xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 9130827c)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand + fpstatus pointer + simd data value operation using
740  * an out-of-line helper.
741  */
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743                               int rm, int ra, bool is_fp16, int data,
744                               gen_helper_gvec_4_ptr *fn)
745 {
746     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748                        vec_full_reg_offset(s, rn),
749                        vec_full_reg_offset(s, rm),
750                        vec_full_reg_offset(s, ra), fpst,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755  * than the 32 bit equivalent.
756  */
757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762 
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766     if (sf) {
767         gen_set_NZ64(result);
768     } else {
769         tcg_gen_extrl_i64_i32(cpu_ZF, result);
770         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771     }
772     tcg_gen_movi_i32(cpu_CF, 0);
773     tcg_gen_movi_i32(cpu_VF, 0);
774 }
775 
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779     TCGv_i64 result, flag, tmp;
780     result = tcg_temp_new_i64();
781     flag = tcg_temp_new_i64();
782     tmp = tcg_temp_new_i64();
783 
784     tcg_gen_movi_i64(tmp, 0);
785     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 
787     tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 
789     gen_set_NZ64(result);
790 
791     tcg_gen_xor_i64(flag, result, t0);
792     tcg_gen_xor_i64(tmp, t0, t1);
793     tcg_gen_andc_i64(flag, flag, tmp);
794     tcg_gen_extrh_i64_i32(cpu_VF, flag);
795 
796     tcg_gen_mov_i64(dest, result);
797 }
798 
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     TCGv_i32 t0_32 = tcg_temp_new_i32();
802     TCGv_i32 t1_32 = tcg_temp_new_i32();
803     TCGv_i32 tmp = tcg_temp_new_i32();
804 
805     tcg_gen_movi_i32(tmp, 0);
806     tcg_gen_extrl_i64_i32(t0_32, t0);
807     tcg_gen_extrl_i64_i32(t1_32, t1);
808     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811     tcg_gen_xor_i32(tmp, t0_32, t1_32);
812     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813     tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815 
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818     if (sf) {
819         gen_add64_CC(dest, t0, t1);
820     } else {
821         gen_add32_CC(dest, t0, t1);
822     }
823 }
824 
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828     /* 64 bit arithmetic */
829     TCGv_i64 result, flag, tmp;
830 
831     result = tcg_temp_new_i64();
832     flag = tcg_temp_new_i64();
833     tcg_gen_sub_i64(result, t0, t1);
834 
835     gen_set_NZ64(result);
836 
837     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838     tcg_gen_extrl_i64_i32(cpu_CF, flag);
839 
840     tcg_gen_xor_i64(flag, result, t0);
841     tmp = tcg_temp_new_i64();
842     tcg_gen_xor_i64(tmp, t0, t1);
843     tcg_gen_and_i64(flag, flag, tmp);
844     tcg_gen_extrh_i64_i32(cpu_VF, flag);
845     tcg_gen_mov_i64(dest, result);
846 }
847 
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850     /* 32 bit arithmetic */
851     TCGv_i32 t0_32 = tcg_temp_new_i32();
852     TCGv_i32 t1_32 = tcg_temp_new_i32();
853     TCGv_i32 tmp;
854 
855     tcg_gen_extrl_i64_i32(t0_32, t0);
856     tcg_gen_extrl_i64_i32(t1_32, t1);
857     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861     tmp = tcg_temp_new_i32();
862     tcg_gen_xor_i32(tmp, t0_32, t1_32);
863     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864     tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866 
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869     if (sf) {
870         gen_sub64_CC(dest, t0, t1);
871     } else {
872         gen_sub32_CC(dest, t0, t1);
873     }
874 }
875 
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879     TCGv_i64 flag = tcg_temp_new_i64();
880     tcg_gen_extu_i32_i64(flag, cpu_CF);
881     tcg_gen_add_i64(dest, t0, t1);
882     tcg_gen_add_i64(dest, dest, flag);
883 
884     if (!sf) {
885         tcg_gen_ext32u_i64(dest, dest);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     if (sf) {
893         TCGv_i64 result = tcg_temp_new_i64();
894         TCGv_i64 cf_64 = tcg_temp_new_i64();
895         TCGv_i64 vf_64 = tcg_temp_new_i64();
896         TCGv_i64 tmp = tcg_temp_new_i64();
897         TCGv_i64 zero = tcg_constant_i64(0);
898 
899         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903         gen_set_NZ64(result);
904 
905         tcg_gen_xor_i64(vf_64, result, t0);
906         tcg_gen_xor_i64(tmp, t0, t1);
907         tcg_gen_andc_i64(vf_64, vf_64, tmp);
908         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909 
910         tcg_gen_mov_i64(dest, result);
911     } else {
912         TCGv_i32 t0_32 = tcg_temp_new_i32();
913         TCGv_i32 t1_32 = tcg_temp_new_i32();
914         TCGv_i32 tmp = tcg_temp_new_i32();
915         TCGv_i32 zero = tcg_constant_i32(0);
916 
917         tcg_gen_extrl_i64_i32(t0_32, t0);
918         tcg_gen_extrl_i64_i32(t1_32, t1);
919         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921 
922         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924         tcg_gen_xor_i32(tmp, t0_32, t1_32);
925         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926         tcg_gen_extu_i32_i64(dest, cpu_NF);
927     }
928 }
929 
930 /*
931  * Load/Store generators
932  */
933 
934 /*
935  * Store from GPR register to memory.
936  */
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
939                              bool iss_valid,
940                              unsigned int iss_srt,
941                              bool iss_sf, bool iss_ar)
942 {
943     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944 
945     if (iss_valid) {
946         uint32_t syn;
947 
948         syn = syn_data_abort_with_iss(0,
949                                       (memop & MO_SIZE),
950                                       false,
951                                       iss_srt,
952                                       iss_sf,
953                                       iss_ar,
954                                       0, 0, 0, 0, 0, false);
955         disas_set_insn_syndrome(s, syn);
956     }
957 }
958 
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960                       TCGv_i64 tcg_addr, MemOp memop,
961                       bool iss_valid,
962                       unsigned int iss_srt,
963                       bool iss_sf, bool iss_ar)
964 {
965     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966                      iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968 
969 /*
970  * Load from memory to GPR register
971  */
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973                              MemOp memop, bool extend, int memidx,
974                              bool iss_valid, unsigned int iss_srt,
975                              bool iss_sf, bool iss_ar)
976 {
977     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978 
979     if (extend && (memop & MO_SIGN)) {
980         g_assert((memop & MO_SIZE) <= MO_32);
981         tcg_gen_ext32u_i64(dest, dest);
982     }
983 
984     if (iss_valid) {
985         uint32_t syn;
986 
987         syn = syn_data_abort_with_iss(0,
988                                       (memop & MO_SIZE),
989                                       (memop & MO_SIGN) != 0,
990                                       iss_srt,
991                                       iss_sf,
992                                       iss_ar,
993                                       0, 0, 0, 0, 0, false);
994         disas_set_insn_syndrome(s, syn);
995     }
996 }
997 
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999                       MemOp memop, bool extend,
1000                       bool iss_valid, unsigned int iss_srt,
1001                       bool iss_sf, bool iss_ar)
1002 {
1003     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004                      iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006 
1007 /*
1008  * Store from FP register to memory
1009  */
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013     TCGv_i64 tmplo = tcg_temp_new_i64();
1014 
1015     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016 
1017     if ((mop & MO_SIZE) < MO_128) {
1018         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019     } else {
1020         TCGv_i64 tmphi = tcg_temp_new_i64();
1021         TCGv_i128 t16 = tcg_temp_new_i128();
1022 
1023         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025 
1026         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027     }
1028 }
1029 
1030 /*
1031  * Load from memory to FP register
1032  */
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035     /* This always zero-extends and writes to a full 128 bit wide vector */
1036     TCGv_i64 tmplo = tcg_temp_new_i64();
1037     TCGv_i64 tmphi = NULL;
1038 
1039     if ((mop & MO_SIZE) < MO_128) {
1040         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041     } else {
1042         TCGv_i128 t16 = tcg_temp_new_i128();
1043 
1044         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045 
1046         tmphi = tcg_temp_new_i64();
1047         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048     }
1049 
1050     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051 
1052     if (tmphi) {
1053         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054     }
1055     clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057 
1058 /*
1059  * Vector load/store helpers.
1060  *
1061  * The principal difference between this and a FP load is that we don't
1062  * zero extend as we are filling a partial chunk of the vector register.
1063  * These functions don't support 128 bit loads/stores, which would be
1064  * normal load/store operations.
1065  *
1066  * The _i32 versions are useful when operating on 32 bit quantities
1067  * (eg for floating point single or using Neon helper functions).
1068  */
1069 
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072                              int element, MemOp memop)
1073 {
1074     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075     switch ((unsigned)memop) {
1076     case MO_8:
1077         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078         break;
1079     case MO_16:
1080         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081         break;
1082     case MO_32:
1083         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084         break;
1085     case MO_8|MO_SIGN:
1086         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087         break;
1088     case MO_16|MO_SIGN:
1089         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090         break;
1091     case MO_32|MO_SIGN:
1092         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093         break;
1094     case MO_64:
1095     case MO_64|MO_SIGN:
1096         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104                                  int element, MemOp memop)
1105 {
1106     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107     switch (memop) {
1108     case MO_8:
1109         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110         break;
1111     case MO_16:
1112         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113         break;
1114     case MO_8|MO_SIGN:
1115         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116         break;
1117     case MO_16|MO_SIGN:
1118         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119         break;
1120     case MO_32:
1121     case MO_32|MO_SIGN:
1122         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127 }
1128 
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131                               int element, MemOp memop)
1132 {
1133     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134     switch (memop) {
1135     case MO_8:
1136         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137         break;
1138     case MO_16:
1139         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140         break;
1141     case MO_32:
1142         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143         break;
1144     case MO_64:
1145         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146         break;
1147     default:
1148         g_assert_not_reached();
1149     }
1150 }
1151 
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153                                   int destidx, int element, MemOp memop)
1154 {
1155     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156     switch (memop) {
1157     case MO_8:
1158         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_16:
1161         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162         break;
1163     case MO_32:
1164         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169 }
1170 
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173                       TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176 
1177     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180 
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183                       TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186 
1187     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190 
1191 /* Check that FP/Neon access is enabled. If it is, return
1192  * true. If not, emit code to generate an appropriate exception,
1193  * and return false; the caller should not emit any code for
1194  * the instruction. Note that this check must happen after all
1195  * unallocated-encoding checks (otherwise the syndrome information
1196  * for the resulting exception will be incorrect).
1197  */
1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200     if (s->fp_excp_el) {
1201         assert(!s->fp_access_checked);
1202         s->fp_access_checked = true;
1203 
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_fp_access_trap(1, 0xe, false, 0),
1206                               s->fp_excp_el);
1207         return false;
1208     }
1209     s->fp_access_checked = true;
1210     return true;
1211 }
1212 
1213 static bool fp_access_check(DisasContext *s)
1214 {
1215     if (!fp_access_check_only(s)) {
1216         return false;
1217     }
1218     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219         gen_exception_insn(s, 0, EXCP_UDEF,
1220                            syn_smetrap(SME_ET_Streaming, false));
1221         return false;
1222     }
1223     return true;
1224 }
1225 
1226 /*
1227  * Check that SVE access is enabled.  If it is, return true.
1228  * If not, emit code to generate an appropriate exception and return false.
1229  * This function corresponds to CheckSVEEnabled().
1230  */
1231 bool sve_access_check(DisasContext *s)
1232 {
1233     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234         assert(dc_isar_feature(aa64_sme, s));
1235         if (!sme_sm_enabled_check(s)) {
1236             goto fail_exit;
1237         }
1238     } else if (s->sve_excp_el) {
1239         gen_exception_insn_el(s, 0, EXCP_UDEF,
1240                               syn_sve_access_trap(), s->sve_excp_el);
1241         goto fail_exit;
1242     }
1243     s->sve_access_checked = true;
1244     return fp_access_check(s);
1245 
1246  fail_exit:
1247     /* Assert that we only raise one exception per instruction. */
1248     assert(!s->sve_access_checked);
1249     s->sve_access_checked = true;
1250     return false;
1251 }
1252 
1253 /*
1254  * Check that SME access is enabled, raise an exception if not.
1255  * Note that this function corresponds to CheckSMEAccess and is
1256  * only used directly for cpregs.
1257  */
1258 static bool sme_access_check(DisasContext *s)
1259 {
1260     if (s->sme_excp_el) {
1261         gen_exception_insn_el(s, 0, EXCP_UDEF,
1262                               syn_smetrap(SME_ET_AccessTrap, false),
1263                               s->sme_excp_el);
1264         return false;
1265     }
1266     return true;
1267 }
1268 
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272     /*
1273      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274      * to be zero when fp_excp_el has priority.  This is because we need
1275      * sme_excp_el by itself for cpregs access checks.
1276      */
1277     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278         s->fp_access_checked = true;
1279         return sme_access_check(s);
1280     }
1281     return fp_access_check_only(s);
1282 }
1283 
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287     if (!sme_enabled_check(s)) {
1288         return false;
1289     }
1290     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291         gen_exception_insn(s, 0, EXCP_UDEF,
1292                            syn_smetrap(SME_ET_NotStreaming, false));
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_InactiveZA, false));
1298         return false;
1299     }
1300     return true;
1301 }
1302 
1303 /*
1304  * Expanders for AdvSIMD translation functions.
1305  */
1306 
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308                             gen_helper_gvec_2 *fn)
1309 {
1310     if (!a->q && a->esz == MO_64) {
1311         return false;
1312     }
1313     if (fp_access_check(s)) {
1314         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315     }
1316     return true;
1317 }
1318 
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320                             gen_helper_gvec_3 *fn)
1321 {
1322     if (!a->q && a->esz == MO_64) {
1323         return false;
1324     }
1325     if (fp_access_check(s)) {
1326         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327     }
1328     return true;
1329 }
1330 
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333     if (!a->q && a->esz == MO_64) {
1334         return false;
1335     }
1336     if (fp_access_check(s)) {
1337         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338     }
1339     return true;
1340 }
1341 
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344     if (a->esz == MO_64) {
1345         return false;
1346     }
1347     if (fp_access_check(s)) {
1348         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349     }
1350     return true;
1351 }
1352 
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355     if (a->esz == MO_8) {
1356         return false;
1357     }
1358     return do_gvec_fn3_no64(s, a, fn);
1359 }
1360 
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363     if (!a->q && a->esz == MO_64) {
1364         return false;
1365     }
1366     if (fp_access_check(s)) {
1367         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368     }
1369     return true;
1370 }
1371 
1372 /*
1373  * This utility function is for doing register extension with an
1374  * optional shift. You will likely want to pass a temporary for the
1375  * destination register. See DecodeRegExtend() in the ARM ARM.
1376  */
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378                               int option, unsigned int shift)
1379 {
1380     int extsize = extract32(option, 0, 2);
1381     bool is_signed = extract32(option, 2, 1);
1382 
1383     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386 
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389     /* The AArch64 architecture mandates that (if enabled via PSTATE
1390      * or SCTLR bits) there is a check that SP is 16-aligned on every
1391      * SP-relative load or store (with an exception generated if it is not).
1392      * In line with general QEMU practice regarding misaligned accesses,
1393      * we omit these checks for the sake of guest program performance.
1394      * This function is provided as a hook so we can more easily add these
1395      * checks in future (possibly as a "favour catching guest program bugs
1396      * over speed" user selectable option).
1397      */
1398 }
1399 
1400 /*
1401  * This provides a simple table based table lookup decoder. It is
1402  * intended to be used when the relevant bits for decode are too
1403  * awkwardly placed and switch/if based logic would be confusing and
1404  * deeply nested. Since it's a linear search through the table, tables
1405  * should be kept small.
1406  *
1407  * It returns the first handler where insn & mask == pattern, or
1408  * NULL if there is no match.
1409  * The table is terminated by an empty mask (i.e. 0)
1410  */
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412                                                uint32_t insn)
1413 {
1414     const AArch64DecodeTable *tptr = table;
1415 
1416     while (tptr->mask) {
1417         if ((insn & tptr->mask) == tptr->pattern) {
1418             return tptr->disas_fn;
1419         }
1420         tptr++;
1421     }
1422     return NULL;
1423 }
1424 
1425 /*
1426  * The instruction disassembly implemented here matches
1427  * the instruction encoding classifications in chapter C4
1428  * of the ARM Architecture Reference Manual (DDI0487B_a);
1429  * classification names and decode diagrams here should generally
1430  * match up with those in the manual.
1431  */
1432 
1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435     reset_btype(s);
1436     gen_goto_tb(s, 0, a->imm);
1437     return true;
1438 }
1439 
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443     reset_btype(s);
1444     gen_goto_tb(s, 0, a->imm);
1445     return true;
1446 }
1447 
1448 
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451     DisasLabel match;
1452     TCGv_i64 tcg_cmp;
1453 
1454     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455     reset_btype(s);
1456 
1457     match = gen_disas_label(s);
1458     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459                         tcg_cmp, 0, match.label);
1460     gen_goto_tb(s, 0, 4);
1461     set_disas_label(s, match);
1462     gen_goto_tb(s, 1, a->imm);
1463     return true;
1464 }
1465 
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = tcg_temp_new_i64();
1472     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473 
1474     reset_btype(s);
1475 
1476     match = gen_disas_label(s);
1477     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478                         tcg_cmp, 0, match.label);
1479     gen_goto_tb(s, 0, 4);
1480     set_disas_label(s, match);
1481     gen_goto_tb(s, 1, a->imm);
1482     return true;
1483 }
1484 
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487     /* BC.cond is only present with FEAT_HBC */
1488     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489         return false;
1490     }
1491     reset_btype(s);
1492     if (a->cond < 0x0e) {
1493         /* genuinely conditional branches */
1494         DisasLabel match = gen_disas_label(s);
1495         arm_gen_test_cc(a->cond, match.label);
1496         gen_goto_tb(s, 0, 4);
1497         set_disas_label(s, match);
1498         gen_goto_tb(s, 1, a->imm);
1499     } else {
1500         /* 0xe and 0xf are both "always" conditions */
1501         gen_goto_tb(s, 0, a->imm);
1502     }
1503     return true;
1504 }
1505 
1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508     if (dc_isar_feature(aa64_bti, s)) {
1509         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1510         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1511     }
1512 }
1513 
1514 static void set_btype_for_blr(DisasContext *s)
1515 {
1516     if (dc_isar_feature(aa64_bti, s)) {
1517         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1518         set_btype(s, 2);
1519     }
1520 }
1521 
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1523 {
1524     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525     set_btype_for_br(s, a->rn);
1526     s->base.is_jmp = DISAS_JUMP;
1527     return true;
1528 }
1529 
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1531 {
1532     TCGv_i64 dst = cpu_reg(s, a->rn);
1533     TCGv_i64 lr = cpu_reg(s, 30);
1534     if (dst == lr) {
1535         TCGv_i64 tmp = tcg_temp_new_i64();
1536         tcg_gen_mov_i64(tmp, dst);
1537         dst = tmp;
1538     }
1539     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540     gen_a64_set_pc(s, dst);
1541     set_btype_for_blr(s);
1542     s->base.is_jmp = DISAS_JUMP;
1543     return true;
1544 }
1545 
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1547 {
1548     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549     s->base.is_jmp = DISAS_JUMP;
1550     return true;
1551 }
1552 
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554                                    TCGv_i64 modifier, bool use_key_a)
1555 {
1556     TCGv_i64 truedst;
1557     /*
1558      * Return the branch target for a BRAA/RETA/etc, which is either
1559      * just the destination dst, or that value with the pauth check
1560      * done and the code removed from the high bits.
1561      */
1562     if (!s->pauth_active) {
1563         return dst;
1564     }
1565 
1566     truedst = tcg_temp_new_i64();
1567     if (use_key_a) {
1568         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569     } else {
1570         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1571     }
1572     return truedst;
1573 }
1574 
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1576 {
1577     TCGv_i64 dst;
1578 
1579     if (!dc_isar_feature(aa64_pauth, s)) {
1580         return false;
1581     }
1582 
1583     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584     gen_a64_set_pc(s, dst);
1585     set_btype_for_br(s, a->rn);
1586     s->base.is_jmp = DISAS_JUMP;
1587     return true;
1588 }
1589 
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1591 {
1592     TCGv_i64 dst, lr;
1593 
1594     if (!dc_isar_feature(aa64_pauth, s)) {
1595         return false;
1596     }
1597 
1598     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599     lr = cpu_reg(s, 30);
1600     if (dst == lr) {
1601         TCGv_i64 tmp = tcg_temp_new_i64();
1602         tcg_gen_mov_i64(tmp, dst);
1603         dst = tmp;
1604     }
1605     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606     gen_a64_set_pc(s, dst);
1607     set_btype_for_blr(s);
1608     s->base.is_jmp = DISAS_JUMP;
1609     return true;
1610 }
1611 
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1613 {
1614     TCGv_i64 dst;
1615 
1616     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617     gen_a64_set_pc(s, dst);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (!dc_isar_feature(aa64_pauth, s)) {
1627         return false;
1628     }
1629     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_br(s, a->rn);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1637 {
1638     TCGv_i64 dst, lr;
1639 
1640     if (!dc_isar_feature(aa64_pauth, s)) {
1641         return false;
1642     }
1643     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644     lr = cpu_reg(s, 30);
1645     if (dst == lr) {
1646         TCGv_i64 tmp = tcg_temp_new_i64();
1647         tcg_gen_mov_i64(tmp, dst);
1648         dst = tmp;
1649     }
1650     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651     gen_a64_set_pc(s, dst);
1652     set_btype_for_blr(s);
1653     s->base.is_jmp = DISAS_JUMP;
1654     return true;
1655 }
1656 
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1658 {
1659     TCGv_i64 dst;
1660 
1661     if (s->current_el == 0) {
1662         return false;
1663     }
1664     if (s->trap_eret) {
1665         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666         return true;
1667     }
1668     dst = tcg_temp_new_i64();
1669     tcg_gen_ld_i64(dst, tcg_env,
1670                    offsetof(CPUARMState, elr_el[s->current_el]));
1671 
1672     translator_io_start(&s->base);
1673 
1674     gen_helper_exception_return(tcg_env, dst);
1675     /* Must exit loop to check un-masked IRQs */
1676     s->base.is_jmp = DISAS_EXIT;
1677     return true;
1678 }
1679 
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1681 {
1682     TCGv_i64 dst;
1683 
1684     if (!dc_isar_feature(aa64_pauth, s)) {
1685         return false;
1686     }
1687     if (s->current_el == 0) {
1688         return false;
1689     }
1690     /* The FGT trap takes precedence over an auth trap. */
1691     if (s->trap_eret) {
1692         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693         return true;
1694     }
1695     dst = tcg_temp_new_i64();
1696     tcg_gen_ld_i64(dst, tcg_env,
1697                    offsetof(CPUARMState, elr_el[s->current_el]));
1698 
1699     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1700 
1701     translator_io_start(&s->base);
1702 
1703     gen_helper_exception_return(tcg_env, dst);
1704     /* Must exit loop to check un-masked IRQs */
1705     s->base.is_jmp = DISAS_EXIT;
1706     return true;
1707 }
1708 
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1710 {
1711     return true;
1712 }
1713 
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1715 {
1716     /*
1717      * When running in MTTCG we don't generate jumps to the yield and
1718      * WFE helpers as it won't affect the scheduling of other vCPUs.
1719      * If we wanted to more completely model WFE/SEV so we don't busy
1720      * spin unnecessarily we would need to do something more involved.
1721      */
1722     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723         s->base.is_jmp = DISAS_YIELD;
1724     }
1725     return true;
1726 }
1727 
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1729 {
1730     s->base.is_jmp = DISAS_WFI;
1731     return true;
1732 }
1733 
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1735 {
1736     /*
1737      * When running in MTTCG we don't generate jumps to the yield and
1738      * WFE helpers as it won't affect the scheduling of other vCPUs.
1739      * If we wanted to more completely model WFE/SEV so we don't busy
1740      * spin unnecessarily we would need to do something more involved.
1741      */
1742     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743         s->base.is_jmp = DISAS_WFE;
1744     }
1745     return true;
1746 }
1747 
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1749 {
1750     if (!dc_isar_feature(aa64_wfxt, s)) {
1751         return false;
1752     }
1753 
1754     /*
1755      * Because we need to pass the register value to the helper,
1756      * it's easier to emit the code now, unlike trans_WFI which
1757      * defers it to aarch64_tr_tb_stop(). That means we need to
1758      * check ss_active so that single-stepping a WFIT doesn't halt.
1759      */
1760     if (s->ss_active) {
1761         /* Act like a NOP under architectural singlestep */
1762         return true;
1763     }
1764 
1765     gen_a64_update_pc(s, 4);
1766     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767     /* Go back to the main loop to check for interrupts */
1768     s->base.is_jmp = DISAS_EXIT;
1769     return true;
1770 }
1771 
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * We rely here on our WFE implementation being a NOP, so we
1780      * don't need to do anything different to handle the WFET timeout
1781      * from what trans_WFE does.
1782      */
1783     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784         s->base.is_jmp = DISAS_WFE;
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1830 {
1831     /* Without RAS, we must implement this as NOP. */
1832     if (dc_isar_feature(aa64_ras, s)) {
1833         /*
1834          * QEMU does not have a source of physical SErrors,
1835          * so we are only concerned with virtual SErrors.
1836          * The pseudocode in the ARM for this case is
1837          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838          *      AArch64.vESBOperation();
1839          * Most of the condition can be evaluated at translation time.
1840          * Test for EL2 present, and defer test for SEL2 to runtime.
1841          */
1842         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843             gen_helper_vesb(tcg_env);
1844         }
1845     }
1846     return true;
1847 }
1848 
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1850 {
1851     if (s->pauth_active) {
1852         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1853     }
1854     return true;
1855 }
1856 
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1858 {
1859     if (s->pauth_active) {
1860         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1861     }
1862     return true;
1863 }
1864 
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1866 {
1867     if (s->pauth_active) {
1868         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1869     }
1870     return true;
1871 }
1872 
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1877     }
1878     return true;
1879 }
1880 
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1885     }
1886     return true;
1887 }
1888 
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1893     }
1894     return true;
1895 }
1896 
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1901     }
1902     return true;
1903 }
1904 
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1909     }
1910     return true;
1911 }
1912 
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1914 {
1915     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916     return true;
1917 }
1918 
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1920 {
1921     /* We handle DSB and DMB the same way */
1922     TCGBar bar;
1923 
1924     switch (a->types) {
1925     case 1: /* MBReqTypes_Reads */
1926         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927         break;
1928     case 2: /* MBReqTypes_Writes */
1929         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930         break;
1931     default: /* MBReqTypes_All */
1932         bar = TCG_BAR_SC | TCG_MO_ALL;
1933         break;
1934     }
1935     tcg_gen_mb(bar);
1936     return true;
1937 }
1938 
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1940 {
1941     /*
1942      * We need to break the TB after this insn to execute
1943      * self-modifying code correctly and also to take
1944      * any pending interrupts immediately.
1945      */
1946     reset_btype(s);
1947     gen_goto_tb(s, 0, 4);
1948     return true;
1949 }
1950 
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1952 {
1953     if (!dc_isar_feature(aa64_sb, s)) {
1954         return false;
1955     }
1956     /*
1957      * TODO: There is no speculation barrier opcode for TCG;
1958      * MB and end the TB instead.
1959      */
1960     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961     gen_goto_tb(s, 0, 4);
1962     return true;
1963 }
1964 
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1966 {
1967     if (!dc_isar_feature(aa64_condm_4, s)) {
1968         return false;
1969     }
1970     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971     return true;
1972 }
1973 
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1975 {
1976     TCGv_i32 z;
1977 
1978     if (!dc_isar_feature(aa64_condm_5, s)) {
1979         return false;
1980     }
1981 
1982     z = tcg_temp_new_i32();
1983 
1984     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1985 
1986     /*
1987      * (!C & !Z) << 31
1988      * (!(C | Z)) << 31
1989      * ~((C | Z) << 31)
1990      * ~-(C | Z)
1991      * (C | Z) - 1
1992      */
1993     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1995 
1996     /* !(Z & C) */
1997     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1999 
2000     /* (!C & Z) << 31 -> -(Z & ~C) */
2001     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2003 
2004     /* C | Z */
2005     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2006 
2007     return true;
2008 }
2009 
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2011 {
2012     if (!dc_isar_feature(aa64_condm_5, s)) {
2013         return false;
2014     }
2015 
2016     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2017     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2018 
2019     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2021 
2022     tcg_gen_movi_i32(cpu_NF, 0);
2023     tcg_gen_movi_i32(cpu_VF, 0);
2024 
2025     return true;
2026 }
2027 
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2029 {
2030     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031         return false;
2032     }
2033     if (a->imm & 1) {
2034         set_pstate_bits(PSTATE_UAO);
2035     } else {
2036         clear_pstate_bits(PSTATE_UAO);
2037     }
2038     gen_rebuild_hflags(s);
2039     s->base.is_jmp = DISAS_TOO_MANY;
2040     return true;
2041 }
2042 
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2044 {
2045     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046         return false;
2047     }
2048     if (a->imm & 1) {
2049         set_pstate_bits(PSTATE_PAN);
2050     } else {
2051         clear_pstate_bits(PSTATE_PAN);
2052     }
2053     gen_rebuild_hflags(s);
2054     s->base.is_jmp = DISAS_TOO_MANY;
2055     return true;
2056 }
2057 
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2059 {
2060     if (s->current_el == 0) {
2061         return false;
2062     }
2063     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064     s->base.is_jmp = DISAS_TOO_MANY;
2065     return true;
2066 }
2067 
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2069 {
2070     if (!dc_isar_feature(aa64_ssbs, s)) {
2071         return false;
2072     }
2073     if (a->imm & 1) {
2074         set_pstate_bits(PSTATE_SSBS);
2075     } else {
2076         clear_pstate_bits(PSTATE_SSBS);
2077     }
2078     /* Don't need to rebuild hflags since SSBS is a nop */
2079     s->base.is_jmp = DISAS_TOO_MANY;
2080     return true;
2081 }
2082 
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2084 {
2085     if (!dc_isar_feature(aa64_dit, s)) {
2086         return false;
2087     }
2088     if (a->imm & 1) {
2089         set_pstate_bits(PSTATE_DIT);
2090     } else {
2091         clear_pstate_bits(PSTATE_DIT);
2092     }
2093     /* There's no need to rebuild hflags because DIT is a nop */
2094     s->base.is_jmp = DISAS_TOO_MANY;
2095     return true;
2096 }
2097 
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2099 {
2100     if (dc_isar_feature(aa64_mte, s)) {
2101         /* Full MTE is enabled -- set the TCO bit as directed. */
2102         if (a->imm & 1) {
2103             set_pstate_bits(PSTATE_TCO);
2104         } else {
2105             clear_pstate_bits(PSTATE_TCO);
2106         }
2107         gen_rebuild_hflags(s);
2108         /* Many factors, including TCO, go into MTE_ACTIVE. */
2109         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110         return true;
2111     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2113         return true;
2114     } else {
2115         /* Insn not present */
2116         return false;
2117     }
2118 }
2119 
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2121 {
2122     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123     s->base.is_jmp = DISAS_TOO_MANY;
2124     return true;
2125 }
2126 
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2128 {
2129     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130     /* Exit the cpu loop to re-evaluate pending IRQs. */
2131     s->base.is_jmp = DISAS_UPDATE_EXIT;
2132     return true;
2133 }
2134 
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2136 {
2137     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138         return false;
2139     }
2140 
2141     if (a->imm == 0) {
2142         clear_pstate_bits(PSTATE_ALLINT);
2143     } else if (s->current_el > 1) {
2144         set_pstate_bits(PSTATE_ALLINT);
2145     } else {
2146         gen_helper_msr_set_allint_el1(tcg_env);
2147     }
2148 
2149     /* Exit the cpu loop to re-evaluate pending IRQs. */
2150     s->base.is_jmp = DISAS_UPDATE_EXIT;
2151     return true;
2152 }
2153 
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2155 {
2156     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157         return false;
2158     }
2159     if (sme_access_check(s)) {
2160         int old = s->pstate_sm | (s->pstate_za << 1);
2161         int new = a->imm * 3;
2162 
2163         if ((old ^ new) & a->mask) {
2164             /* At least one bit changes. */
2165             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166                                 tcg_constant_i32(a->mask));
2167             s->base.is_jmp = DISAS_TOO_MANY;
2168         }
2169     }
2170     return true;
2171 }
2172 
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2174 {
2175     TCGv_i32 tmp = tcg_temp_new_i32();
2176     TCGv_i32 nzcv = tcg_temp_new_i32();
2177 
2178     /* build bit 31, N */
2179     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180     /* build bit 30, Z */
2181     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183     /* build bit 29, C */
2184     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185     /* build bit 28, V */
2186     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188     /* generate result */
2189     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2190 }
2191 
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2193 {
2194     TCGv_i32 nzcv = tcg_temp_new_i32();
2195 
2196     /* take NZCV from R[t] */
2197     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2198 
2199     /* bit 31, N */
2200     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201     /* bit 30, Z */
2202     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204     /* bit 29, C */
2205     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207     /* bit 28, V */
2208     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2210 }
2211 
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213                              uint8_t op0, uint8_t op1, uint8_t op2,
2214                              uint8_t crn, uint8_t crm, uint8_t rt)
2215 {
2216     /*
2217      * Generate code to emit an UNDEF with correct syndrome
2218      * information for a failed system register access.
2219      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220      * but if FEAT_IDST is implemented then read accesses to registers
2221      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222      * syndrome.
2223      */
2224     uint32_t syndrome;
2225 
2226     if (isread && dc_isar_feature(aa64_ids, s) &&
2227         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229     } else {
2230         syndrome = syn_uncategorized();
2231     }
2232     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2233 }
2234 
2235 /* MRS - move from system register
2236  * MSR (register) - move to system register
2237  * SYS
2238  * SYSL
2239  * These are all essentially the same insn in 'read' and 'write'
2240  * versions, with varying op0 fields.
2241  */
2242 static void handle_sys(DisasContext *s, bool isread,
2243                        unsigned int op0, unsigned int op1, unsigned int op2,
2244                        unsigned int crn, unsigned int crm, unsigned int rt)
2245 {
2246     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247                                       crn, crm, op0, op1, op2);
2248     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249     bool need_exit_tb = false;
2250     bool nv_trap_to_el2 = false;
2251     bool nv_redirect_reg = false;
2252     bool skip_fp_access_checks = false;
2253     bool nv2_mem_redirect = false;
2254     TCGv_ptr tcg_ri = NULL;
2255     TCGv_i64 tcg_rt;
2256     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2257 
2258     if (crn == 11 || crn == 15) {
2259         /*
2260          * Check for TIDCP trap, which must take precedence over
2261          * the UNDEF for "no such register" etc.
2262          */
2263         switch (s->current_el) {
2264         case 0:
2265             if (dc_isar_feature(aa64_tidcp1, s)) {
2266                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2267             }
2268             break;
2269         case 1:
2270             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271             break;
2272         }
2273     }
2274 
2275     if (!ri) {
2276         /* Unknown register; this might be a guest error or a QEMU
2277          * unimplemented feature.
2278          */
2279         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2282         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283         return;
2284     }
2285 
2286     if (s->nv2 && ri->nv2_redirect_offset) {
2287         /*
2288          * Some registers always redirect to memory; some only do so if
2289          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290          * pairs which share an offset; see the table in R_CSRPQ).
2291          */
2292         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293             nv2_mem_redirect = s->nv1;
2294         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295             nv2_mem_redirect = !s->nv1;
2296         } else {
2297             nv2_mem_redirect = true;
2298         }
2299     }
2300 
2301     /* Check access permissions */
2302     if (!cp_access_ok(s->current_el, ri, isread)) {
2303         /*
2304          * FEAT_NV/NV2 handling does not do the usual FP access checks
2305          * for registers only accessible at EL2 (though it *does* do them
2306          * for registers accessible at EL1).
2307          */
2308         skip_fp_access_checks = true;
2309         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2310             /*
2311              * This is one of the few EL2 registers which should redirect
2312              * to the equivalent EL1 register. We do that after running
2313              * the EL2 register's accessfn.
2314              */
2315             nv_redirect_reg = true;
2316             assert(!nv2_mem_redirect);
2317         } else if (nv2_mem_redirect) {
2318             /*
2319              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320              * UNDEF to EL1.
2321              */
2322         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2323             /*
2324              * This register / instruction exists and is an EL2 register, so
2325              * we must trap to EL2 if accessed in nested virtualization EL1
2326              * instead of UNDEFing. We'll do that after the usual access checks.
2327              * (This makes a difference only for a couple of registers like
2328              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330              * an accessfn which does nothing when called from EL1, because
2331              * the trap-to-EL3 controls which would apply to that register
2332              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2333              */
2334             nv_trap_to_el2 = true;
2335         } else {
2336             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337             return;
2338         }
2339     }
2340 
2341     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342         /* Emit code to perform further access permissions checks at
2343          * runtime; this may result in an exception.
2344          */
2345         gen_a64_update_pc(s, 0);
2346         tcg_ri = tcg_temp_new_ptr();
2347         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348                                        tcg_constant_i32(key),
2349                                        tcg_constant_i32(syndrome),
2350                                        tcg_constant_i32(isread));
2351     } else if (ri->type & ARM_CP_RAISES_EXC) {
2352         /*
2353          * The readfn or writefn might raise an exception;
2354          * synchronize the CPU state in case it does.
2355          */
2356         gen_a64_update_pc(s, 0);
2357     }
2358 
2359     if (!skip_fp_access_checks) {
2360         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361             return;
2362         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363             return;
2364         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365             return;
2366         }
2367     }
2368 
2369     if (nv_trap_to_el2) {
2370         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371         return;
2372     }
2373 
2374     if (nv_redirect_reg) {
2375         /*
2376          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377          * Conveniently in all cases the encoding of the EL1 register is
2378          * identical to the EL2 register except that opc1 is 0.
2379          * Get the reginfo for the EL1 register to use for the actual access.
2380          * We don't use the EL1 register's access function, and
2381          * fine-grained-traps on EL1 also do not apply here.
2382          */
2383         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384                                  crn, crm, op0, 0, op2);
2385         ri = get_arm_cp_reginfo(s->cp_regs, key);
2386         assert(ri);
2387         assert(cp_access_ok(s->current_el, ri, isread));
2388         /*
2389          * We might not have done an update_pc earlier, so check we don't
2390          * need it. We could support this in future if necessary.
2391          */
2392         assert(!(ri->type & ARM_CP_RAISES_EXC));
2393     }
2394 
2395     if (nv2_mem_redirect) {
2396         /*
2397          * This system register is being redirected into an EL2 memory access.
2398          * This means it is not an IO operation, doesn't change hflags,
2399          * and need not end the TB, because it has no side effects.
2400          *
2401          * The access is 64-bit single copy atomic, guaranteed aligned because
2402          * of the definition of VCNR_EL2. Its endianness depends on
2403          * SCTLR_EL2.EE, not on the data endianness of EL1.
2404          * It is done under either the EL2 translation regime or the EL2&0
2405          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406          * PSTATE.PAN is 0.
2407          */
2408         TCGv_i64 ptr = tcg_temp_new_i64();
2409         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411         int memidx = arm_to_core_mmu_idx(armmemidx);
2412         uint32_t syn;
2413 
2414         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2415 
2416         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417         tcg_gen_addi_i64(ptr, ptr,
2418                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419         tcg_rt = cpu_reg(s, rt);
2420 
2421         syn = syn_data_abort_vncr(0, !isread, 0);
2422         disas_set_insn_syndrome(s, syn);
2423         if (isread) {
2424             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425         } else {
2426             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2427         }
2428         return;
2429     }
2430 
2431     /* Handle special cases first */
2432     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433     case 0:
2434         break;
2435     case ARM_CP_NOP:
2436         return;
2437     case ARM_CP_NZCV:
2438         tcg_rt = cpu_reg(s, rt);
2439         if (isread) {
2440             gen_get_nzcv(tcg_rt);
2441         } else {
2442             gen_set_nzcv(tcg_rt);
2443         }
2444         return;
2445     case ARM_CP_CURRENTEL:
2446     {
2447         /*
2448          * Reads as current EL value from pstate, which is
2449          * guaranteed to be constant by the tb flags.
