 13388 genfn = gen_helper_crypto_sha1c; 13389 feature = dc_isar_feature(aa64_sha1, s); 13390 break; 13391 case 1: /* SHA1P */ 13392 genfn = gen_helper_crypto_sha1p; 13393 feature = dc_isar_feature(aa64_sha1, s); 13394 break; 13395 case 2: /* SHA1M */ 13396 genfn = gen_helper_crypto_sha1m; 13397 feature = dc_isar_feature(aa64_sha1, s); 13398 break; 13399 case 3: /* SHA1SU0 */ 13400 genfn = gen_helper_crypto_sha1su0; 13401 feature = dc_isar_feature(aa64_sha1, s); 13402 break; 13403 case 4: /* SHA256H */ 13404 genfn = gen_helper_crypto_sha256h; 13405 feature = dc_isar_feature(aa64_sha256, s); 13406 break; 13407 case 5: /* SHA256H2 */ 13408 genfn = gen_helper_crypto_sha256h2; 13409 feature = dc_isar_feature(aa64_sha256, s); 13410 break; 13411 case 6: /* SHA256SU1 */ 13412 genfn = gen_helper_crypto_sha256su1; 13413 feature = dc_isar_feature(aa64_sha256, s); 13414 break; 13415 default: 13416 unallocated_encoding(s); 13417 return; 13418 } 13419 13420 if (!feature) { 13421 unallocated_encoding(s); 13422 return; 13423 } 13424 13425 if (!fp_access_check(s)) { 13426 return; 13427 } 13428 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13429 } 13430 13431 /* Crypto two-reg SHA 13432 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13433 * +-----------------+------+-----------+--------+-----+------+------+ 13434 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13435 * +-----------------+------+-----------+--------+-----+------+------+ 13436 */ 13437 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13438 { 13439 int size = extract32(insn, 22, 2); 13440 int opcode = extract32(insn, 12, 5); 13441 int rn = extract32(insn, 5, 5); 13442 int rd = extract32(insn, 0, 5); 13443 gen_helper_gvec_2 *genfn; 13444 bool feature; 13445 13446 if (size != 0) { 13447 unallocated_encoding(s); 13448 return; 13449 } 13450 13451 switch (opcode) { 13452 case 0: /* SHA1H */ 13453 feature = dc_isar_feature(aa64_sha1, s); 13454 genfn = gen_helper_crypto_sha1h; 13455 break; 13456 case 1: /* SHA1SU1 */ 13457 feature = dc_isar_feature(aa64_sha1, s); 13458 genfn = gen_helper_crypto_sha1su1; 13459 break; 13460 case 2: /* SHA256SU0 */ 13461 feature = dc_isar_feature(aa64_sha256, s); 13462 genfn = gen_helper_crypto_sha256su0; 13463 break; 13464 default: 13465 unallocated_encoding(s); 13466 return; 13467 } 13468 13469 if (!feature) { 13470 unallocated_encoding(s); 13471 return; 13472 } 13473 13474 if (!fp_access_check(s)) { 13475 return; 13476 } 13477 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13478 } 13479 13480 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13481 { 13482 tcg_gen_rotli_i64(d, m, 1); 13483 tcg_gen_xor_i64(d, d, n); 13484 } 13485 13486 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13487 { 13488 tcg_gen_rotli_vec(vece, d, m, 1); 13489 tcg_gen_xor_vec(vece, d, d, n); 13490 } 13491 13492 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13493 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13494 { 13495 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13496 static const GVecGen3 op = { 13497 .fni8 = gen_rax1_i64, 13498 .fniv = gen_rax1_vec, 13499 .opt_opc = vecop_list, 13500 .fno = gen_helper_crypto_rax1, 13501 .vece = MO_64, 13502 }; 13503 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13504 } 13505 13506 /* Crypto three-reg SHA512 13507 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13508 * +-----------------------+------+---+---+-----+--------+------+------+ 13509 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13510 * +-----------------------+------+---+---+-----+--------+------+------+ 13511 */ 13512 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13513 { 13514 int opcode = extract32(insn, 10, 2); 13515 int o = extract32(insn, 14, 1); 13516 int rm = extract32(insn, 16, 5); 13517 int rn = extract32(insn, 5, 5); 13518 int rd = extract32(insn, 0, 5); 13519 bool feature; 13520 gen_helper_gvec_3 *oolfn = NULL; 13521 GVecGen3Fn *gvecfn = NULL; 13522 13523 if (o == 0) { 13524 switch (opcode) { 13525 case 0: /* SHA512H */ 13526 feature = dc_isar_feature(aa64_sha512, s); 13527 oolfn = gen_helper_crypto_sha512h; 13528 break; 13529 case 1: /* SHA512H2 */ 13530 feature = dc_isar_feature(aa64_sha512, s); 13531 oolfn = gen_helper_crypto_sha512h2; 13532 break; 13533 case 2: /* SHA512SU1 */ 13534 feature = dc_isar_feature(aa64_sha512, s); 13535 oolfn = gen_helper_crypto_sha512su1; 13536 break; 13537 case 3: /* RAX1 */ 13538 feature = dc_isar_feature(aa64_sha3, s); 13539 gvecfn = gen_gvec_rax1; 13540 break; 13541 default: 13542 g_assert_not_reached(); 13543 } 13544 } else { 13545 switch (opcode) { 13546 case 0: /* SM3PARTW1 */ 13547 feature = dc_isar_feature(aa64_sm3, s); 13548 oolfn = gen_helper_crypto_sm3partw1; 