xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 8f6343ae)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1356 {
1357     if (a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1367 {
1368     if (!a->q && a->esz == MO_64) {
1369         return false;
1370     }
1371     if (fp_access_check(s)) {
1372         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1373     }
1374     return true;
1375 }
1376 
1377 /*
1378  * This utility function is for doing register extension with an
1379  * optional shift. You will likely want to pass a temporary for the
1380  * destination register. See DecodeRegExtend() in the ARM ARM.
1381  */
1382 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1383                               int option, unsigned int shift)
1384 {
1385     int extsize = extract32(option, 0, 2);
1386     bool is_signed = extract32(option, 2, 1);
1387 
1388     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1389     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1390 }
1391 
1392 static inline void gen_check_sp_alignment(DisasContext *s)
1393 {
1394     /* The AArch64 architecture mandates that (if enabled via PSTATE
1395      * or SCTLR bits) there is a check that SP is 16-aligned on every
1396      * SP-relative load or store (with an exception generated if it is not).
1397      * In line with general QEMU practice regarding misaligned accesses,
1398      * we omit these checks for the sake of guest program performance.
1399      * This function is provided as a hook so we can more easily add these
1400      * checks in future (possibly as a "favour catching guest program bugs
1401      * over speed" user selectable option).
1402      */
1403 }
1404 
1405 /*
1406  * This provides a simple table based table lookup decoder. It is
1407  * intended to be used when the relevant bits for decode are too
1408  * awkwardly placed and switch/if based logic would be confusing and
1409  * deeply nested. Since it's a linear search through the table, tables
1410  * should be kept small.
1411  *
1412  * It returns the first handler where insn & mask == pattern, or
1413  * NULL if there is no match.
1414  * The table is terminated by an empty mask (i.e. 0)
1415  */
1416 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1417                                                uint32_t insn)
1418 {
1419     const AArch64DecodeTable *tptr = table;
1420 
1421     while (tptr->mask) {
1422         if ((insn & tptr->mask) == tptr->pattern) {
1423             return tptr->disas_fn;
1424         }
1425         tptr++;
1426     }
1427     return NULL;
1428 }
1429 
1430 /*
1431  * The instruction disassembly implemented here matches
1432  * the instruction encoding classifications in chapter C4
1433  * of the ARM Architecture Reference Manual (DDI0487B_a);
1434  * classification names and decode diagrams here should generally
1435  * match up with those in the manual.
1436  */
1437 
1438 static bool trans_B(DisasContext *s, arg_i *a)
1439 {
1440     reset_btype(s);
1441     gen_goto_tb(s, 0, a->imm);
1442     return true;
1443 }
1444 
1445 static bool trans_BL(DisasContext *s, arg_i *a)
1446 {
1447     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1448     reset_btype(s);
1449     gen_goto_tb(s, 0, a->imm);
1450     return true;
1451 }
1452 
1453 
1454 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1455 {
1456     DisasLabel match;
1457     TCGv_i64 tcg_cmp;
1458 
1459     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1460     reset_btype(s);
1461 
1462     match = gen_disas_label(s);
1463     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1464                         tcg_cmp, 0, match.label);
1465     gen_goto_tb(s, 0, 4);
1466     set_disas_label(s, match);
1467     gen_goto_tb(s, 1, a->imm);
1468     return true;
1469 }
1470 
1471 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1472 {
1473     DisasLabel match;
1474     TCGv_i64 tcg_cmp;
1475 
1476     tcg_cmp = tcg_temp_new_i64();
1477     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1478 
1479     reset_btype(s);
1480 
1481     match = gen_disas_label(s);
1482     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1483                         tcg_cmp, 0, match.label);
1484     gen_goto_tb(s, 0, 4);
1485     set_disas_label(s, match);
1486     gen_goto_tb(s, 1, a->imm);
1487     return true;
1488 }
1489 
1490 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1491 {
1492     /* BC.cond is only present with FEAT_HBC */
1493     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1494         return false;
1495     }
1496     reset_btype(s);
1497     if (a->cond < 0x0e) {
1498         /* genuinely conditional branches */
1499         DisasLabel match = gen_disas_label(s);
1500         arm_gen_test_cc(a->cond, match.label);
1501         gen_goto_tb(s, 0, 4);
1502         set_disas_label(s, match);
1503         gen_goto_tb(s, 1, a->imm);
1504     } else {
1505         /* 0xe and 0xf are both "always" conditions */
1506         gen_goto_tb(s, 0, a->imm);
1507     }
1508     return true;
1509 }
1510 
1511 static void set_btype_for_br(DisasContext *s, int rn)
1512 {
1513     if (dc_isar_feature(aa64_bti, s)) {
1514         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1515         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1516     }
1517 }
1518 
1519 static void set_btype_for_blr(DisasContext *s)
1520 {
1521     if (dc_isar_feature(aa64_bti, s)) {
1522         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1523         set_btype(s, 2);
1524     }
1525 }
1526 
1527 static bool trans_BR(DisasContext *s, arg_r *a)
1528 {
1529     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1530     set_btype_for_br(s, a->rn);
1531     s->base.is_jmp = DISAS_JUMP;
1532     return true;
1533 }
1534 
1535 static bool trans_BLR(DisasContext *s, arg_r *a)
1536 {
1537     TCGv_i64 dst = cpu_reg(s, a->rn);
1538     TCGv_i64 lr = cpu_reg(s, 30);
1539     if (dst == lr) {
1540         TCGv_i64 tmp = tcg_temp_new_i64();
1541         tcg_gen_mov_i64(tmp, dst);
1542         dst = tmp;
1543     }
1544     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1545     gen_a64_set_pc(s, dst);
1546     set_btype_for_blr(s);
1547     s->base.is_jmp = DISAS_JUMP;
1548     return true;
1549 }
1550 
1551 static bool trans_RET(DisasContext *s, arg_r *a)
1552 {
1553     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1554     s->base.is_jmp = DISAS_JUMP;
1555     return true;
1556 }
1557 
1558 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1559                                    TCGv_i64 modifier, bool use_key_a)
1560 {
1561     TCGv_i64 truedst;
1562     /*
1563      * Return the branch target for a BRAA/RETA/etc, which is either
1564      * just the destination dst, or that value with the pauth check
1565      * done and the code removed from the high bits.
1566      */
1567     if (!s->pauth_active) {
1568         return dst;
1569     }
1570 
1571     truedst = tcg_temp_new_i64();
1572     if (use_key_a) {
1573         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1574     } else {
1575         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1576     }
1577     return truedst;
1578 }
1579 
1580 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1581 {
1582     TCGv_i64 dst;
1583 
1584     if (!dc_isar_feature(aa64_pauth, s)) {
1585         return false;
1586     }
1587 
1588     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1589     gen_a64_set_pc(s, dst);
1590     set_btype_for_br(s, a->rn);
1591     s->base.is_jmp = DISAS_JUMP;
1592     return true;
1593 }
1594 
1595 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1596 {
1597     TCGv_i64 dst, lr;
1598 
1599     if (!dc_isar_feature(aa64_pauth, s)) {
1600         return false;
1601     }
1602 
1603     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1604     lr = cpu_reg(s, 30);
1605     if (dst == lr) {
1606         TCGv_i64 tmp = tcg_temp_new_i64();
1607         tcg_gen_mov_i64(tmp, dst);
1608         dst = tmp;
1609     }
1610     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1611     gen_a64_set_pc(s, dst);
1612     set_btype_for_blr(s);
1613     s->base.is_jmp = DISAS_JUMP;
1614     return true;
1615 }
1616 
1617 static bool trans_RETA(DisasContext *s, arg_reta *a)
1618 {
1619     TCGv_i64 dst;
1620 
1621     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1622     gen_a64_set_pc(s, dst);
1623     s->base.is_jmp = DISAS_JUMP;
1624     return true;
1625 }
1626 
1627 static bool trans_BRA(DisasContext *s, arg_bra *a)
1628 {
1629     TCGv_i64 dst;
1630 
1631     if (!dc_isar_feature(aa64_pauth, s)) {
1632         return false;
1633     }
1634     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1635     gen_a64_set_pc(s, dst);
1636     set_btype_for_br(s, a->rn);
1637     s->base.is_jmp = DISAS_JUMP;
1638     return true;
1639 }
1640 
1641 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1642 {
1643     TCGv_i64 dst, lr;
1644 
1645     if (!dc_isar_feature(aa64_pauth, s)) {
1646         return false;
1647     }
1648     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1649     lr = cpu_reg(s, 30);
1650     if (dst == lr) {
1651         TCGv_i64 tmp = tcg_temp_new_i64();
1652         tcg_gen_mov_i64(tmp, dst);
1653         dst = tmp;
1654     }
1655     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1656     gen_a64_set_pc(s, dst);
1657     set_btype_for_blr(s);
1658     s->base.is_jmp = DISAS_JUMP;
1659     return true;
1660 }
1661 
1662 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1663 {
1664     TCGv_i64 dst;
1665 
1666     if (s->current_el == 0) {
1667         return false;
1668     }
1669     if (s->trap_eret) {
1670         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1671         return true;
1672     }
1673     dst = tcg_temp_new_i64();
1674     tcg_gen_ld_i64(dst, tcg_env,
1675                    offsetof(CPUARMState, elr_el[s->current_el]));
1676 
1677     translator_io_start(&s->base);
1678 
1679     gen_helper_exception_return(tcg_env, dst);
1680     /* Must exit loop to check un-masked IRQs */
1681     s->base.is_jmp = DISAS_EXIT;
1682     return true;
1683 }
1684 
1685 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1686 {
1687     TCGv_i64 dst;
1688 
1689     if (!dc_isar_feature(aa64_pauth, s)) {
1690         return false;
1691     }
1692     if (s->current_el == 0) {
1693         return false;
1694     }
1695     /* The FGT trap takes precedence over an auth trap. */
1696     if (s->trap_eret) {
1697         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1698         return true;
1699     }
1700     dst = tcg_temp_new_i64();
1701     tcg_gen_ld_i64(dst, tcg_env,
1702                    offsetof(CPUARMState, elr_el[s->current_el]));
1703 
1704     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1705 
1706     translator_io_start(&s->base);
1707 
1708     gen_helper_exception_return(tcg_env, dst);
1709     /* Must exit loop to check un-masked IRQs */
1710     s->base.is_jmp = DISAS_EXIT;
1711     return true;
1712 }
1713 
1714 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1715 {
1716     return true;
1717 }
1718 
1719 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1720 {
1721     /*
1722      * When running in MTTCG we don't generate jumps to the yield and
1723      * WFE helpers as it won't affect the scheduling of other vCPUs.
1724      * If we wanted to more completely model WFE/SEV so we don't busy
1725      * spin unnecessarily we would need to do something more involved.
1726      */
1727     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1728         s->base.is_jmp = DISAS_YIELD;
1729     }
1730     return true;
1731 }
1732 
1733 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1734 {
1735     s->base.is_jmp = DISAS_WFI;
1736     return true;
1737 }
1738 
1739 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1740 {
1741     /*
1742      * When running in MTTCG we don't generate jumps to the yield and
1743      * WFE helpers as it won't affect the scheduling of other vCPUs.
1744      * If we wanted to more completely model WFE/SEV so we don't busy
1745      * spin unnecessarily we would need to do something more involved.
1746      */
1747     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1748         s->base.is_jmp = DISAS_WFE;
1749     }
1750     return true;
1751 }
1752 
1753 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1754 {
1755     if (s->pauth_active) {
1756         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1757     }
1758     return true;
1759 }
1760 
1761 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1762 {
1763     if (s->pauth_active) {
1764         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1765     }
1766     return true;
1767 }
1768 
1769 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1770 {
1771     if (s->pauth_active) {
1772         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1773     }
1774     return true;
1775 }
1776 
1777 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1778 {
1779     if (s->pauth_active) {
1780         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1781     }
1782     return true;
1783 }
1784 
1785 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1786 {
1787     if (s->pauth_active) {
1788         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1789     }
1790     return true;
1791 }
1792 
1793 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1794 {
1795     /* Without RAS, we must implement this as NOP. */
1796     if (dc_isar_feature(aa64_ras, s)) {
1797         /*
1798          * QEMU does not have a source of physical SErrors,
1799          * so we are only concerned with virtual SErrors.
1800          * The pseudocode in the ARM for this case is
1801          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1802          *      AArch64.vESBOperation();
1803          * Most of the condition can be evaluated at translation time.