2450          * For nested virt we should report EL2.
2451          */
2452         int el = s->nv ? 2 : s->current_el;
2453         tcg_rt = cpu_reg(s, rt);
2454         tcg_gen_movi_i64(tcg_rt, el << 2);
2455         return;
2456     }
2457     case ARM_CP_DC_ZVA:
2458         /* Writes clear the aligned block of memory which rt points into. */
2459         if (s->mte_active[0]) {
2460             int desc = 0;
2461 
2462             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2465 
2466             tcg_rt = tcg_temp_new_i64();
2467             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2469         } else {
2470             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2471         }
2472         gen_helper_dc_zva(tcg_env, tcg_rt);
2473         return;
2474     case ARM_CP_DC_GVA:
2475         {
2476             TCGv_i64 clean_addr, tag;
2477 
2478             /*
2479              * DC_GVA, like DC_ZVA, requires that we supply the original
2480              * pointer for an invalid page.  Probe that address first.
2481              */
2482             tcg_rt = cpu_reg(s, rt);
2483             clean_addr = clean_data_tbi(s, tcg_rt);
2484             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2485 
2486             if (s->ata[0]) {
2487                 /* Extract the tag from the register to match STZGM.  */
2488                 tag = tcg_temp_new_i64();
2489                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2491             }
2492         }
2493         return;
2494     case ARM_CP_DC_GZVA:
2495         {
2496             TCGv_i64 clean_addr, tag;
2497 
2498             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499             tcg_rt = cpu_reg(s, rt);
2500             clean_addr = clean_data_tbi(s, tcg_rt);
2501             gen_helper_dc_zva(tcg_env, clean_addr);
2502 
2503             if (s->ata[0]) {
2504                 /* Extract the tag from the register to match STZGM.  */
2505                 tag = tcg_temp_new_i64();
2506                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2508             }
2509         }
2510         return;
2511     default:
2512         g_assert_not_reached();
2513     }
2514 
2515     if (ri->type & ARM_CP_IO) {
2516         /* I/O operations must end the TB here (whether read or write) */
2517         need_exit_tb = translator_io_start(&s->base);
2518     }
2519 
2520     tcg_rt = cpu_reg(s, rt);
2521 
2522     if (isread) {
2523         if (ri->type & ARM_CP_CONST) {
2524             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525         } else if (ri->readfn) {
2526             if (!tcg_ri) {
2527                 tcg_ri = gen_lookup_cp_reg(key);
2528             }
2529             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530         } else {
2531             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2532         }
2533     } else {
2534         if (ri->type & ARM_CP_CONST) {
2535             /* If not forbidden by access permissions, treat as WI */
2536             return;
2537         } else if (ri->writefn) {
2538             if (!tcg_ri) {
2539                 tcg_ri = gen_lookup_cp_reg(key);
2540             }
2541             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542         } else {
2543             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2544         }
2545     }
2546 
2547     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2548         /*
2549          * A write to any coprocessor register that ends a TB
2550          * must rebuild the hflags for the next TB.
2551          */
2552         gen_rebuild_hflags(s);
2553         /*
2554          * We default to ending the TB on a coprocessor register write,
2555          * but allow this to be suppressed by the register definition
2556          * (usually only necessary to work around guest bugs).
2557          */
2558         need_exit_tb = true;
2559     }
2560     if (need_exit_tb) {
2561         s->base.is_jmp = DISAS_UPDATE_EXIT;
2562     }
2563 }
2564 
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2566 {
2567     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568     return true;
2569 }
2570 
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2572 {
2573     /*
2574      * For SVC, HVC and SMC we advance the single-step state
2575      * machine before taking the exception. This is architecturally
2576      * mandated, to ensure that single-stepping a system call
2577      * instruction works properly.
2578      */
2579     uint32_t syndrome = syn_aa64_svc(a->imm);
2580     if (s->fgt_svc) {
2581         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582         return true;
2583     }
2584     gen_ss_advance(s);
2585     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586     return true;
2587 }
2588 
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2590 {
2591     int target_el = s->current_el == 3 ? 3 : 2;
2592 
2593     if (s->current_el == 0) {
2594         unallocated_encoding(s);
2595         return true;
2596     }
2597     /*
2598      * The pre HVC helper handles cases when HVC gets trapped
2599      * as an undefined insn by runtime configuration.
2600      */
2601     gen_a64_update_pc(s, 0);
2602     gen_helper_pre_hvc(tcg_env);
2603     /* Architecture requires ss advance before we do the actual work */
2604     gen_ss_advance(s);
2605     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606     return true;
2607 }
2608 
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2610 {
2611     if (s->current_el == 0) {
2612         unallocated_encoding(s);
2613         return true;
2614     }
2615     gen_a64_update_pc(s, 0);
2616     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617     /* Architecture requires ss advance before we do the actual work */
2618     gen_ss_advance(s);
2619     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620     return true;
2621 }
2622 
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2624 {
2625     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626     return true;
2627 }
2628 
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2630 {
2631     /*
2632      * HLT. This has two purposes.
2633      * Architecturally, it is an external halting debug instruction.
2634      * Since QEMU doesn't implement external debug, we treat this as
2635      * it is required for halting debug disabled: it will UNDEF.
2636      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2637      */
2638     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640     } else {
2641         unallocated_encoding(s);
2642     }
2643     return true;
2644 }
2645 
2646 /*
2647  * Load/Store exclusive instructions are implemented by remembering
2648  * the value/address loaded, and seeing if these are the same
2649  * when the store is performed. This is not actually the architecturally
2650  * mandated semantics, but it works for typical guest code sequences
2651  * and avoids having to monitor regular stores.
2652  *
2653  * The store exclusive uses the atomic cmpxchg primitives to avoid
2654  * races in multi-threaded linux-user and when MTTCG softmmu is
2655  * enabled.
2656  */
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658                                int size, bool is_pair)
2659 {
2660     int idx = get_mem_index(s);
2661     TCGv_i64 dirty_addr, clean_addr;
2662     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2663 
2664     s->is_ldex = true;
2665     dirty_addr = cpu_reg_sp(s, rn);
2666     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2667 
2668     g_assert(size <= 3);
2669     if (is_pair) {
2670         g_assert(size >= 2);
2671         if (size == 2) {
2672             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673             if (s->be_data == MO_LE) {
2674                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676             } else {
2677                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2679             }
2680         } else {
2681             TCGv_i128 t16 = tcg_temp_new_i128();
2682 
2683             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2684 
2685             if (s->be_data == MO_LE) {
2686                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687                                       cpu_exclusive_high, t16);
2688             } else {
2689                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690                                       cpu_exclusive_val, t16);
2691             }
2692             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2694         }
2695     } else {
2696         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2698     }
2699     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2700 }
2701 
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703                                 int rn, int size, int is_pair)
2704 {
2705     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707      *     [addr] = {Rt};
2708      *     if (is_pair) {
2709      *         [addr + datasize] = {Rt2};
2710      *     }
2711      *     {Rd} = 0;
2712      * } else {
2713      *     {Rd} = 1;
2714      * }
2715      * env->exclusive_addr = -1;
2716      */
2717     TCGLabel *fail_label = gen_new_label();
2718     TCGLabel *done_label = gen_new_label();
2719     TCGv_i64 tmp, clean_addr;
2720     MemOp memop;
2721 
2722     /*
2723      * FIXME: We are out of spec here.  We have recorded only the address
2724      * from load_exclusive, not the entire range, and we assume that the
2725      * size of the access on both sides match.  The architecture allows the
2726      * store to be smaller than the load, so long as the stored bytes are
2727      * within the range recorded by the load.
2728      */
2729 
2730     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2733 
2734     /*
2735      * The write, and any associated faults, only happen if the virtual
2736      * and physical addresses pass the exclusive monitor check.  These
2737      * faults are exceedingly unlikely, because normally the guest uses
2738      * the exact same address register for the load_exclusive, and we
2739      * would have recognized these faults there.
2740      *
2741      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742      * unaligned 4-byte write within the range of an aligned 8-byte load.
2743      * With LSE2, the store would need to cross a 16-byte boundary when the
2744      * load did not, which would mean the store is outside the range
2745      * recorded for the monitor, which would have failed a corrected monitor
2746      * check above.  For now, we assume no size change and retain the
2747      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2748      *
2749      * It is possible to trigger an MTE fault, by performing the load with
2750      * a virtual address with a valid tag and performing the store with the
2751      * same virtual address and a different invalid tag.
2752      */
2753     memop = size + is_pair;
2754     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755         memop |= MO_ALIGN;
2756     }
2757     memop = finalize_memop(s, memop);
2758     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2759 
2760     tmp = tcg_temp_new_i64();
2761     if (is_pair) {
2762         if (size == 2) {
2763             if (s->be_data == MO_LE) {
2764                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765             } else {
2766                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2767             }
2768             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769                                        cpu_exclusive_val, tmp,
2770                                        get_mem_index(s), memop);
2771             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772         } else {
2773             TCGv_i128 t16 = tcg_temp_new_i128();
2774             TCGv_i128 c16 = tcg_temp_new_i128();
2775             TCGv_i64 a, b;
2776 
2777             if (s->be_data == MO_LE) {
2778                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780                                         cpu_exclusive_high);
2781             } else {
2782                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784                                         cpu_exclusive_val);
2785             }
2786 
2787             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788                                         get_mem_index(s), memop);
2789 
2790             a = tcg_temp_new_i64();
2791             b = tcg_temp_new_i64();
2792             if (s->be_data == MO_LE) {
2793                 tcg_gen_extr_i128_i64(a, b, t16);
2794             } else {
2795                 tcg_gen_extr_i128_i64(b, a, t16);
2796             }
2797 
2798             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800             tcg_gen_or_i64(tmp, a, b);
2801 
2802             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2803         }
2804     } else {
2805         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806                                    cpu_reg(s, rt), get_mem_index(s), memop);
2807         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2808     }
2809     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810     tcg_gen_br(done_label);
2811 
2812     gen_set_label(fail_label);
2813     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814     gen_set_label(done_label);
2815     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2816 }
2817 
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819                                  int rn, int size)
2820 {
2821     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823     int memidx = get_mem_index(s);
2824     TCGv_i64 clean_addr;
2825     MemOp memop;
2826 
2827     if (rn == 31) {
2828         gen_check_sp_alignment(s);
2829     }
2830     memop = check_atomic_align(s, rn, size);
2831     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833                                memidx, memop);
2834 }
2835 
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837                                       int rn, int size)
2838 {
2839     TCGv_i64 s1 = cpu_reg(s, rs);
2840     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841     TCGv_i64 t1 = cpu_reg(s, rt);
2842     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843     TCGv_i64 clean_addr;
2844     int memidx = get_mem_index(s);
2845     MemOp memop;
2846 
2847     if (rn == 31) {
2848         gen_check_sp_alignment(s);
2849     }
2850 
2851     /* This is a single atomic access, despite the "pair". */
2852     memop = check_atomic_align(s, rn, size + 1);
2853     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2854 
2855     if (size == 2) {
2856         TCGv_i64 cmp = tcg_temp_new_i64();
2857         TCGv_i64 val = tcg_temp_new_i64();
2858 
2859         if (s->be_data == MO_LE) {
2860             tcg_gen_concat32_i64(val, t1, t2);
2861             tcg_gen_concat32_i64(cmp, s1, s2);
2862         } else {
2863             tcg_gen_concat32_i64(val, t2, t1);
2864             tcg_gen_concat32_i64(cmp, s2, s1);
2865         }
2866 
2867         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2868 
2869         if (s->be_data == MO_LE) {
2870             tcg_gen_extr32_i64(s1, s2, cmp);
2871         } else {
2872             tcg_gen_extr32_i64(s2, s1, cmp);
2873         }
2874     } else {
2875         TCGv_i128 cmp = tcg_temp_new_i128();
2876         TCGv_i128 val = tcg_temp_new_i128();
2877 
2878         if (s->be_data == MO_LE) {
2879             tcg_gen_concat_i64_i128(val, t1, t2);
2880             tcg_gen_concat_i64_i128(cmp, s1, s2);
2881         } else {
2882             tcg_gen_concat_i64_i128(val, t2, t1);
2883             tcg_gen_concat_i64_i128(cmp, s2, s1);
2884         }
2885 
2886         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2887 
2888         if (s->be_data == MO_LE) {
2889             tcg_gen_extr_i128_i64(s1, s2, cmp);
2890         } else {
2891             tcg_gen_extr_i128_i64(s2, s1, cmp);
2892         }
2893     }
2894 }
2895 
2896 /*
2897  * Compute the ISS.SF bit for syndrome information if an exception
2898  * is taken on a load or store. This indicates whether the instruction
2899  * is accessing a 32-bit or 64-bit register. This logic is derived
2900  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2901  */
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2903 {
2904 
2905     if (sign) {
2906         /*
2907          * Signed loads are 64 bit results if we are not going to
2908          * do a zero-extend from 32 to 64 after the load.
2909          * (For a store, sign and ext are always false.)
2910          */
2911         return !ext;
2912     } else {
2913         /* Unsigned loads/stores work at the specified size */
2914         return size == MO_64;
2915     }
2916 }
2917 
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2919 {
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     if (a->lasr) {
2924         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2925     }
2926     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927     return true;
2928 }
2929 
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2931 {
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936     if (a->lasr) {
2937         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2938     }
2939     return true;
2940 }
2941 
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2943 {
2944     TCGv_i64 clean_addr;
2945     MemOp memop;
2946     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2947 
2948     /*
2949      * StoreLORelease is the same as Store-Release for QEMU, but
2950      * needs the feature-test.
2951      */
2952     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953         return false;
2954     }
2955     /* Generate ISS for non-exclusive accesses including LASR.  */
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962                                 true, a->rn != 31, memop);
2963     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964               iss_sf, a->lasr);
2965     return true;
2966 }
2967 
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2969 {
2970     TCGv_i64 clean_addr;
2971     MemOp memop;
2972     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2973 
2974     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2975     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976         return false;
2977     }
2978     /* Generate ISS for non-exclusive accesses including LASR.  */
2979     if (a->rn == 31) {
2980         gen_check_sp_alignment(s);
2981     }
2982     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984                                 false, a->rn != 31, memop);
2985     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986               a->rt, iss_sf, a->lasr);
2987     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988     return true;
2989 }
2990 
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2992 {
2993     if (a->rn == 31) {
2994         gen_check_sp_alignment(s);
2995     }
2996     if (a->lasr) {
2997         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2998     }
2999     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000     return true;
3001 }
3002 
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3004 {
3005     if (a->rn == 31) {
3006         gen_check_sp_alignment(s);
3007     }
3008     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009     if (a->lasr) {
3010         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3011     }
3012     return true;
3013 }
3014 
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3016 {
3017     if (!dc_isar_feature(aa64_atomics, s)) {
3018         return false;
3019     }
3020     if (((a->rt | a->rs) & 1) != 0) {
3021         return false;
3022     }
3023 
3024     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025     return true;
3026 }
3027 
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3029 {
3030     if (!dc_isar_feature(aa64_atomics, s)) {
3031         return false;
3032     }
3033     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034     return true;
3035 }
3036 
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3038 {
3039     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041     TCGv_i64 clean_addr = tcg_temp_new_i64();
3042     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3043 
3044     gen_pc_plus_diff(s, clean_addr, a->imm);
3045     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046               false, true, a->rt, iss_sf, false);
3047     return true;
3048 }
3049 
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3051 {
3052     /* Load register (literal), vector version */
3053     TCGv_i64 clean_addr;
3054     MemOp memop;
3055 
3056     if (!fp_access_check(s)) {
3057         return true;
3058     }
3059     memop = finalize_memop_asimd(s, a->sz);
3060     clean_addr = tcg_temp_new_i64();
3061     gen_pc_plus_diff(s, clean_addr, a->imm);
3062     do_fp_ld(s, a->rt, clean_addr, memop);
3063     return true;
3064 }
3065 
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068                                  uint64_t offset, bool is_store, MemOp mop)
3069 {
3070     if (a->rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075     if (!a->p) {
3076         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3077     }
3078 
3079     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3081 }
3082 
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084                                   TCGv_i64 dirty_addr, uint64_t offset)
3085 {
3086     if (a->w) {
3087         if (a->p) {
3088             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3089         }
3090         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3091     }
3092 }
3093 
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103     /*
3104      * We built mop above for the single logical access -- rebuild it
3105      * now for the paired operation.
3106      *
3107      * With LSE2, non-sign-extending pairs are treated atomically if
3108      * aligned, and if unaligned one of the pair will be completely
3109      * within a 16-byte block and that element will be atomic.
3110      * Otherwise each element is separately atomic.
3111      * In all cases, issue one operation with the correct atomicity.
3112      */
3113     mop = a->sz + 1;
3114     if (s->align_mem) {
3115         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3116     }
3117     mop = finalize_memop_pair(s, mop);
3118     if (a->sz == 2) {
3119         TCGv_i64 tmp = tcg_temp_new_i64();
3120 
3121         if (s->be_data == MO_LE) {
3122             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123         } else {
3124             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3125         }
3126         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127     } else {
3128         TCGv_i128 tmp = tcg_temp_new_i128();
3129 
3130         if (s->be_data == MO_LE) {
3131             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132         } else {
3133             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3134         }
3135         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3136     }
3137     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138     return true;
3139 }
3140 
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3142 {
3143     uint64_t offset = a->imm << a->sz;
3144     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145     MemOp mop = finalize_memop(s, a->sz);
3146 
3147     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148     tcg_rt = cpu_reg(s, a->rt);
3149     tcg_rt2 = cpu_reg(s, a->rt2);
3150 
3151     /*
3152      * We built mop above for the single logical access -- rebuild it
3153      * now for the paired operation.
3154      *
3155      * With LSE2, non-sign-extending pairs are treated atomically if
3156      * aligned, and if unaligned one of the pair will be completely
3157      * within a 16-byte block and that element will be atomic.
3158      * Otherwise each element is separately atomic.
3159      * In all cases, issue one operation with the correct atomicity.
3160      *
3161      * This treats sign-extending loads like zero-extending loads,
3162      * since that reuses the most code below.
3163      */
3164     mop = a->sz + 1;
3165     if (s->align_mem) {
3166         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3167     }
3168     mop = finalize_memop_pair(s, mop);
3169     if (a->sz == 2) {
3170         int o2 = s->be_data == MO_LE ? 32 : 0;
3171         int o1 = o2 ^ 32;
3172 
3173         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174         if (a->sign) {
3175             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177         } else {
3178             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3180         }
3181     } else {
3182         TCGv_i128 tmp = tcg_temp_new_i128();
3183 
3184         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185         if (s->be_data == MO_LE) {
3186             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187         } else {
3188             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3189         }
3190     }
3191     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192     return true;
3193 }
3194 
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3196 {
3197     uint64_t offset = a->imm << a->sz;
3198     TCGv_i64 clean_addr, dirty_addr;
3199     MemOp mop;
3200 
3201     if (!fp_access_check(s)) {
3202         return true;
3203     }
3204 
3205     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206     mop = finalize_memop_asimd(s, a->sz);
3207     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208     do_fp_st(s, a->rt, clean_addr, mop);
3209     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210     do_fp_st(s, a->rt2, clean_addr, mop);
3211     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212     return true;
3213 }
3214 
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3216 {
3217     uint64_t offset = a->imm << a->sz;
3218     TCGv_i64 clean_addr, dirty_addr;
3219     MemOp mop;
3220 
3221     if (!fp_access_check(s)) {
3222         return true;
3223     }
3224 
3225     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226     mop = finalize_memop_asimd(s, a->sz);
3227     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228     do_fp_ld(s, a->rt, clean_addr, mop);
3229     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230     do_fp_ld(s, a->rt2, clean_addr, mop);
3231     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232     return true;
3233 }
3234 
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3236 {
3237     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239     MemOp mop;
3240     TCGv_i128 tmp;
3241 
3242     /* STGP only comes in one size. */
3243     tcg_debug_assert(a->sz == MO_64);
3244 
3245     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246         return false;
3247     }
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252 
3253     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254     if (!a->p) {
3255         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3256     }
3257 
3258     clean_addr = clean_data_tbi(s, dirty_addr);
3259     tcg_rt = cpu_reg(s, a->rt);
3260     tcg_rt2 = cpu_reg(s, a->rt2);
3261 
3262     /*
3263      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264      * and one tag operation.  We implement it as one single aligned 16-byte
3265      * memory operation for convenience.  Note that the alignment ensures
3266      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3267      */
3268     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3269 
3270     tmp = tcg_temp_new_i128();
3271     if (s->be_data == MO_LE) {
3272         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273     } else {
3274         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3275     }
3276     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3277 
3278     /* Perform the tag store, if tag access enabled. */
3279     if (s->ata[0]) {
3280         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282         } else {
3283             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3284         }
3285     }
3286 
3287     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288     return true;
3289 }
3290 
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293                                  uint64_t offset, bool is_store, MemOp mop)
3294 {
3295     int memidx;
3296 
3297     if (a->rn == 31) {
3298         gen_check_sp_alignment(s);
3299     }
3300 
3301     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302     if (!a->p) {
3303         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3304     }
3305     memidx = get_a64_user_mem_index(s, a->unpriv);
3306     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307                                         a->w || a->rn != 31,
3308                                         mop, a->unpriv, memidx);
3309 }
3310 
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312                                   TCGv_i64 dirty_addr, uint64_t offset)
3313 {
3314     if (a->w) {
3315         if (a->p) {
3316             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317         }
3318         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3319     }
3320 }
3321 
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     bool iss_sf, iss_valid = !a->w;
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     int memidx = get_a64_user_mem_index(s, a->unpriv);
3327     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3328 
3329     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3330 
3331     tcg_rt = cpu_reg(s, a->rt);
3332     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3333 
3334     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335                      iss_valid, a->rt, iss_sf, false);
3336     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337     return true;
3338 }
3339 
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3341 {
3342     bool iss_sf, iss_valid = !a->w;
3343     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344     int memidx = get_a64_user_mem_index(s, a->unpriv);
3345     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3346 
3347     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3348 
3349     tcg_rt = cpu_reg(s, a->rt);
3350     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3351 
3352     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355     return true;
3356 }
3357 
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3359 {
3360     TCGv_i64 clean_addr, dirty_addr;
3361     MemOp mop;
3362 
3363     if (!fp_access_check(s)) {
3364         return true;
3365     }
3366     mop = finalize_memop_asimd(s, a->sz);
3367     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368     do_fp_st(s, a->rt, clean_addr, mop);
3369     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370     return true;
3371 }
3372 
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3374 {
3375     TCGv_i64 clean_addr, dirty_addr;
3376     MemOp mop;
3377 
3378     if (!fp_access_check(s)) {
3379         return true;
3380     }
3381     mop = finalize_memop_asimd(s, a->sz);
3382     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383     do_fp_ld(s, a->rt, clean_addr, mop);
3384     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385     return true;
3386 }
3387 
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390                              bool is_store, MemOp memop)
3391 {
3392     TCGv_i64 tcg_rm;
3393 
3394     if (a->rn == 31) {
3395         gen_check_sp_alignment(s);
3396     }
3397     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398 
3399     tcg_rm = read_cpu_reg(s, a->rm, 1);
3400     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3401 
3402     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3404 }
3405 
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3407 {
3408     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410     MemOp memop;
3411 
3412     if (extract32(a->opt, 1, 1) == 0) {
3413         return false;
3414     }
3415 
3416     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418     tcg_rt = cpu_reg(s, a->rt);
3419     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420               a->ext, true, a->rt, iss_sf, false);
3421     return true;
3422 }
3423 
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428     MemOp memop;
3429 
3430     if (extract32(a->opt, 1, 1) == 0) {
3431         return false;
3432     }
3433 
3434     memop = finalize_memop(s, a->sz);
3435     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436     tcg_rt = cpu_reg(s, a->rt);
3437     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438     return true;
3439 }
3440 
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3442 {
3443     TCGv_i64 clean_addr, dirty_addr;
3444     MemOp memop;
3445 
3446     if (extract32(a->opt, 1, 1) == 0) {
3447         return false;
3448     }
3449 
3450     if (!fp_access_check(s)) {
3451         return true;
3452     }
3453 
3454     memop = finalize_memop_asimd(s, a->sz);
3455     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456     do_fp_ld(s, a->rt, clean_addr, memop);
3457     return true;
3458 }
3459 
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3461 {
3462     TCGv_i64 clean_addr, dirty_addr;
3463     MemOp memop;
3464 
3465     if (extract32(a->opt, 1, 1) == 0) {
3466         return false;
3467     }
3468 
3469     if (!fp_access_check(s)) {
3470         return true;
3471     }
3472 
3473     memop = finalize_memop_asimd(s, a->sz);
3474     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475     do_fp_st(s, a->rt, clean_addr, memop);
3476     return true;
3477 }
3478 
3479 
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481                          int sign, bool invert)
3482 {
3483     MemOp mop = a->sz | sign;
3484     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3485 
3486     if (a->rn == 31) {
3487         gen_check_sp_alignment(s);
3488     }
3489     mop = check_atomic_align(s, a->rn, mop);
3490     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491                                 a->rn != 31, mop);
3492     tcg_rs = read_cpu_reg(s, a->rs, true);
3493     tcg_rt = cpu_reg(s, a->rt);
3494     if (invert) {
3495         tcg_gen_not_i64(tcg_rs, tcg_rs);
3496     }
3497     /*
3498      * The tcg atomic primitives are all full barriers.  Therefore we
3499      * can ignore the Acquire and Release bits of this instruction.
3500      */
3501     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3502 
3503     if (mop & MO_SIGN) {
3504         switch (a->sz) {
3505         case MO_8:
3506             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_16:
3509             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510             break;
3511         case MO_32:
3512             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513             break;
3514         case MO_64:
3515             break;
3516         default:
3517             g_assert_not_reached();
3518         }
3519     }
3520     return true;
3521 }
3522 
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3532 
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3534 {
3535     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536     TCGv_i64 clean_addr;
3537     MemOp mop;
3538 
3539     if (!dc_isar_feature(aa64_atomics, s) ||
3540         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541         return false;
3542     }
3543     if (a->rn == 31) {
3544         gen_check_sp_alignment(s);
3545     }
3546     mop = check_atomic_align(s, a->rn, a->sz);
3547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548                                 a->rn != 31, mop);
3549     /*
3550      * LDAPR* are a special case because they are a simple load, not a
3551      * fetch-and-do-something op.
3552      * The architectural consistency requirements here are weaker than
3553      * full load-acquire (we only need "load-acquire processor consistent"),
3554      * but we choose to implement them as full LDAQ.
3555      */
3556     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557               true, a->rt, iss_sf, true);
3558     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559     return true;
3560 }
3561 
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3563 {
3564     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565     MemOp memop;
3566 
3567     /* Load with pointer authentication */
3568     if (!dc_isar_feature(aa64_pauth, s)) {
3569         return false;
3570     }
3571 
3572     if (a->rn == 31) {
3573         gen_check_sp_alignment(s);
3574     }
3575     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3576 
3577     if (s->pauth_active) {
3578         if (!a->m) {
3579             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580                                       tcg_constant_i64(0));
3581         } else {
3582             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583                                       tcg_constant_i64(0));
3584         }
3585     }
3586 
3587     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3588 
3589     memop = finalize_memop(s, MO_64);
3590 
3591     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3592     clean_addr = gen_mte_check1(s, dirty_addr, false,
3593                                 a->w || a->rn != 31, memop);
3594 
3595     tcg_rt = cpu_reg(s, a->rt);
3596     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597               /* extend */ false, /* iss_valid */ !a->w,
3598               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3599 
3600     if (a->w) {
3601         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3602     }
3603     return true;
3604 }
3605 
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3607 {
3608     TCGv_i64 clean_addr, dirty_addr;
3609     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3611 
3612     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613         return false;
3614     }
3615 
3616     if (a->rn == 31) {
3617         gen_check_sp_alignment(s);
3618     }
3619 
3620     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623     clean_addr = clean_data_tbi(s, dirty_addr);
3624 
3625     /*
3626      * Load-AcquirePC semantics; we implement as the slightly more
3627      * restrictive Load-Acquire.
3628      */
3629     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630               a->rt, iss_sf, true);
3631     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632     return true;
3633 }
3634 
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3636 {
3637     TCGv_i64 clean_addr, dirty_addr;
3638     MemOp mop = a->sz;
3639     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3640 
3641     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642         return false;
3643     }
3644 
3645     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654     clean_addr = clean_data_tbi(s, dirty_addr);
3655 
3656     /* Store-Release semantics */
3657     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659     return true;
3660 }
3661 
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3663 {
3664     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665     MemOp endian, align, mop;
3666 
3667     int total;    /* total bytes */
3668     int elements; /* elements per vector */
3669     int r;
3670     int size = a->sz;
3671 
3672     if (!a->p && a->rm != 0) {
3673         /* For non-postindexed accesses the Rm field must be 0 */
3674         return false;
3675     }
3676     if (size == 3 && !a->q && a->selem != 1) {
3677         return false;
3678     }
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     if (a->rn == 31) {
3684         gen_check_sp_alignment(s);
3685     }
3686 
3687     /* For our purposes, bytes are always little-endian.  */
3688     endian = s->be_data;
3689     if (size == 0) {
3690         endian = MO_LE;
3691     }
3692 
3693     total = a->rpt * a->selem * (a->q ? 16 : 8);
3694     tcg_rn = cpu_reg_sp(s, a->rn);
3695 
3696     /*
3697      * Issue the MTE check vs the logical repeat count, before we
3698      * promote consecutive little-endian elements below.
3699      */
3700     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701                                 finalize_memop_asimd(s, size));
3702 
3703     /*
3704      * Consecutive little-endian elements from a single register
3705      * can be promoted to a larger little-endian operation.
3706      */
3707     align = MO_ALIGN;
3708     if (a->selem == 1 && endian == MO_LE) {
3709         align = pow2_align(size);
3710         size = 3;
3711     }
3712     if (!s->align_mem) {
3713         align = 0;
3714     }
3715     mop = endian | size | align;
3716 
3717     elements = (a->q ? 16 : 8) >> size;
3718     tcg_ebytes = tcg_constant_i64(1 << size);
3719     for (r = 0; r < a->rpt; r++) {
3720         int e;
3721         for (e = 0; e < elements; e++) {
3722             int xs;
3723             for (xs = 0; xs < a->selem; xs++) {
3724                 int tt = (a->rt + r + xs) % 32;
3725                 do_vec_ld(s, tt, e, clean_addr, mop);
3726                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3727             }
3728         }
3729     }
3730 
3731     /*
3732      * For non-quad operations, setting a slice of the low 64 bits of
3733      * the register clears the high 64 bits (in the ARM ARM pseudocode
3734      * this is implicit in the fact that 'rval' is a 64 bit wide
3735      * variable).  For quad operations, we might still need to zero
3736      * the high bits of SVE.
3737      */
3738     for (r = 0; r < a->rpt * a->selem; r++) {
3739         int tt = (a->rt + r) % 32;
3740         clear_vec_high(s, a->q, tt);
3741     }
3742 
3743     if (a->p) {
3744         if (a->rm == 31) {
3745             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746         } else {
3747             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748         }
3749     }
3750     return true;
3751 }
3752 
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3754 {
3755     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756     MemOp endian, align, mop;
3757 
3758     int total;    /* total bytes */
3759     int elements; /* elements per vector */
3760     int r;
3761     int size = a->sz;
3762 
3763     if (!a->p && a->rm != 0) {
3764         /* For non-postindexed accesses the Rm field must be 0 */
3765         return false;
3766     }
3767     if (size == 3 && !a->q && a->selem != 1) {
3768         return false;
3769     }
3770     if (!fp_access_check(s)) {
3771         return true;
3772     }
3773 
3774     if (a->rn == 31) {
3775         gen_check_sp_alignment(s);
3776     }
3777 
3778     /* For our purposes, bytes are always little-endian.  */
3779     endian = s->be_data;
3780     if (size == 0) {
3781         endian = MO_LE;
3782     }
3783 
3784     total = a->rpt * a->selem * (a->q ? 16 : 8);
3785     tcg_rn = cpu_reg_sp(s, a->rn);
3786 
3787     /*
3788      * Issue the MTE check vs the logical repeat count, before we
3789      * promote consecutive little-endian elements below.
3790      */
3791     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792                                 finalize_memop_asimd(s, size));
3793 
3794     /*
3795      * Consecutive little-endian elements from a single register
3796      * can be promoted to a larger little-endian operation.
3797      */
3798     align = MO_ALIGN;
3799     if (a->selem == 1 && endian == MO_LE) {
3800         align = pow2_align(size);
3801         size = 3;
3802     }
3803     if (!s->align_mem) {
3804         align = 0;
3805     }
3806     mop = endian | size | align;
3807 
3808     elements = (a->q ? 16 : 8) >> size;
3809     tcg_ebytes = tcg_constant_i64(1 << size);
3810     for (r = 0; r < a->rpt; r++) {
3811         int e;
3812         for (e = 0; e < elements; e++) {
3813             int xs;
3814             for (xs = 0; xs < a->selem; xs++) {
3815                 int tt = (a->rt + r + xs) % 32;
3816                 do_vec_st(s, tt, e, clean_addr, mop);
3817                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3818             }
3819         }
3820     }
3821 
3822     if (a->p) {
3823         if (a->rm == 31) {
3824             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825         } else {
3826             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3827         }
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3833 {
3834     int xs, total, rt;
3835     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836     MemOp mop;
3837 
3838     if (!a->p && a->rm != 0) {
3839         return false;
3840     }
3841     if (!fp_access_check(s)) {
3842         return true;
3843     }
3844 
3845     if (a->rn == 31) {
3846         gen_check_sp_alignment(s);
3847     }
3848 
3849     total = a->selem << a->scale;
3850     tcg_rn = cpu_reg_sp(s, a->rn);
3851 
3852     mop = finalize_memop_asimd(s, a->scale);
3853     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854                                 total, mop);
3855 
3856     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858         do_vec_st(s, rt, a->index, clean_addr, mop);
3859         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3860     }
3861 
3862     if (a->p) {
3863         if (a->rm == 31) {
3864             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865         } else {
3866             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3867         }
3868     }
3869     return true;
3870 }
3871 
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3873 {
3874     int xs, total, rt;
3875     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876     MemOp mop;
3877 
3878     if (!a->p && a->rm != 0) {
3879         return false;
3880     }
3881     if (!fp_access_check(s)) {
3882         return true;
3883     }
3884 
3885     if (a->rn == 31) {
3886         gen_check_sp_alignment(s);
3887     }
3888 
3889     total = a->selem << a->scale;
3890     tcg_rn = cpu_reg_sp(s, a->rn);
3891 
3892     mop = finalize_memop_asimd(s, a->scale);
3893     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894                                 total, mop);
3895 
3896     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898         do_vec_ld(s, rt, a->index, clean_addr, mop);
3899         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3900     }
3901 
3902     if (a->p) {
3903         if (a->rm == 31) {
3904             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905         } else {
3906             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3907         }
3908     }
3909     return true;
3910 }
3911 
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3913 {
3914     int xs, total, rt;
3915     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916     MemOp mop;
3917 
3918     if (!a->p && a->rm != 0) {
3919         return false;
3920     }
3921     if (!fp_access_check(s)) {
3922         return true;
3923     }
3924 
3925     if (a->rn == 31) {
3926         gen_check_sp_alignment(s);
3927     }
3928 
3929     total = a->selem << a->scale;
3930     tcg_rn = cpu_reg_sp(s, a->rn);
3931 
3932     mop = finalize_memop_asimd(s, a->scale);
3933     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934                                 total, mop);
3935 
3936     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938         /* Load and replicate to all elements */
3939         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3940 
3941         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3945     }
3946 
3947     if (a->p) {
3948         if (a->rm == 31) {
3949             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950         } else {
3951             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3952         }
3953     }
3954     return true;
3955 }
3956 
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3958 {
3959     TCGv_i64 addr, clean_addr, tcg_rt;
3960     int size = 4 << s->dcz_blocksize;
3961 
3962     if (!dc_isar_feature(aa64_mte, s)) {
3963         return false;
3964     }
3965     if (s->current_el == 0) {
3966         return false;
3967     }
3968 
3969     if (a->rn == 31) {
3970         gen_check_sp_alignment(s);
3971     }
3972 
3973     addr = read_cpu_reg_sp(s, a->rn, true);
3974     tcg_gen_addi_i64(addr, addr, a->imm);
3975     tcg_rt = cpu_reg(s, a->rt);
3976 
3977     if (s->ata[0]) {
3978         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3979     }
3980     /*
3981      * The non-tags portion of STZGM is mostly like DC_ZVA,
3982      * except the alignment happens before the access.
3983      */
3984     clean_addr = clean_data_tbi(s, addr);
3985     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986     gen_helper_dc_zva(tcg_env, clean_addr);
3987     return true;
3988 }
3989 
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3991 {
3992     TCGv_i64 addr, clean_addr, tcg_rt;
3993 
3994     if (!dc_isar_feature(aa64_mte, s)) {
3995         return false;
3996     }
3997     if (s->current_el == 0) {
3998         return false;
3999     }
4000 
4001     if (a->rn == 31) {
4002         gen_check_sp_alignment(s);
4003     }
4004 
4005     addr = read_cpu_reg_sp(s, a->rn, true);
4006     tcg_gen_addi_i64(addr, addr, a->imm);
4007     tcg_rt = cpu_reg(s, a->rt);
4008 
4009     if (s->ata[0]) {
4010         gen_helper_stgm(tcg_env, addr, tcg_rt);
4011     } else {
4012         MMUAccessType acc = MMU_DATA_STORE;
4013         int size = 4 << s->gm_blocksize;
4014 
4015         clean_addr = clean_data_tbi(s, addr);
4016         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017         gen_probe_access(s, clean_addr, acc, size);
4018     }
4019     return true;
4020 }
4021 
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4023 {
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     if (!dc_isar_feature(aa64_mte, s)) {
4027         return false;
4028     }
4029     if (s->current_el == 0) {
4030         return false;
4031     }
4032 
4033     if (a->rn == 31) {
4034         gen_check_sp_alignment(s);
4035     }
4036 
4037     addr = read_cpu_reg_sp(s, a->rn, true);
4038     tcg_gen_addi_i64(addr, addr, a->imm);
4039     tcg_rt = cpu_reg(s, a->rt);
4040 
4041     if (s->ata[0]) {
4042         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043     } else {
4044         MMUAccessType acc = MMU_DATA_LOAD;
4045         int size = 4 << s->gm_blocksize;
4046 
4047         clean_addr = clean_data_tbi(s, addr);
4048         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049         gen_probe_access(s, clean_addr, acc, size);
4050         /* The result tags are zeros.  */
4051         tcg_gen_movi_i64(tcg_rt, 0);
4052     }
4053     return true;
4054 }
4055 
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4057 {
4058     TCGv_i64 addr, clean_addr, tcg_rt;
4059 
4060     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061         return false;
4062     }
4063 
4064     if (a->rn == 31) {
4065         gen_check_sp_alignment(s);
4066     }
4067 
4068     addr = read_cpu_reg_sp(s, a->rn, true);
4069     if (!a->p) {
4070         /* pre-index or signed offset */
4071         tcg_gen_addi_i64(addr, addr, a->imm);
4072     }
4073 
4074     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075     tcg_rt = cpu_reg(s, a->rt);
4076     if (s->ata[0]) {
4077         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078     } else {
4079         /*
4080          * Tag access disabled: we must check for aborts on the load
4081          * load from [rn+offset], and then insert a 0 tag into rt.
4082          */
4083         clean_addr = clean_data_tbi(s, addr);
4084         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4086     }
4087 
4088     if (a->w) {
4089         /* pre-index or post-index */
4090         if (a->p) {
4091             /* post-index */
4092             tcg_gen_addi_i64(addr, addr, a->imm);
4093         }
4094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4095     }
4096     return true;
4097 }
4098 
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4100 {
4101     TCGv_i64 addr, tcg_rt;
4102 
4103     if (a->rn == 31) {
4104         gen_check_sp_alignment(s);
4105     }
4106 
4107     addr = read_cpu_reg_sp(s, a->rn, true);
4108     if (!a->p) {
4109         /* pre-index or signed offset */
4110         tcg_gen_addi_i64(addr, addr, a->imm);
4111     }
4112     tcg_rt = cpu_reg_sp(s, a->rt);
4113     if (!s->ata[0]) {
4114         /*
4115          * For STG and ST2G, we need to check alignment and probe memory.
