xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 9676c9d9)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand + fpstatus pointer + simd data value operation using
740  * an out-of-line helper.
741  */
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743                               int rm, int ra, bool is_fp16, int data,
744                               gen_helper_gvec_4_ptr *fn)
745 {
746     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748                        vec_full_reg_offset(s, rn),
749                        vec_full_reg_offset(s, rm),
750                        vec_full_reg_offset(s, ra), fpst,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755  * than the 32 bit equivalent.
756  */
757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762 
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766     if (sf) {
767         gen_set_NZ64(result);
768     } else {
769         tcg_gen_extrl_i64_i32(cpu_ZF, result);
770         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771     }
772     tcg_gen_movi_i32(cpu_CF, 0);
773     tcg_gen_movi_i32(cpu_VF, 0);
774 }
775 
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779     TCGv_i64 result, flag, tmp;
780     result = tcg_temp_new_i64();
781     flag = tcg_temp_new_i64();
782     tmp = tcg_temp_new_i64();
783 
784     tcg_gen_movi_i64(tmp, 0);
785     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 
787     tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 
789     gen_set_NZ64(result);
790 
791     tcg_gen_xor_i64(flag, result, t0);
792     tcg_gen_xor_i64(tmp, t0, t1);
793     tcg_gen_andc_i64(flag, flag, tmp);
794     tcg_gen_extrh_i64_i32(cpu_VF, flag);
795 
796     tcg_gen_mov_i64(dest, result);
797 }
798 
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     TCGv_i32 t0_32 = tcg_temp_new_i32();
802     TCGv_i32 t1_32 = tcg_temp_new_i32();
803     TCGv_i32 tmp = tcg_temp_new_i32();
804 
805     tcg_gen_movi_i32(tmp, 0);
806     tcg_gen_extrl_i64_i32(t0_32, t0);
807     tcg_gen_extrl_i64_i32(t1_32, t1);
808     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811     tcg_gen_xor_i32(tmp, t0_32, t1_32);
812     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813     tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815 
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818     if (sf) {
819         gen_add64_CC(dest, t0, t1);
820     } else {
821         gen_add32_CC(dest, t0, t1);
822     }
823 }
824 
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828     /* 64 bit arithmetic */
829     TCGv_i64 result, flag, tmp;
830 
831     result = tcg_temp_new_i64();
832     flag = tcg_temp_new_i64();
833     tcg_gen_sub_i64(result, t0, t1);
834 
835     gen_set_NZ64(result);
836 
837     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838     tcg_gen_extrl_i64_i32(cpu_CF, flag);
839 
840     tcg_gen_xor_i64(flag, result, t0);
841     tmp = tcg_temp_new_i64();
842     tcg_gen_xor_i64(tmp, t0, t1);
843     tcg_gen_and_i64(flag, flag, tmp);
844     tcg_gen_extrh_i64_i32(cpu_VF, flag);
845     tcg_gen_mov_i64(dest, result);
846 }
847 
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850     /* 32 bit arithmetic */
851     TCGv_i32 t0_32 = tcg_temp_new_i32();
852     TCGv_i32 t1_32 = tcg_temp_new_i32();
853     TCGv_i32 tmp;
854 
855     tcg_gen_extrl_i64_i32(t0_32, t0);
856     tcg_gen_extrl_i64_i32(t1_32, t1);
857     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861     tmp = tcg_temp_new_i32();
862     tcg_gen_xor_i32(tmp, t0_32, t1_32);
863     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864     tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866 
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869     if (sf) {
870         gen_sub64_CC(dest, t0, t1);
871     } else {
872         gen_sub32_CC(dest, t0, t1);
873     }
874 }
875 
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879     TCGv_i64 flag = tcg_temp_new_i64();
880     tcg_gen_extu_i32_i64(flag, cpu_CF);
881     tcg_gen_add_i64(dest, t0, t1);
882     tcg_gen_add_i64(dest, dest, flag);
883 
884     if (!sf) {
885         tcg_gen_ext32u_i64(dest, dest);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     if (sf) {
893         TCGv_i64 result = tcg_temp_new_i64();
894         TCGv_i64 cf_64 = tcg_temp_new_i64();
895         TCGv_i64 vf_64 = tcg_temp_new_i64();
896         TCGv_i64 tmp = tcg_temp_new_i64();
897         TCGv_i64 zero = tcg_constant_i64(0);
898 
899         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903         gen_set_NZ64(result);
904 
905         tcg_gen_xor_i64(vf_64, result, t0);
906         tcg_gen_xor_i64(tmp, t0, t1);
907         tcg_gen_andc_i64(vf_64, vf_64, tmp);
908         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909 
910         tcg_gen_mov_i64(dest, result);
911     } else {
912         TCGv_i32 t0_32 = tcg_temp_new_i32();
913         TCGv_i32 t1_32 = tcg_temp_new_i32();
914         TCGv_i32 tmp = tcg_temp_new_i32();
915         TCGv_i32 zero = tcg_constant_i32(0);
916 
917         tcg_gen_extrl_i64_i32(t0_32, t0);
918         tcg_gen_extrl_i64_i32(t1_32, t1);
919         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921 
922         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924         tcg_gen_xor_i32(tmp, t0_32, t1_32);
925         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926         tcg_gen_extu_i32_i64(dest, cpu_NF);
927     }
928 }
929 
930 /*
931  * Load/Store generators
932  */
933 
934 /*
935  * Store from GPR register to memory.
936  */
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
939                              bool iss_valid,
940                              unsigned int iss_srt,
941                              bool iss_sf, bool iss_ar)
942 {
943     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944 
945     if (iss_valid) {
946         uint32_t syn;
947 
948         syn = syn_data_abort_with_iss(0,
949                                       (memop & MO_SIZE),
950                                       false,
951                                       iss_srt,
952                                       iss_sf,
953                                       iss_ar,
954                                       0, 0, 0, 0, 0, false);
955         disas_set_insn_syndrome(s, syn);
956     }
957 }
958 
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960                       TCGv_i64 tcg_addr, MemOp memop,
961                       bool iss_valid,
962                       unsigned int iss_srt,
963                       bool iss_sf, bool iss_ar)
964 {
965     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966                      iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968 
969 /*
970  * Load from memory to GPR register
971  */
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973                              MemOp memop, bool extend, int memidx,
974                              bool iss_valid, unsigned int iss_srt,
975                              bool iss_sf, bool iss_ar)
976 {
977     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978 
979     if (extend && (memop & MO_SIGN)) {
980         g_assert((memop & MO_SIZE) <= MO_32);
981         tcg_gen_ext32u_i64(dest, dest);
982     }
983 
984     if (iss_valid) {
985         uint32_t syn;
986 
987         syn = syn_data_abort_with_iss(0,
988                                       (memop & MO_SIZE),
989                                       (memop & MO_SIGN) != 0,
990                                       iss_srt,
991                                       iss_sf,
992                                       iss_ar,
993                                       0, 0, 0, 0, 0, false);
994         disas_set_insn_syndrome(s, syn);
995     }
996 }
997 
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999                       MemOp memop, bool extend,
1000                       bool iss_valid, unsigned int iss_srt,
1001                       bool iss_sf, bool iss_ar)
1002 {
1003     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004                      iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006 
1007 /*
1008  * Store from FP register to memory
1009  */
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013     TCGv_i64 tmplo = tcg_temp_new_i64();
1014 
1015     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016 
1017     if ((mop & MO_SIZE) < MO_128) {
1018         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019     } else {
1020         TCGv_i64 tmphi = tcg_temp_new_i64();
1021         TCGv_i128 t16 = tcg_temp_new_i128();
1022 
1023         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025 
1026         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027     }
1028 }
1029 
1030 /*
1031  * Load from memory to FP register
1032  */
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035     /* This always zero-extends and writes to a full 128 bit wide vector */
1036     TCGv_i64 tmplo = tcg_temp_new_i64();
1037     TCGv_i64 tmphi = NULL;
1038 
1039     if ((mop & MO_SIZE) < MO_128) {
1040         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041     } else {
1042         TCGv_i128 t16 = tcg_temp_new_i128();
1043 
1044         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045 
1046         tmphi = tcg_temp_new_i64();
1047         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048     }
1049 
1050     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051 
1052     if (tmphi) {
1053         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054     }
1055     clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057 
1058 /*
1059  * Vector load/store helpers.
1060  *
1061  * The principal difference between this and a FP load is that we don't
1062  * zero extend as we are filling a partial chunk of the vector register.
1063  * These functions don't support 128 bit loads/stores, which would be
1064  * normal load/store operations.
1065  *
1066  * The _i32 versions are useful when operating on 32 bit quantities
1067  * (eg for floating point single or using Neon helper functions).
1068  */
1069 
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072                              int element, MemOp memop)
1073 {
1074     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075     switch ((unsigned)memop) {
1076     case MO_8:
1077         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078         break;
1079     case MO_16:
1080         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081         break;
1082     case MO_32:
1083         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084         break;
1085     case MO_8|MO_SIGN:
1086         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087         break;
1088     case MO_16|MO_SIGN:
1089         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090         break;
1091     case MO_32|MO_SIGN:
1092         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093         break;
1094     case MO_64:
1095     case MO_64|MO_SIGN:
1096         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104                                  int element, MemOp memop)
1105 {
1106     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107     switch (memop) {
1108     case MO_8:
1109         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110         break;
1111     case MO_16:
1112         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113         break;
1114     case MO_8|MO_SIGN:
1115         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116         break;
1117     case MO_16|MO_SIGN:
1118         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119         break;
1120     case MO_32:
1121     case MO_32|MO_SIGN:
1122         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127 }
1128 
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131                               int element, MemOp memop)
1132 {
1133     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134     switch (memop) {
1135     case MO_8:
1136         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137         break;
1138     case MO_16:
1139         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140         break;
1141     case MO_32:
1142         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143         break;
1144     case MO_64:
1145         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146         break;
1147     default:
1148         g_assert_not_reached();
1149     }
1150 }
1151 
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153                                   int destidx, int element, MemOp memop)
1154 {
1155     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156     switch (memop) {
1157     case MO_8:
1158         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_16:
1161         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162         break;
1163     case MO_32:
1164         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169 }
1170 
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173                       TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176 
1177     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180 
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183                       TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186 
1187     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190 
1191 /* Check that FP/Neon access is enabled. If it is, return
1192  * true. If not, emit code to generate an appropriate exception,
1193  * and return false; the caller should not emit any code for
1194  * the instruction. Note that this check must happen after all
1195  * unallocated-encoding checks (otherwise the syndrome information
1196  * for the resulting exception will be incorrect).
1197  */
1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200     if (s->fp_excp_el) {
1201         assert(!s->fp_access_checked);
1202         s->fp_access_checked = true;
1203 
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_fp_access_trap(1, 0xe, false, 0),
1206                               s->fp_excp_el);
1207         return false;
1208     }
1209     s->fp_access_checked = true;
1210     return true;
1211 }
1212 
1213 static bool fp_access_check(DisasContext *s)
1214 {
1215     if (!fp_access_check_only(s)) {
1216         return false;
1217     }
1218     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219         gen_exception_insn(s, 0, EXCP_UDEF,
1220                            syn_smetrap(SME_ET_Streaming, false));
1221         return false;
1222     }
1223     return true;
1224 }
1225 
1226 /*
1227  * Check that SVE access is enabled.  If it is, return true.
1228  * If not, emit code to generate an appropriate exception and return false.
1229  * This function corresponds to CheckSVEEnabled().
1230  */
1231 bool sve_access_check(DisasContext *s)
1232 {
1233     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234         assert(dc_isar_feature(aa64_sme, s));
1235         if (!sme_sm_enabled_check(s)) {
1236             goto fail_exit;
1237         }
1238     } else if (s->sve_excp_el) {
1239         gen_exception_insn_el(s, 0, EXCP_UDEF,
1240                               syn_sve_access_trap(), s->sve_excp_el);
1241         goto fail_exit;
1242     }
1243     s->sve_access_checked = true;
1244     return fp_access_check(s);
1245 
1246  fail_exit:
1247     /* Assert that we only raise one exception per instruction. */
1248     assert(!s->sve_access_checked);
1249     s->sve_access_checked = true;
1250     return false;
1251 }
1252 
1253 /*
1254  * Check that SME access is enabled, raise an exception if not.
1255  * Note that this function corresponds to CheckSMEAccess and is
1256  * only used directly for cpregs.
1257  */
1258 static bool sme_access_check(DisasContext *s)
1259 {
1260     if (s->sme_excp_el) {
1261         gen_exception_insn_el(s, 0, EXCP_UDEF,
1262                               syn_smetrap(SME_ET_AccessTrap, false),
1263                               s->sme_excp_el);
1264         return false;
1265     }
1266     return true;
1267 }
1268 
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272     /*
1273      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274      * to be zero when fp_excp_el has priority.  This is because we need
1275      * sme_excp_el by itself for cpregs access checks.
1276      */
1277     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278         s->fp_access_checked = true;
1279         return sme_access_check(s);
1280     }
1281     return fp_access_check_only(s);
1282 }
1283 
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287     if (!sme_enabled_check(s)) {
1288         return false;
1289     }
1290     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291         gen_exception_insn(s, 0, EXCP_UDEF,
1292                            syn_smetrap(SME_ET_NotStreaming, false));
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_InactiveZA, false));
1298         return false;
1299     }
1300     return true;
1301 }
1302 
1303 /*
1304  * Expanders for AdvSIMD translation functions.
1305  */
1306 
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308                             gen_helper_gvec_2 *fn)
1309 {
1310     if (!a->q && a->esz == MO_64) {
1311         return false;
1312     }
1313     if (fp_access_check(s)) {
1314         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315     }
1316     return true;
1317 }
1318 
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320                             gen_helper_gvec_3 *fn)
1321 {
1322     if (!a->q && a->esz == MO_64) {
1323         return false;
1324     }
1325     if (fp_access_check(s)) {
1326         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327     }
1328     return true;
1329 }
1330 
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333     if (!a->q && a->esz == MO_64) {
1334         return false;
1335     }
1336     if (fp_access_check(s)) {
1337         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338     }
1339     return true;
1340 }
1341 
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344     if (a->esz == MO_64) {
1345         return false;
1346     }
1347     if (fp_access_check(s)) {
1348         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349     }
1350     return true;
1351 }
1352 
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355     if (a->esz == MO_8) {
1356         return false;
1357     }
1358     return do_gvec_fn3_no64(s, a, fn);
1359 }
1360 
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363     if (!a->q && a->esz == MO_64) {
1364         return false;
1365     }
1366     if (fp_access_check(s)) {
1367         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368     }
1369     return true;
1370 }
1371 
1372 /*
1373  * This utility function is for doing register extension with an
1374  * optional shift. You will likely want to pass a temporary for the
1375  * destination register. See DecodeRegExtend() in the ARM ARM.
1376  */
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378                               int option, unsigned int shift)
1379 {
1380     int extsize = extract32(option, 0, 2);
1381     bool is_signed = extract32(option, 2, 1);
1382 
1383     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386 
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389     /* The AArch64 architecture mandates that (if enabled via PSTATE
1390      * or SCTLR bits) there is a check that SP is 16-aligned on every
1391      * SP-relative load or store (with an exception generated if it is not).
1392      * In line with general QEMU practice regarding misaligned accesses,
1393      * we omit these checks for the sake of guest program performance.
1394      * This function is provided as a hook so we can more easily add these
1395      * checks in future (possibly as a "favour catching guest program bugs
1396      * over speed" user selectable option).
1397      */
1398 }
1399 
1400 /*
1401  * This provides a simple table based table lookup decoder. It is
1402  * intended to be used when the relevant bits for decode are too
1403  * awkwardly placed and switch/if based logic would be confusing and
1404  * deeply nested. Since it's a linear search through the table, tables
1405  * should be kept small.
1406  *
1407  * It returns the first handler where insn & mask == pattern, or
1408  * NULL if there is no match.
1409  * The table is terminated by an empty mask (i.e. 0)
1410  */
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412                                                uint32_t insn)
1413 {
1414     const AArch64DecodeTable *tptr = table;
1415 
1416     while (tptr->mask) {
1417         if ((insn & tptr->mask) == tptr->pattern) {
1418             return tptr->disas_fn;
1419         }
1420         tptr++;
1421     }
1422     return NULL;
1423 }
1424 
1425 /*
1426  * The instruction disassembly implemented here matches
1427  * the instruction encoding classifications in chapter C4
1428  * of the ARM Architecture Reference Manual (DDI0487B_a);
1429  * classification names and decode diagrams here should generally
1430  * match up with those in the manual.
1431  */
1432 
1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435     reset_btype(s);
1436     gen_goto_tb(s, 0, a->imm);
1437     return true;
1438 }
1439 
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443     reset_btype(s);
1444     gen_goto_tb(s, 0, a->imm);
1445     return true;
1446 }
1447 
1448 
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451     DisasLabel match;
1452     TCGv_i64 tcg_cmp;
1453 
1454     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455     reset_btype(s);
1456 
1457     match = gen_disas_label(s);
1458     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459                         tcg_cmp, 0, match.label);
1460     gen_goto_tb(s, 0, 4);
1461     set_disas_label(s, match);
1462     gen_goto_tb(s, 1, a->imm);
1463     return true;
1464 }
1465 
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = tcg_temp_new_i64();
1472     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473 
1474     reset_btype(s);
1475 
1476     match = gen_disas_label(s);
1477     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478                         tcg_cmp, 0, match.label);
1479     gen_goto_tb(s, 0, 4);
1480     set_disas_label(s, match);
1481     gen_goto_tb(s, 1, a->imm);
1482     return true;
1483 }
1484 
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487     /* BC.cond is only present with FEAT_HBC */
1488     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489         return false;
1490     }
1491     reset_btype(s);
1492     if (a->cond < 0x0e) {
1493         /* genuinely conditional branches */
1494         DisasLabel match = gen_disas_label(s);
1495         arm_gen_test_cc(a->cond, match.label);
1496         gen_goto_tb(s, 0, 4);
1497         set_disas_label(s, match);
1498         gen_goto_tb(s, 1, a->imm);
1499     } else {
1500         /* 0xe and 0xf are both "always" conditions */
1501         gen_goto_tb(s, 0, a->imm);
1502     }
1503     return true;
1504 }
1505 
1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508     if (dc_isar_feature(aa64_bti, s)) {
1509         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1510         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1511     }
1512 }
1513 
1514 static void set_btype_for_blr(DisasContext *s)
1515 {
1516     if (dc_isar_feature(aa64_bti, s)) {
1517         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1518         set_btype(s, 2);
1519     }
1520 }
1521 
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1523 {
1524     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525     set_btype_for_br(s, a->rn);
1526     s->base.is_jmp = DISAS_JUMP;
1527     return true;
1528 }
1529 
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1531 {
1532     TCGv_i64 dst = cpu_reg(s, a->rn);
1533     TCGv_i64 lr = cpu_reg(s, 30);
1534     if (dst == lr) {
1535         TCGv_i64 tmp = tcg_temp_new_i64();
1536         tcg_gen_mov_i64(tmp, dst);
1537         dst = tmp;
1538     }
1539     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540     gen_a64_set_pc(s, dst);
1541     set_btype_for_blr(s);
1542     s->base.is_jmp = DISAS_JUMP;
1543     return true;
1544 }
1545 
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1547 {
1548     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549     s->base.is_jmp = DISAS_JUMP;
1550     return true;
1551 }
1552 
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554                                    TCGv_i64 modifier, bool use_key_a)
1555 {
1556     TCGv_i64 truedst;
1557     /*
1558      * Return the branch target for a BRAA/RETA/etc, which is either
1559      * just the destination dst, or that value with the pauth check
1560      * done and the code removed from the high bits.
1561      */
1562     if (!s->pauth_active) {
1563         return dst;
1564     }
1565 
1566     truedst = tcg_temp_new_i64();
1567     if (use_key_a) {
1568         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569     } else {
1570         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1571     }
1572     return truedst;
1573 }
1574 
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1576 {
1577     TCGv_i64 dst;
1578 
1579     if (!dc_isar_feature(aa64_pauth, s)) {
1580         return false;
1581     }
1582 
1583     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584     gen_a64_set_pc(s, dst);
1585     set_btype_for_br(s, a->rn);
1586     s->base.is_jmp = DISAS_JUMP;
1587     return true;
1588 }
1589 
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1591 {
1592     TCGv_i64 dst, lr;
1593 
1594     if (!dc_isar_feature(aa64_pauth, s)) {
1595         return false;
1596     }
1597 
1598     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599     lr = cpu_reg(s, 30);
1600     if (dst == lr) {
1601         TCGv_i64 tmp = tcg_temp_new_i64();
1602         tcg_gen_mov_i64(tmp, dst);
1603         dst = tmp;
1604     }
1605     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606     gen_a64_set_pc(s, dst);
1607     set_btype_for_blr(s);
1608     s->base.is_jmp = DISAS_JUMP;
1609     return true;
1610 }
1611 
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1613 {
1614     TCGv_i64 dst;
1615 
1616     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617     gen_a64_set_pc(s, dst);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (!dc_isar_feature(aa64_pauth, s)) {
1627         return false;
1628     }
1629     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_br(s, a->rn);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1637 {
1638     TCGv_i64 dst, lr;
1639 
1640     if (!dc_isar_feature(aa64_pauth, s)) {
1641         return false;
1642     }
1643     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644     lr = cpu_reg(s, 30);
1645     if (dst == lr) {
1646         TCGv_i64 tmp = tcg_temp_new_i64();
1647         tcg_gen_mov_i64(tmp, dst);
1648         dst = tmp;
1649     }
1650     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651     gen_a64_set_pc(s, dst);
1652     set_btype_for_blr(s);
1653     s->base.is_jmp = DISAS_JUMP;
1654     return true;
1655 }
1656 
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1658 {
1659     TCGv_i64 dst;
1660 
1661     if (s->current_el == 0) {
1662         return false;
1663     }
1664     if (s->trap_eret) {
1665         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666         return true;
1667     }
1668     dst = tcg_temp_new_i64();
1669     tcg_gen_ld_i64(dst, tcg_env,
1670                    offsetof(CPUARMState, elr_el[s->current_el]));
1671 
1672     translator_io_start(&s->base);
1673 
1674     gen_helper_exception_return(tcg_env, dst);
1675     /* Must exit loop to check un-masked IRQs */
1676     s->base.is_jmp = DISAS_EXIT;
1677     return true;
1678 }
1679 
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1681 {
1682     TCGv_i64 dst;
1683 
1684     if (!dc_isar_feature(aa64_pauth, s)) {
1685         return false;
1686     }
1687     if (s->current_el == 0) {
1688         return false;
1689     }
1690     /* The FGT trap takes precedence over an auth trap. */
1691     if (s->trap_eret) {
1692         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693         return true;
1694     }
1695     dst = tcg_temp_new_i64();
1696     tcg_gen_ld_i64(dst, tcg_env,
1697                    offsetof(CPUARMState, elr_el[s->current_el]));
1698 
1699     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1700 
1701     translator_io_start(&s->base);
1702 
1703     gen_helper_exception_return(tcg_env, dst);
1704     /* Must exit loop to check un-masked IRQs */
1705     s->base.is_jmp = DISAS_EXIT;
1706     return true;
1707 }
1708 
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1710 {
1711     return true;
1712 }
1713 
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1715 {
1716     /*
1717      * When running in MTTCG we don't generate jumps to the yield and
1718      * WFE helpers as it won't affect the scheduling of other vCPUs.
1719      * If we wanted to more completely model WFE/SEV so we don't busy
1720      * spin unnecessarily we would need to do something more involved.
1721      */
1722     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723         s->base.is_jmp = DISAS_YIELD;
1724     }
1725     return true;
1726 }
1727 
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1729 {
1730     s->base.is_jmp = DISAS_WFI;
1731     return true;
1732 }
1733 
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1735 {
1736     /*
1737      * When running in MTTCG we don't generate jumps to the yield and
1738      * WFE helpers as it won't affect the scheduling of other vCPUs.
1739      * If we wanted to more completely model WFE/SEV so we don't busy
1740      * spin unnecessarily we would need to do something more involved.
1741      */
1742     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743         s->base.is_jmp = DISAS_WFE;
1744     }
1745     return true;
1746 }
1747 
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1749 {
1750     if (!dc_isar_feature(aa64_wfxt, s)) {
1751         return false;
1752     }
1753 
1754     /*
1755      * Because we need to pass the register value to the helper,
1756      * it's easier to emit the code now, unlike trans_WFI which
1757      * defers it to aarch64_tr_tb_stop(). That means we need to
1758      * check ss_active so that single-stepping a WFIT doesn't halt.
1759      */
1760     if (s->ss_active) {
1761         /* Act like a NOP under architectural singlestep */
1762         return true;
1763     }
1764 
1765     gen_a64_update_pc(s, 4);
1766     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767     /* Go back to the main loop to check for interrupts */
1768     s->base.is_jmp = DISAS_EXIT;
1769     return true;
1770 }
1771 
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * We rely here on our WFE implementation being a NOP, so we
1780      * don't need to do anything different to handle the WFET timeout
1781      * from what trans_WFE does.
1782      */
1783     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784         s->base.is_jmp = DISAS_WFE;
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1830 {
1831     /* Without RAS, we must implement this as NOP. */
1832     if (dc_isar_feature(aa64_ras, s)) {
1833         /*
1834          * QEMU does not have a source of physical SErrors,
1835          * so we are only concerned with virtual SErrors.
1836          * The pseudocode in the ARM for this case is
1837          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838          *      AArch64.vESBOperation();
1839          * Most of the condition can be evaluated at translation time.
1840          * Test for EL2 present, and defer test for SEL2 to runtime.
1841          */
1842         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843             gen_helper_vesb(tcg_env);
1844         }
1845     }
1846     return true;
1847 }
1848 
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1850 {
1851     if (s->pauth_active) {
1852         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1853     }
1854     return true;
1855 }
1856 
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1858 {
1859     if (s->pauth_active) {
1860         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1861     }
1862     return true;
1863 }
1864 
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1866 {
1867     if (s->pauth_active) {
1868         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1869     }
1870     return true;
1871 }
1872 
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1877     }
1878     return true;
1879 }
1880 
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1885     }
1886     return true;
1887 }
1888 
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1893     }
1894     return true;
1895 }
1896 
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1901     }
1902     return true;
1903 }
1904 
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1909     }
1910     return true;
1911 }
1912 
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1914 {
1915     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916     return true;
1917 }
1918 
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1920 {
1921     /* We handle DSB and DMB the same way */
1922     TCGBar bar;
1923 
1924     switch (a->types) {
1925     case 1: /* MBReqTypes_Reads */
1926         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927         break;
1928     case 2: /* MBReqTypes_Writes */
1929         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930         break;
1931     default: /* MBReqTypes_All */
1932         bar = TCG_BAR_SC | TCG_MO_ALL;
1933         break;
1934     }
1935     tcg_gen_mb(bar);
1936     return true;
1937 }
1938 
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1940 {
1941     /*
1942      * We need to break the TB after this insn to execute
1943      * self-modifying code correctly and also to take
1944      * any pending interrupts immediately.
1945      */
1946     reset_btype(s);
1947     gen_goto_tb(s, 0, 4);
1948     return true;
1949 }
1950 
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1952 {
1953     if (!dc_isar_feature(aa64_sb, s)) {
1954         return false;
1955     }
1956     /*
1957      * TODO: There is no speculation barrier opcode for TCG;
1958      * MB and end the TB instead.
1959      */
1960     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961     gen_goto_tb(s, 0, 4);
1962     return true;
1963 }
1964 
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1966 {
1967     if (!dc_isar_feature(aa64_condm_4, s)) {
1968         return false;
1969     }
1970     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971     return true;
1972 }
1973 
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1975 {
1976     TCGv_i32 z;
1977 
1978     if (!dc_isar_feature(aa64_condm_5, s)) {
1979         return false;
1980     }
1981 
1982     z = tcg_temp_new_i32();
1983 
1984     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1985 
1986     /*
1987      * (!C & !Z) << 31
1988      * (!(C | Z)) << 31
1989      * ~((C | Z) << 31)
1990      * ~-(C | Z)
1991      * (C | Z) - 1
1992      */
1993     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1995 
1996     /* !(Z & C) */
1997     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1999 
2000     /* (!C & Z) << 31 -> -(Z & ~C) */
2001     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2003 
2004     /* C | Z */
2005     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2006 
2007     return true;
2008 }
2009 
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2011 {
2012     if (!dc_isar_feature(aa64_condm_5, s)) {
2013         return false;
2014     }
2015 
2016     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2017     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2018 
2019     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2021 
2022     tcg_gen_movi_i32(cpu_NF, 0);
2023     tcg_gen_movi_i32(cpu_VF, 0);
2024 
2025     return true;
2026 }
2027 
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2029 {
2030     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031         return false;
2032     }
2033     if (a->imm & 1) {
2034         set_pstate_bits(PSTATE_UAO);
2035     } else {
2036         clear_pstate_bits(PSTATE_UAO);
2037     }
2038     gen_rebuild_hflags(s);
2039     s->base.is_jmp = DISAS_TOO_MANY;
2040     return true;
2041 }
2042 
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2044 {
2045     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046         return false;
2047     }
2048     if (a->imm & 1) {
2049         set_pstate_bits(PSTATE_PAN);
2050     } else {
2051         clear_pstate_bits(PSTATE_PAN);
2052     }
2053     gen_rebuild_hflags(s);
2054     s->base.is_jmp = DISAS_TOO_MANY;
2055     return true;
2056 }
2057 
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2059 {
2060     if (s->current_el == 0) {
2061         return false;
2062     }
2063     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064     s->base.is_jmp = DISAS_TOO_MANY;
2065     return true;
2066 }
2067 
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2069 {
2070     if (!dc_isar_feature(aa64_ssbs, s)) {
2071         return false;
2072     }
2073     if (a->imm & 1) {
2074         set_pstate_bits(PSTATE_SSBS);
2075     } else {
2076         clear_pstate_bits(PSTATE_SSBS);
2077     }
2078     /* Don't need to rebuild hflags since SSBS is a nop */
2079     s->base.is_jmp = DISAS_TOO_MANY;
2080     return true;
2081 }
2082 
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2084 {
2085     if (!dc_isar_feature(aa64_dit, s)) {
2086         return false;
2087     }
2088     if (a->imm & 1) {
2089         set_pstate_bits(PSTATE_DIT);
2090     } else {
2091         clear_pstate_bits(PSTATE_DIT);
2092     }
2093     /* There's no need to rebuild hflags because DIT is a nop */
2094     s->base.is_jmp = DISAS_TOO_MANY;
2095     return true;
2096 }
2097 
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2099 {
2100     if (dc_isar_feature(aa64_mte, s)) {
2101         /* Full MTE is enabled -- set the TCO bit as directed. */
2102         if (a->imm & 1) {
2103             set_pstate_bits(PSTATE_TCO);
2104         } else {
2105             clear_pstate_bits(PSTATE_TCO);
2106         }
2107         gen_rebuild_hflags(s);
2108         /* Many factors, including TCO, go into MTE_ACTIVE. */
2109         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110         return true;
2111     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2113         return true;
2114     } else {
2115         /* Insn not present */
2116         return false;
2117     }
2118 }
2119 
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2121 {
2122     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123     s->base.is_jmp = DISAS_TOO_MANY;
2124     return true;
2125 }
2126 
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2128 {
2129     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130     /* Exit the cpu loop to re-evaluate pending IRQs. */
2131     s->base.is_jmp = DISAS_UPDATE_EXIT;
2132     return true;
2133 }
2134 
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2136 {
2137     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138         return false;
2139     }
2140 
2141     if (a->imm == 0) {
2142         clear_pstate_bits(PSTATE_ALLINT);
2143     } else if (s->current_el > 1) {
2144         set_pstate_bits(PSTATE_ALLINT);
2145     } else {
2146         gen_helper_msr_set_allint_el1(tcg_env);
2147     }
2148 
2149     /* Exit the cpu loop to re-evaluate pending IRQs. */
2150     s->base.is_jmp = DISAS_UPDATE_EXIT;
2151     return true;
2152 }
2153 
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2155 {
2156     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157         return false;
2158     }
2159     if (sme_access_check(s)) {
2160         int old = s->pstate_sm | (s->pstate_za << 1);
2161         int new = a->imm * 3;
2162 
2163         if ((old ^ new) & a->mask) {
2164             /* At least one bit changes. */
2165             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166                                 tcg_constant_i32(a->mask));
2167             s->base.is_jmp = DISAS_TOO_MANY;
2168         }
2169     }
2170     return true;
2171 }
2172 
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2174 {
2175     TCGv_i32 tmp = tcg_temp_new_i32();
2176     TCGv_i32 nzcv = tcg_temp_new_i32();
2177 
2178     /* build bit 31, N */
2179     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180     /* build bit 30, Z */
2181     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183     /* build bit 29, C */
2184     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185     /* build bit 28, V */
2186     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188     /* generate result */
2189     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2190 }
2191 
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2193 {
2194     TCGv_i32 nzcv = tcg_temp_new_i32();
2195 
2196     /* take NZCV from R[t] */
2197     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2198 
2199     /* bit 31, N */
2200     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201     /* bit 30, Z */
2202     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204     /* bit 29, C */
2205     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207     /* bit 28, V */
2208     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2210 }
2211 
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213                              uint8_t op0, uint8_t op1, uint8_t op2,
2214                              uint8_t crn, uint8_t crm, uint8_t rt)
2215 {
2216     /*
2217      * Generate code to emit an UNDEF with correct syndrome
2218      * information for a failed system register access.
2219      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220      * but if FEAT_IDST is implemented then read accesses to registers
2221      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222      * syndrome.
2223      */
2224     uint32_t syndrome;
2225 
2226     if (isread && dc_isar_feature(aa64_ids, s) &&
2227         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229     } else {
2230         syndrome = syn_uncategorized();
2231     }
2232     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2233 }
2234 
2235 /* MRS - move from system register
2236  * MSR (register) - move to system register
2237  * SYS
2238  * SYSL
2239  * These are all essentially the same insn in 'read' and 'write'
2240  * versions, with varying op0 fields.
2241  */
2242 static void handle_sys(DisasContext *s, bool isread,
2243                        unsigned int op0, unsigned int op1, unsigned int op2,
2244                        unsigned int crn, unsigned int crm, unsigned int rt)
2245 {
2246     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247                                       crn, crm, op0, op1, op2);
2248     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249     bool need_exit_tb = false;
2250     bool nv_trap_to_el2 = false;
2251     bool nv_redirect_reg = false;
2252     bool skip_fp_access_checks = false;
2253     bool nv2_mem_redirect = false;
2254     TCGv_ptr tcg_ri = NULL;
2255     TCGv_i64 tcg_rt;
2256     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2257 
2258     if (crn == 11 || crn == 15) {
2259         /*
2260          * Check for TIDCP trap, which must take precedence over
2261          * the UNDEF for "no such register" etc.
2262          */
2263         switch (s->current_el) {
2264         case 0:
2265             if (dc_isar_feature(aa64_tidcp1, s)) {
2266                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2267             }
2268             break;
2269         case 1:
2270             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271             break;
2272         }
2273     }
2274 
2275     if (!ri) {
2276         /* Unknown register; this might be a guest error or a QEMU
2277          * unimplemented feature.
2278          */
2279         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2282         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283         return;
2284     }
2285 
2286     if (s->nv2 && ri->nv2_redirect_offset) {
2287         /*
2288          * Some registers always redirect to memory; some only do so if
2289          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290          * pairs which share an offset; see the table in R_CSRPQ).
2291          */
2292         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293             nv2_mem_redirect = s->nv1;
2294         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295             nv2_mem_redirect = !s->nv1;
2296         } else {
2297             nv2_mem_redirect = true;
2298         }
2299     }
2300 
2301     /* Check access permissions */
2302     if (!cp_access_ok(s->current_el, ri, isread)) {
2303         /*
2304          * FEAT_NV/NV2 handling does not do the usual FP access checks
2305          * for registers only accessible at EL2 (though it *does* do them
2306          * for registers accessible at EL1).
2307          */
2308         skip_fp_access_checks = true;
2309         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2310             /*
2311              * This is one of the few EL2 registers which should redirect
2312              * to the equivalent EL1 register. We do that after running
2313              * the EL2 register's accessfn.
2314              */
2315             nv_redirect_reg = true;
2316             assert(!nv2_mem_redirect);
2317         } else if (nv2_mem_redirect) {
2318             /*
2319              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320              * UNDEF to EL1.
2321              */
2322         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2323             /*
2324              * This register / instruction exists and is an EL2 register, so
2325              * we must trap to EL2 if accessed in nested virtualization EL1
2326              * instead of UNDEFing. We'll do that after the usual access checks.
2327              * (This makes a difference only for a couple of registers like
2328              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330              * an accessfn which does nothing when called from EL1, because
2331              * the trap-to-EL3 controls which would apply to that register
2332              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2333              */
2334             nv_trap_to_el2 = true;
2335         } else {
2336             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337             return;
2338         }
2339     }
2340 
2341     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342         /* Emit code to perform further access permissions checks at
2343          * runtime; this may result in an exception.
2344          */
2345         gen_a64_update_pc(s, 0);
2346         tcg_ri = tcg_temp_new_ptr();
2347         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348                                        tcg_constant_i32(key),
2349                                        tcg_constant_i32(syndrome),
2350                                        tcg_constant_i32(isread));
2351     } else if (ri->type & ARM_CP_RAISES_EXC) {
2352         /*
2353          * The readfn or writefn might raise an exception;
2354          * synchronize the CPU state in case it does.
2355          */
2356         gen_a64_update_pc(s, 0);
2357     }
2358 
2359     if (!skip_fp_access_checks) {
2360         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361             return;
2362         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363             return;
2364         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365             return;
2366         }
2367     }
2368 
2369     if (nv_trap_to_el2) {
2370         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371         return;
2372     }
2373 
2374     if (nv_redirect_reg) {
2375         /*
2376          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377          * Conveniently in all cases the encoding of the EL1 register is
2378          * identical to the EL2 register except that opc1 is 0.
2379          * Get the reginfo for the EL1 register to use for the actual access.
2380          * We don't use the EL1 register's access function, and
2381          * fine-grained-traps on EL1 also do not apply here.
2382          */
2383         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384                                  crn, crm, op0, 0, op2);
2385         ri = get_arm_cp_reginfo(s->cp_regs, key);
2386         assert(ri);
2387         assert(cp_access_ok(s->current_el, ri, isread));
2388         /*
2389          * We might not have done an update_pc earlier, so check we don't
2390          * need it. We could support this in future if necessary.
2391          */
2392         assert(!(ri->type & ARM_CP_RAISES_EXC));
2393     }
2394 
2395     if (nv2_mem_redirect) {
2396         /*
2397          * This system register is being redirected into an EL2 memory access.
2398          * This means it is not an IO operation, doesn't change hflags,
2399          * and need not end the TB, because it has no side effects.
2400          *
2401          * The access is 64-bit single copy atomic, guaranteed aligned because
2402          * of the definition of VCNR_EL2. Its endianness depends on
2403          * SCTLR_EL2.EE, not on the data endianness of EL1.
2404          * It is done under either the EL2 translation regime or the EL2&0
2405          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406          * PSTATE.PAN is 0.
2407          */
2408         TCGv_i64 ptr = tcg_temp_new_i64();
2409         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411         int memidx = arm_to_core_mmu_idx(armmemidx);
2412         uint32_t syn;
2413 
2414         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2415 
2416         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417         tcg_gen_addi_i64(ptr, ptr,
2418                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419         tcg_rt = cpu_reg(s, rt);
2420 
2421         syn = syn_data_abort_vncr(0, !isread, 0);
2422         disas_set_insn_syndrome(s, syn);
2423         if (isread) {
2424             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425         } else {
2426             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2427         }
2428         return;
2429     }
2430 
2431     /* Handle special cases first */
2432     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433     case 0:
2434         break;
2435     case ARM_CP_NOP:
2436         return;
2437     case ARM_CP_NZCV:
2438         tcg_rt = cpu_reg(s, rt);
2439         if (isread) {
2440             gen_get_nzcv(tcg_rt);
2441         } else {
2442             gen_set_nzcv(tcg_rt);
2443         }
2444         return;
2445     case ARM_CP_CURRENTEL:
2446     {
2447         /*
2448          * Reads as current EL value from pstate, which is
2449          * guaranteed to be constant by the tb flags.