1804          * Test for EL2 present, and defer test for SEL2 to runtime.
1805          */
1806         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1807             gen_helper_vesb(tcg_env);
1808         }
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1830 {
1831     if (s->pauth_active) {
1832         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1833     }
1834     return true;
1835 }
1836 
1837 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1838 {
1839     if (s->pauth_active) {
1840         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1841     }
1842     return true;
1843 }
1844 
1845 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1846 {
1847     if (s->pauth_active) {
1848         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1849     }
1850     return true;
1851 }
1852 
1853 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1854 {
1855     if (s->pauth_active) {
1856         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1857     }
1858     return true;
1859 }
1860 
1861 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1862 {
1863     if (s->pauth_active) {
1864         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1865     }
1866     return true;
1867 }
1868 
1869 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1870 {
1871     if (s->pauth_active) {
1872         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1873     }
1874     return true;
1875 }
1876 
1877 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1878 {
1879     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1880     return true;
1881 }
1882 
1883 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1884 {
1885     /* We handle DSB and DMB the same way */
1886     TCGBar bar;
1887 
1888     switch (a->types) {
1889     case 1: /* MBReqTypes_Reads */
1890         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1891         break;
1892     case 2: /* MBReqTypes_Writes */
1893         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1894         break;
1895     default: /* MBReqTypes_All */
1896         bar = TCG_BAR_SC | TCG_MO_ALL;
1897         break;
1898     }
1899     tcg_gen_mb(bar);
1900     return true;
1901 }
1902 
1903 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1904 {
1905     /*
1906      * We need to break the TB after this insn to execute
1907      * self-modifying code correctly and also to take
1908      * any pending interrupts immediately.
1909      */
1910     reset_btype(s);
1911     gen_goto_tb(s, 0, 4);
1912     return true;
1913 }
1914 
1915 static bool trans_SB(DisasContext *s, arg_SB *a)
1916 {
1917     if (!dc_isar_feature(aa64_sb, s)) {
1918         return false;
1919     }
1920     /*
1921      * TODO: There is no speculation barrier opcode for TCG;
1922      * MB and end the TB instead.
1923      */
1924     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1925     gen_goto_tb(s, 0, 4);
1926     return true;
1927 }
1928 
1929 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1930 {
1931     if (!dc_isar_feature(aa64_condm_4, s)) {
1932         return false;
1933     }
1934     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1935     return true;
1936 }
1937 
1938 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1939 {
1940     TCGv_i32 z;
1941 
1942     if (!dc_isar_feature(aa64_condm_5, s)) {
1943         return false;
1944     }
1945 
1946     z = tcg_temp_new_i32();
1947 
1948     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1949 
1950     /*
1951      * (!C & !Z) << 31
1952      * (!(C | Z)) << 31
1953      * ~((C | Z) << 31)
1954      * ~-(C | Z)
1955      * (C | Z) - 1
1956      */
1957     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1958     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1959 
1960     /* !(Z & C) */
1961     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1962     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1963 
1964     /* (!C & Z) << 31 -> -(Z & ~C) */
1965     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1966     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1967 
1968     /* C | Z */
1969     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1970 
1971     return true;
1972 }
1973 
1974 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1975 {
1976     if (!dc_isar_feature(aa64_condm_5, s)) {
1977         return false;
1978     }
1979 
1980     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1981     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1982 
1983     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1984     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1985 
1986     tcg_gen_movi_i32(cpu_NF, 0);
1987     tcg_gen_movi_i32(cpu_VF, 0);
1988 
1989     return true;
1990 }
1991 
1992 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1993 {
1994     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1995         return false;
1996     }
1997     if (a->imm & 1) {
1998         set_pstate_bits(PSTATE_UAO);
1999     } else {
2000         clear_pstate_bits(PSTATE_UAO);
2001     }
2002     gen_rebuild_hflags(s);
2003     s->base.is_jmp = DISAS_TOO_MANY;
2004     return true;
2005 }
2006 
2007 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2008 {
2009     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2010         return false;
2011     }
2012     if (a->imm & 1) {
2013         set_pstate_bits(PSTATE_PAN);
2014     } else {
2015         clear_pstate_bits(PSTATE_PAN);
2016     }
2017     gen_rebuild_hflags(s);
2018     s->base.is_jmp = DISAS_TOO_MANY;
2019     return true;
2020 }
2021 
2022 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2023 {
2024     if (s->current_el == 0) {
2025         return false;
2026     }
2027     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2028     s->base.is_jmp = DISAS_TOO_MANY;
2029     return true;
2030 }
2031 
2032 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2033 {
2034     if (!dc_isar_feature(aa64_ssbs, s)) {
2035         return false;
2036     }
2037     if (a->imm & 1) {
2038         set_pstate_bits(PSTATE_SSBS);
2039     } else {
2040         clear_pstate_bits(PSTATE_SSBS);
2041     }
2042     /* Don't need to rebuild hflags since SSBS is a nop */
2043     s->base.is_jmp = DISAS_TOO_MANY;
2044     return true;
2045 }
2046 
2047 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2048 {
2049     if (!dc_isar_feature(aa64_dit, s)) {
2050         return false;
2051     }
2052     if (a->imm & 1) {
2053         set_pstate_bits(PSTATE_DIT);
2054     } else {
2055         clear_pstate_bits(PSTATE_DIT);
2056     }
2057     /* There's no need to rebuild hflags because DIT is a nop */
2058     s->base.is_jmp = DISAS_TOO_MANY;
2059     return true;
2060 }
2061 
2062 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2063 {
2064     if (dc_isar_feature(aa64_mte, s)) {
2065         /* Full MTE is enabled -- set the TCO bit as directed. */
2066         if (a->imm & 1) {
2067             set_pstate_bits(PSTATE_TCO);
2068         } else {
2069             clear_pstate_bits(PSTATE_TCO);
2070         }
2071         gen_rebuild_hflags(s);
2072         /* Many factors, including TCO, go into MTE_ACTIVE. */
2073         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2074         return true;
2075     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2076         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2077         return true;
2078     } else {
2079         /* Insn not present */
2080         return false;
2081     }
2082 }
2083 
2084 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2085 {
2086     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2087     s->base.is_jmp = DISAS_TOO_MANY;
2088     return true;
2089 }
2090 
2091 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2092 {
2093     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2094     /* Exit the cpu loop to re-evaluate pending IRQs. */
2095     s->base.is_jmp = DISAS_UPDATE_EXIT;
2096     return true;
2097 }
2098 
2099 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2100 {
2101     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2102         return false;
2103     }
2104 
2105     if (a->imm == 0) {
2106         clear_pstate_bits(PSTATE_ALLINT);
2107     } else if (s->current_el > 1) {
2108         set_pstate_bits(PSTATE_ALLINT);
2109     } else {
2110         gen_helper_msr_set_allint_el1(tcg_env);
2111     }
2112 
2113     /* Exit the cpu loop to re-evaluate pending IRQs. */
2114     s->base.is_jmp = DISAS_UPDATE_EXIT;
2115     return true;
2116 }
2117 
2118 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2119 {
2120     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2121         return false;
2122     }
2123     if (sme_access_check(s)) {
2124         int old = s->pstate_sm | (s->pstate_za << 1);
2125         int new = a->imm * 3;
2126 
2127         if ((old ^ new) & a->mask) {
2128             /* At least one bit changes. */
2129             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2130                                 tcg_constant_i32(a->mask));
2131             s->base.is_jmp = DISAS_TOO_MANY;
2132         }
2133     }
2134     return true;
2135 }
2136 
2137 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2138 {
2139     TCGv_i32 tmp = tcg_temp_new_i32();
2140     TCGv_i32 nzcv = tcg_temp_new_i32();
2141 
2142     /* build bit 31, N */
2143     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2144     /* build bit 30, Z */
2145     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2146     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2147     /* build bit 29, C */
2148     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2149     /* build bit 28, V */
2150     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2151     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2152     /* generate result */
2153     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2154 }
2155 
2156 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2157 {
2158     TCGv_i32 nzcv = tcg_temp_new_i32();
2159 
2160     /* take NZCV from R[t] */
2161     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2162 
2163     /* bit 31, N */
2164     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2165     /* bit 30, Z */
2166     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2167     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2168     /* bit 29, C */
2169     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2170     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2171     /* bit 28, V */
2172     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2173     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2174 }
2175 
2176 static void gen_sysreg_undef(DisasContext *s, bool isread,
2177                              uint8_t op0, uint8_t op1, uint8_t op2,
2178                              uint8_t crn, uint8_t crm, uint8_t rt)
2179 {
2180     /*
2181      * Generate code to emit an UNDEF with correct syndrome
2182      * information for a failed system register access.
2183      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2184      * but if FEAT_IDST is implemented then read accesses to registers
2185      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2186      * syndrome.
2187      */
2188     uint32_t syndrome;
2189 
2190     if (isread && dc_isar_feature(aa64_ids, s) &&
2191         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2192         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2193     } else {
2194         syndrome = syn_uncategorized();
2195     }
2196     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2197 }
2198 
2199 /* MRS - move from system register
2200  * MSR (register) - move to system register
2201  * SYS
2202  * SYSL
2203  * These are all essentially the same insn in 'read' and 'write'
2204  * versions, with varying op0 fields.
2205  */
2206 static void handle_sys(DisasContext *s, bool isread,
2207                        unsigned int op0, unsigned int op1, unsigned int op2,
2208                        unsigned int crn, unsigned int crm, unsigned int rt)
2209 {
2210     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2211                                       crn, crm, op0, op1, op2);
2212     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2213     bool need_exit_tb = false;
2214     bool nv_trap_to_el2 = false;
2215     bool nv_redirect_reg = false;
2216     bool skip_fp_access_checks = false;
2217     bool nv2_mem_redirect = false;
2218     TCGv_ptr tcg_ri = NULL;
2219     TCGv_i64 tcg_rt;
2220     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2221 
2222     if (crn == 11 || crn == 15) {
2223         /*
2224          * Check for TIDCP trap, which must take precedence over
2225          * the UNDEF for "no such register" etc.
2226          */
2227         switch (s->current_el) {
2228         case 0:
2229             if (dc_isar_feature(aa64_tidcp1, s)) {
2230                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2231             }
2232             break;
2233         case 1:
2234             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2235             break;
2236         }
2237     }
2238 
2239     if (!ri) {
2240         /* Unknown register; this might be a guest error or a QEMU
2241          * unimplemented feature.
2242          */
2243         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2244                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2245                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2246         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2247         return;
2248     }
2249 
2250     if (s->nv2 && ri->nv2_redirect_offset) {
2251         /*
2252          * Some registers always redirect to memory; some only do so if
2253          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2254          * pairs which share an offset; see the table in R_CSRPQ).
2255          */
2256         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2257             nv2_mem_redirect = s->nv1;
2258         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2259             nv2_mem_redirect = !s->nv1;
2260         } else {
2261             nv2_mem_redirect = true;
2262         }
2263     }
2264 
2265     /* Check access permissions */
2266     if (!cp_access_ok(s->current_el, ri, isread)) {
2267         /*
2268          * FEAT_NV/NV2 handling does not do the usual FP access checks
2269          * for registers only accessible at EL2 (though it *does* do them
2270          * for registers accessible at EL1).
2271          */
2272         skip_fp_access_checks = true;
2273         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2274             /*
2275              * This is one of the few EL2 registers which should redirect
2276              * to the equivalent EL1 register. We do that after running
2277              * the EL2 register's accessfn.
2278              */
2279             nv_redirect_reg = true;
2280             assert(!nv2_mem_redirect);
2281         } else if (nv2_mem_redirect) {
2282             /*
2283              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2284              * UNDEF to EL1.
2285              */
2286         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2287             /*
2288              * This register / instruction exists and is an EL2 register, so
2289              * we must trap to EL2 if accessed in nested virtualization EL1
2290              * instead of UNDEFing. We'll do that after the usual access checks.
2291              * (This makes a difference only for a couple of registers like
2292              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2293              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2294              * an accessfn which does nothing when called from EL1, because
2295              * the trap-to-EL3 controls which would apply to that register
2296              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2297              */
2298             nv_trap_to_el2 = true;
2299         } else {
2300             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2301             return;
2302         }
2303     }
2304 
2305     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2306         /* Emit code to perform further access permissions checks at
2307          * runtime; this may result in an exception.