4116          * TODO: For STZG and STZ2G, we could rely on the stores below,
4117          * at least for system mode; user-only won't enforce alignment.
4118          */
4119         if (is_pair) {
4120             gen_helper_st2g_stub(tcg_env, addr);
4121         } else {
4122             gen_helper_stg_stub(tcg_env, addr);
4123         }
4124     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125         if (is_pair) {
4126             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127         } else {
4128             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4129         }
4130     } else {
4131         if (is_pair) {
4132             gen_helper_st2g(tcg_env, addr, tcg_rt);
4133         } else {
4134             gen_helper_stg(tcg_env, addr, tcg_rt);
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 zero64 = tcg_constant_i64(0);
4141         TCGv_i128 zero128 = tcg_temp_new_i128();
4142         int mem_index = get_mem_index(s);
4143         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4144 
4145         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4146 
4147         /* This is 1 or 2 atomic 16-byte operations. */
4148         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149         if (is_pair) {
4150             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4152         }
4153     }
4154 
4155     if (a->w) {
4156         /* pre-index or post-index */
4157         if (a->p) {
4158             /* post-index */
4159             tcg_gen_addi_i64(addr, addr, a->imm);
4160         }
4161         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4162     }
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4170 
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4172 
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174                    bool is_setg, SetFn fn)
4175 {
4176     int memidx;
4177     uint32_t syndrome, desc = 0;
4178 
4179     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182 
4183     /*
4184      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185      * us to pull this check before the CheckMOPSEnabled() test
4186      * (which we do in the helper function)
4187      */
4188     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189         a->rd == 31 || a->rn == 31) {
4190         return false;
4191     }
4192 
4193     memidx = get_a64_user_mem_index(s, a->unpriv);
4194 
4195     /*
4196      * We pass option_a == true, matching our implementation;
4197      * we pass wrong_option == false: helper function may set that bit.
4198      */
4199     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4201 
4202     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203         /* We may need to do MTE tag checking, so assemble the descriptor */
4204         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4208     }
4209     /* The helper function always needs the memidx even with MTE disabled */
4210     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4211 
4212     /*
4213      * The helper needs the register numbers, but since they're in
4214      * the syndrome anyway, we let it extract them from there rather
4215      * than passing in an extra three integer arguments.
4216      */
4217     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218     return true;
4219 }
4220 
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4227 
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4229 
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4231 {
4232     int rmemidx, wmemidx;
4233     uint32_t syndrome, rdesc = 0, wdesc = 0;
4234     bool wunpriv = extract32(a->options, 0, 1);
4235     bool runpriv = extract32(a->options, 1, 1);
4236 
4237     /*
4238      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239      * us to pull this check before the CheckMOPSEnabled() test
4240      * (which we do in the helper function)
4241      */
4242     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244         return false;
4245     }
4246 
4247     rmemidx = get_a64_user_mem_index(s, runpriv);
4248     wmemidx = get_a64_user_mem_index(s, wunpriv);
4249 
4250     /*
4251      * We pass option_a == true, matching our implementation;
4252      * we pass wrong_option == false: helper function may set that bit.
4253      */
4254     syndrome = syn_mop(false, false, a->options, is_epilogue,
4255                        false, true, a->rd, a->rs, a->rn);
4256 
4257     /* If we need to do MTE tag checking, assemble the descriptors */
4258     if (s->mte_active[runpriv]) {
4259         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4261     }
4262     if (s->mte_active[wunpriv]) {
4263         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4266     }
4267     /* The helper function needs these parts of the descriptor regardless */
4268     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4270 
4271     /*
4272      * The helper needs the register numbers, but since they're in
4273      * the syndrome anyway, we let it extract them from there rather
4274      * than passing in an extra three integer arguments.
4275      */
4276     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277        tcg_constant_i32(rdesc));
4278     return true;
4279 }
4280 
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4287 
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4289 
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4292 {
4293     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4296 
4297     fn(tcg_rd, tcg_rn, tcg_imm);
4298     if (!a->sf) {
4299         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4300     }
4301     return true;
4302 }
4303 
4304 /*
4305  * PC-rel. addressing
4306  */
4307 
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4309 {
4310     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311     return true;
4312 }
4313 
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4315 {
4316     int64_t offset = (int64_t)a->imm << 12;
4317 
4318     /* The page offset is ok for CF_PCREL. */
4319     offset -= s->pc_curr & 0xfff;
4320     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321     return true;
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate)
4326  */
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4331 
4332 /*
4333  * Add/subtract (immediate, with tags)
4334  */
4335 
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337                                       bool sub_op)
4338 {
4339     TCGv_i64 tcg_rn, tcg_rd;
4340     int imm;
4341 
4342     imm = a->uimm6 << LOG2_TAG_GRANULE;
4343     if (sub_op) {
4344         imm = -imm;
4345     }
4346 
4347     tcg_rn = cpu_reg_sp(s, a->rn);
4348     tcg_rd = cpu_reg_sp(s, a->rd);
4349 
4350     if (s->ata[0]) {
4351         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352                            tcg_constant_i32(imm),
4353                            tcg_constant_i32(a->uimm4));
4354     } else {
4355         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4357     }
4358     return true;
4359 }
4360 
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4363 
4364 /* The input should be a value in the bottom e bits (with higher
4365  * bits zero); returns that value replicated into every element
4366  * of size e in a 64 bit integer.
4367  */
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4369 {
4370     assert(e != 0);
4371     while (e < 64) {
4372         mask |= mask << e;
4373         e *= 2;
4374     }
4375     return mask;
4376 }
4377 
4378 /*
4379  * Logical (immediate)
4380  */
4381 
4382 /*
4383  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385  * value (ie should cause a guest UNDEF exception), and true if they are
4386  * valid, in which case the decoded bit pattern is written to result.
4387  */
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389                             unsigned int imms, unsigned int immr)
4390 {
4391     uint64_t mask;
4392     unsigned e, levels, s, r;
4393     int len;
4394 
4395     assert(immn < 2 && imms < 64 && immr < 64);
4396 
4397     /* The bit patterns we create here are 64 bit patterns which
4398      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399      * 64 bits each. Each element contains the same value: a run
4400      * of between 1 and e-1 non-zero bits, rotated within the
4401      * element by between 0 and e-1 bits.
4402      *
4403      * The element size and run length are encoded into immn (1 bit)
4404      * and imms (6 bits) as follows:
4405      * 64 bit elements: immn = 1, imms = <length of run - 1>
4406      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411      * Notice that immn = 0, imms = 11111x is the only combination
4412      * not covered by one of the above options; this is reserved.
4413      * Further, <length of run - 1> all-ones is a reserved pattern.
4414      *
4415      * In all cases the rotation is by immr % e (and immr is 6 bits).
4416      */
4417 
4418     /* First determine the element size */
4419     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420     if (len < 1) {
4421         /* This is the immn == 0, imms == 0x11111x case */
4422         return false;
4423     }
4424     e = 1 << len;
4425 
4426     levels = e - 1;
4427     s = imms & levels;
4428     r = immr & levels;
4429 
4430     if (s == levels) {
4431         /* <length of run - 1> mustn't be all-ones. */
4432         return false;
4433     }
4434 
4435     /* Create the value of one element: s+1 set bits rotated
4436      * by r within the element (which is e bits wide)...
4437      */
4438     mask = MAKE_64BIT_MASK(0, s + 1);
4439     if (r) {
4440         mask = (mask >> r) | (mask << (e - r));
4441         mask &= MAKE_64BIT_MASK(0, e);
4442     }
4443     /* ...then replicate the element over the whole 64 bit value */
4444     mask = bitfield_replicate(mask, e);
4445     *result = mask;
4446     return true;
4447 }
4448 
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4451 {
4452     TCGv_i64 tcg_rd, tcg_rn;
4453     uint64_t imm;
4454 
4455     /* Some immediate field values are reserved. */
4456     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457                                 extract32(a->dbm, 0, 6),
4458                                 extract32(a->dbm, 6, 6))) {
4459         return false;
4460     }
4461     if (!a->sf) {
4462         imm &= 0xffffffffull;
4463     }
4464 
4465     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466     tcg_rn = cpu_reg(s, a->rn);
4467 
4468     fn(tcg_rd, tcg_rn, imm);
4469     if (set_cc) {
4470         gen_logic_CC(a->sf, tcg_rd);
4471     }
4472     if (!a->sf) {
4473         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4474     }
4475     return true;
4476 }
4477 
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4482 
4483 /*
4484  * Move wide (immediate)
4485  */
4486 
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4488 {
4489     int pos = a->hw << 4;
4490     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491     return true;
4492 }
4493 
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4495 {
4496     int pos = a->hw << 4;
4497     uint64_t imm = a->imm;
4498 
4499     imm = ~(imm << pos);
4500     if (!a->sf) {
4501         imm = (uint32_t)imm;
4502     }
4503     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504     return true;
4505 }
4506 
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4508 {
4509     int pos = a->hw << 4;
4510     TCGv_i64 tcg_rd, tcg_im;
4511 
4512     tcg_rd = cpu_reg(s, a->rd);
4513     tcg_im = tcg_constant_i64(a->imm);
4514     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * Bitfield
4523  */
4524 
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4526 {
4527     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529     unsigned int bitsize = a->sf ? 64 : 32;
4530     unsigned int ri = a->immr;
4531     unsigned int si = a->imms;
4532     unsigned int pos, len;
4533 
4534     if (si >= ri) {
4535         /* Wd<s-r:0> = Wn<s:r> */
4536         len = (si - ri) + 1;
4537         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538         if (!a->sf) {
4539             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540         }
4541     } else {
4542         /* Wd<32+s-r,32-r> = Wn<s:0> */
4543         len = si + 1;
4544         pos = (bitsize - ri) & (bitsize - 1);
4545 
4546         if (len < ri) {
4547             /*
4548              * Sign extend the destination field from len to fill the
4549              * balance of the word.  Let the deposit below insert all
4550              * of those sign bits.
4551              */
4552             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553             len = ri;
4554         }
4555 
4556         /*
4557          * We start with zero, and we haven't modified any bits outside
4558          * bitsize, therefore no final zero-extension is unneeded for !sf.
4559          */
4560         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4561     }
4562     return true;
4563 }
4564 
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4566 {
4567     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569     unsigned int bitsize = a->sf ? 64 : 32;
4570     unsigned int ri = a->immr;
4571     unsigned int si = a->imms;
4572     unsigned int pos, len;
4573 
4574     tcg_rd = cpu_reg(s, a->rd);
4575     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 
4577     if (si >= ri) {
4578         /* Wd<s-r:0> = Wn<s:r> */
4579         len = (si - ri) + 1;
4580         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581     } else {
4582         /* Wd<32+s-r,32-r> = Wn<s:0> */
4583         len = si + 1;
4584         pos = (bitsize - ri) & (bitsize - 1);
4585         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4586     }
4587     return true;
4588 }
4589 
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4591 {
4592     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594     unsigned int bitsize = a->sf ? 64 : 32;
4595     unsigned int ri = a->immr;
4596     unsigned int si = a->imms;
4597     unsigned int pos, len;
4598 
4599     tcg_rd = cpu_reg(s, a->rd);
4600     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 
4602     if (si >= ri) {
4603         /* Wd<s-r:0> = Wn<s:r> */
4604         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605         len = (si - ri) + 1;
4606         pos = 0;
4607     } else {
4608         /* Wd<32+s-r,32-r> = Wn<s:0> */
4609         len = si + 1;
4610         pos = (bitsize - ri) & (bitsize - 1);
4611     }
4612 
4613     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614     if (!a->sf) {
4615         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4616     }
4617     return true;
4618 }
4619 
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4621 {
4622     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4623 
4624     tcg_rd = cpu_reg(s, a->rd);
4625 
4626     if (unlikely(a->imm == 0)) {
4627         /*
4628          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629          * so an extract from bit 0 is a special case.
4630          */
4631         if (a->sf) {
4632             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633         } else {
4634             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4635         }
4636     } else {
4637         tcg_rm = cpu_reg(s, a->rm);
4638         tcg_rn = cpu_reg(s, a->rn);
4639 
4640         if (a->sf) {
4641             /* Specialization to ROR happens in EXTRACT2.  */
4642             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643         } else {
4644             TCGv_i32 t0 = tcg_temp_new_i32();
4645 
4646             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647             if (a->rm == a->rn) {
4648                 tcg_gen_rotri_i32(t0, t0, a->imm);
4649             } else {
4650                 TCGv_i32 t1 = tcg_temp_new_i32();
4651                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4653             }
4654             tcg_gen_extu_i32_i64(tcg_rd, t0);
4655         }
4656     }
4657     return true;
4658 }
4659 
4660 /*
4661  * Cryptographic AES, SHA, SHA512
4662  */
4663 
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4668 
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4673 
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4677 
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4681 
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4689 
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4692 
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4695 
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4697 {
4698     if (!dc_isar_feature(aa64_sm3, s)) {
4699         return false;
4700     }
4701     if (fp_access_check(s)) {
4702         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705         TCGv_i32 tcg_res = tcg_temp_new_i32();
4706         unsigned vsz, dofs;
4707 
4708         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4711 
4712         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4716 
4717         /* Clear the whole register first, then store bits [127:96]. */
4718         vsz = vec_full_reg_size(s);
4719         dofs = vec_full_reg_offset(s, a->rd);
4720         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4722     }
4723     return true;
4724 }
4725 
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4727 {
4728     if (fp_access_check(s)) {
4729         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4730     }
4731     return true;
4732 }
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4737 
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4739 {
4740     if (!dc_isar_feature(aa64_sha3, s)) {
4741         return false;
4742     }
4743     if (fp_access_check(s)) {
4744         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745                      vec_full_reg_offset(s, a->rn),
4746                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4747                      vec_full_reg_size(s));
4748     }
4749     return true;
4750 }
4751 
4752 /*
4753  * Advanced SIMD copy
4754  */
4755 
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4757 {
4758     unsigned esz = ctz32(imm);
4759     if (esz <= MO_64) {
4760         *pesz = esz;
4761         *pidx = imm >> (esz + 1);
4762         return true;
4763     }
4764     return false;
4765 }
4766 
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4768 {
4769     MemOp esz;
4770     unsigned idx;
4771 
4772     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773         return false;
4774     }
4775     if (fp_access_check(s)) {
4776         /*
4777          * This instruction just extracts the specified element and
4778          * zero-extends it into the bottom of the destination register.
4779          */
4780         TCGv_i64 tmp = tcg_temp_new_i64();
4781         read_vec_element(s, tmp, a->rn, idx, esz);
4782         write_fp_dreg(s, a->rd, tmp);
4783     }
4784     return true;
4785 }
4786 
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4788 {
4789     MemOp esz;
4790     unsigned idx;
4791 
4792     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793         return false;
4794     }
4795     if (esz == MO_64 && !a->q) {
4796         return false;
4797     }
4798     if (fp_access_check(s)) {
4799         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800                              vec_reg_offset(s, a->rn, idx, esz),
4801                              a->q ? 16 : 8, vec_full_reg_size(s));
4802     }
4803     return true;
4804 }
4805 
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4807 {
4808     MemOp esz;
4809     unsigned idx;
4810 
4811     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812         return false;
4813     }
4814     if (esz == MO_64 && !a->q) {
4815         return false;
4816     }
4817     if (fp_access_check(s)) {
4818         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819                              a->q ? 16 : 8, vec_full_reg_size(s),
4820                              cpu_reg(s, a->rn));
4821     }
4822     return true;
4823 }
4824 
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4826 {
4827     MemOp esz;
4828     unsigned idx;
4829 
4830     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831         return false;
4832     }
4833     if (is_signed) {
4834         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835             return false;
4836         }
4837     } else {
4838         if (esz == MO_64 ? !a->q : a->q) {
4839             return false;
4840         }
4841     }
4842     if (fp_access_check(s)) {
4843         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845         if (is_signed && !a->q) {
4846             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847         }
4848     }
4849     return true;
4850 }
4851 
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4854 
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4856 {
4857     MemOp esz;
4858     unsigned idx;
4859 
4860     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861         return false;
4862     }
4863     if (fp_access_check(s)) {
4864         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865         clear_vec_high(s, true, a->rd);
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4871 {
4872     MemOp esz;
4873     unsigned didx, sidx;
4874 
4875     if (!decode_esz_idx(a->di, &esz, &didx)) {
4876         return false;
4877     }
4878     sidx = a->si >> esz;
4879     if (fp_access_check(s)) {
4880         TCGv_i64 tmp = tcg_temp_new_i64();
4881 
4882         read_vec_element(s, tmp, a->rn, sidx, esz);
4883         write_vec_element(s, tmp, a->rd, didx, esz);
4884 
4885         /* INS is considered a 128-bit write for SVE. */
4886         clear_vec_high(s, true, a->rd);
4887     }
4888     return true;
4889 }
4890 
4891 /*
4892  * Advanced SIMD three same
4893  */
4894 
4895 typedef struct FPScalar {
4896     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4900 
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4902 {
4903     switch (a->esz) {
4904     case MO_64:
4905         if (fp_access_check(s)) {
4906             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909             write_fp_dreg(s, a->rd, t0);
4910         }
4911         break;
4912     case MO_32:
4913         if (fp_access_check(s)) {
4914             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917             write_fp_sreg(s, a->rd, t0);
4918         }
4919         break;
4920     case MO_16:
4921         if (!dc_isar_feature(aa64_fp16, s)) {
4922             return false;
4923         }
4924         if (fp_access_check(s)) {
4925             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928             write_fp_sreg(s, a->rd, t0);
4929         }
4930         break;
4931     default:
4932         return false;
4933     }
4934     return true;
4935 }
4936 
4937 static const FPScalar f_scalar_fadd = {
4938     gen_helper_vfp_addh,
4939     gen_helper_vfp_adds,
4940     gen_helper_vfp_addd,
4941 };
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4943 
4944 static const FPScalar f_scalar_fsub = {
4945     gen_helper_vfp_subh,
4946     gen_helper_vfp_subs,
4947     gen_helper_vfp_subd,
4948 };
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4950 
4951 static const FPScalar f_scalar_fdiv = {
4952     gen_helper_vfp_divh,
4953     gen_helper_vfp_divs,
4954     gen_helper_vfp_divd,
4955 };
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4957 
4958 static const FPScalar f_scalar_fmul = {
4959     gen_helper_vfp_mulh,
4960     gen_helper_vfp_muls,
4961     gen_helper_vfp_muld,
4962 };
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4964 
4965 static const FPScalar f_scalar_fmax = {
4966     gen_helper_advsimd_maxh,
4967     gen_helper_vfp_maxs,
4968     gen_helper_vfp_maxd,
4969 };
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4971 
4972 static const FPScalar f_scalar_fmin = {
4973     gen_helper_advsimd_minh,
4974     gen_helper_vfp_mins,
4975     gen_helper_vfp_mind,
4976 };
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4978 
4979 static const FPScalar f_scalar_fmaxnm = {
4980     gen_helper_advsimd_maxnumh,
4981     gen_helper_vfp_maxnums,
4982     gen_helper_vfp_maxnumd,
4983 };
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4985 
4986 static const FPScalar f_scalar_fminnm = {
4987     gen_helper_advsimd_minnumh,
4988     gen_helper_vfp_minnums,
4989     gen_helper_vfp_minnumd,
4990 };
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4992 
4993 static const FPScalar f_scalar_fmulx = {
4994     gen_helper_advsimd_mulxh,
4995     gen_helper_vfp_mulxs,
4996     gen_helper_vfp_mulxd,
4997 };
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4999 
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5001 {
5002     gen_helper_vfp_mulh(d, n, m, s);
5003     gen_vfp_negh(d, d);
5004 }
5005 
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5007 {
5008     gen_helper_vfp_muls(d, n, m, s);
5009     gen_vfp_negs(d, d);
5010 }
5011 
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5013 {
5014     gen_helper_vfp_muld(d, n, m, s);
5015     gen_vfp_negd(d, d);
5016 }
5017 
5018 static const FPScalar f_scalar_fnmul = {
5019     gen_fnmul_h,
5020     gen_fnmul_s,
5021     gen_fnmul_d,
5022 };
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5024 
5025 static const FPScalar f_scalar_fcmeq = {
5026     gen_helper_advsimd_ceq_f16,
5027     gen_helper_neon_ceq_f32,
5028     gen_helper_neon_ceq_f64,
5029 };
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5031 
5032 static const FPScalar f_scalar_fcmge = {
5033     gen_helper_advsimd_cge_f16,
5034     gen_helper_neon_cge_f32,
5035     gen_helper_neon_cge_f64,
5036 };
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5038 
5039 static const FPScalar f_scalar_fcmgt = {
5040     gen_helper_advsimd_cgt_f16,
5041     gen_helper_neon_cgt_f32,
5042     gen_helper_neon_cgt_f64,
5043 };
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5045 
5046 static const FPScalar f_scalar_facge = {
5047     gen_helper_advsimd_acge_f16,
5048     gen_helper_neon_acge_f32,
5049     gen_helper_neon_acge_f64,
5050 };
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5052 
5053 static const FPScalar f_scalar_facgt = {
5054     gen_helper_advsimd_acgt_f16,
5055     gen_helper_neon_acgt_f32,
5056     gen_helper_neon_acgt_f64,
5057 };
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5059 
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5061 {
5062     gen_helper_vfp_subh(d, n, m, s);
5063     gen_vfp_absh(d, d);
5064 }
5065 
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5067 {
5068     gen_helper_vfp_subs(d, n, m, s);
5069     gen_vfp_abss(d, d);
5070 }
5071 
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5073 {
5074     gen_helper_vfp_subd(d, n, m, s);
5075     gen_vfp_absd(d, d);
5076 }
5077 
5078 static const FPScalar f_scalar_fabd = {
5079     gen_fabd_h,
5080     gen_fabd_s,
5081     gen_fabd_d,
5082 };
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5084 
5085 static const FPScalar f_scalar_frecps = {
5086     gen_helper_recpsf_f16,
5087     gen_helper_recpsf_f32,
5088     gen_helper_recpsf_f64,
5089 };
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5091 
5092 static const FPScalar f_scalar_frsqrts = {
5093     gen_helper_rsqrtsf_f16,
5094     gen_helper_rsqrtsf_f32,
5095     gen_helper_rsqrtsf_f64,
5096 };
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5098 
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100                 MemOp sgn_n, MemOp sgn_m,
5101                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5103 {
5104     TCGv_i64 t0, t1, t2, qc;
5105     MemOp esz = a->esz;
5106 
5107     if (!fp_access_check(s)) {
5108         return true;
5109     }
5110 
5111     t0 = tcg_temp_new_i64();
5112     t1 = tcg_temp_new_i64();
5113     t2 = tcg_temp_new_i64();
5114     qc = tcg_temp_new_i64();
5115     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5118 
5119     if (esz == MO_64) {
5120         gen_d(t0, qc, t1, t2);
5121     } else {
5122         gen_bhs(t0, qc, t1, t2, esz);
5123         tcg_gen_ext_i64(t0, t0, esz);
5124     }
5125 
5126     write_fp_dreg(s, a->rd, t0);
5127     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128     return true;
5129 }
5130 
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5137 
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5140 {
5141     if (fp_access_check(s)) {
5142         TCGv_i64 t0 = tcg_temp_new_i64();
5143         TCGv_i64 t1 = tcg_temp_new_i64();
5144 
5145         read_vec_element(s, t0, a->rn, 0, MO_64);
5146         read_vec_element(s, t1, a->rm, 0, MO_64);
5147         fn(t0, t0, t1);
5148         write_fp_dreg(s, a->rd, t0);
5149     }
5150     return true;
5151 }
5152 
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5159 
5160 typedef struct ENVScalar2 {
5161     NeonGenTwoOpEnvFn *gen_bhs[3];
5162     NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5164 
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5166 {
5167     if (!fp_access_check(s)) {
5168         return true;
5169     }
5170     if (a->esz == MO_64) {
5171         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173         f->gen_d(t0, tcg_env, t0, t1);
5174         write_fp_dreg(s, a->rd, t0);
5175     } else {
5176         TCGv_i32 t0 = tcg_temp_new_i32();
5177         TCGv_i32 t1 = tcg_temp_new_i32();
5178 
5179         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182         write_fp_sreg(s, a->rd, t0);
5183     }
5184     return true;
5185 }
5186 
5187 static const ENVScalar2 f_scalar_sqshl = {
5188     { gen_helper_neon_qshl_s8,
5189       gen_helper_neon_qshl_s16,
5190       gen_helper_neon_qshl_s32 },
5191     gen_helper_neon_qshl_s64,
5192 };
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5194 
5195 static const ENVScalar2 f_scalar_uqshl = {
5196     { gen_helper_neon_qshl_u8,
5197       gen_helper_neon_qshl_u16,
5198       gen_helper_neon_qshl_u32 },
5199     gen_helper_neon_qshl_u64,
5200 };
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5202 
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204     { gen_helper_neon_qrshl_s8,
5205       gen_helper_neon_qrshl_s16,
5206       gen_helper_neon_qrshl_s32 },
5207     gen_helper_neon_qrshl_s64,
5208 };
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5210 
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212     { gen_helper_neon_qrshl_u8,
5213       gen_helper_neon_qrshl_u16,
5214       gen_helper_neon_qrshl_u32 },
5215     gen_helper_neon_qrshl_u64,
5216 };
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5218 
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220                               const ENVScalar2 *f)
5221 {
5222     if (a->esz == MO_16 || a->esz == MO_32) {
5223         return do_env_scalar2(s, a, f);
5224     }
5225     return false;
5226 }
5227 
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5230 };
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5232 
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5235 };
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5237 
5238 typedef struct ENVScalar3 {
5239     NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5241 
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243                               const ENVScalar3 *f)
5244 {
5245     TCGv_i32 t0, t1, t2;
5246 
5247     if (a->esz != MO_16 && a->esz != MO_32) {
5248         return false;
5249     }
5250     if (!fp_access_check(s)) {
5251         return true;
5252     }
5253 
5254     t0 = tcg_temp_new_i32();
5255     t1 = tcg_temp_new_i32();
5256     t2 = tcg_temp_new_i32();
5257     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261     write_fp_sreg(s, a->rd, t0);
5262     return true;
5263 }
5264 
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5267 };
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5269 
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5272 };
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5274 
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5276 {
5277     if (fp_access_check(s)) {
5278         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281         write_fp_dreg(s, a->rd, t0);
5282     }
5283     return true;
5284 }
5285 
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5292 
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5294                           gen_helper_gvec_3_ptr * const fns[3])
5295 {
5296     MemOp esz = a->esz;
5297 
5298     switch (esz) {
5299     case MO_64:
5300         if (!a->q) {
5301             return false;
5302         }
5303         break;
5304     case MO_32:
5305         break;
5306     case MO_16:
5307         if (!dc_isar_feature(aa64_fp16, s)) {
5308             return false;
5309         }
5310         break;
5311     default:
5312         return false;
5313     }
5314     if (fp_access_check(s)) {
5315         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316                           esz == MO_16, 0, fns[esz - 1]);
5317     }
5318     return true;
5319 }
5320 
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322     gen_helper_gvec_fadd_h,
5323     gen_helper_gvec_fadd_s,
5324     gen_helper_gvec_fadd_d,
5325 };
5326 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5327 
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329     gen_helper_gvec_fsub_h,
5330     gen_helper_gvec_fsub_s,
5331     gen_helper_gvec_fsub_d,
5332 };
5333 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5334 
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336     gen_helper_gvec_fdiv_h,
5337     gen_helper_gvec_fdiv_s,
5338     gen_helper_gvec_fdiv_d,
5339 };
5340 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5341 
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343     gen_helper_gvec_fmul_h,
5344     gen_helper_gvec_fmul_s,
5345     gen_helper_gvec_fmul_d,
5346 };
5347 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5348 
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350     gen_helper_gvec_fmax_h,
5351     gen_helper_gvec_fmax_s,
5352     gen_helper_gvec_fmax_d,
5353 };
5354 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5355 
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357     gen_helper_gvec_fmin_h,
5358     gen_helper_gvec_fmin_s,
5359     gen_helper_gvec_fmin_d,
5360 };
5361 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5362 
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364     gen_helper_gvec_fmaxnum_h,
5365     gen_helper_gvec_fmaxnum_s,
5366     gen_helper_gvec_fmaxnum_d,
5367 };
5368 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5369 
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371     gen_helper_gvec_fminnum_h,
5372     gen_helper_gvec_fminnum_s,
5373     gen_helper_gvec_fminnum_d,
5374 };
5375 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5376 
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378     gen_helper_gvec_fmulx_h,
5379     gen_helper_gvec_fmulx_s,
5380     gen_helper_gvec_fmulx_d,
5381 };
5382 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5383 
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385     gen_helper_gvec_vfma_h,
5386     gen_helper_gvec_vfma_s,
5387     gen_helper_gvec_vfma_d,
5388 };
5389 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5390 
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392     gen_helper_gvec_vfms_h,
5393     gen_helper_gvec_vfms_s,
5394     gen_helper_gvec_vfms_d,
5395 };
5396 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5397 
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399     gen_helper_gvec_fceq_h,
5400     gen_helper_gvec_fceq_s,
5401     gen_helper_gvec_fceq_d,
5402 };
5403 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5404 
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406     gen_helper_gvec_fcge_h,
5407     gen_helper_gvec_fcge_s,
5408     gen_helper_gvec_fcge_d,
5409 };
5410 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5411 
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413     gen_helper_gvec_fcgt_h,
5414     gen_helper_gvec_fcgt_s,
5415     gen_helper_gvec_fcgt_d,
5416 };
5417 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5418 
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420     gen_helper_gvec_facge_h,
5421     gen_helper_gvec_facge_s,
5422     gen_helper_gvec_facge_d,
5423 };
5424 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5425 
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427     gen_helper_gvec_facgt_h,
5428     gen_helper_gvec_facgt_s,
5429     gen_helper_gvec_facgt_d,
5430 };
5431 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5432 
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434     gen_helper_gvec_fabd_h,
5435     gen_helper_gvec_fabd_s,
5436     gen_helper_gvec_fabd_d,
5437 };
5438 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5439 
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441     gen_helper_gvec_recps_h,
5442     gen_helper_gvec_recps_s,
5443     gen_helper_gvec_recps_d,
5444 };
5445 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5446 
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448     gen_helper_gvec_rsqrts_h,
5449     gen_helper_gvec_rsqrts_s,
5450     gen_helper_gvec_rsqrts_d,
5451 };
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5453 
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455     gen_helper_gvec_faddp_h,
5456     gen_helper_gvec_faddp_s,
5457     gen_helper_gvec_faddp_d,
5458 };
5459 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5460 
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462     gen_helper_gvec_fmaxp_h,
5463     gen_helper_gvec_fmaxp_s,
5464     gen_helper_gvec_fmaxp_d,
5465 };
5466 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5467 
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469     gen_helper_gvec_fminp_h,
5470     gen_helper_gvec_fminp_s,
5471     gen_helper_gvec_fminp_d,
5472 };
5473 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5474 
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476     gen_helper_gvec_fmaxnump_h,
5477     gen_helper_gvec_fmaxnump_s,
5478     gen_helper_gvec_fmaxnump_d,
5479 };
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5481 
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483     gen_helper_gvec_fminnump_h,
5484     gen_helper_gvec_fminnump_s,
5485     gen_helper_gvec_fminnump_d,
5486 };
5487 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5488 
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5490 {
5491     if (fp_access_check(s)) {
5492         int data = (is_2 << 1) | is_s;
5493         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494                            vec_full_reg_offset(s, a->rn),
5495                            vec_full_reg_offset(s, a->rm), tcg_env,
5496                            a->q ? 16 : 8, vec_full_reg_size(s),
5497                            data, gen_helper_gvec_fmlal_a64);
5498     }
5499     return true;
5500 }
5501 
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5506 
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5512 
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5518 
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5520 {
5521     if (fp_access_check(s)) {
5522         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5523     }
5524     return true;
5525 }
5526 
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5530 
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5537 
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5546 
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5567 
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5569 {
5570     if (a->esz == MO_64 && !a->q) {
5571         return false;
5572     }
5573     if (fp_access_check(s)) {
5574         tcg_gen_gvec_cmp(cond, a->esz,
5575                          vec_full_reg_offset(s, a->rd),
5576                          vec_full_reg_offset(s, a->rn),
5577                          vec_full_reg_offset(s, a->rm),
5578                          a->q ? 16 : 8, vec_full_reg_size(s));
5579     }
5580     return true;
5581 }
5582 
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5589 
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5594 
5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5596                           gen_helper_gvec_4 *fn)
5597 {
5598     if (fp_access_check(s)) {
5599         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5600     }
5601     return true;
5602 }
5603 
5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot)
5608 
5609 /*
5610  * Advanced SIMD scalar/vector x indexed element
5611  */
5612 
5613 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5614 {
5615     switch (a->esz) {
5616     case MO_64:
5617         if (fp_access_check(s)) {
5618             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5619             TCGv_i64 t1 = tcg_temp_new_i64();
5620 
5621             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5622             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5623             write_fp_dreg(s, a->rd, t0);
5624         }
5625         break;
5626     case MO_32:
5627         if (fp_access_check(s)) {
5628             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5629             TCGv_i32 t1 = tcg_temp_new_i32();
5630 
5631             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5632             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5633             write_fp_sreg(s, a->rd, t0);
5634         }
5635         break;
5636     case MO_16:
5637         if (!dc_isar_feature(aa64_fp16, s)) {
5638             return false;
5639         }
5640         if (fp_access_check(s)) {
5641             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5642             TCGv_i32 t1 = tcg_temp_new_i32();
5643 
5644             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5645             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5646             write_fp_sreg(s, a->rd, t0);
5647         }
5648         break;
5649     default:
5650         g_assert_not_reached();
5651     }
5652     return true;
5653 }
5654 
5655 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5656 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5657 
5658 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5659 {
5660     switch (a->esz) {
5661     case MO_64:
5662         if (fp_access_check(s)) {
5663             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5664             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5665             TCGv_i64 t2 = tcg_temp_new_i64();
5666 
5667             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5668             if (neg) {
5669                 gen_vfp_negd(t1, t1);
5670             }
5671             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5672             write_fp_dreg(s, a->rd, t0);
5673         }
5674         break;
5675     case MO_32:
5676         if (fp_access_check(s)) {
5677             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5678             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5679             TCGv_i32 t2 = tcg_temp_new_i32();
5680 
5681             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5682             if (neg) {
5683                 gen_vfp_negs(t1, t1);
5684             }
5685             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5686             write_fp_sreg(s, a->rd, t0);
5687         }
5688         break;
5689     case MO_16:
5690         if (!dc_isar_feature(aa64_fp16, s)) {
5691             return false;
5692         }
5693         if (fp_access_check(s)) {
5694             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5695             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5696             TCGv_i32 t2 = tcg_temp_new_i32();
5697 
5698             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5699             if (neg) {
5700                 gen_vfp_negh(t1, t1);
5701             }
5702             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5703                                        fpstatus_ptr(FPST_FPCR_F16));
5704             write_fp_sreg(s, a->rd, t0);
5705         }
5706         break;
5707     default:
5708         g_assert_not_reached();
5709     }
5710     return true;
5711 }
5712 
5713 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5714 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5715 
5716 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
5717                                   const ENVScalar2 *f)
5718 {
5719     if (a->esz < MO_16 || a->esz > MO_32) {
5720         return false;
5721     }
5722     if (fp_access_check(s)) {
5723         TCGv_i32 t0 = tcg_temp_new_i32();
5724         TCGv_i32 t1 = tcg_temp_new_i32();
5725 
5726         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5727         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5728         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5729         write_fp_sreg(s, a->rd, t0);
5730     }
5731     return true;
5732 }
5733 
5734 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
5735 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
5736 
5737 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
5738                                   const ENVScalar3 *f)
5739 {
5740     if (a->esz < MO_16 || a->esz > MO_32) {
5741         return false;
5742     }
5743     if (fp_access_check(s)) {
5744         TCGv_i32 t0 = tcg_temp_new_i32();
5745         TCGv_i32 t1 = tcg_temp_new_i32();
5746         TCGv_i32 t2 = tcg_temp_new_i32();
5747 
5748         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5749         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5750         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5751         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5752         write_fp_sreg(s, a->rd, t0);
5753     }
5754     return true;
5755 }
5756 
5757 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
5758 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
5759 
5760 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5761                               gen_helper_gvec_3_ptr * const fns[3])
5762 {
5763     MemOp esz = a->esz;
5764 
5765     switch (esz) {
5766     case MO_64:
5767         if (!a->q) {
5768             return false;
5769         }
5770         break;
5771     case MO_32:
5772         break;
5773     case MO_16:
5774         if (!dc_isar_feature(aa64_fp16, s)) {
5775             return false;
5776         }
5777         break;
5778     default:
5779         g_assert_not_reached();
5780     }
5781     if (fp_access_check(s)) {
5782         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5783                           esz == MO_16, a->idx, fns[esz - 1]);
5784     }
5785     return true;
5786 }
5787 
5788 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5789     gen_helper_gvec_fmul_idx_h,
5790     gen_helper_gvec_fmul_idx_s,
5791     gen_helper_gvec_fmul_idx_d,
5792 };
5793 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5794 
5795 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5796     gen_helper_gvec_fmulx_idx_h,
5797     gen_helper_gvec_fmulx_idx_s,
5798     gen_helper_gvec_fmulx_idx_d,
5799 };
5800 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5801 
5802 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5803 {
5804     static gen_helper_gvec_4_ptr * const fns[3] = {
5805         gen_helper_gvec_fmla_idx_h,
5806         gen_helper_gvec_fmla_idx_s,
5807         gen_helper_gvec_fmla_idx_d,
5808     };
5809     MemOp esz = a->esz;
5810 
5811     switch (esz) {
5812     case MO_64:
5813         if (!a->q) {
5814             return false;
5815         }
5816         break;
5817     case MO_32:
5818         break;
5819     case MO_16:
5820         if (!dc_isar_feature(aa64_fp16, s)) {
5821             return false;
5822         }
5823         break;
5824     default:
5825         g_assert_not_reached();
5826     }
5827     if (fp_access_check(s)) {
5828         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5829                           esz == MO_16, (a->idx << 1) | neg,
5830                           fns[esz - 1]);
5831     }
5832     return true;
5833 }
5834 
5835 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5836 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5837 
5838 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5839 {
5840     if (fp_access_check(s)) {
5841         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5842         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5843                            vec_full_reg_offset(s, a->rn),
5844                            vec_full_reg_offset(s, a->rm), tcg_env,
5845                            a->q ? 16 : 8, vec_full_reg_size(s),
5846                            data, gen_helper_gvec_fmlal_idx_a64);
5847     }
5848     return true;
5849 }
5850 
5851 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5852 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5853 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5854 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5855 
5856 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5857                                gen_helper_gvec_3 * const fns[2])
5858 {
5859     assert(a->esz == MO_16 || a->esz == MO_32);
5860     if (fp_access_check(s)) {
5861         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
5862     }
5863     return true;
5864 }
5865 
5866 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
5867     gen_helper_gvec_mul_idx_h,
5868     gen_helper_gvec_mul_idx_s,
5869 };
5870 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
5871 
5872 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
5873 {
5874     static gen_helper_gvec_4 * const fns[2][2] = {
5875         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
5876         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
5877     };
5878 
5879     assert(a->esz == MO_16 || a->esz == MO_32);
5880     if (fp_access_check(s)) {
5881         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
5882                          a->idx, fns[a->esz - 1][sub]);
5883     }
5884     return true;
5885 }
5886 
5887 TRANS(MLA_vi, do_mla_vector_idx, a, false)
5888 TRANS(MLS_vi, do_mla_vector_idx, a, true)
5889 
5890 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
5891                                   gen_helper_gvec_4 * const fns[2])
5892 {
5893     assert(a->esz == MO_16 || a->esz == MO_32);
5894     if (fp_access_check(s)) {
5895         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
5896                            vec_full_reg_offset(s, a->rn),
5897                            vec_full_reg_offset(s, a->rm),
5898                            offsetof(CPUARMState, vfp.qc),
5899                            a->q ? 16 : 8, vec_full_reg_size(s),
5900                            a->idx, fns[a->esz - 1]);
5901     }
5902     return true;
5903 }
5904 
5905 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
5906     gen_helper_neon_sqdmulh_idx_h,
5907     gen_helper_neon_sqdmulh_idx_s,
5908 };
5909 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
5910 
5911 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
5912     gen_helper_neon_sqrdmulh_idx_h,
5913     gen_helper_neon_sqrdmulh_idx_s,
5914 };
5915 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
5916 
5917 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
5918     gen_helper_neon_sqrdmlah_idx_h,
5919     gen_helper_neon_sqrdmlah_idx_s,
5920 };
5921 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5922            f_vector_idx_sqrdmlah)
5923 
5924 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
5925     gen_helper_neon_sqrdmlsh_idx_h,
5926     gen_helper_neon_sqrdmlsh_idx_s,
5927 };
5928 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5929            f_vector_idx_sqrdmlsh)
5930 
5931 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
5932                               gen_helper_gvec_4 *fn)
5933 {
5934     if (fp_access_check(s)) {
5935         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
5936     }
5937     return true;
5938 }
5939 
5940 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
5941 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
5942 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5943            gen_helper_gvec_sudot_idx_b)
5944 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5945            gen_helper_gvec_usdot_idx_b)
5946 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a,
5947            gen_helper_gvec_bfdot_idx)
5948 
5949 /*
5950  * Advanced SIMD scalar pairwise
5951  */
5952 
5953 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5954 {
5955     switch (a->esz) {
5956     case MO_64:
5957         if (fp_access_check(s)) {
5958             TCGv_i64 t0 = tcg_temp_new_i64();
5959             TCGv_i64 t1 = tcg_temp_new_i64();
5960 
5961             read_vec_element(s, t0, a->rn, 0, MO_64);
5962             read_vec_element(s, t1, a->rn, 1, MO_64);
5963             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5964             write_fp_dreg(s, a->rd, t0);
5965         }
5966         break;
5967     case MO_32:
5968         if (fp_access_check(s)) {
5969             TCGv_i32 t0 = tcg_temp_new_i32();
5970             TCGv_i32 t1 = tcg_temp_new_i32();
5971 
5972             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5973             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5974             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5975             write_fp_sreg(s, a->rd, t0);
5976         }
5977         break;
5978     case MO_16:
5979         if (!dc_isar_feature(aa64_fp16, s)) {
5980             return false;
5981         }
5982         if (fp_access_check(s)) {
5983             TCGv_i32 t0 = tcg_temp_new_i32();
5984             TCGv_i32 t1 = tcg_temp_new_i32();
5985 
5986             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5987             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5988             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5989             write_fp_sreg(s, a->rd, t0);
5990         }
5991         break;
5992     default:
5993         g_assert_not_reached();
5994     }
5995     return true;
5996 }
5997 
5998 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5999 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6000 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6001 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6002 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6003 
6004 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6005 {
6006     if (fp_access_check(s)) {
6007         TCGv_i64 t0 = tcg_temp_new_i64();
6008         TCGv_i64 t1 = tcg_temp_new_i64();
6009 
6010         read_vec_element(s, t0, a->rn, 0, MO_64);
6011         read_vec_element(s, t1, a->rn, 1, MO_64);
6012         tcg_gen_add_i64(t0, t0, t1);
6013         write_fp_dreg(s, a->rd, t0);
6014     }
6015     return true;
6016 }
6017 
6018 /*
6019  * Floating-point conditional select
6020  */
6021 
6022 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6023 {
6024     TCGv_i64 t_true, t_false;
6025     DisasCompare64 c;
6026 
6027     switch (a->esz) {
6028     case MO_32:
6029     case MO_64:
6030         break;
6031     case MO_16:
6032         if (!dc_isar_feature(aa64_fp16, s)) {
6033             return false;
6034         }
6035         break;
6036     default:
6037         return false;
6038     }
6039 
6040     if (!fp_access_check(s)) {
6041         return true;
6042     }
6043 
6044     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6045     t_true = tcg_temp_new_i64();
6046     t_false = tcg_temp_new_i64();
6047     read_vec_element(s, t_true, a->rn, 0, a->esz);
6048     read_vec_element(s, t_false, a->rm, 0, a->esz);
6049 
6050     a64_test_cc(&c, a->cond);
6051     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6052                         t_true, t_false);
6053 
6054     /*
6055      * Note that sregs & hregs write back zeros to the high bits,
6056      * and we've already done the zero-extension.