13549 break; 13550 case 1: /* SM3PARTW2 */ 13551 feature = dc_isar_feature(aa64_sm3, s); 13552 oolfn = gen_helper_crypto_sm3partw2; 13553 break; 13554 case 2: /* SM4EKEY */ 13555 feature = dc_isar_feature(aa64_sm4, s); 13556 oolfn = gen_helper_crypto_sm4ekey; 13557 break; 13558 default: 13559 unallocated_encoding(s); 13560 return; 13561 } 13562 } 13563 13564 if (!feature) { 13565 unallocated_encoding(s); 13566 return; 13567 } 13568 13569 if (!fp_access_check(s)) { 13570 return; 13571 } 13572 13573 if (oolfn) { 13574 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13575 } else { 13576 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13577 } 13578 } 13579 13580 /* Crypto two-reg SHA512 13581 * 31 12 11 10 9 5 4 0 13582 * +-----------------------------------------+--------+------+------+ 13583 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13584 * +-----------------------------------------+--------+------+------+ 13585 */ 13586 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13587 { 13588 int opcode = extract32(insn, 10, 2); 13589 int rn = extract32(insn, 5, 5); 13590 int rd = extract32(insn, 0, 5); 13591 bool feature; 13592 13593 switch (opcode) { 13594 case 0: /* SHA512SU0 */ 13595 feature = dc_isar_feature(aa64_sha512, s); 13596 break; 13597 case 1: /* SM4E */ 13598 feature = dc_isar_feature(aa64_sm4, s); 13599 break; 13600 default: 13601 unallocated_encoding(s); 13602 return; 13603 } 13604 13605 if (!feature) { 13606 unallocated_encoding(s); 13607 return; 13608 } 13609 13610 if (!fp_access_check(s)) { 13611 return; 13612 } 13613 13614 switch (opcode) { 13615 case 0: /* SHA512SU0 */ 13616 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13617 break; 13618 case 1: /* SM4E */ 13619 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13620 break; 13621 default: 13622 g_assert_not_reached(); 13623 } 13624 } 13625 13626 /* Crypto four-register 13627 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13628 * +-------------------+-----+------+---+------+------+------+ 13629 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13630 * +-------------------+-----+------+---+------+------+------+ 13631 */ 13632 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13633 { 13634 int op0 = extract32(insn, 21, 2); 13635 int rm = extract32(insn, 16, 5); 13636 int ra = extract32(insn, 10, 5); 13637 int rn = extract32(insn, 5, 5); 13638 int rd = extract32(insn, 0, 5); 13639 bool feature; 13640 13641 switch (op0) { 13642 case 0: /* EOR3 */ 13643 case 1: /* BCAX */ 13644 feature = dc_isar_feature(aa64_sha3, s); 13645 break; 13646 case 2: /* SM3SS1 */ 13647 feature = dc_isar_feature(aa64_sm3, s); 13648 break; 13649 default: 13650 unallocated_encoding(s); 13651 return; 13652 } 13653 13654 if (!feature) { 13655 unallocated_encoding(s); 13656 return; 13657 } 13658 13659 if (!fp_access_check(s)) { 13660 return; 13661 } 13662 13663 if (op0 < 2) { 13664 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13665 int pass; 13666 13667 tcg_op1 = tcg_temp_new_i64(); 13668 tcg_op2 = tcg_temp_new_i64(); 13669 tcg_op3 = tcg_temp_new_i64(); 13670 tcg_res[0] = tcg_temp_new_i64(); 13671 tcg_res[1] = tcg_temp_new_i64(); 13672 13673 for (pass = 0; pass < 2; pass++) { 13674 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13675 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13676 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13677 13678 if (op0 == 0) { 13679 /* EOR3 */ 13680 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13681 } else { 13682 /* BCAX */ 13683 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13684 } 13685 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13686 } 13687 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13688 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13689 } else { 13690 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13691 13692 tcg_op1 = tcg_temp_new_i32(); 13693 tcg_op2 = tcg_temp_new_i32(); 13694 tcg_op3 = tcg_temp_new_i32(); 13695 tcg_res = tcg_temp_new_i32(); 13696 tcg_zero = tcg_constant_i32(0); 13697 13698 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13699 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13700 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13701 13702 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13703 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13704 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13705 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13706 13707 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13708 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13709 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13710 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13711 } 13712 } 13713 13714 /* Crypto XAR 13715 * 31 21 20 16 15 10 9 5 4 0 13716 * +-----------------------+------+--------+------+------+ 13717 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13718 * +-----------------------+------+--------+------+------+ 13719 */ 13720 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13721 { 13722 int rm = extract32(insn, 16, 5); 13723 int imm6 = extract32(insn, 10, 6); 13724 int rn = extract32(insn, 5, 5); 13725 int rd = extract32(insn, 0, 5); 13726 13727 if (!dc_isar_feature(aa64_sha3, s)) { 13728 unallocated_encoding(s); 13729 return; 13730 } 13731 13732 if (!fp_access_check(s)) { 13733 return; 13734 } 13735 13736 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13737 vec_full_reg_offset(s, rn), 13738 vec_full_reg_offset(s, rm), imm6, 16, 13739 vec_full_reg_size(s)); 13740 } 13741 13742 /* Crypto three-reg imm2 13743 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13744 * +-----------------------+------+-----+------+--------+------+------+ 13745 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13746 * +-----------------------+------+-----+------+--------+------+------+ 13747 */ 13748 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13749 { 13750 static gen_helper_gvec_3 * const fns[4] = { 13751 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13752 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13753 }; 13754 int opcode = extract32(insn, 10, 2); 13755 int imm2 = extract32(insn, 12, 2); 13756 int rm = extract32(insn, 16, 5); 13757 int rn = extract32(insn, 5, 5); 13758 int rd = extract32(insn, 0, 5); 13759 13760 if (!dc_isar_feature(aa64_sm3, s)) { 13761 unallocated_encoding(s); 13762 return; 13763 } 13764 13765 if (!fp_access_check(s)) { 13766 return; 13767 } 13768 13769 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13770 } 13771 13772 /* C3.6 Data processing - SIMD, inc Crypto 13773 * 13774 * As the decode gets a little complex we are using a table based 13775 * approach for this part of the decode. 13776 */ 13777 static const AArch64DecodeTable data_proc_simd[] = { 13778 /* pattern , mask , fn */ 13779 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13780 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13781 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13782 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13783 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13784 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13785 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13786 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13787 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13788 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13789 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13790 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13791 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13792 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13793 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13794 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13795 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13796 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13797 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13798 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13799 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13800 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13801 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13802 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13803 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13804 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13805 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13806 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13807 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13808 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13809 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13810 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13811 { 0x00000000, 0x00000000, NULL } 13812 }; 13813 13814 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13815 { 13816 /* Note that this is called with all non-FP cases from 13817 * table C3-6 so it must UNDEF for entries not specifically 13818 * allocated to instructions in that table. 