2308          */
2309         gen_a64_update_pc(s, 0);
2310         tcg_ri = tcg_temp_new_ptr();
2311         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2312                                        tcg_constant_i32(key),
2313                                        tcg_constant_i32(syndrome),
2314                                        tcg_constant_i32(isread));
2315     } else if (ri->type & ARM_CP_RAISES_EXC) {
2316         /*
2317          * The readfn or writefn might raise an exception;
2318          * synchronize the CPU state in case it does.
2319          */
2320         gen_a64_update_pc(s, 0);
2321     }
2322 
2323     if (!skip_fp_access_checks) {
2324         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2325             return;
2326         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2327             return;
2328         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2329             return;
2330         }
2331     }
2332 
2333     if (nv_trap_to_el2) {
2334         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2335         return;
2336     }
2337 
2338     if (nv_redirect_reg) {
2339         /*
2340          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2341          * Conveniently in all cases the encoding of the EL1 register is
2342          * identical to the EL2 register except that opc1 is 0.
2343          * Get the reginfo for the EL1 register to use for the actual access.
2344          * We don't use the EL1 register's access function, and
2345          * fine-grained-traps on EL1 also do not apply here.
2346          */
2347         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2348                                  crn, crm, op0, 0, op2);
2349         ri = get_arm_cp_reginfo(s->cp_regs, key);
2350         assert(ri);
2351         assert(cp_access_ok(s->current_el, ri, isread));
2352         /*
2353          * We might not have done an update_pc earlier, so check we don't
2354          * need it. We could support this in future if necessary.
2355          */
2356         assert(!(ri->type & ARM_CP_RAISES_EXC));
2357     }
2358 
2359     if (nv2_mem_redirect) {
2360         /*
2361          * This system register is being redirected into an EL2 memory access.
2362          * This means it is not an IO operation, doesn't change hflags,
2363          * and need not end the TB, because it has no side effects.
2364          *
2365          * The access is 64-bit single copy atomic, guaranteed aligned because
2366          * of the definition of VCNR_EL2. Its endianness depends on
2367          * SCTLR_EL2.EE, not on the data endianness of EL1.
2368          * It is done under either the EL2 translation regime or the EL2&0
2369          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2370          * PSTATE.PAN is 0.
2371          */
2372         TCGv_i64 ptr = tcg_temp_new_i64();
2373         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2374         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2375         int memidx = arm_to_core_mmu_idx(armmemidx);
2376         uint32_t syn;
2377 
2378         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2379 
2380         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2381         tcg_gen_addi_i64(ptr, ptr,
2382                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2383         tcg_rt = cpu_reg(s, rt);
2384 
2385         syn = syn_data_abort_vncr(0, !isread, 0);
2386         disas_set_insn_syndrome(s, syn);
2387         if (isread) {
2388             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2389         } else {
2390             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2391         }
2392         return;
2393     }
2394 
2395     /* Handle special cases first */
2396     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2397     case 0:
2398         break;
2399     case ARM_CP_NOP:
2400         return;
2401     case ARM_CP_NZCV:
2402         tcg_rt = cpu_reg(s, rt);
2403         if (isread) {
2404             gen_get_nzcv(tcg_rt);
2405         } else {
2406             gen_set_nzcv(tcg_rt);
2407         }
2408         return;
2409     case ARM_CP_CURRENTEL:
2410     {
2411         /*
2412          * Reads as current EL value from pstate, which is
2413          * guaranteed to be constant by the tb flags.
2414          * For nested virt we should report EL2.
2415          */
2416         int el = s->nv ? 2 : s->current_el;
2417         tcg_rt = cpu_reg(s, rt);
2418         tcg_gen_movi_i64(tcg_rt, el << 2);
2419         return;
2420     }
2421     case ARM_CP_DC_ZVA:
2422         /* Writes clear the aligned block of memory which rt points into. */
2423         if (s->mte_active[0]) {
2424             int desc = 0;
2425 
2426             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2427             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2428             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2429 
2430             tcg_rt = tcg_temp_new_i64();
2431             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2432                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2433         } else {
2434             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2435         }
2436         gen_helper_dc_zva(tcg_env, tcg_rt);
2437         return;
2438     case ARM_CP_DC_GVA:
2439         {
2440             TCGv_i64 clean_addr, tag;
2441 
2442             /*
2443              * DC_GVA, like DC_ZVA, requires that we supply the original
2444              * pointer for an invalid page.  Probe that address first.
2445              */
2446             tcg_rt = cpu_reg(s, rt);
2447             clean_addr = clean_data_tbi(s, tcg_rt);
2448             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2449 
2450             if (s->ata[0]) {
2451                 /* Extract the tag from the register to match STZGM.  */
2452                 tag = tcg_temp_new_i64();
2453                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2454                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2455             }
2456         }
2457         return;
2458     case ARM_CP_DC_GZVA:
2459         {
2460             TCGv_i64 clean_addr, tag;
2461 
2462             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2463             tcg_rt = cpu_reg(s, rt);
2464             clean_addr = clean_data_tbi(s, tcg_rt);
2465             gen_helper_dc_zva(tcg_env, clean_addr);
2466 
2467             if (s->ata[0]) {
2468                 /* Extract the tag from the register to match STZGM.  */
2469                 tag = tcg_temp_new_i64();
2470                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2471                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2472             }
2473         }
2474         return;
2475     default:
2476         g_assert_not_reached();
2477     }
2478 
2479     if (ri->type & ARM_CP_IO) {
2480         /* I/O operations must end the TB here (whether read or write) */
2481         need_exit_tb = translator_io_start(&s->base);
2482     }
2483 
2484     tcg_rt = cpu_reg(s, rt);
2485 
2486     if (isread) {
2487         if (ri->type & ARM_CP_CONST) {
2488             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2489         } else if (ri->readfn) {
2490             if (!tcg_ri) {
2491                 tcg_ri = gen_lookup_cp_reg(key);
2492             }
2493             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2494         } else {
2495             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2496         }
2497     } else {
2498         if (ri->type & ARM_CP_CONST) {
2499             /* If not forbidden by access permissions, treat as WI */
2500             return;
2501         } else if (ri->writefn) {
2502             if (!tcg_ri) {
2503                 tcg_ri = gen_lookup_cp_reg(key);
2504             }
2505             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2506         } else {
2507             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2508         }
2509     }
2510 
2511     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2512         /*
2513          * A write to any coprocessor register that ends a TB
2514          * must rebuild the hflags for the next TB.
2515          */
2516         gen_rebuild_hflags(s);
2517         /*
2518          * We default to ending the TB on a coprocessor register write,
2519          * but allow this to be suppressed by the register definition
2520          * (usually only necessary to work around guest bugs).
2521          */
2522         need_exit_tb = true;
2523     }
2524     if (need_exit_tb) {
2525         s->base.is_jmp = DISAS_UPDATE_EXIT;
2526     }
2527 }
2528 
2529 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2530 {
2531     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2532     return true;
2533 }
2534 
2535 static bool trans_SVC(DisasContext *s, arg_i *a)
2536 {
2537     /*
2538      * For SVC, HVC and SMC we advance the single-step state
2539      * machine before taking the exception. This is architecturally
2540      * mandated, to ensure that single-stepping a system call
2541      * instruction works properly.
2542      */
2543     uint32_t syndrome = syn_aa64_svc(a->imm);
2544     if (s->fgt_svc) {
2545         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2546         return true;
2547     }
2548     gen_ss_advance(s);
2549     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2550     return true;
2551 }
2552 
2553 static bool trans_HVC(DisasContext *s, arg_i *a)
2554 {
2555     int target_el = s->current_el == 3 ? 3 : 2;
2556 
2557     if (s->current_el == 0) {
2558         unallocated_encoding(s);
2559         return true;
2560     }
2561     /*
2562      * The pre HVC helper handles cases when HVC gets trapped
2563      * as an undefined insn by runtime configuration.
2564      */
2565     gen_a64_update_pc(s, 0);
2566     gen_helper_pre_hvc(tcg_env);
2567     /* Architecture requires ss advance before we do the actual work */
2568     gen_ss_advance(s);
2569     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2570     return true;
2571 }
2572 
2573 static bool trans_SMC(DisasContext *s, arg_i *a)
2574 {
2575     if (s->current_el == 0) {
2576         unallocated_encoding(s);
2577         return true;
2578     }
2579     gen_a64_update_pc(s, 0);
2580     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2581     /* Architecture requires ss advance before we do the actual work */
2582     gen_ss_advance(s);
2583     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2584     return true;
2585 }
2586 
2587 static bool trans_BRK(DisasContext *s, arg_i *a)
2588 {
2589     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2590     return true;
2591 }
2592 
2593 static bool trans_HLT(DisasContext *s, arg_i *a)
2594 {
2595     /*
2596      * HLT. This has two purposes.
2597      * Architecturally, it is an external halting debug instruction.
2598      * Since QEMU doesn't implement external debug, we treat this as
2599      * it is required for halting debug disabled: it will UNDEF.
2600      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2601      */
2602     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2603         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2604     } else {
2605         unallocated_encoding(s);
2606     }
2607     return true;
2608 }
2609 
2610 /*
2611  * Load/Store exclusive instructions are implemented by remembering
2612  * the value/address loaded, and seeing if these are the same
2613  * when the store is performed. This is not actually the architecturally
2614  * mandated semantics, but it works for typical guest code sequences
2615  * and avoids having to monitor regular stores.
2616  *
2617  * The store exclusive uses the atomic cmpxchg primitives to avoid
2618  * races in multi-threaded linux-user and when MTTCG softmmu is
2619  * enabled.
2620  */
2621 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2622                                int size, bool is_pair)
2623 {
2624     int idx = get_mem_index(s);
2625     TCGv_i64 dirty_addr, clean_addr;
2626     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2627 
2628     s->is_ldex = true;
2629     dirty_addr = cpu_reg_sp(s, rn);
2630     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2631 
2632     g_assert(size <= 3);
2633     if (is_pair) {
2634         g_assert(size >= 2);
2635         if (size == 2) {
2636             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2637             if (s->be_data == MO_LE) {
2638                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2639                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2640             } else {
2641                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2642                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2643             }
2644         } else {
2645             TCGv_i128 t16 = tcg_temp_new_i128();
2646 
2647             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2648 
2649             if (s->be_data == MO_LE) {
2650                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2651                                       cpu_exclusive_high, t16);
2652             } else {
2653                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2654                                       cpu_exclusive_val, t16);
2655             }
2656             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2657             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2658         }
2659     } else {
2660         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2661         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2662     }
2663     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2664 }
2665 
2666 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2667                                 int rn, int size, int is_pair)
2668 {
2669     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2670      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2671      *     [addr] = {Rt};
2672      *     if (is_pair) {
2673      *         [addr + datasize] = {Rt2};
2674      *     }
2675      *     {Rd} = 0;
2676      * } else {
2677      *     {Rd} = 1;
2678      * }
2679      * env->exclusive_addr = -1;
2680      */
2681     TCGLabel *fail_label = gen_new_label();
2682     TCGLabel *done_label = gen_new_label();
2683     TCGv_i64 tmp, clean_addr;
2684     MemOp memop;
2685 
2686     /*
2687      * FIXME: We are out of spec here.  We have recorded only the address
2688      * from load_exclusive, not the entire range, and we assume that the
2689      * size of the access on both sides match.  The architecture allows the
2690      * store to be smaller than the load, so long as the stored bytes are
2691      * within the range recorded by the load.
2692      */
2693 
2694     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2695     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2696     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2697 
2698     /*
2699      * The write, and any associated faults, only happen if the virtual
2700      * and physical addresses pass the exclusive monitor check.  These
2701      * faults are exceedingly unlikely, because normally the guest uses
2702      * the exact same address register for the load_exclusive, and we
2703      * would have recognized these faults there.
2704      *
2705      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2706      * unaligned 4-byte write within the range of an aligned 8-byte load.
2707      * With LSE2, the store would need to cross a 16-byte boundary when the
2708      * load did not, which would mean the store is outside the range
2709      * recorded for the monitor, which would have failed a corrected monitor
2710      * check above.  For now, we assume no size change and retain the
2711      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2712      *
2713      * It is possible to trigger an MTE fault, by performing the load with
2714      * a virtual address with a valid tag and performing the store with the
2715      * same virtual address and a different invalid tag.