6057      */
6058     write_fp_dreg(s, a->rd, t_true);
6059     return true;
6060 }
6061 
6062 /*
6063  * Floating-point data-processing (3 source)
6064  */
6065 
6066 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6067 {
6068     TCGv_ptr fpst;
6069 
6070     /*
6071      * These are fused multiply-add.  Note that doing the negations here
6072      * as separate steps is correct: an input NaN should come out with
6073      * its sign bit flipped if it is a negated-input.
6074      */
6075     switch (a->esz) {
6076     case MO_64:
6077         if (fp_access_check(s)) {
6078             TCGv_i64 tn = read_fp_dreg(s, a->rn);
6079             TCGv_i64 tm = read_fp_dreg(s, a->rm);
6080             TCGv_i64 ta = read_fp_dreg(s, a->ra);
6081 
6082             if (neg_a) {
6083                 gen_vfp_negd(ta, ta);
6084             }
6085             if (neg_n) {
6086                 gen_vfp_negd(tn, tn);
6087             }
6088             fpst = fpstatus_ptr(FPST_FPCR);
6089             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6090             write_fp_dreg(s, a->rd, ta);
6091         }
6092         break;
6093 
6094     case MO_32:
6095         if (fp_access_check(s)) {
6096             TCGv_i32 tn = read_fp_sreg(s, a->rn);
6097             TCGv_i32 tm = read_fp_sreg(s, a->rm);
6098             TCGv_i32 ta = read_fp_sreg(s, a->ra);
6099 
6100             if (neg_a) {
6101                 gen_vfp_negs(ta, ta);
6102             }
6103             if (neg_n) {
6104                 gen_vfp_negs(tn, tn);
6105             }
6106             fpst = fpstatus_ptr(FPST_FPCR);
6107             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6108             write_fp_sreg(s, a->rd, ta);
6109         }
6110         break;
6111 
6112     case MO_16:
6113         if (!dc_isar_feature(aa64_fp16, s)) {
6114             return false;
6115         }
6116         if (fp_access_check(s)) {
6117             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6118             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6119             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6120 
6121             if (neg_a) {
6122                 gen_vfp_negh(ta, ta);
6123             }
6124             if (neg_n) {
6125                 gen_vfp_negh(tn, tn);
6126             }
6127             fpst = fpstatus_ptr(FPST_FPCR_F16);
6128             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6129             write_fp_sreg(s, a->rd, ta);
6130         }
6131         break;
6132 
6133     default:
6134         return false;
6135     }
6136     return true;
6137 }
6138 
6139 TRANS(FMADD, do_fmadd, a, false, false)
6140 TRANS(FNMADD, do_fmadd, a, true, true)
6141 TRANS(FMSUB, do_fmadd, a, false, true)
6142 TRANS(FNMSUB, do_fmadd, a, true, false)
6143 
6144 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6145  * Note that it is the caller's responsibility to ensure that the
6146  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6147  * mandated semantics for out of range shifts.
6148  */
6149 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6150                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6151 {
6152     switch (shift_type) {
6153     case A64_SHIFT_TYPE_LSL:
6154         tcg_gen_shl_i64(dst, src, shift_amount);
6155         break;
6156     case A64_SHIFT_TYPE_LSR:
6157         tcg_gen_shr_i64(dst, src, shift_amount);
6158         break;
6159     case A64_SHIFT_TYPE_ASR:
6160         if (!sf) {
6161             tcg_gen_ext32s_i64(dst, src);
6162         }
6163         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6164         break;
6165     case A64_SHIFT_TYPE_ROR:
6166         if (sf) {
6167             tcg_gen_rotr_i64(dst, src, shift_amount);
6168         } else {
6169             TCGv_i32 t0, t1;
6170             t0 = tcg_temp_new_i32();
6171             t1 = tcg_temp_new_i32();
6172             tcg_gen_extrl_i64_i32(t0, src);
6173             tcg_gen_extrl_i64_i32(t1, shift_amount);
6174             tcg_gen_rotr_i32(t0, t0, t1);
6175             tcg_gen_extu_i32_i64(dst, t0);
6176         }
6177         break;
6178     default:
6179         assert(FALSE); /* all shift types should be handled */
6180         break;
6181     }
6182 
6183     if (!sf) { /* zero extend final result */
6184         tcg_gen_ext32u_i64(dst, dst);
6185     }
6186 }
6187 
6188 /* Shift a TCGv src by immediate, put result in dst.
6189  * The shift amount must be in range (this should always be true as the
6190  * relevant instructions will UNDEF on bad shift immediates).
6191  */
6192 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6193                           enum a64_shift_type shift_type, unsigned int shift_i)
6194 {
6195     assert(shift_i < (sf ? 64 : 32));
6196 
6197     if (shift_i == 0) {
6198         tcg_gen_mov_i64(dst, src);
6199     } else {
6200         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6201     }
6202 }
6203 
6204 /* Logical (shifted register)
6205  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
6206  * +----+-----+-----------+-------+---+------+--------+------+------+
6207  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
6208  * +----+-----+-----------+-------+---+------+--------+------+------+
6209  */
6210 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6211 {
6212     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6213     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6214 
6215     sf = extract32(insn, 31, 1);
6216     opc = extract32(insn, 29, 2);
6217     shift_type = extract32(insn, 22, 2);
6218     invert = extract32(insn, 21, 1);
6219     rm = extract32(insn, 16, 5);
6220     shift_amount = extract32(insn, 10, 6);
6221     rn = extract32(insn, 5, 5);
6222     rd = extract32(insn, 0, 5);
6223 
6224     if (!sf && (shift_amount & (1 << 5))) {
6225         unallocated_encoding(s);
6226         return;
6227     }
6228 
6229     tcg_rd = cpu_reg(s, rd);
6230 
6231     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6232         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6233          * register-register MOV and MVN, so it is worth special casing.
6234          */
6235         tcg_rm = cpu_reg(s, rm);
6236         if (invert) {
6237             tcg_gen_not_i64(tcg_rd, tcg_rm);
6238             if (!sf) {
6239                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6240             }
6241         } else {
6242             if (sf) {
6243                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6244             } else {
6245                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6246             }
6247         }
6248         return;
6249     }
6250 
6251     tcg_rm = read_cpu_reg(s, rm, sf);
6252 
6253     if (shift_amount) {
6254         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6255     }
6256 
6257     tcg_rn = cpu_reg(s, rn);
6258 
6259     switch (opc | (invert << 2)) {
6260     case 0: /* AND */
6261     case 3: /* ANDS */
6262         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6263         break;
6264     case 1: /* ORR */
6265         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6266         break;
6267     case 2: /* EOR */
6268         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6269         break;
6270     case 4: /* BIC */
6271     case 7: /* BICS */
6272         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6273         break;
6274     case 5: /* ORN */
6275         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6276         break;
6277     case 6: /* EON */
6278         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6279         break;
6280     default:
6281         assert(FALSE);
6282         break;
6283     }
6284 
6285     if (!sf) {
6286         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6287     }
6288 
6289     if (opc == 3) {
6290         gen_logic_CC(sf, tcg_rd);
6291     }
6292 }
6293 
6294 /*
6295  * Add/subtract (extended register)
6296  *
6297  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
6298  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6299  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
6300  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6301  *
6302  *  sf: 0 -> 32bit, 1 -> 64bit
6303  *  op: 0 -> add  , 1 -> sub
6304  *   S: 1 -> set flags
6305  * opt: 00
6306  * option: extension type (see DecodeRegExtend)
6307  * imm3: optional shift to Rm
6308  *
6309  * Rd = Rn + LSL(extend(Rm), amount)
6310  */
6311 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6312 {
6313     int rd = extract32(insn, 0, 5);
6314     int rn = extract32(insn, 5, 5);
6315     int imm3 = extract32(insn, 10, 3);
6316     int option = extract32(insn, 13, 3);
6317     int rm = extract32(insn, 16, 5);
6318     int opt = extract32(insn, 22, 2);
6319     bool setflags = extract32(insn, 29, 1);
6320     bool sub_op = extract32(insn, 30, 1);
6321     bool sf = extract32(insn, 31, 1);
6322 
6323     TCGv_i64 tcg_rm, tcg_rn; /* temps */
6324     TCGv_i64 tcg_rd;
6325     TCGv_i64 tcg_result;
6326 
6327     if (imm3 > 4 || opt != 0) {
6328         unallocated_encoding(s);
6329         return;
6330     }
6331 
6332     /* non-flag setting ops may use SP */
6333     if (!setflags) {
6334         tcg_rd = cpu_reg_sp(s, rd);
6335     } else {
6336         tcg_rd = cpu_reg(s, rd);
6337     }
6338     tcg_rn = read_cpu_reg_sp(s, rn, sf);
6339 
6340     tcg_rm = read_cpu_reg(s, rm, sf);
6341     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6342 
6343     tcg_result = tcg_temp_new_i64();
6344 
6345     if (!setflags) {
6346         if (sub_op) {
6347             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6348         } else {
6349             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6350         }
6351     } else {
6352         if (sub_op) {
6353             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6354         } else {
6355             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6356         }
6357     }
6358 
6359     if (sf) {
6360         tcg_gen_mov_i64(tcg_rd, tcg_result);
6361     } else {
6362         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6363     }
6364 }
6365 
6366 /*
6367  * Add/subtract (shifted register)
6368  *
6369  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
6370  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6371  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
6372  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6373  *
6374  *    sf: 0 -> 32bit, 1 -> 64bit
6375  *    op: 0 -> add  , 1 -> sub
6376  *     S: 1 -> set flags
6377  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6378  *  imm6: Shift amount to apply to Rm before the add/sub
6379  */
6380 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6381 {
6382     int rd = extract32(insn, 0, 5);
6383     int rn = extract32(insn, 5, 5);
6384     int imm6 = extract32(insn, 10, 6);
6385     int rm = extract32(insn, 16, 5);
6386     int shift_type = extract32(insn, 22, 2);
6387     bool setflags = extract32(insn, 29, 1);
6388     bool sub_op = extract32(insn, 30, 1);
6389     bool sf = extract32(insn, 31, 1);
6390 
6391     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6392     TCGv_i64 tcg_rn, tcg_rm;
6393     TCGv_i64 tcg_result;
6394 
6395     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6396         unallocated_encoding(s);
6397         return;
6398     }
6399 
6400     tcg_rn = read_cpu_reg(s, rn, sf);
6401     tcg_rm = read_cpu_reg(s, rm, sf);
6402 
6403     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6404 
6405     tcg_result = tcg_temp_new_i64();
6406 
6407     if (!setflags) {
6408         if (sub_op) {
6409             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6410         } else {
6411             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6412         }
6413     } else {
6414         if (sub_op) {
6415             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6416         } else {
6417             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6418         }
6419     }
6420 
6421     if (sf) {
6422         tcg_gen_mov_i64(tcg_rd, tcg_result);
6423     } else {
6424         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6425     }
6426 }
6427 
6428 /* Data-processing (3 source)
6429  *
6430  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
6431  *  +--+------+-----------+------+------+----+------+------+------+
6432  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6433  *  +--+------+-----------+------+------+----+------+------+------+
6434  */
6435 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6436 {
6437     int rd = extract32(insn, 0, 5);
6438     int rn = extract32(insn, 5, 5);
6439     int ra = extract32(insn, 10, 5);
6440     int rm = extract32(insn, 16, 5);
6441     int op_id = (extract32(insn, 29, 3) << 4) |
6442         (extract32(insn, 21, 3) << 1) |
6443         extract32(insn, 15, 1);
6444     bool sf = extract32(insn, 31, 1);
6445     bool is_sub = extract32(op_id, 0, 1);
6446     bool is_high = extract32(op_id, 2, 1);
6447     bool is_signed = false;
6448     TCGv_i64 tcg_op1;
6449     TCGv_i64 tcg_op2;
6450     TCGv_i64 tcg_tmp;
6451 
6452     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6453     switch (op_id) {
6454     case 0x42: /* SMADDL */
6455     case 0x43: /* SMSUBL */
6456     case 0x44: /* SMULH */
6457         is_signed = true;
6458         break;
6459     case 0x0: /* MADD (32bit) */
6460     case 0x1: /* MSUB (32bit) */
6461     case 0x40: /* MADD (64bit) */
6462     case 0x41: /* MSUB (64bit) */
6463     case 0x4a: /* UMADDL */
6464     case 0x4b: /* UMSUBL */
6465     case 0x4c: /* UMULH */
6466         break;
6467     default:
6468         unallocated_encoding(s);
6469         return;
6470     }
6471 
6472     if (is_high) {
6473         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6474         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6475         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6476         TCGv_i64 tcg_rm = cpu_reg(s, rm);
6477 
6478         if (is_signed) {
6479             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6480         } else {
6481             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6482         }
6483         return;
6484     }
6485 
6486     tcg_op1 = tcg_temp_new_i64();
6487     tcg_op2 = tcg_temp_new_i64();
6488     tcg_tmp = tcg_temp_new_i64();
6489 
6490     if (op_id < 0x42) {
6491         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6492         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6493     } else {
6494         if (is_signed) {
6495             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6496             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6497         } else {
6498             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6499             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6500         }
6501     }
6502 
6503     if (ra == 31 && !is_sub) {
6504         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6505         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6506     } else {
6507         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6508         if (is_sub) {
6509             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6510         } else {
6511             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6512         }
6513     }
6514 
6515     if (!sf) {
6516         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6517     }
6518 }
6519 
6520 /* Add/subtract (with carry)
6521  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
6522  * +--+--+--+------------------------+------+-------------+------+-----+
6523  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
6524  * +--+--+--+------------------------+------+-------------+------+-----+
6525  */
6526 
6527 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6528 {
6529     unsigned int sf, op, setflags, rm, rn, rd;
6530     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6531 
6532     sf = extract32(insn, 31, 1);
6533     op = extract32(insn, 30, 1);
6534     setflags = extract32(insn, 29, 1);
6535     rm = extract32(insn, 16, 5);
6536     rn = extract32(insn, 5, 5);
6537     rd = extract32(insn, 0, 5);
6538 
6539     tcg_rd = cpu_reg(s, rd);
6540     tcg_rn = cpu_reg(s, rn);
6541 
6542     if (op) {
6543         tcg_y = tcg_temp_new_i64();
6544         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6545     } else {
6546         tcg_y = cpu_reg(s, rm);
6547     }
6548 
6549     if (setflags) {
6550         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6551     } else {
6552         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6553     }
6554 }
6555 
6556 /*
6557  * Rotate right into flags
6558  *  31 30 29                21       15          10      5  4      0
6559  * +--+--+--+-----------------+--------+-----------+------+--+------+
6560  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
6561  * +--+--+--+-----------------+--------+-----------+------+--+------+
6562  */
6563 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6564 {
6565     int mask = extract32(insn, 0, 4);
6566     int o2 = extract32(insn, 4, 1);
6567     int rn = extract32(insn, 5, 5);
6568     int imm6 = extract32(insn, 15, 6);
6569     int sf_op_s = extract32(insn, 29, 3);
6570     TCGv_i64 tcg_rn;
6571     TCGv_i32 nzcv;
6572 
6573     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6574         unallocated_encoding(s);
6575         return;
6576     }
6577 
6578     tcg_rn = read_cpu_reg(s, rn, 1);
6579     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6580 
6581     nzcv = tcg_temp_new_i32();
6582     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6583 
6584     if (mask & 8) { /* N */
6585         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6586     }
6587     if (mask & 4) { /* Z */
6588         tcg_gen_not_i32(cpu_ZF, nzcv);
6589         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6590     }
6591     if (mask & 2) { /* C */
6592         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6593     }
6594     if (mask & 1) { /* V */
6595         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6596     }
6597 }
6598 
6599 /*
6600  * Evaluate into flags
6601  *  31 30 29                21        15   14        10      5  4      0
6602  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6603  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6604  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6605  */
6606 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6607 {
6608     int o3_mask = extract32(insn, 0, 5);
6609     int rn = extract32(insn, 5, 5);
6610     int o2 = extract32(insn, 15, 6);
6611     int sz = extract32(insn, 14, 1);
6612     int sf_op_s = extract32(insn, 29, 3);
6613     TCGv_i32 tmp;
6614     int shift;
6615 
6616     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6617         !dc_isar_feature(aa64_condm_4, s)) {
6618         unallocated_encoding(s);
6619         return;
6620     }
6621     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6622 
6623     tmp = tcg_temp_new_i32();
6624     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6625     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6626     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6627     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6628     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6629 }
6630 
6631 /* Conditional compare (immediate / register)
6632  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6633  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6634  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6635  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6636  *        [1]                             y                [0]       [0]
6637  */
6638 static void disas_cc(DisasContext *s, uint32_t insn)
6639 {
6640     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6641     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6642     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6643     DisasCompare c;
6644 
6645     if (!extract32(insn, 29, 1)) {
6646         unallocated_encoding(s);
6647         return;
6648     }
6649     if (insn & (1 << 10 | 1 << 4)) {
6650         unallocated_encoding(s);
6651         return;
6652     }
6653     sf = extract32(insn, 31, 1);
6654     op = extract32(insn, 30, 1);
6655     is_imm = extract32(insn, 11, 1);
6656     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6657     cond = extract32(insn, 12, 4);
6658     rn = extract32(insn, 5, 5);
6659     nzcv = extract32(insn, 0, 4);
6660 
6661     /* Set T0 = !COND.  */
6662     tcg_t0 = tcg_temp_new_i32();
6663     arm_test_cc(&c, cond);
6664     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6665 
6666     /* Load the arguments for the new comparison.  */
6667     if (is_imm) {
6668         tcg_y = tcg_temp_new_i64();
6669         tcg_gen_movi_i64(tcg_y, y);
6670     } else {
6671         tcg_y = cpu_reg(s, y);
6672     }
6673     tcg_rn = cpu_reg(s, rn);
6674 
6675     /* Set the flags for the new comparison.  */
6676     tcg_tmp = tcg_temp_new_i64();
6677     if (op) {
6678         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6679     } else {
6680         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6681     }
6682 
6683     /* If COND was false, force the flags to #nzcv.  Compute two masks
6684      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6685      * For tcg hosts that support ANDC, we can make do with just T1.
6686      * In either case, allow the tcg optimizer to delete any unused mask.
6687      */
6688     tcg_t1 = tcg_temp_new_i32();
6689     tcg_t2 = tcg_temp_new_i32();
6690     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6691     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6692 
6693     if (nzcv & 8) { /* N */
6694         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6695     } else {
6696         if (TCG_TARGET_HAS_andc_i32) {
6697             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6698         } else {
6699             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6700         }
6701     }
6702     if (nzcv & 4) { /* Z */
6703         if (TCG_TARGET_HAS_andc_i32) {
6704             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6705         } else {
6706             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6707         }
6708     } else {
6709         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6710     }
6711     if (nzcv & 2) { /* C */
6712         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6713     } else {
6714         if (TCG_TARGET_HAS_andc_i32) {
6715             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6716         } else {
6717             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6718         }
6719     }
6720     if (nzcv & 1) { /* V */
6721         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6722     } else {
6723         if (TCG_TARGET_HAS_andc_i32) {
6724             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6725         } else {
6726             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6727         }
6728     }
6729 }
6730 
6731 /* Conditional select
6732  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6733  * +----+----+---+-----------------+------+------+-----+------+------+
6734  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6735  * +----+----+---+-----------------+------+------+-----+------+------+
6736  */
6737 static void disas_cond_select(DisasContext *s, uint32_t insn)
6738 {
6739     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6740     TCGv_i64 tcg_rd, zero;
6741     DisasCompare64 c;
6742 
6743     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6744         /* S == 1 or op2<1> == 1 */
6745         unallocated_encoding(s);
6746         return;
6747     }
6748     sf = extract32(insn, 31, 1);
6749     else_inv = extract32(insn, 30, 1);
6750     rm = extract32(insn, 16, 5);
6751     cond = extract32(insn, 12, 4);
6752     else_inc = extract32(insn, 10, 1);
6753     rn = extract32(insn, 5, 5);
6754     rd = extract32(insn, 0, 5);
6755 
6756     tcg_rd = cpu_reg(s, rd);
6757 
6758     a64_test_cc(&c, cond);
6759     zero = tcg_constant_i64(0);
6760 
6761     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6762         /* CSET & CSETM.  */
6763         if (else_inv) {
6764             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6765                                    tcg_rd, c.value, zero);
6766         } else {
6767             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6768                                 tcg_rd, c.value, zero);
6769         }
6770     } else {
6771         TCGv_i64 t_true = cpu_reg(s, rn);
6772         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6773         if (else_inv && else_inc) {
6774             tcg_gen_neg_i64(t_false, t_false);
6775         } else if (else_inv) {
6776             tcg_gen_not_i64(t_false, t_false);
6777         } else if (else_inc) {
6778             tcg_gen_addi_i64(t_false, t_false, 1);
6779         }
6780         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6781     }
6782 
6783     if (!sf) {
6784         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6785     }
6786 }
6787 
6788 static void handle_clz(DisasContext *s, unsigned int sf,
6789                        unsigned int rn, unsigned int rd)
6790 {
6791     TCGv_i64 tcg_rd, tcg_rn;
6792     tcg_rd = cpu_reg(s, rd);
6793     tcg_rn = cpu_reg(s, rn);
6794 
6795     if (sf) {
6796         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6797     } else {
6798         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6799         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6800         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6801         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6802     }
6803 }
6804 
6805 static void handle_cls(DisasContext *s, unsigned int sf,
6806                        unsigned int rn, unsigned int rd)
6807 {
6808     TCGv_i64 tcg_rd, tcg_rn;
6809     tcg_rd = cpu_reg(s, rd);
6810     tcg_rn = cpu_reg(s, rn);
6811 
6812     if (sf) {
6813         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6814     } else {
6815         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6816         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6817         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6818         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6819     }
6820 }
6821 
6822 static void handle_rbit(DisasContext *s, unsigned int sf,
6823                         unsigned int rn, unsigned int rd)
6824 {
6825     TCGv_i64 tcg_rd, tcg_rn;
6826     tcg_rd = cpu_reg(s, rd);
6827     tcg_rn = cpu_reg(s, rn);
6828 
6829     if (sf) {
6830         gen_helper_rbit64(tcg_rd, tcg_rn);
6831     } else {
6832         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6833         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6834         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6835         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6836     }
6837 }
6838 
6839 /* REV with sf==1, opcode==3 ("REV64") */
6840 static void handle_rev64(DisasContext *s, unsigned int sf,
6841                          unsigned int rn, unsigned int rd)
6842 {
6843     if (!sf) {
6844         unallocated_encoding(s);
6845         return;
6846     }
6847     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6848 }
6849 
6850 /* REV with sf==0, opcode==2
6851  * REV32 (sf==1, opcode==2)
6852  */
6853 static void handle_rev32(DisasContext *s, unsigned int sf,
6854                          unsigned int rn, unsigned int rd)
6855 {
6856     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6857     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6858 
6859     if (sf) {
6860         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6861         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6862     } else {
6863         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6864     }
6865 }
6866 
6867 /* REV16 (opcode==1) */
6868 static void handle_rev16(DisasContext *s, unsigned int sf,
6869                          unsigned int rn, unsigned int rd)
6870 {
6871     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6872     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6873     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6874     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6875 
6876     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6877     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6878     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6879     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6880     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6881 }
6882 
6883 /* Data-processing (1 source)
6884  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6885  * +----+---+---+-----------------+---------+--------+------+------+
6886  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6887  * +----+---+---+-----------------+---------+--------+------+------+
6888  */
6889 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6890 {
6891     unsigned int sf, opcode, opcode2, rn, rd;
6892     TCGv_i64 tcg_rd;
6893 
6894     if (extract32(insn, 29, 1)) {
6895         unallocated_encoding(s);
6896         return;
6897     }
6898 
6899     sf = extract32(insn, 31, 1);
6900     opcode = extract32(insn, 10, 6);
6901     opcode2 = extract32(insn, 16, 5);
6902     rn = extract32(insn, 5, 5);
6903     rd = extract32(insn, 0, 5);
6904 
6905 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6906 
6907     switch (MAP(sf, opcode2, opcode)) {
6908     case MAP(0, 0x00, 0x00): /* RBIT */
6909     case MAP(1, 0x00, 0x00):
6910         handle_rbit(s, sf, rn, rd);
6911         break;
6912     case MAP(0, 0x00, 0x01): /* REV16 */
6913     case MAP(1, 0x00, 0x01):
6914         handle_rev16(s, sf, rn, rd);
6915         break;
6916     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6917     case MAP(1, 0x00, 0x02):
6918         handle_rev32(s, sf, rn, rd);
6919         break;
6920     case MAP(1, 0x00, 0x03): /* REV64 */
6921         handle_rev64(s, sf, rn, rd);
6922         break;
6923     case MAP(0, 0x00, 0x04): /* CLZ */
6924     case MAP(1, 0x00, 0x04):
6925         handle_clz(s, sf, rn, rd);
6926         break;
6927     case MAP(0, 0x00, 0x05): /* CLS */
6928     case MAP(1, 0x00, 0x05):
6929         handle_cls(s, sf, rn, rd);
6930         break;
6931     case MAP(1, 0x01, 0x00): /* PACIA */
6932         if (s->pauth_active) {
6933             tcg_rd = cpu_reg(s, rd);
6934             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6935         } else if (!dc_isar_feature(aa64_pauth, s)) {
6936             goto do_unallocated;
6937         }
6938         break;
6939     case MAP(1, 0x01, 0x01): /* PACIB */
6940         if (s->pauth_active) {
6941             tcg_rd = cpu_reg(s, rd);
6942             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6943         } else if (!dc_isar_feature(aa64_pauth, s)) {
6944             goto do_unallocated;
6945         }
6946         break;
6947     case MAP(1, 0x01, 0x02): /* PACDA */
6948         if (s->pauth_active) {
6949             tcg_rd = cpu_reg(s, rd);
6950             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6951         } else if (!dc_isar_feature(aa64_pauth, s)) {
6952             goto do_unallocated;
6953         }
6954         break;
6955     case MAP(1, 0x01, 0x03): /* PACDB */
6956         if (s->pauth_active) {
6957             tcg_rd = cpu_reg(s, rd);
6958             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6959         } else if (!dc_isar_feature(aa64_pauth, s)) {
6960             goto do_unallocated;
6961         }
6962         break;
6963     case MAP(1, 0x01, 0x04): /* AUTIA */
6964         if (s->pauth_active) {
6965             tcg_rd = cpu_reg(s, rd);
6966             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6967         } else if (!dc_isar_feature(aa64_pauth, s)) {
6968             goto do_unallocated;
6969         }
6970         break;
6971     case MAP(1, 0x01, 0x05): /* AUTIB */
6972         if (s->pauth_active) {
6973             tcg_rd = cpu_reg(s, rd);
6974             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6975         } else if (!dc_isar_feature(aa64_pauth, s)) {
6976             goto do_unallocated;
6977         }
6978         break;
6979     case MAP(1, 0x01, 0x06): /* AUTDA */
6980         if (s->pauth_active) {
6981             tcg_rd = cpu_reg(s, rd);
6982             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6983         } else if (!dc_isar_feature(aa64_pauth, s)) {
6984             goto do_unallocated;
6985         }
6986         break;
6987     case MAP(1, 0x01, 0x07): /* AUTDB */
6988         if (s->pauth_active) {
6989             tcg_rd = cpu_reg(s, rd);
6990             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6991         } else if (!dc_isar_feature(aa64_pauth, s)) {
6992             goto do_unallocated;
6993         }
6994         break;
6995     case MAP(1, 0x01, 0x08): /* PACIZA */
6996         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6997             goto do_unallocated;
6998         } else if (s->pauth_active) {
6999             tcg_rd = cpu_reg(s, rd);
7000             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7001         }
7002         break;
7003     case MAP(1, 0x01, 0x09): /* PACIZB */
7004         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7005             goto do_unallocated;
7006         } else if (s->pauth_active) {
7007             tcg_rd = cpu_reg(s, rd);
7008             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7009         }
7010         break;
7011     case MAP(1, 0x01, 0x0a): /* PACDZA */
7012         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7013             goto do_unallocated;
7014         } else if (s->pauth_active) {
7015             tcg_rd = cpu_reg(s, rd);
7016             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7017         }
7018         break;
7019     case MAP(1, 0x01, 0x0b): /* PACDZB */
7020         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7021             goto do_unallocated;
7022         } else if (s->pauth_active) {
7023             tcg_rd = cpu_reg(s, rd);
7024             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7025         }
7026         break;
7027     case MAP(1, 0x01, 0x0c): /* AUTIZA */
7028         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7029             goto do_unallocated;
7030         } else if (s->pauth_active) {
7031             tcg_rd = cpu_reg(s, rd);
7032             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7033         }
7034         break;
7035     case MAP(1, 0x01, 0x0d): /* AUTIZB */
7036         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7037             goto do_unallocated;
7038         } else if (s->pauth_active) {
7039             tcg_rd = cpu_reg(s, rd);
7040             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7041         }
7042         break;
7043     case MAP(1, 0x01, 0x0e): /* AUTDZA */
7044         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7045             goto do_unallocated;
7046         } else if (s->pauth_active) {
7047             tcg_rd = cpu_reg(s, rd);
7048             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7049         }
7050         break;
7051     case MAP(1, 0x01, 0x0f): /* AUTDZB */
7052         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7053             goto do_unallocated;
7054         } else if (s->pauth_active) {
7055             tcg_rd = cpu_reg(s, rd);
7056             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7057         }
7058         break;
7059     case MAP(1, 0x01, 0x10): /* XPACI */
7060         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7061             goto do_unallocated;
7062         } else if (s->pauth_active) {
7063             tcg_rd = cpu_reg(s, rd);
7064             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7065         }
7066         break;
7067     case MAP(1, 0x01, 0x11): /* XPACD */
7068         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7069             goto do_unallocated;
7070         } else if (s->pauth_active) {
7071             tcg_rd = cpu_reg(s, rd);
7072             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7073         }
7074         break;
7075     default:
7076     do_unallocated:
7077         unallocated_encoding(s);
7078         break;
7079     }
7080 
7081 #undef MAP
7082 }
7083 
7084 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7085                        unsigned int rm, unsigned int rn, unsigned int rd)
7086 {
7087     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7088     tcg_rd = cpu_reg(s, rd);
7089 
7090     if (!sf && is_signed) {
7091         tcg_n = tcg_temp_new_i64();
7092         tcg_m = tcg_temp_new_i64();
7093         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7094         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7095     } else {
7096         tcg_n = read_cpu_reg(s, rn, sf);
7097         tcg_m = read_cpu_reg(s, rm, sf);
7098     }
7099 
7100     if (is_signed) {
7101         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7102     } else {
7103         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7104     }
7105 
7106     if (!sf) { /* zero extend final result */
7107         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7108     }
7109 }
7110 
7111 /* LSLV, LSRV, ASRV, RORV */
7112 static void handle_shift_reg(DisasContext *s,
7113                              enum a64_shift_type shift_type, unsigned int sf,
7114                              unsigned int rm, unsigned int rn, unsigned int rd)
7115 {
7116     TCGv_i64 tcg_shift = tcg_temp_new_i64();
7117     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7118     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7119 
7120     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7121     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7122 }
7123 
7124 /* CRC32[BHWX], CRC32C[BHWX] */
7125 static void handle_crc32(DisasContext *s,
7126                          unsigned int sf, unsigned int sz, bool crc32c,
7127                          unsigned int rm, unsigned int rn, unsigned int rd)
7128 {
7129     TCGv_i64 tcg_acc, tcg_val;
7130     TCGv_i32 tcg_bytes;
7131 
7132     if (!dc_isar_feature(aa64_crc32, s)
7133         || (sf == 1 && sz != 3)
7134         || (sf == 0 && sz == 3)) {
7135         unallocated_encoding(s);
7136         return;
7137     }
7138 
7139     if (sz == 3) {
7140         tcg_val = cpu_reg(s, rm);
7141     } else {
7142         uint64_t mask;
7143         switch (sz) {
7144         case 0:
7145             mask = 0xFF;
7146             break;
7147         case 1:
7148             mask = 0xFFFF;
7149             break;
7150         case 2:
7151             mask = 0xFFFFFFFF;
7152             break;
7153         default:
7154             g_assert_not_reached();
7155         }
7156         tcg_val = tcg_temp_new_i64();
7157         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7158     }
7159 
7160     tcg_acc = cpu_reg(s, rn);
7161     tcg_bytes = tcg_constant_i32(1 << sz);
7162 
7163     if (crc32c) {
7164         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7165     } else {
7166         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7167     }
7168 }
7169 
7170 /* Data-processing (2 source)
7171  *   31   30  29 28             21 20  16 15    10 9    5 4    0
7172  * +----+---+---+-----------------+------+--------+------+------+
7173  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
7174  * +----+---+---+-----------------+------+--------+------+------+
7175  */
7176 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7177 {
7178     unsigned int sf, rm, opcode, rn, rd, setflag;
7179     sf = extract32(insn, 31, 1);
7180     setflag = extract32(insn, 29, 1);
7181     rm = extract32(insn, 16, 5);
7182     opcode = extract32(insn, 10, 6);
7183     rn = extract32(insn, 5, 5);
7184     rd = extract32(insn, 0, 5);
7185 
7186     if (setflag && opcode != 0) {
7187         unallocated_encoding(s);
7188         return;
7189     }
7190 
7191     switch (opcode) {
7192     case 0: /* SUBP(S) */
7193         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7194             goto do_unallocated;
7195         } else {
7196             TCGv_i64 tcg_n, tcg_m, tcg_d;
7197 
7198             tcg_n = read_cpu_reg_sp(s, rn, true);
7199             tcg_m = read_cpu_reg_sp(s, rm, true);
7200             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7201             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7202             tcg_d = cpu_reg(s, rd);
7203 
7204             if (setflag) {
7205                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7206             } else {
7207                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7208             }
7209         }
7210         break;
7211     case 2: /* UDIV */
7212         handle_div(s, false, sf, rm, rn, rd);
7213         break;
7214     case 3: /* SDIV */
7215         handle_div(s, true, sf, rm, rn, rd);
7216         break;
7217     case 4: /* IRG */
7218         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7219             goto do_unallocated;
7220         }
7221         if (s->ata[0]) {
7222             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7223                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
7224         } else {
7225             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7226                                              cpu_reg_sp(s, rn));
7227         }
7228         break;
7229     case 5: /* GMI */
7230         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7231             goto do_unallocated;
7232         } else {
7233             TCGv_i64 t = tcg_temp_new_i64();
7234 
7235             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7236             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7237             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7238         }
7239         break;
7240     case 8: /* LSLV */
7241         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7242         break;
7243     case 9: /* LSRV */
7244         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7245         break;
7246     case 10: /* ASRV */
7247         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7248         break;
7249     case 11: /* RORV */
7250         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7251         break;
7252     case 12: /* PACGA */
7253         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7254             goto do_unallocated;
7255         }
7256         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7257                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
7258         break;
7259     case 16:
7260     case 17:
7261     case 18:
7262     case 19:
7263     case 20:
7264     case 21:
7265     case 22:
7266     case 23: /* CRC32 */
7267     {
7268         int sz = extract32(opcode, 0, 2);
7269         bool crc32c = extract32(opcode, 2, 1);
7270         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7271         break;
7272     }
7273     default:
7274     do_unallocated:
7275         unallocated_encoding(s);
7276         break;
7277     }
7278 }
7279 
7280 /*
7281  * Data processing - register
7282  *  31  30 29  28      25    21  20  16      10         0
7283  * +--+---+--+---+-------+-----+-------+-------+---------+
7284  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
7285  * +--+---+--+---+-------+-----+-------+-------+---------+
7286  */
7287 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7288 {
7289     int op0 = extract32(insn, 30, 1);
7290     int op1 = extract32(insn, 28, 1);
7291     int op2 = extract32(insn, 21, 4);
7292     int op3 = extract32(insn, 10, 6);
7293 
7294     if (!op1) {
7295         if (op2 & 8) {
7296             if (op2 & 1) {
7297                 /* Add/sub (extended register) */
7298                 disas_add_sub_ext_reg(s, insn);
7299             } else {
7300                 /* Add/sub (shifted register) */
7301                 disas_add_sub_reg(s, insn);
7302             }
7303         } else {
7304             /* Logical (shifted register) */
7305             disas_logic_reg(s, insn);
7306         }
7307         return;
7308     }
7309 
7310     switch (op2) {
7311     case 0x0:
7312         switch (op3) {
7313         case 0x00: /* Add/subtract (with carry) */
7314             disas_adc_sbc(s, insn);
7315             break;
7316 
7317         case 0x01: /* Rotate right into flags */
7318         case 0x21:
7319             disas_rotate_right_into_flags(s, insn);
7320             break;
7321 
7322         case 0x02: /* Evaluate into flags */
7323         case 0x12:
7324         case 0x22:
7325         case 0x32:
7326             disas_evaluate_into_flags(s, insn);
7327             break;
7328 
7329         default:
7330             goto do_unallocated;
7331         }
7332         break;
7333 
7334     case 0x2: /* Conditional compare */
7335         disas_cc(s, insn); /* both imm and reg forms */
7336         break;
7337 
7338     case 0x4: /* Conditional select */
7339         disas_cond_select(s, insn);
7340         break;
7341 
7342     case 0x6: /* Data-processing */
7343         if (op0) {    /* (1 source) */
7344             disas_data_proc_1src(s, insn);
7345         } else {      /* (2 source) */
7346             disas_data_proc_2src(s, insn);
7347         }
7348         break;
7349     case 0x8 ... 0xf: /* (3 source) */
7350         disas_data_proc_3src(s, insn);