13819 */ 13820 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13821 if (fn) { 13822 fn(s, insn); 13823 } else { 13824 unallocated_encoding(s); 13825 } 13826 } 13827 13828 /* C3.6 Data processing - SIMD and floating point */ 13829 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13830 { 13831 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13832 disas_data_proc_fp(s, insn); 13833 } else { 13834 /* SIMD, including crypto */ 13835 disas_data_proc_simd(s, insn); 13836 } 13837 } 13838 13839 static bool trans_OK(DisasContext *s, arg_OK *a) 13840 { 13841 return true; 13842 } 13843 13844 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13845 { 13846 s->is_nonstreaming = true; 13847 return true; 13848 } 13849 13850 /** 13851 * is_guarded_page: 13852 * @env: The cpu environment 13853 * @s: The DisasContext 13854 * 13855 * Return true if the page is guarded. 13856 */ 13857 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13858 { 13859 uint64_t addr = s->base.pc_first; 13860 #ifdef CONFIG_USER_ONLY 13861 return page_get_flags(addr) & PAGE_BTI; 13862 #else 13863 CPUTLBEntryFull *full; 13864 void *host; 13865 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13866 int flags; 13867 13868 /* 13869 * We test this immediately after reading an insn, which means 13870 * that the TLB entry must be present and valid, and thus this 13871 * access will never raise an exception. 13872 */ 13873 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13874 false, &host, &full, 0); 13875 assert(!(flags & TLB_INVALID_MASK)); 13876 13877 return full->extra.arm.guarded; 13878 #endif 13879 } 13880 13881 /** 13882 * btype_destination_ok: 13883 * @insn: The instruction at the branch destination 13884 * @bt: SCTLR_ELx.BT 13885 * @btype: PSTATE.BTYPE, and is non-zero 13886 * 13887 * On a guarded page, there are a limited number of insns 13888 * that may be present at the branch target: 13889 * - branch target identifiers, 13890 * - paciasp, pacibsp, 13891 * - BRK insn 13892 * - HLT insn 13893 * Anything else causes a Branch Target Exception. 13894 * 13895 * Return true if the branch is compatible, false to raise BTITRAP. 13896 */ 13897 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13898 { 13899 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13900 /* HINT space */ 13901 switch (extract32(insn, 5, 7)) { 13902 case 0b011001: /* PACIASP */ 13903 case 0b011011: /* PACIBSP */ 13904 /* 13905 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13906 * with btype == 3. Otherwise all btype are ok. 13907 */ 13908 return !bt || btype != 3; 13909 case 0b100000: /* BTI */ 13910 /* Not compatible with any btype. */ 13911 return false; 13912 case 0b100010: /* BTI c */ 13913 /* Not compatible with btype == 3 */ 13914 return btype != 3; 13915 case 0b100100: /* BTI j */ 13916 /* Not compatible with btype == 2 */ 13917 return btype != 2; 13918 case 0b100110: /* BTI jc */ 13919 /* Compatible with any btype. */ 13920 return true; 13921 } 13922 } else { 13923 switch (insn & 0xffe0001fu) { 13924 case 0xd4200000u: /* BRK */ 13925 case 0xd4400000u: /* HLT */ 13926 /* Give priority to the breakpoint exception. */ 13927 return true; 13928 } 13929 } 13930 return false; 13931 } 13932 13933 /* C3.1 A64 instruction index by encoding */ 13934 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13935 { 13936 switch (extract32(insn, 25, 4)) { 13937 case 0x5: 13938 case 0xd: /* Data processing - register */ 13939 disas_data_proc_reg(s, insn); 13940 break; 13941 case 0x7: 13942 case 0xf: /* Data processing - SIMD and floating point */ 13943 disas_data_proc_simd_fp(s, insn); 13944 break; 13945 default: 13946 unallocated_encoding(s); 13947 break; 13948 } 13949 } 13950 13951 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13952 CPUState *cpu) 13953 { 13954 DisasContext *dc = container_of(dcbase, DisasContext, base); 13955 CPUARMState *env = cpu_env(cpu); 13956 ARMCPU *arm_cpu = env_archcpu(env); 13957 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13958 int bound, core_mmu_idx; 13959 13960 dc->isar = &arm_cpu->isar; 13961 dc->condjmp = 0; 13962 dc->pc_save = dc->base.pc_first; 13963 dc->aarch64 = true; 13964 dc->thumb = false; 13965 dc->sctlr_b = 0; 13966 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13967 dc->condexec_mask = 0; 13968 dc->condexec_cond = 0; 13969 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13970 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13971 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13972 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13973 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13974 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13975 #if !defined(CONFIG_USER_ONLY) 13976 dc->user = (dc->current_el == 0); 13977 #endif 13978 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13979 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13980 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13981 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13982 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13983 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 13984 