2716      */
2717     memop = size + is_pair;
2718     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2719         memop |= MO_ALIGN;
2720     }
2721     memop = finalize_memop(s, memop);
2722     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2723 
2724     tmp = tcg_temp_new_i64();
2725     if (is_pair) {
2726         if (size == 2) {
2727             if (s->be_data == MO_LE) {
2728                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2729             } else {
2730                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2731             }
2732             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2733                                        cpu_exclusive_val, tmp,
2734                                        get_mem_index(s), memop);
2735             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2736         } else {
2737             TCGv_i128 t16 = tcg_temp_new_i128();
2738             TCGv_i128 c16 = tcg_temp_new_i128();
2739             TCGv_i64 a, b;
2740 
2741             if (s->be_data == MO_LE) {
2742                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2743                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2744                                         cpu_exclusive_high);
2745             } else {
2746                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2747                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2748                                         cpu_exclusive_val);
2749             }
2750 
2751             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2752                                         get_mem_index(s), memop);
2753 
2754             a = tcg_temp_new_i64();
2755             b = tcg_temp_new_i64();
2756             if (s->be_data == MO_LE) {
2757                 tcg_gen_extr_i128_i64(a, b, t16);
2758             } else {
2759                 tcg_gen_extr_i128_i64(b, a, t16);
2760             }
2761 
2762             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2763             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2764             tcg_gen_or_i64(tmp, a, b);
2765 
2766             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2767         }
2768     } else {
2769         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2770                                    cpu_reg(s, rt), get_mem_index(s), memop);
2771         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772     }
2773     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2774     tcg_gen_br(done_label);
2775 
2776     gen_set_label(fail_label);
2777     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2778     gen_set_label(done_label);
2779     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2780 }
2781 
2782 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2783                                  int rn, int size)
2784 {
2785     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2786     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2787     int memidx = get_mem_index(s);
2788     TCGv_i64 clean_addr;
2789     MemOp memop;
2790 
2791     if (rn == 31) {
2792         gen_check_sp_alignment(s);
2793     }
2794     memop = check_atomic_align(s, rn, size);
2795     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2796     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2797                                memidx, memop);
2798 }
2799 
2800 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2801                                       int rn, int size)
2802 {
2803     TCGv_i64 s1 = cpu_reg(s, rs);
2804     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2805     TCGv_i64 t1 = cpu_reg(s, rt);
2806     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2807     TCGv_i64 clean_addr;
2808     int memidx = get_mem_index(s);
2809     MemOp memop;
2810 
2811     if (rn == 31) {
2812         gen_check_sp_alignment(s);
2813     }
2814 
2815     /* This is a single atomic access, despite the "pair". */
2816     memop = check_atomic_align(s, rn, size + 1);
2817     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2818 
2819     if (size == 2) {
2820         TCGv_i64 cmp = tcg_temp_new_i64();
2821         TCGv_i64 val = tcg_temp_new_i64();
2822 
2823         if (s->be_data == MO_LE) {
2824             tcg_gen_concat32_i64(val, t1, t2);
2825             tcg_gen_concat32_i64(cmp, s1, s2);
2826         } else {
2827             tcg_gen_concat32_i64(val, t2, t1);
2828             tcg_gen_concat32_i64(cmp, s2, s1);
2829         }
2830 
2831         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2832 
2833         if (s->be_data == MO_LE) {
2834             tcg_gen_extr32_i64(s1, s2, cmp);
2835         } else {
2836             tcg_gen_extr32_i64(s2, s1, cmp);
2837         }
2838     } else {
2839         TCGv_i128 cmp = tcg_temp_new_i128();
2840         TCGv_i128 val = tcg_temp_new_i128();
2841 
2842         if (s->be_data == MO_LE) {
2843             tcg_gen_concat_i64_i128(val, t1, t2);
2844             tcg_gen_concat_i64_i128(cmp, s1, s2);
2845         } else {
2846             tcg_gen_concat_i64_i128(val, t2, t1);
2847             tcg_gen_concat_i64_i128(cmp, s2, s1);
2848         }
2849 
2850         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2851 
2852         if (s->be_data == MO_LE) {
2853             tcg_gen_extr_i128_i64(s1, s2, cmp);
2854         } else {
2855             tcg_gen_extr_i128_i64(s2, s1, cmp);
2856         }
2857     }
2858 }
2859 
2860 /*
2861  * Compute the ISS.SF bit for syndrome information if an exception
2862  * is taken on a load or store. This indicates whether the instruction
2863  * is accessing a 32-bit or 64-bit register. This logic is derived
2864  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2865  */
2866 static bool ldst_iss_sf(int size, bool sign, bool ext)
2867 {
2868 
2869     if (sign) {
2870         /*
2871          * Signed loads are 64 bit results if we are not going to
2872          * do a zero-extend from 32 to 64 after the load.
2873          * (For a store, sign and ext are always false.)
2874          */
2875         return !ext;
2876     } else {
2877         /* Unsigned loads/stores work at the specified size */
2878         return size == MO_64;
2879     }
2880 }
2881 
2882 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2883 {
2884     if (a->rn == 31) {
2885         gen_check_sp_alignment(s);
2886     }
2887     if (a->lasr) {
2888         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2889     }
2890     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2891     return true;
2892 }
2893 
2894 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2895 {
2896     if (a->rn == 31) {
2897         gen_check_sp_alignment(s);
2898     }
2899     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2900     if (a->lasr) {
2901         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2902     }
2903     return true;
2904 }
2905 
2906 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2907 {
2908     TCGv_i64 clean_addr;
2909     MemOp memop;
2910     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2911 
2912     /*
2913      * StoreLORelease is the same as Store-Release for QEMU, but
2914      * needs the feature-test.
2915      */
2916     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2917         return false;
2918     }
2919     /* Generate ISS for non-exclusive accesses including LASR.  */
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2924     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2925     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2926                                 true, a->rn != 31, memop);
2927     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2928               iss_sf, a->lasr);
2929     return true;
2930 }
2931 
2932 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2933 {
2934     TCGv_i64 clean_addr;
2935     MemOp memop;
2936     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2937 
2938     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2939     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2940         return false;
2941     }
2942     /* Generate ISS for non-exclusive accesses including LASR.  */
2943     if (a->rn == 31) {
2944         gen_check_sp_alignment(s);
2945     }
2946     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2947     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2948                                 false, a->rn != 31, memop);
2949     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2950               a->rt, iss_sf, a->lasr);
2951     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2952     return true;
2953 }
2954 
2955 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2956 {
2957     if (a->rn == 31) {
2958         gen_check_sp_alignment(s);
2959     }
2960     if (a->lasr) {
2961         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2962     }
2963     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2964     return true;
2965 }
2966 
2967 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2968 {
2969     if (a->rn == 31) {
2970         gen_check_sp_alignment(s);
2971     }
2972     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2973     if (a->lasr) {
2974         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2975     }
2976     return true;
2977 }
2978 
2979 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2980 {
2981     if (!dc_isar_feature(aa64_atomics, s)) {
2982         return false;
2983     }
2984     if (((a->rt | a->rs) & 1) != 0) {
2985         return false;
2986     }
2987 
2988     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2989     return true;
2990 }
2991 
2992 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2993 {
2994     if (!dc_isar_feature(aa64_atomics, s)) {
2995         return false;
2996     }
2997     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2998     return true;
2999 }
3000 
3001 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3002 {
3003     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3004     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3005     TCGv_i64 clean_addr = tcg_temp_new_i64();
3006     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3007 
3008     gen_pc_plus_diff(s, clean_addr, a->imm);
3009     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3010               false, true, a->rt, iss_sf, false);
3011     return true;
3012 }
3013 
3014 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3015 {
3016     /* Load register (literal), vector version */
3017     TCGv_i64 clean_addr;
3018     MemOp memop;
3019 
3020     if (!fp_access_check(s)) {
3021         return true;
3022     }
3023     memop = finalize_memop_asimd(s, a->sz);
3024     clean_addr = tcg_temp_new_i64();
3025     gen_pc_plus_diff(s, clean_addr, a->imm);
3026     do_fp_ld(s, a->rt, clean_addr, memop);
3027     return true;
3028 }
3029 
3030 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3031                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3032                                  uint64_t offset, bool is_store, MemOp mop)
3033 {
3034     if (a->rn == 31) {
3035         gen_check_sp_alignment(s);
3036     }
3037 
3038     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3039     if (!a->p) {
3040         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3041     }
3042 
3043     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3044                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3045 }
3046 
3047 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3048                                   TCGv_i64 dirty_addr, uint64_t offset)
3049 {
3050     if (a->w) {
3051         if (a->p) {
3052             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3053         }
3054         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3055     }
3056 }
3057 
3058 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3059 {
3060     uint64_t offset = a->imm << a->sz;
3061     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3062     MemOp mop = finalize_memop(s, a->sz);
3063 
3064     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3065     tcg_rt = cpu_reg(s, a->rt);
3066     tcg_rt2 = cpu_reg(s, a->rt2);
3067     /*
3068      * We built mop above for the single logical access -- rebuild it
3069      * now for the paired operation.
3070      *
3071      * With LSE2, non-sign-extending pairs are treated atomically if
3072      * aligned, and if unaligned one of the pair will be completely
3073      * within a 16-byte block and that element will be atomic.
3074      * Otherwise each element is separately atomic.
3075      * In all cases, issue one operation with the correct atomicity.
3076      */
3077     mop = a->sz + 1;
3078     if (s->align_mem) {
3079         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3080     }
3081     mop = finalize_memop_pair(s, mop);
3082     if (a->sz == 2) {
3083         TCGv_i64 tmp = tcg_temp_new_i64();
3084 
3085         if (s->be_data == MO_LE) {
3086             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3087         } else {
3088             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3089         }
3090         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3091     } else {
3092         TCGv_i128 tmp = tcg_temp_new_i128();
3093 
3094         if (s->be_data == MO_LE) {
3095             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3096         } else {
3097             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3098         }
3099         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3100     }
3101     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3102     return true;
3103 }
3104 
3105 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3106 {
3107     uint64_t offset = a->imm << a->sz;
3108     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3109     MemOp mop = finalize_memop(s, a->sz);
3110 
3111     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3112     tcg_rt = cpu_reg(s, a->rt);
3113     tcg_rt2 = cpu_reg(s, a->rt2);
3114 
3115     /*
3116      * We built mop above for the single logical access -- rebuild it
3117      * now for the paired operation.
3118      *
3119      * With LSE2, non-sign-extending pairs are treated atomically if
3120      * aligned, and if unaligned one of the pair will be completely
3121      * within a 16-byte block and that element will be atomic.
3122      * Otherwise each element is separately atomic.
3123      * In all cases, issue one operation with the correct atomicity.
3124      *
3125      * This treats sign-extending loads like zero-extending loads,
3126      * since that reuses the most code below.