7351         break;
7352 
7353     default:
7354     do_unallocated:
7355         unallocated_encoding(s);
7356         break;
7357     }
7358 }
7359 
7360 static void handle_fp_compare(DisasContext *s, int size,
7361                               unsigned int rn, unsigned int rm,
7362                               bool cmp_with_zero, bool signal_all_nans)
7363 {
7364     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7365     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7366 
7367     if (size == MO_64) {
7368         TCGv_i64 tcg_vn, tcg_vm;
7369 
7370         tcg_vn = read_fp_dreg(s, rn);
7371         if (cmp_with_zero) {
7372             tcg_vm = tcg_constant_i64(0);
7373         } else {
7374             tcg_vm = read_fp_dreg(s, rm);
7375         }
7376         if (signal_all_nans) {
7377             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7378         } else {
7379             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7380         }
7381     } else {
7382         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7383         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7384 
7385         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7386         if (cmp_with_zero) {
7387             tcg_gen_movi_i32(tcg_vm, 0);
7388         } else {
7389             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7390         }
7391 
7392         switch (size) {
7393         case MO_32:
7394             if (signal_all_nans) {
7395                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7396             } else {
7397                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7398             }
7399             break;
7400         case MO_16:
7401             if (signal_all_nans) {
7402                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7403             } else {
7404                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7405             }
7406             break;
7407         default:
7408             g_assert_not_reached();
7409         }
7410     }
7411 
7412     gen_set_nzcv(tcg_flags);
7413 }
7414 
7415 /* Floating point compare
7416  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
7417  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7418  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
7419  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7420  */
7421 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7422 {
7423     unsigned int mos, type, rm, op, rn, opc, op2r;
7424     int size;
7425 
7426     mos = extract32(insn, 29, 3);
7427     type = extract32(insn, 22, 2);
7428     rm = extract32(insn, 16, 5);
7429     op = extract32(insn, 14, 2);
7430     rn = extract32(insn, 5, 5);
7431     opc = extract32(insn, 3, 2);
7432     op2r = extract32(insn, 0, 3);
7433 
7434     if (mos || op || op2r) {
7435         unallocated_encoding(s);
7436         return;
7437     }
7438 
7439     switch (type) {
7440     case 0:
7441         size = MO_32;
7442         break;
7443     case 1:
7444         size = MO_64;
7445         break;
7446     case 3:
7447         size = MO_16;
7448         if (dc_isar_feature(aa64_fp16, s)) {
7449             break;
7450         }
7451         /* fallthru */
7452     default:
7453         unallocated_encoding(s);
7454         return;
7455     }
7456 
7457     if (!fp_access_check(s)) {
7458         return;
7459     }
7460 
7461     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7462 }
7463 
7464 /* Floating point conditional compare
7465  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
7466  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7467  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
7468  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7469  */
7470 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7471 {
7472     unsigned int mos, type, rm, cond, rn, op, nzcv;
7473     TCGLabel *label_continue = NULL;
7474     int size;
7475 
7476     mos = extract32(insn, 29, 3);
7477     type = extract32(insn, 22, 2);
7478     rm = extract32(insn, 16, 5);
7479     cond = extract32(insn, 12, 4);
7480     rn = extract32(insn, 5, 5);
7481     op = extract32(insn, 4, 1);
7482     nzcv = extract32(insn, 0, 4);
7483 
7484     if (mos) {
7485         unallocated_encoding(s);
7486         return;
7487     }
7488 
7489     switch (type) {
7490     case 0:
7491         size = MO_32;
7492         break;
7493     case 1:
7494         size = MO_64;
7495         break;
7496     case 3:
7497         size = MO_16;
7498         if (dc_isar_feature(aa64_fp16, s)) {
7499             break;
7500         }
7501         /* fallthru */
7502     default:
7503         unallocated_encoding(s);
7504         return;
7505     }
7506 
7507     if (!fp_access_check(s)) {
7508         return;
7509     }
7510 
7511     if (cond < 0x0e) { /* not always */
7512         TCGLabel *label_match = gen_new_label();
7513         label_continue = gen_new_label();
7514         arm_gen_test_cc(cond, label_match);
7515         /* nomatch: */
7516         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7517         tcg_gen_br(label_continue);
7518         gen_set_label(label_match);
7519     }
7520 
7521     handle_fp_compare(s, size, rn, rm, false, op);
7522 
7523     if (cond < 0x0e) {
7524         gen_set_label(label_continue);
7525     }
7526 }
7527 
7528 /* Floating-point data-processing (1 source) - half precision */
7529 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7530 {
7531     TCGv_ptr fpst = NULL;
7532     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7533     TCGv_i32 tcg_res = tcg_temp_new_i32();
7534 
7535     switch (opcode) {
7536     case 0x0: /* FMOV */
7537         tcg_gen_mov_i32(tcg_res, tcg_op);
7538         break;
7539     case 0x1: /* FABS */
7540         gen_vfp_absh(tcg_res, tcg_op);
7541         break;
7542     case 0x2: /* FNEG */
7543         gen_vfp_negh(tcg_res, tcg_op);
7544         break;
7545     case 0x3: /* FSQRT */
7546         fpst = fpstatus_ptr(FPST_FPCR_F16);
7547         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7548         break;
7549     case 0x8: /* FRINTN */
7550     case 0x9: /* FRINTP */
7551     case 0xa: /* FRINTM */
7552     case 0xb: /* FRINTZ */
7553     case 0xc: /* FRINTA */
7554     {
7555         TCGv_i32 tcg_rmode;
7556 
7557         fpst = fpstatus_ptr(FPST_FPCR_F16);
7558         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7559         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7560         gen_restore_rmode(tcg_rmode, fpst);
7561         break;
7562     }
7563     case 0xe: /* FRINTX */
7564         fpst = fpstatus_ptr(FPST_FPCR_F16);
7565         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7566         break;
7567     case 0xf: /* FRINTI */
7568         fpst = fpstatus_ptr(FPST_FPCR_F16);
7569         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7570         break;
7571     default:
7572         g_assert_not_reached();
7573     }
7574 
7575     write_fp_sreg(s, rd, tcg_res);
7576 }
7577 
7578 /* Floating-point data-processing (1 source) - single precision */
7579 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7580 {
7581     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7582     TCGv_i32 tcg_op, tcg_res;
7583     TCGv_ptr fpst;
7584     int rmode = -1;
7585 
7586     tcg_op = read_fp_sreg(s, rn);
7587     tcg_res = tcg_temp_new_i32();
7588 
7589     switch (opcode) {
7590     case 0x0: /* FMOV */
7591         tcg_gen_mov_i32(tcg_res, tcg_op);
7592         goto done;
7593     case 0x1: /* FABS */
7594         gen_vfp_abss(tcg_res, tcg_op);
7595         goto done;
7596     case 0x2: /* FNEG */
7597         gen_vfp_negs(tcg_res, tcg_op);
7598         goto done;
7599     case 0x3: /* FSQRT */
7600         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7601         goto done;
7602     case 0x6: /* BFCVT */
7603         gen_fpst = gen_helper_bfcvt;
7604         break;
7605     case 0x8: /* FRINTN */
7606     case 0x9: /* FRINTP */
7607     case 0xa: /* FRINTM */
7608     case 0xb: /* FRINTZ */
7609     case 0xc: /* FRINTA */
7610         rmode = opcode & 7;
7611         gen_fpst = gen_helper_rints;
7612         break;
7613     case 0xe: /* FRINTX */
7614         gen_fpst = gen_helper_rints_exact;
7615         break;
7616     case 0xf: /* FRINTI */
7617         gen_fpst = gen_helper_rints;
7618         break;
7619     case 0x10: /* FRINT32Z */
7620         rmode = FPROUNDING_ZERO;
7621         gen_fpst = gen_helper_frint32_s;
7622         break;
7623     case 0x11: /* FRINT32X */
7624         gen_fpst = gen_helper_frint32_s;
7625         break;
7626     case 0x12: /* FRINT64Z */
7627         rmode = FPROUNDING_ZERO;
7628         gen_fpst = gen_helper_frint64_s;
7629         break;
7630     case 0x13: /* FRINT64X */
7631         gen_fpst = gen_helper_frint64_s;
7632         break;
7633     default:
7634         g_assert_not_reached();
7635     }
7636 
7637     fpst = fpstatus_ptr(FPST_FPCR);
7638     if (rmode >= 0) {
7639         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7640         gen_fpst(tcg_res, tcg_op, fpst);
7641         gen_restore_rmode(tcg_rmode, fpst);
7642     } else {
7643         gen_fpst(tcg_res, tcg_op, fpst);
7644     }
7645 
7646  done:
7647     write_fp_sreg(s, rd, tcg_res);
7648 }
7649 
7650 /* Floating-point data-processing (1 source) - double precision */
7651 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7652 {
7653     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7654     TCGv_i64 tcg_op, tcg_res;
7655     TCGv_ptr fpst;
7656     int rmode = -1;
7657 
7658     switch (opcode) {
7659     case 0x0: /* FMOV */
7660         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7661         return;
7662     }
7663 
7664     tcg_op = read_fp_dreg(s, rn);
7665     tcg_res = tcg_temp_new_i64();
7666 
7667     switch (opcode) {
7668     case 0x1: /* FABS */
7669         gen_vfp_absd(tcg_res, tcg_op);
7670         goto done;
7671     case 0x2: /* FNEG */
7672         gen_vfp_negd(tcg_res, tcg_op);
7673         goto done;
7674     case 0x3: /* FSQRT */
7675         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7676         goto done;
7677     case 0x8: /* FRINTN */
7678     case 0x9: /* FRINTP */
7679     case 0xa: /* FRINTM */
7680     case 0xb: /* FRINTZ */
7681     case 0xc: /* FRINTA */
7682         rmode = opcode & 7;
7683         gen_fpst = gen_helper_rintd;
7684         break;
7685     case 0xe: /* FRINTX */
7686         gen_fpst = gen_helper_rintd_exact;
7687         break;
7688     case 0xf: /* FRINTI */
7689         gen_fpst = gen_helper_rintd;
7690         break;
7691     case 0x10: /* FRINT32Z */
7692         rmode = FPROUNDING_ZERO;
7693         gen_fpst = gen_helper_frint32_d;
7694         break;
7695     case 0x11: /* FRINT32X */
7696         gen_fpst = gen_helper_frint32_d;
7697         break;
7698     case 0x12: /* FRINT64Z */
7699         rmode = FPROUNDING_ZERO;
7700         gen_fpst = gen_helper_frint64_d;
7701         break;
7702     case 0x13: /* FRINT64X */
7703         gen_fpst = gen_helper_frint64_d;
7704         break;
7705     default:
7706         g_assert_not_reached();
7707     }
7708 
7709     fpst = fpstatus_ptr(FPST_FPCR);
7710     if (rmode >= 0) {
7711         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7712         gen_fpst(tcg_res, tcg_op, fpst);
7713         gen_restore_rmode(tcg_rmode, fpst);
7714     } else {
7715         gen_fpst(tcg_res, tcg_op, fpst);
7716     }
7717 
7718  done:
7719     write_fp_dreg(s, rd, tcg_res);
7720 }
7721 
7722 static void handle_fp_fcvt(DisasContext *s, int opcode,
7723                            int rd, int rn, int dtype, int ntype)
7724 {
7725     switch (ntype) {
7726     case 0x0:
7727     {
7728         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7729         if (dtype == 1) {
7730             /* Single to double */
7731             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7732             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7733             write_fp_dreg(s, rd, tcg_rd);
7734         } else {
7735             /* Single to half */
7736             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7737             TCGv_i32 ahp = get_ahp_flag();
7738             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7739 
7740             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7741             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7742             write_fp_sreg(s, rd, tcg_rd);
7743         }
7744         break;
7745     }
7746     case 0x1:
7747     {
7748         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7749         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7750         if (dtype == 0) {
7751             /* Double to single */
7752             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7753         } else {
7754             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7755             TCGv_i32 ahp = get_ahp_flag();
7756             /* Double to half */
7757             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7758             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7759         }
7760         write_fp_sreg(s, rd, tcg_rd);
7761         break;
7762     }
7763     case 0x3:
7764     {
7765         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7766         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7767         TCGv_i32 tcg_ahp = get_ahp_flag();
7768         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7769         if (dtype == 0) {
7770             /* Half to single */
7771             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7772             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7773             write_fp_sreg(s, rd, tcg_rd);
7774         } else {
7775             /* Half to double */
7776             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7777             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7778             write_fp_dreg(s, rd, tcg_rd);
7779         }
7780         break;
7781     }
7782     default:
7783         g_assert_not_reached();
7784     }
7785 }
7786 
7787 /* Floating point data-processing (1 source)
7788  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7789  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7790  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7791  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7792  */
7793 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7794 {
7795     int mos = extract32(insn, 29, 3);
7796     int type = extract32(insn, 22, 2);
7797     int opcode = extract32(insn, 15, 6);
7798     int rn = extract32(insn, 5, 5);
7799     int rd = extract32(insn, 0, 5);
7800 
7801     if (mos) {
7802         goto do_unallocated;
7803     }
7804 
7805     switch (opcode) {
7806     case 0x4: case 0x5: case 0x7:
7807     {
7808         /* FCVT between half, single and double precision */
7809         int dtype = extract32(opcode, 0, 2);
7810         if (type == 2 || dtype == type) {
7811             goto do_unallocated;
7812         }
7813         if (!fp_access_check(s)) {
7814             return;
7815         }
7816 
7817         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7818         break;
7819     }
7820 
7821     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7822         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7823             goto do_unallocated;
7824         }
7825         /* fall through */
7826     case 0x0 ... 0x3:
7827     case 0x8 ... 0xc:
7828     case 0xe ... 0xf:
7829         /* 32-to-32 and 64-to-64 ops */
7830         switch (type) {
7831         case 0:
7832             if (!fp_access_check(s)) {
7833                 return;
7834             }
7835             handle_fp_1src_single(s, opcode, rd, rn);
7836             break;
7837         case 1:
7838             if (!fp_access_check(s)) {
7839                 return;
7840             }
7841             handle_fp_1src_double(s, opcode, rd, rn);
7842             break;
7843         case 3:
7844             if (!dc_isar_feature(aa64_fp16, s)) {
7845                 goto do_unallocated;
7846             }
7847 
7848             if (!fp_access_check(s)) {
7849                 return;
7850             }
7851             handle_fp_1src_half(s, opcode, rd, rn);
7852             break;
7853         default:
7854             goto do_unallocated;
7855         }
7856         break;
7857 
7858     case 0x6:
7859         switch (type) {
7860         case 1: /* BFCVT */
7861             if (!dc_isar_feature(aa64_bf16, s)) {
7862                 goto do_unallocated;
7863             }
7864             if (!fp_access_check(s)) {
7865                 return;
7866             }
7867             handle_fp_1src_single(s, opcode, rd, rn);
7868             break;
7869         default:
7870             goto do_unallocated;
7871         }
7872         break;
7873 
7874     default:
7875     do_unallocated:
7876         unallocated_encoding(s);
7877         break;
7878     }
7879 }
7880 
7881 /* Floating point immediate
7882  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7883  * +---+---+---+-----------+------+---+------------+-------+------+------+
7884  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7885  * +---+---+---+-----------+------+---+------------+-------+------+------+
7886  */
7887 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7888 {
7889     int rd = extract32(insn, 0, 5);
7890     int imm5 = extract32(insn, 5, 5);
7891     int imm8 = extract32(insn, 13, 8);
7892     int type = extract32(insn, 22, 2);
7893     int mos = extract32(insn, 29, 3);
7894     uint64_t imm;
7895     MemOp sz;
7896 
7897     if (mos || imm5) {
7898         unallocated_encoding(s);
7899         return;
7900     }
7901 
7902     switch (type) {
7903     case 0:
7904         sz = MO_32;
7905         break;
7906     case 1:
7907         sz = MO_64;
7908         break;
7909     case 3:
7910         sz = MO_16;
7911         if (dc_isar_feature(aa64_fp16, s)) {
7912             break;
7913         }
7914         /* fallthru */
7915     default:
7916         unallocated_encoding(s);
7917         return;
7918     }
7919 
7920     if (!fp_access_check(s)) {
7921         return;
7922     }
7923 
7924     imm = vfp_expand_imm(sz, imm8);
7925     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7926 }
7927 
7928 /* Handle floating point <=> fixed point conversions. Note that we can
7929  * also deal with fp <=> integer conversions as a special case (scale == 64)
7930  * OPTME: consider handling that special case specially or at least skipping
7931  * the call to scalbn in the helpers for zero shifts.
7932  */
7933 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7934                            bool itof, int rmode, int scale, int sf, int type)
7935 {
7936     bool is_signed = !(opcode & 1);
7937     TCGv_ptr tcg_fpstatus;
7938     TCGv_i32 tcg_shift, tcg_single;
7939     TCGv_i64 tcg_double;
7940 
7941     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7942 
7943     tcg_shift = tcg_constant_i32(64 - scale);
7944 
7945     if (itof) {
7946         TCGv_i64 tcg_int = cpu_reg(s, rn);
7947         if (!sf) {
7948             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7949 
7950             if (is_signed) {
7951                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7952             } else {
7953                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7954             }
7955 
7956             tcg_int = tcg_extend;
7957         }
7958 
7959         switch (type) {
7960         case 1: /* float64 */
7961             tcg_double = tcg_temp_new_i64();
7962             if (is_signed) {
7963                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7964                                      tcg_shift, tcg_fpstatus);
7965             } else {
7966                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7967                                      tcg_shift, tcg_fpstatus);
7968             }
7969             write_fp_dreg(s, rd, tcg_double);
7970             break;
7971 
7972         case 0: /* float32 */
7973             tcg_single = tcg_temp_new_i32();
7974             if (is_signed) {
7975                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7976                                      tcg_shift, tcg_fpstatus);
7977             } else {
7978                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7979                                      tcg_shift, tcg_fpstatus);
7980             }
7981             write_fp_sreg(s, rd, tcg_single);
7982             break;
7983 
7984         case 3: /* float16 */
7985             tcg_single = tcg_temp_new_i32();
7986             if (is_signed) {
7987                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7988                                      tcg_shift, tcg_fpstatus);
7989             } else {
7990                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7991                                      tcg_shift, tcg_fpstatus);
7992             }
7993             write_fp_sreg(s, rd, tcg_single);
7994             break;
7995 
7996         default:
7997             g_assert_not_reached();
7998         }
7999     } else {
8000         TCGv_i64 tcg_int = cpu_reg(s, rd);
8001         TCGv_i32 tcg_rmode;
8002 
8003         if (extract32(opcode, 2, 1)) {
8004             /* There are too many rounding modes to all fit into rmode,
8005              * so FCVTA[US] is a special case.
8006              */
8007             rmode = FPROUNDING_TIEAWAY;
8008         }
8009 
8010         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8011 
8012         switch (type) {
8013         case 1: /* float64 */
8014             tcg_double = read_fp_dreg(s, rn);
8015             if (is_signed) {
8016                 if (!sf) {
8017                     gen_helper_vfp_tosld(tcg_int, tcg_double,
8018                                          tcg_shift, tcg_fpstatus);
8019                 } else {
8020                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
8021                                          tcg_shift, tcg_fpstatus);
8022                 }
8023             } else {
8024                 if (!sf) {
8025                     gen_helper_vfp_tould(tcg_int, tcg_double,
8026                                          tcg_shift, tcg_fpstatus);
8027                 } else {
8028                     gen_helper_vfp_touqd(tcg_int, tcg_double,
8029                                          tcg_shift, tcg_fpstatus);
8030                 }
8031             }
8032             if (!sf) {
8033                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8034             }
8035             break;
8036 
8037         case 0: /* float32 */
8038             tcg_single = read_fp_sreg(s, rn);
8039             if (sf) {
8040                 if (is_signed) {
8041                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
8042                                          tcg_shift, tcg_fpstatus);
8043                 } else {
8044                     gen_helper_vfp_touqs(tcg_int, tcg_single,
8045                                          tcg_shift, tcg_fpstatus);
8046                 }
8047             } else {
8048                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8049                 if (is_signed) {
8050                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
8051                                          tcg_shift, tcg_fpstatus);
8052                 } else {
8053                     gen_helper_vfp_touls(tcg_dest, tcg_single,
8054                                          tcg_shift, tcg_fpstatus);
8055                 }
8056                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8057             }
8058             break;
8059 
8060         case 3: /* float16 */
8061             tcg_single = read_fp_sreg(s, rn);
8062             if (sf) {
8063                 if (is_signed) {
8064                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
8065                                          tcg_shift, tcg_fpstatus);
8066                 } else {
8067                     gen_helper_vfp_touqh(tcg_int, tcg_single,
8068                                          tcg_shift, tcg_fpstatus);
8069                 }
8070             } else {
8071                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8072                 if (is_signed) {
8073                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
8074                                          tcg_shift, tcg_fpstatus);
8075                 } else {
8076                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
8077                                          tcg_shift, tcg_fpstatus);
8078                 }
8079                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8080             }
8081             break;
8082 
8083         default:
8084             g_assert_not_reached();
8085         }
8086 
8087         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8088     }
8089 }
8090 
8091 /* Floating point <-> fixed point conversions
8092  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
8093  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8094  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
8095  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8096  */
8097 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8098 {
8099     int rd = extract32(insn, 0, 5);
8100     int rn = extract32(insn, 5, 5);
8101     int scale = extract32(insn, 10, 6);
8102     int opcode = extract32(insn, 16, 3);
8103     int rmode = extract32(insn, 19, 2);
8104     int type = extract32(insn, 22, 2);
8105     bool sbit = extract32(insn, 29, 1);
8106     bool sf = extract32(insn, 31, 1);
8107     bool itof;
8108 
8109     if (sbit || (!sf && scale < 32)) {
8110         unallocated_encoding(s);
8111         return;
8112     }
8113 
8114     switch (type) {
8115     case 0: /* float32 */
8116     case 1: /* float64 */
8117         break;
8118     case 3: /* float16 */
8119         if (dc_isar_feature(aa64_fp16, s)) {
8120             break;
8121         }
8122         /* fallthru */
8123     default:
8124         unallocated_encoding(s);
8125         return;
8126     }
8127 
8128     switch ((rmode << 3) | opcode) {
8129     case 0x2: /* SCVTF */
8130     case 0x3: /* UCVTF */
8131         itof = true;
8132         break;
8133     case 0x18: /* FCVTZS */
8134     case 0x19: /* FCVTZU */
8135         itof = false;
8136         break;
8137     default:
8138         unallocated_encoding(s);
8139         return;
8140     }
8141 
8142     if (!fp_access_check(s)) {
8143         return;
8144     }
8145 
8146     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8147 }
8148 
8149 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8150 {
8151     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8152      * without conversion.
8153      */
8154 
8155     if (itof) {
8156         TCGv_i64 tcg_rn = cpu_reg(s, rn);
8157         TCGv_i64 tmp;
8158 
8159         switch (type) {
8160         case 0:
8161             /* 32 bit */
8162             tmp = tcg_temp_new_i64();
8163             tcg_gen_ext32u_i64(tmp, tcg_rn);
8164             write_fp_dreg(s, rd, tmp);
8165             break;
8166         case 1:
8167             /* 64 bit */
8168             write_fp_dreg(s, rd, tcg_rn);
8169             break;
8170         case 2:
8171             /* 64 bit to top half. */
8172             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8173             clear_vec_high(s, true, rd);
8174             break;
8175         case 3:
8176             /* 16 bit */
8177             tmp = tcg_temp_new_i64();
8178             tcg_gen_ext16u_i64(tmp, tcg_rn);
8179             write_fp_dreg(s, rd, tmp);
8180             break;
8181         default:
8182             g_assert_not_reached();
8183         }
8184     } else {
8185         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8186 
8187         switch (type) {
8188         case 0:
8189             /* 32 bit */
8190             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8191             break;
8192         case 1:
8193             /* 64 bit */
8194             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8195             break;
8196         case 2:
8197             /* 64 bits from top half */
8198             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8199             break;
8200         case 3:
8201             /* 16 bit */
8202             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8203             break;
8204         default:
8205             g_assert_not_reached();
8206         }
8207     }
8208 }
8209 
8210 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8211 {
8212     TCGv_i64 t = read_fp_dreg(s, rn);
8213     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8214 
8215     gen_helper_fjcvtzs(t, t, fpstatus);
8216 
8217     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8218     tcg_gen_extrh_i64_i32(cpu_ZF, t);
8219     tcg_gen_movi_i32(cpu_CF, 0);
8220     tcg_gen_movi_i32(cpu_NF, 0);
8221     tcg_gen_movi_i32(cpu_VF, 0);
8222 }
8223 
8224 /* Floating point <-> integer conversions
8225  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
8226  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8227  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8228  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8229  */
8230 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8231 {
8232     int rd = extract32(insn, 0, 5);
8233     int rn = extract32(insn, 5, 5);
8234     int opcode = extract32(insn, 16, 3);
8235     int rmode = extract32(insn, 19, 2);
8236     int type = extract32(insn, 22, 2);
8237     bool sbit = extract32(insn, 29, 1);
8238     bool sf = extract32(insn, 31, 1);
8239     bool itof = false;
8240 
8241     if (sbit) {
8242         goto do_unallocated;
8243     }
8244 
8245     switch (opcode) {
8246     case 2: /* SCVTF */
8247     case 3: /* UCVTF */
8248         itof = true;
8249         /* fallthru */
8250     case 4: /* FCVTAS */
8251     case 5: /* FCVTAU */
8252         if (rmode != 0) {
8253             goto do_unallocated;
8254         }
8255         /* fallthru */
8256     case 0: /* FCVT[NPMZ]S */
8257     case 1: /* FCVT[NPMZ]U */
8258         switch (type) {
8259         case 0: /* float32 */
8260         case 1: /* float64 */
8261             break;
8262         case 3: /* float16 */
8263             if (!dc_isar_feature(aa64_fp16, s)) {
8264                 goto do_unallocated;
8265             }
8266             break;
8267         default:
8268             goto do_unallocated;
8269         }
8270         if (!fp_access_check(s)) {
8271             return;
8272         }
8273         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8274         break;
8275 
8276     default:
8277         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8278         case 0b01100110: /* FMOV half <-> 32-bit int */
8279         case 0b01100111:
8280         case 0b11100110: /* FMOV half <-> 64-bit int */
8281         case 0b11100111:
8282             if (!dc_isar_feature(aa64_fp16, s)) {
8283                 goto do_unallocated;
8284             }
8285             /* fallthru */
8286         case 0b00000110: /* FMOV 32-bit */
8287         case 0b00000111:
8288         case 0b10100110: /* FMOV 64-bit */
8289         case 0b10100111:
8290         case 0b11001110: /* FMOV top half of 128-bit */
8291         case 0b11001111:
8292             if (!fp_access_check(s)) {
8293                 return;
8294             }
8295             itof = opcode & 1;
8296             handle_fmov(s, rd, rn, type, itof);
8297             break;
8298 
8299         case 0b00111110: /* FJCVTZS */
8300             if (!dc_isar_feature(aa64_jscvt, s)) {
8301                 goto do_unallocated;
8302             } else if (fp_access_check(s)) {
8303                 handle_fjcvtzs(s, rd, rn);
8304             }
8305             break;
8306 
8307         default:
8308         do_unallocated:
8309             unallocated_encoding(s);
8310             return;
8311         }
8312         break;
8313     }
8314 }
8315 
8316 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8317  *   31  30  29 28     25 24                          0
8318  * +---+---+---+---------+-----------------------------+
8319  * |   | 0 |   | 1 1 1 1 |                             |
8320  * +---+---+---+---------+-----------------------------+
8321  */
8322 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8323 {
8324     if (extract32(insn, 24, 1)) {
8325         unallocated_encoding(s); /* in decodetree */
8326     } else if (extract32(insn, 21, 1) == 0) {
8327         /* Floating point to fixed point conversions */
8328         disas_fp_fixed_conv(s, insn);
8329     } else {
8330         switch (extract32(insn, 10, 2)) {
8331         case 1:
8332             /* Floating point conditional compare */
8333             disas_fp_ccomp(s, insn);
8334             break;
8335         case 2:
8336             /* Floating point data-processing (2 source) */
8337             unallocated_encoding(s); /* in decodetree */
8338             break;
8339         case 3:
8340             /* Floating point conditional select */
8341             unallocated_encoding(s); /* in decodetree */
8342             break;
8343         case 0:
8344             switch (ctz32(extract32(insn, 12, 4))) {
8345             case 0: /* [15:12] == xxx1 */
8346                 /* Floating point immediate */
8347                 disas_fp_imm(s, insn);
8348                 break;
8349             case 1: /* [15:12] == xx10 */
8350                 /* Floating point compare */
8351                 disas_fp_compare(s, insn);
8352                 break;
8353             case 2: /* [15:12] == x100 */
8354                 /* Floating point data-processing (1 source) */
8355                 disas_fp_1src(s, insn);
8356                 break;
8357             case 3: /* [15:12] == 1000 */
8358                 unallocated_encoding(s);
8359                 break;
8360             default: /* [15:12] == 0000 */
8361                 /* Floating point <-> integer conversions */
8362                 disas_fp_int_conv(s, insn);
8363                 break;
8364             }
8365             break;
8366         }
8367     }
8368 }
8369 
8370 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8371                      int pos)
8372 {
8373     /* Extract 64 bits from the middle of two concatenated 64 bit
8374      * vector register slices left:right. The extracted bits start
8375      * at 'pos' bits into the right (least significant) side.
8376      * We return the result in tcg_right, and guarantee not to
8377      * trash tcg_left.
8378      */
8379     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8380     assert(pos > 0 && pos < 64);
8381 
8382     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8383     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8384     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8385 }
8386 
8387 /* EXT
8388  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8389  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8390  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8391  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8392  */
8393 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8394 {
8395     int is_q = extract32(insn, 30, 1);
8396     int op2 = extract32(insn, 22, 2);
8397     int imm4 = extract32(insn, 11, 4);
8398     int rm = extract32(insn, 16, 5);
8399     int rn = extract32(insn, 5, 5);
8400     int rd = extract32(insn, 0, 5);
8401     int pos = imm4 << 3;
8402     TCGv_i64 tcg_resl, tcg_resh;
8403 
8404     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8405         unallocated_encoding(s);
8406         return;
8407     }
8408 
8409     if (!fp_access_check(s)) {
8410         return;
8411     }
8412 
8413     tcg_resh = tcg_temp_new_i64();
8414     tcg_resl = tcg_temp_new_i64();
8415 
8416     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8417      * either extracting 128 bits from a 128:128 concatenation, or
8418      * extracting 64 bits from a 64:64 concatenation.
8419      */
8420     if (!is_q) {
8421         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8422         if (pos != 0) {
8423             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8424             do_ext64(s, tcg_resh, tcg_resl, pos);
8425         }
8426     } else {
8427         TCGv_i64 tcg_hh;
8428         typedef struct {
8429             int reg;
8430             int elt;
8431         } EltPosns;
8432         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8433         EltPosns *elt = eltposns;
8434 
8435         if (pos >= 64) {
8436             elt++;
8437             pos -= 64;
8438         }
8439 
8440         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8441         elt++;
8442         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8443         elt++;
8444         if (pos != 0) {
8445             do_ext64(s, tcg_resh, tcg_resl, pos);
8446             tcg_hh = tcg_temp_new_i64();
8447             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8448             do_ext64(s, tcg_hh, tcg_resh, pos);
8449         }
8450     }
8451 
8452     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8453     if (is_q) {
8454         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8455     }
8456     clear_vec_high(s, is_q, rd);
8457 }
8458 
8459 /* TBL/TBX
8460  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8461  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8462  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8463  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8464  */
8465 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8466 {
8467     int op2 = extract32(insn, 22, 2);
8468     int is_q = extract32(insn, 30, 1);
8469     int rm = extract32(insn, 16, 5);
8470     int rn = extract32(insn, 5, 5);
8471     int rd = extract32(insn, 0, 5);
8472     int is_tbx = extract32(insn, 12, 1);
8473     int len = (extract32(insn, 13, 2) + 1) * 16;
8474 
8475     if (op2 != 0) {
8476         unallocated_encoding(s);
8477         return;
8478     }
8479 
8480     if (!fp_access_check(s)) {
8481         return;
8482     }
8483 
8484     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8485                        vec_full_reg_offset(s, rm), tcg_env,
8486                        is_q ? 16 : 8, vec_full_reg_size(s),
8487                        (len << 6) | (is_tbx << 5) | rn,
8488                        gen_helper_simd_tblx);
8489 }
8490 
8491 /* ZIP/UZP/TRN
8492  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8493  * +---+---+-------------+------+---+------+---+------------------+------+
8494  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8495  * +---+---+-------------+------+---+------+---+------------------+------+
8496  */
8497 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8498 {
8499     int rd = extract32(insn, 0, 5);
8500     int rn = extract32(insn, 5, 5);
8501     int rm = extract32(insn, 16, 5);
8502     int size = extract32(insn, 22, 2);
8503     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8504      * bit 2 indicates 1 vs 2 variant of the insn.
8505      */
8506     int opcode = extract32(insn, 12, 2);
8507     bool part = extract32(insn, 14, 1);
8508     bool is_q = extract32(insn, 30, 1);
8509     int esize = 8 << size;
8510     int i;
8511     int datasize = is_q ? 128 : 64;
8512     int elements = datasize / esize;
8513     TCGv_i64 tcg_res[2], tcg_ele;
8514 
8515     if (opcode == 0 || (size == 3 && !is_q)) {
8516         unallocated_encoding(s);
8517         return;
8518     }
8519 
8520     if (!fp_access_check(s)) {
8521         return;
8522     }
8523 
8524     tcg_res[0] = tcg_temp_new_i64();
8525     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8526     tcg_ele = tcg_temp_new_i64();
8527 
8528     for (i = 0; i < elements; i++) {
8529         int o, w;
8530 
8531         switch (opcode) {
8532         case 1: /* UZP1/2 */
8533         {
8534             int midpoint = elements / 2;
8535             if (i < midpoint) {
8536                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8537             } else {
8538                 read_vec_element(s, tcg_ele, rm,
8539                                  2 * (i - midpoint) + part, size);
8540             }
8541             break;
8542         }
8543         case 2: /* TRN1/2 */
8544             if (i & 1) {
8545                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8546             } else {
8547                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8548             }
8549             break;
8550         case 3: /* ZIP1/2 */
8551         {
8552             int base = part * elements / 2;
8553             if (i & 1) {
8554                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8555             } else {
8556                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8557             }
8558             break;
8559         }
8560         default:
8561             g_assert_not_reached();
8562         }
8563 
8564         w = (i * esize) / 64;
8565         o = (i * esize) % 64;
8566         if (o == 0) {
8567             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8568         } else {
8569             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8570             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8571         }
8572     }
8573 
8574     for (i = 0; i <= is_q; ++i) {
8575         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8576     }
8577     clear_vec_high(s, is_q, rd);
8578 }
8579 
8580 /*
8581  * do_reduction_op helper
8582  *
8583  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8584  * important for correct NaN propagation that we do these
8585  * operations in exactly the order specified by the pseudocode.
8586  *
8587  * This is a recursive function, TCG temps should be freed by the
8588  * calling function once it is done with the values.
8589  */
8590 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8591                                 int esize, int size, int vmap, TCGv_ptr fpst)
8592 {
8593     if (esize == size) {
8594         int element;
8595         MemOp msize = esize == 16 ? MO_16 : MO_32;
8596         TCGv_i32 tcg_elem;
8597 
8598         /* We should have one register left here */
8599         assert(ctpop8(vmap) == 1);
8600         element = ctz32(vmap);
8601         assert(element < 8);
8602 
8603         tcg_elem = tcg_temp_new_i32();
8604         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8605         return tcg_elem;
8606     } else {
8607         int bits = size / 2;
8608         int shift = ctpop8(vmap) / 2;
8609         int vmap_lo = (vmap >> shift) & vmap;
8610         int vmap_hi = (vmap & ~vmap_lo);
8611         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8612 
8613         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8614         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8615         tcg_res = tcg_temp_new_i32();
8616 
8617         switch (fpopcode) {
8618         case 0x0c: /* fmaxnmv half-precision */
8619             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8620             break;
8621         case 0x0f: /* fmaxv half-precision */
8622             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8623             break;
8624         case 0x1c: /* fminnmv half-precision */
8625             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8626             break;
8627         case 0x1f: /* fminv half-precision */
8628             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8629             break;
8630         case 0x2c: /* fmaxnmv */
8631             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8632             break;
8633         case 0x2f: /* fmaxv */
8634             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8635             break;
8636         case 0x3c: /* fminnmv */
8637             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8638             break;
8639         case 0x3f: /* fminv */
8640             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8641             break;
8642         default:
8643             g_assert_not_reached();
8644         }
8645         return tcg_res;
8646     }
8647 }
8648 
8649 /* AdvSIMD across lanes
8650  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8651  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8652  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8653  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8654  */
8655 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8656 {
8657     int rd = extract32(insn, 0, 5);
8658     int rn = extract32(insn, 5, 5);
8659     int size = extract32(insn, 22, 2);
8660     int opcode = extract32(insn, 12, 5);
8661     bool is_q = extract32(insn, 30, 1);
8662     bool is_u = extract32(insn, 29, 1);
8663     bool is_fp = false;
8664     bool is_min = false;
8665     int esize;
8666     int elements;
8667     int i;
8668     TCGv_i64 tcg_res, tcg_elt;
8669 
8670     switch (opcode) {
8671     case 0x1b: /* ADDV */
8672         if (is_u) {
8673             unallocated_encoding(s);
8674             return;
8675         }
8676         /* fall through */
8677     case 0x3: /* SADDLV, UADDLV */
8678     case 0xa: /* SMAXV, UMAXV */
8679     case 0x1a: /* SMINV, UMINV */
8680         if (size == 3 || (size == 2 && !is_q)) {
8681             unallocated_encoding(s);
8682             return;
8683         }
8684         break;
8685     case 0xc: /* FMAXNMV, FMINNMV */
8686     case 0xf: /* FMAXV, FMINV */
8687         /* Bit 1 of size field encodes min vs max and the actual size
8688          * depends on the encoding of the U bit. If not set (and FP16
8689          * enabled) then we do half-precision float instead of single
8690          * precision.