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13985 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13986 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13987 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13988 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13989 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13990 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13991 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13992 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13993 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13994 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13995 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13996 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13997 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13998 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13999 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14000 dc->vec_len = 0; 14001 dc->vec_stride = 0; 14002 dc->cp_regs = arm_cpu->cp_regs; 14003 dc->features = env->features; 14004 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14005 dc->gm_blocksize = arm_cpu->gm_blocksize; 14006 14007 #ifdef CONFIG_USER_ONLY 14008 /* In sve_probe_page, we assume TBI is enabled. */ 14009 tcg_debug_assert(dc->tbid & 1); 14010 #endif 14011 14012 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14013 14014 /* Single step state. The code-generation logic here is: 14015 * SS_ACTIVE == 0: 14016 * generate code with no special handling for single-stepping (except 14017 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14018 * this happens anyway because those changes are all system register or 14019 * PSTATE writes). 14020 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14021 * emit code for one insn 14022 * emit code to clear PSTATE.SS 14023 * emit code to generate software step exception for completed step 14024 * end TB (as usual for having generated an exception) 14025 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14026 * emit code to generate a software step exception 14027 * end the TB 14028 */ 14029 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14030 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14031 dc->is_ldex = false; 14032 14033 /* Bound the number of insns to execute to those left on the page. */ 14034 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14035 14036 /* If architectural single step active, limit to 1. */ 14037 if (dc->ss_active) { 14038 bound = 1; 14039 } 14040 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14041 } 14042 14043 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14044 { 14045 } 14046 14047 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14048 { 14049 DisasContext *dc = container_of(dcbase, DisasContext, base); 14050 target_ulong pc_arg = dc->base.pc_next; 14051 14052 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14053 pc_arg &= ~TARGET_PAGE_MASK; 14054 } 14055 tcg_gen_insn_start(pc_arg, 0, 0); 14056 dc->insn_start = tcg_last_op(); 14057 } 14058 14059 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14060 { 14061 DisasContext *s = container_of(dcbase, DisasContext, base); 14062 CPUARMState *env = cpu_env(cpu); 14063 uint64_t pc = s->base.pc_next; 14064 uint32_t insn; 14065 14066 /* Singlestep exceptions have the highest priority. */ 14067 if (s->ss_active && !s->pstate_ss) { 14068 /* Singlestep state is Active-pending. 14069 * If we're in this state at the start of a TB then either 14070 * a) we just took an exception to an EL which is being debugged 14071 * and this is the first insn in the exception handler 14072 * b) debug exceptions were masked and we just unmasked them 14073 * without changing EL (eg by clearing PSTATE.D) 14074 * In either case we're going to take a swstep exception in the 14075 * "did not step an insn" case, and so the syndrome ISV and EX 14076 * bits should be zero. 14077 */ 14078 assert(s->base.num_insns == 1); 14079 gen_swstep_exception(s, 0, 0); 14080 s->base.is_jmp = DISAS_NORETURN; 14081 s->base.pc_next = pc + 4; 14082 return; 14083 } 14084 14085 if (pc & 3) { 14086 /* 14087 * PC alignment fault. This has priority over the instruction abort 14088 * that we would receive from a translation fault via arm_ldl_code. 14089 * This should only be possible after an indirect branch, at the 14090 * start of the TB. 14091 */ 14092 assert(s->base.num_insns == 1); 14093 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 14094 s->base.is_jmp = DISAS_NORETURN; 14095 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14096 return; 14097 } 14098 14099 s->pc_curr = pc; 14100 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14101 s->insn = insn; 14102 s->base.pc_next = pc + 4; 14103 14104 s->fp_access_checked = false; 14105 s->sve_access_checked = false; 14106 14107 if (s->pstate_il) { 14108 /* 14109 * Illegal execution state. This has priority over BTI 14110 * exceptions, but comes after instruction abort exceptions. 