3127      */
3128     mop = a->sz + 1;
3129     if (s->align_mem) {
3130         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3131     }
3132     mop = finalize_memop_pair(s, mop);
3133     if (a->sz == 2) {
3134         int o2 = s->be_data == MO_LE ? 32 : 0;
3135         int o1 = o2 ^ 32;
3136 
3137         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3138         if (a->sign) {
3139             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3140             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3141         } else {
3142             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3143             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3144         }
3145     } else {
3146         TCGv_i128 tmp = tcg_temp_new_i128();
3147 
3148         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3149         if (s->be_data == MO_LE) {
3150             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3151         } else {
3152             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3153         }
3154     }
3155     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3156     return true;
3157 }
3158 
3159 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3160 {
3161     uint64_t offset = a->imm << a->sz;
3162     TCGv_i64 clean_addr, dirty_addr;
3163     MemOp mop;
3164 
3165     if (!fp_access_check(s)) {
3166         return true;
3167     }
3168 
3169     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3170     mop = finalize_memop_asimd(s, a->sz);
3171     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3172     do_fp_st(s, a->rt, clean_addr, mop);
3173     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3174     do_fp_st(s, a->rt2, clean_addr, mop);
3175     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3176     return true;
3177 }
3178 
3179 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3180 {
3181     uint64_t offset = a->imm << a->sz;
3182     TCGv_i64 clean_addr, dirty_addr;
3183     MemOp mop;
3184 
3185     if (!fp_access_check(s)) {
3186         return true;
3187     }
3188 
3189     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3190     mop = finalize_memop_asimd(s, a->sz);
3191     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3192     do_fp_ld(s, a->rt, clean_addr, mop);
3193     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3194     do_fp_ld(s, a->rt2, clean_addr, mop);
3195     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3196     return true;
3197 }
3198 
3199 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3200 {
3201     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3202     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3203     MemOp mop;
3204     TCGv_i128 tmp;
3205 
3206     /* STGP only comes in one size. */
3207     tcg_debug_assert(a->sz == MO_64);
3208 
3209     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3210         return false;
3211     }
3212 
3213     if (a->rn == 31) {
3214         gen_check_sp_alignment(s);
3215     }
3216 
3217     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3218     if (!a->p) {
3219         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3220     }
3221 
3222     clean_addr = clean_data_tbi(s, dirty_addr);
3223     tcg_rt = cpu_reg(s, a->rt);
3224     tcg_rt2 = cpu_reg(s, a->rt2);
3225 
3226     /*
3227      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3228      * and one tag operation.  We implement it as one single aligned 16-byte
3229      * memory operation for convenience.  Note that the alignment ensures
3230      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3231      */
3232     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3233 
3234     tmp = tcg_temp_new_i128();
3235     if (s->be_data == MO_LE) {
3236         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3237     } else {
3238         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3239     }
3240     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3241 
3242     /* Perform the tag store, if tag access enabled. */
3243     if (s->ata[0]) {
3244         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3245             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3246         } else {
3247             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3248         }
3249     }
3250 
3251     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3252     return true;
3253 }
3254 
3255 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3256                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3257                                  uint64_t offset, bool is_store, MemOp mop)
3258 {
3259     int memidx;
3260 
3261     if (a->rn == 31) {
3262         gen_check_sp_alignment(s);
3263     }
3264 
3265     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3266     if (!a->p) {
3267         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3268     }
3269     memidx = get_a64_user_mem_index(s, a->unpriv);
3270     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3271                                         a->w || a->rn != 31,
3272                                         mop, a->unpriv, memidx);
3273 }
3274 
3275 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3276                                   TCGv_i64 dirty_addr, uint64_t offset)
3277 {
3278     if (a->w) {
3279         if (a->p) {
3280             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3281         }
3282         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3283     }
3284 }
3285 
3286 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3287 {
3288     bool iss_sf, iss_valid = !a->w;
3289     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3290     int memidx = get_a64_user_mem_index(s, a->unpriv);
3291     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3292 
3293     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3294 
3295     tcg_rt = cpu_reg(s, a->rt);
3296     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3297 
3298     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3299                      iss_valid, a->rt, iss_sf, false);
3300     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3301     return true;
3302 }
3303 
3304 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3305 {
3306     bool iss_sf, iss_valid = !a->w;
3307     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3308     int memidx = get_a64_user_mem_index(s, a->unpriv);
3309     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3310 
3311     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3312 
3313     tcg_rt = cpu_reg(s, a->rt);
3314     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3315 
3316     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3317                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3318     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3319     return true;
3320 }
3321 
3322 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     TCGv_i64 clean_addr, dirty_addr;
3325     MemOp mop;
3326 
3327     if (!fp_access_check(s)) {
3328         return true;
3329     }
3330     mop = finalize_memop_asimd(s, a->sz);
3331     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3332     do_fp_st(s, a->rt, clean_addr, mop);
3333     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3334     return true;
3335 }
3336 
3337 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3338 {
3339     TCGv_i64 clean_addr, dirty_addr;
3340     MemOp mop;
3341 
3342     if (!fp_access_check(s)) {
3343         return true;
3344     }
3345     mop = finalize_memop_asimd(s, a->sz);
3346     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3347     do_fp_ld(s, a->rt, clean_addr, mop);
3348     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3349     return true;
3350 }
3351 
3352 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3353                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3354                              bool is_store, MemOp memop)
3355 {
3356     TCGv_i64 tcg_rm;
3357 
3358     if (a->rn == 31) {
3359         gen_check_sp_alignment(s);
3360     }
3361     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3362 
3363     tcg_rm = read_cpu_reg(s, a->rm, 1);
3364     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3365 
3366     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3367     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3368 }
3369 
3370 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3371 {
3372     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3373     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3374     MemOp memop;
3375 
3376     if (extract32(a->opt, 1, 1) == 0) {
3377         return false;
3378     }
3379 
3380     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3381     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3382     tcg_rt = cpu_reg(s, a->rt);
3383     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3384               a->ext, true, a->rt, iss_sf, false);
3385     return true;
3386 }
3387 
3388 static bool trans_STR(DisasContext *s, arg_ldst *a)
3389 {
3390     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3391     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3392     MemOp memop;
3393 
3394     if (extract32(a->opt, 1, 1) == 0) {
3395         return false;
3396     }
3397 
3398     memop = finalize_memop(s, a->sz);
3399     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3400     tcg_rt = cpu_reg(s, a->rt);
3401     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3402     return true;
3403 }
3404 
3405 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3406 {
3407     TCGv_i64 clean_addr, dirty_addr;
3408     MemOp memop;
3409 
3410     if (extract32(a->opt, 1, 1) == 0) {
3411         return false;
3412     }
3413 
3414     if (!fp_access_check(s)) {
3415         return true;
3416     }
3417 
3418     memop = finalize_memop_asimd(s, a->sz);
3419     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3420     do_fp_ld(s, a->rt, clean_addr, memop);
3421     return true;
3422 }
3423 
3424 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr;
3427     MemOp memop;
3428 
3429     if (extract32(a->opt, 1, 1) == 0) {
3430         return false;
3431     }
3432 
3433     if (!fp_access_check(s)) {
3434         return true;
3435     }
3436 
3437     memop = finalize_memop_asimd(s, a->sz);
3438     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3439     do_fp_st(s, a->rt, clean_addr, memop);
3440     return true;
3441 }
3442 
3443 
3444 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3445                          int sign, bool invert)
3446 {
3447     MemOp mop = a->sz | sign;
3448     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3449 
3450     if (a->rn == 31) {
3451         gen_check_sp_alignment(s);
3452     }
3453     mop = check_atomic_align(s, a->rn, mop);
3454     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3455                                 a->rn != 31, mop);
3456     tcg_rs = read_cpu_reg(s, a->rs, true);
3457     tcg_rt = cpu_reg(s, a->rt);
3458     if (invert) {
3459         tcg_gen_not_i64(tcg_rs, tcg_rs);
3460     }
3461     /*
3462      * The tcg atomic primitives are all full barriers.  Therefore we
3463      * can ignore the Acquire and Release bits of this instruction.
3464      */
3465     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3466 
3467     if (mop & MO_SIGN) {
3468         switch (a->sz) {
3469         case MO_8:
3470             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3471             break;
3472         case MO_16:
3473             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3474             break;
3475         case MO_32:
3476             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3477             break;
3478         case MO_64:
3479             break;
3480         default:
3481             g_assert_not_reached();
3482         }
3483     }
3484     return true;
3485 }
3486 
3487 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3488 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3489 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3490 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3491 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3492 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3493 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3494 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3495 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3496 
3497 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3498 {
3499     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3500     TCGv_i64 clean_addr;
3501     MemOp mop;
3502 
3503     if (!dc_isar_feature(aa64_atomics, s) ||
3504         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3505         return false;
3506     }
3507     if (a->rn == 31) {
3508         gen_check_sp_alignment(s);
3509     }
3510     mop = check_atomic_align(s, a->rn, a->sz);
3511     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3512                                 a->rn != 31, mop);
3513     /*
3514      * LDAPR* are a special case because they are a simple load, not a
3515      * fetch-and-do-something op.
3516      * The architectural consistency requirements here are weaker than
3517      * full load-acquire (we only need "load-acquire processor consistent"),
3518      * but we choose to implement them as full LDAQ.
3519      */
3520     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3521               true, a->rt, iss_sf, true);
3522     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3523     return true;
3524 }
3525 
3526 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3527 {
3528     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3529     MemOp memop;
3530 
3531     /* Load with pointer authentication */
3532     if (!dc_isar_feature(aa64_pauth, s)) {
3533         return false;
3534     }
3535 
3536     if (a->rn == 31) {
3537         gen_check_sp_alignment(s);
3538     }
3539     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3540 
3541     if (s->pauth_active) {
3542         if (!a->m) {
3543             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3544                                       tcg_constant_i64(0));
3545         } else {
3546             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3547                                       tcg_constant_i64(0));
3548         }
3549     }
3550 
3551     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3552 
3553     memop = finalize_memop(s, MO_64);
3554 
3555     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3556     clean_addr = gen_mte_check1(s, dirty_addr, false,
3557                                 a->w || a->rn != 31, memop);
3558 
3559     tcg_rt = cpu_reg(s, a->rt);
3560     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3561               /* extend */ false, /* iss_valid */ !a->w,
3562               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3563 
3564     if (a->w) {
3565         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3566     }
3567     return true;
3568 }
3569 
3570 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3571 {
3572     TCGv_i64 clean_addr, dirty_addr;
3573     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3574     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3575 
3576     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3577         return false;
3578     }
3579 
3580     if (a->rn == 31) {
3581         gen_check_sp_alignment(s);
3582     }
3583 
3584     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3585     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3586     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3587     clean_addr = clean_data_tbi(s, dirty_addr);
3588 
3589     /*
3590      * Load-AcquirePC semantics; we implement as the slightly more
3591      * restrictive Load-Acquire.
3592      */
3593     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3594               a->rt, iss_sf, true);
3595     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3596     return true;
3597 }
3598 
3599 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3600 {
3601     TCGv_i64 clean_addr, dirty_addr;
3602     MemOp mop = a->sz;
3603     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3604 
3605     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3606         return false;
3607     }
3608 
3609     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3610 
3611     if (a->rn == 31) {
3612         gen_check_sp_alignment(s);
3613     }
3614 
3615     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3616     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3617     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3618     clean_addr = clean_data_tbi(s, dirty_addr);
3619 
3620     /* Store-Release semantics */
3621     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3622     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3623     return true;
3624 }
3625 
3626 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3627 {
3628     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3629     MemOp endian, align, mop;
3630 
3631     int total;    /* total bytes */
3632     int elements; /* elements per vector */
3633     int r;
3634     int size = a->sz;
3635 
3636     if (!a->p && a->rm != 0) {
3637         /* For non-postindexed accesses the Rm field must be 0 */
3638         return false;
3639     }
3640     if (size == 3 && !a->q && a->selem != 1) {
3641         return false;
3642     }
3643     if (!fp_access_check(s)) {
3644         return true;
3645     }
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     /* For our purposes, bytes are always little-endian.  */
3652     endian = s->be_data;
3653     if (size == 0) {
3654         endian = MO_LE;
3655     }
3656 
3657     total = a->rpt * a->selem * (a->q ? 16 : 8);
3658     tcg_rn = cpu_reg_sp(s, a->rn);
3659 
3660     /*
3661      * Issue the MTE check vs the logical repeat count, before we
3662      * promote consecutive little-endian elements below.
3663      */
3664     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3665                                 finalize_memop_asimd(s, size));
3666 
3667     /*
3668      * Consecutive little-endian elements from a single register
3669      * can be promoted to a larger little-endian operation.
3670      */
3671     align = MO_ALIGN;
3672     if (a->selem == 1 && endian == MO_LE) {
3673         align = pow2_align(size);
3674         size = 3;
3675     }
3676     if (!s->align_mem) {
3677         align = 0;
3678     }
3679     mop = endian | size | align;
3680 
3681     elements = (a->q ? 16 : 8) >> size;
3682     tcg_ebytes = tcg_constant_i64(1 << size);
3683     for (r = 0; r < a->rpt; r++) {
3684         int e;
3685         for (e = 0; e < elements; e++) {
3686             int xs;
3687             for (xs = 0; xs < a->selem; xs++) {
3688                 int tt = (a->rt + r + xs) % 32;
3689                 do_vec_ld(s, tt, e, clean_addr, mop);
3690                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3691             }
3692         }
3693     }
3694 
3695     /*
3696      * For non-quad operations, setting a slice of the low 64 bits of
3697      * the register clears the high 64 bits (in the ARM ARM pseudocode
3698      * this is implicit in the fact that 'rval' is a 64 bit wide
3699      * variable).  For quad operations, we might still need to zero
3700      * the high bits of SVE.