8691          */
8692         is_min = extract32(size, 1, 1);
8693         is_fp = true;
8694         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8695             size = 1;
8696         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8697             unallocated_encoding(s);
8698             return;
8699         } else {
8700             size = 2;
8701         }
8702         break;
8703     default:
8704         unallocated_encoding(s);
8705         return;
8706     }
8707 
8708     if (!fp_access_check(s)) {
8709         return;
8710     }
8711 
8712     esize = 8 << size;
8713     elements = (is_q ? 128 : 64) / esize;
8714 
8715     tcg_res = tcg_temp_new_i64();
8716     tcg_elt = tcg_temp_new_i64();
8717 
8718     /* These instructions operate across all lanes of a vector
8719      * to produce a single result. We can guarantee that a 64
8720      * bit intermediate is sufficient:
8721      *  + for [US]ADDLV the maximum element size is 32 bits, and
8722      *    the result type is 64 bits
8723      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8724      *    same as the element size, which is 32 bits at most
8725      * For the integer operations we can choose to work at 64
8726      * or 32 bits and truncate at the end; for simplicity
8727      * we use 64 bits always. The floating point
8728      * ops do require 32 bit intermediates, though.
8729      */
8730     if (!is_fp) {
8731         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8732 
8733         for (i = 1; i < elements; i++) {
8734             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8735 
8736             switch (opcode) {
8737             case 0x03: /* SADDLV / UADDLV */
8738             case 0x1b: /* ADDV */
8739                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8740                 break;
8741             case 0x0a: /* SMAXV / UMAXV */
8742                 if (is_u) {
8743                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8744                 } else {
8745                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8746                 }
8747                 break;
8748             case 0x1a: /* SMINV / UMINV */
8749                 if (is_u) {
8750                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8751                 } else {
8752                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8753                 }
8754                 break;
8755             default:
8756                 g_assert_not_reached();
8757             }
8758 
8759         }
8760     } else {
8761         /* Floating point vector reduction ops which work across 32
8762          * bit (single) or 16 bit (half-precision) intermediates.
8763          * Note that correct NaN propagation requires that we do these
8764          * operations in exactly the order specified by the pseudocode.
8765          */
8766         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8767         int fpopcode = opcode | is_min << 4 | is_u << 5;
8768         int vmap = (1 << elements) - 1;
8769         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8770                                              (is_q ? 128 : 64), vmap, fpst);
8771         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8772     }
8773 
8774     /* Now truncate the result to the width required for the final output */
8775     if (opcode == 0x03) {
8776         /* SADDLV, UADDLV: result is 2*esize */
8777         size++;
8778     }
8779 
8780     switch (size) {
8781     case 0:
8782         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8783         break;
8784     case 1:
8785         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8786         break;
8787     case 2:
8788         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8789         break;
8790     case 3:
8791         break;
8792     default:
8793         g_assert_not_reached();
8794     }
8795 
8796     write_fp_dreg(s, rd, tcg_res);
8797 }
8798 
8799 /* AdvSIMD modified immediate
8800  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8801  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8802  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8803  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8804  *
8805  * There are a number of operations that can be carried out here:
8806  *   MOVI - move (shifted) imm into register
8807  *   MVNI - move inverted (shifted) imm into register
8808  *   ORR  - bitwise OR of (shifted) imm with register
8809  *   BIC  - bitwise clear of (shifted) imm with register
8810  * With ARMv8.2 we also have:
8811  *   FMOV half-precision
8812  */
8813 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8814 {
8815     int rd = extract32(insn, 0, 5);
8816     int cmode = extract32(insn, 12, 4);
8817     int o2 = extract32(insn, 11, 1);
8818     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8819     bool is_neg = extract32(insn, 29, 1);
8820     bool is_q = extract32(insn, 30, 1);
8821     uint64_t imm = 0;
8822 
8823     if (o2) {
8824         if (cmode != 0xf || is_neg) {
8825             unallocated_encoding(s);
8826             return;
8827         }
8828         /* FMOV (vector, immediate) - half-precision */
8829         if (!dc_isar_feature(aa64_fp16, s)) {
8830             unallocated_encoding(s);
8831             return;
8832         }
8833         imm = vfp_expand_imm(MO_16, abcdefgh);
8834         /* now duplicate across the lanes */
8835         imm = dup_const(MO_16, imm);
8836     } else {
8837         if (cmode == 0xf && is_neg && !is_q) {
8838             unallocated_encoding(s);
8839             return;
8840         }
8841         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8842     }
8843 
8844     if (!fp_access_check(s)) {
8845         return;
8846     }
8847 
8848     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8849         /* MOVI or MVNI, with MVNI negation handled above.  */
8850         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8851                              vec_full_reg_size(s), imm);
8852     } else {
8853         /* ORR or BIC, with BIC negation to AND handled above.  */
8854         if (is_neg) {
8855             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8856         } else {
8857             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8858         }
8859     }
8860 }
8861 
8862 /*
8863  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8864  *
8865  * This code is handles the common shifting code and is used by both
8866  * the vector and scalar code.
8867  */
8868 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8869                                     TCGv_i64 tcg_rnd, bool accumulate,
8870                                     bool is_u, int size, int shift)
8871 {
8872     bool extended_result = false;
8873     bool round = tcg_rnd != NULL;
8874     int ext_lshift = 0;
8875     TCGv_i64 tcg_src_hi;
8876 
8877     if (round && size == 3) {
8878         extended_result = true;
8879         ext_lshift = 64 - shift;
8880         tcg_src_hi = tcg_temp_new_i64();
8881     } else if (shift == 64) {
8882         if (!accumulate && is_u) {
8883             /* result is zero */
8884             tcg_gen_movi_i64(tcg_res, 0);
8885             return;
8886         }
8887     }
8888 
8889     /* Deal with the rounding step */
8890     if (round) {
8891         if (extended_result) {
8892             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8893             if (!is_u) {
8894                 /* take care of sign extending tcg_res */
8895                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8896                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8897                                  tcg_src, tcg_src_hi,
8898                                  tcg_rnd, tcg_zero);
8899             } else {
8900                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8901                                  tcg_src, tcg_zero,
8902                                  tcg_rnd, tcg_zero);
8903             }
8904         } else {
8905             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8906         }
8907     }
8908 
8909     /* Now do the shift right */
8910     if (round && extended_result) {
8911         /* extended case, >64 bit precision required */
8912         if (ext_lshift == 0) {
8913             /* special case, only high bits matter */
8914             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8915         } else {
8916             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8917             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8918             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8919         }
8920     } else {
8921         if (is_u) {
8922             if (shift == 64) {
8923                 /* essentially shifting in 64 zeros */
8924                 tcg_gen_movi_i64(tcg_src, 0);
8925             } else {
8926                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8927             }
8928         } else {
8929             if (shift == 64) {
8930                 /* effectively extending the sign-bit */
8931                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8932             } else {
8933                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8934             }
8935         }
8936     }
8937 
8938     if (accumulate) {
8939         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8940     } else {
8941         tcg_gen_mov_i64(tcg_res, tcg_src);
8942     }
8943 }
8944 
8945 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8946 static void handle_scalar_simd_shri(DisasContext *s,
8947                                     bool is_u, int immh, int immb,
8948                                     int opcode, int rn, int rd)
8949 {
8950     const int size = 3;
8951     int immhb = immh << 3 | immb;
8952     int shift = 2 * (8 << size) - immhb;
8953     bool accumulate = false;
8954     bool round = false;
8955     bool insert = false;
8956     TCGv_i64 tcg_rn;
8957     TCGv_i64 tcg_rd;
8958     TCGv_i64 tcg_round;
8959 
8960     if (!extract32(immh, 3, 1)) {
8961         unallocated_encoding(s);
8962         return;
8963     }
8964 
8965     if (!fp_access_check(s)) {
8966         return;
8967     }
8968 
8969     switch (opcode) {
8970     case 0x02: /* SSRA / USRA (accumulate) */
8971         accumulate = true;
8972         break;
8973     case 0x04: /* SRSHR / URSHR (rounding) */
8974         round = true;
8975         break;
8976     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8977         accumulate = round = true;
8978         break;
8979     case 0x08: /* SRI */
8980         insert = true;
8981         break;
8982     }
8983 
8984     if (round) {
8985         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8986     } else {
8987         tcg_round = NULL;
8988     }
8989 
8990     tcg_rn = read_fp_dreg(s, rn);
8991     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8992 
8993     if (insert) {
8994         /* shift count same as element size is valid but does nothing;
8995          * special case to avoid potential shift by 64.
8996          */
8997         int esize = 8 << size;
8998         if (shift != esize) {
8999             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
9000             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
9001         }
9002     } else {
9003         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9004                                 accumulate, is_u, size, shift);
9005     }
9006 
9007     write_fp_dreg(s, rd, tcg_rd);
9008 }
9009 
9010 /* SHL/SLI - Scalar shift left */
9011 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9012                                     int immh, int immb, int opcode,
9013                                     int rn, int rd)
9014 {
9015     int size = 32 - clz32(immh) - 1;
9016     int immhb = immh << 3 | immb;
9017     int shift = immhb - (8 << size);
9018     TCGv_i64 tcg_rn;
9019     TCGv_i64 tcg_rd;
9020 
9021     if (!extract32(immh, 3, 1)) {
9022         unallocated_encoding(s);
9023         return;
9024     }
9025 
9026     if (!fp_access_check(s)) {
9027         return;
9028     }
9029 
9030     tcg_rn = read_fp_dreg(s, rn);
9031     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9032 
9033     if (insert) {
9034         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9035     } else {
9036         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9037     }
9038 
9039     write_fp_dreg(s, rd, tcg_rd);
9040 }
9041 
9042 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9043  * (signed/unsigned) narrowing */
9044 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9045                                    bool is_u_shift, bool is_u_narrow,
9046                                    int immh, int immb, int opcode,
9047                                    int rn, int rd)
9048 {
9049     int immhb = immh << 3 | immb;
9050     int size = 32 - clz32(immh) - 1;
9051     int esize = 8 << size;
9052     int shift = (2 * esize) - immhb;
9053     int elements = is_scalar ? 1 : (64 / esize);
9054     bool round = extract32(opcode, 0, 1);
9055     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9056     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9057     TCGv_i32 tcg_rd_narrowed;
9058     TCGv_i64 tcg_final;
9059 
9060     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9061         { gen_helper_neon_narrow_sat_s8,
9062           gen_helper_neon_unarrow_sat8 },
9063         { gen_helper_neon_narrow_sat_s16,
9064           gen_helper_neon_unarrow_sat16 },
9065         { gen_helper_neon_narrow_sat_s32,
9066           gen_helper_neon_unarrow_sat32 },
9067         { NULL, NULL },
9068     };
9069     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9070         gen_helper_neon_narrow_sat_u8,
9071         gen_helper_neon_narrow_sat_u16,
9072         gen_helper_neon_narrow_sat_u32,
9073         NULL
9074     };
9075     NeonGenNarrowEnvFn *narrowfn;
9076 
9077     int i;
9078 
9079     assert(size < 4);
9080 
9081     if (extract32(immh, 3, 1)) {
9082         unallocated_encoding(s);
9083         return;
9084     }
9085 
9086     if (!fp_access_check(s)) {
9087         return;
9088     }
9089 
9090     if (is_u_shift) {
9091         narrowfn = unsigned_narrow_fns[size];
9092     } else {
9093         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9094     }
9095 
9096     tcg_rn = tcg_temp_new_i64();
9097     tcg_rd = tcg_temp_new_i64();
9098     tcg_rd_narrowed = tcg_temp_new_i32();
9099     tcg_final = tcg_temp_new_i64();
9100 
9101     if (round) {
9102         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9103     } else {
9104         tcg_round = NULL;
9105     }
9106 
9107     for (i = 0; i < elements; i++) {
9108         read_vec_element(s, tcg_rn, rn, i, ldop);
9109         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9110                                 false, is_u_shift, size+1, shift);
9111         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9112         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9113         if (i == 0) {
9114             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9115         } else {
9116             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9117         }
9118     }
9119 
9120     if (!is_q) {
9121         write_vec_element(s, tcg_final, rd, 0, MO_64);
9122     } else {
9123         write_vec_element(s, tcg_final, rd, 1, MO_64);
9124     }
9125     clear_vec_high(s, is_q, rd);
9126 }
9127 
9128 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9129 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9130                              bool src_unsigned, bool dst_unsigned,
9131                              int immh, int immb, int rn, int rd)
9132 {
9133     int immhb = immh << 3 | immb;
9134     int size = 32 - clz32(immh) - 1;
9135     int shift = immhb - (8 << size);
9136     int pass;
9137 
9138     assert(immh != 0);
9139     assert(!(scalar && is_q));
9140 
9141     if (!scalar) {
9142         if (!is_q && extract32(immh, 3, 1)) {
9143             unallocated_encoding(s);
9144             return;
9145         }
9146 
9147         /* Since we use the variable-shift helpers we must
9148          * replicate the shift count into each element of
9149          * the tcg_shift value.
9150          */
9151         switch (size) {
9152         case 0:
9153             shift |= shift << 8;
9154             /* fall through */
9155         case 1:
9156             shift |= shift << 16;
9157             break;
9158         case 2:
9159         case 3:
9160             break;
9161         default:
9162             g_assert_not_reached();
9163         }
9164     }
9165 
9166     if (!fp_access_check(s)) {
9167         return;
9168     }
9169 
9170     if (size == 3) {
9171         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9172         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9173             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9174             { NULL, gen_helper_neon_qshl_u64 },
9175         };
9176         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9177         int maxpass = is_q ? 2 : 1;
9178 
9179         for (pass = 0; pass < maxpass; pass++) {
9180             TCGv_i64 tcg_op = tcg_temp_new_i64();
9181 
9182             read_vec_element(s, tcg_op, rn, pass, MO_64);
9183             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9184             write_vec_element(s, tcg_op, rd, pass, MO_64);
9185         }
9186         clear_vec_high(s, is_q, rd);
9187     } else {
9188         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9189         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9190             {
9191                 { gen_helper_neon_qshl_s8,
9192                   gen_helper_neon_qshl_s16,
9193                   gen_helper_neon_qshl_s32 },
9194                 { gen_helper_neon_qshlu_s8,
9195                   gen_helper_neon_qshlu_s16,
9196                   gen_helper_neon_qshlu_s32 }
9197             }, {
9198                 { NULL, NULL, NULL },
9199                 { gen_helper_neon_qshl_u8,
9200                   gen_helper_neon_qshl_u16,
9201                   gen_helper_neon_qshl_u32 }
9202             }
9203         };
9204         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9205         MemOp memop = scalar ? size : MO_32;
9206         int maxpass = scalar ? 1 : is_q ? 4 : 2;
9207 
9208         for (pass = 0; pass < maxpass; pass++) {
9209             TCGv_i32 tcg_op = tcg_temp_new_i32();
9210 
9211             read_vec_element_i32(s, tcg_op, rn, pass, memop);
9212             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9213             if (scalar) {
9214                 switch (size) {
9215                 case 0:
9216                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
9217                     break;
9218                 case 1:
9219                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9220                     break;
9221                 case 2:
9222                     break;
9223                 default:
9224                     g_assert_not_reached();
9225                 }
9226                 write_fp_sreg(s, rd, tcg_op);
9227             } else {
9228                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9229             }
9230         }
9231 
9232         if (!scalar) {
9233             clear_vec_high(s, is_q, rd);
9234         }
9235     }
9236 }
9237 
9238 /* Common vector code for handling integer to FP conversion */
9239 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9240                                    int elements, int is_signed,
9241                                    int fracbits, int size)
9242 {
9243     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9244     TCGv_i32 tcg_shift = NULL;
9245 
9246     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9247     int pass;
9248 
9249     if (fracbits || size == MO_64) {
9250         tcg_shift = tcg_constant_i32(fracbits);
9251     }
9252 
9253     if (size == MO_64) {
9254         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9255         TCGv_i64 tcg_double = tcg_temp_new_i64();
9256 
9257         for (pass = 0; pass < elements; pass++) {
9258             read_vec_element(s, tcg_int64, rn, pass, mop);
9259 
9260             if (is_signed) {
9261                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9262                                      tcg_shift, tcg_fpst);
9263             } else {
9264                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9265                                      tcg_shift, tcg_fpst);
9266             }
9267             if (elements == 1) {
9268                 write_fp_dreg(s, rd, tcg_double);
9269             } else {
9270                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9271             }
9272         }
9273     } else {
9274         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9275         TCGv_i32 tcg_float = tcg_temp_new_i32();
9276 
9277         for (pass = 0; pass < elements; pass++) {
9278             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9279 
9280             switch (size) {
9281             case MO_32:
9282                 if (fracbits) {
9283                     if (is_signed) {
9284                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9285                                              tcg_shift, tcg_fpst);
9286                     } else {
9287                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9288                                              tcg_shift, tcg_fpst);
9289                     }
9290                 } else {
9291                     if (is_signed) {
9292                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9293                     } else {
9294                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9295                     }
9296                 }
9297                 break;
9298             case MO_16:
9299                 if (fracbits) {
9300                     if (is_signed) {
9301                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9302                                              tcg_shift, tcg_fpst);
9303                     } else {
9304                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9305                                              tcg_shift, tcg_fpst);
9306                     }
9307                 } else {
9308                     if (is_signed) {
9309                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9310                     } else {
9311                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9312                     }
9313                 }
9314                 break;
9315             default:
9316                 g_assert_not_reached();
9317             }
9318 
9319             if (elements == 1) {
9320                 write_fp_sreg(s, rd, tcg_float);
9321             } else {
9322                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9323             }
9324         }
9325     }
9326 
9327     clear_vec_high(s, elements << size == 16, rd);
9328 }
9329 
9330 /* UCVTF/SCVTF - Integer to FP conversion */
9331 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9332                                          bool is_q, bool is_u,
9333                                          int immh, int immb, int opcode,
9334                                          int rn, int rd)
9335 {
9336     int size, elements, fracbits;
9337     int immhb = immh << 3 | immb;
9338 
9339     if (immh & 8) {
9340         size = MO_64;
9341         if (!is_scalar && !is_q) {
9342             unallocated_encoding(s);
9343             return;
9344         }
9345     } else if (immh & 4) {
9346         size = MO_32;
9347     } else if (immh & 2) {
9348         size = MO_16;
9349         if (!dc_isar_feature(aa64_fp16, s)) {
9350             unallocated_encoding(s);
9351             return;
9352         }
9353     } else {
9354         /* immh == 0 would be a failure of the decode logic */
9355         g_assert(immh == 1);
9356         unallocated_encoding(s);
9357         return;
9358     }
9359 
9360     if (is_scalar) {
9361         elements = 1;
9362     } else {
9363         elements = (8 << is_q) >> size;
9364     }
9365     fracbits = (16 << size) - immhb;
9366 
9367     if (!fp_access_check(s)) {
9368         return;
9369     }
9370 
9371     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9372 }
9373 
9374 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9375 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9376                                          bool is_q, bool is_u,
9377                                          int immh, int immb, int rn, int rd)
9378 {
9379     int immhb = immh << 3 | immb;
9380     int pass, size, fracbits;
9381     TCGv_ptr tcg_fpstatus;
9382     TCGv_i32 tcg_rmode, tcg_shift;
9383 
9384     if (immh & 0x8) {
9385         size = MO_64;
9386         if (!is_scalar && !is_q) {
9387             unallocated_encoding(s);
9388             return;
9389         }
9390     } else if (immh & 0x4) {
9391         size = MO_32;
9392     } else if (immh & 0x2) {
9393         size = MO_16;
9394         if (!dc_isar_feature(aa64_fp16, s)) {
9395             unallocated_encoding(s);
9396             return;
9397         }
9398     } else {
9399         /* Should have split out AdvSIMD modified immediate earlier.  */
9400         assert(immh == 1);
9401         unallocated_encoding(s);
9402         return;
9403     }
9404 
9405     if (!fp_access_check(s)) {
9406         return;
9407     }
9408 
9409     assert(!(is_scalar && is_q));
9410 
9411     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9412     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9413     fracbits = (16 << size) - immhb;
9414     tcg_shift = tcg_constant_i32(fracbits);
9415 
9416     if (size == MO_64) {
9417         int maxpass = is_scalar ? 1 : 2;
9418 
9419         for (pass = 0; pass < maxpass; pass++) {
9420             TCGv_i64 tcg_op = tcg_temp_new_i64();
9421 
9422             read_vec_element(s, tcg_op, rn, pass, MO_64);
9423             if (is_u) {
9424                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9425             } else {
9426                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9427             }
9428             write_vec_element(s, tcg_op, rd, pass, MO_64);
9429         }
9430         clear_vec_high(s, is_q, rd);
9431     } else {
9432         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9433         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9434 
9435         switch (size) {
9436         case MO_16:
9437             if (is_u) {
9438                 fn = gen_helper_vfp_touhh;
9439             } else {
9440                 fn = gen_helper_vfp_toshh;
9441             }
9442             break;
9443         case MO_32:
9444             if (is_u) {
9445                 fn = gen_helper_vfp_touls;
9446             } else {
9447                 fn = gen_helper_vfp_tosls;
9448             }
9449             break;
9450         default:
9451             g_assert_not_reached();
9452         }
9453 
9454         for (pass = 0; pass < maxpass; pass++) {
9455             TCGv_i32 tcg_op = tcg_temp_new_i32();
9456 
9457             read_vec_element_i32(s, tcg_op, rn, pass, size);
9458             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9459             if (is_scalar) {
9460                 if (size == MO_16 && !is_u) {
9461                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9462                 }
9463                 write_fp_sreg(s, rd, tcg_op);
9464             } else {
9465                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9466             }
9467         }
9468         if (!is_scalar) {
9469             clear_vec_high(s, is_q, rd);
9470         }
9471     }
9472 
9473     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9474 }
9475 
9476 /* AdvSIMD scalar shift by immediate
9477  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9478  * +-----+---+-------------+------+------+--------+---+------+------+
9479  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9480  * +-----+---+-------------+------+------+--------+---+------+------+
9481  *
9482  * This is the scalar version so it works on a fixed sized registers
9483  */
9484 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9485 {
9486     int rd = extract32(insn, 0, 5);
9487     int rn = extract32(insn, 5, 5);
9488     int opcode = extract32(insn, 11, 5);
9489     int immb = extract32(insn, 16, 3);
9490     int immh = extract32(insn, 19, 4);
9491     bool is_u = extract32(insn, 29, 1);
9492 
9493     if (immh == 0) {
9494         unallocated_encoding(s);
9495         return;
9496     }
9497 
9498     switch (opcode) {
9499     case 0x08: /* SRI */
9500         if (!is_u) {
9501             unallocated_encoding(s);
9502             return;
9503         }
9504         /* fall through */
9505     case 0x00: /* SSHR / USHR */
9506     case 0x02: /* SSRA / USRA */
9507     case 0x04: /* SRSHR / URSHR */
9508     case 0x06: /* SRSRA / URSRA */
9509         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9510         break;
9511     case 0x0a: /* SHL / SLI */
9512         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9513         break;
9514     case 0x1c: /* SCVTF, UCVTF */
9515         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9516                                      opcode, rn, rd);
9517         break;
9518     case 0x10: /* SQSHRUN, SQSHRUN2 */
9519     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9520         if (!is_u) {
9521             unallocated_encoding(s);
9522             return;
9523         }
9524         handle_vec_simd_sqshrn(s, true, false, false, true,
9525                                immh, immb, opcode, rn, rd);
9526         break;
9527     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9528     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9529         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9530                                immh, immb, opcode, rn, rd);
9531         break;
9532     case 0xc: /* SQSHLU */
9533         if (!is_u) {
9534             unallocated_encoding(s);
9535             return;
9536         }
9537         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9538         break;
9539     case 0xe: /* SQSHL, UQSHL */
9540         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9541         break;
9542     case 0x1f: /* FCVTZS, FCVTZU */
9543         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9544         break;
9545     default:
9546         unallocated_encoding(s);
9547         break;
9548     }
9549 }
9550 
9551 /* AdvSIMD scalar three different
9552  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9553  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9554  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9555  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9556  */
9557 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9558 {
9559     bool is_u = extract32(insn, 29, 1);
9560     int size = extract32(insn, 22, 2);
9561     int opcode = extract32(insn, 12, 4);
9562     int rm = extract32(insn, 16, 5);
9563     int rn = extract32(insn, 5, 5);
9564     int rd = extract32(insn, 0, 5);
9565 
9566     if (is_u) {
9567         unallocated_encoding(s);
9568         return;
9569     }
9570 
9571     switch (opcode) {
9572     case 0x9: /* SQDMLAL, SQDMLAL2 */
9573     case 0xb: /* SQDMLSL, SQDMLSL2 */
9574     case 0xd: /* SQDMULL, SQDMULL2 */
9575         if (size == 0 || size == 3) {
9576             unallocated_encoding(s);
9577             return;
9578         }
9579         break;
9580     default:
9581         unallocated_encoding(s);
9582         return;
9583     }
9584 
9585     if (!fp_access_check(s)) {
9586         return;
9587     }
9588 
9589     if (size == 2) {
9590         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9591         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9592         TCGv_i64 tcg_res = tcg_temp_new_i64();
9593 
9594         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9595         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9596 
9597         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9598         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9599 
9600         switch (opcode) {
9601         case 0xd: /* SQDMULL, SQDMULL2 */
9602             break;
9603         case 0xb: /* SQDMLSL, SQDMLSL2 */
9604             tcg_gen_neg_i64(tcg_res, tcg_res);
9605             /* fall through */
9606         case 0x9: /* SQDMLAL, SQDMLAL2 */
9607             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9608             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9609                                               tcg_res, tcg_op1);
9610             break;
9611         default:
9612             g_assert_not_reached();
9613         }
9614 
9615         write_fp_dreg(s, rd, tcg_res);
9616     } else {
9617         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9618         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9619         TCGv_i64 tcg_res = tcg_temp_new_i64();
9620 
9621         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9622         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9623 
9624         switch (opcode) {
9625         case 0xd: /* SQDMULL, SQDMULL2 */
9626             break;
9627         case 0xb: /* SQDMLSL, SQDMLSL2 */
9628             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9629             /* fall through */
9630         case 0x9: /* SQDMLAL, SQDMLAL2 */
9631         {
9632             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9633             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9634             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9635                                               tcg_res, tcg_op3);
9636             break;
9637         }
9638         default:
9639             g_assert_not_reached();
9640         }
9641 
9642         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9643         write_fp_dreg(s, rd, tcg_res);
9644     }
9645 }
9646 
9647 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9648                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9649                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9650 {
9651     /* Handle 64->64 opcodes which are shared between the scalar and
9652      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9653      * is valid in either group and also the double-precision fp ops.
9654      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9655      * requires them.
9656      */
9657     TCGCond cond;
9658 
9659     switch (opcode) {
9660     case 0x4: /* CLS, CLZ */
9661         if (u) {
9662             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9663         } else {
9664             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9665         }
9666         break;
9667     case 0x5: /* NOT */
9668         /* This opcode is shared with CNT and RBIT but we have earlier
9669          * enforced that size == 3 if and only if this is the NOT insn.
9670          */
9671         tcg_gen_not_i64(tcg_rd, tcg_rn);
9672         break;
9673     case 0x7: /* SQABS, SQNEG */
9674         if (u) {
9675             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9676         } else {
9677             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9678         }
9679         break;
9680     case 0xa: /* CMLT */
9681         cond = TCG_COND_LT;
9682     do_cmop:
9683         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9684         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9685         break;
9686     case 0x8: /* CMGT, CMGE */
9687         cond = u ? TCG_COND_GE : TCG_COND_GT;
9688         goto do_cmop;
9689     case 0x9: /* CMEQ, CMLE */
9690         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9691         goto do_cmop;
9692     case 0xb: /* ABS, NEG */
9693         if (u) {
9694             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9695         } else {
9696             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9697         }
9698         break;
9699     case 0x2f: /* FABS */
9700         gen_vfp_absd(tcg_rd, tcg_rn);
9701         break;
9702     case 0x6f: /* FNEG */
9703         gen_vfp_negd(tcg_rd, tcg_rn);
9704         break;
9705     case 0x7f: /* FSQRT */
9706         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9707         break;
9708     case 0x1a: /* FCVTNS */
9709     case 0x1b: /* FCVTMS */
9710     case 0x1c: /* FCVTAS */
9711     case 0x3a: /* FCVTPS */
9712     case 0x3b: /* FCVTZS */
9713         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9714         break;
9715     case 0x5a: /* FCVTNU */
9716     case 0x5b: /* FCVTMU */
9717     case 0x5c: /* FCVTAU */
9718     case 0x7a: /* FCVTPU */
9719     case 0x7b: /* FCVTZU */
9720         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9721         break;
9722     case 0x18: /* FRINTN */
9723     case 0x19: /* FRINTM */
9724     case 0x38: /* FRINTP */
9725     case 0x39: /* FRINTZ */
9726     case 0x58: /* FRINTA */
9727     case 0x79: /* FRINTI */
9728         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9729         break;
9730     case 0x59: /* FRINTX */
9731         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9732         break;
9733     case 0x1e: /* FRINT32Z */
9734     case 0x5e: /* FRINT32X */
9735         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9736         break;
9737     case 0x1f: /* FRINT64Z */
9738     case 0x5f: /* FRINT64X */
9739         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9740         break;
9741     default:
9742         g_assert_not_reached();
9743     }
9744 }
9745 
9746 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9747                                    bool is_scalar, bool is_u, bool is_q,
9748                                    int size, int rn, int rd)
9749 {
9750     bool is_double = (size == MO_64);
9751     TCGv_ptr fpst;
9752 
9753     if (!fp_access_check(s)) {
9754         return;
9755     }
9756 
9757     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9758 
9759     if (is_double) {
9760         TCGv_i64 tcg_op = tcg_temp_new_i64();
9761         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9762         TCGv_i64 tcg_res = tcg_temp_new_i64();
9763         NeonGenTwoDoubleOpFn *genfn;
9764         bool swap = false;
9765         int pass;
9766 
9767         switch (opcode) {
9768         case 0x2e: /* FCMLT (zero) */
9769             swap = true;
9770             /* fallthrough */
9771         case 0x2c: /* FCMGT (zero) */
9772             genfn = gen_helper_neon_cgt_f64;
9773             break;
9774         case 0x2d: /* FCMEQ (zero) */
9775             genfn = gen_helper_neon_ceq_f64;
9776             break;
9777         case 0x6d: /* FCMLE (zero) */
9778             swap = true;
9779             /* fall through */
9780         case 0x6c: /* FCMGE (zero) */
9781             genfn = gen_helper_neon_cge_f64;
9782             break;
9783         default:
9784             g_assert_not_reached();
9785         }
9786 
9787         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9788             read_vec_element(s, tcg_op, rn, pass, MO_64);
9789             if (swap) {
9790                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9791             } else {
9792                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9793             }
9794             write_vec_element(s, tcg_res, rd, pass, MO_64);
9795         }
9796 
9797         clear_vec_high(s, !is_scalar, rd);
9798     } else {
9799         TCGv_i32 tcg_op = tcg_temp_new_i32();
9800         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9801         TCGv_i32 tcg_res = tcg_temp_new_i32();
9802         NeonGenTwoSingleOpFn *genfn;
9803         bool swap = false;
9804         int pass, maxpasses;
9805 
9806         if (size == MO_16) {
9807             switch (opcode) {
9808             case 0x2e: /* FCMLT (zero) */
9809                 swap = true;
9810                 /* fall through */
9811             case 0x2c: /* FCMGT (zero) */
9812                 genfn = gen_helper_advsimd_cgt_f16;
9813                 break;
9814             case 0x2d: /* FCMEQ (zero) */
9815                 genfn = gen_helper_advsimd_ceq_f16;
9816                 break;
9817             case 0x6d: /* FCMLE (zero) */
9818                 swap = true;
9819                 /* fall through */
9820             case 0x6c: /* FCMGE (zero) */
9821                 genfn = gen_helper_advsimd_cge_f16;
9822                 break;
9823             default:
9824                 g_assert_not_reached();
9825             }
9826         } else {
9827             switch (opcode) {
9828             case 0x2e: /* FCMLT (zero) */
9829                 swap = true;
9830                 /* fall through */
9831             case 0x2c: /* FCMGT (zero) */
9832                 genfn = gen_helper_neon_cgt_f32;
9833                 break;
9834             case 0x2d: /* FCMEQ (zero) */
9835                 genfn = gen_helper_neon_ceq_f32;
9836                 break;
9837             case 0x6d: /* FCMLE (zero) */
9838                 swap = true;
9839                 /* fall through */
9840             case 0x6c: /* FCMGE (zero) */
9841                 genfn = gen_helper_neon_cge_f32;
9842                 break;
9843             default:
9844                 g_assert_not_reached();
9845             }
9846         }
9847 
9848         if (is_scalar) {
9849             maxpasses = 1;
9850         } else {
9851             int vector_size = 8 << is_q;
9852             maxpasses = vector_size >> size;
9853         }
9854 
9855         for (pass = 0; pass < maxpasses; pass++) {
9856             read_vec_element_i32(s, tcg_op, rn, pass, size);
9857             if (swap) {
9858                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9859             } else {
9860                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9861             }
9862             if (is_scalar) {
9863                 write_fp_sreg(s, rd, tcg_res);
9864             } else {
9865                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9866             }
9867         }
9868 
9869         if (!is_scalar) {
9870             clear_vec_high(s, is_q, rd);
9871         }
9872     }
9873 }
9874 
9875 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9876                                     bool is_scalar, bool is_u, bool is_q,
9877                                     int size, int rn, int rd)
9878 {
9879     bool is_double = (size == 3);
9880     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9881 
9882     if (is_double) {
9883         TCGv_i64 tcg_op = tcg_temp_new_i64();
9884         TCGv_i64 tcg_res = tcg_temp_new_i64();
9885         int pass;
9886 
9887         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9888             read_vec_element(s, tcg_op, rn, pass, MO_64);
9889             switch (opcode) {
9890             case 0x3d: /* FRECPE */
9891                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9892                 break;
9893             case 0x3f: /* FRECPX */
9894                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9895                 break;
9896             case 0x7d: /* FRSQRTE */
9897                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9898                 break;
9899             default:
9900                 g_assert_not_reached();
9901             }
9902             write_vec_element(s, tcg_res, rd, pass, MO_64);
9903         }
9904         clear_vec_high(s, !is_scalar, rd);
9905     } else {
9906         TCGv_i32 tcg_op = tcg_temp_new_i32();
9907         TCGv_i32 tcg_res = tcg_temp_new_i32();
9908         int pass, maxpasses;
9909 
9910         if (is_scalar) {
9911             maxpasses = 1;
9912         } else {
9913             maxpasses = is_q ? 4 : 2;
9914         }
9915 
9916         for (pass = 0; pass < maxpasses; pass++) {
9917             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9918 
9919             switch (opcode) {
9920             case 0x3c: /* URECPE */
9921                 gen_helper_recpe_u32(tcg_res, tcg_op);
9922                 break;
9923             case 0x3d: /* FRECPE */
9924                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9925                 break;
9926             case 0x3f: /* FRECPX */
9927                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9928                 break;
9929             case 0x7d: /* FRSQRTE */
9930                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9931                 break;
9932             default:
9933                 g_assert_not_reached();
9934             }
9935 
9936             if (is_scalar) {
9937                 write_fp_sreg(s, rd, tcg_res);
9938             } else {
9939                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9940             }
9941         }
9942         if (!is_scalar) {
9943             clear_vec_high(s, is_q, rd);
9944         }
9945     }
9946 }
9947 
9948 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9949                                 int opcode, bool u, bool is_q,
9950                                 int size, int rn, int rd)
9951 {
9952     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9953      * in the source becomes a size element in the destination).
9954      */
9955     int pass;
9956     TCGv_i32 tcg_res[2];
9957     int destelt = is_q ? 2 : 0;
9958     int passes = scalar ? 1 : 2;
9959 
9960     if (scalar) {
9961         tcg_res[1] = tcg_constant_i32(0);
9962     }
9963 
9964     for (pass = 0; pass < passes; pass++) {
9965         TCGv_i64 tcg_op = tcg_temp_new_i64();
9966         NeonGenNarrowFn *genfn = NULL;
9967         NeonGenNarrowEnvFn *genenvfn = NULL;
9968 
9969         if (scalar) {
9970             read_vec_element(s, tcg_op, rn, pass, size + 1);
9971         } else {
9972             read_vec_element(s, tcg_op, rn, pass, MO_64);
9973         }
9974         tcg_res[pass] = tcg_temp_new_i32();
9975 
9976         switch (opcode) {
9977         case 0x12: /* XTN, SQXTUN */
9978         {
9979             static NeonGenNarrowFn * const xtnfns[3] = {
9980                 gen_helper_neon_narrow_u8,
9981                 gen_helper_neon_narrow_u16,
9982                 tcg_gen_extrl_i64_i32,
9983             };
9984             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9985                 gen_helper_neon_unarrow_sat8,
9986                 gen_helper_neon_unarrow_sat16,
9987                 gen_helper_neon_unarrow_sat32,
9988             };
9989             if (u) {
9990                 genenvfn = sqxtunfns[size];
9991             } else {
9992                 genfn = xtnfns[size];
9993             }
9994             break;
9995         }
9996         case 0x14: /* SQXTN, UQXTN */
9997         {
9998             static NeonGenNarrowEnvFn * const fns[3][2] = {
9999                 { gen_helper_neon_narrow_sat_s8,
10000                   gen_helper_neon_narrow_sat_u8 },
10001                 { gen_helper_neon_narrow_sat_s16,
10002                   gen_helper_neon_narrow_sat_u16 },
10003                 { gen_helper_neon_narrow_sat_s32,
10004                   gen_helper_neon_narrow_sat_u32 },
10005             };
10006             genenvfn = fns[size][u];
10007             break;
10008         }
10009         case 0x16: /* FCVTN, FCVTN2 */
10010             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10011             if (size == 2) {
10012                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10013             } else {
10014                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10015                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10016                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10017                 TCGv_i32 ahp = get_ahp_flag();
10018 
10019                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10020                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10021                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10022                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10023             }
10024             break;
10025         case 0x36: /* BFCVTN, BFCVTN2 */
10026             {
10027                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10028                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10029             }
10030             break;
10031         case 0x56:  /* FCVTXN, FCVTXN2 */
10032             /* 64 bit to 32 bit float conversion
10033              * with von Neumann rounding (round to odd)
10034              */
10035             assert(size == 2);
10036             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10037             break;
10038         default:
10039             g_assert_not_reached();
10040         }
10041 
10042         if (genfn) {
10043             genfn(tcg_res[pass], tcg_op);
10044         } else if (genenvfn) {
10045             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10046         }
10047     }
10048 
10049     for (pass = 0; pass < 2; pass++) {
10050         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10051     }
10052     clear_vec_high(s, is_q, rd);
10053 }
10054 
10055 /* AdvSIMD scalar two reg misc
10056  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10057  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10058  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10059  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10060  */
10061 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10062 {
10063     int rd = extract32(insn, 0, 5);
10064     int rn = extract32(insn, 5, 5);
10065     int opcode = extract32(insn, 12, 5);
10066     int size = extract32(insn, 22, 2);
10067     bool u = extract32(insn, 29, 1);
10068     bool is_fcvt = false;
10069     int rmode;
10070     TCGv_i32 tcg_rmode;
10071     TCGv_ptr tcg_fpstatus;
10072 
10073     switch (opcode) {
10074     case 0x7: /* SQABS / SQNEG */
10075         break;
10076     case 0xa: /* CMLT */
10077         if (u) {
10078             unallocated_encoding(s);
10079             return;
10080         }
10081         /* fall through */
10082     case 0x8: /* CMGT, CMGE */
10083     case 0x9: /* CMEQ, CMLE */
10084     case 0xb: /* ABS, NEG */
10085         if (size != 3) {
10086             unallocated_encoding(s);
10087             return;
10088         }
10089         break;
10090     case 0x12: /* SQXTUN */
10091         if (!u) {
10092             unallocated_encoding(s);
10093             return;
10094         }
10095         /* fall through */
10096     case 0x14: /* SQXTN, UQXTN */
10097         if (size == 3) {
10098             unallocated_encoding(s);
10099             return;
10100         }
10101         if (!fp_access_check(s)) {
10102             return;
10103         }
10104         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10105         return;
10106     case 0xc ... 0xf:
10107     case 0x16 ... 0x1d:
10108     case 0x1f:
10109         /* Floating point: U, size[1] and opcode indicate operation;
10110          * size[0] indicates single or double precision.