2450          * For nested virt we should report EL2.
2451          */
2452         int el = s->nv ? 2 : s->current_el;
2453         tcg_rt = cpu_reg(s, rt);
2454         tcg_gen_movi_i64(tcg_rt, el << 2);
2455         return;
2456     }
2457     case ARM_CP_DC_ZVA:
2458         /* Writes clear the aligned block of memory which rt points into. */
2459         if (s->mte_active[0]) {
2460             int desc = 0;
2461 
2462             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2465 
2466             tcg_rt = tcg_temp_new_i64();
2467             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2469         } else {
2470             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2471         }
2472         gen_helper_dc_zva(tcg_env, tcg_rt);
2473         return;
2474     case ARM_CP_DC_GVA:
2475         {
2476             TCGv_i64 clean_addr, tag;
2477 
2478             /*
2479              * DC_GVA, like DC_ZVA, requires that we supply the original
2480              * pointer for an invalid page.  Probe that address first.
2481              */
2482             tcg_rt = cpu_reg(s, rt);
2483             clean_addr = clean_data_tbi(s, tcg_rt);
2484             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2485 
2486             if (s->ata[0]) {
2487                 /* Extract the tag from the register to match STZGM.  */
2488                 tag = tcg_temp_new_i64();
2489                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2491             }
2492         }
2493         return;
2494     case ARM_CP_DC_GZVA:
2495         {
2496             TCGv_i64 clean_addr, tag;
2497 
2498             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499             tcg_rt = cpu_reg(s, rt);
2500             clean_addr = clean_data_tbi(s, tcg_rt);
2501             gen_helper_dc_zva(tcg_env, clean_addr);
2502 
2503             if (s->ata[0]) {
2504                 /* Extract the tag from the register to match STZGM.  */
2505                 tag = tcg_temp_new_i64();
2506                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2508             }
2509         }
2510         return;
2511     default:
2512         g_assert_not_reached();
2513     }
2514 
2515     if (ri->type & ARM_CP_IO) {
2516         /* I/O operations must end the TB here (whether read or write) */
2517         need_exit_tb = translator_io_start(&s->base);
2518     }
2519 
2520     tcg_rt = cpu_reg(s, rt);
2521 
2522     if (isread) {
2523         if (ri->type & ARM_CP_CONST) {
2524             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525         } else if (ri->readfn) {
2526             if (!tcg_ri) {
2527                 tcg_ri = gen_lookup_cp_reg(key);
2528             }
2529             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530         } else {
2531             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2532         }
2533     } else {
2534         if (ri->type & ARM_CP_CONST) {
2535             /* If not forbidden by access permissions, treat as WI */
2536             return;
2537         } else if (ri->writefn) {
2538             if (!tcg_ri) {
2539                 tcg_ri = gen_lookup_cp_reg(key);
2540             }
2541             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542         } else {
2543             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2544         }
2545     }
2546 
2547     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2548         /*
2549          * A write to any coprocessor register that ends a TB
2550          * must rebuild the hflags for the next TB.
2551          */
2552         gen_rebuild_hflags(s);
2553         /*
2554          * We default to ending the TB on a coprocessor register write,
2555          * but allow this to be suppressed by the register definition
2556          * (usually only necessary to work around guest bugs).
2557          */
2558         need_exit_tb = true;
2559     }
2560     if (need_exit_tb) {
2561         s->base.is_jmp = DISAS_UPDATE_EXIT;
2562     }
2563 }
2564 
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2566 {
2567     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568     return true;
2569 }
2570 
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2572 {
2573     /*
2574      * For SVC, HVC and SMC we advance the single-step state
2575      * machine before taking the exception. This is architecturally
2576      * mandated, to ensure that single-stepping a system call
2577      * instruction works properly.
2578      */
2579     uint32_t syndrome = syn_aa64_svc(a->imm);
2580     if (s->fgt_svc) {
2581         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582         return true;
2583     }
2584     gen_ss_advance(s);
2585     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586     return true;
2587 }
2588 
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2590 {
2591     int target_el = s->current_el == 3 ? 3 : 2;
2592 
2593     if (s->current_el == 0) {
2594         unallocated_encoding(s);
2595         return true;
2596     }
2597     /*
2598      * The pre HVC helper handles cases when HVC gets trapped
2599      * as an undefined insn by runtime configuration.
2600      */
2601     gen_a64_update_pc(s, 0);
2602     gen_helper_pre_hvc(tcg_env);
2603     /* Architecture requires ss advance before we do the actual work */
2604     gen_ss_advance(s);
2605     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606     return true;
2607 }
2608 
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2610 {
2611     if (s->current_el == 0) {
2612         unallocated_encoding(s);
2613         return true;
2614     }
2615     gen_a64_update_pc(s, 0);
2616     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617     /* Architecture requires ss advance before we do the actual work */
2618     gen_ss_advance(s);
2619     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620     return true;
2621 }
2622 
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2624 {
2625     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626     return true;
2627 }
2628 
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2630 {
2631     /*
2632      * HLT. This has two purposes.
2633      * Architecturally, it is an external halting debug instruction.
2634      * Since QEMU doesn't implement external debug, we treat this as
2635      * it is required for halting debug disabled: it will UNDEF.
2636      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2637      */
2638     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640     } else {
2641         unallocated_encoding(s);
2642     }
2643     return true;
2644 }
2645 
2646 /*
2647  * Load/Store exclusive instructions are implemented by remembering
2648  * the value/address loaded, and seeing if these are the same
2649  * when the store is performed. This is not actually the architecturally
2650  * mandated semantics, but it works for typical guest code sequences
2651  * and avoids having to monitor regular stores.
2652  *
2653  * The store exclusive uses the atomic cmpxchg primitives to avoid
2654  * races in multi-threaded linux-user and when MTTCG softmmu is
2655  * enabled.
2656  */
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658                                int size, bool is_pair)
2659 {
2660     int idx = get_mem_index(s);
2661     TCGv_i64 dirty_addr, clean_addr;
2662     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2663 
2664     s->is_ldex = true;
2665     dirty_addr = cpu_reg_sp(s, rn);
2666     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2667 
2668     g_assert(size <= 3);
2669     if (is_pair) {
2670         g_assert(size >= 2);
2671         if (size == 2) {
2672             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673             if (s->be_data == MO_LE) {
2674                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676             } else {
2677                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2679             }
2680         } else {
2681             TCGv_i128 t16 = tcg_temp_new_i128();
2682 
2683             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2684 
2685             if (s->be_data == MO_LE) {
2686                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687                                       cpu_exclusive_high, t16);
2688             } else {
2689                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690                                       cpu_exclusive_val, t16);
2691             }
2692             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2694         }
2695     } else {
2696         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2698     }
2699     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2700 }
2701 
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703                                 int rn, int size, int is_pair)
2704 {
2705     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707      *     [addr] = {Rt};
2708      *     if (is_pair) {
2709      *         [addr + datasize] = {Rt2};
2710      *     }
2711      *     {Rd} = 0;
2712      * } else {
2713      *     {Rd} = 1;
2714      * }
2715      * env->exclusive_addr = -1;
2716      */
2717     TCGLabel *fail_label = gen_new_label();
2718     TCGLabel *done_label = gen_new_label();
2719     TCGv_i64 tmp, clean_addr;
2720     MemOp memop;
2721 
2722     /*
2723      * FIXME: We are out of spec here.  We have recorded only the address
2724      * from load_exclusive, not the entire range, and we assume that the
2725      * size of the access on both sides match.  The architecture allows the
2726      * store to be smaller than the load, so long as the stored bytes are
2727      * within the range recorded by the load.
2728      */
2729 
2730     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2733 
2734     /*
2735      * The write, and any associated faults, only happen if the virtual
2736      * and physical addresses pass the exclusive monitor check.  These
2737      * faults are exceedingly unlikely, because normally the guest uses
2738      * the exact same address register for the load_exclusive, and we
2739      * would have recognized these faults there.
2740      *
2741      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742      * unaligned 4-byte write within the range of an aligned 8-byte load.
2743      * With LSE2, the store would need to cross a 16-byte boundary when the
2744      * load did not, which would mean the store is outside the range
2745      * recorded for the monitor, which would have failed a corrected monitor
2746      * check above.  For now, we assume no size change and retain the
2747      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2748      *
2749      * It is possible to trigger an MTE fault, by performing the load with
2750      * a virtual address with a valid tag and performing the store with the
2751      * same virtual address and a different invalid tag.
2752      */
2753     memop = size + is_pair;
2754     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755         memop |= MO_ALIGN;
2756     }
2757     memop = finalize_memop(s, memop);
2758     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2759 
2760     tmp = tcg_temp_new_i64();
2761     if (is_pair) {
2762         if (size == 2) {
2763             if (s->be_data == MO_LE) {
2764                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765             } else {
2766                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2767             }
2768             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769                                        cpu_exclusive_val, tmp,
2770                                        get_mem_index(s), memop);
2771             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772         } else {
2773             TCGv_i128 t16 = tcg_temp_new_i128();
2774             TCGv_i128 c16 = tcg_temp_new_i128();
2775             TCGv_i64 a, b;
2776 
2777             if (s->be_data == MO_LE) {
2778                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780                                         cpu_exclusive_high);
2781             } else {
2782                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784                                         cpu_exclusive_val);
2785             }
2786 
2787             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788                                         get_mem_index(s), memop);
2789 
2790             a = tcg_temp_new_i64();
2791             b = tcg_temp_new_i64();
2792             if (s->be_data == MO_LE) {
2793                 tcg_gen_extr_i128_i64(a, b, t16);
2794             } else {
2795                 tcg_gen_extr_i128_i64(b, a, t16);
2796             }
2797 
2798             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800             tcg_gen_or_i64(tmp, a, b);
2801 
2802             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2803         }
2804     } else {
2805         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806                                    cpu_reg(s, rt), get_mem_index(s), memop);
2807         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2808     }
2809     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810     tcg_gen_br(done_label);
2811 
2812     gen_set_label(fail_label);
2813     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814     gen_set_label(done_label);
2815     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2816 }
2817 
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819                                  int rn, int size)
2820 {
2821     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823     int memidx = get_mem_index(s);
2824     TCGv_i64 clean_addr;
2825     MemOp memop;
2826 
2827     if (rn == 31) {
2828         gen_check_sp_alignment(s);
2829     }
2830     memop = check_atomic_align(s, rn, size);
2831     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833                                memidx, memop);
2834 }
2835 
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837                                       int rn, int size)
2838 {
2839     TCGv_i64 s1 = cpu_reg(s, rs);
2840     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841     TCGv_i64 t1 = cpu_reg(s, rt);
2842     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843     TCGv_i64 clean_addr;
2844     int memidx = get_mem_index(s);
2845     MemOp memop;
2846 
2847     if (rn == 31) {
2848         gen_check_sp_alignment(s);
2849     }
2850 
2851     /* This is a single atomic access, despite the "pair". */
2852     memop = check_atomic_align(s, rn, size + 1);
2853     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2854 
2855     if (size == 2) {
2856         TCGv_i64 cmp = tcg_temp_new_i64();
2857         TCGv_i64 val = tcg_temp_new_i64();
2858 
2859         if (s->be_data == MO_LE) {
2860             tcg_gen_concat32_i64(val, t1, t2);
2861             tcg_gen_concat32_i64(cmp, s1, s2);
2862         } else {
2863             tcg_gen_concat32_i64(val, t2, t1);
2864             tcg_gen_concat32_i64(cmp, s2, s1);
2865         }
2866 
2867         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2868 
2869         if (s->be_data == MO_LE) {
2870             tcg_gen_extr32_i64(s1, s2, cmp);
2871         } else {
2872             tcg_gen_extr32_i64(s2, s1, cmp);
2873         }
2874     } else {
2875         TCGv_i128 cmp = tcg_temp_new_i128();
2876         TCGv_i128 val = tcg_temp_new_i128();
2877 
2878         if (s->be_data == MO_LE) {
2879             tcg_gen_concat_i64_i128(val, t1, t2);
2880             tcg_gen_concat_i64_i128(cmp, s1, s2);
2881         } else {
2882             tcg_gen_concat_i64_i128(val, t2, t1);
2883             tcg_gen_concat_i64_i128(cmp, s2, s1);
2884         }
2885 
2886         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2887 
2888         if (s->be_data == MO_LE) {
2889             tcg_gen_extr_i128_i64(s1, s2, cmp);
2890         } else {
2891             tcg_gen_extr_i128_i64(s2, s1, cmp);
2892         }
2893     }
2894 }
2895 
2896 /*
2897  * Compute the ISS.SF bit for syndrome information if an exception
2898  * is taken on a load or store. This indicates whether the instruction
2899  * is accessing a 32-bit or 64-bit register. This logic is derived
2900  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2901  */
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2903 {
2904 
2905     if (sign) {
2906         /*
2907          * Signed loads are 64 bit results if we are not going to
2908          * do a zero-extend from 32 to 64 after the load.
2909          * (For a store, sign and ext are always false.)
2910          */
2911         return !ext;
2912     } else {
2913         /* Unsigned loads/stores work at the specified size */
2914         return size == MO_64;
2915     }
2916 }
2917 
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2919 {
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     if (a->lasr) {
2924         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2925     }
2926     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927     return true;
2928 }
2929 
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2931 {
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936     if (a->lasr) {
2937         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2938     }
2939     return true;
2940 }
2941 
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2943 {
2944     TCGv_i64 clean_addr;
2945     MemOp memop;
2946     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2947 
2948     /*
2949      * StoreLORelease is the same as Store-Release for QEMU, but
2950      * needs the feature-test.
2951      */
2952     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953         return false;
2954     }
2955     /* Generate ISS for non-exclusive accesses including LASR.  */
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962                                 true, a->rn != 31, memop);
2963     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964               iss_sf, a->lasr);
2965     return true;
2966 }
2967 
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2969 {
2970     TCGv_i64 clean_addr;
2971     MemOp memop;
2972     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2973 
2974     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2975     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976         return false;
2977     }
2978     /* Generate ISS for non-exclusive accesses including LASR.  */
2979     if (a->rn == 31) {
2980         gen_check_sp_alignment(s);
2981     }
2982     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984                                 false, a->rn != 31, memop);
2985     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986               a->rt, iss_sf, a->lasr);
2987     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988     return true;
2989 }
2990 
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2992 {
2993     if (a->rn == 31) {
2994         gen_check_sp_alignment(s);
2995     }
2996     if (a->lasr) {
2997         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2998     }
2999     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000     return true;
3001 }
3002 
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3004 {
3005     if (a->rn == 31) {
3006         gen_check_sp_alignment(s);
3007     }
3008     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009     if (a->lasr) {
3010         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3011     }
3012     return true;
3013 }
3014 
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3016 {
3017     if (!dc_isar_feature(aa64_atomics, s)) {
3018         return false;
3019     }
3020     if (((a->rt | a->rs) & 1) != 0) {
3021         return false;
3022     }
3023 
3024     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025     return true;
3026 }
3027 
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3029 {
3030     if (!dc_isar_feature(aa64_atomics, s)) {
3031         return false;
3032     }
3033     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034     return true;
3035 }
3036 
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3038 {
3039     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041     TCGv_i64 clean_addr = tcg_temp_new_i64();
3042     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3043 
3044     gen_pc_plus_diff(s, clean_addr, a->imm);
3045     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046               false, true, a->rt, iss_sf, false);
3047     return true;
3048 }
3049 
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3051 {
3052     /* Load register (literal), vector version */
3053     TCGv_i64 clean_addr;
3054     MemOp memop;
3055 
3056     if (!fp_access_check(s)) {
3057         return true;
3058     }
3059     memop = finalize_memop_asimd(s, a->sz);
3060     clean_addr = tcg_temp_new_i64();
3061     gen_pc_plus_diff(s, clean_addr, a->imm);
3062     do_fp_ld(s, a->rt, clean_addr, memop);
3063     return true;
3064 }
3065 
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068                                  uint64_t offset, bool is_store, MemOp mop)
3069 {
3070     if (a->rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075     if (!a->p) {
3076         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3077     }
3078 
3079     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3081 }
3082 
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084                                   TCGv_i64 dirty_addr, uint64_t offset)
3085 {
3086     if (a->w) {
3087         if (a->p) {
3088             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3089         }
3090         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3091     }
3092 }
3093 
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103     /*
3104      * We built mop above for the single logical access -- rebuild it
3105      * now for the paired operation.
3106      *
3107      * With LSE2, non-sign-extending pairs are treated atomically if
3108      * aligned, and if unaligned one of the pair will be completely
3109      * within a 16-byte block and that element will be atomic.
3110      * Otherwise each element is separately atomic.
3111      * In all cases, issue one operation with the correct atomicity.
3112      */
3113     mop = a->sz + 1;
3114     if (s->align_mem) {
3115         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3116     }
3117     mop = finalize_memop_pair(s, mop);
3118     if (a->sz == 2) {
3119         TCGv_i64 tmp = tcg_temp_new_i64();
3120 
3121         if (s->be_data == MO_LE) {
3122             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123         } else {
3124             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3125         }
3126         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127     } else {
3128         TCGv_i128 tmp = tcg_temp_new_i128();
3129 
3130         if (s->be_data == MO_LE) {
3131             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132         } else {
3133             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3134         }
3135         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3136     }
3137     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138     return true;
3139 }
3140 
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3142 {
3143     uint64_t offset = a->imm << a->sz;
3144     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145     MemOp mop = finalize_memop(s, a->sz);
3146 
3147     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148     tcg_rt = cpu_reg(s, a->rt);
3149     tcg_rt2 = cpu_reg(s, a->rt2);
3150 
3151     /*
3152      * We built mop above for the single logical access -- rebuild it
3153      * now for the paired operation.
3154      *
3155      * With LSE2, non-sign-extending pairs are treated atomically if
3156      * aligned, and if unaligned one of the pair will be completely
3157      * within a 16-byte block and that element will be atomic.
3158      * Otherwise each element is separately atomic.
3159      * In all cases, issue one operation with the correct atomicity.
3160      *
3161      * This treats sign-extending loads like zero-extending loads,
3162      * since that reuses the most code below.
3163      */
3164     mop = a->sz + 1;
3165     if (s->align_mem) {
3166         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3167     }
3168     mop = finalize_memop_pair(s, mop);
3169     if (a->sz == 2) {
3170         int o2 = s->be_data == MO_LE ? 32 : 0;
3171         int o1 = o2 ^ 32;
3172 
3173         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174         if (a->sign) {
3175             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177         } else {
3178             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3180         }
3181     } else {
3182         TCGv_i128 tmp = tcg_temp_new_i128();
3183 
3184         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185         if (s->be_data == MO_LE) {
3186             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187         } else {
3188             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3189         }
3190     }
3191     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192     return true;
3193 }
3194 
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3196 {
3197     uint64_t offset = a->imm << a->sz;
3198     TCGv_i64 clean_addr, dirty_addr;
3199     MemOp mop;
3200 
3201     if (!fp_access_check(s)) {
3202         return true;
3203     }
3204 
3205     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206     mop = finalize_memop_asimd(s, a->sz);
3207     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208     do_fp_st(s, a->rt, clean_addr, mop);
3209     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210     do_fp_st(s, a->rt2, clean_addr, mop);
3211     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212     return true;
3213 }
3214 
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3216 {
3217     uint64_t offset = a->imm << a->sz;
3218     TCGv_i64 clean_addr, dirty_addr;
3219     MemOp mop;
3220 
3221     if (!fp_access_check(s)) {
3222         return true;
3223     }
3224 
3225     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226     mop = finalize_memop_asimd(s, a->sz);
3227     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228     do_fp_ld(s, a->rt, clean_addr, mop);
3229     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230     do_fp_ld(s, a->rt2, clean_addr, mop);
3231     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232     return true;
3233 }
3234 
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3236 {
3237     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239     MemOp mop;
3240     TCGv_i128 tmp;
3241 
3242     /* STGP only comes in one size. */
3243     tcg_debug_assert(a->sz == MO_64);
3244 
3245     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246         return false;
3247     }
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252 
3253     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254     if (!a->p) {
3255         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3256     }
3257 
3258     clean_addr = clean_data_tbi(s, dirty_addr);
3259     tcg_rt = cpu_reg(s, a->rt);
3260     tcg_rt2 = cpu_reg(s, a->rt2);
3261 
3262     /*
3263      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264      * and one tag operation.  We implement it as one single aligned 16-byte
3265      * memory operation for convenience.  Note that the alignment ensures
3266      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3267      */
3268     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3269 
3270     tmp = tcg_temp_new_i128();
3271     if (s->be_data == MO_LE) {
3272         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273     } else {
3274         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3275     }
3276     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3277 
3278     /* Perform the tag store, if tag access enabled. */
3279     if (s->ata[0]) {
3280         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282         } else {
3283             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3284         }
3285     }
3286 
3287     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288     return true;
3289 }
3290 
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293                                  uint64_t offset, bool is_store, MemOp mop)
3294 {
3295     int memidx;
3296 
3297     if (a->rn == 31) {
3298         gen_check_sp_alignment(s);
3299     }
3300 
3301     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302     if (!a->p) {
3303         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3304     }
3305     memidx = get_a64_user_mem_index(s, a->unpriv);
3306     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307                                         a->w || a->rn != 31,
3308                                         mop, a->unpriv, memidx);
3309 }
3310 
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312                                   TCGv_i64 dirty_addr, uint64_t offset)
3313 {
3314     if (a->w) {
3315         if (a->p) {
3316             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317         }
3318         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3319     }
3320 }
3321 
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     bool iss_sf, iss_valid = !a->w;
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     int memidx = get_a64_user_mem_index(s, a->unpriv);
3327     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3328 
3329     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3330 
3331     tcg_rt = cpu_reg(s, a->rt);
3332     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3333 
3334     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335                      iss_valid, a->rt, iss_sf, false);
3336     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337     return true;
3338 }
3339 
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3341 {
3342     bool iss_sf, iss_valid = !a->w;
3343     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344     int memidx = get_a64_user_mem_index(s, a->unpriv);
3345     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3346 
3347     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3348 
3349     tcg_rt = cpu_reg(s, a->rt);
3350     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3351 
3352     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355     return true;
3356 }
3357 
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3359 {
3360     TCGv_i64 clean_addr, dirty_addr;
3361     MemOp mop;
3362 
3363     if (!fp_access_check(s)) {
3364         return true;
3365     }
3366     mop = finalize_memop_asimd(s, a->sz);
3367     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368     do_fp_st(s, a->rt, clean_addr, mop);
3369     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370     return true;
3371 }
3372 
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3374 {
3375     TCGv_i64 clean_addr, dirty_addr;
3376     MemOp mop;
3377 
3378     if (!fp_access_check(s)) {
3379         return true;
3380     }
3381     mop = finalize_memop_asimd(s, a->sz);
3382     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383     do_fp_ld(s, a->rt, clean_addr, mop);
3384     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385     return true;
3386 }
3387 
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390                              bool is_store, MemOp memop)
3391 {
3392     TCGv_i64 tcg_rm;
3393 
3394     if (a->rn == 31) {
3395         gen_check_sp_alignment(s);
3396     }
3397     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398 
3399     tcg_rm = read_cpu_reg(s, a->rm, 1);
3400     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3401 
3402     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3404 }
3405 
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3407 {
3408     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410     MemOp memop;
3411 
3412     if (extract32(a->opt, 1, 1) == 0) {
3413         return false;
3414     }
3415 
3416     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418     tcg_rt = cpu_reg(s, a->rt);
3419     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420               a->ext, true, a->rt, iss_sf, false);
3421     return true;
3422 }
3423 
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428     MemOp memop;
3429 
3430     if (extract32(a->opt, 1, 1) == 0) {
3431         return false;
3432     }
3433 
3434     memop = finalize_memop(s, a->sz);
3435     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436     tcg_rt = cpu_reg(s, a->rt);
3437     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438     return true;
3439 }
3440 
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3442 {
3443     TCGv_i64 clean_addr, dirty_addr;
3444     MemOp memop;
3445 
3446     if (extract32(a->opt, 1, 1) == 0) {
3447         return false;
3448     }
3449 
3450     if (!fp_access_check(s)) {
3451         return true;
3452     }
3453 
3454     memop = finalize_memop_asimd(s, a->sz);
3455     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456     do_fp_ld(s, a->rt, clean_addr, memop);
3457     return true;
3458 }
3459 
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3461 {
3462     TCGv_i64 clean_addr, dirty_addr;
3463     MemOp memop;
3464 
3465     if (extract32(a->opt, 1, 1) == 0) {
3466         return false;
3467     }
3468 
3469     if (!fp_access_check(s)) {
3470         return true;
3471     }
3472 
3473     memop = finalize_memop_asimd(s, a->sz);
3474     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475     do_fp_st(s, a->rt, clean_addr, memop);
3476     return true;
3477 }
3478 
3479 
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481                          int sign, bool invert)
3482 {
3483     MemOp mop = a->sz | sign;
3484     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3485 
3486     if (a->rn == 31) {
3487         gen_check_sp_alignment(s);
3488     }
3489     mop = check_atomic_align(s, a->rn, mop);
3490     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491                                 a->rn != 31, mop);
3492     tcg_rs = read_cpu_reg(s, a->rs, true);
3493     tcg_rt = cpu_reg(s, a->rt);
3494     if (invert) {
3495         tcg_gen_not_i64(tcg_rs, tcg_rs);
3496     }
3497     /*
3498      * The tcg atomic primitives are all full barriers.  Therefore we
3499      * can ignore the Acquire and Release bits of this instruction.
3500      */
3501     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3502 
3503     if (mop & MO_SIGN) {
3504         switch (a->sz) {
3505         case MO_8:
3506             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_16:
3509             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510             break;
3511         case MO_32:
3512             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513             break;
3514         case MO_64:
3515             break;
3516         default:
3517             g_assert_not_reached();
3518         }
3519     }
3520     return true;
3521 }
3522 
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3532 
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3534 {
3535     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536     TCGv_i64 clean_addr;
3537     MemOp mop;
3538 
3539     if (!dc_isar_feature(aa64_atomics, s) ||
3540         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541         return false;
3542     }
3543     if (a->rn == 31) {
3544         gen_check_sp_alignment(s);
3545     }
3546     mop = check_atomic_align(s, a->rn, a->sz);
3547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548                                 a->rn != 31, mop);
3549     /*
3550      * LDAPR* are a special case because they are a simple load, not a
3551      * fetch-and-do-something op.
3552      * The architectural consistency requirements here are weaker than
3553      * full load-acquire (we only need "load-acquire processor consistent"),
3554      * but we choose to implement them as full LDAQ.
3555      */
3556     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557               true, a->rt, iss_sf, true);
3558     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559     return true;
3560 }
3561 
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3563 {
3564     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565     MemOp memop;
3566 
3567     /* Load with pointer authentication */
3568     if (!dc_isar_feature(aa64_pauth, s)) {
3569         return false;
3570     }
3571 
3572     if (a->rn == 31) {
3573         gen_check_sp_alignment(s);
3574     }
3575     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3576 
3577     if (s->pauth_active) {
3578         if (!a->m) {
3579             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580                                       tcg_constant_i64(0));
3581         } else {
3582             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583                                       tcg_constant_i64(0));
3584         }
3585     }
3586 
3587     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3588 
3589     memop = finalize_memop(s, MO_64);
3590 
3591     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3592     clean_addr = gen_mte_check1(s, dirty_addr, false,
3593                                 a->w || a->rn != 31, memop);
3594 
3595     tcg_rt = cpu_reg(s, a->rt);
3596     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597               /* extend */ false, /* iss_valid */ !a->w,
3598               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3599 
3600     if (a->w) {
3601         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3602     }
3603     return true;
3604 }
3605 
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3607 {
3608     TCGv_i64 clean_addr, dirty_addr;
3609     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3611 
3612     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613         return false;
3614     }
3615 
3616     if (a->rn == 31) {
3617         gen_check_sp_alignment(s);
3618     }
3619 
3620     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623     clean_addr = clean_data_tbi(s, dirty_addr);
3624 
3625     /*
3626      * Load-AcquirePC semantics; we implement as the slightly more
3627      * restrictive Load-Acquire.
3628      */
3629     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630               a->rt, iss_sf, true);
3631     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632     return true;
3633 }
3634 
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3636 {
3637     TCGv_i64 clean_addr, dirty_addr;
3638     MemOp mop = a->sz;
3639     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3640 
3641     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642         return false;
3643     }
3644 
3645     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654     clean_addr = clean_data_tbi(s, dirty_addr);
3655 
3656     /* Store-Release semantics */
3657     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659     return true;
3660 }
3661 
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3663 {
3664     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665     MemOp endian, align, mop;
3666 
3667     int total;    /* total bytes */
3668     int elements; /* elements per vector */
3669     int r;
3670     int size = a->sz;
3671 
3672     if (!a->p && a->rm != 0) {
3673         /* For non-postindexed accesses the Rm field must be 0 */
3674         return false;
3675     }
3676     if (size == 3 && !a->q && a->selem != 1) {
3677         return false;
3678     }
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     if (a->rn == 31) {
3684         gen_check_sp_alignment(s);
3685     }
3686 
3687     /* For our purposes, bytes are always little-endian.  */
3688     endian = s->be_data;
3689     if (size == 0) {
3690         endian = MO_LE;
3691     }
3692 
3693     total = a->rpt * a->selem * (a->q ? 16 : 8);
3694     tcg_rn = cpu_reg_sp(s, a->rn);
3695 
3696     /*
3697      * Issue the MTE check vs the logical repeat count, before we
3698      * promote consecutive little-endian elements below.
3699      */
3700     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701                                 finalize_memop_asimd(s, size));
3702 
3703     /*
3704      * Consecutive little-endian elements from a single register
3705      * can be promoted to a larger little-endian operation.
3706      */
3707     align = MO_ALIGN;
3708     if (a->selem == 1 && endian == MO_LE) {
3709         align = pow2_align(size);
3710         size = 3;
3711     }
3712     if (!s->align_mem) {
3713         align = 0;
3714     }
3715     mop = endian | size | align;
3716 
3717     elements = (a->q ? 16 : 8) >> size;
3718     tcg_ebytes = tcg_constant_i64(1 << size);
3719     for (r = 0; r < a->rpt; r++) {
3720         int e;
3721         for (e = 0; e < elements; e++) {
3722             int xs;
3723             for (xs = 0; xs < a->selem; xs++) {
3724                 int tt = (a->rt + r + xs) % 32;
3725                 do_vec_ld(s, tt, e, clean_addr, mop);
3726                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3727             }
3728         }
3729     }
3730 
3731     /*
3732      * For non-quad operations, setting a slice of the low 64 bits of
3733      * the register clears the high 64 bits (in the ARM ARM pseudocode
3734      * this is implicit in the fact that 'rval' is a 64 bit wide
3735      * variable).  For quad operations, we might still need to zero
3736      * the high bits of SVE.
3737      */
3738     for (r = 0; r < a->rpt * a->selem; r++) {
3739         int tt = (a->rt + r) % 32;
3740         clear_vec_high(s, a->q, tt);
3741     }
3742 
3743     if (a->p) {
3744         if (a->rm == 31) {
3745             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746         } else {
3747             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748         }
3749     }
3750     return true;
3751 }
3752 
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3754 {
3755     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756     MemOp endian, align, mop;
3757 
3758     int total;    /* total bytes */
3759     int elements; /* elements per vector */
3760     int r;
3761     int size = a->sz;
3762 
3763     if (!a->p && a->rm != 0) {
3764         /* For non-postindexed accesses the Rm field must be 0 */
3765         return false;
3766     }
3767     if (size == 3 && !a->q && a->selem != 1) {
3768         return false;
3769     }
3770     if (!fp_access_check(s)) {
3771         return true;
3772     }
3773 
3774     if (a->rn == 31) {
3775         gen_check_sp_alignment(s);
3776     }
3777 
3778     /* For our purposes, bytes are always little-endian.  */
3779     endian = s->be_data;
3780     if (size == 0) {
3781         endian = MO_LE;
3782     }
3783 
3784     total = a->rpt * a->selem * (a->q ? 16 : 8);
3785     tcg_rn = cpu_reg_sp(s, a->rn);
3786 
3787     /*
3788      * Issue the MTE check vs the logical repeat count, before we
3789      * promote consecutive little-endian elements below.
3790      */
3791     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792                                 finalize_memop_asimd(s, size));
3793 
3794     /*
3795      * Consecutive little-endian elements from a single register
3796      * can be promoted to a larger little-endian operation.
3797      */
3798     align = MO_ALIGN;
3799     if (a->selem == 1 && endian == MO_LE) {
3800         align = pow2_align(size);
3801         size = 3;
3802     }
3803     if (!s->align_mem) {
3804         align = 0;
3805     }
3806     mop = endian | size | align;
3807 
3808     elements = (a->q ? 16 : 8) >> size;
3809     tcg_ebytes = tcg_constant_i64(1 << size);
3810     for (r = 0; r < a->rpt; r++) {
3811         int e;
3812         for (e = 0; e < elements; e++) {
3813             int xs;
3814             for (xs = 0; xs < a->selem; xs++) {
3815                 int tt = (a->rt + r + xs) % 32;
3816                 do_vec_st(s, tt, e, clean_addr, mop);
3817                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3818             }
3819         }
3820     }
3821 
3822     if (a->p) {
3823         if (a->rm == 31) {
3824             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825         } else {
3826             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3827         }
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3833 {
3834     int xs, total, rt;
3835     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836     MemOp mop;
3837 
3838     if (!a->p && a->rm != 0) {
3839         return false;
3840     }
3841     if (!fp_access_check(s)) {
3842         return true;
3843     }
3844 
3845     if (a->rn == 31) {
3846         gen_check_sp_alignment(s);
3847     }
3848 
3849     total = a->selem << a->scale;
3850     tcg_rn = cpu_reg_sp(s, a->rn);
3851 
3852     mop = finalize_memop_asimd(s, a->scale);
3853     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854                                 total, mop);
3855 
3856     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858         do_vec_st(s, rt, a->index, clean_addr, mop);
3859         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3860     }
3861 
3862     if (a->p) {
3863         if (a->rm == 31) {
3864             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865         } else {
3866             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3867         }
3868     }
3869     return true;
3870 }
3871 
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3873 {
3874     int xs, total, rt;
3875     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876     MemOp mop;
3877 
3878     if (!a->p && a->rm != 0) {
3879         return false;
3880     }
3881     if (!fp_access_check(s)) {
3882         return true;
3883     }
3884 
3885     if (a->rn == 31) {
3886         gen_check_sp_alignment(s);
3887     }
3888 
3889     total = a->selem << a->scale;
3890     tcg_rn = cpu_reg_sp(s, a->rn);
3891 
3892     mop = finalize_memop_asimd(s, a->scale);
3893     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894                                 total, mop);
3895 
3896     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898         do_vec_ld(s, rt, a->index, clean_addr, mop);
3899         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3900     }
3901 
3902     if (a->p) {
3903         if (a->rm == 31) {
3904             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905         } else {
3906             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3907         }
3908     }
3909     return true;
3910 }
3911 
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3913 {
3914     int xs, total, rt;
3915     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916     MemOp mop;
3917 
3918     if (!a->p && a->rm != 0) {
3919         return false;
3920     }
3921     if (!fp_access_check(s)) {
3922         return true;
3923     }
3924 
3925     if (a->rn == 31) {
3926         gen_check_sp_alignment(s);
3927     }
3928 
3929     total = a->selem << a->scale;
3930     tcg_rn = cpu_reg_sp(s, a->rn);
3931 
3932     mop = finalize_memop_asimd(s, a->scale);
3933     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934                                 total, mop);
3935 
3936     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938         /* Load and replicate to all elements */
3939         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3940 
3941         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3945     }
3946 
3947     if (a->p) {
3948         if (a->rm == 31) {
3949             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950         } else {
3951             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3952         }
3953     }
3954     return true;
3955 }
3956 
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3958 {
3959     TCGv_i64 addr, clean_addr, tcg_rt;
3960     int size = 4 << s->dcz_blocksize;
3961 
3962     if (!dc_isar_feature(aa64_mte, s)) {
3963         return false;
3964     }
3965     if (s->current_el == 0) {
3966         return false;
3967     }
3968 
3969     if (a->rn == 31) {
3970         gen_check_sp_alignment(s);
3971     }
3972 
3973     addr = read_cpu_reg_sp(s, a->rn, true);
3974     tcg_gen_addi_i64(addr, addr, a->imm);
3975     tcg_rt = cpu_reg(s, a->rt);
3976 
3977     if (s->ata[0]) {
3978         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3979     }
3980     /*
3981      * The non-tags portion of STZGM is mostly like DC_ZVA,
3982      * except the alignment happens before the access.
3983      */
3984     clean_addr = clean_data_tbi(s, addr);
3985     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986     gen_helper_dc_zva(tcg_env, clean_addr);
3987     return true;
3988 }
3989 
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3991 {
3992     TCGv_i64 addr, clean_addr, tcg_rt;
3993 
3994     if (!dc_isar_feature(aa64_mte, s)) {
3995         return false;
3996     }
3997     if (s->current_el == 0) {
3998         return false;
3999     }
4000 
4001     if (a->rn == 31) {
4002         gen_check_sp_alignment(s);
4003     }
4004 
4005     addr = read_cpu_reg_sp(s, a->rn, true);
4006     tcg_gen_addi_i64(addr, addr, a->imm);
4007     tcg_rt = cpu_reg(s, a->rt);
4008 
4009     if (s->ata[0]) {
4010         gen_helper_stgm(tcg_env, addr, tcg_rt);
4011     } else {
4012         MMUAccessType acc = MMU_DATA_STORE;
4013         int size = 4 << s->gm_blocksize;
4014 
4015         clean_addr = clean_data_tbi(s, addr);
4016         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017         gen_probe_access(s, clean_addr, acc, size);
4018     }
4019     return true;
4020 }
4021 
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4023 {
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     if (!dc_isar_feature(aa64_mte, s)) {
4027         return false;
4028     }
4029     if (s->current_el == 0) {
4030         return false;
4031     }
4032 
4033     if (a->rn == 31) {
4034         gen_check_sp_alignment(s);
4035     }
4036 
4037     addr = read_cpu_reg_sp(s, a->rn, true);
4038     tcg_gen_addi_i64(addr, addr, a->imm);
4039     tcg_rt = cpu_reg(s, a->rt);
4040 
4041     if (s->ata[0]) {
4042         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043     } else {
4044         MMUAccessType acc = MMU_DATA_LOAD;
4045         int size = 4 << s->gm_blocksize;
4046 
4047         clean_addr = clean_data_tbi(s, addr);
4048         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049         gen_probe_access(s, clean_addr, acc, size);
4050         /* The result tags are zeros.  */
4051         tcg_gen_movi_i64(tcg_rt, 0);
4052     }
4053     return true;
4054 }
4055 
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4057 {
4058     TCGv_i64 addr, clean_addr, tcg_rt;
4059 
4060     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061         return false;
4062     }
4063 
4064     if (a->rn == 31) {
4065         gen_check_sp_alignment(s);
4066     }
4067 
4068     addr = read_cpu_reg_sp(s, a->rn, true);
4069     if (!a->p) {
4070         /* pre-index or signed offset */
4071         tcg_gen_addi_i64(addr, addr, a->imm);
4072     }
4073 
4074     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075     tcg_rt = cpu_reg(s, a->rt);
4076     if (s->ata[0]) {
4077         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078     } else {
4079         /*
4080          * Tag access disabled: we must check for aborts on the load
4081          * load from [rn+offset], and then insert a 0 tag into rt.