3701      */
3702     for (r = 0; r < a->rpt * a->selem; r++) {
3703         int tt = (a->rt + r) % 32;
3704         clear_vec_high(s, a->q, tt);
3705     }
3706 
3707     if (a->p) {
3708         if (a->rm == 31) {
3709             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3710         } else {
3711             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3712         }
3713     }
3714     return true;
3715 }
3716 
3717 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3718 {
3719     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3720     MemOp endian, align, mop;
3721 
3722     int total;    /* total bytes */
3723     int elements; /* elements per vector */
3724     int r;
3725     int size = a->sz;
3726 
3727     if (!a->p && a->rm != 0) {
3728         /* For non-postindexed accesses the Rm field must be 0 */
3729         return false;
3730     }
3731     if (size == 3 && !a->q && a->selem != 1) {
3732         return false;
3733     }
3734     if (!fp_access_check(s)) {
3735         return true;
3736     }
3737 
3738     if (a->rn == 31) {
3739         gen_check_sp_alignment(s);
3740     }
3741 
3742     /* For our purposes, bytes are always little-endian.  */
3743     endian = s->be_data;
3744     if (size == 0) {
3745         endian = MO_LE;
3746     }
3747 
3748     total = a->rpt * a->selem * (a->q ? 16 : 8);
3749     tcg_rn = cpu_reg_sp(s, a->rn);
3750 
3751     /*
3752      * Issue the MTE check vs the logical repeat count, before we
3753      * promote consecutive little-endian elements below.
3754      */
3755     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3756                                 finalize_memop_asimd(s, size));
3757 
3758     /*
3759      * Consecutive little-endian elements from a single register
3760      * can be promoted to a larger little-endian operation.
3761      */
3762     align = MO_ALIGN;
3763     if (a->selem == 1 && endian == MO_LE) {
3764         align = pow2_align(size);
3765         size = 3;
3766     }
3767     if (!s->align_mem) {
3768         align = 0;
3769     }
3770     mop = endian | size | align;
3771 
3772     elements = (a->q ? 16 : 8) >> size;
3773     tcg_ebytes = tcg_constant_i64(1 << size);
3774     for (r = 0; r < a->rpt; r++) {
3775         int e;
3776         for (e = 0; e < elements; e++) {
3777             int xs;
3778             for (xs = 0; xs < a->selem; xs++) {
3779                 int tt = (a->rt + r + xs) % 32;
3780                 do_vec_st(s, tt, e, clean_addr, mop);
3781                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3782             }
3783         }
3784     }
3785 
3786     if (a->p) {
3787         if (a->rm == 31) {
3788             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3789         } else {
3790             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3791         }
3792     }
3793     return true;
3794 }
3795 
3796 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3797 {
3798     int xs, total, rt;
3799     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3800     MemOp mop;
3801 
3802     if (!a->p && a->rm != 0) {
3803         return false;
3804     }
3805     if (!fp_access_check(s)) {
3806         return true;
3807     }
3808 
3809     if (a->rn == 31) {
3810         gen_check_sp_alignment(s);
3811     }
3812 
3813     total = a->selem << a->scale;
3814     tcg_rn = cpu_reg_sp(s, a->rn);
3815 
3816     mop = finalize_memop_asimd(s, a->scale);
3817     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3818                                 total, mop);
3819 
3820     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3821     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3822         do_vec_st(s, rt, a->index, clean_addr, mop);
3823         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3824     }
3825 
3826     if (a->p) {
3827         if (a->rm == 31) {
3828             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3829         } else {
3830             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3831         }
3832     }
3833     return true;
3834 }
3835 
3836 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3837 {
3838     int xs, total, rt;
3839     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3840     MemOp mop;
3841 
3842     if (!a->p && a->rm != 0) {
3843         return false;
3844     }
3845     if (!fp_access_check(s)) {
3846         return true;
3847     }
3848 
3849     if (a->rn == 31) {
3850         gen_check_sp_alignment(s);
3851     }
3852 
3853     total = a->selem << a->scale;
3854     tcg_rn = cpu_reg_sp(s, a->rn);
3855 
3856     mop = finalize_memop_asimd(s, a->scale);
3857     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3858                                 total, mop);
3859 
3860     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3861     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3862         do_vec_ld(s, rt, a->index, clean_addr, mop);
3863         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3864     }
3865 
3866     if (a->p) {
3867         if (a->rm == 31) {
3868             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3869         } else {
3870             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3871         }
3872     }
3873     return true;
3874 }
3875 
3876 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3877 {
3878     int xs, total, rt;
3879     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3880     MemOp mop;
3881 
3882     if (!a->p && a->rm != 0) {
3883         return false;
3884     }
3885     if (!fp_access_check(s)) {
3886         return true;
3887     }
3888 
3889     if (a->rn == 31) {
3890         gen_check_sp_alignment(s);
3891     }
3892 
3893     total = a->selem << a->scale;
3894     tcg_rn = cpu_reg_sp(s, a->rn);
3895 
3896     mop = finalize_memop_asimd(s, a->scale);
3897     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3898                                 total, mop);
3899 
3900     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3901     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3902         /* Load and replicate to all elements */
3903         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3904 
3905         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3906         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3907                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3908         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3909     }
3910 
3911     if (a->p) {
3912         if (a->rm == 31) {
3913             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3914         } else {
3915             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3916         }
3917     }
3918     return true;
3919 }
3920 
3921 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3922 {
3923     TCGv_i64 addr, clean_addr, tcg_rt;
3924     int size = 4 << s->dcz_blocksize;
3925 
3926     if (!dc_isar_feature(aa64_mte, s)) {
3927         return false;
3928     }
3929     if (s->current_el == 0) {
3930         return false;
3931     }
3932 
3933     if (a->rn == 31) {
3934         gen_check_sp_alignment(s);
3935     }
3936 
3937     addr = read_cpu_reg_sp(s, a->rn, true);
3938     tcg_gen_addi_i64(addr, addr, a->imm);
3939     tcg_rt = cpu_reg(s, a->rt);
3940 
3941     if (s->ata[0]) {
3942         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3943     }
3944     /*
3945      * The non-tags portion of STZGM is mostly like DC_ZVA,
3946      * except the alignment happens before the access.
3947      */
3948     clean_addr = clean_data_tbi(s, addr);
3949     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3950     gen_helper_dc_zva(tcg_env, clean_addr);
3951     return true;
3952 }
3953 
3954 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3955 {
3956     TCGv_i64 addr, clean_addr, tcg_rt;
3957 
3958     if (!dc_isar_feature(aa64_mte, s)) {
3959         return false;
3960     }
3961     if (s->current_el == 0) {
3962         return false;
3963     }
3964 
3965     if (a->rn == 31) {
3966         gen_check_sp_alignment(s);
3967     }
3968 
3969     addr = read_cpu_reg_sp(s, a->rn, true);
3970     tcg_gen_addi_i64(addr, addr, a->imm);
3971     tcg_rt = cpu_reg(s, a->rt);
3972 
3973     if (s->ata[0]) {
3974         gen_helper_stgm(tcg_env, addr, tcg_rt);
3975     } else {
3976         MMUAccessType acc = MMU_DATA_STORE;
3977         int size = 4 << s->gm_blocksize;
3978 
3979         clean_addr = clean_data_tbi(s, addr);
3980         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3981         gen_probe_access(s, clean_addr, acc, size);
3982     }
3983     return true;
3984 }
3985 
3986 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3987 {
3988     TCGv_i64 addr, clean_addr, tcg_rt;
3989 
3990     if (!dc_isar_feature(aa64_mte, s)) {
3991         return false;
3992     }
3993     if (s->current_el == 0) {
3994         return false;
3995     }
3996 
3997     if (a->rn == 31) {
3998         gen_check_sp_alignment(s);
3999     }
4000 
4001     addr = read_cpu_reg_sp(s, a->rn, true);
4002     tcg_gen_addi_i64(addr, addr, a->imm);
4003     tcg_rt = cpu_reg(s, a->rt);
4004 
4005     if (s->ata[0]) {
4006         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4007     } else {
4008         MMUAccessType acc = MMU_DATA_LOAD;
4009         int size = 4 << s->gm_blocksize;
4010 
4011         clean_addr = clean_data_tbi(s, addr);
4012         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4013         gen_probe_access(s, clean_addr, acc, size);
4014         /* The result tags are zeros.  */
4015         tcg_gen_movi_i64(tcg_rt, 0);
4016     }
4017     return true;
4018 }
4019 
4020 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4021 {
4022     TCGv_i64 addr, clean_addr, tcg_rt;
4023 
4024     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4025         return false;
4026     }
4027 
4028     if (a->rn == 31) {
4029         gen_check_sp_alignment(s);
4030     }
4031 
4032     addr = read_cpu_reg_sp(s, a->rn, true);
4033     if (!a->p) {
4034         /* pre-index or signed offset */
4035         tcg_gen_addi_i64(addr, addr, a->imm);
4036     }
4037 
4038     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4039     tcg_rt = cpu_reg(s, a->rt);
4040     if (s->ata[0]) {
4041         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4042     } else {
4043         /*
4044          * Tag access disabled: we must check for aborts on the load
4045          * load from [rn+offset], and then insert a 0 tag into rt.
4046          */
4047         clean_addr = clean_data_tbi(s, addr);
4048         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4049         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4050     }
4051 
4052     if (a->w) {
4053         /* pre-index or post-index */
4054         if (a->p) {
4055             /* post-index */
4056             tcg_gen_addi_i64(addr, addr, a->imm);
4057         }
4058         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4059     }
4060     return true;
4061 }
4062 
4063 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4064 {
4065     TCGv_i64 addr, tcg_rt;
4066 
4067     if (a->rn == 31) {
4068         gen_check_sp_alignment(s);
4069     }
4070 
4071     addr = read_cpu_reg_sp(s, a->rn, true);
4072     if (!a->p) {
4073         /* pre-index or signed offset */
4074         tcg_gen_addi_i64(addr, addr, a->imm);
4075     }
4076     tcg_rt = cpu_reg_sp(s, a->rt);
4077     if (!s->ata[0]) {
4078         /*
4079          * For STG and ST2G, we need to check alignment and probe memory.
4080          * TODO: For STZG and STZ2G, we could rely on the stores below,
4081          * at least for system mode; user-only won't enforce alignment.
4082          */
4083         if (is_pair) {
4084             gen_helper_st2g_stub(tcg_env, addr);
4085         } else {
4086             gen_helper_stg_stub(tcg_env, addr);
4087         }
4088     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4089         if (is_pair) {
4090             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4091         } else {
4092             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4093         }
4094     } else {
4095         if (is_pair) {
4096             gen_helper_st2g(tcg_env, addr, tcg_rt);
4097         } else {
4098             gen_helper_stg(tcg_env, addr, tcg_rt);
4099         }
4100     }
4101 
4102     if (is_zero) {
4103         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4104         TCGv_i64 zero64 = tcg_constant_i64(0);
4105         TCGv_i128 zero128 = tcg_temp_new_i128();
4106         int mem_index = get_mem_index(s);
4107         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4108 
4109         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4110 
4111         /* This is 1 or 2 atomic 16-byte operations. */
4112         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4113         if (is_pair) {
4114             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4115             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4116         }
4117     }
4118 
4119     if (a->w) {
4120         /* pre-index or post-index */
4121         if (a->p) {
4122             /* post-index */
4123             tcg_gen_addi_i64(addr, addr, a->imm);
4124         }
4125         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4126     }
4127     return true;
4128 }
4129 
4130 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4131 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4132 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4133 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4134 
4135 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4136 
4137 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4138                    bool is_setg, SetFn fn)
4139 {
4140     int memidx;
4141     uint32_t syndrome, desc = 0;
4142 
4143     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4144         return false;
4145     }
4146 
4147     /*
4148      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4149      * us to pull this check before the CheckMOPSEnabled() test
4150      * (which we do in the helper function)
4151      */
4152     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4153         a->rd == 31 || a->rn == 31) {
4154         return false;
4155     }
4156 
4157     memidx = get_a64_user_mem_index(s, a->unpriv);
4158 
4159     /*
4160      * We pass option_a == true, matching our implementation;
4161      * we pass wrong_option == false: helper function may set that bit.
4162      */
4163     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4164                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4165 
4166     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4167         /* We may need to do MTE tag checking, so assemble the descriptor */
4168         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4169         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4170         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4171         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4172     }
4173     /* The helper function always needs the memidx even with MTE disabled */
4174     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4175 
4176     /*
4177      * The helper needs the register numbers, but since they're in
4178      * the syndrome anyway, we let it extract them from there rather
4179      * than passing in an extra three integer arguments.