14111 */ 14112 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14113 return; 14114 } 14115 14116 if (dc_isar_feature(aa64_bti, s)) { 14117 if (s->base.num_insns == 1) { 14118 /* 14119 * At the first insn of the TB, compute s->guarded_page. 14120 * We delayed computing this until successfully reading 14121 * the first insn of the TB, above. This (mostly) ensures 14122 * that the softmmu tlb entry has been populated, and the 14123 * page table GP bit is available. 14124 * 14125 * Note that we need to compute this even if btype == 0, 14126 * because this value is used for BR instructions later 14127 * where ENV is not available. 14128 */ 14129 s->guarded_page = is_guarded_page(env, s); 14130 14131 /* First insn can have btype set to non-zero. */ 14132 tcg_debug_assert(s->btype >= 0); 14133 14134 /* 14135 * Note that the Branch Target Exception has fairly high 14136 * priority -- below debugging exceptions but above most 14137 * everything else. This allows us to handle this now 14138 * instead of waiting until the insn is otherwise decoded. 14139 */ 14140 if (s->btype != 0 14141 && s->guarded_page 14142 && !btype_destination_ok(insn, s->bt, s->btype)) { 14143 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14144 return; 14145 } 14146 } else { 14147 /* Not the first insn: btype must be 0. */ 14148 tcg_debug_assert(s->btype == 0); 14149 } 14150 } 14151 14152 s->is_nonstreaming = false; 14153 if (s->sme_trap_nonstreaming) { 14154 disas_sme_fa64(s, insn); 14155 } 14156 14157 if (!disas_a64(s, insn) && 14158 !disas_sme(s, insn) && 14159 !disas_sve(s, insn)) { 14160 disas_a64_legacy(s, insn); 14161 } 14162 14163 /* 14164 * After execution of most insns, btype is reset to 0. 14165 * Note that we set btype == -1 when the insn sets btype. 14166 */ 14167 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14168 reset_btype(s); 14169 } 14170 } 14171 14172 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14173 { 14174 DisasContext *dc = container_of(dcbase, DisasContext, base); 14175 14176 if (unlikely(dc->ss_active)) { 14177 /* Note that this means single stepping WFI doesn't halt the CPU. 14178 * For conditional branch insns this is harmless unreachable code as 14179 * gen_goto_tb() has already handled emitting the debug exception 14180 * (and thus a tb-jump is not possible when singlestepping). 14181 */ 14182 switch (dc->base.is_jmp) { 14183 default: 14184 gen_a64_update_pc(dc, 4); 14185 /* fall through */ 14186 case DISAS_EXIT: 14187 case DISAS_JUMP: 14188 gen_step_complete_exception(dc); 14189 break; 14190 case DISAS_NORETURN: 14191 break; 14192 } 14193 } else { 14194 switch (dc->base.is_jmp) { 14195 case DISAS_NEXT: 14196 case DISAS_TOO_MANY: 14197 gen_goto_tb(dc, 1, 4); 14198 break; 14199 default: 14200 case DISAS_UPDATE_EXIT: 14201 gen_a64_update_pc(dc, 4); 14202 /* fall through */ 14203 case DISAS_EXIT: 14204 tcg_gen_exit_tb(NULL, 0); 14205 break; 14206 case DISAS_UPDATE_NOCHAIN: 14207 gen_a64_update_pc(dc, 4); 14208 /* fall through */ 14209 case DISAS_JUMP: 14210 tcg_gen_lookup_and_goto_ptr(); 14211 break; 14212 case DISAS_NORETURN: 14213 case DISAS_SWI: 14214 break; 14215 case DISAS_WFE: 14216 gen_a64_update_pc(dc, 4); 14217 gen_helper_wfe(tcg_env); 14218 break; 14219 case DISAS_YIELD: 14220 gen_a64_update_pc(dc, 4); 14221 gen_helper_yield(tcg_env); 14222 break; 14223 case DISAS_WFI: 14224 /* 14225 * This is a special case because we don't want to just halt 14226 * the CPU if trying to debug across a WFI. 14227 */ 14228 gen_a64_update_pc(dc, 4); 14229 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14230 /* 14231 * The helper doesn't necessarily throw an exception, but we 14232 * must go back to the main loop to check for interrupts anyway. 14233 */ 14234 tcg_gen_exit_tb(NULL, 0); 14235 break; 14236 } 14237 } 14238 } 14239 14240 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14241 CPUState *cpu, FILE *logfile) 14242 { 14243 DisasContext *dc = container_of(dcbase, DisasContext, base); 14244 14245 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14246 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14247 } 14248 14249 const TranslatorOps aarch64_translator_ops = { 14250 .init_disas_context = aarch64_tr_init_disas_context, 14251 .tb_start = aarch64_tr_tb_start, 14252 .insn_start = aarch64_tr_insn_start, 14253 .translate_insn = aarch64_tr_translate_insn, 14254 .tb_stop = aarch64_tr_tb_stop, 14255 .disas_log = aarch64_tr_disas_log, 14256 }; 14257