4082          */
4083         clean_addr = clean_data_tbi(s, addr);
4084         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4086     }
4087 
4088     if (a->w) {
4089         /* pre-index or post-index */
4090         if (a->p) {
4091             /* post-index */
4092             tcg_gen_addi_i64(addr, addr, a->imm);
4093         }
4094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4095     }
4096     return true;
4097 }
4098 
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4100 {
4101     TCGv_i64 addr, tcg_rt;
4102 
4103     if (a->rn == 31) {
4104         gen_check_sp_alignment(s);
4105     }
4106 
4107     addr = read_cpu_reg_sp(s, a->rn, true);
4108     if (!a->p) {
4109         /* pre-index or signed offset */
4110         tcg_gen_addi_i64(addr, addr, a->imm);
4111     }
4112     tcg_rt = cpu_reg_sp(s, a->rt);
4113     if (!s->ata[0]) {
4114         /*
4115          * For STG and ST2G, we need to check alignment and probe memory.
4116          * TODO: For STZG and STZ2G, we could rely on the stores below,
4117          * at least for system mode; user-only won't enforce alignment.
4118          */
4119         if (is_pair) {
4120             gen_helper_st2g_stub(tcg_env, addr);
4121         } else {
4122             gen_helper_stg_stub(tcg_env, addr);
4123         }
4124     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125         if (is_pair) {
4126             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127         } else {
4128             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4129         }
4130     } else {
4131         if (is_pair) {
4132             gen_helper_st2g(tcg_env, addr, tcg_rt);
4133         } else {
4134             gen_helper_stg(tcg_env, addr, tcg_rt);
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 zero64 = tcg_constant_i64(0);
4141         TCGv_i128 zero128 = tcg_temp_new_i128();
4142         int mem_index = get_mem_index(s);
4143         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4144 
4145         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4146 
4147         /* This is 1 or 2 atomic 16-byte operations. */
4148         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149         if (is_pair) {
4150             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4152         }
4153     }
4154 
4155     if (a->w) {
4156         /* pre-index or post-index */
4157         if (a->p) {
4158             /* post-index */
4159             tcg_gen_addi_i64(addr, addr, a->imm);
4160         }
4161         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4162     }
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4170 
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4172 
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174                    bool is_setg, SetFn fn)
4175 {
4176     int memidx;
4177     uint32_t syndrome, desc = 0;
4178 
4179     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182 
4183     /*
4184      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185      * us to pull this check before the CheckMOPSEnabled() test
4186      * (which we do in the helper function)
4187      */
4188     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189         a->rd == 31 || a->rn == 31) {
4190         return false;
4191     }
4192 
4193     memidx = get_a64_user_mem_index(s, a->unpriv);
4194 
4195     /*
4196      * We pass option_a == true, matching our implementation;
4197      * we pass wrong_option == false: helper function may set that bit.
4198      */
4199     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4201 
4202     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203         /* We may need to do MTE tag checking, so assemble the descriptor */
4204         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4208     }
4209     /* The helper function always needs the memidx even with MTE disabled */
4210     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4211 
4212     /*
4213      * The helper needs the register numbers, but since they're in
4214      * the syndrome anyway, we let it extract them from there rather
4215      * than passing in an extra three integer arguments.
4216      */
4217     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218     return true;
4219 }
4220 
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4227 
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4229 
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4231 {
4232     int rmemidx, wmemidx;
4233     uint32_t syndrome, rdesc = 0, wdesc = 0;
4234     bool wunpriv = extract32(a->options, 0, 1);
4235     bool runpriv = extract32(a->options, 1, 1);
4236 
4237     /*
4238      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239      * us to pull this check before the CheckMOPSEnabled() test
4240      * (which we do in the helper function)
4241      */
4242     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244         return false;
4245     }
4246 
4247     rmemidx = get_a64_user_mem_index(s, runpriv);
4248     wmemidx = get_a64_user_mem_index(s, wunpriv);
4249 
4250     /*
4251      * We pass option_a == true, matching our implementation;
4252      * we pass wrong_option == false: helper function may set that bit.
4253      */
4254     syndrome = syn_mop(false, false, a->options, is_epilogue,
4255                        false, true, a->rd, a->rs, a->rn);
4256 
4257     /* If we need to do MTE tag checking, assemble the descriptors */
4258     if (s->mte_active[runpriv]) {
4259         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4261     }
4262     if (s->mte_active[wunpriv]) {
4263         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4266     }
4267     /* The helper function needs these parts of the descriptor regardless */
4268     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4270 
4271     /*
4272      * The helper needs the register numbers, but since they're in
4273      * the syndrome anyway, we let it extract them from there rather
4274      * than passing in an extra three integer arguments.
4275      */
4276     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277        tcg_constant_i32(rdesc));
4278     return true;
4279 }
4280 
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4287 
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4289 
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4292 {
4293     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4296 
4297     fn(tcg_rd, tcg_rn, tcg_imm);
4298     if (!a->sf) {
4299         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4300     }
4301     return true;
4302 }
4303 
4304 /*
4305  * PC-rel. addressing
4306  */
4307 
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4309 {
4310     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311     return true;
4312 }
4313 
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4315 {
4316     int64_t offset = (int64_t)a->imm << 12;
4317 
4318     /* The page offset is ok for CF_PCREL. */
4319     offset -= s->pc_curr & 0xfff;
4320     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321     return true;
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate)
4326  */
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4331 
4332 /*
4333  * Add/subtract (immediate, with tags)
4334  */
4335 
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337                                       bool sub_op)
4338 {
4339     TCGv_i64 tcg_rn, tcg_rd;
4340     int imm;
4341 
4342     imm = a->uimm6 << LOG2_TAG_GRANULE;
4343     if (sub_op) {
4344         imm = -imm;
4345     }
4346 
4347     tcg_rn = cpu_reg_sp(s, a->rn);
4348     tcg_rd = cpu_reg_sp(s, a->rd);
4349 
4350     if (s->ata[0]) {
4351         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352                            tcg_constant_i32(imm),
4353                            tcg_constant_i32(a->uimm4));
4354     } else {
4355         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4357     }
4358     return true;
4359 }
4360 
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4363 
4364 /* The input should be a value in the bottom e bits (with higher
4365  * bits zero); returns that value replicated into every element
4366  * of size e in a 64 bit integer.
4367  */
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4369 {
4370     assert(e != 0);
4371     while (e < 64) {
4372         mask |= mask << e;
4373         e *= 2;
4374     }
4375     return mask;
4376 }
4377 
4378 /*
4379  * Logical (immediate)
4380  */
4381 
4382 /*
4383  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385  * value (ie should cause a guest UNDEF exception), and true if they are
4386  * valid, in which case the decoded bit pattern is written to result.
4387  */
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389                             unsigned int imms, unsigned int immr)
4390 {
4391     uint64_t mask;
4392     unsigned e, levels, s, r;
4393     int len;
4394 
4395     assert(immn < 2 && imms < 64 && immr < 64);
4396 
4397     /* The bit patterns we create here are 64 bit patterns which
4398      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399      * 64 bits each. Each element contains the same value: a run
4400      * of between 1 and e-1 non-zero bits, rotated within the
4401      * element by between 0 and e-1 bits.
4402      *
4403      * The element size and run length are encoded into immn (1 bit)
4404      * and imms (6 bits) as follows:
4405      * 64 bit elements: immn = 1, imms = <length of run - 1>
4406      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411      * Notice that immn = 0, imms = 11111x is the only combination
4412      * not covered by one of the above options; this is reserved.
4413      * Further, <length of run - 1> all-ones is a reserved pattern.
4414      *
4415      * In all cases the rotation is by immr % e (and immr is 6 bits).
4416      */
4417 
4418     /* First determine the element size */
4419     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420     if (len < 1) {
4421         /* This is the immn == 0, imms == 0x11111x case */
4422         return false;
4423     }
4424     e = 1 << len;
4425 
4426     levels = e - 1;
4427     s = imms & levels;
4428     r = immr & levels;
4429 
4430     if (s == levels) {
4431         /* <length of run - 1> mustn't be all-ones. */
4432         return false;
4433     }
4434 
4435     /* Create the value of one element: s+1 set bits rotated
4436      * by r within the element (which is e bits wide)...
4437      */
4438     mask = MAKE_64BIT_MASK(0, s + 1);
4439     if (r) {
4440         mask = (mask >> r) | (mask << (e - r));
4441         mask &= MAKE_64BIT_MASK(0, e);
4442     }
4443     /* ...then replicate the element over the whole 64 bit value */
4444     mask = bitfield_replicate(mask, e);
4445     *result = mask;
4446     return true;
4447 }
4448 
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4451 {
4452     TCGv_i64 tcg_rd, tcg_rn;
4453     uint64_t imm;
4454 
4455     /* Some immediate field values are reserved. */
4456     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457                                 extract32(a->dbm, 0, 6),
4458                                 extract32(a->dbm, 6, 6))) {
4459         return false;
4460     }
4461     if (!a->sf) {
4462         imm &= 0xffffffffull;
4463     }
4464 
4465     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466     tcg_rn = cpu_reg(s, a->rn);
4467 
4468     fn(tcg_rd, tcg_rn, imm);
4469     if (set_cc) {
4470         gen_logic_CC(a->sf, tcg_rd);
4471     }
4472     if (!a->sf) {
4473         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4474     }
4475     return true;
4476 }
4477 
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4482 
4483 /*
4484  * Move wide (immediate)
4485  */
4486 
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4488 {
4489     int pos = a->hw << 4;
4490     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491     return true;
4492 }
4493 
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4495 {
4496     int pos = a->hw << 4;
4497     uint64_t imm = a->imm;
4498 
4499     imm = ~(imm << pos);
4500     if (!a->sf) {
4501         imm = (uint32_t)imm;
4502     }
4503     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504     return true;
4505 }
4506 
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4508 {
4509     int pos = a->hw << 4;
4510     TCGv_i64 tcg_rd, tcg_im;
4511 
4512     tcg_rd = cpu_reg(s, a->rd);
4513     tcg_im = tcg_constant_i64(a->imm);
4514     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * Bitfield
4523  */
4524 
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4526 {
4527     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529     unsigned int bitsize = a->sf ? 64 : 32;
4530     unsigned int ri = a->immr;
4531     unsigned int si = a->imms;
4532     unsigned int pos, len;
4533 
4534     if (si >= ri) {
4535         /* Wd<s-r:0> = Wn<s:r> */
4536         len = (si - ri) + 1;
4537         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538         if (!a->sf) {
4539             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540         }
4541     } else {
4542         /* Wd<32+s-r,32-r> = Wn<s:0> */
4543         len = si + 1;
4544         pos = (bitsize - ri) & (bitsize - 1);
4545 
4546         if (len < ri) {
4547             /*
4548              * Sign extend the destination field from len to fill the
4549              * balance of the word.  Let the deposit below insert all
4550              * of those sign bits.
4551              */
4552             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553             len = ri;
4554         }
4555 
4556         /*
4557          * We start with zero, and we haven't modified any bits outside
4558          * bitsize, therefore no final zero-extension is unneeded for !sf.
4559          */
4560         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4561     }
4562     return true;
4563 }
4564 
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4566 {
4567     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569     unsigned int bitsize = a->sf ? 64 : 32;
4570     unsigned int ri = a->immr;
4571     unsigned int si = a->imms;
4572     unsigned int pos, len;
4573 
4574     tcg_rd = cpu_reg(s, a->rd);
4575     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 
4577     if (si >= ri) {
4578         /* Wd<s-r:0> = Wn<s:r> */
4579         len = (si - ri) + 1;
4580         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581     } else {
4582         /* Wd<32+s-r,32-r> = Wn<s:0> */
4583         len = si + 1;
4584         pos = (bitsize - ri) & (bitsize - 1);
4585         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4586     }
4587     return true;
4588 }
4589 
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4591 {
4592     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594     unsigned int bitsize = a->sf ? 64 : 32;
4595     unsigned int ri = a->immr;
4596     unsigned int si = a->imms;
4597     unsigned int pos, len;
4598 
4599     tcg_rd = cpu_reg(s, a->rd);
4600     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 
4602     if (si >= ri) {
4603         /* Wd<s-r:0> = Wn<s:r> */
4604         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605         len = (si - ri) + 1;
4606         pos = 0;
4607     } else {
4608         /* Wd<32+s-r,32-r> = Wn<s:0> */
4609         len = si + 1;
4610         pos = (bitsize - ri) & (bitsize - 1);
4611     }
4612 
4613     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614     if (!a->sf) {
4615         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4616     }
4617     return true;
4618 }
4619 
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4621 {
4622     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4623 
4624     tcg_rd = cpu_reg(s, a->rd);
4625 
4626     if (unlikely(a->imm == 0)) {
4627         /*
4628          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629          * so an extract from bit 0 is a special case.
4630          */
4631         if (a->sf) {
4632             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633         } else {
4634             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4635         }
4636     } else {
4637         tcg_rm = cpu_reg(s, a->rm);
4638         tcg_rn = cpu_reg(s, a->rn);
4639 
4640         if (a->sf) {
4641             /* Specialization to ROR happens in EXTRACT2.  */
4642             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643         } else {
4644             TCGv_i32 t0 = tcg_temp_new_i32();
4645 
4646             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647             if (a->rm == a->rn) {
4648                 tcg_gen_rotri_i32(t0, t0, a->imm);
4649             } else {
4650                 TCGv_i32 t1 = tcg_temp_new_i32();
4651                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4653             }
4654             tcg_gen_extu_i32_i64(tcg_rd, t0);
4655         }
4656     }
4657     return true;
4658 }
4659 
4660 /*
4661  * Cryptographic AES, SHA, SHA512
4662  */
4663 
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4668 
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4673 
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4677 
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4681 
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4689 
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4692 
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4695 
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4697 {
4698     if (!dc_isar_feature(aa64_sm3, s)) {
4699         return false;
4700     }
4701     if (fp_access_check(s)) {
4702         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705         TCGv_i32 tcg_res = tcg_temp_new_i32();
4706         unsigned vsz, dofs;
4707 
4708         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4711 
4712         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4716 
4717         /* Clear the whole register first, then store bits [127:96]. */
4718         vsz = vec_full_reg_size(s);
4719         dofs = vec_full_reg_offset(s, a->rd);
4720         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4722     }
4723     return true;
4724 }
4725 
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4727 {
4728     if (fp_access_check(s)) {
4729         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4730     }
4731     return true;
4732 }
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4737 
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4739 {
4740     if (!dc_isar_feature(aa64_sha3, s)) {
4741         return false;
4742     }
4743     if (fp_access_check(s)) {
4744         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745                      vec_full_reg_offset(s, a->rn),
4746                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4747                      vec_full_reg_size(s));
4748     }
4749     return true;
4750 }
4751 
4752 /*
4753  * Advanced SIMD copy
4754  */
4755 
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4757 {
4758     unsigned esz = ctz32(imm);
4759     if (esz <= MO_64) {
4760         *pesz = esz;
4761         *pidx = imm >> (esz + 1);
4762         return true;
4763     }
4764     return false;
4765 }
4766 
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4768 {
4769     MemOp esz;
4770     unsigned idx;
4771 
4772     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773         return false;
4774     }
4775     if (fp_access_check(s)) {
4776         /*
4777          * This instruction just extracts the specified element and
4778          * zero-extends it into the bottom of the destination register.
4779          */
4780         TCGv_i64 tmp = tcg_temp_new_i64();
4781         read_vec_element(s, tmp, a->rn, idx, esz);
4782         write_fp_dreg(s, a->rd, tmp);
4783     }
4784     return true;
4785 }
4786 
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4788 {
4789     MemOp esz;
4790     unsigned idx;
4791 
4792     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793         return false;
4794     }
4795     if (esz == MO_64 && !a->q) {
4796         return false;
4797     }
4798     if (fp_access_check(s)) {
4799         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800                              vec_reg_offset(s, a->rn, idx, esz),
4801                              a->q ? 16 : 8, vec_full_reg_size(s));
4802     }
4803     return true;
4804 }
4805 
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4807 {
4808     MemOp esz;
4809     unsigned idx;
4810 
4811     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812         return false;
4813     }
4814     if (esz == MO_64 && !a->q) {
4815         return false;
4816     }
4817     if (fp_access_check(s)) {
4818         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819                              a->q ? 16 : 8, vec_full_reg_size(s),
4820                              cpu_reg(s, a->rn));
4821     }
4822     return true;
4823 }
4824 
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4826 {
4827     MemOp esz;
4828     unsigned idx;
4829 
4830     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831         return false;
4832     }
4833     if (is_signed) {
4834         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835             return false;
4836         }
4837     } else {
4838         if (esz == MO_64 ? !a->q : a->q) {
4839             return false;
4840         }
4841     }
4842     if (fp_access_check(s)) {
4843         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845         if (is_signed && !a->q) {
4846             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847         }
4848     }
4849     return true;
4850 }
4851 
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4854 
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4856 {
4857     MemOp esz;
4858     unsigned idx;
4859 
4860     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861         return false;
4862     }
4863     if (fp_access_check(s)) {
4864         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865         clear_vec_high(s, true, a->rd);
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4871 {
4872     MemOp esz;
4873     unsigned didx, sidx;
4874 
4875     if (!decode_esz_idx(a->di, &esz, &didx)) {
4876         return false;
4877     }
4878     sidx = a->si >> esz;
4879     if (fp_access_check(s)) {
4880         TCGv_i64 tmp = tcg_temp_new_i64();
4881 
4882         read_vec_element(s, tmp, a->rn, sidx, esz);
4883         write_vec_element(s, tmp, a->rd, didx, esz);
4884 
4885         /* INS is considered a 128-bit write for SVE. */
4886         clear_vec_high(s, true, a->rd);
4887     }
4888     return true;
4889 }
4890 
4891 /*
4892  * Advanced SIMD three same
4893  */
4894 
4895 typedef struct FPScalar {
4896     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4900 
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4902 {
4903     switch (a->esz) {
4904     case MO_64:
4905         if (fp_access_check(s)) {
4906             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909             write_fp_dreg(s, a->rd, t0);
4910         }
4911         break;
4912     case MO_32:
4913         if (fp_access_check(s)) {
4914             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917             write_fp_sreg(s, a->rd, t0);
4918         }
4919         break;
4920     case MO_16:
4921         if (!dc_isar_feature(aa64_fp16, s)) {
4922             return false;
4923         }
4924         if (fp_access_check(s)) {
4925             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928             write_fp_sreg(s, a->rd, t0);
4929         }
4930         break;
4931     default:
4932         return false;
4933     }
4934     return true;
4935 }
4936 
4937 static const FPScalar f_scalar_fadd = {
4938     gen_helper_vfp_addh,
4939     gen_helper_vfp_adds,
4940     gen_helper_vfp_addd,
4941 };
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4943 
4944 static const FPScalar f_scalar_fsub = {
4945     gen_helper_vfp_subh,
4946     gen_helper_vfp_subs,
4947     gen_helper_vfp_subd,
4948 };
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4950 
4951 static const FPScalar f_scalar_fdiv = {
4952     gen_helper_vfp_divh,
4953     gen_helper_vfp_divs,
4954     gen_helper_vfp_divd,
4955 };
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4957 
4958 static const FPScalar f_scalar_fmul = {
4959     gen_helper_vfp_mulh,
4960     gen_helper_vfp_muls,
4961     gen_helper_vfp_muld,
4962 };
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4964 
4965 static const FPScalar f_scalar_fmax = {
4966     gen_helper_advsimd_maxh,
4967     gen_helper_vfp_maxs,
4968     gen_helper_vfp_maxd,
4969 };
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4971 
4972 static const FPScalar f_scalar_fmin = {
4973     gen_helper_advsimd_minh,
4974     gen_helper_vfp_mins,
4975     gen_helper_vfp_mind,
4976 };
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4978 
4979 static const FPScalar f_scalar_fmaxnm = {
4980     gen_helper_advsimd_maxnumh,
4981     gen_helper_vfp_maxnums,
4982     gen_helper_vfp_maxnumd,
4983 };
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4985 
4986 static const FPScalar f_scalar_fminnm = {
4987     gen_helper_advsimd_minnumh,
4988     gen_helper_vfp_minnums,
4989     gen_helper_vfp_minnumd,
4990 };
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4992 
4993 static const FPScalar f_scalar_fmulx = {
4994     gen_helper_advsimd_mulxh,
4995     gen_helper_vfp_mulxs,
4996     gen_helper_vfp_mulxd,
4997 };
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4999 
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5001 {
5002     gen_helper_vfp_mulh(d, n, m, s);
5003     gen_vfp_negh(d, d);
5004 }
5005 
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5007 {
5008     gen_helper_vfp_muls(d, n, m, s);
5009     gen_vfp_negs(d, d);
5010 }
5011 
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5013 {
5014     gen_helper_vfp_muld(d, n, m, s);
5015     gen_vfp_negd(d, d);
5016 }
5017 
5018 static const FPScalar f_scalar_fnmul = {
5019     gen_fnmul_h,
5020     gen_fnmul_s,
5021     gen_fnmul_d,
5022 };
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5024 
5025 static const FPScalar f_scalar_fcmeq = {
5026     gen_helper_advsimd_ceq_f16,
5027     gen_helper_neon_ceq_f32,
5028     gen_helper_neon_ceq_f64,
5029 };
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5031 
5032 static const FPScalar f_scalar_fcmge = {
5033     gen_helper_advsimd_cge_f16,
5034     gen_helper_neon_cge_f32,
5035     gen_helper_neon_cge_f64,
5036 };
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5038 
5039 static const FPScalar f_scalar_fcmgt = {
5040     gen_helper_advsimd_cgt_f16,
5041     gen_helper_neon_cgt_f32,
5042     gen_helper_neon_cgt_f64,
5043 };
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5045 
5046 static const FPScalar f_scalar_facge = {
5047     gen_helper_advsimd_acge_f16,
5048     gen_helper_neon_acge_f32,
5049     gen_helper_neon_acge_f64,
5050 };
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5052 
5053 static const FPScalar f_scalar_facgt = {
5054     gen_helper_advsimd_acgt_f16,
5055     gen_helper_neon_acgt_f32,
5056     gen_helper_neon_acgt_f64,
5057 };
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5059 
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5061 {
5062     gen_helper_vfp_subh(d, n, m, s);
5063     gen_vfp_absh(d, d);
5064 }
5065 
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5067 {
5068     gen_helper_vfp_subs(d, n, m, s);
5069     gen_vfp_abss(d, d);
5070 }
5071 
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5073 {
5074     gen_helper_vfp_subd(d, n, m, s);
5075     gen_vfp_absd(d, d);
5076 }
5077 
5078 static const FPScalar f_scalar_fabd = {
5079     gen_fabd_h,
5080     gen_fabd_s,
5081     gen_fabd_d,
5082 };
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5084 
5085 static const FPScalar f_scalar_frecps = {
5086     gen_helper_recpsf_f16,
5087     gen_helper_recpsf_f32,
5088     gen_helper_recpsf_f64,
5089 };
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5091 
5092 static const FPScalar f_scalar_frsqrts = {
5093     gen_helper_rsqrtsf_f16,
5094     gen_helper_rsqrtsf_f32,
5095     gen_helper_rsqrtsf_f64,
5096 };
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5098 
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100                 MemOp sgn_n, MemOp sgn_m,
5101                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5103 {
5104     TCGv_i64 t0, t1, t2, qc;
5105     MemOp esz = a->esz;
5106 
5107     if (!fp_access_check(s)) {
5108         return true;
5109     }
5110 
5111     t0 = tcg_temp_new_i64();
5112     t1 = tcg_temp_new_i64();
5113     t2 = tcg_temp_new_i64();
5114     qc = tcg_temp_new_i64();
5115     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5118 
5119     if (esz == MO_64) {
5120         gen_d(t0, qc, t1, t2);
5121     } else {
5122         gen_bhs(t0, qc, t1, t2, esz);
5123         tcg_gen_ext_i64(t0, t0, esz);
5124     }
5125 
5126     write_fp_dreg(s, a->rd, t0);
5127     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128     return true;
5129 }
5130 
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5137 
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5140 {
5141     if (fp_access_check(s)) {
5142         TCGv_i64 t0 = tcg_temp_new_i64();
5143         TCGv_i64 t1 = tcg_temp_new_i64();
5144 
5145         read_vec_element(s, t0, a->rn, 0, MO_64);
5146         read_vec_element(s, t1, a->rm, 0, MO_64);
5147         fn(t0, t0, t1);
5148         write_fp_dreg(s, a->rd, t0);
5149     }
5150     return true;
5151 }
5152 
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5159 
5160 typedef struct ENVScalar2 {
5161     NeonGenTwoOpEnvFn *gen_bhs[3];
5162     NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5164 
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5166 {
5167     if (!fp_access_check(s)) {
5168         return true;
5169     }
5170     if (a->esz == MO_64) {
5171         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173         f->gen_d(t0, tcg_env, t0, t1);
5174         write_fp_dreg(s, a->rd, t0);
5175     } else {
5176         TCGv_i32 t0 = tcg_temp_new_i32();
5177         TCGv_i32 t1 = tcg_temp_new_i32();
5178 
5179         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182         write_fp_sreg(s, a->rd, t0);
5183     }
5184     return true;
5185 }
5186 
5187 static const ENVScalar2 f_scalar_sqshl = {
5188     { gen_helper_neon_qshl_s8,
5189       gen_helper_neon_qshl_s16,
5190       gen_helper_neon_qshl_s32 },
5191     gen_helper_neon_qshl_s64,
5192 };
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5194 
5195 static const ENVScalar2 f_scalar_uqshl = {
5196     { gen_helper_neon_qshl_u8,
5197       gen_helper_neon_qshl_u16,
5198       gen_helper_neon_qshl_u32 },
5199     gen_helper_neon_qshl_u64,
5200 };
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5202 
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204     { gen_helper_neon_qrshl_s8,
5205       gen_helper_neon_qrshl_s16,
5206       gen_helper_neon_qrshl_s32 },
5207     gen_helper_neon_qrshl_s64,
5208 };
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5210 
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212     { gen_helper_neon_qrshl_u8,
5213       gen_helper_neon_qrshl_u16,
5214       gen_helper_neon_qrshl_u32 },
5215     gen_helper_neon_qrshl_u64,
5216 };
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5218 
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220                               const ENVScalar2 *f)
5221 {
5222     if (a->esz == MO_16 || a->esz == MO_32) {
5223         return do_env_scalar2(s, a, f);
5224     }
5225     return false;
5226 }
5227 
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5230 };
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5232 
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5235 };
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5237 
5238 typedef struct ENVScalar3 {
5239     NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5241 
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243                               const ENVScalar3 *f)
5244 {
5245     TCGv_i32 t0, t1, t2;
5246 
5247     if (a->esz != MO_16 && a->esz != MO_32) {
5248         return false;
5249     }
5250     if (!fp_access_check(s)) {
5251         return true;
5252     }
5253 
5254     t0 = tcg_temp_new_i32();
5255     t1 = tcg_temp_new_i32();
5256     t2 = tcg_temp_new_i32();
5257     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261     write_fp_sreg(s, a->rd, t0);
5262     return true;
5263 }
5264 
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5267 };
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5269 
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5272 };
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5274 
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5276 {
5277     if (fp_access_check(s)) {
5278         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281         write_fp_dreg(s, a->rd, t0);
5282     }
5283     return true;
5284 }
5285 
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5292 
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5294                           gen_helper_gvec_3_ptr * const fns[3])
5295 {
5296     MemOp esz = a->esz;
5297 
5298     switch (esz) {
5299     case MO_64:
5300         if (!a->q) {
5301             return false;
5302         }
5303         break;
5304     case MO_32:
5305         break;
5306     case MO_16:
5307         if (!dc_isar_feature(aa64_fp16, s)) {
5308             return false;
5309         }
5310         break;
5311     default:
5312         return false;
5313     }
5314     if (fp_access_check(s)) {
5315         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316                           esz == MO_16, 0, fns[esz - 1]);
5317     }
5318     return true;
5319 }
5320 
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322     gen_helper_gvec_fadd_h,
5323     gen_helper_gvec_fadd_s,
5324     gen_helper_gvec_fadd_d,
5325 };
5326 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5327 
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329     gen_helper_gvec_fsub_h,
5330     gen_helper_gvec_fsub_s,
5331     gen_helper_gvec_fsub_d,
5332 };
5333 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5334 
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336     gen_helper_gvec_fdiv_h,
5337     gen_helper_gvec_fdiv_s,
5338     gen_helper_gvec_fdiv_d,
5339 };
5340 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5341 
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343     gen_helper_gvec_fmul_h,
5344     gen_helper_gvec_fmul_s,
5345     gen_helper_gvec_fmul_d,
5346 };
5347 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5348 
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350     gen_helper_gvec_fmax_h,
5351     gen_helper_gvec_fmax_s,
5352     gen_helper_gvec_fmax_d,
5353 };
5354 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5355 
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357     gen_helper_gvec_fmin_h,
5358     gen_helper_gvec_fmin_s,
5359     gen_helper_gvec_fmin_d,
5360 };
5361 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5362 
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364     gen_helper_gvec_fmaxnum_h,
5365     gen_helper_gvec_fmaxnum_s,
5366     gen_helper_gvec_fmaxnum_d,
5367 };
5368 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5369 
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371     gen_helper_gvec_fminnum_h,
5372     gen_helper_gvec_fminnum_s,
5373     gen_helper_gvec_fminnum_d,
5374 };
5375 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5376 
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378     gen_helper_gvec_fmulx_h,
5379     gen_helper_gvec_fmulx_s,
5380     gen_helper_gvec_fmulx_d,
5381 };
5382 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5383 
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385     gen_helper_gvec_vfma_h,
5386     gen_helper_gvec_vfma_s,
5387     gen_helper_gvec_vfma_d,
5388 };
5389 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5390 
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392     gen_helper_gvec_vfms_h,
5393     gen_helper_gvec_vfms_s,
5394     gen_helper_gvec_vfms_d,
5395 };
5396 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5397 
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399     gen_helper_gvec_fceq_h,
5400     gen_helper_gvec_fceq_s,
5401     gen_helper_gvec_fceq_d,
5402 };
5403 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5404 
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406     gen_helper_gvec_fcge_h,
5407     gen_helper_gvec_fcge_s,
5408     gen_helper_gvec_fcge_d,
5409 };
5410 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5411 
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413     gen_helper_gvec_fcgt_h,
5414     gen_helper_gvec_fcgt_s,
5415     gen_helper_gvec_fcgt_d,
5416 };
5417 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5418 
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420     gen_helper_gvec_facge_h,
5421     gen_helper_gvec_facge_s,
5422     gen_helper_gvec_facge_d,
5423 };
5424 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5425 
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427     gen_helper_gvec_facgt_h,
5428     gen_helper_gvec_facgt_s,
5429     gen_helper_gvec_facgt_d,
5430 };
5431 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5432 
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434     gen_helper_gvec_fabd_h,
5435     gen_helper_gvec_fabd_s,
5436     gen_helper_gvec_fabd_d,
5437 };
5438 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5439 
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441     gen_helper_gvec_recps_h,
5442     gen_helper_gvec_recps_s,
5443     gen_helper_gvec_recps_d,
5444 };
5445 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5446 
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448     gen_helper_gvec_rsqrts_h,
5449     gen_helper_gvec_rsqrts_s,
5450     gen_helper_gvec_rsqrts_d,
5451 };
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5453 
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455     gen_helper_gvec_faddp_h,
5456     gen_helper_gvec_faddp_s,
5457     gen_helper_gvec_faddp_d,
5458 };
5459 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5460 
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462     gen_helper_gvec_fmaxp_h,
5463     gen_helper_gvec_fmaxp_s,
5464     gen_helper_gvec_fmaxp_d,
5465 };
5466 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5467 
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469     gen_helper_gvec_fminp_h,
5470     gen_helper_gvec_fminp_s,
5471     gen_helper_gvec_fminp_d,
5472 };
5473 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5474 
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476     gen_helper_gvec_fmaxnump_h,
5477     gen_helper_gvec_fmaxnump_s,
5478     gen_helper_gvec_fmaxnump_d,
5479 };
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5481 
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483     gen_helper_gvec_fminnump_h,
5484     gen_helper_gvec_fminnump_s,
5485     gen_helper_gvec_fminnump_d,
5486 };
5487 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5488 
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5490 {
5491     if (fp_access_check(s)) {
5492         int data = (is_2 << 1) | is_s;
5493         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494                            vec_full_reg_offset(s, a->rn),
5495                            vec_full_reg_offset(s, a->rm), tcg_env,
5496                            a->q ? 16 : 8, vec_full_reg_size(s),
5497                            data, gen_helper_gvec_fmlal_a64);
5498     }
5499     return true;
5500 }
5501 
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5506 
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5512 
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5518 
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5520 {
5521     if (fp_access_check(s)) {
5522         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5523     }
5524     return true;
5525 }
5526 
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5530 
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5537 
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5546 
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5567 
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5569 {
5570     if (a->esz == MO_64 && !a->q) {
5571         return false;
5572     }
5573     if (fp_access_check(s)) {
5574         tcg_gen_gvec_cmp(cond, a->esz,
5575                          vec_full_reg_offset(s, a->rd),
5576                          vec_full_reg_offset(s, a->rn),
5577                          vec_full_reg_offset(s, a->rm),
5578                          a->q ? 16 : 8, vec_full_reg_size(s));
5579     }
5580     return true;
5581 }
5582 
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5589 
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5594 
5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5596                           gen_helper_gvec_4 *fn)
5597 {
5598     if (fp_access_check(s)) {
5599         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5600     }
5601     return true;
5602 }
5603 
5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot)
5608 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfmmla)
5609 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
5610 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
5611 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
5612 
5613 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
5614 {
5615     if (!dc_isar_feature(aa64_bf16, s)) {
5616         return false;
5617     }
5618     if (fp_access_check(s)) {
5619         /* Q bit selects BFMLALB vs BFMLALT. */
5620         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q,
5621                           gen_helper_gvec_bfmlal);
5622     }
5623     return true;
5624 }
5625 
5626 /*
5627  * Advanced SIMD scalar/vector x indexed element
5628  */
5629 
5630 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5631 {
5632     switch (a->esz) {
5633     case MO_64:
5634         if (fp_access_check(s)) {
5635             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5636             TCGv_i64 t1 = tcg_temp_new_i64();
5637 
5638             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5639             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5640             write_fp_dreg(s, a->rd, t0);
5641         }
5642         break;
5643     case MO_32:
5644         if (fp_access_check(s)) {
5645             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5646             TCGv_i32 t1 = tcg_temp_new_i32();
5647 
5648             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5649             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5650             write_fp_sreg(s, a->rd, t0);
5651         }
5652         break;
5653     case MO_16:
5654         if (!dc_isar_feature(aa64_fp16, s)) {
5655             return false;
5656         }
5657         if (fp_access_check(s)) {
5658             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5659             TCGv_i32 t1 = tcg_temp_new_i32();
5660 
5661             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5662             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5663             write_fp_sreg(s, a->rd, t0);
5664         }
5665         break;
5666     default:
5667         g_assert_not_reached();
5668     }
5669     return true;
5670 }
5671 
5672 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5673 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5674 
5675 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5676 {
5677     switch (a->esz) {
5678     case MO_64:
5679         if (fp_access_check(s)) {
5680             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5681             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5682             TCGv_i64 t2 = tcg_temp_new_i64();
5683 
5684             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5685             if (neg) {
5686                 gen_vfp_negd(t1, t1);
5687             }
5688             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5689             write_fp_dreg(s, a->rd, t0);
5690         }
5691         break;
5692     case MO_32:
5693         if (fp_access_check(s)) {
5694             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5695             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5696             TCGv_i32 t2 = tcg_temp_new_i32();
5697 
5698             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5699             if (neg) {
5700                 gen_vfp_negs(t1, t1);
5701             }
5702             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5703             write_fp_sreg(s, a->rd, t0);
5704         }
5705         break;
5706     case MO_16:
5707         if (!dc_isar_feature(aa64_fp16, s)) {
5708             return false;
5709         }
5710         if (fp_access_check(s)) {
5711             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5712             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5713             TCGv_i32 t2 = tcg_temp_new_i32();
5714 
5715             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5716             if (neg) {
5717                 gen_vfp_negh(t1, t1);
5718             }
5719             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5720                                        fpstatus_ptr(FPST_FPCR_F16));
5721             write_fp_sreg(s, a->rd, t0);
5722         }
5723         break;
5724     default:
5725         g_assert_not_reached();
5726     }
5727     return true;
5728 }
5729 
5730 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5731 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5732 
5733 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
5734                                   const ENVScalar2 *f)
5735 {
5736     if (a->esz < MO_16 || a->esz > MO_32) {
5737         return false;
5738     }
5739     if (fp_access_check(s)) {
5740         TCGv_i32 t0 = tcg_temp_new_i32();
5741         TCGv_i32 t1 = tcg_temp_new_i32();
5742 
5743         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5744         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5745         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5746         write_fp_sreg(s, a->rd, t0);
5747     }
5748     return true;
5749 }
5750 
5751 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
5752 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
5753 
5754 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
5755                                   const ENVScalar3 *f)
5756 {
5757     if (a->esz < MO_16 || a->esz > MO_32) {
5758         return false;
5759     }
5760     if (fp_access_check(s)) {
5761         TCGv_i32 t0 = tcg_temp_new_i32();
5762         TCGv_i32 t1 = tcg_temp_new_i32();
5763         TCGv_i32 t2 = tcg_temp_new_i32();
5764 
5765         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5766         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5767         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5768         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5769         write_fp_sreg(s, a->rd, t0);
5770     }
5771     return true;
5772 }
5773 
5774 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
5775 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
5776 
5777 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5778                               gen_helper_gvec_3_ptr * const fns[3])
5779 {
5780     MemOp esz = a->esz;
5781 
5782     switch (esz) {
5783     case MO_64:
5784         if (!a->q) {
5785             return false;
5786         }
5787         break;
5788     case MO_32:
5789         break;
5790     case MO_16:
5791         if (!dc_isar_feature(aa64_fp16, s)) {
5792             return false;
5793         }
5794         break;
5795     default:
5796         g_assert_not_reached();
5797     }
5798     if (fp_access_check(s)) {
5799         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5800                           esz == MO_16, a->idx, fns[esz - 1]);
5801     }
5802     return true;
5803 }
5804 
5805 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5806     gen_helper_gvec_fmul_idx_h,
5807     gen_helper_gvec_fmul_idx_s,
5808     gen_helper_gvec_fmul_idx_d,
5809 };
5810 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5811 
5812 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5813     gen_helper_gvec_fmulx_idx_h,
5814     gen_helper_gvec_fmulx_idx_s,
5815     gen_helper_gvec_fmulx_idx_d,
5816 };
5817 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5818 
5819 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5820 {
5821     static gen_helper_gvec_4_ptr * const fns[3] = {
5822         gen_helper_gvec_fmla_idx_h,
5823         gen_helper_gvec_fmla_idx_s,
5824         gen_helper_gvec_fmla_idx_d,
5825     };
5826     MemOp esz = a->esz;
5827 
5828     switch (esz) {
5829     case MO_64:
5830         if (!a->q) {
5831             return false;
5832         }
5833         break;
5834     case MO_32:
5835         break;
5836     case MO_16:
5837         if (!dc_isar_feature(aa64_fp16, s)) {
5838             return false;
5839         }
5840         break;
5841     default:
5842         g_assert_not_reached();
5843     }
5844     if (fp_access_check(s)) {
5845         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5846                           esz == MO_16, (a->idx << 1) | neg,
5847                           fns[esz - 1]);
5848     }
5849     return true;
5850 }
5851 
5852 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5853 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5854 
5855 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5856 {
5857     if (fp_access_check(s)) {
5858         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5859         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5860                            vec_full_reg_offset(s, a->rn),
5861                            vec_full_reg_offset(s, a->rm), tcg_env,
5862                            a->q ? 16 : 8, vec_full_reg_size(s),
5863                            data, gen_helper_gvec_fmlal_idx_a64);
5864     }
5865     return true;
5866 }
5867 
5868 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5869 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5870 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5871 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5872 
5873 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5874                                gen_helper_gvec_3 * const fns[2])
5875 {
5876     assert(a->esz == MO_16 || a->esz == MO_32);
5877     if (fp_access_check(s)) {
5878         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
5879     }
5880     return true;
5881 }
5882 
5883 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
5884     gen_helper_gvec_mul_idx_h,
5885     gen_helper_gvec_mul_idx_s,
5886 };
5887 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
5888 
5889 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
5890 {
5891     static gen_helper_gvec_4 * const fns[2][2] = {
5892         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
5893         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
5894     };
5895 
5896     assert(a->esz == MO_16 || a->esz == MO_32);
5897     if (fp_access_check(s)) {
5898         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
5899                          a->idx, fns[a->esz - 1][sub]);
5900     }
5901     return true;
5902 }
5903 
5904 TRANS(MLA_vi, do_mla_vector_idx, a, false)
5905 TRANS(MLS_vi, do_mla_vector_idx, a, true)
5906 
5907 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
5908                                   gen_helper_gvec_4 * const fns[2])
5909 {
5910     assert(a->esz == MO_16 || a->esz == MO_32);
5911     if (fp_access_check(s)) {
5912         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
5913                            vec_full_reg_offset(s, a->rn),
5914                            vec_full_reg_offset(s, a->rm),
5915                            offsetof(CPUARMState, vfp.qc),
5916                            a->q ? 16 : 8, vec_full_reg_size(s),
5917                            a->idx, fns[a->esz - 1]);
5918     }
5919     return true;
5920 }
5921 
5922 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
5923     gen_helper_neon_sqdmulh_idx_h,
5924     gen_helper_neon_sqdmulh_idx_s,
5925 };
5926 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
5927 
5928 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
5929     gen_helper_neon_sqrdmulh_idx_h,
5930     gen_helper_neon_sqrdmulh_idx_s,
5931 };
5932 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
5933 
5934 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
5935     gen_helper_neon_sqrdmlah_idx_h,
5936     gen_helper_neon_sqrdmlah_idx_s,
5937 };
5938 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5939            f_vector_idx_sqrdmlah)
5940 
5941 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
5942     gen_helper_neon_sqrdmlsh_idx_h,
5943     gen_helper_neon_sqrdmlsh_idx_s,
5944 };
5945 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5946            f_vector_idx_sqrdmlsh)
5947 
5948 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
5949                               gen_helper_gvec_4 *fn)
5950 {
5951     if (fp_access_check(s)) {
5952         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
5953     }
5954     return true;
5955 }
5956 
5957 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
5958 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
5959 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5960            gen_helper_gvec_sudot_idx_b)
5961 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5962            gen_helper_gvec_usdot_idx_b)
5963 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a,
5964            gen_helper_gvec_bfdot_idx)
5965 
5966 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
5967 {
5968     if (!dc_isar_feature(aa64_bf16, s)) {
5969         return false;
5970     }
5971     if (fp_access_check(s)) {
5972         /* Q bit selects BFMLALB vs BFMLALT. */
5973         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0,
5974                           (a->idx << 1) | a->q,
5975                           gen_helper_gvec_bfmlal_idx);
5976     }
5977     return true;
5978 }
5979 
5980 /*
5981  * Advanced SIMD scalar pairwise
5982  */
5983 
5984 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5985 {
5986     switch (a->esz) {
5987     case MO_64:
5988         if (fp_access_check(s)) {
5989             TCGv_i64 t0 = tcg_temp_new_i64();
5990             TCGv_i64 t1 = tcg_temp_new_i64();
5991 
5992             read_vec_element(s, t0, a->rn, 0, MO_64);
5993             read_vec_element(s, t1, a->rn, 1, MO_64);
5994             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5995             write_fp_dreg(s, a->rd, t0);
5996         }
5997         break;
5998     case MO_32:
5999         if (fp_access_check(s)) {
6000             TCGv_i32 t0 = tcg_temp_new_i32();
6001             TCGv_i32 t1 = tcg_temp_new_i32();
6002 
6003             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6004             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6005             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6006             write_fp_sreg(s, a->rd, t0);
6007         }
6008         break;
6009     case MO_16:
6010         if (!dc_isar_feature(aa64_fp16, s)) {
6011             return false;
6012         }
6013         if (fp_access_check(s)) {
6014             TCGv_i32 t0 = tcg_temp_new_i32();
6015             TCGv_i32 t1 = tcg_temp_new_i32();
6016 
6017             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6018             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6019             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6020             write_fp_sreg(s, a->rd, t0);
6021         }
6022         break;
6023     default:
6024         g_assert_not_reached();
6025     }
6026     return true;
6027 }
6028 
6029 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6030 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6031 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6032 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6033 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6034 
6035 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6036 {
6037     if (fp_access_check(s)) {
6038         TCGv_i64 t0 = tcg_temp_new_i64();
6039         TCGv_i64 t1 = tcg_temp_new_i64();
6040 
6041         read_vec_element(s, t0, a->rn, 0, MO_64);
6042         read_vec_element(s, t1, a->rn, 1, MO_64);
6043         tcg_gen_add_i64(t0, t0, t1);
6044         write_fp_dreg(s, a->rd, t0);
6045     }
6046     return true;
6047 }
6048 
6049 /*
6050  * Floating-point conditional select
6051  */
6052 
6053 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6054 {
6055     TCGv_i64 t_true, t_false;
6056     DisasCompare64 c;
6057 
6058     switch (a->esz) {
6059     case MO_32:
6060     case MO_64:
6061         break;
6062     case MO_16:
6063         if (!dc_isar_feature(aa64_fp16, s)) {
6064             return false;
6065         }
6066         break;
6067     default:
6068         return false;
6069     }
6070 
6071     if (!fp_access_check(s)) {
6072         return true;
6073     }
6074 
6075     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6076     t_true = tcg_temp_new_i64();
6077     t_false = tcg_temp_new_i64();
6078     read_vec_element(s, t_true, a->rn, 0, a->esz);
6079     read_vec_element(s, t_false, a->rm, 0, a->esz);
6080 
6081     a64_test_cc(&c, a->cond);
6082     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6083                         t_true, t_false);
6084 
6085     /*
6086      * Note that sregs & hregs write back zeros to the high bits,
6087      * and we've already done the zero-extension.