4180      */
4181     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4182     return true;
4183 }
4184 
4185 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4186 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4187 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4188 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4189 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4190 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4191 
4192 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4193 
4194 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4195 {
4196     int rmemidx, wmemidx;
4197     uint32_t syndrome, rdesc = 0, wdesc = 0;
4198     bool wunpriv = extract32(a->options, 0, 1);
4199     bool runpriv = extract32(a->options, 1, 1);
4200 
4201     /*
4202      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4203      * us to pull this check before the CheckMOPSEnabled() test
4204      * (which we do in the helper function)
4205      */
4206     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4207         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4208         return false;
4209     }
4210 
4211     rmemidx = get_a64_user_mem_index(s, runpriv);
4212     wmemidx = get_a64_user_mem_index(s, wunpriv);
4213 
4214     /*
4215      * We pass option_a == true, matching our implementation;
4216      * we pass wrong_option == false: helper function may set that bit.
4217      */
4218     syndrome = syn_mop(false, false, a->options, is_epilogue,
4219                        false, true, a->rd, a->rs, a->rn);
4220 
4221     /* If we need to do MTE tag checking, assemble the descriptors */
4222     if (s->mte_active[runpriv]) {
4223         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4224         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4225     }
4226     if (s->mte_active[wunpriv]) {
4227         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4228         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4229         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4230     }
4231     /* The helper function needs these parts of the descriptor regardless */
4232     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4233     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4234 
4235     /*
4236      * The helper needs the register numbers, but since they're in
4237      * the syndrome anyway, we let it extract them from there rather
4238      * than passing in an extra three integer arguments.
4239      */
4240     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4241        tcg_constant_i32(rdesc));
4242     return true;
4243 }
4244 
4245 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4246 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4247 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4248 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4249 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4250 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4251 
4252 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4253 
4254 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4255                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4256 {
4257     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4258     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4259     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4260 
4261     fn(tcg_rd, tcg_rn, tcg_imm);
4262     if (!a->sf) {
4263         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4264     }
4265     return true;
4266 }
4267 
4268 /*
4269  * PC-rel. addressing
4270  */
4271 
4272 static bool trans_ADR(DisasContext *s, arg_ri *a)
4273 {
4274     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4275     return true;
4276 }
4277 
4278 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4279 {
4280     int64_t offset = (int64_t)a->imm << 12;
4281 
4282     /* The page offset is ok for CF_PCREL. */
4283     offset -= s->pc_curr & 0xfff;
4284     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4285     return true;
4286 }
4287 
4288 /*
4289  * Add/subtract (immediate)
4290  */
4291 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4292 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4293 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4294 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4295 
4296 /*
4297  * Add/subtract (immediate, with tags)
4298  */
4299 
4300 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4301                                       bool sub_op)
4302 {
4303     TCGv_i64 tcg_rn, tcg_rd;
4304     int imm;
4305 
4306     imm = a->uimm6 << LOG2_TAG_GRANULE;
4307     if (sub_op) {
4308         imm = -imm;
4309     }
4310 
4311     tcg_rn = cpu_reg_sp(s, a->rn);
4312     tcg_rd = cpu_reg_sp(s, a->rd);
4313 
4314     if (s->ata[0]) {
4315         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4316                            tcg_constant_i32(imm),
4317                            tcg_constant_i32(a->uimm4));
4318     } else {
4319         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4320         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4321     }
4322     return true;
4323 }
4324 
4325 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4326 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4327 
4328 /* The input should be a value in the bottom e bits (with higher
4329  * bits zero); returns that value replicated into every element
4330  * of size e in a 64 bit integer.
4331  */
4332 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4333 {
4334     assert(e != 0);
4335     while (e < 64) {
4336         mask |= mask << e;
4337         e *= 2;
4338     }
4339     return mask;
4340 }
4341 
4342 /*
4343  * Logical (immediate)
4344  */
4345 
4346 /*
4347  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4348  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4349  * value (ie should cause a guest UNDEF exception), and true if they are
4350  * valid, in which case the decoded bit pattern is written to result.
4351  */
4352 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4353                             unsigned int imms, unsigned int immr)
4354 {
4355     uint64_t mask;
4356     unsigned e, levels, s, r;
4357     int len;
4358 
4359     assert(immn < 2 && imms < 64 && immr < 64);
4360 
4361     /* The bit patterns we create here are 64 bit patterns which
4362      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4363      * 64 bits each. Each element contains the same value: a run
4364      * of between 1 and e-1 non-zero bits, rotated within the
4365      * element by between 0 and e-1 bits.
4366      *
4367      * The element size and run length are encoded into immn (1 bit)
4368      * and imms (6 bits) as follows:
4369      * 64 bit elements: immn = 1, imms = <length of run - 1>
4370      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4371      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4372      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4373      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4374      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4375      * Notice that immn = 0, imms = 11111x is the only combination
4376      * not covered by one of the above options; this is reserved.
4377      * Further, <length of run - 1> all-ones is a reserved pattern.
4378      *
4379      * In all cases the rotation is by immr % e (and immr is 6 bits).
4380      */
4381 
4382     /* First determine the element size */
4383     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4384     if (len < 1) {
4385         /* This is the immn == 0, imms == 0x11111x case */
4386         return false;
4387     }
4388     e = 1 << len;
4389 
4390     levels = e - 1;
4391     s = imms & levels;
4392     r = immr & levels;
4393 
4394     if (s == levels) {
4395         /* <length of run - 1> mustn't be all-ones. */
4396         return false;
4397     }
4398 
4399     /* Create the value of one element: s+1 set bits rotated
4400      * by r within the element (which is e bits wide)...
4401      */
4402     mask = MAKE_64BIT_MASK(0, s + 1);
4403     if (r) {
4404         mask = (mask >> r) | (mask << (e - r));
4405         mask &= MAKE_64BIT_MASK(0, e);
4406     }
4407     /* ...then replicate the element over the whole 64 bit value */
4408     mask = bitfield_replicate(mask, e);
4409     *result = mask;
4410     return true;
4411 }
4412 
4413 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4414                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4415 {
4416     TCGv_i64 tcg_rd, tcg_rn;
4417     uint64_t imm;
4418 
4419     /* Some immediate field values are reserved. */
4420     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4421                                 extract32(a->dbm, 0, 6),
4422                                 extract32(a->dbm, 6, 6))) {
4423         return false;
4424     }
4425     if (!a->sf) {
4426         imm &= 0xffffffffull;
4427     }
4428 
4429     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4430     tcg_rn = cpu_reg(s, a->rn);
4431 
4432     fn(tcg_rd, tcg_rn, imm);
4433     if (set_cc) {
4434         gen_logic_CC(a->sf, tcg_rd);
4435     }
4436     if (!a->sf) {
4437         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4438     }
4439     return true;
4440 }
4441 
4442 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4443 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4444 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4445 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4446 
4447 /*
4448  * Move wide (immediate)
4449  */
4450 
4451 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4452 {
4453     int pos = a->hw << 4;
4454     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4455     return true;
4456 }
4457 
4458 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4459 {
4460     int pos = a->hw << 4;
4461     uint64_t imm = a->imm;
4462 
4463     imm = ~(imm << pos);
4464     if (!a->sf) {
4465         imm = (uint32_t)imm;
4466     }
4467     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4468     return true;
4469 }
4470 
4471 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4472 {
4473     int pos = a->hw << 4;
4474     TCGv_i64 tcg_rd, tcg_im;
4475 
4476     tcg_rd = cpu_reg(s, a->rd);
4477     tcg_im = tcg_constant_i64(a->imm);
4478     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4479     if (!a->sf) {
4480         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4481     }
4482     return true;
4483 }
4484 
4485 /*
4486  * Bitfield
4487  */
4488 
4489 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4490 {
4491     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4492     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4493     unsigned int bitsize = a->sf ? 64 : 32;
4494     unsigned int ri = a->immr;
4495     unsigned int si = a->imms;
4496     unsigned int pos, len;
4497 
4498     if (si >= ri) {
4499         /* Wd<s-r:0> = Wn<s:r> */
4500         len = (si - ri) + 1;
4501         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4502         if (!a->sf) {
4503             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4504         }
4505     } else {
4506         /* Wd<32+s-r,32-r> = Wn<s:0> */
4507         len = si + 1;
4508         pos = (bitsize - ri) & (bitsize - 1);
4509 
4510         if (len < ri) {
4511             /*
4512              * Sign extend the destination field from len to fill the
4513              * balance of the word.  Let the deposit below insert all
4514              * of those sign bits.
4515              */
4516             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4517             len = ri;
4518         }
4519 
4520         /*
4521          * We start with zero, and we haven't modified any bits outside
4522          * bitsize, therefore no final zero-extension is unneeded for !sf.
4523          */
4524         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4525     }
4526     return true;
4527 }
4528 
4529 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4530 {
4531     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4532     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4533     unsigned int bitsize = a->sf ? 64 : 32;
4534     unsigned int ri = a->immr;
4535     unsigned int si = a->imms;
4536     unsigned int pos, len;
4537 
4538     tcg_rd = cpu_reg(s, a->rd);
4539     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4540 
4541     if (si >= ri) {
4542         /* Wd<s-r:0> = Wn<s:r> */
4543         len = (si - ri) + 1;
4544         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4545     } else {
4546         /* Wd<32+s-r,32-r> = Wn<s:0> */
4547         len = si + 1;
4548         pos = (bitsize - ri) & (bitsize - 1);
4549         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4550     }
4551     return true;
4552 }
4553 
4554 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4555 {
4556     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4557     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4558     unsigned int bitsize = a->sf ? 64 : 32;
4559     unsigned int ri = a->immr;
4560     unsigned int si = a->imms;
4561     unsigned int pos, len;
4562 
4563     tcg_rd = cpu_reg(s, a->rd);
4564     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4565 
4566     if (si >= ri) {
4567         /* Wd<s-r:0> = Wn<s:r> */
4568         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4569         len = (si - ri) + 1;
4570         pos = 0;
4571     } else {
4572         /* Wd<32+s-r,32-r> = Wn<s:0> */
4573         len = si + 1;
4574         pos = (bitsize - ri) & (bitsize - 1);
4575     }
4576 
4577     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4578     if (!a->sf) {
4579         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4580     }
4581     return true;
4582 }
4583 
4584 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4585 {
4586     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4587 
4588     tcg_rd = cpu_reg(s, a->rd);
4589 
4590     if (unlikely(a->imm == 0)) {
4591         /*
4592          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4593          * so an extract from bit 0 is a special case.
4594          */
4595         if (a->sf) {
4596             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4597         } else {
4598             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4599         }
4600     } else {
4601         tcg_rm = cpu_reg(s, a->rm);
4602         tcg_rn = cpu_reg(s, a->rn);
4603 
4604         if (a->sf) {
4605             /* Specialization to ROR happens in EXTRACT2.  */
4606             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4607         } else {
4608             TCGv_i32 t0 = tcg_temp_new_i32();
4609 
4610             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4611             if (a->rm == a->rn) {
4612                 tcg_gen_rotri_i32(t0, t0, a->imm);
4613             } else {
4614                 TCGv_i32 t1 = tcg_temp_new_i32();
4615                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4616                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4617             }
4618             tcg_gen_extu_i32_i64(tcg_rd, t0);
4619         }
4620     }
4621     return true;
4622 }
4623 
4624 /*
4625  * Cryptographic AES, SHA, SHA512
4626  */
4627 
4628 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4629 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4630 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4631 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4632 
4633 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4634 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4635 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4636 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4637 
4638 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4639 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4640 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4641 
4642 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4643 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4644 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4645 
4646 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4647 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4648 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4649 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4650 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4651 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4652 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4653 
4654 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4655 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4656 
4657 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4658 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4659 
4660 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4661 {
4662     if (!dc_isar_feature(aa64_sm3, s)) {
4663         return false;
4664     }
4665     if (fp_access_check(s)) {
4666         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4667         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4668         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4669         TCGv_i32 tcg_res = tcg_temp_new_i32();
4670         unsigned vsz, dofs;
4671 
4672         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4673         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4674         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4675 
4676         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4677         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4678         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4679         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4680 
4681         /* Clear the whole register first, then store bits [127:96]. */
4682         vsz = vec_full_reg_size(s);
4683         dofs = vec_full_reg_offset(s, a->rd);
4684         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4685         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4686     }
4687     return true;
4688 }
4689 
4690 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4691 {
4692     if (fp_access_check(s)) {
4693         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4694     }
4695     return true;
4696 }
4697 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4698 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4699 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4700 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4701 
4702 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4703 {
4704     if (!dc_isar_feature(aa64_sha3, s)) {
4705         return false;
4706     }
4707     if (fp_access_check(s)) {
4708         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4709                      vec_full_reg_offset(s, a->rn),
4710                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4711                      vec_full_reg_size(s));
4712     }
4713     return true;
4714 }
4715 
4716 /*
4717  * Advanced SIMD copy
4718  */
4719 
4720 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4721 {
4722     unsigned esz = ctz32(imm);
4723     if (esz <= MO_64) {
4724         *pesz = esz;
4725         *pidx = imm >> (esz + 1);
4726         return true;
4727     }
4728     return false;
4729 }
4730 
4731 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4732 {
4733     MemOp esz;
4734     unsigned idx;
4735 
4736     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4737         return false;
4738     }
4739     if (fp_access_check(s)) {
4740         /*
4741          * This instruction just extracts the specified element and
4742          * zero-extends it into the bottom of the destination register.