10111          */
10112         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10113         size = extract32(size, 0, 1) ? 3 : 2;
10114         switch (opcode) {
10115         case 0x2c: /* FCMGT (zero) */
10116         case 0x2d: /* FCMEQ (zero) */
10117         case 0x2e: /* FCMLT (zero) */
10118         case 0x6c: /* FCMGE (zero) */
10119         case 0x6d: /* FCMLE (zero) */
10120             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10121             return;
10122         case 0x1d: /* SCVTF */
10123         case 0x5d: /* UCVTF */
10124         {
10125             bool is_signed = (opcode == 0x1d);
10126             if (!fp_access_check(s)) {
10127                 return;
10128             }
10129             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10130             return;
10131         }
10132         case 0x3d: /* FRECPE */
10133         case 0x3f: /* FRECPX */
10134         case 0x7d: /* FRSQRTE */
10135             if (!fp_access_check(s)) {
10136                 return;
10137             }
10138             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10139             return;
10140         case 0x1a: /* FCVTNS */
10141         case 0x1b: /* FCVTMS */
10142         case 0x3a: /* FCVTPS */
10143         case 0x3b: /* FCVTZS */
10144         case 0x5a: /* FCVTNU */
10145         case 0x5b: /* FCVTMU */
10146         case 0x7a: /* FCVTPU */
10147         case 0x7b: /* FCVTZU */
10148             is_fcvt = true;
10149             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10150             break;
10151         case 0x1c: /* FCVTAS */
10152         case 0x5c: /* FCVTAU */
10153             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10154             is_fcvt = true;
10155             rmode = FPROUNDING_TIEAWAY;
10156             break;
10157         case 0x56: /* FCVTXN, FCVTXN2 */
10158             if (size == 2) {
10159                 unallocated_encoding(s);
10160                 return;
10161             }
10162             if (!fp_access_check(s)) {
10163                 return;
10164             }
10165             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10166             return;
10167         default:
10168             unallocated_encoding(s);
10169             return;
10170         }
10171         break;
10172     default:
10173     case 0x3: /* USQADD / SUQADD */
10174         unallocated_encoding(s);
10175         return;
10176     }
10177 
10178     if (!fp_access_check(s)) {
10179         return;
10180     }
10181 
10182     if (is_fcvt) {
10183         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10184         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10185     } else {
10186         tcg_fpstatus = NULL;
10187         tcg_rmode = NULL;
10188     }
10189 
10190     if (size == 3) {
10191         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10192         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10193 
10194         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10195         write_fp_dreg(s, rd, tcg_rd);
10196     } else {
10197         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10198         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10199 
10200         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10201 
10202         switch (opcode) {
10203         case 0x7: /* SQABS, SQNEG */
10204         {
10205             NeonGenOneOpEnvFn *genfn;
10206             static NeonGenOneOpEnvFn * const fns[3][2] = {
10207                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10208                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10209                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10210             };
10211             genfn = fns[size][u];
10212             genfn(tcg_rd, tcg_env, tcg_rn);
10213             break;
10214         }
10215         case 0x1a: /* FCVTNS */
10216         case 0x1b: /* FCVTMS */
10217         case 0x1c: /* FCVTAS */
10218         case 0x3a: /* FCVTPS */
10219         case 0x3b: /* FCVTZS */
10220             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10221                                  tcg_fpstatus);
10222             break;
10223         case 0x5a: /* FCVTNU */
10224         case 0x5b: /* FCVTMU */
10225         case 0x5c: /* FCVTAU */
10226         case 0x7a: /* FCVTPU */
10227         case 0x7b: /* FCVTZU */
10228             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10229                                  tcg_fpstatus);
10230             break;
10231         default:
10232             g_assert_not_reached();
10233         }
10234 
10235         write_fp_sreg(s, rd, tcg_rd);
10236     }
10237 
10238     if (is_fcvt) {
10239         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10240     }
10241 }
10242 
10243 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10244 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10245                                  int immh, int immb, int opcode, int rn, int rd)
10246 {
10247     int size = 32 - clz32(immh) - 1;
10248     int immhb = immh << 3 | immb;
10249     int shift = 2 * (8 << size) - immhb;
10250     GVecGen2iFn *gvec_fn;
10251 
10252     if (extract32(immh, 3, 1) && !is_q) {
10253         unallocated_encoding(s);
10254         return;
10255     }
10256     tcg_debug_assert(size <= 3);
10257 
10258     if (!fp_access_check(s)) {
10259         return;
10260     }
10261 
10262     switch (opcode) {
10263     case 0x02: /* SSRA / USRA (accumulate) */
10264         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10265         break;
10266 
10267     case 0x08: /* SRI */
10268         gvec_fn = gen_gvec_sri;
10269         break;
10270 
10271     case 0x00: /* SSHR / USHR */
10272         if (is_u) {
10273             if (shift == 8 << size) {
10274                 /* Shift count the same size as element size produces zero.  */
10275                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10276                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10277                 return;
10278             }
10279             gvec_fn = tcg_gen_gvec_shri;
10280         } else {
10281             /* Shift count the same size as element size produces all sign.  */
10282             if (shift == 8 << size) {
10283                 shift -= 1;
10284             }
10285             gvec_fn = tcg_gen_gvec_sari;
10286         }
10287         break;
10288 
10289     case 0x04: /* SRSHR / URSHR (rounding) */
10290         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10291         break;
10292 
10293     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10294         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10295         break;
10296 
10297     default:
10298         g_assert_not_reached();
10299     }
10300 
10301     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10302 }
10303 
10304 /* SHL/SLI - Vector shift left */
10305 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10306                                  int immh, int immb, int opcode, int rn, int rd)
10307 {
10308     int size = 32 - clz32(immh) - 1;
10309     int immhb = immh << 3 | immb;
10310     int shift = immhb - (8 << size);
10311 
10312     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10313     assert(size >= 0 && size <= 3);
10314 
10315     if (extract32(immh, 3, 1) && !is_q) {
10316         unallocated_encoding(s);
10317         return;
10318     }
10319 
10320     if (!fp_access_check(s)) {
10321         return;
10322     }
10323 
10324     if (insert) {
10325         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10326     } else {
10327         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10328     }
10329 }
10330 
10331 /* USHLL/SHLL - Vector shift left with widening */
10332 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10333                                  int immh, int immb, int opcode, int rn, int rd)
10334 {
10335     int size = 32 - clz32(immh) - 1;
10336     int immhb = immh << 3 | immb;
10337     int shift = immhb - (8 << size);
10338     int dsize = 64;
10339     int esize = 8 << size;
10340     int elements = dsize/esize;
10341     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10342     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10343     int i;
10344 
10345     if (size >= 3) {
10346         unallocated_encoding(s);
10347         return;
10348     }
10349 
10350     if (!fp_access_check(s)) {
10351         return;
10352     }
10353 
10354     /* For the LL variants the store is larger than the load,
10355      * so if rd == rn we would overwrite parts of our input.
10356      * So load everything right now and use shifts in the main loop.
10357      */
10358     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10359 
10360     for (i = 0; i < elements; i++) {
10361         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10362         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10363         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10364         write_vec_element(s, tcg_rd, rd, i, size + 1);
10365     }
10366 }
10367 
10368 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10369 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10370                                  int immh, int immb, int opcode, int rn, int rd)
10371 {
10372     int immhb = immh << 3 | immb;
10373     int size = 32 - clz32(immh) - 1;
10374     int dsize = 64;
10375     int esize = 8 << size;
10376     int elements = dsize/esize;
10377     int shift = (2 * esize) - immhb;
10378     bool round = extract32(opcode, 0, 1);
10379     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10380     TCGv_i64 tcg_round;
10381     int i;
10382 
10383     if (extract32(immh, 3, 1)) {
10384         unallocated_encoding(s);
10385         return;
10386     }
10387 
10388     if (!fp_access_check(s)) {
10389         return;
10390     }
10391 
10392     tcg_rn = tcg_temp_new_i64();
10393     tcg_rd = tcg_temp_new_i64();
10394     tcg_final = tcg_temp_new_i64();
10395     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10396 
10397     if (round) {
10398         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10399     } else {
10400         tcg_round = NULL;
10401     }
10402 
10403     for (i = 0; i < elements; i++) {
10404         read_vec_element(s, tcg_rn, rn, i, size+1);
10405         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10406                                 false, true, size+1, shift);
10407 
10408         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10409     }
10410 
10411     if (!is_q) {
10412         write_vec_element(s, tcg_final, rd, 0, MO_64);
10413     } else {
10414         write_vec_element(s, tcg_final, rd, 1, MO_64);
10415     }
10416 
10417     clear_vec_high(s, is_q, rd);
10418 }
10419 
10420 
10421 /* AdvSIMD shift by immediate
10422  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10423  * +---+---+---+-------------+------+------+--------+---+------+------+
10424  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10425  * +---+---+---+-------------+------+------+--------+---+------+------+
10426  */
10427 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10428 {
10429     int rd = extract32(insn, 0, 5);
10430     int rn = extract32(insn, 5, 5);
10431     int opcode = extract32(insn, 11, 5);
10432     int immb = extract32(insn, 16, 3);
10433     int immh = extract32(insn, 19, 4);
10434     bool is_u = extract32(insn, 29, 1);
10435     bool is_q = extract32(insn, 30, 1);
10436 
10437     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10438     assert(immh != 0);
10439 
10440     switch (opcode) {
10441     case 0x08: /* SRI */
10442         if (!is_u) {
10443             unallocated_encoding(s);
10444             return;
10445         }
10446         /* fall through */
10447     case 0x00: /* SSHR / USHR */
10448     case 0x02: /* SSRA / USRA (accumulate) */
10449     case 0x04: /* SRSHR / URSHR (rounding) */
10450     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10451         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10452         break;
10453     case 0x0a: /* SHL / SLI */
10454         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10455         break;
10456     case 0x10: /* SHRN */
10457     case 0x11: /* RSHRN / SQRSHRUN */
10458         if (is_u) {
10459             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10460                                    opcode, rn, rd);
10461         } else {
10462             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10463         }
10464         break;
10465     case 0x12: /* SQSHRN / UQSHRN */
10466     case 0x13: /* SQRSHRN / UQRSHRN */
10467         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10468                                opcode, rn, rd);
10469         break;
10470     case 0x14: /* SSHLL / USHLL */
10471         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10472         break;
10473     case 0x1c: /* SCVTF / UCVTF */
10474         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10475                                      opcode, rn, rd);
10476         break;
10477     case 0xc: /* SQSHLU */
10478         if (!is_u) {
10479             unallocated_encoding(s);
10480             return;
10481         }
10482         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10483         break;
10484     case 0xe: /* SQSHL, UQSHL */
10485         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10486         break;
10487     case 0x1f: /* FCVTZS/ FCVTZU */
10488         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10489         return;
10490     default:
10491         unallocated_encoding(s);
10492         return;
10493     }
10494 }
10495 
10496 /* Generate code to do a "long" addition or subtraction, ie one done in
10497  * TCGv_i64 on vector lanes twice the width specified by size.
10498  */
10499 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10500                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10501 {
10502     static NeonGenTwo64OpFn * const fns[3][2] = {
10503         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10504         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10505         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10506     };
10507     NeonGenTwo64OpFn *genfn;
10508     assert(size < 3);
10509 
10510     genfn = fns[size][is_sub];
10511     genfn(tcg_res, tcg_op1, tcg_op2);
10512 }
10513 
10514 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10515                                 int opcode, int rd, int rn, int rm)
10516 {
10517     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10518     TCGv_i64 tcg_res[2];
10519     int pass, accop;
10520 
10521     tcg_res[0] = tcg_temp_new_i64();
10522     tcg_res[1] = tcg_temp_new_i64();
10523 
10524     /* Does this op do an adding accumulate, a subtracting accumulate,
10525      * or no accumulate at all?
10526      */
10527     switch (opcode) {
10528     case 5:
10529     case 8:
10530     case 9:
10531         accop = 1;
10532         break;
10533     case 10:
10534     case 11:
10535         accop = -1;
10536         break;
10537     default:
10538         accop = 0;
10539         break;
10540     }
10541 
10542     if (accop != 0) {
10543         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10544         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10545     }
10546 
10547     /* size == 2 means two 32x32->64 operations; this is worth special
10548      * casing because we can generally handle it inline.
10549      */
10550     if (size == 2) {
10551         for (pass = 0; pass < 2; pass++) {
10552             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10553             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10554             TCGv_i64 tcg_passres;
10555             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10556 
10557             int elt = pass + is_q * 2;
10558 
10559             read_vec_element(s, tcg_op1, rn, elt, memop);
10560             read_vec_element(s, tcg_op2, rm, elt, memop);
10561 
10562             if (accop == 0) {
10563                 tcg_passres = tcg_res[pass];
10564             } else {
10565                 tcg_passres = tcg_temp_new_i64();
10566             }
10567 
10568             switch (opcode) {
10569             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10570                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10571                 break;
10572             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10573                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10574                 break;
10575             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10576             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10577             {
10578                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10579                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10580 
10581                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10582                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10583                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10584                                     tcg_passres,
10585                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10586                 break;
10587             }
10588             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10589             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10590             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10591                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10592                 break;
10593             case 9: /* SQDMLAL, SQDMLAL2 */
10594             case 11: /* SQDMLSL, SQDMLSL2 */
10595             case 13: /* SQDMULL, SQDMULL2 */
10596                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10597                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10598                                                   tcg_passres, tcg_passres);
10599                 break;
10600             default:
10601                 g_assert_not_reached();
10602             }
10603 
10604             if (opcode == 9 || opcode == 11) {
10605                 /* saturating accumulate ops */
10606                 if (accop < 0) {
10607                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10608                 }
10609                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10610                                                   tcg_res[pass], tcg_passres);
10611             } else if (accop > 0) {
10612                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10613             } else if (accop < 0) {
10614                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10615             }
10616         }
10617     } else {
10618         /* size 0 or 1, generally helper functions */
10619         for (pass = 0; pass < 2; pass++) {
10620             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10621             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10622             TCGv_i64 tcg_passres;
10623             int elt = pass + is_q * 2;
10624 
10625             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10626             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10627 
10628             if (accop == 0) {
10629                 tcg_passres = tcg_res[pass];
10630             } else {
10631                 tcg_passres = tcg_temp_new_i64();
10632             }
10633 
10634             switch (opcode) {
10635             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10636             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10637             {
10638                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10639                 static NeonGenWidenFn * const widenfns[2][2] = {
10640                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10641                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10642                 };
10643                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10644 
10645                 widenfn(tcg_op2_64, tcg_op2);
10646                 widenfn(tcg_passres, tcg_op1);
10647                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10648                               tcg_passres, tcg_op2_64);
10649                 break;
10650             }
10651             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10652             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10653                 if (size == 0) {
10654                     if (is_u) {
10655                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10656                     } else {
10657                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10658                     }
10659                 } else {
10660                     if (is_u) {
10661                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10662                     } else {
10663                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10664                     }
10665                 }
10666                 break;
10667             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10668             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10669             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10670                 if (size == 0) {
10671                     if (is_u) {
10672                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10673                     } else {
10674                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10675                     }
10676                 } else {
10677                     if (is_u) {
10678                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10679                     } else {
10680                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10681                     }
10682                 }
10683                 break;
10684             case 9: /* SQDMLAL, SQDMLAL2 */
10685             case 11: /* SQDMLSL, SQDMLSL2 */
10686             case 13: /* SQDMULL, SQDMULL2 */
10687                 assert(size == 1);
10688                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10689                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10690                                                   tcg_passres, tcg_passres);
10691                 break;
10692             default:
10693                 g_assert_not_reached();
10694             }
10695 
10696             if (accop != 0) {
10697                 if (opcode == 9 || opcode == 11) {
10698                     /* saturating accumulate ops */
10699                     if (accop < 0) {
10700                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10701                     }
10702                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10703                                                       tcg_res[pass],
10704                                                       tcg_passres);
10705                 } else {
10706                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10707                                   tcg_res[pass], tcg_passres);
10708                 }
10709             }
10710         }
10711     }
10712 
10713     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10714     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10715 }
10716 
10717 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10718                             int opcode, int rd, int rn, int rm)
10719 {
10720     TCGv_i64 tcg_res[2];
10721     int part = is_q ? 2 : 0;
10722     int pass;
10723 
10724     for (pass = 0; pass < 2; pass++) {
10725         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10726         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10727         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10728         static NeonGenWidenFn * const widenfns[3][2] = {
10729             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10730             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10731             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10732         };
10733         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10734 
10735         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10736         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10737         widenfn(tcg_op2_wide, tcg_op2);
10738         tcg_res[pass] = tcg_temp_new_i64();
10739         gen_neon_addl(size, (opcode == 3),
10740                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10741     }
10742 
10743     for (pass = 0; pass < 2; pass++) {
10744         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10745     }
10746 }
10747 
10748 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10749 {
10750     tcg_gen_addi_i64(in, in, 1U << 31);
10751     tcg_gen_extrh_i64_i32(res, in);
10752 }
10753 
10754 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10755                                  int opcode, int rd, int rn, int rm)
10756 {
10757     TCGv_i32 tcg_res[2];
10758     int part = is_q ? 2 : 0;
10759     int pass;
10760 
10761     for (pass = 0; pass < 2; pass++) {
10762         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10763         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10764         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10765         static NeonGenNarrowFn * const narrowfns[3][2] = {
10766             { gen_helper_neon_narrow_high_u8,
10767               gen_helper_neon_narrow_round_high_u8 },
10768             { gen_helper_neon_narrow_high_u16,
10769               gen_helper_neon_narrow_round_high_u16 },
10770             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10771         };
10772         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10773 
10774         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10775         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10776 
10777         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10778 
10779         tcg_res[pass] = tcg_temp_new_i32();
10780         gennarrow(tcg_res[pass], tcg_wideres);
10781     }
10782 
10783     for (pass = 0; pass < 2; pass++) {
10784         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10785     }
10786     clear_vec_high(s, is_q, rd);
10787 }
10788 
10789 /* AdvSIMD three different
10790  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10791  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10792  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10793  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10794  */
10795 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10796 {
10797     /* Instructions in this group fall into three basic classes
10798      * (in each case with the operation working on each element in
10799      * the input vectors):
10800      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10801      *     128 bit input)
10802      * (2) wide 64 x 128 -> 128
10803      * (3) narrowing 128 x 128 -> 64
10804      * Here we do initial decode, catch unallocated cases and
10805      * dispatch to separate functions for each class.
10806      */
10807     int is_q = extract32(insn, 30, 1);
10808     int is_u = extract32(insn, 29, 1);
10809     int size = extract32(insn, 22, 2);
10810     int opcode = extract32(insn, 12, 4);
10811     int rm = extract32(insn, 16, 5);
10812     int rn = extract32(insn, 5, 5);
10813     int rd = extract32(insn, 0, 5);
10814 
10815     switch (opcode) {
10816     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10817     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10818         /* 64 x 128 -> 128 */
10819         if (size == 3) {
10820             unallocated_encoding(s);
10821             return;
10822         }
10823         if (!fp_access_check(s)) {
10824             return;
10825         }
10826         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10827         break;
10828     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10829     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10830         /* 128 x 128 -> 64 */
10831         if (size == 3) {
10832             unallocated_encoding(s);
10833             return;
10834         }
10835         if (!fp_access_check(s)) {
10836             return;
10837         }
10838         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10839         break;
10840     case 14: /* PMULL, PMULL2 */
10841         if (is_u) {
10842             unallocated_encoding(s);
10843             return;
10844         }
10845         switch (size) {
10846         case 0: /* PMULL.P8 */
10847             if (!fp_access_check(s)) {
10848                 return;
10849             }
10850             /* The Q field specifies lo/hi half input for this insn.  */
10851             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10852                              gen_helper_neon_pmull_h);
10853             break;
10854 
10855         case 3: /* PMULL.P64 */
10856             if (!dc_isar_feature(aa64_pmull, s)) {
10857                 unallocated_encoding(s);
10858                 return;
10859             }
10860             if (!fp_access_check(s)) {
10861                 return;
10862             }
10863             /* The Q field specifies lo/hi half input for this insn.  */
10864             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10865                              gen_helper_gvec_pmull_q);
10866             break;
10867 
10868         default:
10869             unallocated_encoding(s);
10870             break;
10871         }
10872         return;
10873     case 9: /* SQDMLAL, SQDMLAL2 */
10874     case 11: /* SQDMLSL, SQDMLSL2 */
10875     case 13: /* SQDMULL, SQDMULL2 */
10876         if (is_u || size == 0) {
10877             unallocated_encoding(s);
10878             return;
10879         }
10880         /* fall through */
10881     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10882     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10883     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10884     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10885     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10886     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10887     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10888         /* 64 x 64 -> 128 */
10889         if (size == 3) {
10890             unallocated_encoding(s);
10891             return;
10892         }
10893         if (!fp_access_check(s)) {
10894             return;
10895         }
10896 
10897         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10898         break;
10899     default:
10900         /* opcode 15 not allocated */
10901         unallocated_encoding(s);
10902         break;
10903     }
10904 }
10905 
10906 /* AdvSIMD three same extra
10907  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
10908  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10909  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
10910  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10911  */
10912 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10913 {
10914     int rd = extract32(insn, 0, 5);
10915     int rn = extract32(insn, 5, 5);
10916     int opcode = extract32(insn, 11, 4);
10917     int rm = extract32(insn, 16, 5);
10918     int size = extract32(insn, 22, 2);
10919     bool u = extract32(insn, 29, 1);
10920     bool is_q = extract32(insn, 30, 1);
10921     bool feature;
10922     int rot;
10923 
10924     switch (u * 16 + opcode) {
10925     case 0x04: /* SMMLA */
10926     case 0x14: /* UMMLA */
10927     case 0x05: /* USMMLA */
10928         if (!is_q || size != MO_32) {
10929             unallocated_encoding(s);
10930             return;
10931         }
10932         feature = dc_isar_feature(aa64_i8mm, s);
10933         break;
10934     case 0x18: /* FCMLA, #0 */
10935     case 0x19: /* FCMLA, #90 */
10936     case 0x1a: /* FCMLA, #180 */
10937     case 0x1b: /* FCMLA, #270 */
10938     case 0x1c: /* FCADD, #90 */
10939     case 0x1e: /* FCADD, #270 */
10940         if (size == 0
10941             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
10942             || (size == 3 && !is_q)) {
10943             unallocated_encoding(s);
10944             return;
10945         }
10946         feature = dc_isar_feature(aa64_fcma, s);
10947         break;
10948     case 0x1d: /* BFMMLA */
10949         if (size != MO_16 || !is_q) {
10950             unallocated_encoding(s);
10951             return;
10952         }
10953         feature = dc_isar_feature(aa64_bf16, s);
10954         break;
10955     case 0x1f:
10956         switch (size) {
10957         case 3: /* BFMLAL{B,T} */
10958             feature = dc_isar_feature(aa64_bf16, s);
10959             break;
10960         default:
10961         case 1: /* BFDOT */
10962             unallocated_encoding(s);
10963             return;
10964         }
10965         break;
10966     default:
10967     case 0x02: /* SDOT (vector) */
10968     case 0x03: /* USDOT */
10969     case 0x10: /* SQRDMLAH (vector) */
10970     case 0x11: /* SQRDMLSH (vector) */
10971     case 0x12: /* UDOT (vector) */
10972         unallocated_encoding(s);
10973         return;
10974     }
10975     if (!feature) {
10976         unallocated_encoding(s);
10977         return;
10978     }
10979     if (!fp_access_check(s)) {
10980         return;
10981     }
10982 
10983     switch (opcode) {
10984     case 0x04: /* SMMLA, UMMLA */
10985         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
10986                          u ? gen_helper_gvec_ummla_b
10987                          : gen_helper_gvec_smmla_b);
10988         return;
10989     case 0x05: /* USMMLA */
10990         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
10991         return;
10992 
10993     case 0x8: /* FCMLA, #0 */
10994     case 0x9: /* FCMLA, #90 */
10995     case 0xa: /* FCMLA, #180 */
10996     case 0xb: /* FCMLA, #270 */
10997         rot = extract32(opcode, 0, 2);
10998         switch (size) {
10999         case 1:
11000             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11001                               gen_helper_gvec_fcmlah);
11002             break;
11003         case 2:
11004             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11005                               gen_helper_gvec_fcmlas);
11006             break;
11007         case 3:
11008             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11009                               gen_helper_gvec_fcmlad);
11010             break;
11011         default:
11012             g_assert_not_reached();
11013         }
11014         return;
11015 
11016     case 0xc: /* FCADD, #90 */
11017     case 0xe: /* FCADD, #270 */
11018         rot = extract32(opcode, 1, 1);
11019         switch (size) {
11020         case 1:
11021             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11022                               gen_helper_gvec_fcaddh);
11023             break;
11024         case 2:
11025             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11026                               gen_helper_gvec_fcadds);
11027             break;
11028         case 3:
11029             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11030                               gen_helper_gvec_fcaddd);
11031             break;
11032         default:
11033             g_assert_not_reached();
11034         }
11035         return;
11036 
11037     case 0xd: /* BFMMLA */
11038         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11039         return;
11040     case 0xf:
11041         switch (size) {
11042         case 3: /* BFMLAL{B,T} */
11043             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11044                               gen_helper_gvec_bfmlal);
11045             break;
11046         default:
11047             g_assert_not_reached();
11048         }
11049         return;
11050 
11051     default:
11052         g_assert_not_reached();
11053     }
11054 }
11055 
11056 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11057                                   int size, int rn, int rd)
11058 {
11059     /* Handle 2-reg-misc ops which are widening (so each size element
11060      * in the source becomes a 2*size element in the destination.
11061      * The only instruction like this is FCVTL.
11062      */
11063     int pass;
11064 
11065     if (size == 3) {
11066         /* 32 -> 64 bit fp conversion */
11067         TCGv_i64 tcg_res[2];
11068         int srcelt = is_q ? 2 : 0;
11069 
11070         for (pass = 0; pass < 2; pass++) {
11071             TCGv_i32 tcg_op = tcg_temp_new_i32();
11072             tcg_res[pass] = tcg_temp_new_i64();
11073 
11074             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11075             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11076         }
11077         for (pass = 0; pass < 2; pass++) {
11078             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11079         }
11080     } else {
11081         /* 16 -> 32 bit fp conversion */
11082         int srcelt = is_q ? 4 : 0;
11083         TCGv_i32 tcg_res[4];
11084         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11085         TCGv_i32 ahp = get_ahp_flag();
11086 
11087         for (pass = 0; pass < 4; pass++) {
11088             tcg_res[pass] = tcg_temp_new_i32();
11089 
11090             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11091             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11092                                            fpst, ahp);
11093         }
11094         for (pass = 0; pass < 4; pass++) {
11095             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11096         }
11097     }
11098 }
11099 
11100 static void handle_rev(DisasContext *s, int opcode, bool u,
11101                        bool is_q, int size, int rn, int rd)
11102 {
11103     int op = (opcode << 1) | u;
11104     int opsz = op + size;
11105     int grp_size = 3 - opsz;
11106     int dsize = is_q ? 128 : 64;
11107     int i;
11108 
11109     if (opsz >= 3) {
11110         unallocated_encoding(s);
11111         return;
11112     }
11113 
11114     if (!fp_access_check(s)) {
11115         return;
11116     }
11117 
11118     if (size == 0) {
11119         /* Special case bytes, use bswap op on each group of elements */
11120         int groups = dsize / (8 << grp_size);
11121 
11122         for (i = 0; i < groups; i++) {
11123             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11124 
11125             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11126             switch (grp_size) {
11127             case MO_16:
11128                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11129                 break;
11130             case MO_32:
11131                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11132                 break;
11133             case MO_64:
11134                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11135                 break;
11136             default:
11137                 g_assert_not_reached();
11138             }
11139             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11140         }
11141         clear_vec_high(s, is_q, rd);
11142     } else {
11143         int revmask = (1 << grp_size) - 1;
11144         int esize = 8 << size;
11145         int elements = dsize / esize;
11146         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11147         TCGv_i64 tcg_rd[2];
11148 
11149         for (i = 0; i < 2; i++) {
11150             tcg_rd[i] = tcg_temp_new_i64();
11151             tcg_gen_movi_i64(tcg_rd[i], 0);
11152         }
11153 
11154         for (i = 0; i < elements; i++) {
11155             int e_rev = (i & 0xf) ^ revmask;
11156             int w = (e_rev * esize) / 64;
11157             int o = (e_rev * esize) % 64;
11158 
11159             read_vec_element(s, tcg_rn, rn, i, size);
11160             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11161         }
11162 
11163         for (i = 0; i < 2; i++) {
11164             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11165         }
11166         clear_vec_high(s, true, rd);
11167     }
11168 }
11169 
11170 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11171                                   bool is_q, int size, int rn, int rd)
11172 {
11173     /* Implement the pairwise operations from 2-misc:
11174      * SADDLP, UADDLP, SADALP, UADALP.
11175      * These all add pairs of elements in the input to produce a
11176      * double-width result element in the output (possibly accumulating).
11177      */
11178     bool accum = (opcode == 0x6);
11179     int maxpass = is_q ? 2 : 1;
11180     int pass;
11181     TCGv_i64 tcg_res[2];
11182 
11183     if (size == 2) {
11184         /* 32 + 32 -> 64 op */
11185         MemOp memop = size + (u ? 0 : MO_SIGN);
11186 
11187         for (pass = 0; pass < maxpass; pass++) {
11188             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11189             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11190 
11191             tcg_res[pass] = tcg_temp_new_i64();
11192 
11193             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11194             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11195             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11196             if (accum) {
11197                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11198                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11199             }
11200         }
11201     } else {
11202         for (pass = 0; pass < maxpass; pass++) {
11203             TCGv_i64 tcg_op = tcg_temp_new_i64();
11204             NeonGenOne64OpFn *genfn;
11205             static NeonGenOne64OpFn * const fns[2][2] = {
11206                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11207                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11208             };
11209 
11210             genfn = fns[size][u];
11211 
11212             tcg_res[pass] = tcg_temp_new_i64();
11213 
11214             read_vec_element(s, tcg_op, rn, pass, MO_64);
11215             genfn(tcg_res[pass], tcg_op);
11216 
11217             if (accum) {
11218                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11219                 if (size == 0) {
11220                     gen_helper_neon_addl_u16(tcg_res[pass],
11221                                              tcg_res[pass], tcg_op);
11222                 } else {
11223                     gen_helper_neon_addl_u32(tcg_res[pass],
11224                                              tcg_res[pass], tcg_op);
11225                 }
11226             }
11227         }
11228     }
11229     if (!is_q) {
11230         tcg_res[1] = tcg_constant_i64(0);
11231     }
11232     for (pass = 0; pass < 2; pass++) {
11233         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11234     }
11235 }
11236 
11237 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11238 {
11239     /* Implement SHLL and SHLL2 */
11240     int pass;
11241     int part = is_q ? 2 : 0;
11242     TCGv_i64 tcg_res[2];
11243 
11244     for (pass = 0; pass < 2; pass++) {
11245         static NeonGenWidenFn * const widenfns[3] = {
11246             gen_helper_neon_widen_u8,
11247             gen_helper_neon_widen_u16,
11248             tcg_gen_extu_i32_i64,
11249         };
11250         NeonGenWidenFn *widenfn = widenfns[size];
11251         TCGv_i32 tcg_op = tcg_temp_new_i32();
11252 
11253         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11254         tcg_res[pass] = tcg_temp_new_i64();
11255         widenfn(tcg_res[pass], tcg_op);
11256         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11257     }
11258 
11259     for (pass = 0; pass < 2; pass++) {
11260         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11261     }
11262 }
11263 
11264 /* AdvSIMD two reg misc
11265  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11266  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11267  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11268  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11269  */
11270 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11271 {
11272     int size = extract32(insn, 22, 2);
11273     int opcode = extract32(insn, 12, 5);
11274     bool u = extract32(insn, 29, 1);
11275     bool is_q = extract32(insn, 30, 1);
11276     int rn = extract32(insn, 5, 5);
11277     int rd = extract32(insn, 0, 5);
11278     bool need_fpstatus = false;
11279     int rmode = -1;
11280     TCGv_i32 tcg_rmode;
11281     TCGv_ptr tcg_fpstatus;
11282 
11283     switch (opcode) {
11284     case 0x0: /* REV64, REV32 */
11285     case 0x1: /* REV16 */
11286         handle_rev(s, opcode, u, is_q, size, rn, rd);
11287         return;
11288     case 0x5: /* CNT, NOT, RBIT */
11289         if (u && size == 0) {
11290             /* NOT */
11291             break;
11292         } else if (u && size == 1) {
11293             /* RBIT */
11294             break;
11295         } else if (!u && size == 0) {
11296             /* CNT */
11297             break;
11298         }
11299         unallocated_encoding(s);
11300         return;
11301     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11302     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11303         if (size == 3) {
11304             unallocated_encoding(s);
11305             return;
11306         }
11307         if (!fp_access_check(s)) {
11308             return;
11309         }
11310 
11311         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11312         return;
11313     case 0x4: /* CLS, CLZ */
11314         if (size == 3) {
11315             unallocated_encoding(s);
11316             return;
11317         }
11318         break;
11319     case 0x2: /* SADDLP, UADDLP */
11320     case 0x6: /* SADALP, UADALP */
11321         if (size == 3) {
11322             unallocated_encoding(s);
11323             return;
11324         }
11325         if (!fp_access_check(s)) {
11326             return;
11327         }
11328         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11329         return;
11330     case 0x13: /* SHLL, SHLL2 */
11331         if (u == 0 || size == 3) {
11332             unallocated_encoding(s);
11333             return;
11334         }
11335         if (!fp_access_check(s)) {
11336             return;
11337         }
11338         handle_shll(s, is_q, size, rn, rd);
11339         return;
11340     case 0xa: /* CMLT */
11341         if (u == 1) {
11342             unallocated_encoding(s);
11343             return;
11344         }
11345         /* fall through */
11346     case 0x8: /* CMGT, CMGE */
11347     case 0x9: /* CMEQ, CMLE */
11348     case 0xb: /* ABS, NEG */
11349         if (size == 3 && !is_q) {
11350             unallocated_encoding(s);
11351             return;
11352         }
11353         break;
11354     case 0x7: /* SQABS, SQNEG */
11355         if (size == 3 && !is_q) {
11356             unallocated_encoding(s);
11357             return;
11358         }
11359         break;
11360     case 0xc ... 0xf:
11361     case 0x16 ... 0x1f:
11362     {
11363         /* Floating point: U, size[1] and opcode indicate operation;
11364          * size[0] indicates single or double precision.
11365          */
11366         int is_double = extract32(size, 0, 1);
11367         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11368         size = is_double ? 3 : 2;
11369         switch (opcode) {
11370         case 0x2f: /* FABS */
11371         case 0x6f: /* FNEG */
11372             if (size == 3 && !is_q) {
11373                 unallocated_encoding(s);
11374                 return;
11375             }
11376             break;
11377         case 0x1d: /* SCVTF */
11378         case 0x5d: /* UCVTF */
11379         {
11380             bool is_signed = (opcode == 0x1d) ? true : false;
11381             int elements = is_double ? 2 : is_q ? 4 : 2;
11382             if (is_double && !is_q) {
11383                 unallocated_encoding(s);
11384                 return;
11385             }
11386             if (!fp_access_check(s)) {
11387                 return;
11388             }
11389             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11390             return;
11391         }
11392         case 0x2c: /* FCMGT (zero) */
11393         case 0x2d: /* FCMEQ (zero) */
11394         case 0x2e: /* FCMLT (zero) */
11395         case 0x6c: /* FCMGE (zero) */
11396         case 0x6d: /* FCMLE (zero) */
11397             if (size == 3 && !is_q) {
11398                 unallocated_encoding(s);
11399                 return;
11400             }
11401             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11402             return;
11403         case 0x7f: /* FSQRT */
11404             if (size == 3 && !is_q) {
11405                 unallocated_encoding(s);
11406                 return;
11407             }
11408             break;
11409         case 0x1a: /* FCVTNS */
11410         case 0x1b: /* FCVTMS */
11411         case 0x3a: /* FCVTPS */
11412         case 0x3b: /* FCVTZS */
11413         case 0x5a: /* FCVTNU */
11414         case 0x5b: /* FCVTMU */
11415         case 0x7a: /* FCVTPU */
11416         case 0x7b: /* FCVTZU */
11417             need_fpstatus = true;
11418             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11419             if (size == 3 && !is_q) {
11420                 unallocated_encoding(s);
11421                 return;
11422             }
11423             break;
11424         case 0x5c: /* FCVTAU */
11425         case 0x1c: /* FCVTAS */
11426             need_fpstatus = true;
11427             rmode = FPROUNDING_TIEAWAY;
11428             if (size == 3 && !is_q) {
11429                 unallocated_encoding(s);
11430                 return;
11431             }
11432             break;
11433         case 0x3c: /* URECPE */
11434             if (size == 3) {
11435                 unallocated_encoding(s);
11436                 return;
11437             }
11438             /* fall through */
11439         case 0x3d: /* FRECPE */
11440         case 0x7d: /* FRSQRTE */
11441             if (size == 3 && !is_q) {
11442                 unallocated_encoding(s);
11443                 return;
11444             }
11445             if (!fp_access_check(s)) {
11446                 return;
11447             }
11448             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11449             return;
11450         case 0x56: /* FCVTXN, FCVTXN2 */
11451             if (size == 2) {
11452                 unallocated_encoding(s);
11453                 return;
11454             }
11455             /* fall through */
11456         case 0x16: /* FCVTN, FCVTN2 */
11457             /* handle_2misc_narrow does a 2*size -> size operation, but these
11458              * instructions encode the source size rather than dest size.
11459              */
11460             if (!fp_access_check(s)) {
11461                 return;
11462             }
11463             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11464             return;
11465         case 0x36: /* BFCVTN, BFCVTN2 */
11466             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11467                 unallocated_encoding(s);
11468                 return;
11469             }
11470             if (!fp_access_check(s)) {
11471                 return;
11472             }
11473             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11474             return;
11475         case 0x17: /* FCVTL, FCVTL2 */
11476             if (!fp_access_check(s)) {
11477                 return;
11478             }
11479             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11480             return;
11481         case 0x18: /* FRINTN */
11482         case 0x19: /* FRINTM */
11483         case 0x38: /* FRINTP */
11484         case 0x39: /* FRINTZ */
11485             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11486             /* fall through */
11487         case 0x59: /* FRINTX */
11488         case 0x79: /* FRINTI */
11489             need_fpstatus = true;
11490             if (size == 3 && !is_q) {
11491                 unallocated_encoding(s);
11492                 return;
11493             }
11494             break;
11495         case 0x58: /* FRINTA */
11496             rmode = FPROUNDING_TIEAWAY;
11497             need_fpstatus = true;
11498             if (size == 3 && !is_q) {
11499                 unallocated_encoding(s);
11500                 return;
11501             }
11502             break;
11503         case 0x7c: /* URSQRTE */
11504             if (size == 3) {
11505                 unallocated_encoding(s);
11506                 return;
11507             }
11508             break;
11509         case 0x1e: /* FRINT32Z */
11510         case 0x1f: /* FRINT64Z */
11511             rmode = FPROUNDING_ZERO;
11512             /* fall through */
11513         case 0x5e: /* FRINT32X */
11514         case 0x5f: /* FRINT64X */
11515             need_fpstatus = true;
11516             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11517                 unallocated_encoding(s);
11518                 return;
11519             }
11520             break;
11521         default:
11522             unallocated_encoding(s);
11523             return;
11524         }
11525         break;
11526     }
11527     default:
11528     case 0x3: /* SUQADD, USQADD */
11529         unallocated_encoding(s);
11530         return;
11531     }
11532 
11533     if (!fp_access_check(s)) {
11534         return;
11535     }
11536 
11537     if (need_fpstatus || rmode >= 0) {
11538         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11539     } else {
11540         tcg_fpstatus = NULL;
11541     }
11542     if (rmode >= 0) {
11543         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11544     } else {
11545         tcg_rmode = NULL;
11546     }
11547 
11548     switch (opcode) {
11549     case 0x5:
11550         if (u && size == 0) { /* NOT */
11551             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11552             return;
11553         }
11554         break;
11555     case 0x8: /* CMGT, CMGE */
11556         if (u) {
11557             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11558         } else {
11559             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11560         }
11561         return;
11562     case 0x9: /* CMEQ, CMLE */
11563         if (u) {
11564             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11565         } else {
11566             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11567         }
11568         return;
11569     case 0xa: /* CMLT */
11570         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11571         return;
11572     case 0xb:
11573         if (u) { /* ABS, NEG */
11574             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11575         } else {
11576             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11577         }
11578         return;
11579     }
11580 
11581     if (size == 3) {
11582         /* All 64-bit element operations can be shared with scalar 2misc */
11583         int pass;
11584 
11585         /* Coverity claims (size == 3 && !is_q) has been eliminated
11586          * from all paths leading to here.