6088      */
6089     write_fp_dreg(s, a->rd, t_true);
6090     return true;
6091 }
6092 
6093 /*
6094  * Floating-point data-processing (3 source)
6095  */
6096 
6097 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6098 {
6099     TCGv_ptr fpst;
6100 
6101     /*
6102      * These are fused multiply-add.  Note that doing the negations here
6103      * as separate steps is correct: an input NaN should come out with
6104      * its sign bit flipped if it is a negated-input.
6105      */
6106     switch (a->esz) {
6107     case MO_64:
6108         if (fp_access_check(s)) {
6109             TCGv_i64 tn = read_fp_dreg(s, a->rn);
6110             TCGv_i64 tm = read_fp_dreg(s, a->rm);
6111             TCGv_i64 ta = read_fp_dreg(s, a->ra);
6112 
6113             if (neg_a) {
6114                 gen_vfp_negd(ta, ta);
6115             }
6116             if (neg_n) {
6117                 gen_vfp_negd(tn, tn);
6118             }
6119             fpst = fpstatus_ptr(FPST_FPCR);
6120             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6121             write_fp_dreg(s, a->rd, ta);
6122         }
6123         break;
6124 
6125     case MO_32:
6126         if (fp_access_check(s)) {
6127             TCGv_i32 tn = read_fp_sreg(s, a->rn);
6128             TCGv_i32 tm = read_fp_sreg(s, a->rm);
6129             TCGv_i32 ta = read_fp_sreg(s, a->ra);
6130 
6131             if (neg_a) {
6132                 gen_vfp_negs(ta, ta);
6133             }
6134             if (neg_n) {
6135                 gen_vfp_negs(tn, tn);
6136             }
6137             fpst = fpstatus_ptr(FPST_FPCR);
6138             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6139             write_fp_sreg(s, a->rd, ta);
6140         }
6141         break;
6142 
6143     case MO_16:
6144         if (!dc_isar_feature(aa64_fp16, s)) {
6145             return false;
6146         }
6147         if (fp_access_check(s)) {
6148             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6149             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6150             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6151 
6152             if (neg_a) {
6153                 gen_vfp_negh(ta, ta);
6154             }
6155             if (neg_n) {
6156                 gen_vfp_negh(tn, tn);
6157             }
6158             fpst = fpstatus_ptr(FPST_FPCR_F16);
6159             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6160             write_fp_sreg(s, a->rd, ta);
6161         }
6162         break;
6163 
6164     default:
6165         return false;
6166     }
6167     return true;
6168 }
6169 
6170 TRANS(FMADD, do_fmadd, a, false, false)
6171 TRANS(FNMADD, do_fmadd, a, true, true)
6172 TRANS(FMSUB, do_fmadd, a, false, true)
6173 TRANS(FNMSUB, do_fmadd, a, true, false)
6174 
6175 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6176  * Note that it is the caller's responsibility to ensure that the
6177  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6178  * mandated semantics for out of range shifts.
6179  */
6180 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6181                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6182 {
6183     switch (shift_type) {
6184     case A64_SHIFT_TYPE_LSL:
6185         tcg_gen_shl_i64(dst, src, shift_amount);
6186         break;
6187     case A64_SHIFT_TYPE_LSR:
6188         tcg_gen_shr_i64(dst, src, shift_amount);
6189         break;
6190     case A64_SHIFT_TYPE_ASR:
6191         if (!sf) {
6192             tcg_gen_ext32s_i64(dst, src);
6193         }
6194         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6195         break;
6196     case A64_SHIFT_TYPE_ROR:
6197         if (sf) {
6198             tcg_gen_rotr_i64(dst, src, shift_amount);
6199         } else {
6200             TCGv_i32 t0, t1;
6201             t0 = tcg_temp_new_i32();
6202             t1 = tcg_temp_new_i32();
6203             tcg_gen_extrl_i64_i32(t0, src);
6204             tcg_gen_extrl_i64_i32(t1, shift_amount);
6205             tcg_gen_rotr_i32(t0, t0, t1);
6206             tcg_gen_extu_i32_i64(dst, t0);
6207         }
6208         break;
6209     default:
6210         assert(FALSE); /* all shift types should be handled */
6211         break;
6212     }
6213 
6214     if (!sf) { /* zero extend final result */
6215         tcg_gen_ext32u_i64(dst, dst);
6216     }
6217 }
6218 
6219 /* Shift a TCGv src by immediate, put result in dst.
6220  * The shift amount must be in range (this should always be true as the
6221  * relevant instructions will UNDEF on bad shift immediates).
6222  */
6223 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6224                           enum a64_shift_type shift_type, unsigned int shift_i)
6225 {
6226     assert(shift_i < (sf ? 64 : 32));
6227 
6228     if (shift_i == 0) {
6229         tcg_gen_mov_i64(dst, src);
6230     } else {
6231         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6232     }
6233 }
6234 
6235 /* Logical (shifted register)
6236  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
6237  * +----+-----+-----------+-------+---+------+--------+------+------+
6238  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
6239  * +----+-----+-----------+-------+---+------+--------+------+------+
6240  */
6241 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6242 {
6243     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6244     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6245 
6246     sf = extract32(insn, 31, 1);
6247     opc = extract32(insn, 29, 2);
6248     shift_type = extract32(insn, 22, 2);
6249     invert = extract32(insn, 21, 1);
6250     rm = extract32(insn, 16, 5);
6251     shift_amount = extract32(insn, 10, 6);
6252     rn = extract32(insn, 5, 5);
6253     rd = extract32(insn, 0, 5);
6254 
6255     if (!sf && (shift_amount & (1 << 5))) {
6256         unallocated_encoding(s);
6257         return;
6258     }
6259 
6260     tcg_rd = cpu_reg(s, rd);
6261 
6262     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6263         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6264          * register-register MOV and MVN, so it is worth special casing.
6265          */
6266         tcg_rm = cpu_reg(s, rm);
6267         if (invert) {
6268             tcg_gen_not_i64(tcg_rd, tcg_rm);
6269             if (!sf) {
6270                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6271             }
6272         } else {
6273             if (sf) {
6274                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6275             } else {
6276                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6277             }
6278         }
6279         return;
6280     }
6281 
6282     tcg_rm = read_cpu_reg(s, rm, sf);
6283 
6284     if (shift_amount) {
6285         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6286     }
6287 
6288     tcg_rn = cpu_reg(s, rn);
6289 
6290     switch (opc | (invert << 2)) {
6291     case 0: /* AND */
6292     case 3: /* ANDS */
6293         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6294         break;
6295     case 1: /* ORR */
6296         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6297         break;
6298     case 2: /* EOR */
6299         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6300         break;
6301     case 4: /* BIC */
6302     case 7: /* BICS */
6303         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6304         break;
6305     case 5: /* ORN */
6306         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6307         break;
6308     case 6: /* EON */
6309         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6310         break;
6311     default:
6312         assert(FALSE);
6313         break;
6314     }
6315 
6316     if (!sf) {
6317         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6318     }
6319 
6320     if (opc == 3) {
6321         gen_logic_CC(sf, tcg_rd);
6322     }
6323 }
6324 
6325 /*
6326  * Add/subtract (extended register)
6327  *
6328  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
6329  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6330  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
6331  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6332  *
6333  *  sf: 0 -> 32bit, 1 -> 64bit
6334  *  op: 0 -> add  , 1 -> sub
6335  *   S: 1 -> set flags
6336  * opt: 00
6337  * option: extension type (see DecodeRegExtend)
6338  * imm3: optional shift to Rm
6339  *
6340  * Rd = Rn + LSL(extend(Rm), amount)
6341  */
6342 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6343 {
6344     int rd = extract32(insn, 0, 5);
6345     int rn = extract32(insn, 5, 5);
6346     int imm3 = extract32(insn, 10, 3);
6347     int option = extract32(insn, 13, 3);
6348     int rm = extract32(insn, 16, 5);
6349     int opt = extract32(insn, 22, 2);
6350     bool setflags = extract32(insn, 29, 1);
6351     bool sub_op = extract32(insn, 30, 1);
6352     bool sf = extract32(insn, 31, 1);
6353 
6354     TCGv_i64 tcg_rm, tcg_rn; /* temps */
6355     TCGv_i64 tcg_rd;
6356     TCGv_i64 tcg_result;
6357 
6358     if (imm3 > 4 || opt != 0) {
6359         unallocated_encoding(s);
6360         return;
6361     }
6362 
6363     /* non-flag setting ops may use SP */
6364     if (!setflags) {
6365         tcg_rd = cpu_reg_sp(s, rd);
6366     } else {
6367         tcg_rd = cpu_reg(s, rd);
6368     }
6369     tcg_rn = read_cpu_reg_sp(s, rn, sf);
6370 
6371     tcg_rm = read_cpu_reg(s, rm, sf);
6372     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6373 
6374     tcg_result = tcg_temp_new_i64();
6375 
6376     if (!setflags) {
6377         if (sub_op) {
6378             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6379         } else {
6380             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6381         }
6382     } else {
6383         if (sub_op) {
6384             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6385         } else {
6386             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6387         }
6388     }
6389 
6390     if (sf) {
6391         tcg_gen_mov_i64(tcg_rd, tcg_result);
6392     } else {
6393         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6394     }
6395 }
6396 
6397 /*
6398  * Add/subtract (shifted register)
6399  *
6400  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
6401  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6402  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
6403  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6404  *
6405  *    sf: 0 -> 32bit, 1 -> 64bit
6406  *    op: 0 -> add  , 1 -> sub
6407  *     S: 1 -> set flags
6408  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6409  *  imm6: Shift amount to apply to Rm before the add/sub
6410  */
6411 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6412 {
6413     int rd = extract32(insn, 0, 5);
6414     int rn = extract32(insn, 5, 5);
6415     int imm6 = extract32(insn, 10, 6);
6416     int rm = extract32(insn, 16, 5);
6417     int shift_type = extract32(insn, 22, 2);
6418     bool setflags = extract32(insn, 29, 1);
6419     bool sub_op = extract32(insn, 30, 1);
6420     bool sf = extract32(insn, 31, 1);
6421 
6422     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6423     TCGv_i64 tcg_rn, tcg_rm;
6424     TCGv_i64 tcg_result;
6425 
6426     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6427         unallocated_encoding(s);
6428         return;
6429     }
6430 
6431     tcg_rn = read_cpu_reg(s, rn, sf);
6432     tcg_rm = read_cpu_reg(s, rm, sf);
6433 
6434     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6435 
6436     tcg_result = tcg_temp_new_i64();
6437 
6438     if (!setflags) {
6439         if (sub_op) {
6440             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6441         } else {
6442             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6443         }
6444     } else {
6445         if (sub_op) {
6446             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6447         } else {
6448             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6449         }
6450     }
6451 
6452     if (sf) {
6453         tcg_gen_mov_i64(tcg_rd, tcg_result);
6454     } else {
6455         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6456     }
6457 }
6458 
6459 /* Data-processing (3 source)
6460  *
6461  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
6462  *  +--+------+-----------+------+------+----+------+------+------+
6463  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6464  *  +--+------+-----------+------+------+----+------+------+------+
6465  */
6466 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6467 {
6468     int rd = extract32(insn, 0, 5);
6469     int rn = extract32(insn, 5, 5);
6470     int ra = extract32(insn, 10, 5);
6471     int rm = extract32(insn, 16, 5);
6472     int op_id = (extract32(insn, 29, 3) << 4) |
6473         (extract32(insn, 21, 3) << 1) |
6474         extract32(insn, 15, 1);
6475     bool sf = extract32(insn, 31, 1);
6476     bool is_sub = extract32(op_id, 0, 1);
6477     bool is_high = extract32(op_id, 2, 1);
6478     bool is_signed = false;
6479     TCGv_i64 tcg_op1;
6480     TCGv_i64 tcg_op2;
6481     TCGv_i64 tcg_tmp;
6482 
6483     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6484     switch (op_id) {
6485     case 0x42: /* SMADDL */
6486     case 0x43: /* SMSUBL */
6487     case 0x44: /* SMULH */
6488         is_signed = true;
6489         break;
6490     case 0x0: /* MADD (32bit) */
6491     case 0x1: /* MSUB (32bit) */
6492     case 0x40: /* MADD (64bit) */
6493     case 0x41: /* MSUB (64bit) */
6494     case 0x4a: /* UMADDL */
6495     case 0x4b: /* UMSUBL */
6496     case 0x4c: /* UMULH */
6497         break;
6498     default:
6499         unallocated_encoding(s);
6500         return;
6501     }
6502 
6503     if (is_high) {
6504         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6505         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6506         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6507         TCGv_i64 tcg_rm = cpu_reg(s, rm);
6508 
6509         if (is_signed) {
6510             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6511         } else {
6512             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6513         }
6514         return;
6515     }
6516 
6517     tcg_op1 = tcg_temp_new_i64();
6518     tcg_op2 = tcg_temp_new_i64();
6519     tcg_tmp = tcg_temp_new_i64();
6520 
6521     if (op_id < 0x42) {
6522         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6523         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6524     } else {
6525         if (is_signed) {
6526             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6527             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6528         } else {
6529             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6530             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6531         }
6532     }
6533 
6534     if (ra == 31 && !is_sub) {
6535         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6536         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6537     } else {
6538         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6539         if (is_sub) {
6540             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6541         } else {
6542             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6543         }
6544     }
6545 
6546     if (!sf) {
6547         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6548     }
6549 }
6550 
6551 /* Add/subtract (with carry)
6552  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
6553  * +--+--+--+------------------------+------+-------------+------+-----+
6554  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
6555  * +--+--+--+------------------------+------+-------------+------+-----+
6556  */
6557 
6558 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6559 {
6560     unsigned int sf, op, setflags, rm, rn, rd;
6561     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6562 
6563     sf = extract32(insn, 31, 1);
6564     op = extract32(insn, 30, 1);
6565     setflags = extract32(insn, 29, 1);
6566     rm = extract32(insn, 16, 5);
6567     rn = extract32(insn, 5, 5);
6568     rd = extract32(insn, 0, 5);
6569 
6570     tcg_rd = cpu_reg(s, rd);
6571     tcg_rn = cpu_reg(s, rn);
6572 
6573     if (op) {
6574         tcg_y = tcg_temp_new_i64();
6575         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6576     } else {
6577         tcg_y = cpu_reg(s, rm);
6578     }
6579 
6580     if (setflags) {
6581         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6582     } else {
6583         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6584     }
6585 }
6586 
6587 /*
6588  * Rotate right into flags
6589  *  31 30 29                21       15          10      5  4      0
6590  * +--+--+--+-----------------+--------+-----------+------+--+------+
6591  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
6592  * +--+--+--+-----------------+--------+-----------+------+--+------+
6593  */
6594 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6595 {
6596     int mask = extract32(insn, 0, 4);
6597     int o2 = extract32(insn, 4, 1);
6598     int rn = extract32(insn, 5, 5);
6599     int imm6 = extract32(insn, 15, 6);
6600     int sf_op_s = extract32(insn, 29, 3);
6601     TCGv_i64 tcg_rn;
6602     TCGv_i32 nzcv;
6603 
6604     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6605         unallocated_encoding(s);
6606         return;
6607     }
6608 
6609     tcg_rn = read_cpu_reg(s, rn, 1);
6610     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6611 
6612     nzcv = tcg_temp_new_i32();
6613     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6614 
6615     if (mask & 8) { /* N */
6616         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6617     }
6618     if (mask & 4) { /* Z */
6619         tcg_gen_not_i32(cpu_ZF, nzcv);
6620         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6621     }
6622     if (mask & 2) { /* C */
6623         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6624     }
6625     if (mask & 1) { /* V */
6626         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6627     }
6628 }
6629 
6630 /*
6631  * Evaluate into flags
6632  *  31 30 29                21        15   14        10      5  4      0
6633  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6634  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6635  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6636  */
6637 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6638 {
6639     int o3_mask = extract32(insn, 0, 5);
6640     int rn = extract32(insn, 5, 5);
6641     int o2 = extract32(insn, 15, 6);
6642     int sz = extract32(insn, 14, 1);
6643     int sf_op_s = extract32(insn, 29, 3);
6644     TCGv_i32 tmp;
6645     int shift;
6646 
6647     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6648         !dc_isar_feature(aa64_condm_4, s)) {
6649         unallocated_encoding(s);
6650         return;
6651     }
6652     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6653 
6654     tmp = tcg_temp_new_i32();
6655     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6656     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6657     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6658     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6659     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6660 }
6661 
6662 /* Conditional compare (immediate / register)
6663  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6664  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6665  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6666  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6667  *        [1]                             y                [0]       [0]
6668  */
6669 static void disas_cc(DisasContext *s, uint32_t insn)
6670 {
6671     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6672     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6673     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6674     DisasCompare c;
6675 
6676     if (!extract32(insn, 29, 1)) {
6677         unallocated_encoding(s);
6678         return;
6679     }
6680     if (insn & (1 << 10 | 1 << 4)) {
6681         unallocated_encoding(s);
6682         return;
6683     }
6684     sf = extract32(insn, 31, 1);
6685     op = extract32(insn, 30, 1);
6686     is_imm = extract32(insn, 11, 1);
6687     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6688     cond = extract32(insn, 12, 4);
6689     rn = extract32(insn, 5, 5);
6690     nzcv = extract32(insn, 0, 4);
6691 
6692     /* Set T0 = !COND.  */
6693     tcg_t0 = tcg_temp_new_i32();
6694     arm_test_cc(&c, cond);
6695     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6696 
6697     /* Load the arguments for the new comparison.  */
6698     if (is_imm) {
6699         tcg_y = tcg_temp_new_i64();
6700         tcg_gen_movi_i64(tcg_y, y);
6701     } else {
6702         tcg_y = cpu_reg(s, y);
6703     }
6704     tcg_rn = cpu_reg(s, rn);
6705 
6706     /* Set the flags for the new comparison.  */
6707     tcg_tmp = tcg_temp_new_i64();
6708     if (op) {
6709         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6710     } else {
6711         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6712     }
6713 
6714     /* If COND was false, force the flags to #nzcv.  Compute two masks
6715      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6716      * For tcg hosts that support ANDC, we can make do with just T1.
6717      * In either case, allow the tcg optimizer to delete any unused mask.
6718      */
6719     tcg_t1 = tcg_temp_new_i32();
6720     tcg_t2 = tcg_temp_new_i32();
6721     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6722     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6723 
6724     if (nzcv & 8) { /* N */
6725         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6726     } else {
6727         if (TCG_TARGET_HAS_andc_i32) {
6728             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6729         } else {
6730             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6731         }
6732     }
6733     if (nzcv & 4) { /* Z */
6734         if (TCG_TARGET_HAS_andc_i32) {
6735             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6736         } else {
6737             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6738         }
6739     } else {
6740         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6741     }
6742     if (nzcv & 2) { /* C */
6743         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6744     } else {
6745         if (TCG_TARGET_HAS_andc_i32) {
6746             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6747         } else {
6748             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6749         }
6750     }
6751     if (nzcv & 1) { /* V */
6752         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6753     } else {
6754         if (TCG_TARGET_HAS_andc_i32) {
6755             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6756         } else {
6757             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6758         }
6759     }
6760 }
6761 
6762 /* Conditional select
6763  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6764  * +----+----+---+-----------------+------+------+-----+------+------+
6765  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6766  * +----+----+---+-----------------+------+------+-----+------+------+
6767  */
6768 static void disas_cond_select(DisasContext *s, uint32_t insn)
6769 {
6770     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6771     TCGv_i64 tcg_rd, zero;
6772     DisasCompare64 c;
6773 
6774     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6775         /* S == 1 or op2<1> == 1 */
6776         unallocated_encoding(s);
6777         return;
6778     }
6779     sf = extract32(insn, 31, 1);
6780     else_inv = extract32(insn, 30, 1);
6781     rm = extract32(insn, 16, 5);
6782     cond = extract32(insn, 12, 4);
6783     else_inc = extract32(insn, 10, 1);
6784     rn = extract32(insn, 5, 5);
6785     rd = extract32(insn, 0, 5);
6786 
6787     tcg_rd = cpu_reg(s, rd);
6788 
6789     a64_test_cc(&c, cond);
6790     zero = tcg_constant_i64(0);
6791 
6792     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6793         /* CSET & CSETM.  */
6794         if (else_inv) {
6795             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6796                                    tcg_rd, c.value, zero);
6797         } else {
6798             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6799                                 tcg_rd, c.value, zero);
6800         }
6801     } else {
6802         TCGv_i64 t_true = cpu_reg(s, rn);
6803         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6804         if (else_inv && else_inc) {
6805             tcg_gen_neg_i64(t_false, t_false);
6806         } else if (else_inv) {
6807             tcg_gen_not_i64(t_false, t_false);
6808         } else if (else_inc) {
6809             tcg_gen_addi_i64(t_false, t_false, 1);
6810         }
6811         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6812     }
6813 
6814     if (!sf) {
6815         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6816     }
6817 }
6818 
6819 static void handle_clz(DisasContext *s, unsigned int sf,
6820                        unsigned int rn, unsigned int rd)
6821 {
6822     TCGv_i64 tcg_rd, tcg_rn;
6823     tcg_rd = cpu_reg(s, rd);
6824     tcg_rn = cpu_reg(s, rn);
6825 
6826     if (sf) {
6827         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6828     } else {
6829         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6830         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6831         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6832         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6833     }
6834 }
6835 
6836 static void handle_cls(DisasContext *s, unsigned int sf,
6837                        unsigned int rn, unsigned int rd)
6838 {
6839     TCGv_i64 tcg_rd, tcg_rn;
6840     tcg_rd = cpu_reg(s, rd);
6841     tcg_rn = cpu_reg(s, rn);
6842 
6843     if (sf) {
6844         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6845     } else {
6846         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6847         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6848         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6849         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6850     }
6851 }
6852 
6853 static void handle_rbit(DisasContext *s, unsigned int sf,
6854                         unsigned int rn, unsigned int rd)
6855 {
6856     TCGv_i64 tcg_rd, tcg_rn;
6857     tcg_rd = cpu_reg(s, rd);
6858     tcg_rn = cpu_reg(s, rn);
6859 
6860     if (sf) {
6861         gen_helper_rbit64(tcg_rd, tcg_rn);
6862     } else {
6863         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6864         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6865         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6866         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6867     }
6868 }
6869 
6870 /* REV with sf==1, opcode==3 ("REV64") */
6871 static void handle_rev64(DisasContext *s, unsigned int sf,
6872                          unsigned int rn, unsigned int rd)
6873 {
6874     if (!sf) {
6875         unallocated_encoding(s);
6876         return;
6877     }
6878     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6879 }
6880 
6881 /* REV with sf==0, opcode==2
6882  * REV32 (sf==1, opcode==2)
6883  */
6884 static void handle_rev32(DisasContext *s, unsigned int sf,
6885                          unsigned int rn, unsigned int rd)
6886 {
6887     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6888     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6889 
6890     if (sf) {
6891         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6892         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6893     } else {
6894         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6895     }
6896 }
6897 
6898 /* REV16 (opcode==1) */
6899 static void handle_rev16(DisasContext *s, unsigned int sf,
6900                          unsigned int rn, unsigned int rd)
6901 {
6902     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6903     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6904     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6905     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6906 
6907     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6908     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6909     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6910     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6911     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6912 }
6913 
6914 /* Data-processing (1 source)
6915  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6916  * +----+---+---+-----------------+---------+--------+------+------+
6917  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6918  * +----+---+---+-----------------+---------+--------+------+------+
6919  */
6920 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6921 {
6922     unsigned int sf, opcode, opcode2, rn, rd;
6923     TCGv_i64 tcg_rd;
6924 
6925     if (extract32(insn, 29, 1)) {
6926         unallocated_encoding(s);
6927         return;
6928     }
6929 
6930     sf = extract32(insn, 31, 1);
6931     opcode = extract32(insn, 10, 6);
6932     opcode2 = extract32(insn, 16, 5);
6933     rn = extract32(insn, 5, 5);
6934     rd = extract32(insn, 0, 5);
6935 
6936 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6937 
6938     switch (MAP(sf, opcode2, opcode)) {
6939     case MAP(0, 0x00, 0x00): /* RBIT */
6940     case MAP(1, 0x00, 0x00):
6941         handle_rbit(s, sf, rn, rd);
6942         break;
6943     case MAP(0, 0x00, 0x01): /* REV16 */
6944     case MAP(1, 0x00, 0x01):
6945         handle_rev16(s, sf, rn, rd);
6946         break;
6947     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6948     case MAP(1, 0x00, 0x02):
6949         handle_rev32(s, sf, rn, rd);
6950         break;
6951     case MAP(1, 0x00, 0x03): /* REV64 */
6952         handle_rev64(s, sf, rn, rd);
6953         break;
6954     case MAP(0, 0x00, 0x04): /* CLZ */
6955     case MAP(1, 0x00, 0x04):
6956         handle_clz(s, sf, rn, rd);
6957         break;
6958     case MAP(0, 0x00, 0x05): /* CLS */
6959     case MAP(1, 0x00, 0x05):
6960         handle_cls(s, sf, rn, rd);
6961         break;
6962     case MAP(1, 0x01, 0x00): /* PACIA */
6963         if (s->pauth_active) {
6964             tcg_rd = cpu_reg(s, rd);
6965             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6966         } else if (!dc_isar_feature(aa64_pauth, s)) {
6967             goto do_unallocated;
6968         }
6969         break;
6970     case MAP(1, 0x01, 0x01): /* PACIB */
6971         if (s->pauth_active) {
6972             tcg_rd = cpu_reg(s, rd);
6973             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6974         } else if (!dc_isar_feature(aa64_pauth, s)) {
6975             goto do_unallocated;
6976         }
6977         break;
6978     case MAP(1, 0x01, 0x02): /* PACDA */
6979         if (s->pauth_active) {
6980             tcg_rd = cpu_reg(s, rd);
6981             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6982         } else if (!dc_isar_feature(aa64_pauth, s)) {
6983             goto do_unallocated;
6984         }
6985         break;
6986     case MAP(1, 0x01, 0x03): /* PACDB */
6987         if (s->pauth_active) {
6988             tcg_rd = cpu_reg(s, rd);
6989             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6990         } else if (!dc_isar_feature(aa64_pauth, s)) {
6991             goto do_unallocated;
6992         }
6993         break;
6994     case MAP(1, 0x01, 0x04): /* AUTIA */
6995         if (s->pauth_active) {
6996             tcg_rd = cpu_reg(s, rd);
6997             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6998         } else if (!dc_isar_feature(aa64_pauth, s)) {
6999             goto do_unallocated;
7000         }
7001         break;
7002     case MAP(1, 0x01, 0x05): /* AUTIB */
7003         if (s->pauth_active) {
7004             tcg_rd = cpu_reg(s, rd);
7005             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7006         } else if (!dc_isar_feature(aa64_pauth, s)) {
7007             goto do_unallocated;
7008         }
7009         break;
7010     case MAP(1, 0x01, 0x06): /* AUTDA */
7011         if (s->pauth_active) {
7012             tcg_rd = cpu_reg(s, rd);
7013             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7014         } else if (!dc_isar_feature(aa64_pauth, s)) {
7015             goto do_unallocated;
7016         }
7017         break;
7018     case MAP(1, 0x01, 0x07): /* AUTDB */
7019         if (s->pauth_active) {
7020             tcg_rd = cpu_reg(s, rd);
7021             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7022         } else if (!dc_isar_feature(aa64_pauth, s)) {
7023             goto do_unallocated;
7024         }
7025         break;
7026     case MAP(1, 0x01, 0x08): /* PACIZA */
7027         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7028             goto do_unallocated;
7029         } else if (s->pauth_active) {
7030             tcg_rd = cpu_reg(s, rd);
7031             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7032         }
7033         break;
7034     case MAP(1, 0x01, 0x09): /* PACIZB */
7035         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7036             goto do_unallocated;
7037         } else if (s->pauth_active) {
7038             tcg_rd = cpu_reg(s, rd);
7039             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7040         }
7041         break;
7042     case MAP(1, 0x01, 0x0a): /* PACDZA */
7043         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7044             goto do_unallocated;
7045         } else if (s->pauth_active) {
7046             tcg_rd = cpu_reg(s, rd);
7047             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7048         }
7049         break;
7050     case MAP(1, 0x01, 0x0b): /* PACDZB */
7051         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7052             goto do_unallocated;
7053         } else if (s->pauth_active) {
7054             tcg_rd = cpu_reg(s, rd);
7055             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7056         }
7057         break;
7058     case MAP(1, 0x01, 0x0c): /* AUTIZA */
7059         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7060             goto do_unallocated;
7061         } else if (s->pauth_active) {
7062             tcg_rd = cpu_reg(s, rd);
7063             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7064         }
7065         break;
7066     case MAP(1, 0x01, 0x0d): /* AUTIZB */
7067         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7068             goto do_unallocated;
7069         } else if (s->pauth_active) {
7070             tcg_rd = cpu_reg(s, rd);
7071             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7072         }
7073         break;
7074     case MAP(1, 0x01, 0x0e): /* AUTDZA */
7075         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7076             goto do_unallocated;
7077         } else if (s->pauth_active) {
7078             tcg_rd = cpu_reg(s, rd);
7079             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7080         }
7081         break;
7082     case MAP(1, 0x01, 0x0f): /* AUTDZB */
7083         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7084             goto do_unallocated;
7085         } else if (s->pauth_active) {
7086             tcg_rd = cpu_reg(s, rd);
7087             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7088         }
7089         break;
7090     case MAP(1, 0x01, 0x10): /* XPACI */
7091         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7092             goto do_unallocated;
7093         } else if (s->pauth_active) {
7094             tcg_rd = cpu_reg(s, rd);
7095             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7096         }
7097         break;
7098     case MAP(1, 0x01, 0x11): /* XPACD */
7099         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7100             goto do_unallocated;
7101         } else if (s->pauth_active) {
7102             tcg_rd = cpu_reg(s, rd);
7103             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7104         }
7105         break;
7106     default:
7107     do_unallocated:
7108         unallocated_encoding(s);
7109         break;
7110     }
7111 
7112 #undef MAP
7113 }
7114 
7115 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7116                        unsigned int rm, unsigned int rn, unsigned int rd)
7117 {
7118     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7119     tcg_rd = cpu_reg(s, rd);
7120 
7121     if (!sf && is_signed) {
7122         tcg_n = tcg_temp_new_i64();
7123         tcg_m = tcg_temp_new_i64();
7124         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7125         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7126     } else {
7127         tcg_n = read_cpu_reg(s, rn, sf);
7128         tcg_m = read_cpu_reg(s, rm, sf);
7129     }
7130 
7131     if (is_signed) {
7132         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7133     } else {
7134         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7135     }
7136 
7137     if (!sf) { /* zero extend final result */
7138         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7139     }
7140 }
7141 
7142 /* LSLV, LSRV, ASRV, RORV */
7143 static void handle_shift_reg(DisasContext *s,
7144                              enum a64_shift_type shift_type, unsigned int sf,
7145                              unsigned int rm, unsigned int rn, unsigned int rd)
7146 {
7147     TCGv_i64 tcg_shift = tcg_temp_new_i64();
7148     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7149     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7150 
7151     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7152     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7153 }
7154 
7155 /* CRC32[BHWX], CRC32C[BHWX] */
7156 static void handle_crc32(DisasContext *s,
7157                          unsigned int sf, unsigned int sz, bool crc32c,
7158                          unsigned int rm, unsigned int rn, unsigned int rd)
7159 {
7160     TCGv_i64 tcg_acc, tcg_val;
7161     TCGv_i32 tcg_bytes;
7162 
7163     if (!dc_isar_feature(aa64_crc32, s)
7164         || (sf == 1 && sz != 3)
7165         || (sf == 0 && sz == 3)) {
7166         unallocated_encoding(s);
7167         return;
7168     }
7169 
7170     if (sz == 3) {
7171         tcg_val = cpu_reg(s, rm);
7172     } else {
7173         uint64_t mask;
7174         switch (sz) {
7175         case 0:
7176             mask = 0xFF;
7177             break;
7178         case 1:
7179             mask = 0xFFFF;
7180             break;
7181         case 2:
7182             mask = 0xFFFFFFFF;
7183             break;
7184         default:
7185             g_assert_not_reached();
7186         }
7187         tcg_val = tcg_temp_new_i64();
7188         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7189     }
7190 
7191     tcg_acc = cpu_reg(s, rn);
7192     tcg_bytes = tcg_constant_i32(1 << sz);
7193 
7194     if (crc32c) {
7195         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7196     } else {
7197         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7198     }
7199 }
7200 
7201 /* Data-processing (2 source)
7202  *   31   30  29 28             21 20  16 15    10 9    5 4    0
7203  * +----+---+---+-----------------+------+--------+------+------+
7204  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
7205  * +----+---+---+-----------------+------+--------+------+------+
7206  */
7207 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7208 {
7209     unsigned int sf, rm, opcode, rn, rd, setflag;
7210     sf = extract32(insn, 31, 1);
7211     setflag = extract32(insn, 29, 1);
7212     rm = extract32(insn, 16, 5);
7213     opcode = extract32(insn, 10, 6);
7214     rn = extract32(insn, 5, 5);
7215     rd = extract32(insn, 0, 5);
7216 
7217     if (setflag && opcode != 0) {
7218         unallocated_encoding(s);
7219         return;
7220     }
7221 
7222     switch (opcode) {
7223     case 0: /* SUBP(S) */
7224         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7225             goto do_unallocated;
7226         } else {
7227             TCGv_i64 tcg_n, tcg_m, tcg_d;
7228 
7229             tcg_n = read_cpu_reg_sp(s, rn, true);
7230             tcg_m = read_cpu_reg_sp(s, rm, true);
7231             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7232             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7233             tcg_d = cpu_reg(s, rd);
7234 
7235             if (setflag) {
7236                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7237             } else {
7238                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7239             }
7240         }
7241         break;
7242     case 2: /* UDIV */
7243         handle_div(s, false, sf, rm, rn, rd);
7244         break;
7245     case 3: /* SDIV */
7246         handle_div(s, true, sf, rm, rn, rd);
7247         break;
7248     case 4: /* IRG */
7249         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7250             goto do_unallocated;
7251         }
7252         if (s->ata[0]) {
7253             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7254                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
7255         } else {
7256             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7257                                              cpu_reg_sp(s, rn));
7258         }
7259         break;
7260     case 5: /* GMI */
7261         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7262             goto do_unallocated;
7263         } else {
7264             TCGv_i64 t = tcg_temp_new_i64();
7265 
7266             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7267             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7268             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7269         }
7270         break;
7271     case 8: /* LSLV */
7272         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7273         break;
7274     case 9: /* LSRV */
7275         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7276         break;
7277     case 10: /* ASRV */
7278         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7279         break;
7280     case 11: /* RORV */
7281         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7282         break;
7283     case 12: /* PACGA */
7284         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7285             goto do_unallocated;
7286         }
7287         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7288                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
7289         break;
7290     case 16:
7291     case 17:
7292     case 18:
7293     case 19:
7294     case 20:
7295     case 21:
7296     case 22:
7297     case 23: /* CRC32 */
7298     {
7299         int sz = extract32(opcode, 0, 2);
7300         bool crc32c = extract32(opcode, 2, 1);
7301         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7302         break;
7303     }
7304     default:
7305     do_unallocated:
7306         unallocated_encoding(s);
7307         break;
7308     }
7309 }
7310 
7311 /*
7312  * Data processing - register
7313  *  31  30 29  28      25    21  20  16      10         0
7314  * +--+---+--+---+-------+-----+-------+-------+---------+
7315  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
7316  * +--+---+--+---+-------+-----+-------+-------+---------+
7317  */
7318 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7319 {
7320     int op0 = extract32(insn, 30, 1);
7321     int op1 = extract32(insn, 28, 1);
7322     int op2 = extract32(insn, 21, 4);
7323     int op3 = extract32(insn, 10, 6);
7324 
7325     if (!op1) {
7326         if (op2 & 8) {
7327             if (op2 & 1) {
7328                 /* Add/sub (extended register) */
7329                 disas_add_sub_ext_reg(s, insn);
7330             } else {
7331                 /* Add/sub (shifted register) */
7332                 disas_add_sub_reg(s, insn);
7333             }
7334         } else {
7335             /* Logical (shifted register) */
7336             disas_logic_reg(s, insn);
7337         }
7338         return;
7339     }
7340 
7341     switch (op2) {
7342     case 0x0:
7343         switch (op3) {
7344         case 0x00: /* Add/subtract (with carry) */
7345             disas_adc_sbc(s, insn);
7346             break;
7347 
7348         case 0x01: /* Rotate right into flags */
7349         case 0x21:
7350             disas_rotate_right_into_flags(s, insn);
7351             break;
7352 
7353         case 0x02: /* Evaluate into flags */
7354         case 0x12:
7355         case 0x22:
7356         case 0x32:
7357             disas_evaluate_into_flags(s, insn);
7358             break;
7359 
7360         default:
7361             goto do_unallocated;
7362         }
7363         break;
7364 
7365     case 0x2: /* Conditional compare */
7366         disas_cc(s, insn); /* both imm and reg forms */
7367         break;
7368 
7369     case 0x4: /* Conditional select */
7370         disas_cond_select(s, insn);
7371         break;
7372 
7373     case 0x6: /* Data-processing */
7374         if (op0) {    /* (1 source) */
7375             disas_data_proc_1src(s, insn);
7376         } else {      /* (2 source) */
7377             disas_data_proc_2src(s, insn);
7378         }
7379         break;
7380     case 0x8 ... 0xf: /* (3 source) */
7381         disas_data_proc_3src(s, insn);
7382         break;
7383 
7384     default:
7385     do_unallocated:
7386         unallocated_encoding(s);
7387         break;
7388     }
7389 }
7390 
7391 static void handle_fp_compare(DisasContext *s, int size,
7392                               unsigned int rn, unsigned int rm,
7393                               bool cmp_with_zero, bool signal_all_nans)
7394 {
7395     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7396     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7397 
7398     if (size == MO_64) {
7399         TCGv_i64 tcg_vn, tcg_vm;
7400 
7401         tcg_vn = read_fp_dreg(s, rn);
7402         if (cmp_with_zero) {
7403             tcg_vm = tcg_constant_i64(0);
7404         } else {
7405             tcg_vm = read_fp_dreg(s, rm);
7406         }
7407         if (signal_all_nans) {
7408             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7409         } else {
7410             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7411         }
7412     } else {
7413         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7414         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7415 
7416         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7417         if (cmp_with_zero) {
7418             tcg_gen_movi_i32(tcg_vm, 0);
7419         } else {
7420             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7421         }
7422 
7423         switch (size) {
7424         case MO_32:
7425             if (signal_all_nans) {
7426                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7427             } else {
7428                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7429             }
7430             break;
7431         case MO_16:
7432             if (signal_all_nans) {
7433                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7434             } else {
7435                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7436             }
7437             break;
7438         default:
7439             g_assert_not_reached();
7440         }
7441     }
7442 
7443     gen_set_nzcv(tcg_flags);
7444 }
7445 
7446 /* Floating point compare
7447  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
7448  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7449  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
7450  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7451  */
7452 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7453 {
7454     unsigned int mos, type, rm, op, rn, opc, op2r;
7455     int size;
7456 
7457     mos = extract32(insn, 29, 3);
7458     type = extract32(insn, 22, 2);
7459     rm = extract32(insn, 16, 5);
7460     op = extract32(insn, 14, 2);
7461     rn = extract32(insn, 5, 5);
7462     opc = extract32(insn, 3, 2);
7463     op2r = extract32(insn, 0, 3);
7464 
7465     if (mos || op || op2r) {
7466         unallocated_encoding(s);
7467         return;
7468     }
7469 
7470     switch (type) {
7471     case 0:
7472         size = MO_32;
7473         break;
7474     case 1:
7475         size = MO_64;
7476         break;
7477     case 3:
7478         size = MO_16;
7479         if (dc_isar_feature(aa64_fp16, s)) {
7480             break;
7481         }
7482         /* fallthru */
7483     default:
7484         unallocated_encoding(s);
7485         return;
7486     }
7487 
7488     if (!fp_access_check(s)) {
7489         return;
7490     }
7491 
7492     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7493 }
7494 
7495 /* Floating point conditional compare
7496  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
7497  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7498  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
7499  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7500  */
7501 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7502 {
7503     unsigned int mos, type, rm, cond, rn, op, nzcv;
7504     TCGLabel *label_continue = NULL;
7505     int size;
7506 
7507     mos = extract32(insn, 29, 3);
7508     type = extract32(insn, 22, 2);
7509     rm = extract32(insn, 16, 5);
7510     cond = extract32(insn, 12, 4);
7511     rn = extract32(insn, 5, 5);
7512     op = extract32(insn, 4, 1);
7513     nzcv = extract32(insn, 0, 4);
7514 
7515     if (mos) {
7516         unallocated_encoding(s);
7517         return;
7518     }
7519 
7520     switch (type) {
7521     case 0:
7522         size = MO_32;
7523         break;
7524     case 1:
7525         size = MO_64;
7526         break;
7527     case 3:
7528         size = MO_16;
7529         if (dc_isar_feature(aa64_fp16, s)) {
7530             break;
7531         }
7532         /* fallthru */
7533     default:
7534         unallocated_encoding(s);
7535         return;
7536     }
7537 
7538     if (!fp_access_check(s)) {
7539         return;
7540     }
7541 
7542     if (cond < 0x0e) { /* not always */
7543         TCGLabel *label_match = gen_new_label();
7544         label_continue = gen_new_label();
7545         arm_gen_test_cc(cond, label_match);
7546         /* nomatch: */
7547         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7548         tcg_gen_br(label_continue);
7549         gen_set_label(label_match);
7550     }
7551 
7552     handle_fp_compare(s, size, rn, rm, false, op);
7553 
7554     if (cond < 0x0e) {
7555         gen_set_label(label_continue);
7556     }
7557 }
7558 
7559 /* Floating-point data-processing (1 source) - half precision */
7560 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7561 {
7562     TCGv_ptr fpst = NULL;
7563     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7564     TCGv_i32 tcg_res = tcg_temp_new_i32();
7565 
7566     switch (opcode) {
7567     case 0x0: /* FMOV */
7568         tcg_gen_mov_i32(tcg_res, tcg_op);
7569         break;
7570     case 0x1: /* FABS */
7571         gen_vfp_absh(tcg_res, tcg_op);
7572         break;
7573     case 0x2: /* FNEG */
7574         gen_vfp_negh(tcg_res, tcg_op);
7575         break;
7576     case 0x3: /* FSQRT */
7577         fpst = fpstatus_ptr(FPST_FPCR_F16);
7578         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7579         break;
7580     case 0x8: /* FRINTN */
7581     case 0x9: /* FRINTP */
7582     case 0xa: /* FRINTM */
7583     case 0xb: /* FRINTZ */
7584     case 0xc: /* FRINTA */
7585     {
7586         TCGv_i32 tcg_rmode;
7587 
7588         fpst = fpstatus_ptr(FPST_FPCR_F16);
7589         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7590         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7591         gen_restore_rmode(tcg_rmode, fpst);
7592         break;
7593     }
7594     case 0xe: /* FRINTX */
7595         fpst = fpstatus_ptr(FPST_FPCR_F16);
7596         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7597         break;
7598     case 0xf: /* FRINTI */
7599         fpst = fpstatus_ptr(FPST_FPCR_F16);
7600         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7601         break;
7602     default:
7603         g_assert_not_reached();
7604     }
7605 
7606     write_fp_sreg(s, rd, tcg_res);
7607 }
7608 
7609 /* Floating-point data-processing (1 source) - single precision */
7610 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7611 {
7612     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7613     TCGv_i32 tcg_op, tcg_res;
7614     TCGv_ptr fpst;
7615     int rmode = -1;
7616 
7617     tcg_op = read_fp_sreg(s, rn);
7618     tcg_res = tcg_temp_new_i32();
7619 
7620     switch (opcode) {
7621     case 0x0: /* FMOV */
7622         tcg_gen_mov_i32(tcg_res, tcg_op);
7623         goto done;
7624     case 0x1: /* FABS */
7625         gen_vfp_abss(tcg_res, tcg_op);
7626         goto done;
7627     case 0x2: /* FNEG */
7628         gen_vfp_negs(tcg_res, tcg_op);
7629         goto done;
7630     case 0x3: /* FSQRT */
7631         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7632         goto done;
7633     case 0x6: /* BFCVT */
7634         gen_fpst = gen_helper_bfcvt;
7635         break;
7636     case 0x8: /* FRINTN */
7637     case 0x9: /* FRINTP */
7638     case 0xa: /* FRINTM */
7639     case 0xb: /* FRINTZ */
7640     case 0xc: /* FRINTA */
7641         rmode = opcode & 7;
7642         gen_fpst = gen_helper_rints;
7643         break;
7644     case 0xe: /* FRINTX */
7645         gen_fpst = gen_helper_rints_exact;
7646         break;
7647     case 0xf: /* FRINTI */
7648         gen_fpst = gen_helper_rints;
7649         break;
7650     case 0x10: /* FRINT32Z */
7651         rmode = FPROUNDING_ZERO;
7652         gen_fpst = gen_helper_frint32_s;
7653         break;
7654     case 0x11: /* FRINT32X */
7655         gen_fpst = gen_helper_frint32_s;
7656         break;
7657     case 0x12: /* FRINT64Z */
7658         rmode = FPROUNDING_ZERO;
7659         gen_fpst = gen_helper_frint64_s;
7660         break;
7661     case 0x13: /* FRINT64X */
7662         gen_fpst = gen_helper_frint64_s;
7663         break;
7664     default:
7665         g_assert_not_reached();
7666     }
7667 
7668     fpst = fpstatus_ptr(FPST_FPCR);
7669     if (rmode >= 0) {
7670         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7671         gen_fpst(tcg_res, tcg_op, fpst);
7672         gen_restore_rmode(tcg_rmode, fpst);
7673     } else {
7674         gen_fpst(tcg_res, tcg_op, fpst);
7675     }
7676 
7677  done:
7678     write_fp_sreg(s, rd, tcg_res);
7679 }
7680 
7681 /* Floating-point data-processing (1 source) - double precision */
7682 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7683 {
7684     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7685     TCGv_i64 tcg_op, tcg_res;
7686     TCGv_ptr fpst;
7687     int rmode = -1;
7688 
7689     switch (opcode) {
7690     case 0x0: /* FMOV */
7691         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7692         return;
7693     }
7694 
7695     tcg_op = read_fp_dreg(s, rn);
7696     tcg_res = tcg_temp_new_i64();
7697 
7698     switch (opcode) {
7699     case 0x1: /* FABS */
7700         gen_vfp_absd(tcg_res, tcg_op);
7701         goto done;
7702     case 0x2: /* FNEG */
7703         gen_vfp_negd(tcg_res, tcg_op);
7704         goto done;
7705     case 0x3: /* FSQRT */
7706         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7707         goto done;
7708     case 0x8: /* FRINTN */
7709     case 0x9: /* FRINTP */
7710     case 0xa: /* FRINTM */
7711     case 0xb: /* FRINTZ */
7712     case 0xc: /* FRINTA */
7713         rmode = opcode & 7;
7714         gen_fpst = gen_helper_rintd;
7715         break;
7716     case 0xe: /* FRINTX */
7717         gen_fpst = gen_helper_rintd_exact;
7718         break;
7719     case 0xf: /* FRINTI */
7720         gen_fpst = gen_helper_rintd;
7721         break;
7722     case 0x10: /* FRINT32Z */
7723         rmode = FPROUNDING_ZERO;
7724         gen_fpst = gen_helper_frint32_d;
7725         break;
7726     case 0x11: /* FRINT32X */
7727         gen_fpst = gen_helper_frint32_d;
7728         break;
7729     case 0x12: /* FRINT64Z */
7730         rmode = FPROUNDING_ZERO;
7731         gen_fpst = gen_helper_frint64_d;
7732         break;
7733     case 0x13: /* FRINT64X */
7734         gen_fpst = gen_helper_frint64_d;
7735         break;
7736     default:
7737         g_assert_not_reached();
7738     }
7739 
7740     fpst = fpstatus_ptr(FPST_FPCR);
7741     if (rmode >= 0) {
7742         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7743         gen_fpst(tcg_res, tcg_op, fpst);
7744         gen_restore_rmode(tcg_rmode, fpst);
7745     } else {
7746         gen_fpst(tcg_res, tcg_op, fpst);
7747     }
7748 
7749  done:
7750     write_fp_dreg(s, rd, tcg_res);
7751 }
7752 
7753 static void handle_fp_fcvt(DisasContext *s, int opcode,
7754                            int rd, int rn, int dtype, int ntype)
7755 {
7756     switch (ntype) {
7757     case 0x0:
7758     {
7759         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7760         if (dtype == 1) {
7761             /* Single to double */
7762             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7763             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7764             write_fp_dreg(s, rd, tcg_rd);
7765         } else {
7766             /* Single to half */
7767             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7768             TCGv_i32 ahp = get_ahp_flag();
7769             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7770 
7771             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7772             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7773             write_fp_sreg(s, rd, tcg_rd);
7774         }
7775         break;
7776     }
7777     case 0x1:
7778     {
7779         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7780         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7781         if (dtype == 0) {
7782             /* Double to single */
7783             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7784         } else {
7785             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7786             TCGv_i32 ahp = get_ahp_flag();
7787             /* Double to half */
7788             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7789             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7790         }
7791         write_fp_sreg(s, rd, tcg_rd);
7792         break;
7793     }
7794     case 0x3:
7795     {
7796         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7797         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7798         TCGv_i32 tcg_ahp = get_ahp_flag();
7799         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7800         if (dtype == 0) {
7801             /* Half to single */
7802             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7803             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7804             write_fp_sreg(s, rd, tcg_rd);
7805         } else {
7806             /* Half to double */
7807             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7808             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7809             write_fp_dreg(s, rd, tcg_rd);
7810         }
7811         break;
7812     }
7813     default:
7814         g_assert_not_reached();
7815     }
7816 }
7817 
7818 /* Floating point data-processing (1 source)
7819  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7820  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7821  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7822  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7823  */
7824 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7825 {
7826     int mos = extract32(insn, 29, 3);
7827     int type = extract32(insn, 22, 2);
7828     int opcode = extract32(insn, 15, 6);
7829     int rn = extract32(insn, 5, 5);
7830     int rd = extract32(insn, 0, 5);
7831 
7832     if (mos) {
7833         goto do_unallocated;
7834     }
7835 
7836     switch (opcode) {
7837     case 0x4: case 0x5: case 0x7:
7838     {
7839         /* FCVT between half, single and double precision */
7840         int dtype = extract32(opcode, 0, 2);
7841         if (type == 2 || dtype == type) {
7842             goto do_unallocated;
7843         }
7844         if (!fp_access_check(s)) {
7845             return;
7846         }
7847 
7848         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7849         break;
7850     }
7851 
7852     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7853         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7854             goto do_unallocated;
7855         }
7856         /* fall through */
7857     case 0x0 ... 0x3:
7858     case 0x8 ... 0xc:
7859     case 0xe ... 0xf:
7860         /* 32-to-32 and 64-to-64 ops */
7861         switch (type) {
7862         case 0:
7863             if (!fp_access_check(s)) {
7864                 return;
7865             }
7866             handle_fp_1src_single(s, opcode, rd, rn);
7867             break;
7868         case 1:
7869             if (!fp_access_check(s)) {
7870                 return;
7871             }
7872             handle_fp_1src_double(s, opcode, rd, rn);
7873             break;
7874         case 3:
7875             if (!dc_isar_feature(aa64_fp16, s)) {
7876                 goto do_unallocated;
7877             }
7878 
7879             if (!fp_access_check(s)) {
7880                 return;
7881             }
7882             handle_fp_1src_half(s, opcode, rd, rn);
7883             break;
7884         default:
7885             goto do_unallocated;
7886         }
7887         break;
7888 
7889     case 0x6:
7890         switch (type) {
7891         case 1: /* BFCVT */
7892             if (!dc_isar_feature(aa64_bf16, s)) {
7893                 goto do_unallocated;
7894             }
7895             if (!fp_access_check(s)) {
7896                 return;
7897             }
7898             handle_fp_1src_single(s, opcode, rd, rn);
7899             break;
7900         default:
7901             goto do_unallocated;
7902         }
7903         break;
7904 
7905     default:
7906     do_unallocated:
7907         unallocated_encoding(s);
7908         break;
7909     }
7910 }
7911 
7912 /* Floating point immediate
7913  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7914  * +---+---+---+-----------+------+---+------------+-------+------+------+
7915  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7916  * +---+---+---+-----------+------+---+------------+-------+------+------+
7917  */
7918 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7919 {
7920     int rd = extract32(insn, 0, 5);
7921     int imm5 = extract32(insn, 5, 5);
7922     int imm8 = extract32(insn, 13, 8);
7923     int type = extract32(insn, 22, 2);
7924     int mos = extract32(insn, 29, 3);
7925     uint64_t imm;
7926     MemOp sz;
7927 
7928     if (mos || imm5) {
7929         unallocated_encoding(s);
7930         return;
7931     }
7932 
7933     switch (type) {
7934     case 0:
7935         sz = MO_32;
7936         break;
7937     case 1:
7938         sz = MO_64;
7939         break;
7940     case 3:
7941         sz = MO_16;
7942         if (dc_isar_feature(aa64_fp16, s)) {
7943             break;
7944         }
7945         /* fallthru */
7946     default:
7947         unallocated_encoding(s);
7948         return;
7949     }
7950 
7951     if (!fp_access_check(s)) {
7952         return;
7953     }
7954 
7955     imm = vfp_expand_imm(sz, imm8);
7956     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7957 }
7958 
7959 /* Handle floating point <=> fixed point conversions. Note that we can
7960  * also deal with fp <=> integer conversions as a special case (scale == 64)
7961  * OPTME: consider handling that special case specially or at least skipping
7962  * the call to scalbn in the helpers for zero shifts.
7963  */
7964 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7965                            bool itof, int rmode, int scale, int sf, int type)
7966 {
7967     bool is_signed = !(opcode & 1);
7968     TCGv_ptr tcg_fpstatus;
7969     TCGv_i32 tcg_shift, tcg_single;
7970     TCGv_i64 tcg_double;
7971 
7972     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7973 
7974     tcg_shift = tcg_constant_i32(64 - scale);
7975 
7976     if (itof) {
7977         TCGv_i64 tcg_int = cpu_reg(s, rn);
7978         if (!sf) {
7979             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7980 
7981             if (is_signed) {
7982                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7983             } else {
7984                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7985             }
7986 
7987             tcg_int = tcg_extend;
7988         }
7989 
7990         switch (type) {
7991         case 1: /* float64 */
7992             tcg_double = tcg_temp_new_i64();
7993             if (is_signed) {
7994                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7995                                      tcg_shift, tcg_fpstatus);
7996             } else {
7997                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7998                                      tcg_shift, tcg_fpstatus);
7999             }
8000             write_fp_dreg(s, rd, tcg_double);
8001             break;
8002 
8003         case 0: /* float32 */
8004             tcg_single = tcg_temp_new_i32();
8005             if (is_signed) {
8006                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
8007                                      tcg_shift, tcg_fpstatus);
8008             } else {
8009                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
8010                                      tcg_shift, tcg_fpstatus);
8011             }
8012             write_fp_sreg(s, rd, tcg_single);
8013             break;
8014 
8015         case 3: /* float16 */
8016             tcg_single = tcg_temp_new_i32();
8017             if (is_signed) {
8018                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
8019                                      tcg_shift, tcg_fpstatus);
8020             } else {
8021                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
8022                                      tcg_shift, tcg_fpstatus);
8023             }
8024             write_fp_sreg(s, rd, tcg_single);
8025             break;
8026 
8027         default:
8028             g_assert_not_reached();
8029         }
8030     } else {
8031         TCGv_i64 tcg_int = cpu_reg(s, rd);
8032         TCGv_i32 tcg_rmode;
8033 
8034         if (extract32(opcode, 2, 1)) {
8035             /* There are too many rounding modes to all fit into rmode,
8036              * so FCVTA[US] is a special case.
8037              */
8038             rmode = FPROUNDING_TIEAWAY;
8039         }
8040 
8041         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8042 
8043         switch (type) {
8044         case 1: /* float64 */
8045             tcg_double = read_fp_dreg(s, rn);
8046             if (is_signed) {
8047                 if (!sf) {
8048                     gen_helper_vfp_tosld(tcg_int, tcg_double,
8049                                          tcg_shift, tcg_fpstatus);
8050                 } else {
8051                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
8052                                          tcg_shift, tcg_fpstatus);
8053                 }
8054             } else {
8055                 if (!sf) {
8056                     gen_helper_vfp_tould(tcg_int, tcg_double,
8057                                          tcg_shift, tcg_fpstatus);
8058                 } else {
8059                     gen_helper_vfp_touqd(tcg_int, tcg_double,
8060                                          tcg_shift, tcg_fpstatus);
8061                 }
8062             }
8063             if (!sf) {
8064                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8065             }
8066             break;
8067 
8068         case 0: /* float32 */
8069             tcg_single = read_fp_sreg(s, rn);
8070             if (sf) {
8071                 if (is_signed) {
8072                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
8073                                          tcg_shift, tcg_fpstatus);
8074                 } else {
8075                     gen_helper_vfp_touqs(tcg_int, tcg_single,
8076                                          tcg_shift, tcg_fpstatus);
8077                 }
8078             } else {
8079                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8080                 if (is_signed) {
8081                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
8082                                          tcg_shift, tcg_fpstatus);
8083                 } else {
8084                     gen_helper_vfp_touls(tcg_dest, tcg_single,
8085                                          tcg_shift, tcg_fpstatus);
8086                 }
8087                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8088             }
8089             break;
8090 
8091         case 3: /* float16 */
8092             tcg_single = read_fp_sreg(s, rn);
8093             if (sf) {
8094                 if (is_signed) {
8095                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
8096                                          tcg_shift, tcg_fpstatus);
8097                 } else {
8098                     gen_helper_vfp_touqh(tcg_int, tcg_single,
8099                                          tcg_shift, tcg_fpstatus);
8100                 }
8101             } else {
8102                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8103                 if (is_signed) {
8104                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
8105                                          tcg_shift, tcg_fpstatus);
8106                 } else {
8107                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
8108                                          tcg_shift, tcg_fpstatus);
8109                 }
8110                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8111             }
8112             break;
8113 
8114         default:
8115             g_assert_not_reached();
8116         }
8117 
8118         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8119     }
8120 }
8121 
8122 /* Floating point <-> fixed point conversions
8123  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
8124  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8125  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
8126  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8127  */
8128 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8129 {
8130     int rd = extract32(insn, 0, 5);
8131     int rn = extract32(insn, 5, 5);
8132     int scale = extract32(insn, 10, 6);
8133     int opcode = extract32(insn, 16, 3);
8134     int rmode = extract32(insn, 19, 2);
8135     int type = extract32(insn, 22, 2);
8136     bool sbit = extract32(insn, 29, 1);
8137     bool sf = extract32(insn, 31, 1);
8138     bool itof;
8139 
8140     if (sbit || (!sf && scale < 32)) {
8141         unallocated_encoding(s);
8142         return;
8143     }
8144 
8145     switch (type) {
8146     case 0: /* float32 */
8147     case 1: /* float64 */
8148         break;
8149     case 3: /* float16 */
8150         if (dc_isar_feature(aa64_fp16, s)) {
8151             break;
8152         }
8153         /* fallthru */
8154     default:
8155         unallocated_encoding(s);
8156         return;
8157     }
8158 
8159     switch ((rmode << 3) | opcode) {
8160     case 0x2: /* SCVTF */
8161     case 0x3: /* UCVTF */
8162         itof = true;
8163         break;
8164     case 0x18: /* FCVTZS */
8165     case 0x19: /* FCVTZU */
8166         itof = false;
8167         break;
8168     default:
8169         unallocated_encoding(s);
8170         return;
8171     }
8172 
8173     if (!fp_access_check(s)) {
8174         return;
8175     }
8176 
8177     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8178 }
8179 
8180 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8181 {
8182     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8183      * without conversion.
8184      */
8185 
8186     if (itof) {
8187         TCGv_i64 tcg_rn = cpu_reg(s, rn);
8188         TCGv_i64 tmp;
8189 
8190         switch (type) {
8191         case 0:
8192             /* 32 bit */
8193             tmp = tcg_temp_new_i64();
8194             tcg_gen_ext32u_i64(tmp, tcg_rn);
8195             write_fp_dreg(s, rd, tmp);
8196             break;
8197         case 1:
8198             /* 64 bit */
8199             write_fp_dreg(s, rd, tcg_rn);
8200             break;
8201         case 2:
8202             /* 64 bit to top half. */
8203             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8204             clear_vec_high(s, true, rd);
8205             break;
8206         case 3:
8207             /* 16 bit */
8208             tmp = tcg_temp_new_i64();
8209             tcg_gen_ext16u_i64(tmp, tcg_rn);
8210             write_fp_dreg(s, rd, tmp);
8211             break;
8212         default:
8213             g_assert_not_reached();
8214         }
8215     } else {
8216         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8217 
8218         switch (type) {
8219         case 0:
8220             /* 32 bit */
8221             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8222             break;
8223         case 1:
8224             /* 64 bit */
8225             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8226             break;
8227         case 2:
8228             /* 64 bits from top half */
8229             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8230             break;
8231         case 3:
8232             /* 16 bit */
8233             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8234             break;
8235         default:
8236             g_assert_not_reached();
8237         }
8238     }
8239 }
8240 
8241 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8242 {
8243     TCGv_i64 t = read_fp_dreg(s, rn);
8244     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8245 
8246     gen_helper_fjcvtzs(t, t, fpstatus);
8247 
8248     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8249     tcg_gen_extrh_i64_i32(cpu_ZF, t);
8250     tcg_gen_movi_i32(cpu_CF, 0);
8251     tcg_gen_movi_i32(cpu_NF, 0);
8252     tcg_gen_movi_i32(cpu_VF, 0);
8253 }
8254 
8255 /* Floating point <-> integer conversions
8256  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
8257  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8258  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8259  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8260  */
8261 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8262 {
8263     int rd = extract32(insn, 0, 5);
8264     int rn = extract32(insn, 5, 5);
8265     int opcode = extract32(insn, 16, 3);
8266     int rmode = extract32(insn, 19, 2);
8267     int type = extract32(insn, 22, 2);
8268     bool sbit = extract32(insn, 29, 1);
8269     bool sf = extract32(insn, 31, 1);
8270     bool itof = false;
8271 
8272     if (sbit) {
8273         goto do_unallocated;
8274     }
8275 
8276     switch (opcode) {
8277     case 2: /* SCVTF */
8278     case 3: /* UCVTF */
8279         itof = true;
8280         /* fallthru */
8281     case 4: /* FCVTAS */
8282     case 5: /* FCVTAU */
8283         if (rmode != 0) {
8284             goto do_unallocated;
8285         }
8286         /* fallthru */
8287     case 0: /* FCVT[NPMZ]S */
8288     case 1: /* FCVT[NPMZ]U */
8289         switch (type) {
8290         case 0: /* float32 */
8291         case 1: /* float64 */
8292             break;
8293         case 3: /* float16 */
8294             if (!dc_isar_feature(aa64_fp16, s)) {
8295                 goto do_unallocated;
8296             }
8297             break;
8298         default:
8299             goto do_unallocated;
8300         }
8301         if (!fp_access_check(s)) {
8302             return;
8303         }
8304         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8305         break;
8306 
8307     default:
8308         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8309         case 0b01100110: /* FMOV half <-> 32-bit int */
8310         case 0b01100111:
8311         case 0b11100110: /* FMOV half <-> 64-bit int */
8312         case 0b11100111:
8313             if (!dc_isar_feature(aa64_fp16, s)) {
8314                 goto do_unallocated;
8315             }
8316             /* fallthru */
8317         case 0b00000110: /* FMOV 32-bit */
8318         case 0b00000111:
8319         case 0b10100110: /* FMOV 64-bit */
8320         case 0b10100111:
8321         case 0b11001110: /* FMOV top half of 128-bit */
8322         case 0b11001111:
8323             if (!fp_access_check(s)) {
8324                 return;
8325             }
8326             itof = opcode & 1;
8327             handle_fmov(s, rd, rn, type, itof);
8328             break;
8329 
8330         case 0b00111110: /* FJCVTZS */
8331             if (!dc_isar_feature(aa64_jscvt, s)) {
8332                 goto do_unallocated;
8333             } else if (fp_access_check(s)) {
8334                 handle_fjcvtzs(s, rd, rn);
8335             }
8336             break;
8337 
8338         default:
8339         do_unallocated:
8340             unallocated_encoding(s);
8341             return;
8342         }
8343         break;
8344     }
8345 }
8346 
8347 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8348  *   31  30  29 28     25 24                          0
8349  * +---+---+---+---------+-----------------------------+
8350  * |   | 0 |   | 1 1 1 1 |                             |
8351  * +---+---+---+---------+-----------------------------+
8352  */
8353 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8354 {
8355     if (extract32(insn, 24, 1)) {
8356         unallocated_encoding(s); /* in decodetree */
8357     } else if (extract32(insn, 21, 1) == 0) {
8358         /* Floating point to fixed point conversions */
8359         disas_fp_fixed_conv(s, insn);
8360     } else {
8361         switch (extract32(insn, 10, 2)) {
8362         case 1:
8363             /* Floating point conditional compare */
8364             disas_fp_ccomp(s, insn);
8365             break;
8366         case 2:
8367             /* Floating point data-processing (2 source) */
8368             unallocated_encoding(s); /* in decodetree */
8369             break;
8370         case 3:
8371             /* Floating point conditional select */
8372             unallocated_encoding(s); /* in decodetree */
8373             break;
8374         case 0:
8375             switch (ctz32(extract32(insn, 12, 4))) {
8376             case 0: /* [15:12] == xxx1 */
8377                 /* Floating point immediate */
8378                 disas_fp_imm(s, insn);
8379                 break;
8380             case 1: /* [15:12] == xx10 */
8381                 /* Floating point compare */
8382                 disas_fp_compare(s, insn);
8383                 break;
8384             case 2: /* [15:12] == x100 */
8385                 /* Floating point data-processing (1 source) */
8386                 disas_fp_1src(s, insn);
8387                 break;
8388             case 3: /* [15:12] == 1000 */
8389                 unallocated_encoding(s);
8390                 break;
8391             default: /* [15:12] == 0000 */
8392                 /* Floating point <-> integer conversions */
8393                 disas_fp_int_conv(s, insn);
8394                 break;
8395             }
8396             break;
8397         }
8398     }
8399 }
8400 
8401 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8402                      int pos)
8403 {
8404     /* Extract 64 bits from the middle of two concatenated 64 bit
8405      * vector register slices left:right. The extracted bits start
8406      * at 'pos' bits into the right (least significant) side.
8407      * We return the result in tcg_right, and guarantee not to
8408      * trash tcg_left.
8409      */
8410     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8411     assert(pos > 0 && pos < 64);
8412 
8413     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8414     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8415     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8416 }
8417 
8418 /* EXT
8419  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8420  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8421  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8422  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8423  */
8424 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8425 {
8426     int is_q = extract32(insn, 30, 1);
8427     int op2 = extract32(insn, 22, 2);
8428     int imm4 = extract32(insn, 11, 4);
8429     int rm = extract32(insn, 16, 5);
8430     int rn = extract32(insn, 5, 5);
8431     int rd = extract32(insn, 0, 5);
8432     int pos = imm4 << 3;
8433     TCGv_i64 tcg_resl, tcg_resh;
8434 
8435     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8436         unallocated_encoding(s);
8437         return;
8438     }
8439 
8440     if (!fp_access_check(s)) {
8441         return;
8442     }
8443 
8444     tcg_resh = tcg_temp_new_i64();
8445     tcg_resl = tcg_temp_new_i64();
8446 
8447     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8448      * either extracting 128 bits from a 128:128 concatenation, or
8449      * extracting 64 bits from a 64:64 concatenation.
8450      */
8451     if (!is_q) {
8452         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8453         if (pos != 0) {
8454             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8455             do_ext64(s, tcg_resh, tcg_resl, pos);
8456         }
8457     } else {
8458         TCGv_i64 tcg_hh;
8459         typedef struct {
8460             int reg;
8461             int elt;
8462         } EltPosns;
8463         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8464         EltPosns *elt = eltposns;
8465 
8466         if (pos >= 64) {
8467             elt++;
8468             pos -= 64;
8469         }
8470 
8471         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8472         elt++;
8473         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8474         elt++;
8475         if (pos != 0) {
8476             do_ext64(s, tcg_resh, tcg_resl, pos);
8477             tcg_hh = tcg_temp_new_i64();
8478             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8479             do_ext64(s, tcg_hh, tcg_resh, pos);
8480         }
8481     }
8482 
8483     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8484     if (is_q) {
8485         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8486     }
8487     clear_vec_high(s, is_q, rd);
8488 }
8489 
8490 /* TBL/TBX
8491  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8492  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8493  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8494  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8495  */
8496 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8497 {
8498     int op2 = extract32(insn, 22, 2);
8499     int is_q = extract32(insn, 30, 1);
8500     int rm = extract32(insn, 16, 5);
8501     int rn = extract32(insn, 5, 5);
8502     int rd = extract32(insn, 0, 5);
8503     int is_tbx = extract32(insn, 12, 1);
8504     int len = (extract32(insn, 13, 2) + 1) * 16;
8505 
8506     if (op2 != 0) {
8507         unallocated_encoding(s);
8508         return;
8509     }
8510 
8511     if (!fp_access_check(s)) {
8512         return;
8513     }
8514 
8515     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8516                        vec_full_reg_offset(s, rm), tcg_env,
8517                        is_q ? 16 : 8, vec_full_reg_size(s),
8518                        (len << 6) | (is_tbx << 5) | rn,
8519                        gen_helper_simd_tblx);
8520 }
8521 
8522 /* ZIP/UZP/TRN
8523  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8524  * +---+---+-------------+------+---+------+---+------------------+------+
8525  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8526  * +---+---+-------------+------+---+------+---+------------------+------+
8527  */
8528 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8529 {
8530     int rd = extract32(insn, 0, 5);
8531     int rn = extract32(insn, 5, 5);
8532     int rm = extract32(insn, 16, 5);
8533     int size = extract32(insn, 22, 2);
8534     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8535      * bit 2 indicates 1 vs 2 variant of the insn.
8536      */
8537     int opcode = extract32(insn, 12, 2);
8538     bool part = extract32(insn, 14, 1);
8539     bool is_q = extract32(insn, 30, 1);
8540     int esize = 8 << size;
8541     int i;
8542     int datasize = is_q ? 128 : 64;
8543     int elements = datasize / esize;
8544     TCGv_i64 tcg_res[2], tcg_ele;
8545 
8546     if (opcode == 0 || (size == 3 && !is_q)) {
8547         unallocated_encoding(s);
8548         return;
8549     }
8550 
8551     if (!fp_access_check(s)) {
8552         return;
8553     }
8554 
8555     tcg_res[0] = tcg_temp_new_i64();
8556     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8557     tcg_ele = tcg_temp_new_i64();
8558 
8559     for (i = 0; i < elements; i++) {
8560         int o, w;
8561 
8562         switch (opcode) {
8563         case 1: /* UZP1/2 */
8564         {
8565             int midpoint = elements / 2;
8566             if (i < midpoint) {
8567                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8568             } else {
8569                 read_vec_element(s, tcg_ele, rm,
8570                                  2 * (i - midpoint) + part, size);
8571             }
8572             break;
8573         }
8574         case 2: /* TRN1/2 */
8575             if (i & 1) {
8576                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8577             } else {
8578                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8579             }
8580             break;
8581         case 3: /* ZIP1/2 */
8582         {
8583             int base = part * elements / 2;
8584             if (i & 1) {
8585                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8586             } else {
8587                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8588             }
8589             break;
8590         }
8591         default:
8592             g_assert_not_reached();
8593         }
8594 
8595         w = (i * esize) / 64;
8596         o = (i * esize) % 64;
8597         if (o == 0) {
8598             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8599         } else {
8600             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8601             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8602         }
8603     }
8604 
8605     for (i = 0; i <= is_q; ++i) {
8606         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8607     }
8608     clear_vec_high(s, is_q, rd);
8609 }
8610 
8611 /*
8612  * do_reduction_op helper
8613  *
8614  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8615  * important for correct NaN propagation that we do these
8616  * operations in exactly the order specified by the pseudocode.
8617  *
8618  * This is a recursive function, TCG temps should be freed by the
8619  * calling function once it is done with the values.
8620  */
8621 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8622                                 int esize, int size, int vmap, TCGv_ptr fpst)
8623 {
8624     if (esize == size) {
8625         int element;
8626         MemOp msize = esize == 16 ? MO_16 : MO_32;
8627         TCGv_i32 tcg_elem;
8628 
8629         /* We should have one register left here */
8630         assert(ctpop8(vmap) == 1);
8631         element = ctz32(vmap);
8632         assert(element < 8);
8633 
8634         tcg_elem = tcg_temp_new_i32();
8635         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8636         return tcg_elem;
8637     } else {
8638         int bits = size / 2;
8639         int shift = ctpop8(vmap) / 2;
8640         int vmap_lo = (vmap >> shift) & vmap;
8641         int vmap_hi = (vmap & ~vmap_lo);
8642         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8643 
8644         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8645         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8646         tcg_res = tcg_temp_new_i32();
8647 
8648         switch (fpopcode) {
8649         case 0x0c: /* fmaxnmv half-precision */
8650             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8651             break;
8652         case 0x0f: /* fmaxv half-precision */
8653             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8654             break;
8655         case 0x1c: /* fminnmv half-precision */
8656             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8657             break;
8658         case 0x1f: /* fminv half-precision */
8659             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8660             break;
8661         case 0x2c: /* fmaxnmv */
8662             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8663             break;
8664         case 0x2f: /* fmaxv */
8665             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8666             break;
8667         case 0x3c: /* fminnmv */
8668             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8669             break;
8670         case 0x3f: /* fminv */
8671             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8672             break;
8673         default:
8674             g_assert_not_reached();
8675         }
8676         return tcg_res;
8677     }
8678 }
8679 
8680 /* AdvSIMD across lanes
8681  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8682  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8683  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8684  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8685  */
8686 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8687 {
8688     int rd = extract32(insn, 0, 5);
8689     int rn = extract32(insn, 5, 5);
8690     int size = extract32(insn, 22, 2);
8691     int opcode = extract32(insn, 12, 5);
8692     bool is_q = extract32(insn, 30, 1);
8693     bool is_u = extract32(insn, 29, 1);
8694     bool is_fp = false;
8695     bool is_min = false;
8696     int esize;
8697     int elements;
8698     int i;
8699     TCGv_i64 tcg_res, tcg_elt;
8700 
8701     switch (opcode) {
8702     case 0x1b: /* ADDV */
8703         if (is_u) {
8704             unallocated_encoding(s);
8705             return;
8706         }
8707         /* fall through */
8708     case 0x3: /* SADDLV, UADDLV */
8709     case 0xa: /* SMAXV, UMAXV */
8710     case 0x1a: /* SMINV, UMINV */
8711         if (size == 3 || (size == 2 && !is_q)) {
8712             unallocated_encoding(s);
8713             return;
8714         }
8715         break;
8716     case 0xc: /* FMAXNMV, FMINNMV */
8717     case 0xf: /* FMAXV, FMINV */
8718         /* Bit 1 of size field encodes min vs max and the actual size
8719          * depends on the encoding of the U bit. If not set (and FP16
8720          * enabled) then we do half-precision float instead of single
8721          * precision.