11587          */
11588         tcg_debug_assert(is_q);
11589         for (pass = 0; pass < 2; pass++) {
11590             TCGv_i64 tcg_op = tcg_temp_new_i64();
11591             TCGv_i64 tcg_res = tcg_temp_new_i64();
11592 
11593             read_vec_element(s, tcg_op, rn, pass, MO_64);
11594 
11595             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11596                             tcg_rmode, tcg_fpstatus);
11597 
11598             write_vec_element(s, tcg_res, rd, pass, MO_64);
11599         }
11600     } else {
11601         int pass;
11602 
11603         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11604             TCGv_i32 tcg_op = tcg_temp_new_i32();
11605             TCGv_i32 tcg_res = tcg_temp_new_i32();
11606 
11607             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11608 
11609             if (size == 2) {
11610                 /* Special cases for 32 bit elements */
11611                 switch (opcode) {
11612                 case 0x4: /* CLS */
11613                     if (u) {
11614                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11615                     } else {
11616                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11617                     }
11618                     break;
11619                 case 0x7: /* SQABS, SQNEG */
11620                     if (u) {
11621                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11622                     } else {
11623                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11624                     }
11625                     break;
11626                 case 0x2f: /* FABS */
11627                     gen_vfp_abss(tcg_res, tcg_op);
11628                     break;
11629                 case 0x6f: /* FNEG */
11630                     gen_vfp_negs(tcg_res, tcg_op);
11631                     break;
11632                 case 0x7f: /* FSQRT */
11633                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11634                     break;
11635                 case 0x1a: /* FCVTNS */
11636                 case 0x1b: /* FCVTMS */
11637                 case 0x1c: /* FCVTAS */
11638                 case 0x3a: /* FCVTPS */
11639                 case 0x3b: /* FCVTZS */
11640                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11641                                          tcg_constant_i32(0), tcg_fpstatus);
11642                     break;
11643                 case 0x5a: /* FCVTNU */
11644                 case 0x5b: /* FCVTMU */
11645                 case 0x5c: /* FCVTAU */
11646                 case 0x7a: /* FCVTPU */
11647                 case 0x7b: /* FCVTZU */
11648                     gen_helper_vfp_touls(tcg_res, tcg_op,
11649                                          tcg_constant_i32(0), tcg_fpstatus);
11650                     break;
11651                 case 0x18: /* FRINTN */
11652                 case 0x19: /* FRINTM */
11653                 case 0x38: /* FRINTP */
11654                 case 0x39: /* FRINTZ */
11655                 case 0x58: /* FRINTA */
11656                 case 0x79: /* FRINTI */
11657                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11658                     break;
11659                 case 0x59: /* FRINTX */
11660                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11661                     break;
11662                 case 0x7c: /* URSQRTE */
11663                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11664                     break;
11665                 case 0x1e: /* FRINT32Z */
11666                 case 0x5e: /* FRINT32X */
11667                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11668                     break;
11669                 case 0x1f: /* FRINT64Z */
11670                 case 0x5f: /* FRINT64X */
11671                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11672                     break;
11673                 default:
11674                     g_assert_not_reached();
11675                 }
11676             } else {
11677                 /* Use helpers for 8 and 16 bit elements */
11678                 switch (opcode) {
11679                 case 0x5: /* CNT, RBIT */
11680                     /* For these two insns size is part of the opcode specifier
11681                      * (handled earlier); they always operate on byte elements.
11682                      */
11683                     if (u) {
11684                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11685                     } else {
11686                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11687                     }
11688                     break;
11689                 case 0x7: /* SQABS, SQNEG */
11690                 {
11691                     NeonGenOneOpEnvFn *genfn;
11692                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11693                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11694                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11695                     };
11696                     genfn = fns[size][u];
11697                     genfn(tcg_res, tcg_env, tcg_op);
11698                     break;
11699                 }
11700                 case 0x4: /* CLS, CLZ */
11701                     if (u) {
11702                         if (size == 0) {
11703                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11704                         } else {
11705                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11706                         }
11707                     } else {
11708                         if (size == 0) {
11709                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11710                         } else {
11711                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11712                         }
11713                     }
11714                     break;
11715                 default:
11716                     g_assert_not_reached();
11717                 }
11718             }
11719 
11720             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11721         }
11722     }
11723     clear_vec_high(s, is_q, rd);
11724 
11725     if (tcg_rmode) {
11726         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11727     }
11728 }
11729 
11730 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11731  *
11732  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11733  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11734  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11735  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11736  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11737  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11738  *
11739  * This actually covers two groups where scalar access is governed by
11740  * bit 28. A bunch of the instructions (float to integral) only exist
11741  * in the vector form and are un-allocated for the scalar decode. Also
11742  * in the scalar decode Q is always 1.
11743  */
11744 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11745 {
11746     int fpop, opcode, a, u;
11747     int rn, rd;
11748     bool is_q;
11749     bool is_scalar;
11750     bool only_in_vector = false;
11751 
11752     int pass;
11753     TCGv_i32 tcg_rmode = NULL;
11754     TCGv_ptr tcg_fpstatus = NULL;
11755     bool need_fpst = true;
11756     int rmode = -1;
11757 
11758     if (!dc_isar_feature(aa64_fp16, s)) {
11759         unallocated_encoding(s);
11760         return;
11761     }
11762 
11763     rd = extract32(insn, 0, 5);
11764     rn = extract32(insn, 5, 5);
11765 
11766     a = extract32(insn, 23, 1);
11767     u = extract32(insn, 29, 1);
11768     is_scalar = extract32(insn, 28, 1);
11769     is_q = extract32(insn, 30, 1);
11770 
11771     opcode = extract32(insn, 12, 5);
11772     fpop = deposit32(opcode, 5, 1, a);
11773     fpop = deposit32(fpop, 6, 1, u);
11774 
11775     switch (fpop) {
11776     case 0x1d: /* SCVTF */
11777     case 0x5d: /* UCVTF */
11778     {
11779         int elements;
11780 
11781         if (is_scalar) {
11782             elements = 1;
11783         } else {
11784             elements = (is_q ? 8 : 4);
11785         }
11786 
11787         if (!fp_access_check(s)) {
11788             return;
11789         }
11790         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11791         return;
11792     }
11793     break;
11794     case 0x2c: /* FCMGT (zero) */
11795     case 0x2d: /* FCMEQ (zero) */
11796     case 0x2e: /* FCMLT (zero) */
11797     case 0x6c: /* FCMGE (zero) */
11798     case 0x6d: /* FCMLE (zero) */
11799         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11800         return;
11801     case 0x3d: /* FRECPE */
11802     case 0x3f: /* FRECPX */
11803         break;
11804     case 0x18: /* FRINTN */
11805         only_in_vector = true;
11806         rmode = FPROUNDING_TIEEVEN;
11807         break;
11808     case 0x19: /* FRINTM */
11809         only_in_vector = true;
11810         rmode = FPROUNDING_NEGINF;
11811         break;
11812     case 0x38: /* FRINTP */
11813         only_in_vector = true;
11814         rmode = FPROUNDING_POSINF;
11815         break;
11816     case 0x39: /* FRINTZ */
11817         only_in_vector = true;
11818         rmode = FPROUNDING_ZERO;
11819         break;
11820     case 0x58: /* FRINTA */
11821         only_in_vector = true;
11822         rmode = FPROUNDING_TIEAWAY;
11823         break;
11824     case 0x59: /* FRINTX */
11825     case 0x79: /* FRINTI */
11826         only_in_vector = true;
11827         /* current rounding mode */
11828         break;
11829     case 0x1a: /* FCVTNS */
11830         rmode = FPROUNDING_TIEEVEN;
11831         break;
11832     case 0x1b: /* FCVTMS */
11833         rmode = FPROUNDING_NEGINF;
11834         break;
11835     case 0x1c: /* FCVTAS */
11836         rmode = FPROUNDING_TIEAWAY;
11837         break;
11838     case 0x3a: /* FCVTPS */
11839         rmode = FPROUNDING_POSINF;
11840         break;
11841     case 0x3b: /* FCVTZS */
11842         rmode = FPROUNDING_ZERO;
11843         break;
11844     case 0x5a: /* FCVTNU */
11845         rmode = FPROUNDING_TIEEVEN;
11846         break;
11847     case 0x5b: /* FCVTMU */
11848         rmode = FPROUNDING_NEGINF;
11849         break;
11850     case 0x5c: /* FCVTAU */
11851         rmode = FPROUNDING_TIEAWAY;
11852         break;
11853     case 0x7a: /* FCVTPU */
11854         rmode = FPROUNDING_POSINF;
11855         break;
11856     case 0x7b: /* FCVTZU */
11857         rmode = FPROUNDING_ZERO;
11858         break;
11859     case 0x2f: /* FABS */
11860     case 0x6f: /* FNEG */
11861         need_fpst = false;
11862         break;
11863     case 0x7d: /* FRSQRTE */
11864     case 0x7f: /* FSQRT (vector) */
11865         break;
11866     default:
11867         unallocated_encoding(s);
11868         return;
11869     }
11870 
11871 
11872     /* Check additional constraints for the scalar encoding */
11873     if (is_scalar) {
11874         if (!is_q) {
11875             unallocated_encoding(s);
11876             return;
11877         }
11878         /* FRINTxx is only in the vector form */
11879         if (only_in_vector) {
11880             unallocated_encoding(s);
11881             return;
11882         }
11883     }
11884 
11885     if (!fp_access_check(s)) {
11886         return;
11887     }
11888 
11889     if (rmode >= 0 || need_fpst) {
11890         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11891     }
11892 
11893     if (rmode >= 0) {
11894         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11895     }
11896 
11897     if (is_scalar) {
11898         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11899         TCGv_i32 tcg_res = tcg_temp_new_i32();
11900 
11901         switch (fpop) {
11902         case 0x1a: /* FCVTNS */
11903         case 0x1b: /* FCVTMS */
11904         case 0x1c: /* FCVTAS */
11905         case 0x3a: /* FCVTPS */
11906         case 0x3b: /* FCVTZS */
11907             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11908             break;
11909         case 0x3d: /* FRECPE */
11910             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11911             break;
11912         case 0x3f: /* FRECPX */
11913             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11914             break;
11915         case 0x5a: /* FCVTNU */
11916         case 0x5b: /* FCVTMU */
11917         case 0x5c: /* FCVTAU */
11918         case 0x7a: /* FCVTPU */
11919         case 0x7b: /* FCVTZU */
11920             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11921             break;
11922         case 0x6f: /* FNEG */
11923             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11924             break;
11925         case 0x7d: /* FRSQRTE */
11926             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11927             break;
11928         default:
11929             g_assert_not_reached();
11930         }
11931 
11932         /* limit any sign extension going on */
11933         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11934         write_fp_sreg(s, rd, tcg_res);
11935     } else {
11936         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11937             TCGv_i32 tcg_op = tcg_temp_new_i32();
11938             TCGv_i32 tcg_res = tcg_temp_new_i32();
11939 
11940             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11941 
11942             switch (fpop) {
11943             case 0x1a: /* FCVTNS */
11944             case 0x1b: /* FCVTMS */
11945             case 0x1c: /* FCVTAS */
11946             case 0x3a: /* FCVTPS */
11947             case 0x3b: /* FCVTZS */
11948                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11949                 break;
11950             case 0x3d: /* FRECPE */
11951                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11952                 break;
11953             case 0x5a: /* FCVTNU */
11954             case 0x5b: /* FCVTMU */
11955             case 0x5c: /* FCVTAU */
11956             case 0x7a: /* FCVTPU */
11957             case 0x7b: /* FCVTZU */
11958                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11959                 break;
11960             case 0x18: /* FRINTN */
11961             case 0x19: /* FRINTM */
11962             case 0x38: /* FRINTP */
11963             case 0x39: /* FRINTZ */
11964             case 0x58: /* FRINTA */
11965             case 0x79: /* FRINTI */
11966                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11967                 break;
11968             case 0x59: /* FRINTX */
11969                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11970                 break;
11971             case 0x2f: /* FABS */
11972                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11973                 break;
11974             case 0x6f: /* FNEG */
11975                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11976                 break;
11977             case 0x7d: /* FRSQRTE */
11978                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11979                 break;
11980             case 0x7f: /* FSQRT */
11981                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11982                 break;
11983             default:
11984                 g_assert_not_reached();
11985             }
11986 
11987             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11988         }
11989 
11990         clear_vec_high(s, is_q, rd);
11991     }
11992 
11993     if (tcg_rmode) {
11994         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11995     }
11996 }
11997 
11998 /* AdvSIMD scalar x indexed element
11999  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12000  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12001  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12002  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12003  * AdvSIMD vector x indexed element
12004  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12005  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12006  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12007  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12008  */
12009 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12010 {
12011     /* This encoding has two kinds of instruction:
12012      *  normal, where we perform elt x idxelt => elt for each
12013      *     element in the vector
12014      *  long, where we perform elt x idxelt and generate a result of
12015      *     double the width of the input element
12016      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12017      */
12018     bool is_scalar = extract32(insn, 28, 1);
12019     bool is_q = extract32(insn, 30, 1);
12020     bool u = extract32(insn, 29, 1);
12021     int size = extract32(insn, 22, 2);
12022     int l = extract32(insn, 21, 1);
12023     int m = extract32(insn, 20, 1);
12024     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12025     int rm = extract32(insn, 16, 4);
12026     int opcode = extract32(insn, 12, 4);
12027     int h = extract32(insn, 11, 1);
12028     int rn = extract32(insn, 5, 5);
12029     int rd = extract32(insn, 0, 5);
12030     bool is_long = false;
12031     int is_fp = 0;
12032     bool is_fp16 = false;
12033     int index;
12034     TCGv_ptr fpst;
12035 
12036     switch (16 * u + opcode) {
12037     case 0x02: /* SMLAL, SMLAL2 */
12038     case 0x12: /* UMLAL, UMLAL2 */
12039     case 0x06: /* SMLSL, SMLSL2 */
12040     case 0x16: /* UMLSL, UMLSL2 */
12041     case 0x0a: /* SMULL, SMULL2 */
12042     case 0x1a: /* UMULL, UMULL2 */
12043         if (is_scalar) {
12044             unallocated_encoding(s);
12045             return;
12046         }
12047         is_long = true;
12048         break;
12049     case 0x03: /* SQDMLAL, SQDMLAL2 */
12050     case 0x07: /* SQDMLSL, SQDMLSL2 */
12051     case 0x0b: /* SQDMULL, SQDMULL2 */
12052         is_long = true;
12053         break;
12054     case 0x0f:
12055         switch (size) {
12056         case 3: /* BFMLAL{B,T} */
12057             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12058                 unallocated_encoding(s);
12059                 return;
12060             }
12061             /* can't set is_fp without other incorrect size checks */
12062             size = MO_16;
12063             break;
12064         default:
12065         case 0: /* SUDOT */
12066         case 1: /* BFDOT */
12067         case 2: /* USDOT */
12068             unallocated_encoding(s);
12069             return;
12070         }
12071         break;
12072     case 0x11: /* FCMLA #0 */
12073     case 0x13: /* FCMLA #90 */
12074     case 0x15: /* FCMLA #180 */
12075     case 0x17: /* FCMLA #270 */
12076         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12077             unallocated_encoding(s);
12078             return;
12079         }
12080         is_fp = 2;
12081         break;
12082     default:
12083     case 0x00: /* FMLAL */
12084     case 0x01: /* FMLA */
12085     case 0x04: /* FMLSL */
12086     case 0x05: /* FMLS */
12087     case 0x08: /* MUL */
12088     case 0x09: /* FMUL */
12089     case 0x0c: /* SQDMULH */
12090     case 0x0d: /* SQRDMULH */
12091     case 0x0e: /* SDOT */
12092     case 0x10: /* MLA */
12093     case 0x14: /* MLS */
12094     case 0x18: /* FMLAL2 */
12095     case 0x19: /* FMULX */
12096     case 0x1c: /* FMLSL2 */
12097     case 0x1d: /* SQRDMLAH */
12098     case 0x1e: /* UDOT */
12099     case 0x1f: /* SQRDMLSH */
12100         unallocated_encoding(s);
12101         return;
12102     }
12103 
12104     switch (is_fp) {
12105     case 1: /* normal fp */
12106         unallocated_encoding(s); /* in decodetree */
12107         return;
12108 
12109     case 2: /* complex fp */
12110         /* Each indexable element is a complex pair.  */
12111         size += 1;
12112         switch (size) {
12113         case MO_32:
12114             if (h && !is_q) {
12115                 unallocated_encoding(s);
12116                 return;
12117             }
12118             is_fp16 = true;
12119             break;
12120         case MO_64:
12121             break;
12122         default:
12123             unallocated_encoding(s);
12124             return;
12125         }
12126         break;
12127 
12128     default: /* integer */
12129         switch (size) {
12130         case MO_8:
12131         case MO_64:
12132             unallocated_encoding(s);
12133             return;
12134         }
12135         break;
12136     }
12137     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12138         unallocated_encoding(s);
12139         return;
12140     }
12141 
12142     /* Given MemOp size, adjust register and indexing.  */
12143     switch (size) {
12144     case MO_16:
12145         index = h << 2 | l << 1 | m;
12146         break;
12147     case MO_32:
12148         index = h << 1 | l;
12149         rm |= m << 4;
12150         break;
12151     case MO_64:
12152         if (l || !is_q) {
12153             unallocated_encoding(s);
12154             return;
12155         }
12156         index = h;
12157         rm |= m << 4;
12158         break;
12159     default:
12160         g_assert_not_reached();
12161     }
12162 
12163     if (!fp_access_check(s)) {
12164         return;
12165     }
12166 
12167     if (is_fp) {
12168         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12169     } else {
12170         fpst = NULL;
12171     }
12172 
12173     switch (16 * u + opcode) {
12174     case 0x0f:
12175         switch (extract32(insn, 22, 2)) {
12176         case 3: /* BFMLAL{B,T} */
12177             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12178                               gen_helper_gvec_bfmlal_idx);
12179             return;
12180         }
12181         g_assert_not_reached();
12182     case 0x11: /* FCMLA #0 */
12183     case 0x13: /* FCMLA #90 */
12184     case 0x15: /* FCMLA #180 */
12185     case 0x17: /* FCMLA #270 */
12186         {
12187             int rot = extract32(insn, 13, 2);
12188             int data = (index << 2) | rot;
12189             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12190                                vec_full_reg_offset(s, rn),
12191                                vec_full_reg_offset(s, rm),
12192                                vec_full_reg_offset(s, rd), fpst,
12193                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12194                                size == MO_64
12195                                ? gen_helper_gvec_fcmlas_idx
12196                                : gen_helper_gvec_fcmlah_idx);
12197         }
12198         return;
12199     }
12200 
12201     if (size == 3) {
12202         g_assert_not_reached();
12203     } else if (!is_long) {
12204         /* 32 bit floating point, or 16 or 32 bit integer.
12205          * For the 16 bit scalar case we use the usual Neon helpers and
12206          * rely on the fact that 0 op 0 == 0 with no side effects.
12207          */
12208         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12209         int pass, maxpasses;
12210 
12211         if (is_scalar) {
12212             maxpasses = 1;
12213         } else {
12214             maxpasses = is_q ? 4 : 2;
12215         }
12216 
12217         read_vec_element_i32(s, tcg_idx, rm, index, size);
12218 
12219         if (size == 1 && !is_scalar) {
12220             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12221              * the index into both halves of the 32 bit tcg_idx and then use
12222              * the usual Neon helpers.
12223              */
12224             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12225         }
12226 
12227         for (pass = 0; pass < maxpasses; pass++) {
12228             TCGv_i32 tcg_op = tcg_temp_new_i32();
12229             TCGv_i32 tcg_res = tcg_temp_new_i32();
12230 
12231             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12232 
12233             switch (16 * u + opcode) {
12234             case 0x10: /* MLA */
12235             case 0x14: /* MLS */
12236             {
12237                 static NeonGenTwoOpFn * const fns[2][2] = {
12238                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12239                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12240                 };
12241                 NeonGenTwoOpFn *genfn;
12242                 bool is_sub = opcode == 0x4;
12243 
12244                 if (size == 1) {
12245                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12246                 } else {
12247                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12248                 }
12249                 if (opcode == 0x8) {
12250                     break;
12251                 }
12252                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12253                 genfn = fns[size - 1][is_sub];
12254                 genfn(tcg_res, tcg_op, tcg_res);
12255                 break;
12256             }
12257             case 0x0c: /* SQDMULH */
12258                 if (size == 1) {
12259                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12260                                                tcg_op, tcg_idx);
12261                 } else {
12262                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12263                                                tcg_op, tcg_idx);
12264                 }
12265                 break;
12266             case 0x0d: /* SQRDMULH */
12267                 if (size == 1) {
12268                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12269                                                 tcg_op, tcg_idx);
12270                 } else {
12271                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12272                                                 tcg_op, tcg_idx);
12273                 }
12274                 break;
12275             default:
12276             case 0x01: /* FMLA */
12277             case 0x05: /* FMLS */
12278             case 0x09: /* FMUL */
12279             case 0x19: /* FMULX */
12280             case 0x1d: /* SQRDMLAH */
12281             case 0x1f: /* SQRDMLSH */
12282                 g_assert_not_reached();
12283             }
12284 
12285             if (is_scalar) {
12286                 write_fp_sreg(s, rd, tcg_res);
12287             } else {
12288                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12289             }
12290         }
12291 
12292         clear_vec_high(s, is_q, rd);
12293     } else {
12294         /* long ops: 16x16->32 or 32x32->64 */
12295         TCGv_i64 tcg_res[2];
12296         int pass;
12297         bool satop = extract32(opcode, 0, 1);
12298         MemOp memop = MO_32;
12299 
12300         if (satop || !u) {
12301             memop |= MO_SIGN;
12302         }
12303 
12304         if (size == 2) {
12305             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12306 
12307             read_vec_element(s, tcg_idx, rm, index, memop);
12308 
12309             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12310                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12311                 TCGv_i64 tcg_passres;
12312                 int passelt;
12313 
12314                 if (is_scalar) {
12315                     passelt = 0;
12316                 } else {
12317                     passelt = pass + (is_q * 2);
12318                 }
12319 
12320                 read_vec_element(s, tcg_op, rn, passelt, memop);
12321 
12322                 tcg_res[pass] = tcg_temp_new_i64();
12323 
12324                 if (opcode == 0xa || opcode == 0xb) {
12325                     /* Non-accumulating ops */
12326                     tcg_passres = tcg_res[pass];
12327                 } else {
12328                     tcg_passres = tcg_temp_new_i64();
12329                 }
12330 
12331                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12332 
12333                 if (satop) {
12334                     /* saturating, doubling */
12335                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12336                                                       tcg_passres, tcg_passres);
12337                 }
12338 
12339                 if (opcode == 0xa || opcode == 0xb) {
12340                     continue;
12341                 }
12342 
12343                 /* Accumulating op: handle accumulate step */
12344                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12345 
12346                 switch (opcode) {
12347                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12348                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12349                     break;
12350                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12351                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12352                     break;
12353                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12354                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12355                     /* fall through */
12356                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12357                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12358                                                       tcg_res[pass],
12359                                                       tcg_passres);
12360                     break;
12361                 default:
12362                     g_assert_not_reached();
12363                 }
12364             }
12365 
12366             clear_vec_high(s, !is_scalar, rd);
12367         } else {
12368             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12369 
12370             assert(size == 1);
12371             read_vec_element_i32(s, tcg_idx, rm, index, size);
12372 
12373             if (!is_scalar) {
12374                 /* The simplest way to handle the 16x16 indexed ops is to
12375                  * duplicate the index into both halves of the 32 bit tcg_idx
12376                  * and then use the usual Neon helpers.
12377                  */
12378                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12379             }
12380 
12381             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12382                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12383                 TCGv_i64 tcg_passres;
12384 
12385                 if (is_scalar) {
12386                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12387                 } else {
12388                     read_vec_element_i32(s, tcg_op, rn,
12389                                          pass + (is_q * 2), MO_32);
12390                 }
12391 
12392                 tcg_res[pass] = tcg_temp_new_i64();
12393 
12394                 if (opcode == 0xa || opcode == 0xb) {
12395                     /* Non-accumulating ops */
12396                     tcg_passres = tcg_res[pass];
12397                 } else {
12398                     tcg_passres = tcg_temp_new_i64();
12399                 }
12400 
12401                 if (memop & MO_SIGN) {
12402                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12403                 } else {
12404                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12405                 }
12406                 if (satop) {
12407                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12408                                                       tcg_passres, tcg_passres);
12409                 }
12410 
12411                 if (opcode == 0xa || opcode == 0xb) {
12412                     continue;
12413                 }
12414 
12415                 /* Accumulating op: handle accumulate step */
12416                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12417 
12418                 switch (opcode) {
12419                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12420                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12421                                              tcg_passres);
12422                     break;
12423                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12424                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12425                                              tcg_passres);
12426                     break;
12427                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12428                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12429                     /* fall through */
12430                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12431                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12432                                                       tcg_res[pass],
12433                                                       tcg_passres);
12434                     break;
12435                 default:
12436                     g_assert_not_reached();
12437                 }
12438             }
12439 
12440             if (is_scalar) {
12441                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12442             }
12443         }
12444 
12445         if (is_scalar) {
12446             tcg_res[1] = tcg_constant_i64(0);
12447         }
12448 
12449         for (pass = 0; pass < 2; pass++) {
12450             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12451         }
12452     }
12453 }
12454 
12455 /* C3.6 Data processing - SIMD, inc Crypto
12456  *
12457  * As the decode gets a little complex we are using a table based
12458  * approach for this part of the decode.
12459  */
12460 static const AArch64DecodeTable data_proc_simd[] = {
12461     /* pattern  ,  mask     ,  fn                        */
12462     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12463     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12464     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12465     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12466     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12467     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12468     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12469     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12470     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12471     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12472     { 0x2e000000, 0xbf208400, disas_simd_ext },
12473     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12474     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12475     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12476     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12477     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12478     { 0x00000000, 0x00000000, NULL }
12479 };
12480 
12481 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12482 {
12483     /* Note that this is called with all non-FP cases from
12484      * table C3-6 so it must UNDEF for entries not specifically
12485      * allocated to instructions in that table.
12486      */
12487     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12488     if (fn) {
12489         fn(s, insn);
12490     } else {
12491         unallocated_encoding(s);
12492     }
12493 }
12494 
12495 /* C3.6 Data processing - SIMD and floating point */
12496 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12497 {
12498     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12499         disas_data_proc_fp(s, insn);
12500     } else {
12501         /* SIMD, including crypto */
12502         disas_data_proc_simd(s, insn);
12503     }
12504 }
12505 
12506 static bool trans_OK(DisasContext *s, arg_OK *a)
12507 {
12508     return true;
12509 }
12510 
12511 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12512 {
12513     s->is_nonstreaming = true;
12514     return true;
12515 }
12516 
12517 /**
12518  * is_guarded_page:
12519  * @env: The cpu environment
12520  * @s: The DisasContext
12521  *
12522  * Return true if the page is guarded.
12523  */
12524 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12525 {
12526     uint64_t addr = s->base.pc_first;
12527 #ifdef CONFIG_USER_ONLY
12528     return page_get_flags(addr) & PAGE_BTI;
12529 #else
12530     CPUTLBEntryFull *full;
12531     void *host;
12532     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12533     int flags;
12534 
12535     /*
12536      * We test this immediately after reading an insn, which means
12537      * that the TLB entry must be present and valid, and thus this
12538      * access will never raise an exception.
12539      */
12540     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12541                               false, &host, &full, 0);
12542     assert(!(flags & TLB_INVALID_MASK));
12543 
12544     return full->extra.arm.guarded;
12545 #endif
12546 }
12547 
12548 /**
12549  * btype_destination_ok:
12550  * @insn: The instruction at the branch destination
12551  * @bt: SCTLR_ELx.BT
12552  * @btype: PSTATE.BTYPE, and is non-zero
12553  *
12554  * On a guarded page, there are a limited number of insns
12555  * that may be present at the branch target:
12556  *   - branch target identifiers,
12557  *   - paciasp, pacibsp,
12558  *   - BRK insn
12559  *   - HLT insn
12560  * Anything else causes a Branch Target Exception.
12561  *
12562  * Return true if the branch is compatible, false to raise BTITRAP.
12563  */
12564 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12565 {
12566     if ((insn & 0xfffff01fu) == 0xd503201fu) {
12567         /* HINT space */
12568         switch (extract32(insn, 5, 7)) {
12569         case 0b011001: /* PACIASP */
12570         case 0b011011: /* PACIBSP */
12571             /*
12572              * If SCTLR_ELx.BT, then PACI*SP are not compatible
12573              * with btype == 3.  Otherwise all btype are ok.
12574              */
12575             return !bt || btype != 3;
12576         case 0b100000: /* BTI */
12577             /* Not compatible with any btype.  */
12578             return false;
12579         case 0b100010: /* BTI c */
12580             /* Not compatible with btype == 3 */
12581             return btype != 3;
12582         case 0b100100: /* BTI j */
12583             /* Not compatible with btype == 2 */
12584             return btype != 2;
12585         case 0b100110: /* BTI jc */
12586             /* Compatible with any btype.  */
12587             return true;
12588         }
12589     } else {
12590         switch (insn & 0xffe0001fu) {
12591         case 0xd4200000u: /* BRK */
12592         case 0xd4400000u: /* HLT */
12593             /* Give priority to the breakpoint exception.  */
12594             return true;
12595         }
12596     }
12597     return false;
12598 }
12599 
12600 /* C3.1 A64 instruction index by encoding */
12601 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12602 {
12603     switch (extract32(insn, 25, 4)) {
12604     case 0x5:
12605     case 0xd:      /* Data processing - register */
12606         disas_data_proc_reg(s, insn);
12607         break;
12608     case 0x7:
12609     case 0xf:      /* Data processing - SIMD and floating point */
12610         disas_data_proc_simd_fp(s, insn);
12611         break;
12612     default:
12613         unallocated_encoding(s);
12614         break;
12615     }
12616 }
12617 
12618 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12619                                           CPUState *cpu)
12620 {
12621     DisasContext *dc = container_of(dcbase, DisasContext, base);
12622     CPUARMState *env = cpu_env(cpu);
12623     ARMCPU *arm_cpu = env_archcpu(env);
12624     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12625     int bound, core_mmu_idx;
12626 
12627     dc->isar = &arm_cpu->isar;
12628     dc->condjmp = 0;
12629     dc->pc_save = dc->base.pc_first;
12630     dc->aarch64 = true;
12631     dc->thumb = false;
12632     dc->sctlr_b = 0;
12633     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12634     dc->condexec_mask = 0;
12635     dc->condexec_cond = 0;
12636     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12637     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12638     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12639     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12640     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12641     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12642 #if !defined(CONFIG_USER_ONLY)
12643     dc->user = (dc->current_el == 0);
12644 #endif
12645     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12646     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12647     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12648     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12649     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12650     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12651     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12652     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12653     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12654     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12655     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12656     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12657     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12658     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12659     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12660     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12661     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12662     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12663     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12664     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12665     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12666     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12667     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12668     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12669     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12670     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12671     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12672     dc->vec_len = 0;
12673     dc->vec_stride = 0;
12674     dc->cp_regs = arm_cpu->cp_regs;
12675     dc->features = env->features;
12676     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12677     dc->gm_blocksize = arm_cpu->gm_blocksize;
12678 
12679 #ifdef CONFIG_USER_ONLY
12680     /* In sve_probe_page, we assume TBI is enabled. */
12681     tcg_debug_assert(dc->tbid & 1);
12682 #endif
12683 
12684     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12685 
12686     /* Single step state. The code-generation logic here is:
12687      *  SS_ACTIVE == 0:
12688      *   generate code with no special handling for single-stepping (except
12689      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12690      *   this happens anyway because those changes are all system register or
12691      *   PSTATE writes).
12692      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12693      *   emit code for one insn
12694      *   emit code to clear PSTATE.SS
12695      *   emit code to generate software step exception for completed step
12696      *   end TB (as usual for having generated an exception)
12697      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12698      *   emit code to generate a software step exception
12699      *   end the TB
12700      */
12701     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12702     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12703     dc->is_ldex = false;
12704 
12705     /* Bound the number of insns to execute to those left on the page.  */
12706     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12707 
12708     /* If architectural single step active, limit to 1.  */
12709     if (dc->ss_active) {
12710         bound = 1;
12711     }
12712     dc->base.max_insns = MIN(dc->base.max_insns, bound);
12713 }
12714 
12715 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12716 {
12717 }
12718 
12719 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12720 {
12721     DisasContext *dc = container_of(dcbase, DisasContext, base);
12722     target_ulong pc_arg = dc->base.pc_next;
12723 
12724     if (tb_cflags(dcbase->tb) & CF_PCREL) {
12725         pc_arg &= ~TARGET_PAGE_MASK;
12726     }
12727     tcg_gen_insn_start(pc_arg, 0, 0);
12728     dc->insn_start_updated = false;
12729 }
12730 
12731 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12732 {
12733     DisasContext *s = container_of(dcbase, DisasContext, base);
12734     CPUARMState *env = cpu_env(cpu);
12735     uint64_t pc = s->base.pc_next;
12736     uint32_t insn;
12737 
12738     /* Singlestep exceptions have the highest priority. */
12739     if (s->ss_active && !s->pstate_ss) {
12740         /* Singlestep state is Active-pending.
12741          * If we're in this state at the start of a TB then either
12742          *  a) we just took an exception to an EL which is being debugged
12743          *     and this is the first insn in the exception handler
12744          *  b) debug exceptions were masked and we just unmasked them
12745          *     without changing EL (eg by clearing PSTATE.D)
12746          * In either case we're going to take a swstep exception in the
12747          * "did not step an insn" case, and so the syndrome ISV and EX
12748          * bits should be zero.
12749          */
12750         assert(s->base.num_insns == 1);
12751         gen_swstep_exception(s, 0, 0);
12752         s->base.is_jmp = DISAS_NORETURN;
12753         s->base.pc_next = pc + 4;
12754         return;
12755     }
12756 
12757     if (pc & 3) {
12758         /*
12759          * PC alignment fault.  This has priority over the instruction abort
12760          * that we would receive from a translation fault via arm_ldl_code.
12761          * This should only be possible after an indirect branch, at the
12762          * start of the TB.
12763          */
12764         assert(s->base.num_insns == 1);
12765         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12766         s->base.is_jmp = DISAS_NORETURN;
12767         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12768         return;
12769     }
12770 
12771     s->pc_curr = pc;
12772     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12773     s->insn = insn;
12774     s->base.pc_next = pc + 4;
12775 
12776     s->fp_access_checked = false;
12777     s->sve_access_checked = false;
12778 
12779     if (s->pstate_il) {
12780         /*
12781          * Illegal execution state. This has priority over BTI
12782          * exceptions, but comes after instruction abort exceptions.
12783          */
12784         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12785         return;
12786     }
12787 
12788     if (dc_isar_feature(aa64_bti, s)) {
12789         if (s->base.num_insns == 1) {
12790             /*
12791              * At the first insn of the TB, compute s->guarded_page.
12792              * We delayed computing this until successfully reading
12793              * the first insn of the TB, above.  This (mostly) ensures
12794              * that the softmmu tlb entry has been populated, and the
12795              * page table GP bit is available.
12796              *
12797              * Note that we need to compute this even if btype == 0,
12798              * because this value is used for BR instructions later
12799              * where ENV is not available.
12800              */
12801             s->guarded_page = is_guarded_page(env, s);
12802 
12803             /* First insn can have btype set to non-zero.  */
12804             tcg_debug_assert(s->btype >= 0);
12805 
12806             /*
12807              * Note that the Branch Target Exception has fairly high
12808              * priority -- below debugging exceptions but above most
12809              * everything else.  This allows us to handle this now
12810              * instead of waiting until the insn is otherwise decoded.
12811              */
12812             if (s->btype != 0
12813                 && s->guarded_page
12814                 && !btype_destination_ok(insn, s->bt, s->btype)) {
12815                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12816                 return;
12817             }
12818         } else {
12819             /* Not the first insn: btype must be 0.  */
12820             tcg_debug_assert(s->btype == 0);
12821         }
12822     }
12823 
12824     s->is_nonstreaming = false;
12825     if (s->sme_trap_nonstreaming) {
12826         disas_sme_fa64(s, insn);
12827     }
12828 
12829     if (!disas_a64(s, insn) &&
12830         !disas_sme(s, insn) &&
12831         !disas_sve(s, insn)) {
12832         disas_a64_legacy(s, insn);
12833     }
12834 
12835     /*
12836      * After execution of most insns, btype is reset to 0.
12837      * Note that we set btype == -1 when the insn sets btype.
12838      */
12839     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12840         reset_btype(s);
12841     }
12842 }
12843 
12844 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12845 {
12846     DisasContext *dc = container_of(dcbase, DisasContext, base);
12847 
12848     if (unlikely(dc->ss_active)) {
12849         /* Note that this means single stepping WFI doesn't halt the CPU.
12850          * For conditional branch insns this is harmless unreachable code as
12851          * gen_goto_tb() has already handled emitting the debug exception
12852          * (and thus a tb-jump is not possible when singlestepping).
12853          */
12854         switch (dc->base.is_jmp) {
12855         default:
12856             gen_a64_update_pc(dc, 4);
12857             /* fall through */
12858         case DISAS_EXIT:
12859         case DISAS_JUMP:
12860             gen_step_complete_exception(dc);
12861             break;
12862         case DISAS_NORETURN:
12863             break;
12864         }
12865     } else {
12866         switch (dc->base.is_jmp) {
12867         case DISAS_NEXT:
12868         case DISAS_TOO_MANY:
12869             gen_goto_tb(dc, 1, 4);
12870             break;
12871         default:
12872         case DISAS_UPDATE_EXIT:
12873             gen_a64_update_pc(dc, 4);
12874             /* fall through */
12875         case DISAS_EXIT:
12876             tcg_gen_exit_tb(NULL, 0);
12877             break;
12878         case DISAS_UPDATE_NOCHAIN:
12879             gen_a64_update_pc(dc, 4);
12880             /* fall through */
12881         case DISAS_JUMP:
12882             tcg_gen_lookup_and_goto_ptr();
12883             break;
12884         case DISAS_NORETURN:
12885         case DISAS_SWI:
12886             break;
12887         case DISAS_WFE:
12888             gen_a64_update_pc(dc, 4);
12889             gen_helper_wfe(tcg_env);
12890             break;
12891         case DISAS_YIELD:
12892             gen_a64_update_pc(dc, 4);
12893             gen_helper_yield(tcg_env);
12894             break;
12895         case DISAS_WFI:
12896             /*
12897              * This is a special case because we don't want to just halt
12898              * the CPU if trying to debug across a WFI.
12899              */
12900             gen_a64_update_pc(dc, 4);
12901             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12902             /*
12903              * The helper doesn't necessarily throw an exception, but we
12904              * must go back to the main loop to check for interrupts anyway.
12905              */
12906             tcg_gen_exit_tb(NULL, 0);
12907             break;
12908         }
12909     }
12910 }
12911 
12912 const TranslatorOps aarch64_translator_ops = {
12913     .init_disas_context = aarch64_tr_init_disas_context,
12914     .tb_start           = aarch64_tr_tb_start,
12915     .insn_start         = aarch64_tr_insn_start,
12916     .translate_insn     = aarch64_tr_translate_insn,
12917     .tb_stop            = aarch64_tr_tb_stop,
12918 };
12919