8722          */
8723         is_min = extract32(size, 1, 1);
8724         is_fp = true;
8725         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8726             size = 1;
8727         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8728             unallocated_encoding(s);
8729             return;
8730         } else {
8731             size = 2;
8732         }
8733         break;
8734     default:
8735         unallocated_encoding(s);
8736         return;
8737     }
8738 
8739     if (!fp_access_check(s)) {
8740         return;
8741     }
8742 
8743     esize = 8 << size;
8744     elements = (is_q ? 128 : 64) / esize;
8745 
8746     tcg_res = tcg_temp_new_i64();
8747     tcg_elt = tcg_temp_new_i64();
8748 
8749     /* These instructions operate across all lanes of a vector
8750      * to produce a single result. We can guarantee that a 64
8751      * bit intermediate is sufficient:
8752      *  + for [US]ADDLV the maximum element size is 32 bits, and
8753      *    the result type is 64 bits
8754      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8755      *    same as the element size, which is 32 bits at most
8756      * For the integer operations we can choose to work at 64
8757      * or 32 bits and truncate at the end; for simplicity
8758      * we use 64 bits always. The floating point
8759      * ops do require 32 bit intermediates, though.
8760      */
8761     if (!is_fp) {
8762         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8763 
8764         for (i = 1; i < elements; i++) {
8765             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8766 
8767             switch (opcode) {
8768             case 0x03: /* SADDLV / UADDLV */
8769             case 0x1b: /* ADDV */
8770                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8771                 break;
8772             case 0x0a: /* SMAXV / UMAXV */
8773                 if (is_u) {
8774                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8775                 } else {
8776                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8777                 }
8778                 break;
8779             case 0x1a: /* SMINV / UMINV */
8780                 if (is_u) {
8781                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8782                 } else {
8783                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8784                 }
8785                 break;
8786             default:
8787                 g_assert_not_reached();
8788             }
8789 
8790         }
8791     } else {
8792         /* Floating point vector reduction ops which work across 32
8793          * bit (single) or 16 bit (half-precision) intermediates.
8794          * Note that correct NaN propagation requires that we do these
8795          * operations in exactly the order specified by the pseudocode.
8796          */
8797         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8798         int fpopcode = opcode | is_min << 4 | is_u << 5;
8799         int vmap = (1 << elements) - 1;
8800         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8801                                              (is_q ? 128 : 64), vmap, fpst);
8802         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8803     }
8804 
8805     /* Now truncate the result to the width required for the final output */
8806     if (opcode == 0x03) {
8807         /* SADDLV, UADDLV: result is 2*esize */
8808         size++;
8809     }
8810 
8811     switch (size) {
8812     case 0:
8813         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8814         break;
8815     case 1:
8816         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8817         break;
8818     case 2:
8819         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8820         break;
8821     case 3:
8822         break;
8823     default:
8824         g_assert_not_reached();
8825     }
8826 
8827     write_fp_dreg(s, rd, tcg_res);
8828 }
8829 
8830 /* AdvSIMD modified immediate
8831  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8832  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8833  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8834  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8835  *
8836  * There are a number of operations that can be carried out here:
8837  *   MOVI - move (shifted) imm into register
8838  *   MVNI - move inverted (shifted) imm into register
8839  *   ORR  - bitwise OR of (shifted) imm with register
8840  *   BIC  - bitwise clear of (shifted) imm with register
8841  * With ARMv8.2 we also have:
8842  *   FMOV half-precision
8843  */
8844 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8845 {
8846     int rd = extract32(insn, 0, 5);
8847     int cmode = extract32(insn, 12, 4);
8848     int o2 = extract32(insn, 11, 1);
8849     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8850     bool is_neg = extract32(insn, 29, 1);
8851     bool is_q = extract32(insn, 30, 1);
8852     uint64_t imm = 0;
8853 
8854     if (o2) {
8855         if (cmode != 0xf || is_neg) {
8856             unallocated_encoding(s);
8857             return;
8858         }
8859         /* FMOV (vector, immediate) - half-precision */
8860         if (!dc_isar_feature(aa64_fp16, s)) {
8861             unallocated_encoding(s);
8862             return;
8863         }
8864         imm = vfp_expand_imm(MO_16, abcdefgh);
8865         /* now duplicate across the lanes */
8866         imm = dup_const(MO_16, imm);
8867     } else {
8868         if (cmode == 0xf && is_neg && !is_q) {
8869             unallocated_encoding(s);
8870             return;
8871         }
8872         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8873     }
8874 
8875     if (!fp_access_check(s)) {
8876         return;
8877     }
8878 
8879     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8880         /* MOVI or MVNI, with MVNI negation handled above.  */
8881         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8882                              vec_full_reg_size(s), imm);
8883     } else {
8884         /* ORR or BIC, with BIC negation to AND handled above.  */
8885         if (is_neg) {
8886             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8887         } else {
8888             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8889         }
8890     }
8891 }
8892 
8893 /*
8894  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8895  *
8896  * This code is handles the common shifting code and is used by both
8897  * the vector and scalar code.
8898  */
8899 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8900                                     TCGv_i64 tcg_rnd, bool accumulate,
8901                                     bool is_u, int size, int shift)
8902 {
8903     bool extended_result = false;
8904     bool round = tcg_rnd != NULL;
8905     int ext_lshift = 0;
8906     TCGv_i64 tcg_src_hi;
8907 
8908     if (round && size == 3) {
8909         extended_result = true;
8910         ext_lshift = 64 - shift;
8911         tcg_src_hi = tcg_temp_new_i64();
8912     } else if (shift == 64) {
8913         if (!accumulate && is_u) {
8914             /* result is zero */
8915             tcg_gen_movi_i64(tcg_res, 0);
8916             return;
8917         }
8918     }
8919 
8920     /* Deal with the rounding step */
8921     if (round) {
8922         if (extended_result) {
8923             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8924             if (!is_u) {
8925                 /* take care of sign extending tcg_res */
8926                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8927                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8928                                  tcg_src, tcg_src_hi,
8929                                  tcg_rnd, tcg_zero);
8930             } else {
8931                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8932                                  tcg_src, tcg_zero,
8933                                  tcg_rnd, tcg_zero);
8934             }
8935         } else {
8936             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8937         }
8938     }
8939 
8940     /* Now do the shift right */
8941     if (round && extended_result) {
8942         /* extended case, >64 bit precision required */
8943         if (ext_lshift == 0) {
8944             /* special case, only high bits matter */
8945             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8946         } else {
8947             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8948             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8949             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8950         }
8951     } else {
8952         if (is_u) {
8953             if (shift == 64) {
8954                 /* essentially shifting in 64 zeros */
8955                 tcg_gen_movi_i64(tcg_src, 0);
8956             } else {
8957                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8958             }
8959         } else {
8960             if (shift == 64) {
8961                 /* effectively extending the sign-bit */
8962                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8963             } else {
8964                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8965             }
8966         }
8967     }
8968 
8969     if (accumulate) {
8970         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8971     } else {
8972         tcg_gen_mov_i64(tcg_res, tcg_src);
8973     }
8974 }
8975 
8976 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8977 static void handle_scalar_simd_shri(DisasContext *s,
8978                                     bool is_u, int immh, int immb,
8979                                     int opcode, int rn, int rd)
8980 {
8981     const int size = 3;
8982     int immhb = immh << 3 | immb;
8983     int shift = 2 * (8 << size) - immhb;
8984     bool accumulate = false;
8985     bool round = false;
8986     bool insert = false;
8987     TCGv_i64 tcg_rn;
8988     TCGv_i64 tcg_rd;
8989     TCGv_i64 tcg_round;
8990 
8991     if (!extract32(immh, 3, 1)) {
8992         unallocated_encoding(s);
8993         return;
8994     }
8995 
8996     if (!fp_access_check(s)) {
8997         return;
8998     }
8999 
9000     switch (opcode) {
9001     case 0x02: /* SSRA / USRA (accumulate) */
9002         accumulate = true;
9003         break;
9004     case 0x04: /* SRSHR / URSHR (rounding) */
9005         round = true;
9006         break;
9007     case 0x06: /* SRSRA / URSRA (accum + rounding) */
9008         accumulate = round = true;
9009         break;
9010     case 0x08: /* SRI */
9011         insert = true;
9012         break;
9013     }
9014 
9015     if (round) {
9016         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9017     } else {
9018         tcg_round = NULL;
9019     }
9020 
9021     tcg_rn = read_fp_dreg(s, rn);
9022     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9023 
9024     if (insert) {
9025         /* shift count same as element size is valid but does nothing;
9026          * special case to avoid potential shift by 64.
9027          */
9028         int esize = 8 << size;
9029         if (shift != esize) {
9030             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
9031             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
9032         }
9033     } else {
9034         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9035                                 accumulate, is_u, size, shift);
9036     }
9037 
9038     write_fp_dreg(s, rd, tcg_rd);
9039 }
9040 
9041 /* SHL/SLI - Scalar shift left */
9042 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9043                                     int immh, int immb, int opcode,
9044                                     int rn, int rd)
9045 {
9046     int size = 32 - clz32(immh) - 1;
9047     int immhb = immh << 3 | immb;
9048     int shift = immhb - (8 << size);
9049     TCGv_i64 tcg_rn;
9050     TCGv_i64 tcg_rd;
9051 
9052     if (!extract32(immh, 3, 1)) {
9053         unallocated_encoding(s);
9054         return;
9055     }
9056 
9057     if (!fp_access_check(s)) {
9058         return;
9059     }
9060 
9061     tcg_rn = read_fp_dreg(s, rn);
9062     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9063 
9064     if (insert) {
9065         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9066     } else {
9067         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9068     }
9069 
9070     write_fp_dreg(s, rd, tcg_rd);
9071 }
9072 
9073 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9074  * (signed/unsigned) narrowing */
9075 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9076                                    bool is_u_shift, bool is_u_narrow,
9077                                    int immh, int immb, int opcode,
9078                                    int rn, int rd)
9079 {
9080     int immhb = immh << 3 | immb;
9081     int size = 32 - clz32(immh) - 1;
9082     int esize = 8 << size;
9083     int shift = (2 * esize) - immhb;
9084     int elements = is_scalar ? 1 : (64 / esize);
9085     bool round = extract32(opcode, 0, 1);
9086     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9087     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9088     TCGv_i32 tcg_rd_narrowed;
9089     TCGv_i64 tcg_final;
9090 
9091     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9092         { gen_helper_neon_narrow_sat_s8,
9093           gen_helper_neon_unarrow_sat8 },
9094         { gen_helper_neon_narrow_sat_s16,
9095           gen_helper_neon_unarrow_sat16 },
9096         { gen_helper_neon_narrow_sat_s32,
9097           gen_helper_neon_unarrow_sat32 },
9098         { NULL, NULL },
9099     };
9100     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9101         gen_helper_neon_narrow_sat_u8,
9102         gen_helper_neon_narrow_sat_u16,
9103         gen_helper_neon_narrow_sat_u32,
9104         NULL
9105     };
9106     NeonGenNarrowEnvFn *narrowfn;
9107 
9108     int i;
9109 
9110     assert(size < 4);
9111 
9112     if (extract32(immh, 3, 1)) {
9113         unallocated_encoding(s);
9114         return;
9115     }
9116 
9117     if (!fp_access_check(s)) {
9118         return;
9119     }
9120 
9121     if (is_u_shift) {
9122         narrowfn = unsigned_narrow_fns[size];
9123     } else {
9124         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9125     }
9126 
9127     tcg_rn = tcg_temp_new_i64();
9128     tcg_rd = tcg_temp_new_i64();
9129     tcg_rd_narrowed = tcg_temp_new_i32();
9130     tcg_final = tcg_temp_new_i64();
9131 
9132     if (round) {
9133         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9134     } else {
9135         tcg_round = NULL;
9136     }
9137 
9138     for (i = 0; i < elements; i++) {
9139         read_vec_element(s, tcg_rn, rn, i, ldop);
9140         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9141                                 false, is_u_shift, size+1, shift);
9142         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9143         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9144         if (i == 0) {
9145             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9146         } else {
9147             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9148         }
9149     }
9150 
9151     if (!is_q) {
9152         write_vec_element(s, tcg_final, rd, 0, MO_64);
9153     } else {
9154         write_vec_element(s, tcg_final, rd, 1, MO_64);
9155     }
9156     clear_vec_high(s, is_q, rd);
9157 }
9158 
9159 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9160 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9161                              bool src_unsigned, bool dst_unsigned,
9162                              int immh, int immb, int rn, int rd)
9163 {
9164     int immhb = immh << 3 | immb;
9165     int size = 32 - clz32(immh) - 1;
9166     int shift = immhb - (8 << size);
9167     int pass;
9168 
9169     assert(immh != 0);
9170     assert(!(scalar && is_q));
9171 
9172     if (!scalar) {
9173         if (!is_q && extract32(immh, 3, 1)) {
9174             unallocated_encoding(s);
9175             return;
9176         }
9177 
9178         /* Since we use the variable-shift helpers we must
9179          * replicate the shift count into each element of
9180          * the tcg_shift value.
9181          */
9182         switch (size) {
9183         case 0:
9184             shift |= shift << 8;
9185             /* fall through */
9186         case 1:
9187             shift |= shift << 16;
9188             break;
9189         case 2:
9190         case 3:
9191             break;
9192         default:
9193             g_assert_not_reached();
9194         }
9195     }
9196 
9197     if (!fp_access_check(s)) {
9198         return;
9199     }
9200 
9201     if (size == 3) {
9202         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9203         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9204             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9205             { NULL, gen_helper_neon_qshl_u64 },
9206         };
9207         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9208         int maxpass = is_q ? 2 : 1;
9209 
9210         for (pass = 0; pass < maxpass; pass++) {
9211             TCGv_i64 tcg_op = tcg_temp_new_i64();
9212 
9213             read_vec_element(s, tcg_op, rn, pass, MO_64);
9214             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9215             write_vec_element(s, tcg_op, rd, pass, MO_64);
9216         }
9217         clear_vec_high(s, is_q, rd);
9218     } else {
9219         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9220         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9221             {
9222                 { gen_helper_neon_qshl_s8,
9223                   gen_helper_neon_qshl_s16,
9224                   gen_helper_neon_qshl_s32 },
9225                 { gen_helper_neon_qshlu_s8,
9226                   gen_helper_neon_qshlu_s16,
9227                   gen_helper_neon_qshlu_s32 }
9228             }, {
9229                 { NULL, NULL, NULL },
9230                 { gen_helper_neon_qshl_u8,
9231                   gen_helper_neon_qshl_u16,
9232                   gen_helper_neon_qshl_u32 }
9233             }
9234         };
9235         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9236         MemOp memop = scalar ? size : MO_32;
9237         int maxpass = scalar ? 1 : is_q ? 4 : 2;
9238 
9239         for (pass = 0; pass < maxpass; pass++) {
9240             TCGv_i32 tcg_op = tcg_temp_new_i32();
9241 
9242             read_vec_element_i32(s, tcg_op, rn, pass, memop);
9243             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9244             if (scalar) {
9245                 switch (size) {
9246                 case 0:
9247                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
9248                     break;
9249                 case 1:
9250                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9251                     break;
9252                 case 2:
9253                     break;
9254                 default:
9255                     g_assert_not_reached();
9256                 }
9257                 write_fp_sreg(s, rd, tcg_op);
9258             } else {
9259                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9260             }
9261         }
9262 
9263         if (!scalar) {
9264             clear_vec_high(s, is_q, rd);
9265         }
9266     }
9267 }
9268 
9269 /* Common vector code for handling integer to FP conversion */
9270 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9271                                    int elements, int is_signed,
9272                                    int fracbits, int size)
9273 {
9274     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9275     TCGv_i32 tcg_shift = NULL;
9276 
9277     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9278     int pass;
9279 
9280     if (fracbits || size == MO_64) {
9281         tcg_shift = tcg_constant_i32(fracbits);
9282     }
9283 
9284     if (size == MO_64) {
9285         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9286         TCGv_i64 tcg_double = tcg_temp_new_i64();
9287 
9288         for (pass = 0; pass < elements; pass++) {
9289             read_vec_element(s, tcg_int64, rn, pass, mop);
9290 
9291             if (is_signed) {
9292                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9293                                      tcg_shift, tcg_fpst);
9294             } else {
9295                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9296                                      tcg_shift, tcg_fpst);
9297             }
9298             if (elements == 1) {
9299                 write_fp_dreg(s, rd, tcg_double);
9300             } else {
9301                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9302             }
9303         }
9304     } else {
9305         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9306         TCGv_i32 tcg_float = tcg_temp_new_i32();
9307 
9308         for (pass = 0; pass < elements; pass++) {
9309             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9310 
9311             switch (size) {
9312             case MO_32:
9313                 if (fracbits) {
9314                     if (is_signed) {
9315                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9316                                              tcg_shift, tcg_fpst);
9317                     } else {
9318                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9319                                              tcg_shift, tcg_fpst);
9320                     }
9321                 } else {
9322                     if (is_signed) {
9323                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9324                     } else {
9325                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9326                     }
9327                 }
9328                 break;
9329             case MO_16:
9330                 if (fracbits) {
9331                     if (is_signed) {
9332                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9333                                              tcg_shift, tcg_fpst);
9334                     } else {
9335                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9336                                              tcg_shift, tcg_fpst);
9337                     }
9338                 } else {
9339                     if (is_signed) {
9340                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9341                     } else {
9342                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9343                     }
9344                 }
9345                 break;
9346             default:
9347                 g_assert_not_reached();
9348             }
9349 
9350             if (elements == 1) {
9351                 write_fp_sreg(s, rd, tcg_float);
9352             } else {
9353                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9354             }
9355         }
9356     }
9357 
9358     clear_vec_high(s, elements << size == 16, rd);
9359 }
9360 
9361 /* UCVTF/SCVTF - Integer to FP conversion */
9362 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9363                                          bool is_q, bool is_u,
9364                                          int immh, int immb, int opcode,
9365                                          int rn, int rd)
9366 {
9367     int size, elements, fracbits;
9368     int immhb = immh << 3 | immb;
9369 
9370     if (immh & 8) {
9371         size = MO_64;
9372         if (!is_scalar && !is_q) {
9373             unallocated_encoding(s);
9374             return;
9375         }
9376     } else if (immh & 4) {
9377         size = MO_32;
9378     } else if (immh & 2) {
9379         size = MO_16;
9380         if (!dc_isar_feature(aa64_fp16, s)) {
9381             unallocated_encoding(s);
9382             return;
9383         }
9384     } else {
9385         /* immh == 0 would be a failure of the decode logic */
9386         g_assert(immh == 1);
9387         unallocated_encoding(s);
9388         return;
9389     }
9390 
9391     if (is_scalar) {
9392         elements = 1;
9393     } else {
9394         elements = (8 << is_q) >> size;
9395     }
9396     fracbits = (16 << size) - immhb;
9397 
9398     if (!fp_access_check(s)) {
9399         return;
9400     }
9401 
9402     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9403 }
9404 
9405 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9406 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9407                                          bool is_q, bool is_u,
9408                                          int immh, int immb, int rn, int rd)
9409 {
9410     int immhb = immh << 3 | immb;
9411     int pass, size, fracbits;
9412     TCGv_ptr tcg_fpstatus;
9413     TCGv_i32 tcg_rmode, tcg_shift;
9414 
9415     if (immh & 0x8) {
9416         size = MO_64;
9417         if (!is_scalar && !is_q) {
9418             unallocated_encoding(s);
9419             return;
9420         }
9421     } else if (immh & 0x4) {
9422         size = MO_32;
9423     } else if (immh & 0x2) {
9424         size = MO_16;
9425         if (!dc_isar_feature(aa64_fp16, s)) {
9426             unallocated_encoding(s);
9427             return;
9428         }
9429     } else {
9430         /* Should have split out AdvSIMD modified immediate earlier.  */
9431         assert(immh == 1);
9432         unallocated_encoding(s);
9433         return;
9434     }
9435 
9436     if (!fp_access_check(s)) {
9437         return;
9438     }
9439 
9440     assert(!(is_scalar && is_q));
9441 
9442     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9443     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9444     fracbits = (16 << size) - immhb;
9445     tcg_shift = tcg_constant_i32(fracbits);
9446 
9447     if (size == MO_64) {
9448         int maxpass = is_scalar ? 1 : 2;
9449 
9450         for (pass = 0; pass < maxpass; pass++) {
9451             TCGv_i64 tcg_op = tcg_temp_new_i64();
9452 
9453             read_vec_element(s, tcg_op, rn, pass, MO_64);
9454             if (is_u) {
9455                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9456             } else {
9457                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9458             }
9459             write_vec_element(s, tcg_op, rd, pass, MO_64);
9460         }
9461         clear_vec_high(s, is_q, rd);
9462     } else {
9463         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9464         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9465 
9466         switch (size) {
9467         case MO_16:
9468             if (is_u) {
9469                 fn = gen_helper_vfp_touhh;
9470             } else {
9471                 fn = gen_helper_vfp_toshh;
9472             }
9473             break;
9474         case MO_32:
9475             if (is_u) {
9476                 fn = gen_helper_vfp_touls;
9477             } else {
9478                 fn = gen_helper_vfp_tosls;
9479             }
9480             break;
9481         default:
9482             g_assert_not_reached();
9483         }
9484 
9485         for (pass = 0; pass < maxpass; pass++) {
9486             TCGv_i32 tcg_op = tcg_temp_new_i32();
9487 
9488             read_vec_element_i32(s, tcg_op, rn, pass, size);
9489             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9490             if (is_scalar) {
9491                 if (size == MO_16 && !is_u) {
9492                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9493                 }
9494                 write_fp_sreg(s, rd, tcg_op);
9495             } else {
9496                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9497             }
9498         }
9499         if (!is_scalar) {
9500             clear_vec_high(s, is_q, rd);
9501         }
9502     }
9503 
9504     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9505 }
9506 
9507 /* AdvSIMD scalar shift by immediate
9508  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9509  * +-----+---+-------------+------+------+--------+---+------+------+
9510  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9511  * +-----+---+-------------+------+------+--------+---+------+------+
9512  *
9513  * This is the scalar version so it works on a fixed sized registers
9514  */
9515 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9516 {
9517     int rd = extract32(insn, 0, 5);
9518     int rn = extract32(insn, 5, 5);
9519     int opcode = extract32(insn, 11, 5);
9520     int immb = extract32(insn, 16, 3);
9521     int immh = extract32(insn, 19, 4);
9522     bool is_u = extract32(insn, 29, 1);
9523 
9524     if (immh == 0) {
9525         unallocated_encoding(s);
9526         return;
9527     }
9528 
9529     switch (opcode) {
9530     case 0x08: /* SRI */
9531         if (!is_u) {
9532             unallocated_encoding(s);
9533             return;
9534         }
9535         /* fall through */
9536     case 0x00: /* SSHR / USHR */
9537     case 0x02: /* SSRA / USRA */
9538     case 0x04: /* SRSHR / URSHR */
9539     case 0x06: /* SRSRA / URSRA */
9540         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9541         break;
9542     case 0x0a: /* SHL / SLI */
9543         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9544         break;
9545     case 0x1c: /* SCVTF, UCVTF */
9546         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9547                                      opcode, rn, rd);
9548         break;
9549     case 0x10: /* SQSHRUN, SQSHRUN2 */
9550     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9551         if (!is_u) {
9552             unallocated_encoding(s);
9553             return;
9554         }
9555         handle_vec_simd_sqshrn(s, true, false, false, true,
9556                                immh, immb, opcode, rn, rd);
9557         break;
9558     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9559     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9560         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9561                                immh, immb, opcode, rn, rd);
9562         break;
9563     case 0xc: /* SQSHLU */
9564         if (!is_u) {
9565             unallocated_encoding(s);
9566             return;
9567         }
9568         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9569         break;
9570     case 0xe: /* SQSHL, UQSHL */
9571         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9572         break;
9573     case 0x1f: /* FCVTZS, FCVTZU */
9574         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9575         break;
9576     default:
9577         unallocated_encoding(s);
9578         break;
9579     }
9580 }
9581 
9582 /* AdvSIMD scalar three different
9583  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9584  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9585  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9586  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9587  */
9588 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9589 {
9590     bool is_u = extract32(insn, 29, 1);
9591     int size = extract32(insn, 22, 2);
9592     int opcode = extract32(insn, 12, 4);
9593     int rm = extract32(insn, 16, 5);
9594     int rn = extract32(insn, 5, 5);
9595     int rd = extract32(insn, 0, 5);
9596 
9597     if (is_u) {
9598         unallocated_encoding(s);
9599         return;
9600     }
9601 
9602     switch (opcode) {
9603     case 0x9: /* SQDMLAL, SQDMLAL2 */
9604     case 0xb: /* SQDMLSL, SQDMLSL2 */
9605     case 0xd: /* SQDMULL, SQDMULL2 */
9606         if (size == 0 || size == 3) {
9607             unallocated_encoding(s);
9608             return;
9609         }
9610         break;
9611     default:
9612         unallocated_encoding(s);
9613         return;
9614     }
9615 
9616     if (!fp_access_check(s)) {
9617         return;
9618     }
9619 
9620     if (size == 2) {
9621         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9622         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9623         TCGv_i64 tcg_res = tcg_temp_new_i64();
9624 
9625         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9626         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9627 
9628         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9629         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9630 
9631         switch (opcode) {
9632         case 0xd: /* SQDMULL, SQDMULL2 */
9633             break;
9634         case 0xb: /* SQDMLSL, SQDMLSL2 */
9635             tcg_gen_neg_i64(tcg_res, tcg_res);
9636             /* fall through */
9637         case 0x9: /* SQDMLAL, SQDMLAL2 */
9638             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9639             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9640                                               tcg_res, tcg_op1);
9641             break;
9642         default:
9643             g_assert_not_reached();
9644         }
9645 
9646         write_fp_dreg(s, rd, tcg_res);
9647     } else {
9648         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9649         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9650         TCGv_i64 tcg_res = tcg_temp_new_i64();
9651 
9652         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9653         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9654 
9655         switch (opcode) {
9656         case 0xd: /* SQDMULL, SQDMULL2 */
9657             break;
9658         case 0xb: /* SQDMLSL, SQDMLSL2 */
9659             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9660             /* fall through */
9661         case 0x9: /* SQDMLAL, SQDMLAL2 */
9662         {
9663             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9664             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9665             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9666                                               tcg_res, tcg_op3);
9667             break;
9668         }
9669         default:
9670             g_assert_not_reached();
9671         }
9672 
9673         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9674         write_fp_dreg(s, rd, tcg_res);
9675     }
9676 }
9677 
9678 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9679                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9680                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9681 {
9682     /* Handle 64->64 opcodes which are shared between the scalar and
9683      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9684      * is valid in either group and also the double-precision fp ops.
9685      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9686      * requires them.
9687      */
9688     TCGCond cond;
9689 
9690     switch (opcode) {
9691     case 0x4: /* CLS, CLZ */
9692         if (u) {
9693             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9694         } else {
9695             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9696         }
9697         break;
9698     case 0x5: /* NOT */
9699         /* This opcode is shared with CNT and RBIT but we have earlier
9700          * enforced that size == 3 if and only if this is the NOT insn.
9701          */
9702         tcg_gen_not_i64(tcg_rd, tcg_rn);
9703         break;
9704     case 0x7: /* SQABS, SQNEG */
9705         if (u) {
9706             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9707         } else {
9708             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9709         }
9710         break;
9711     case 0xa: /* CMLT */
9712         cond = TCG_COND_LT;
9713     do_cmop:
9714         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9715         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9716         break;
9717     case 0x8: /* CMGT, CMGE */
9718         cond = u ? TCG_COND_GE : TCG_COND_GT;
9719         goto do_cmop;
9720     case 0x9: /* CMEQ, CMLE */
9721         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9722         goto do_cmop;
9723     case 0xb: /* ABS, NEG */
9724         if (u) {
9725             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9726         } else {
9727             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9728         }
9729         break;
9730     case 0x2f: /* FABS */
9731         gen_vfp_absd(tcg_rd, tcg_rn);
9732         break;
9733     case 0x6f: /* FNEG */
9734         gen_vfp_negd(tcg_rd, tcg_rn);
9735         break;
9736     case 0x7f: /* FSQRT */
9737         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9738         break;
9739     case 0x1a: /* FCVTNS */
9740     case 0x1b: /* FCVTMS */
9741     case 0x1c: /* FCVTAS */
9742     case 0x3a: /* FCVTPS */
9743     case 0x3b: /* FCVTZS */
9744         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9745         break;
9746     case 0x5a: /* FCVTNU */
9747     case 0x5b: /* FCVTMU */
9748     case 0x5c: /* FCVTAU */
9749     case 0x7a: /* FCVTPU */
9750     case 0x7b: /* FCVTZU */
9751         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9752         break;
9753     case 0x18: /* FRINTN */
9754     case 0x19: /* FRINTM */
9755     case 0x38: /* FRINTP */
9756     case 0x39: /* FRINTZ */
9757     case 0x58: /* FRINTA */
9758     case 0x79: /* FRINTI */
9759         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9760         break;
9761     case 0x59: /* FRINTX */
9762         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9763         break;
9764     case 0x1e: /* FRINT32Z */
9765     case 0x5e: /* FRINT32X */
9766         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9767         break;
9768     case 0x1f: /* FRINT64Z */
9769     case 0x5f: /* FRINT64X */
9770         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9771         break;
9772     default:
9773         g_assert_not_reached();
9774     }
9775 }
9776 
9777 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9778                                    bool is_scalar, bool is_u, bool is_q,
9779                                    int size, int rn, int rd)
9780 {
9781     bool is_double = (size == MO_64);
9782     TCGv_ptr fpst;
9783 
9784     if (!fp_access_check(s)) {
9785         return;
9786     }
9787 
9788     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9789 
9790     if (is_double) {
9791         TCGv_i64 tcg_op = tcg_temp_new_i64();
9792         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9793         TCGv_i64 tcg_res = tcg_temp_new_i64();
9794         NeonGenTwoDoubleOpFn *genfn;
9795         bool swap = false;
9796         int pass;
9797 
9798         switch (opcode) {
9799         case 0x2e: /* FCMLT (zero) */
9800             swap = true;
9801             /* fallthrough */
9802         case 0x2c: /* FCMGT (zero) */
9803             genfn = gen_helper_neon_cgt_f64;
9804             break;
9805         case 0x2d: /* FCMEQ (zero) */
9806             genfn = gen_helper_neon_ceq_f64;
9807             break;
9808         case 0x6d: /* FCMLE (zero) */
9809             swap = true;
9810             /* fall through */
9811         case 0x6c: /* FCMGE (zero) */
9812             genfn = gen_helper_neon_cge_f64;
9813             break;
9814         default:
9815             g_assert_not_reached();
9816         }
9817 
9818         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9819             read_vec_element(s, tcg_op, rn, pass, MO_64);
9820             if (swap) {
9821                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9822             } else {
9823                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9824             }
9825             write_vec_element(s, tcg_res, rd, pass, MO_64);
9826         }
9827 
9828         clear_vec_high(s, !is_scalar, rd);
9829     } else {
9830         TCGv_i32 tcg_op = tcg_temp_new_i32();
9831         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9832         TCGv_i32 tcg_res = tcg_temp_new_i32();
9833         NeonGenTwoSingleOpFn *genfn;
9834         bool swap = false;
9835         int pass, maxpasses;
9836 
9837         if (size == MO_16) {
9838             switch (opcode) {
9839             case 0x2e: /* FCMLT (zero) */
9840                 swap = true;
9841                 /* fall through */
9842             case 0x2c: /* FCMGT (zero) */
9843                 genfn = gen_helper_advsimd_cgt_f16;
9844                 break;
9845             case 0x2d: /* FCMEQ (zero) */
9846                 genfn = gen_helper_advsimd_ceq_f16;
9847                 break;
9848             case 0x6d: /* FCMLE (zero) */
9849                 swap = true;
9850                 /* fall through */
9851             case 0x6c: /* FCMGE (zero) */
9852                 genfn = gen_helper_advsimd_cge_f16;
9853                 break;
9854             default:
9855                 g_assert_not_reached();
9856             }
9857         } else {
9858             switch (opcode) {
9859             case 0x2e: /* FCMLT (zero) */
9860                 swap = true;
9861                 /* fall through */
9862             case 0x2c: /* FCMGT (zero) */
9863                 genfn = gen_helper_neon_cgt_f32;
9864                 break;
9865             case 0x2d: /* FCMEQ (zero) */
9866                 genfn = gen_helper_neon_ceq_f32;
9867                 break;
9868             case 0x6d: /* FCMLE (zero) */
9869                 swap = true;
9870                 /* fall through */
9871             case 0x6c: /* FCMGE (zero) */
9872                 genfn = gen_helper_neon_cge_f32;
9873                 break;
9874             default:
9875                 g_assert_not_reached();
9876             }
9877         }
9878 
9879         if (is_scalar) {
9880             maxpasses = 1;
9881         } else {
9882             int vector_size = 8 << is_q;
9883             maxpasses = vector_size >> size;
9884         }
9885 
9886         for (pass = 0; pass < maxpasses; pass++) {
9887             read_vec_element_i32(s, tcg_op, rn, pass, size);
9888             if (swap) {
9889                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9890             } else {
9891                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9892             }
9893             if (is_scalar) {
9894                 write_fp_sreg(s, rd, tcg_res);
9895             } else {
9896                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9897             }
9898         }
9899 
9900         if (!is_scalar) {
9901             clear_vec_high(s, is_q, rd);
9902         }
9903     }
9904 }
9905 
9906 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9907                                     bool is_scalar, bool is_u, bool is_q,
9908                                     int size, int rn, int rd)
9909 {
9910     bool is_double = (size == 3);
9911     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9912 
9913     if (is_double) {
9914         TCGv_i64 tcg_op = tcg_temp_new_i64();
9915         TCGv_i64 tcg_res = tcg_temp_new_i64();
9916         int pass;
9917 
9918         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9919             read_vec_element(s, tcg_op, rn, pass, MO_64);
9920             switch (opcode) {
9921             case 0x3d: /* FRECPE */
9922                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9923                 break;
9924             case 0x3f: /* FRECPX */
9925                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9926                 break;
9927             case 0x7d: /* FRSQRTE */
9928                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9929                 break;
9930             default:
9931                 g_assert_not_reached();
9932             }
9933             write_vec_element(s, tcg_res, rd, pass, MO_64);
9934         }
9935         clear_vec_high(s, !is_scalar, rd);
9936     } else {
9937         TCGv_i32 tcg_op = tcg_temp_new_i32();
9938         TCGv_i32 tcg_res = tcg_temp_new_i32();
9939         int pass, maxpasses;
9940 
9941         if (is_scalar) {
9942             maxpasses = 1;
9943         } else {
9944             maxpasses = is_q ? 4 : 2;
9945         }
9946 
9947         for (pass = 0; pass < maxpasses; pass++) {
9948             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9949 
9950             switch (opcode) {
9951             case 0x3c: /* URECPE */
9952                 gen_helper_recpe_u32(tcg_res, tcg_op);
9953                 break;
9954             case 0x3d: /* FRECPE */
9955                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9956                 break;
9957             case 0x3f: /* FRECPX */
9958                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9959                 break;
9960             case 0x7d: /* FRSQRTE */
9961                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9962                 break;
9963             default:
9964                 g_assert_not_reached();
9965             }
9966 
9967             if (is_scalar) {
9968                 write_fp_sreg(s, rd, tcg_res);
9969             } else {
9970                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9971             }
9972         }
9973         if (!is_scalar) {
9974             clear_vec_high(s, is_q, rd);
9975         }
9976     }
9977 }
9978 
9979 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9980                                 int opcode, bool u, bool is_q,
9981                                 int size, int rn, int rd)
9982 {
9983     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9984      * in the source becomes a size element in the destination).
9985      */
9986     int pass;
9987     TCGv_i32 tcg_res[2];
9988     int destelt = is_q ? 2 : 0;
9989     int passes = scalar ? 1 : 2;
9990 
9991     if (scalar) {
9992         tcg_res[1] = tcg_constant_i32(0);
9993     }
9994 
9995     for (pass = 0; pass < passes; pass++) {
9996         TCGv_i64 tcg_op = tcg_temp_new_i64();
9997         NeonGenNarrowFn *genfn = NULL;
9998         NeonGenNarrowEnvFn *genenvfn = NULL;
9999 
10000         if (scalar) {
10001             read_vec_element(s, tcg_op, rn, pass, size + 1);
10002         } else {
10003             read_vec_element(s, tcg_op, rn, pass, MO_64);
10004         }
10005         tcg_res[pass] = tcg_temp_new_i32();
10006 
10007         switch (opcode) {
10008         case 0x12: /* XTN, SQXTUN */
10009         {
10010             static NeonGenNarrowFn * const xtnfns[3] = {
10011                 gen_helper_neon_narrow_u8,
10012                 gen_helper_neon_narrow_u16,
10013                 tcg_gen_extrl_i64_i32,
10014             };
10015             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10016                 gen_helper_neon_unarrow_sat8,
10017                 gen_helper_neon_unarrow_sat16,
10018                 gen_helper_neon_unarrow_sat32,
10019             };
10020             if (u) {
10021                 genenvfn = sqxtunfns[size];
10022             } else {
10023                 genfn = xtnfns[size];
10024             }
10025             break;
10026         }
10027         case 0x14: /* SQXTN, UQXTN */
10028         {
10029             static NeonGenNarrowEnvFn * const fns[3][2] = {
10030                 { gen_helper_neon_narrow_sat_s8,
10031                   gen_helper_neon_narrow_sat_u8 },
10032                 { gen_helper_neon_narrow_sat_s16,
10033                   gen_helper_neon_narrow_sat_u16 },
10034                 { gen_helper_neon_narrow_sat_s32,
10035                   gen_helper_neon_narrow_sat_u32 },
10036             };
10037             genenvfn = fns[size][u];
10038             break;
10039         }
10040         case 0x16: /* FCVTN, FCVTN2 */
10041             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10042             if (size == 2) {
10043                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10044             } else {
10045                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10046                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10047                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10048                 TCGv_i32 ahp = get_ahp_flag();
10049 
10050                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10051                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10052                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10053                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10054             }
10055             break;
10056         case 0x36: /* BFCVTN, BFCVTN2 */
10057             {
10058                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10059                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10060             }
10061             break;
10062         case 0x56:  /* FCVTXN, FCVTXN2 */
10063             /* 64 bit to 32 bit float conversion
10064              * with von Neumann rounding (round to odd)
10065              */
10066             assert(size == 2);
10067             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10068             break;
10069         default:
10070             g_assert_not_reached();
10071         }
10072 
10073         if (genfn) {
10074             genfn(tcg_res[pass], tcg_op);
10075         } else if (genenvfn) {
10076             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10077         }
10078     }
10079 
10080     for (pass = 0; pass < 2; pass++) {
10081         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10082     }
10083     clear_vec_high(s, is_q, rd);
10084 }
10085 
10086 /* AdvSIMD scalar two reg misc
10087  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10088  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10089  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10090  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10091  */
10092 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10093 {
10094     int rd = extract32(insn, 0, 5);
10095     int rn = extract32(insn, 5, 5);
10096     int opcode = extract32(insn, 12, 5);
10097     int size = extract32(insn, 22, 2);
10098     bool u = extract32(insn, 29, 1);
10099     bool is_fcvt = false;
10100     int rmode;
10101     TCGv_i32 tcg_rmode;
10102     TCGv_ptr tcg_fpstatus;
10103 
10104     switch (opcode) {
10105     case 0x7: /* SQABS / SQNEG */
10106         break;
10107     case 0xa: /* CMLT */
10108         if (u) {
10109             unallocated_encoding(s);
10110             return;
10111         }
10112         /* fall through */
10113     case 0x8: /* CMGT, CMGE */
10114     case 0x9: /* CMEQ, CMLE */
10115     case 0xb: /* ABS, NEG */
10116         if (size != 3) {
10117             unallocated_encoding(s);
10118             return;
10119         }
10120         break;
10121     case 0x12: /* SQXTUN */
10122         if (!u) {
10123             unallocated_encoding(s);
10124             return;
10125         }
10126         /* fall through */
10127     case 0x14: /* SQXTN, UQXTN */
10128         if (size == 3) {
10129             unallocated_encoding(s);
10130             return;
10131         }
10132         if (!fp_access_check(s)) {
10133             return;
10134         }
10135         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10136         return;
10137     case 0xc ... 0xf:
10138     case 0x16 ... 0x1d:
10139     case 0x1f:
10140         /* Floating point: U, size[1] and opcode indicate operation;
10141          * size[0] indicates single or double precision.
10142          */
10143         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10144         size = extract32(size, 0, 1) ? 3 : 2;
10145         switch (opcode) {
10146         case 0x2c: /* FCMGT (zero) */
10147         case 0x2d: /* FCMEQ (zero) */
10148         case 0x2e: /* FCMLT (zero) */
10149         case 0x6c: /* FCMGE (zero) */
10150         case 0x6d: /* FCMLE (zero) */
10151             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10152             return;
10153         case 0x1d: /* SCVTF */
10154         case 0x5d: /* UCVTF */
10155         {
10156             bool is_signed = (opcode == 0x1d);
10157             if (!fp_access_check(s)) {
10158                 return;
10159             }
10160             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10161             return;
10162         }
10163         case 0x3d: /* FRECPE */
10164         case 0x3f: /* FRECPX */
10165         case 0x7d: /* FRSQRTE */
10166             if (!fp_access_check(s)) {
10167                 return;
10168             }
10169             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10170             return;
10171         case 0x1a: /* FCVTNS */
10172         case 0x1b: /* FCVTMS */
10173         case 0x3a: /* FCVTPS */
10174         case 0x3b: /* FCVTZS */
10175         case 0x5a: /* FCVTNU */
10176         case 0x5b: /* FCVTMU */
10177         case 0x7a: /* FCVTPU */
10178         case 0x7b: /* FCVTZU */
10179             is_fcvt = true;
10180             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10181             break;
10182         case 0x1c: /* FCVTAS */
10183         case 0x5c: /* FCVTAU */
10184             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10185             is_fcvt = true;
10186             rmode = FPROUNDING_TIEAWAY;
10187             break;
10188         case 0x56: /* FCVTXN, FCVTXN2 */
10189             if (size == 2) {
10190                 unallocated_encoding(s);
10191                 return;
10192             }
10193             if (!fp_access_check(s)) {
10194                 return;
10195             }
10196             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10197             return;
10198         default:
10199             unallocated_encoding(s);
10200             return;
10201         }
10202         break;
10203     default:
10204     case 0x3: /* USQADD / SUQADD */
10205         unallocated_encoding(s);
10206         return;
10207     }
10208 
10209     if (!fp_access_check(s)) {
10210         return;
10211     }
10212 
10213     if (is_fcvt) {
10214         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10215         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10216     } else {
10217         tcg_fpstatus = NULL;
10218         tcg_rmode = NULL;
10219     }
10220 
10221     if (size == 3) {
10222         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10223         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10224 
10225         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10226         write_fp_dreg(s, rd, tcg_rd);
10227     } else {
10228         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10229         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10230 
10231         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10232 
10233         switch (opcode) {
10234         case 0x7: /* SQABS, SQNEG */
10235         {
10236             NeonGenOneOpEnvFn *genfn;
10237             static NeonGenOneOpEnvFn * const fns[3][2] = {
10238                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10239                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10240                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10241             };
10242             genfn = fns[size][u];
10243             genfn(tcg_rd, tcg_env, tcg_rn);
10244             break;
10245         }
10246         case 0x1a: /* FCVTNS */
10247         case 0x1b: /* FCVTMS */
10248         case 0x1c: /* FCVTAS */
10249         case 0x3a: /* FCVTPS */
10250         case 0x3b: /* FCVTZS */
10251             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10252                                  tcg_fpstatus);
10253             break;
10254         case 0x5a: /* FCVTNU */
10255         case 0x5b: /* FCVTMU */
10256         case 0x5c: /* FCVTAU */
10257         case 0x7a: /* FCVTPU */
10258         case 0x7b: /* FCVTZU */
10259             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10260                                  tcg_fpstatus);
10261             break;
10262         default:
10263             g_assert_not_reached();
10264         }
10265 
10266         write_fp_sreg(s, rd, tcg_rd);
10267     }
10268 
10269     if (is_fcvt) {
10270         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10271     }
10272 }
10273 
10274 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10275 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10276                                  int immh, int immb, int opcode, int rn, int rd)
10277 {
10278     int size = 32 - clz32(immh) - 1;
10279     int immhb = immh << 3 | immb;
10280     int shift = 2 * (8 << size) - immhb;
10281     GVecGen2iFn *gvec_fn;
10282 
10283     if (extract32(immh, 3, 1) && !is_q) {
10284         unallocated_encoding(s);
10285         return;
10286     }
10287     tcg_debug_assert(size <= 3);
10288 
10289     if (!fp_access_check(s)) {
10290         return;
10291     }
10292 
10293     switch (opcode) {
10294     case 0x02: /* SSRA / USRA (accumulate) */
10295         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10296         break;
10297 
10298     case 0x08: /* SRI */
10299         gvec_fn = gen_gvec_sri;
10300         break;
10301 
10302     case 0x00: /* SSHR / USHR */
10303         if (is_u) {
10304             if (shift == 8 << size) {
10305                 /* Shift count the same size as element size produces zero.  */
10306                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10307                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10308                 return;
10309             }
10310             gvec_fn = tcg_gen_gvec_shri;
10311         } else {
10312             /* Shift count the same size as element size produces all sign.  */
10313             if (shift == 8 << size) {
10314                 shift -= 1;
10315             }
10316             gvec_fn = tcg_gen_gvec_sari;
10317         }
10318         break;
10319 
10320     case 0x04: /* SRSHR / URSHR (rounding) */
10321         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10322         break;
10323 
10324     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10325         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10326         break;
10327 
10328     default:
10329         g_assert_not_reached();
10330     }
10331 
10332     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10333 }
10334 
10335 /* SHL/SLI - Vector shift left */
10336 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10337                                  int immh, int immb, int opcode, int rn, int rd)
10338 {
10339     int size = 32 - clz32(immh) - 1;
10340     int immhb = immh << 3 | immb;
10341     int shift = immhb - (8 << size);
10342 
10343     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10344     assert(size >= 0 && size <= 3);
10345 
10346     if (extract32(immh, 3, 1) && !is_q) {
10347         unallocated_encoding(s);
10348         return;
10349     }
10350 
10351     if (!fp_access_check(s)) {
10352         return;
10353     }
10354 
10355     if (insert) {
10356         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10357     } else {
10358         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10359     }
10360 }
10361 
10362 /* USHLL/SHLL - Vector shift left with widening */
10363 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10364                                  int immh, int immb, int opcode, int rn, int rd)
10365 {
10366     int size = 32 - clz32(immh) - 1;
10367     int immhb = immh << 3 | immb;
10368     int shift = immhb - (8 << size);
10369     int dsize = 64;
10370     int esize = 8 << size;
10371     int elements = dsize/esize;
10372     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10373     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10374     int i;
10375 
10376     if (size >= 3) {
10377         unallocated_encoding(s);
10378         return;
10379     }
10380 
10381     if (!fp_access_check(s)) {
10382         return;
10383     }
10384 
10385     /* For the LL variants the store is larger than the load,
10386      * so if rd == rn we would overwrite parts of our input.
10387      * So load everything right now and use shifts in the main loop.
10388      */
10389     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10390 
10391     for (i = 0; i < elements; i++) {
10392         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10393         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10394         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10395         write_vec_element(s, tcg_rd, rd, i, size + 1);
10396     }
10397 }
10398 
10399 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10400 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10401                                  int immh, int immb, int opcode, int rn, int rd)
10402 {
10403     int immhb = immh << 3 | immb;
10404     int size = 32 - clz32(immh) - 1;
10405     int dsize = 64;
10406     int esize = 8 << size;
10407     int elements = dsize/esize;
10408     int shift = (2 * esize) - immhb;
10409     bool round = extract32(opcode, 0, 1);
10410     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10411     TCGv_i64 tcg_round;
10412     int i;
10413 
10414     if (extract32(immh, 3, 1)) {
10415         unallocated_encoding(s);
10416         return;
10417     }
10418 
10419     if (!fp_access_check(s)) {
10420         return;
10421     }
10422 
10423     tcg_rn = tcg_temp_new_i64();
10424     tcg_rd = tcg_temp_new_i64();
10425     tcg_final = tcg_temp_new_i64();
10426     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10427 
10428     if (round) {
10429         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10430     } else {
10431         tcg_round = NULL;
10432     }
10433 
10434     for (i = 0; i < elements; i++) {
10435         read_vec_element(s, tcg_rn, rn, i, size+1);
10436         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10437                                 false, true, size+1, shift);
10438 
10439         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10440     }
10441 
10442     if (!is_q) {
10443         write_vec_element(s, tcg_final, rd, 0, MO_64);
10444     } else {
10445         write_vec_element(s, tcg_final, rd, 1, MO_64);
10446     }
10447 
10448     clear_vec_high(s, is_q, rd);
10449 }
10450 
10451 
10452 /* AdvSIMD shift by immediate
10453  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10454  * +---+---+---+-------------+------+------+--------+---+------+------+
10455  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10456  * +---+---+---+-------------+------+------+--------+---+------+------+
10457  */
10458 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10459 {
10460     int rd = extract32(insn, 0, 5);
10461     int rn = extract32(insn, 5, 5);
10462     int opcode = extract32(insn, 11, 5);
10463     int immb = extract32(insn, 16, 3);
10464     int immh = extract32(insn, 19, 4);
10465     bool is_u = extract32(insn, 29, 1);
10466     bool is_q = extract32(insn, 30, 1);
10467 
10468     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10469     assert(immh != 0);
10470 
10471     switch (opcode) {
10472     case 0x08: /* SRI */
10473         if (!is_u) {
10474             unallocated_encoding(s);
10475             return;
10476         }
10477         /* fall through */
10478     case 0x00: /* SSHR / USHR */
10479     case 0x02: /* SSRA / USRA (accumulate) */
10480     case 0x04: /* SRSHR / URSHR (rounding) */
10481     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10482         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10483         break;
10484     case 0x0a: /* SHL / SLI */
10485         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10486         break;
10487     case 0x10: /* SHRN */
10488     case 0x11: /* RSHRN / SQRSHRUN */
10489         if (is_u) {
10490             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10491                                    opcode, rn, rd);
10492         } else {
10493             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10494         }
10495         break;
10496     case 0x12: /* SQSHRN / UQSHRN */
10497     case 0x13: /* SQRSHRN / UQRSHRN */
10498         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10499                                opcode, rn, rd);
10500         break;
10501     case 0x14: /* SSHLL / USHLL */
10502         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10503         break;
10504     case 0x1c: /* SCVTF / UCVTF */
10505         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10506                                      opcode, rn, rd);
10507         break;
10508     case 0xc: /* SQSHLU */
10509         if (!is_u) {
10510             unallocated_encoding(s);
10511             return;
10512         }
10513         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10514         break;
10515     case 0xe: /* SQSHL, UQSHL */
10516         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10517         break;
10518     case 0x1f: /* FCVTZS/ FCVTZU */
10519         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10520         return;
10521     default:
10522         unallocated_encoding(s);
10523         return;
10524     }
10525 }
10526 
10527 /* Generate code to do a "long" addition or subtraction, ie one done in
10528  * TCGv_i64 on vector lanes twice the width specified by size.
10529  */
10530 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10531                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10532 {
10533     static NeonGenTwo64OpFn * const fns[3][2] = {
10534         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10535         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10536         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10537     };
10538     NeonGenTwo64OpFn *genfn;
10539     assert(size < 3);
10540 
10541     genfn = fns[size][is_sub];
10542     genfn(tcg_res, tcg_op1, tcg_op2);
10543 }
10544 
10545 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10546                                 int opcode, int rd, int rn, int rm)
10547 {
10548     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10549     TCGv_i64 tcg_res[2];
10550     int pass, accop;
10551 
10552     tcg_res[0] = tcg_temp_new_i64();
10553     tcg_res[1] = tcg_temp_new_i64();
10554 
10555     /* Does this op do an adding accumulate, a subtracting accumulate,
10556      * or no accumulate at all?
10557      */
10558     switch (opcode) {
10559     case 5:
10560     case 8:
10561     case 9:
10562         accop = 1;
10563         break;
10564     case 10:
10565     case 11:
10566         accop = -1;
10567         break;
10568     default:
10569         accop = 0;
10570         break;
10571     }
10572 
10573     if (accop != 0) {
10574         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10575         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10576     }
10577 
10578     /* size == 2 means two 32x32->64 operations; this is worth special
10579      * casing because we can generally handle it inline.
10580      */
10581     if (size == 2) {
10582         for (pass = 0; pass < 2; pass++) {
10583             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10584             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10585             TCGv_i64 tcg_passres;
10586             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10587 
10588             int elt = pass + is_q * 2;
10589 
10590             read_vec_element(s, tcg_op1, rn, elt, memop);
10591             read_vec_element(s, tcg_op2, rm, elt, memop);
10592 
10593             if (accop == 0) {
10594                 tcg_passres = tcg_res[pass];
10595             } else {
10596                 tcg_passres = tcg_temp_new_i64();
10597             }
10598 
10599             switch (opcode) {
10600             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10601                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10602                 break;
10603             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10604                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10605                 break;
10606             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10607             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10608             {
10609                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10610                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10611 
10612                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10613                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10614                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10615                                     tcg_passres,
10616                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10617                 break;
10618             }
10619             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10620             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10621             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10622                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10623                 break;
10624             case 9: /* SQDMLAL, SQDMLAL2 */
10625             case 11: /* SQDMLSL, SQDMLSL2 */
10626             case 13: /* SQDMULL, SQDMULL2 */
10627                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10628                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10629                                                   tcg_passres, tcg_passres);
10630                 break;
10631             default:
10632                 g_assert_not_reached();
10633             }
10634 
10635             if (opcode == 9 || opcode == 11) {
10636                 /* saturating accumulate ops */
10637                 if (accop < 0) {
10638                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10639                 }
10640                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10641                                                   tcg_res[pass], tcg_passres);
10642             } else if (accop > 0) {
10643                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10644             } else if (accop < 0) {
10645                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10646             }
10647         }
10648     } else {
10649         /* size 0 or 1, generally helper functions */
10650         for (pass = 0; pass < 2; pass++) {
10651             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10652             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10653             TCGv_i64 tcg_passres;
10654             int elt = pass + is_q * 2;
10655 
10656             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10657             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10658 
10659             if (accop == 0) {
10660                 tcg_passres = tcg_res[pass];
10661             } else {
10662                 tcg_passres = tcg_temp_new_i64();
10663             }
10664 
10665             switch (opcode) {
10666             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10667             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10668             {
10669                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10670                 static NeonGenWidenFn * const widenfns[2][2] = {
10671                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10672                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10673                 };
10674                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10675 
10676                 widenfn(tcg_op2_64, tcg_op2);
10677                 widenfn(tcg_passres, tcg_op1);
10678                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10679                               tcg_passres, tcg_op2_64);
10680                 break;
10681             }
10682             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10683             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10684                 if (size == 0) {
10685                     if (is_u) {
10686                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10687                     } else {
10688                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10689                     }
10690                 } else {
10691                     if (is_u) {
10692                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10693                     } else {
10694                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10695                     }
10696                 }
10697                 break;
10698             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10699             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10700             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10701                 if (size == 0) {
10702                     if (is_u) {
10703                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10704                     } else {
10705                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10706                     }
10707                 } else {
10708                     if (is_u) {
10709                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10710                     } else {
10711                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10712                     }
10713                 }
10714                 break;
10715             case 9: /* SQDMLAL, SQDMLAL2 */
10716             case 11: /* SQDMLSL, SQDMLSL2 */
10717             case 13: /* SQDMULL, SQDMULL2 */
10718                 assert(size == 1);
10719                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10720                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10721                                                   tcg_passres, tcg_passres);
10722                 break;
10723             default:
10724                 g_assert_not_reached();
10725             }
10726 
10727             if (accop != 0) {
10728                 if (opcode == 9 || opcode == 11) {
10729                     /* saturating accumulate ops */
10730                     if (accop < 0) {
10731                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10732                     }
10733                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10734                                                       tcg_res[pass],
10735                                                       tcg_passres);
10736                 } else {
10737                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10738                                   tcg_res[pass], tcg_passres);
10739                 }
10740             }
10741         }
10742     }
10743 
10744     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10745     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10746 }
10747 
10748 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10749                             int opcode, int rd, int rn, int rm)
10750 {
10751     TCGv_i64 tcg_res[2];
10752     int part = is_q ? 2 : 0;
10753     int pass;
10754 
10755     for (pass = 0; pass < 2; pass++) {
10756         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10757         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10758         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10759         static NeonGenWidenFn * const widenfns[3][2] = {
10760             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10761             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10762             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10763         };
10764         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10765 
10766         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10767         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10768         widenfn(tcg_op2_wide, tcg_op2);
10769         tcg_res[pass] = tcg_temp_new_i64();
10770         gen_neon_addl(size, (opcode == 3),
10771                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10772     }
10773 
10774     for (pass = 0; pass < 2; pass++) {
10775         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10776     }
10777 }
10778 
10779 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10780 {
10781     tcg_gen_addi_i64(in, in, 1U << 31);
10782     tcg_gen_extrh_i64_i32(res, in);
10783 }
10784 
10785 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10786                                  int opcode, int rd, int rn, int rm)
10787 {
10788     TCGv_i32 tcg_res[2];
10789     int part = is_q ? 2 : 0;
10790     int pass;
10791 
10792     for (pass = 0; pass < 2; pass++) {
10793         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10794         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10795         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10796         static NeonGenNarrowFn * const narrowfns[3][2] = {
10797             { gen_helper_neon_narrow_high_u8,
10798               gen_helper_neon_narrow_round_high_u8 },
10799             { gen_helper_neon_narrow_high_u16,
10800               gen_helper_neon_narrow_round_high_u16 },
10801             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10802         };
10803         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10804 
10805         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10806         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10807 
10808         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10809 
10810         tcg_res[pass] = tcg_temp_new_i32();
10811         gennarrow(tcg_res[pass], tcg_wideres);
10812     }
10813 
10814     for (pass = 0; pass < 2; pass++) {
10815         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10816     }
10817     clear_vec_high(s, is_q, rd);
10818 }
10819 
10820 /* AdvSIMD three different
10821  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10822  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10823  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10824  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10825  */
10826 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10827 {
10828     /* Instructions in this group fall into three basic classes
10829      * (in each case with the operation working on each element in
10830      * the input vectors):
10831      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10832      *     128 bit input)
10833      * (2) wide 64 x 128 -> 128
10834      * (3) narrowing 128 x 128 -> 64
10835      * Here we do initial decode, catch unallocated cases and
10836      * dispatch to separate functions for each class.
10837      */
10838     int is_q = extract32(insn, 30, 1);
10839     int is_u = extract32(insn, 29, 1);
10840     int size = extract32(insn, 22, 2);
10841     int opcode = extract32(insn, 12, 4);
10842     int rm = extract32(insn, 16, 5);
10843     int rn = extract32(insn, 5, 5);
10844     int rd = extract32(insn, 0, 5);
10845 
10846     switch (opcode) {
10847     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10848     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10849         /* 64 x 128 -> 128 */
10850         if (size == 3) {
10851             unallocated_encoding(s);
10852             return;
10853         }
10854         if (!fp_access_check(s)) {
10855             return;
10856         }
10857         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10858         break;
10859     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10860     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10861         /* 128 x 128 -> 64 */
10862         if (size == 3) {
10863             unallocated_encoding(s);
10864             return;
10865         }
10866         if (!fp_access_check(s)) {
10867             return;
10868         }
10869         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10870         break;
10871     case 14: /* PMULL, PMULL2 */
10872         if (is_u) {
10873             unallocated_encoding(s);
10874             return;
10875         }
10876         switch (size) {
10877         case 0: /* PMULL.P8 */
10878             if (!fp_access_check(s)) {
10879                 return;
10880             }
10881             /* The Q field specifies lo/hi half input for this insn.  */
10882             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10883                              gen_helper_neon_pmull_h);
10884             break;
10885 
10886         case 3: /* PMULL.P64 */
10887             if (!dc_isar_feature(aa64_pmull, s)) {
10888                 unallocated_encoding(s);
10889                 return;
10890             }
10891             if (!fp_access_check(s)) {
10892                 return;
10893             }
10894             /* The Q field specifies lo/hi half input for this insn.  */
10895             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10896                              gen_helper_gvec_pmull_q);
10897             break;
10898 
10899         default:
10900             unallocated_encoding(s);
10901             break;
10902         }
10903         return;
10904     case 9: /* SQDMLAL, SQDMLAL2 */
10905     case 11: /* SQDMLSL, SQDMLSL2 */
10906     case 13: /* SQDMULL, SQDMULL2 */
10907         if (is_u || size == 0) {
10908             unallocated_encoding(s);
10909             return;
10910         }
10911         /* fall through */
10912     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10913     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10914     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10915     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10916     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10917     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10918     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10919         /* 64 x 64 -> 128 */
10920         if (size == 3) {
10921             unallocated_encoding(s);
10922             return;
10923         }
10924         if (!fp_access_check(s)) {
10925             return;
10926         }
10927 
10928         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10929         break;
10930     default:
10931         /* opcode 15 not allocated */
10932         unallocated_encoding(s);
10933         break;
10934     }
10935 }
10936 
10937 /* AdvSIMD three same extra
10938  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
10939  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10940  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
10941  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10942  */
10943 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10944 {
10945     int rd = extract32(insn, 0, 5);
10946     int rn = extract32(insn, 5, 5);
10947     int opcode = extract32(insn, 11, 4);
10948     int rm = extract32(insn, 16, 5);
10949     int size = extract32(insn, 22, 2);
10950     bool u = extract32(insn, 29, 1);
10951     bool is_q = extract32(insn, 30, 1);
10952     bool feature;
10953     int rot;
10954 
10955     switch (u * 16 + opcode) {
10956     case 0x18: /* FCMLA, #0 */
10957     case 0x19: /* FCMLA, #90 */
10958     case 0x1a: /* FCMLA, #180 */
10959     case 0x1b: /* FCMLA, #270 */
10960     case 0x1c: /* FCADD, #90 */
10961     case 0x1e: /* FCADD, #270 */
10962         if (size == 0
10963             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
10964             || (size == 3 && !is_q)) {
10965             unallocated_encoding(s);
10966             return;
10967         }
10968         feature = dc_isar_feature(aa64_fcma, s);
10969         break;
10970     default:
10971     case 0x02: /* SDOT (vector) */
10972     case 0x03: /* USDOT */
10973     case 0x04: /* SMMLA */
10974     case 0x05: /* USMMLA */
10975     case 0x10: /* SQRDMLAH (vector) */
10976     case 0x11: /* SQRDMLSH (vector) */
10977     case 0x12: /* UDOT (vector) */
10978     case 0x14: /* UMMLA */
10979     case 0x1d: /* BFMMLA */
10980     case 0x1f: /* BFDOT / BFMLAL */
10981         unallocated_encoding(s);
10982         return;
10983     }
10984     if (!feature) {
10985         unallocated_encoding(s);
10986         return;
10987     }
10988     if (!fp_access_check(s)) {
10989         return;
10990     }
10991 
10992     switch (opcode) {
10993     case 0x8: /* FCMLA, #0 */
10994     case 0x9: /* FCMLA, #90 */
10995     case 0xa: /* FCMLA, #180 */
10996     case 0xb: /* FCMLA, #270 */
10997         rot = extract32(opcode, 0, 2);
10998         switch (size) {
10999         case 1:
11000             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11001                               gen_helper_gvec_fcmlah);
11002             break;
11003         case 2:
11004             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11005                               gen_helper_gvec_fcmlas);
11006             break;
11007         case 3:
11008             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11009                               gen_helper_gvec_fcmlad);
11010             break;
11011         default:
11012             g_assert_not_reached();
11013         }
11014         return;
11015 
11016     case 0xc: /* FCADD, #90 */
11017     case 0xe: /* FCADD, #270 */
11018         rot = extract32(opcode, 1, 1);
11019         switch (size) {
11020         case 1:
11021             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11022                               gen_helper_gvec_fcaddh);
11023             break;
11024         case 2:
11025             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11026                               gen_helper_gvec_fcadds);
11027             break;
11028         case 3:
11029             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11030                               gen_helper_gvec_fcaddd);
11031             break;
11032         default:
11033             g_assert_not_reached();
11034         }
11035         return;
11036 
11037     default:
11038         g_assert_not_reached();
11039     }
11040 }
11041 
11042 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11043                                   int size, int rn, int rd)
11044 {
11045     /* Handle 2-reg-misc ops which are widening (so each size element
11046      * in the source becomes a 2*size element in the destination.
11047      * The only instruction like this is FCVTL.
11048      */
11049     int pass;
11050 
11051     if (size == 3) {
11052         /* 32 -> 64 bit fp conversion */
11053         TCGv_i64 tcg_res[2];
11054         int srcelt = is_q ? 2 : 0;
11055 
11056         for (pass = 0; pass < 2; pass++) {
11057             TCGv_i32 tcg_op = tcg_temp_new_i32();
11058             tcg_res[pass] = tcg_temp_new_i64();
11059 
11060             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11061             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11062         }
11063         for (pass = 0; pass < 2; pass++) {
11064             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11065         }
11066     } else {
11067         /* 16 -> 32 bit fp conversion */
11068         int srcelt = is_q ? 4 : 0;
11069         TCGv_i32 tcg_res[4];
11070         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11071         TCGv_i32 ahp = get_ahp_flag();
11072 
11073         for (pass = 0; pass < 4; pass++) {
11074             tcg_res[pass] = tcg_temp_new_i32();
11075 
11076             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11077             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11078                                            fpst, ahp);
11079         }
11080         for (pass = 0; pass < 4; pass++) {
11081             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11082         }
11083     }
11084 }
11085 
11086 static void handle_rev(DisasContext *s, int opcode, bool u,
11087                        bool is_q, int size, int rn, int rd)
11088 {
11089     int op = (opcode << 1) | u;
11090     int opsz = op + size;
11091     int grp_size = 3 - opsz;
11092     int dsize = is_q ? 128 : 64;
11093     int i;
11094 
11095     if (opsz >= 3) {
11096         unallocated_encoding(s);
11097         return;
11098     }
11099 
11100     if (!fp_access_check(s)) {
11101         return;
11102     }
11103 
11104     if (size == 0) {
11105         /* Special case bytes, use bswap op on each group of elements */
11106         int groups = dsize / (8 << grp_size);
11107 
11108         for (i = 0; i < groups; i++) {
11109             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11110 
11111             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11112             switch (grp_size) {
11113             case MO_16:
11114                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11115                 break;
11116             case MO_32:
11117                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11118                 break;
11119             case MO_64:
11120                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11121                 break;
11122             default:
11123                 g_assert_not_reached();
11124             }
11125             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11126         }
11127         clear_vec_high(s, is_q, rd);
11128     } else {
11129         int revmask = (1 << grp_size) - 1;
11130         int esize = 8 << size;
11131         int elements = dsize / esize;
11132         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11133         TCGv_i64 tcg_rd[2];
11134 
11135         for (i = 0; i < 2; i++) {
11136             tcg_rd[i] = tcg_temp_new_i64();
11137             tcg_gen_movi_i64(tcg_rd[i], 0);
11138         }
11139 
11140         for (i = 0; i < elements; i++) {
11141             int e_rev = (i & 0xf) ^ revmask;
11142             int w = (e_rev * esize) / 64;
11143             int o = (e_rev * esize) % 64;
11144 
11145             read_vec_element(s, tcg_rn, rn, i, size);
11146             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11147         }
11148 
11149         for (i = 0; i < 2; i++) {
11150             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11151         }
11152         clear_vec_high(s, true, rd);
11153     }
11154 }
11155 
11156 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11157                                   bool is_q, int size, int rn, int rd)
11158 {
11159     /* Implement the pairwise operations from 2-misc:
11160      * SADDLP, UADDLP, SADALP, UADALP.
11161      * These all add pairs of elements in the input to produce a
11162      * double-width result element in the output (possibly accumulating).
11163      */
11164     bool accum = (opcode == 0x6);
11165     int maxpass = is_q ? 2 : 1;
11166     int pass;
11167     TCGv_i64 tcg_res[2];
11168 
11169     if (size == 2) {
11170         /* 32 + 32 -> 64 op */
11171         MemOp memop = size + (u ? 0 : MO_SIGN);
11172 
11173         for (pass = 0; pass < maxpass; pass++) {
11174             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11175             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11176 
11177             tcg_res[pass] = tcg_temp_new_i64();
11178 
11179             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11180             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11181             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11182             if (accum) {
11183                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11184                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11185             }
11186         }
11187     } else {
11188         for (pass = 0; pass < maxpass; pass++) {
11189             TCGv_i64 tcg_op = tcg_temp_new_i64();
11190             NeonGenOne64OpFn *genfn;
11191             static NeonGenOne64OpFn * const fns[2][2] = {
11192                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11193                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11194             };
11195 
11196             genfn = fns[size][u];
11197 
11198             tcg_res[pass] = tcg_temp_new_i64();
11199 
11200             read_vec_element(s, tcg_op, rn, pass, MO_64);
11201             genfn(tcg_res[pass], tcg_op);
11202 
11203             if (accum) {
11204                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11205                 if (size == 0) {
11206                     gen_helper_neon_addl_u16(tcg_res[pass],
11207                                              tcg_res[pass], tcg_op);
11208                 } else {
11209                     gen_helper_neon_addl_u32(tcg_res[pass],
11210                                              tcg_res[pass], tcg_op);
11211                 }
11212             }
11213         }
11214     }
11215     if (!is_q) {
11216         tcg_res[1] = tcg_constant_i64(0);
11217     }
11218     for (pass = 0; pass < 2; pass++) {
11219         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11220     }
11221 }
11222 
11223 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11224 {
11225     /* Implement SHLL and SHLL2 */
11226     int pass;
11227     int part = is_q ? 2 : 0;
11228     TCGv_i64 tcg_res[2];
11229 
11230     for (pass = 0; pass < 2; pass++) {
11231         static NeonGenWidenFn * const widenfns[3] = {
11232             gen_helper_neon_widen_u8,
11233             gen_helper_neon_widen_u16,
11234             tcg_gen_extu_i32_i64,
11235         };
11236         NeonGenWidenFn *widenfn = widenfns[size];
11237         TCGv_i32 tcg_op = tcg_temp_new_i32();
11238 
11239         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11240         tcg_res[pass] = tcg_temp_new_i64();
11241         widenfn(tcg_res[pass], tcg_op);
11242         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11243     }
11244 
11245     for (pass = 0; pass < 2; pass++) {
11246         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11247     }
11248 }
11249 
11250 /* AdvSIMD two reg misc
11251  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11252  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11253  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11254  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11255  */
11256 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11257 {
11258     int size = extract32(insn, 22, 2);
11259     int opcode = extract32(insn, 12, 5);
11260     bool u = extract32(insn, 29, 1);
11261     bool is_q = extract32(insn, 30, 1);
11262     int rn = extract32(insn, 5, 5);
11263     int rd = extract32(insn, 0, 5);
11264     bool need_fpstatus = false;
11265     int rmode = -1;
11266     TCGv_i32 tcg_rmode;
11267     TCGv_ptr tcg_fpstatus;
11268 
11269     switch (opcode) {
11270     case 0x0: /* REV64, REV32 */
11271     case 0x1: /* REV16 */
11272         handle_rev(s, opcode, u, is_q, size, rn, rd);
11273         return;
11274     case 0x5: /* CNT, NOT, RBIT */
11275         if (u && size == 0) {
11276             /* NOT */
11277             break;
11278         } else if (u && size == 1) {
11279             /* RBIT */
11280             break;
11281         } else if (!u && size == 0) {
11282             /* CNT */
11283             break;
11284         }
11285         unallocated_encoding(s);
11286         return;
11287     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11288     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11289         if (size == 3) {
11290             unallocated_encoding(s);
11291             return;
11292         }
11293         if (!fp_access_check(s)) {
11294             return;
11295         }
11296 
11297         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11298         return;
11299     case 0x4: /* CLS, CLZ */
11300         if (size == 3) {
11301             unallocated_encoding(s);
11302             return;
11303         }
11304         break;
11305     case 0x2: /* SADDLP, UADDLP */
11306     case 0x6: /* SADALP, UADALP */
11307         if (size == 3) {
11308             unallocated_encoding(s);
11309             return;
11310         }
11311         if (!fp_access_check(s)) {
11312             return;
11313         }
11314         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11315         return;
11316     case 0x13: /* SHLL, SHLL2 */
11317         if (u == 0 || size == 3) {
11318             unallocated_encoding(s);
11319             return;
11320         }
11321         if (!fp_access_check(s)) {
11322             return;
11323         }
11324         handle_shll(s, is_q, size, rn, rd);
11325         return;
11326     case 0xa: /* CMLT */
11327         if (u == 1) {
11328             unallocated_encoding(s);
11329             return;
11330         }
11331         /* fall through */
11332     case 0x8: /* CMGT, CMGE */
11333     case 0x9: /* CMEQ, CMLE */
11334     case 0xb: /* ABS, NEG */
11335         if (size == 3 && !is_q) {
11336             unallocated_encoding(s);
11337             return;
11338         }
11339         break;
11340     case 0x7: /* SQABS, SQNEG */
11341         if (size == 3 && !is_q) {
11342             unallocated_encoding(s);
11343             return;
11344         }
11345         break;
11346     case 0xc ... 0xf:
11347     case 0x16 ... 0x1f:
11348     {
11349         /* Floating point: U, size[1] and opcode indicate operation;
11350          * size[0] indicates single or double precision.
11351          */
11352         int is_double = extract32(size, 0, 1);
11353         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11354         size = is_double ? 3 : 2;
11355         switch (opcode) {
11356         case 0x2f: /* FABS */
11357         case 0x6f: /* FNEG */
11358             if (size == 3 && !is_q) {
11359                 unallocated_encoding(s);
11360                 return;
11361             }
11362             break;
11363         case 0x1d: /* SCVTF */
11364         case 0x5d: /* UCVTF */
11365         {
11366             bool is_signed = (opcode == 0x1d) ? true : false;
11367             int elements = is_double ? 2 : is_q ? 4 : 2;
11368             if (is_double && !is_q) {
11369                 unallocated_encoding(s);
11370                 return;
11371             }
11372             if (!fp_access_check(s)) {
11373                 return;
11374             }
11375             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11376             return;
11377         }
11378         case 0x2c: /* FCMGT (zero) */
11379         case 0x2d: /* FCMEQ (zero) */
11380         case 0x2e: /* FCMLT (zero) */
11381         case 0x6c: /* FCMGE (zero) */
11382         case 0x6d: /* FCMLE (zero) */
11383             if (size == 3 && !is_q) {
11384                 unallocated_encoding(s);
11385                 return;
11386             }
11387             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11388             return;
11389         case 0x7f: /* FSQRT */
11390             if (size == 3 && !is_q) {
11391                 unallocated_encoding(s);
11392                 return;
11393             }
11394             break;
11395         case 0x1a: /* FCVTNS */
11396         case 0x1b: /* FCVTMS */
11397         case 0x3a: /* FCVTPS */
11398         case 0x3b: /* FCVTZS */
11399         case 0x5a: /* FCVTNU */
11400         case 0x5b: /* FCVTMU */
11401         case 0x7a: /* FCVTPU */
11402         case 0x7b: /* FCVTZU */
11403             need_fpstatus = true;
11404             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11405             if (size == 3 && !is_q) {
11406                 unallocated_encoding(s);
11407                 return;
11408             }
11409             break;
11410         case 0x5c: /* FCVTAU */
11411         case 0x1c: /* FCVTAS */
11412             need_fpstatus = true;
11413             rmode = FPROUNDING_TIEAWAY;
11414             if (size == 3 && !is_q) {
11415                 unallocated_encoding(s);
11416                 return;
11417             }
11418             break;
11419         case 0x3c: /* URECPE */
11420             if (size == 3) {
11421                 unallocated_encoding(s);
11422                 return;
11423             }
11424             /* fall through */
11425         case 0x3d: /* FRECPE */
11426         case 0x7d: /* FRSQRTE */
11427             if (size == 3 && !is_q) {
11428                 unallocated_encoding(s);
11429                 return;
11430             }
11431             if (!fp_access_check(s)) {
11432                 return;
11433             }
11434             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11435             return;
11436         case 0x56: /* FCVTXN, FCVTXN2 */
11437             if (size == 2) {
11438                 unallocated_encoding(s);
11439                 return;
11440             }
11441             /* fall through */
11442         case 0x16: /* FCVTN, FCVTN2 */
11443             /* handle_2misc_narrow does a 2*size -> size operation, but these
11444              * instructions encode the source size rather than dest size.
11445              */
11446             if (!fp_access_check(s)) {
11447                 return;
11448             }
11449             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11450             return;
11451         case 0x36: /* BFCVTN, BFCVTN2 */
11452             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11453                 unallocated_encoding(s);
11454                 return;
11455             }
11456             if (!fp_access_check(s)) {
11457                 return;
11458             }
11459             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11460             return;
11461         case 0x17: /* FCVTL, FCVTL2 */
11462             if (!fp_access_check(s)) {
11463                 return;
11464             }
11465             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11466             return;
11467         case 0x18: /* FRINTN */
11468         case 0x19: /* FRINTM */
11469         case 0x38: /* FRINTP */
11470         case 0x39: /* FRINTZ */
11471             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11472             /* fall through */
11473         case 0x59: /* FRINTX */
11474         case 0x79: /* FRINTI */
11475             need_fpstatus = true;
11476             if (size == 3 && !is_q) {
11477                 unallocated_encoding(s);
11478                 return;
11479             }
11480             break;
11481         case 0x58: /* FRINTA */
11482             rmode = FPROUNDING_TIEAWAY;
11483             need_fpstatus = true;
11484             if (size == 3 && !is_q) {
11485                 unallocated_encoding(s);
11486                 return;
11487             }
11488             break;
11489         case 0x7c: /* URSQRTE */
11490             if (size == 3) {
11491                 unallocated_encoding(s);
11492                 return;
11493             }
11494             break;
11495         case 0x1e: /* FRINT32Z */
11496         case 0x1f: /* FRINT64Z */
11497             rmode = FPROUNDING_ZERO;
11498             /* fall through */
11499         case 0x5e: /* FRINT32X */
11500         case 0x5f: /* FRINT64X */
11501             need_fpstatus = true;
11502             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11503                 unallocated_encoding(s);
11504                 return;
11505             }
11506             break;
11507         default:
11508             unallocated_encoding(s);
11509             return;
11510         }
11511         break;
11512     }
11513     default:
11514     case 0x3: /* SUQADD, USQADD */
11515         unallocated_encoding(s);
11516         return;
11517     }
11518 
11519     if (!fp_access_check(s)) {
11520         return;
11521     }
11522 
11523     if (need_fpstatus || rmode >= 0) {
11524         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11525     } else {
11526         tcg_fpstatus = NULL;
11527     }
11528     if (rmode >= 0) {
11529         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11530     } else {
11531         tcg_rmode = NULL;
11532     }
11533 
11534     switch (opcode) {
11535     case 0x5:
11536         if (u && size == 0) { /* NOT */
11537             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11538             return;
11539         }
11540         break;
11541     case 0x8: /* CMGT, CMGE */
11542         if (u) {
11543             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11544         } else {
11545             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11546         }
11547         return;
11548     case 0x9: /* CMEQ, CMLE */
11549         if (u) {
11550             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11551         } else {
11552             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11553         }
11554         return;
11555     case 0xa: /* CMLT */
11556         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11557         return;
11558     case 0xb:
11559         if (u) { /* ABS, NEG */
11560             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11561         } else {
11562             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11563         }
11564         return;
11565     }
11566 
11567     if (size == 3) {
11568         /* All 64-bit element operations can be shared with scalar 2misc */
11569         int pass;
11570 
11571         /* Coverity claims (size == 3 && !is_q) has been eliminated
11572          * from all paths leading to here.
11573          */
11574         tcg_debug_assert(is_q);
11575         for (pass = 0; pass < 2; pass++) {
11576             TCGv_i64 tcg_op = tcg_temp_new_i64();
11577             TCGv_i64 tcg_res = tcg_temp_new_i64();
11578 
11579             read_vec_element(s, tcg_op, rn, pass, MO_64);
11580 
11581             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11582                             tcg_rmode, tcg_fpstatus);
11583 
11584             write_vec_element(s, tcg_res, rd, pass, MO_64);
11585         }
11586     } else {
11587         int pass;
11588 
11589         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11590             TCGv_i32 tcg_op = tcg_temp_new_i32();
11591             TCGv_i32 tcg_res = tcg_temp_new_i32();
11592 
11593             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11594 
11595             if (size == 2) {
11596                 /* Special cases for 32 bit elements */
11597                 switch (opcode) {
11598                 case 0x4: /* CLS */
11599                     if (u) {
11600                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11601                     } else {
11602                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11603                     }
11604                     break;
11605                 case 0x7: /* SQABS, SQNEG */
11606                     if (u) {
11607                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11608                     } else {
11609                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11610                     }
11611                     break;
11612                 case 0x2f: /* FABS */
11613                     gen_vfp_abss(tcg_res, tcg_op);
11614                     break;
11615                 case 0x6f: /* FNEG */
11616                     gen_vfp_negs(tcg_res, tcg_op);
11617                     break;
11618                 case 0x7f: /* FSQRT */
11619                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11620                     break;
11621                 case 0x1a: /* FCVTNS */
11622                 case 0x1b: /* FCVTMS */
11623                 case 0x1c: /* FCVTAS */
11624                 case 0x3a: /* FCVTPS */
11625                 case 0x3b: /* FCVTZS */
11626                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11627                                          tcg_constant_i32(0), tcg_fpstatus);
11628                     break;
11629                 case 0x5a: /* FCVTNU */
11630                 case 0x5b: /* FCVTMU */
11631                 case 0x5c: /* FCVTAU */
11632                 case 0x7a: /* FCVTPU */
11633                 case 0x7b: /* FCVTZU */
11634                     gen_helper_vfp_touls(tcg_res, tcg_op,
11635                                          tcg_constant_i32(0), tcg_fpstatus);
11636                     break;
11637                 case 0x18: /* FRINTN */
11638                 case 0x19: /* FRINTM */
11639                 case 0x38: /* FRINTP */
11640                 case 0x39: /* FRINTZ */
11641                 case 0x58: /* FRINTA */
11642                 case 0x79: /* FRINTI */
11643                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11644                     break;
11645                 case 0x59: /* FRINTX */
11646                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11647                     break;
11648                 case 0x7c: /* URSQRTE */
11649                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11650                     break;
11651                 case 0x1e: /* FRINT32Z */
11652                 case 0x5e: /* FRINT32X */
11653                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11654                     break;
11655                 case 0x1f: /* FRINT64Z */
11656                 case 0x5f: /* FRINT64X */
11657                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11658                     break;
11659                 default:
11660                     g_assert_not_reached();
11661                 }
11662             } else {
11663                 /* Use helpers for 8 and 16 bit elements */
11664                 switch (opcode) {
11665                 case 0x5: /* CNT, RBIT */
11666                     /* For these two insns size is part of the opcode specifier
11667                      * (handled earlier); they always operate on byte elements.
11668                      */
11669                     if (u) {
11670                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11671                     } else {
11672                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11673                     }
11674                     break;
11675                 case 0x7: /* SQABS, SQNEG */
11676                 {
11677                     NeonGenOneOpEnvFn *genfn;
11678                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11679                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11680                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11681                     };
11682                     genfn = fns[size][u];
11683                     genfn(tcg_res, tcg_env, tcg_op);
11684                     break;
11685                 }
11686                 case 0x4: /* CLS, CLZ */
11687                     if (u) {
11688                         if (size == 0) {
11689                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11690                         } else {
11691                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11692                         }
11693                     } else {
11694                         if (size == 0) {
11695                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11696                         } else {
11697                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11698                         }
11699                     }
11700                     break;
11701                 default:
11702                     g_assert_not_reached();
11703                 }
11704             }
11705 
11706             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11707         }
11708     }
11709     clear_vec_high(s, is_q, rd);
11710 
11711     if (tcg_rmode) {
11712         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11713     }
11714 }
11715 
11716 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11717  *
11718  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11719  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11720  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11721  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11722  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11723  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11724  *
11725  * This actually covers two groups where scalar access is governed by
11726  * bit 28. A bunch of the instructions (float to integral) only exist
11727  * in the vector form and are un-allocated for the scalar decode. Also
11728  * in the scalar decode Q is always 1.
11729  */
11730 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11731 {
11732     int fpop, opcode, a, u;
11733     int rn, rd;
11734     bool is_q;
11735     bool is_scalar;
11736     bool only_in_vector = false;
11737 
11738     int pass;
11739     TCGv_i32 tcg_rmode = NULL;
11740     TCGv_ptr tcg_fpstatus = NULL;
11741     bool need_fpst = true;
11742     int rmode = -1;
11743 
11744     if (!dc_isar_feature(aa64_fp16, s)) {
11745         unallocated_encoding(s);
11746         return;
11747     }
11748 
11749     rd = extract32(insn, 0, 5);
11750     rn = extract32(insn, 5, 5);
11751 
11752     a = extract32(insn, 23, 1);
11753     u = extract32(insn, 29, 1);
11754     is_scalar = extract32(insn, 28, 1);
11755     is_q = extract32(insn, 30, 1);
11756 
11757     opcode = extract32(insn, 12, 5);
11758     fpop = deposit32(opcode, 5, 1, a);
11759     fpop = deposit32(fpop, 6, 1, u);
11760 
11761     switch (fpop) {
11762     case 0x1d: /* SCVTF */
11763     case 0x5d: /* UCVTF */
11764     {
11765         int elements;
11766 
11767         if (is_scalar) {
11768             elements = 1;
11769         } else {
11770             elements = (is_q ? 8 : 4);
11771         }
11772 
11773         if (!fp_access_check(s)) {
11774             return;
11775         }
11776         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11777         return;
11778     }
11779     break;
11780     case 0x2c: /* FCMGT (zero) */
11781     case 0x2d: /* FCMEQ (zero) */
11782     case 0x2e: /* FCMLT (zero) */
11783     case 0x6c: /* FCMGE (zero) */
11784     case 0x6d: /* FCMLE (zero) */
11785         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11786         return;
11787     case 0x3d: /* FRECPE */
11788     case 0x3f: /* FRECPX */
11789         break;
11790     case 0x18: /* FRINTN */
11791         only_in_vector = true;
11792         rmode = FPROUNDING_TIEEVEN;
11793         break;
11794     case 0x19: /* FRINTM */
11795         only_in_vector = true;
11796         rmode = FPROUNDING_NEGINF;
11797         break;
11798     case 0x38: /* FRINTP */
11799         only_in_vector = true;
11800         rmode = FPROUNDING_POSINF;
11801         break;
11802     case 0x39: /* FRINTZ */
11803         only_in_vector = true;
11804         rmode = FPROUNDING_ZERO;
11805         break;
11806     case 0x58: /* FRINTA */
11807         only_in_vector = true;
11808         rmode = FPROUNDING_TIEAWAY;
11809         break;
11810     case 0x59: /* FRINTX */
11811     case 0x79: /* FRINTI */
11812         only_in_vector = true;
11813         /* current rounding mode */
11814         break;
11815     case 0x1a: /* FCVTNS */
11816         rmode = FPROUNDING_TIEEVEN;
11817         break;
11818     case 0x1b: /* FCVTMS */
11819         rmode = FPROUNDING_NEGINF;
11820         break;
11821     case 0x1c: /* FCVTAS */
11822         rmode = FPROUNDING_TIEAWAY;
11823         break;
11824     case 0x3a: /* FCVTPS */
11825         rmode = FPROUNDING_POSINF;
11826         break;
11827     case 0x3b: /* FCVTZS */
11828         rmode = FPROUNDING_ZERO;
11829         break;
11830     case 0x5a: /* FCVTNU */
11831         rmode = FPROUNDING_TIEEVEN;
11832         break;
11833     case 0x5b: /* FCVTMU */
11834         rmode = FPROUNDING_NEGINF;
11835         break;
11836     case 0x5c: /* FCVTAU */
11837         rmode = FPROUNDING_TIEAWAY;
11838         break;
11839     case 0x7a: /* FCVTPU */
11840         rmode = FPROUNDING_POSINF;
11841         break;
11842     case 0x7b: /* FCVTZU */
11843         rmode = FPROUNDING_ZERO;
11844         break;
11845     case 0x2f: /* FABS */
11846     case 0x6f: /* FNEG */
11847         need_fpst = false;
11848         break;
11849     case 0x7d: /* FRSQRTE */
11850     case 0x7f: /* FSQRT (vector) */
11851         break;
11852     default:
11853         unallocated_encoding(s);
11854         return;
11855     }
11856 
11857 
11858     /* Check additional constraints for the scalar encoding */
11859     if (is_scalar) {
11860         if (!is_q) {
11861             unallocated_encoding(s);
11862             return;
11863         }
11864         /* FRINTxx is only in the vector form */
11865         if (only_in_vector) {
11866             unallocated_encoding(s);
11867             return;
11868         }
11869     }
11870 
11871     if (!fp_access_check(s)) {
11872         return;
11873     }
11874 
11875     if (rmode >= 0 || need_fpst) {
11876         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11877     }
11878 
11879     if (rmode >= 0) {
11880         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11881     }
11882 
11883     if (is_scalar) {
11884         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11885         TCGv_i32 tcg_res = tcg_temp_new_i32();
11886 
11887         switch (fpop) {
11888         case 0x1a: /* FCVTNS */
11889         case 0x1b: /* FCVTMS */
11890         case 0x1c: /* FCVTAS */
11891         case 0x3a: /* FCVTPS */
11892         case 0x3b: /* FCVTZS */
11893             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11894             break;
11895         case 0x3d: /* FRECPE */
11896             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11897             break;
11898         case 0x3f: /* FRECPX */
11899             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11900             break;
11901         case 0x5a: /* FCVTNU */
11902         case 0x5b: /* FCVTMU */
11903         case 0x5c: /* FCVTAU */
11904         case 0x7a: /* FCVTPU */
11905         case 0x7b: /* FCVTZU */
11906             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11907             break;
11908         case 0x6f: /* FNEG */
11909             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11910             break;
11911         case 0x7d: /* FRSQRTE */
11912             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11913             break;
11914         default:
11915             g_assert_not_reached();
11916         }
11917 
11918         /* limit any sign extension going on */
11919         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11920         write_fp_sreg(s, rd, tcg_res);
11921     } else {
11922         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11923             TCGv_i32 tcg_op = tcg_temp_new_i32();
11924             TCGv_i32 tcg_res = tcg_temp_new_i32();
11925 
11926             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11927 
11928             switch (fpop) {
11929             case 0x1a: /* FCVTNS */
11930             case 0x1b: /* FCVTMS */
11931             case 0x1c: /* FCVTAS */
11932             case 0x3a: /* FCVTPS */
11933             case 0x3b: /* FCVTZS */
11934                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11935                 break;
11936             case 0x3d: /* FRECPE */
11937                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11938                 break;
11939             case 0x5a: /* FCVTNU */
11940             case 0x5b: /* FCVTMU */
11941             case 0x5c: /* FCVTAU */
11942             case 0x7a: /* FCVTPU */
11943             case 0x7b: /* FCVTZU */
11944                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11945                 break;
11946             case 0x18: /* FRINTN */
11947             case 0x19: /* FRINTM */
11948             case 0x38: /* FRINTP */
11949             case 0x39: /* FRINTZ */
11950             case 0x58: /* FRINTA */
11951             case 0x79: /* FRINTI */
11952                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11953                 break;
11954             case 0x59: /* FRINTX */
11955                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11956                 break;
11957             case 0x2f: /* FABS */
11958                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11959                 break;
11960             case 0x6f: /* FNEG */
11961                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11962                 break;
11963             case 0x7d: /* FRSQRTE */
11964                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11965                 break;
11966             case 0x7f: /* FSQRT */
11967                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11968                 break;
11969             default:
11970                 g_assert_not_reached();
11971             }
11972 
11973             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11974         }
11975 
11976         clear_vec_high(s, is_q, rd);
11977     }
11978 
11979     if (tcg_rmode) {
11980         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11981     }
11982 }
11983 
11984 /* AdvSIMD scalar x indexed element
11985  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
11986  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11987  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
11988  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11989  * AdvSIMD vector x indexed element
11990  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
11991  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
11992  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
11993  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
11994  */
11995 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
11996 {
11997     /* This encoding has two kinds of instruction:
11998      *  normal, where we perform elt x idxelt => elt for each
11999      *     element in the vector
12000      *  long, where we perform elt x idxelt and generate a result of
12001      *     double the width of the input element
12002      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12003      */
12004     bool is_scalar = extract32(insn, 28, 1);
12005     bool is_q = extract32(insn, 30, 1);
12006     bool u = extract32(insn, 29, 1);
12007     int size = extract32(insn, 22, 2);
12008     int l = extract32(insn, 21, 1);
12009     int m = extract32(insn, 20, 1);
12010     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12011     int rm = extract32(insn, 16, 4);
12012     int opcode = extract32(insn, 12, 4);
12013     int h = extract32(insn, 11, 1);
12014     int rn = extract32(insn, 5, 5);
12015     int rd = extract32(insn, 0, 5);
12016     bool is_long = false;
12017     int is_fp = 0;
12018     bool is_fp16 = false;
12019     int index;
12020     TCGv_ptr fpst;
12021 
12022     switch (16 * u + opcode) {
12023     case 0x02: /* SMLAL, SMLAL2 */
12024     case 0x12: /* UMLAL, UMLAL2 */
12025     case 0x06: /* SMLSL, SMLSL2 */
12026     case 0x16: /* UMLSL, UMLSL2 */
12027     case 0x0a: /* SMULL, SMULL2 */
12028     case 0x1a: /* UMULL, UMULL2 */
12029         if (is_scalar) {
12030             unallocated_encoding(s);
12031             return;
12032         }
12033         is_long = true;
12034         break;
12035     case 0x03: /* SQDMLAL, SQDMLAL2 */
12036     case 0x07: /* SQDMLSL, SQDMLSL2 */
12037     case 0x0b: /* SQDMULL, SQDMULL2 */
12038         is_long = true;
12039         break;
12040     case 0x11: /* FCMLA #0 */
12041     case 0x13: /* FCMLA #90 */
12042     case 0x15: /* FCMLA #180 */
12043     case 0x17: /* FCMLA #270 */
12044         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12045             unallocated_encoding(s);
12046             return;
12047         }
12048         is_fp = 2;
12049         break;
12050     default:
12051     case 0x00: /* FMLAL */
12052     case 0x01: /* FMLA */
12053     case 0x04: /* FMLSL */
12054     case 0x05: /* FMLS */
12055     case 0x08: /* MUL */
12056     case 0x09: /* FMUL */
12057     case 0x0c: /* SQDMULH */
12058     case 0x0d: /* SQRDMULH */
12059     case 0x0e: /* SDOT */
12060     case 0x0f: /* SUDOT / BFDOT / USDOT / BFMLAL */
12061     case 0x10: /* MLA */
12062     case 0x14: /* MLS */
12063     case 0x18: /* FMLAL2 */
12064     case 0x19: /* FMULX */
12065     case 0x1c: /* FMLSL2 */
12066     case 0x1d: /* SQRDMLAH */
12067     case 0x1e: /* UDOT */
12068     case 0x1f: /* SQRDMLSH */
12069         unallocated_encoding(s);
12070         return;
12071     }
12072 
12073     switch (is_fp) {
12074     case 1: /* normal fp */
12075         unallocated_encoding(s); /* in decodetree */
12076         return;
12077 
12078     case 2: /* complex fp */
12079         /* Each indexable element is a complex pair.  */
12080         size += 1;
12081         switch (size) {
12082         case MO_32:
12083             if (h && !is_q) {
12084                 unallocated_encoding(s);
12085                 return;
12086             }
12087             is_fp16 = true;
12088             break;
12089         case MO_64:
12090             break;
12091         default:
12092             unallocated_encoding(s);
12093             return;
12094         }
12095         break;
12096 
12097     default: /* integer */
12098         switch (size) {
12099         case MO_8:
12100         case MO_64:
12101             unallocated_encoding(s);
12102             return;
12103         }
12104         break;
12105     }
12106     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12107         unallocated_encoding(s);
12108         return;
12109     }
12110 
12111     /* Given MemOp size, adjust register and indexing.  */
12112     switch (size) {
12113     case MO_16:
12114         index = h << 2 | l << 1 | m;
12115         break;
12116     case MO_32:
12117         index = h << 1 | l;
12118         rm |= m << 4;
12119         break;
12120     case MO_64:
12121         if (l || !is_q) {
12122             unallocated_encoding(s);
12123             return;
12124         }
12125         index = h;
12126         rm |= m << 4;
12127         break;
12128     default:
12129         g_assert_not_reached();
12130     }
12131 
12132     if (!fp_access_check(s)) {
12133         return;
12134     }
12135 
12136     if (is_fp) {
12137         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12138     } else {
12139         fpst = NULL;
12140     }
12141 
12142     switch (16 * u + opcode) {
12143     case 0x11: /* FCMLA #0 */
12144     case 0x13: /* FCMLA #90 */
12145     case 0x15: /* FCMLA #180 */
12146     case 0x17: /* FCMLA #270 */
12147         {
12148             int rot = extract32(insn, 13, 2);
12149             int data = (index << 2) | rot;
12150             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12151                                vec_full_reg_offset(s, rn),
12152                                vec_full_reg_offset(s, rm),
12153                                vec_full_reg_offset(s, rd), fpst,
12154                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12155                                size == MO_64
12156                                ? gen_helper_gvec_fcmlas_idx
12157                                : gen_helper_gvec_fcmlah_idx);
12158         }
12159         return;
12160     }
12161 
12162     if (size == 3) {
12163         g_assert_not_reached();
12164     } else if (!is_long) {
12165         /* 32 bit floating point, or 16 or 32 bit integer.
12166          * For the 16 bit scalar case we use the usual Neon helpers and
12167          * rely on the fact that 0 op 0 == 0 with no side effects.
12168          */
12169         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12170         int pass, maxpasses;
12171 
12172         if (is_scalar) {
12173             maxpasses = 1;
12174         } else {
12175             maxpasses = is_q ? 4 : 2;
12176         }
12177 
12178         read_vec_element_i32(s, tcg_idx, rm, index, size);
12179 
12180         if (size == 1 && !is_scalar) {
12181             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12182              * the index into both halves of the 32 bit tcg_idx and then use
12183              * the usual Neon helpers.
12184              */
12185             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12186         }
12187 
12188         for (pass = 0; pass < maxpasses; pass++) {
12189             TCGv_i32 tcg_op = tcg_temp_new_i32();
12190             TCGv_i32 tcg_res = tcg_temp_new_i32();
12191 
12192             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12193 
12194             switch (16 * u + opcode) {
12195             case 0x10: /* MLA */
12196             case 0x14: /* MLS */
12197             {
12198                 static NeonGenTwoOpFn * const fns[2][2] = {
12199                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12200                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12201                 };
12202                 NeonGenTwoOpFn *genfn;
12203                 bool is_sub = opcode == 0x4;
12204 
12205                 if (size == 1) {
12206                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12207                 } else {
12208                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12209                 }
12210                 if (opcode == 0x8) {
12211                     break;
12212                 }
12213                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12214                 genfn = fns[size - 1][is_sub];
12215                 genfn(tcg_res, tcg_op, tcg_res);
12216                 break;
12217             }
12218             case 0x0c: /* SQDMULH */
12219                 if (size == 1) {
12220                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12221                                                tcg_op, tcg_idx);
12222                 } else {
12223                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12224                                                tcg_op, tcg_idx);
12225                 }
12226                 break;
12227             case 0x0d: /* SQRDMULH */
12228                 if (size == 1) {
12229                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12230                                                 tcg_op, tcg_idx);
12231                 } else {
12232                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12233                                                 tcg_op, tcg_idx);
12234                 }
12235                 break;
12236             default:
12237             case 0x01: /* FMLA */
12238             case 0x05: /* FMLS */
12239             case 0x09: /* FMUL */
12240             case 0x19: /* FMULX */
12241             case 0x1d: /* SQRDMLAH */
12242             case 0x1f: /* SQRDMLSH */
12243                 g_assert_not_reached();
12244             }
12245 
12246             if (is_scalar) {
12247                 write_fp_sreg(s, rd, tcg_res);
12248             } else {
12249                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12250             }
12251         }
12252 
12253         clear_vec_high(s, is_q, rd);
12254     } else {
12255         /* long ops: 16x16->32 or 32x32->64 */
12256         TCGv_i64 tcg_res[2];
12257         int pass;
12258         bool satop = extract32(opcode, 0, 1);
12259         MemOp memop = MO_32;
12260 
12261         if (satop || !u) {
12262             memop |= MO_SIGN;
12263         }
12264 
12265         if (size == 2) {
12266             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12267 
12268             read_vec_element(s, tcg_idx, rm, index, memop);
12269 
12270             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12271                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12272                 TCGv_i64 tcg_passres;
12273                 int passelt;
12274 
12275                 if (is_scalar) {
12276                     passelt = 0;
12277                 } else {
12278                     passelt = pass + (is_q * 2);
12279                 }
12280 
12281                 read_vec_element(s, tcg_op, rn, passelt, memop);
12282 
12283                 tcg_res[pass] = tcg_temp_new_i64();
12284 
12285                 if (opcode == 0xa || opcode == 0xb) {
12286                     /* Non-accumulating ops */
12287                     tcg_passres = tcg_res[pass];
12288                 } else {
12289                     tcg_passres = tcg_temp_new_i64();
12290                 }
12291 
12292                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12293 
12294                 if (satop) {
12295                     /* saturating, doubling */
12296                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12297                                                       tcg_passres, tcg_passres);
12298                 }
12299 
12300                 if (opcode == 0xa || opcode == 0xb) {
12301                     continue;
12302                 }
12303 
12304                 /* Accumulating op: handle accumulate step */
12305                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12306 
12307                 switch (opcode) {
12308                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12309                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12310                     break;
12311                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12312                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12313                     break;
12314                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12315                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12316                     /* fall through */
12317                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12318                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12319                                                       tcg_res[pass],
12320                                                       tcg_passres);
12321                     break;
12322                 default:
12323                     g_assert_not_reached();
12324                 }
12325             }
12326 
12327             clear_vec_high(s, !is_scalar, rd);
12328         } else {
12329             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12330 
12331             assert(size == 1);
12332             read_vec_element_i32(s, tcg_idx, rm, index, size);
12333 
12334             if (!is_scalar) {
12335                 /* The simplest way to handle the 16x16 indexed ops is to
12336                  * duplicate the index into both halves of the 32 bit tcg_idx
12337                  * and then use the usual Neon helpers.
12338                  */
12339                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12340             }
12341 
12342             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12343                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12344                 TCGv_i64 tcg_passres;
12345 
12346                 if (is_scalar) {
12347                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12348                 } else {
12349                     read_vec_element_i32(s, tcg_op, rn,
12350                                          pass + (is_q * 2), MO_32);
12351                 }
12352 
12353                 tcg_res[pass] = tcg_temp_new_i64();
12354 
12355                 if (opcode == 0xa || opcode == 0xb) {
12356                     /* Non-accumulating ops */
12357                     tcg_passres = tcg_res[pass];
12358                 } else {
12359                     tcg_passres = tcg_temp_new_i64();
12360                 }
12361 
12362                 if (memop & MO_SIGN) {
12363                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12364                 } else {
12365                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12366                 }
12367                 if (satop) {
12368                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12369                                                       tcg_passres, tcg_passres);
12370                 }
12371 
12372                 if (opcode == 0xa || opcode == 0xb) {
12373                     continue;
12374                 }
12375 
12376                 /* Accumulating op: handle accumulate step */
12377                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12378 
12379                 switch (opcode) {
12380                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12381                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12382                                              tcg_passres);
12383                     break;
12384                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12385                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12386                                              tcg_passres);
12387                     break;
12388                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12389                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12390                     /* fall through */
12391                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12392                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12393                                                       tcg_res[pass],
12394                                                       tcg_passres);
12395                     break;
12396                 default:
12397                     g_assert_not_reached();
12398                 }
12399             }
12400 
12401             if (is_scalar) {
12402                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12403             }
12404         }
12405 
12406         if (is_scalar) {
12407             tcg_res[1] = tcg_constant_i64(0);
12408         }
12409 
12410         for (pass = 0; pass < 2; pass++) {
12411             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12412         }
12413     }
12414 }
12415 
12416 /* C3.6 Data processing - SIMD, inc Crypto
12417  *
12418  * As the decode gets a little complex we are using a table based
12419  * approach for this part of the decode.
12420  */
12421 static const AArch64DecodeTable data_proc_simd[] = {
12422     /* pattern  ,  mask     ,  fn                        */
12423     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12424     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12425     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12426     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12427     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12428     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12429     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12430     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12431     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12432     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12433     { 0x2e000000, 0xbf208400, disas_simd_ext },
12434     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12435     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12436     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12437     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12438     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12439     { 0x00000000, 0x00000000, NULL }
12440 };
12441 
12442 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12443 {
12444     /* Note that this is called with all non-FP cases from
12445      * table C3-6 so it must UNDEF for entries not specifically
12446      * allocated to instructions in that table.
12447      */
12448     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12449     if (fn) {
12450         fn(s, insn);
12451     } else {
12452         unallocated_encoding(s);
12453     }
12454 }
12455 
12456 /* C3.6 Data processing - SIMD and floating point */
12457 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12458 {
12459     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12460         disas_data_proc_fp(s, insn);
12461     } else {
12462         /* SIMD, including crypto */
12463         disas_data_proc_simd(s, insn);
12464     }
12465 }
12466 
12467 static bool trans_OK(DisasContext *s, arg_OK *a)
12468 {
12469     return true;
12470 }
12471 
12472 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12473 {
12474     s->is_nonstreaming = true;
12475     return true;
12476 }
12477 
12478 /**
12479  * is_guarded_page:
12480  * @env: The cpu environment
12481  * @s: The DisasContext
12482  *
12483  * Return true if the page is guarded.
12484  */
12485 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12486 {
12487     uint64_t addr = s->base.pc_first;
12488 #ifdef CONFIG_USER_ONLY
12489     return page_get_flags(addr) & PAGE_BTI;
12490 #else
12491     CPUTLBEntryFull *full;
12492     void *host;
12493     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12494     int flags;
12495 
12496     /*
12497      * We test this immediately after reading an insn, which means
12498      * that the TLB entry must be present and valid, and thus this
12499      * access will never raise an exception.
12500      */
12501     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12502                               false, &host, &full, 0);
12503     assert(!(flags & TLB_INVALID_MASK));
12504 
12505     return full->extra.arm.guarded;
12506 #endif
12507 }
12508 
12509 /**
12510  * btype_destination_ok:
12511  * @insn: The instruction at the branch destination
12512  * @bt: SCTLR_ELx.BT
12513  * @btype: PSTATE.BTYPE, and is non-zero
12514  *
12515  * On a guarded page, there are a limited number of insns
12516  * that may be present at the branch target:
12517  *   - branch target identifiers,
12518  *   - paciasp, pacibsp,
12519  *   - BRK insn
12520  *   - HLT insn
12521  * Anything else causes a Branch Target Exception.
12522  *
12523  * Return true if the branch is compatible, false to raise BTITRAP.
12524  */
12525 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12526 {
12527     if ((insn & 0xfffff01fu) == 0xd503201fu) {
12528         /* HINT space */
12529         switch (extract32(insn, 5, 7)) {
12530         case 0b011001: /* PACIASP */
12531         case 0b011011: /* PACIBSP */
12532             /*
12533              * If SCTLR_ELx.BT, then PACI*SP are not compatible
12534              * with btype == 3.  Otherwise all btype are ok.
12535              */
12536             return !bt || btype != 3;
12537         case 0b100000: /* BTI */
12538             /* Not compatible with any btype.  */
12539             return false;
12540         case 0b100010: /* BTI c */
12541             /* Not compatible with btype == 3 */
12542             return btype != 3;
12543         case 0b100100: /* BTI j */
12544             /* Not compatible with btype == 2 */
12545             return btype != 2;
12546         case 0b100110: /* BTI jc */
12547             /* Compatible with any btype.  */
12548             return true;
12549         }
12550     } else {
12551         switch (insn & 0xffe0001fu) {
12552         case 0xd4200000u: /* BRK */
12553         case 0xd4400000u: /* HLT */
12554             /* Give priority to the breakpoint exception.  */
12555             return true;
12556         }
12557     }
12558     return false;
12559 }
12560 
12561 /* C3.1 A64 instruction index by encoding */
12562 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12563 {
12564     switch (extract32(insn, 25, 4)) {
12565     case 0x5:
12566     case 0xd:      /* Data processing - register */
12567         disas_data_proc_reg(s, insn);
12568         break;
12569     case 0x7:
12570     case 0xf:      /* Data processing - SIMD and floating point */
12571         disas_data_proc_simd_fp(s, insn);
12572         break;
12573     default:
12574         unallocated_encoding(s);
12575         break;
12576     }
12577 }
12578 
12579 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12580                                           CPUState *cpu)
12581 {
12582     DisasContext *dc = container_of(dcbase, DisasContext, base);
12583     CPUARMState *env = cpu_env(cpu);
12584     ARMCPU *arm_cpu = env_archcpu(env);
12585     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12586     int bound, core_mmu_idx;
12587 
12588     dc->isar = &arm_cpu->isar;
12589     dc->condjmp = 0;
12590     dc->pc_save = dc->base.pc_first;
12591     dc->aarch64 = true;
12592     dc->thumb = false;
12593     dc->sctlr_b = 0;
12594     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12595     dc->condexec_mask = 0;
12596     dc->condexec_cond = 0;
12597     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12598     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12599     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12600     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12601     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12602     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12603 #if !defined(CONFIG_USER_ONLY)
12604     dc->user = (dc->current_el == 0);
12605 #endif
12606     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12607     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12608     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12609     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12610     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12611     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12612     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12613     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12614     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12615     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12616     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12617     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12618     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12619     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12620     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12621     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12622     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12623     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12624     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12625     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12626     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12627     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12628     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12629     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12630     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12631     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12632     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12633     dc->vec_len = 0;
12634     dc->vec_stride = 0;
12635     dc->cp_regs = arm_cpu->cp_regs;
12636     dc->features = env->features;
12637     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12638     dc->gm_blocksize = arm_cpu->gm_blocksize;
12639 
12640 #ifdef CONFIG_USER_ONLY
12641     /* In sve_probe_page, we assume TBI is enabled. */
12642     tcg_debug_assert(dc->tbid & 1);
12643 #endif
12644 
12645     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12646 
12647     /* Single step state. The code-generation logic here is:
12648      *  SS_ACTIVE == 0:
12649      *   generate code with no special handling for single-stepping (except
12650      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12651      *   this happens anyway because those changes are all system register or
12652      *   PSTATE writes).
12653      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12654      *   emit code for one insn
12655      *   emit code to clear PSTATE.SS
12656      *   emit code to generate software step exception for completed step
12657      *   end TB (as usual for having generated an exception)
12658      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12659      *   emit code to generate a software step exception
12660      *   end the TB
12661      */
12662     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12663     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12664     dc->is_ldex = false;
12665 
12666     /* Bound the number of insns to execute to those left on the page.  */
12667     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12668 
12669     /* If architectural single step active, limit to 1.  */
12670     if (dc->ss_active) {
12671         bound = 1;
12672     }
12673     dc->base.max_insns = MIN(dc->base.max_insns, bound);
12674 }
12675 
12676 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12677 {
12678 }
12679 
12680 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12681 {
12682     DisasContext *dc = container_of(dcbase, DisasContext, base);
12683     target_ulong pc_arg = dc->base.pc_next;
12684 
12685     if (tb_cflags(dcbase->tb) & CF_PCREL) {
12686         pc_arg &= ~TARGET_PAGE_MASK;
12687     }
12688     tcg_gen_insn_start(pc_arg, 0, 0);
12689     dc->insn_start_updated = false;
12690 }
12691 
12692 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12693 {
12694     DisasContext *s = container_of(dcbase, DisasContext, base);
12695     CPUARMState *env = cpu_env(cpu);
12696     uint64_t pc = s->base.pc_next;
12697     uint32_t insn;
12698 
12699     /* Singlestep exceptions have the highest priority. */
12700     if (s->ss_active && !s->pstate_ss) {
12701         /* Singlestep state is Active-pending.
12702          * If we're in this state at the start of a TB then either
12703          *  a) we just took an exception to an EL which is being debugged
12704          *     and this is the first insn in the exception handler
12705          *  b) debug exceptions were masked and we just unmasked them
12706          *     without changing EL (eg by clearing PSTATE.D)
12707          * In either case we're going to take a swstep exception in the
12708          * "did not step an insn" case, and so the syndrome ISV and EX
12709          * bits should be zero.
12710          */
12711         assert(s->base.num_insns == 1);
12712         gen_swstep_exception(s, 0, 0);
12713         s->base.is_jmp = DISAS_NORETURN;
12714         s->base.pc_next = pc + 4;
12715         return;
12716     }
12717 
12718     if (pc & 3) {
12719         /*
12720          * PC alignment fault.  This has priority over the instruction abort
12721          * that we would receive from a translation fault via arm_ldl_code.
12722          * This should only be possible after an indirect branch, at the
12723          * start of the TB.
12724          */
12725         assert(s->base.num_insns == 1);
12726         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12727         s->base.is_jmp = DISAS_NORETURN;
12728         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12729         return;
12730     }
12731 
12732     s->pc_curr = pc;
12733     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12734     s->insn = insn;
12735     s->base.pc_next = pc + 4;
12736 
12737     s->fp_access_checked = false;
12738     s->sve_access_checked = false;
12739 
12740     if (s->pstate_il) {
12741         /*
12742          * Illegal execution state. This has priority over BTI
12743          * exceptions, but comes after instruction abort exceptions.
12744          */
12745         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12746         return;
12747     }
12748 
12749     if (dc_isar_feature(aa64_bti, s)) {
12750         if (s->base.num_insns == 1) {
12751             /*
12752              * At the first insn of the TB, compute s->guarded_page.
12753              * We delayed computing this until successfully reading
12754              * the first insn of the TB, above.  This (mostly) ensures
12755              * that the softmmu tlb entry has been populated, and the
12756              * page table GP bit is available.
12757              *
12758              * Note that we need to compute this even if btype == 0,
12759              * because this value is used for BR instructions later
12760              * where ENV is not available.
12761              */
12762             s->guarded_page = is_guarded_page(env, s);
12763 
12764             /* First insn can have btype set to non-zero.  */
12765             tcg_debug_assert(s->btype >= 0);
12766 
12767             /*
12768              * Note that the Branch Target Exception has fairly high
12769              * priority -- below debugging exceptions but above most
12770              * everything else.  This allows us to handle this now
12771              * instead of waiting until the insn is otherwise decoded.
12772              */
12773             if (s->btype != 0
12774                 && s->guarded_page
12775                 && !btype_destination_ok(insn, s->bt, s->btype)) {
12776                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12777                 return;
12778             }
12779         } else {
12780             /* Not the first insn: btype must be 0.  */
12781             tcg_debug_assert(s->btype == 0);
12782         }
12783     }
12784 
12785     s->is_nonstreaming = false;
12786     if (s->sme_trap_nonstreaming) {
12787         disas_sme_fa64(s, insn);
12788     }
12789 
12790     if (!disas_a64(s, insn) &&
12791         !disas_sme(s, insn) &&
12792         !disas_sve(s, insn)) {
12793         disas_a64_legacy(s, insn);
12794     }
12795 
12796     /*
12797      * After execution of most insns, btype is reset to 0.
12798      * Note that we set btype == -1 when the insn sets btype.
12799      */
12800     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12801         reset_btype(s);
12802     }
12803 }
12804 
12805 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12806 {
12807     DisasContext *dc = container_of(dcbase, DisasContext, base);
12808 
12809     if (unlikely(dc->ss_active)) {
12810         /* Note that this means single stepping WFI doesn't halt the CPU.
12811          * For conditional branch insns this is harmless unreachable code as
12812          * gen_goto_tb() has already handled emitting the debug exception
12813          * (and thus a tb-jump is not possible when singlestepping).
12814          */
12815         switch (dc->base.is_jmp) {
12816         default:
12817             gen_a64_update_pc(dc, 4);
12818             /* fall through */
12819         case DISAS_EXIT:
12820         case DISAS_JUMP:
12821             gen_step_complete_exception(dc);
12822             break;
12823         case DISAS_NORETURN:
12824             break;
12825         }
12826     } else {
12827         switch (dc->base.is_jmp) {
12828         case DISAS_NEXT:
12829         case DISAS_TOO_MANY:
12830             gen_goto_tb(dc, 1, 4);
12831             break;
12832         default:
12833         case DISAS_UPDATE_EXIT:
12834             gen_a64_update_pc(dc, 4);
12835             /* fall through */
12836         case DISAS_EXIT:
12837             tcg_gen_exit_tb(NULL, 0);
12838             break;
12839         case DISAS_UPDATE_NOCHAIN:
12840             gen_a64_update_pc(dc, 4);
12841             /* fall through */
12842         case DISAS_JUMP:
12843             tcg_gen_lookup_and_goto_ptr();
12844             break;
12845         case DISAS_NORETURN:
12846         case DISAS_SWI:
12847             break;
12848         case DISAS_WFE:
12849             gen_a64_update_pc(dc, 4);
12850             gen_helper_wfe(tcg_env);
12851             break;
12852         case DISAS_YIELD:
12853             gen_a64_update_pc(dc, 4);
12854             gen_helper_yield(tcg_env);
12855             break;
12856         case DISAS_WFI:
12857             /*
12858              * This is a special case because we don't want to just halt
12859              * the CPU if trying to debug across a WFI.
12860              */
12861             gen_a64_update_pc(dc, 4);
12862             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12863             /*
12864              * The helper doesn't necessarily throw an exception, but we
12865              * must go back to the main loop to check for interrupts anyway.
12866              */
12867             tcg_gen_exit_tb(NULL, 0);
12868             break;
12869         }
12870     }
12871 }
12872 
12873 const TranslatorOps aarch64_translator_ops = {
12874     .init_disas_context = aarch64_tr_init_disas_context,
12875     .tb_start           = aarch64_tr_tb_start,
12876     .insn_start         = aarch64_tr_insn_start,
12877     .translate_insn     = aarch64_tr_translate_insn,
12878     .tb_stop            = aarch64_tr_tb_stop,
12879 };
12880