4743          */
4744         TCGv_i64 tmp = tcg_temp_new_i64();
4745         read_vec_element(s, tmp, a->rn, idx, esz);
4746         write_fp_dreg(s, a->rd, tmp);
4747     }
4748     return true;
4749 }
4750 
4751 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4752 {
4753     MemOp esz;
4754     unsigned idx;
4755 
4756     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4757         return false;
4758     }
4759     if (esz == MO_64 && !a->q) {
4760         return false;
4761     }
4762     if (fp_access_check(s)) {
4763         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4764                              vec_reg_offset(s, a->rn, idx, esz),
4765                              a->q ? 16 : 8, vec_full_reg_size(s));
4766     }
4767     return true;
4768 }
4769 
4770 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4771 {
4772     MemOp esz;
4773     unsigned idx;
4774 
4775     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4776         return false;
4777     }
4778     if (esz == MO_64 && !a->q) {
4779         return false;
4780     }
4781     if (fp_access_check(s)) {
4782         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4783                              a->q ? 16 : 8, vec_full_reg_size(s),
4784                              cpu_reg(s, a->rn));
4785     }
4786     return true;
4787 }
4788 
4789 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4790 {
4791     MemOp esz;
4792     unsigned idx;
4793 
4794     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4795         return false;
4796     }
4797     if (is_signed) {
4798         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4799             return false;
4800         }
4801     } else {
4802         if (esz == MO_64 ? !a->q : a->q) {
4803             return false;
4804         }
4805     }
4806     if (fp_access_check(s)) {
4807         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4808         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4809         if (is_signed && !a->q) {
4810             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4811         }
4812     }
4813     return true;
4814 }
4815 
4816 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4817 TRANS(UMOV, do_smov_umov, a, 0)
4818 
4819 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4820 {
4821     MemOp esz;
4822     unsigned idx;
4823 
4824     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4825         return false;
4826     }
4827     if (fp_access_check(s)) {
4828         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4829         clear_vec_high(s, true, a->rd);
4830     }
4831     return true;
4832 }
4833 
4834 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4835 {
4836     MemOp esz;
4837     unsigned didx, sidx;
4838 
4839     if (!decode_esz_idx(a->di, &esz, &didx)) {
4840         return false;
4841     }
4842     sidx = a->si >> esz;
4843     if (fp_access_check(s)) {
4844         TCGv_i64 tmp = tcg_temp_new_i64();
4845 
4846         read_vec_element(s, tmp, a->rn, sidx, esz);
4847         write_vec_element(s, tmp, a->rd, didx, esz);
4848 
4849         /* INS is considered a 128-bit write for SVE. */
4850         clear_vec_high(s, true, a->rd);
4851     }
4852     return true;
4853 }
4854 
4855 /*
4856  * Advanced SIMD three same
4857  */
4858 
4859 typedef struct FPScalar {
4860     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4861     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4862     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4863 } FPScalar;
4864 
4865 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4866 {
4867     switch (a->esz) {
4868     case MO_64:
4869         if (fp_access_check(s)) {
4870             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4871             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4872             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4873             write_fp_dreg(s, a->rd, t0);
4874         }
4875         break;
4876     case MO_32:
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4880             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     case MO_16:
4885         if (!dc_isar_feature(aa64_fp16, s)) {
4886             return false;
4887         }
4888         if (fp_access_check(s)) {
4889             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4890             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4891             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4892             write_fp_sreg(s, a->rd, t0);
4893         }
4894         break;
4895     default:
4896         return false;
4897     }
4898     return true;
4899 }
4900 
4901 static const FPScalar f_scalar_fadd = {
4902     gen_helper_vfp_addh,
4903     gen_helper_vfp_adds,
4904     gen_helper_vfp_addd,
4905 };
4906 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4907 
4908 static const FPScalar f_scalar_fsub = {
4909     gen_helper_vfp_subh,
4910     gen_helper_vfp_subs,
4911     gen_helper_vfp_subd,
4912 };
4913 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4914 
4915 static const FPScalar f_scalar_fdiv = {
4916     gen_helper_vfp_divh,
4917     gen_helper_vfp_divs,
4918     gen_helper_vfp_divd,
4919 };
4920 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4921 
4922 static const FPScalar f_scalar_fmul = {
4923     gen_helper_vfp_mulh,
4924     gen_helper_vfp_muls,
4925     gen_helper_vfp_muld,
4926 };
4927 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4928 
4929 static const FPScalar f_scalar_fmax = {
4930     gen_helper_advsimd_maxh,
4931     gen_helper_vfp_maxs,
4932     gen_helper_vfp_maxd,
4933 };
4934 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4935 
4936 static const FPScalar f_scalar_fmin = {
4937     gen_helper_advsimd_minh,
4938     gen_helper_vfp_mins,
4939     gen_helper_vfp_mind,
4940 };
4941 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4942 
4943 static const FPScalar f_scalar_fmaxnm = {
4944     gen_helper_advsimd_maxnumh,
4945     gen_helper_vfp_maxnums,
4946     gen_helper_vfp_maxnumd,
4947 };
4948 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4949 
4950 static const FPScalar f_scalar_fminnm = {
4951     gen_helper_advsimd_minnumh,
4952     gen_helper_vfp_minnums,
4953     gen_helper_vfp_minnumd,
4954 };
4955 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4956 
4957 static const FPScalar f_scalar_fmulx = {
4958     gen_helper_advsimd_mulxh,
4959     gen_helper_vfp_mulxs,
4960     gen_helper_vfp_mulxd,
4961 };
4962 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4963 
4964 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4965 {
4966     gen_helper_vfp_mulh(d, n, m, s);
4967     gen_vfp_negh(d, d);
4968 }
4969 
4970 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4971 {
4972     gen_helper_vfp_muls(d, n, m, s);
4973     gen_vfp_negs(d, d);
4974 }
4975 
4976 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4977 {
4978     gen_helper_vfp_muld(d, n, m, s);
4979     gen_vfp_negd(d, d);
4980 }
4981 
4982 static const FPScalar f_scalar_fnmul = {
4983     gen_fnmul_h,
4984     gen_fnmul_s,
4985     gen_fnmul_d,
4986 };
4987 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4988 
4989 static const FPScalar f_scalar_fcmeq = {
4990     gen_helper_advsimd_ceq_f16,
4991     gen_helper_neon_ceq_f32,
4992     gen_helper_neon_ceq_f64,
4993 };
4994 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
4995 
4996 static const FPScalar f_scalar_fcmge = {
4997     gen_helper_advsimd_cge_f16,
4998     gen_helper_neon_cge_f32,
4999     gen_helper_neon_cge_f64,
5000 };
5001 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5002 
5003 static const FPScalar f_scalar_fcmgt = {
5004     gen_helper_advsimd_cgt_f16,
5005     gen_helper_neon_cgt_f32,
5006     gen_helper_neon_cgt_f64,
5007 };
5008 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5009 
5010 static const FPScalar f_scalar_facge = {
5011     gen_helper_advsimd_acge_f16,
5012     gen_helper_neon_acge_f32,
5013     gen_helper_neon_acge_f64,
5014 };
5015 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5016 
5017 static const FPScalar f_scalar_facgt = {
5018     gen_helper_advsimd_acgt_f16,
5019     gen_helper_neon_acgt_f32,
5020     gen_helper_neon_acgt_f64,
5021 };
5022 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5023 
5024 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5025 {
5026     gen_helper_vfp_subh(d, n, m, s);
5027     gen_vfp_absh(d, d);
5028 }
5029 
5030 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5031 {
5032     gen_helper_vfp_subs(d, n, m, s);
5033     gen_vfp_abss(d, d);
5034 }
5035 
5036 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5037 {
5038     gen_helper_vfp_subd(d, n, m, s);
5039     gen_vfp_absd(d, d);
5040 }
5041 
5042 static const FPScalar f_scalar_fabd = {
5043     gen_fabd_h,
5044     gen_fabd_s,
5045     gen_fabd_d,
5046 };
5047 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5048 
5049 static const FPScalar f_scalar_frecps = {
5050     gen_helper_recpsf_f16,
5051     gen_helper_recpsf_f32,
5052     gen_helper_recpsf_f64,
5053 };
5054 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5055 
5056 static const FPScalar f_scalar_frsqrts = {
5057     gen_helper_rsqrtsf_f16,
5058     gen_helper_rsqrtsf_f32,
5059     gen_helper_rsqrtsf_f64,
5060 };
5061 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5062 
5063 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5064                           gen_helper_gvec_3_ptr * const fns[3])
5065 {
5066     MemOp esz = a->esz;
5067 
5068     switch (esz) {
5069     case MO_64:
5070         if (!a->q) {
5071             return false;
5072         }
5073         break;
5074     case MO_32:
5075         break;
5076     case MO_16:
5077         if (!dc_isar_feature(aa64_fp16, s)) {
5078             return false;
5079         }
5080         break;
5081     default:
5082         return false;
5083     }
5084     if (fp_access_check(s)) {
5085         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5086                           esz == MO_16, 0, fns[esz - 1]);
5087     }
5088     return true;
5089 }
5090 
5091 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5092     gen_helper_gvec_fadd_h,
5093     gen_helper_gvec_fadd_s,
5094     gen_helper_gvec_fadd_d,
5095 };
5096 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5097 
5098 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5099     gen_helper_gvec_fsub_h,
5100     gen_helper_gvec_fsub_s,
5101     gen_helper_gvec_fsub_d,
5102 };
5103 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5104 
5105 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5106     gen_helper_gvec_fdiv_h,
5107     gen_helper_gvec_fdiv_s,
5108     gen_helper_gvec_fdiv_d,
5109 };
5110 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5111 
5112 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5113     gen_helper_gvec_fmul_h,
5114     gen_helper_gvec_fmul_s,
5115     gen_helper_gvec_fmul_d,
5116 };
5117 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5118 
5119 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5120     gen_helper_gvec_fmax_h,
5121     gen_helper_gvec_fmax_s,
5122     gen_helper_gvec_fmax_d,
5123 };
5124 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5125 
5126 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5127     gen_helper_gvec_fmin_h,
5128     gen_helper_gvec_fmin_s,
5129     gen_helper_gvec_fmin_d,
5130 };
5131 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5132 
5133 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5134     gen_helper_gvec_fmaxnum_h,
5135     gen_helper_gvec_fmaxnum_s,
5136     gen_helper_gvec_fmaxnum_d,
5137 };
5138 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5139 
5140 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5141     gen_helper_gvec_fminnum_h,
5142     gen_helper_gvec_fminnum_s,
5143     gen_helper_gvec_fminnum_d,
5144 };
5145 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5146 
5147 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5148     gen_helper_gvec_fmulx_h,
5149     gen_helper_gvec_fmulx_s,
5150     gen_helper_gvec_fmulx_d,
5151 };
5152 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5153 
5154 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5155     gen_helper_gvec_vfma_h,
5156     gen_helper_gvec_vfma_s,
5157     gen_helper_gvec_vfma_d,
5158 };
5159 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5160 
5161 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5162     gen_helper_gvec_vfms_h,
5163     gen_helper_gvec_vfms_s,
5164     gen_helper_gvec_vfms_d,
5165 };
5166 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5167 
5168 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5169     gen_helper_gvec_fceq_h,
5170     gen_helper_gvec_fceq_s,
5171     gen_helper_gvec_fceq_d,
5172 };
5173 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5174 
5175 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5176     gen_helper_gvec_fcge_h,
5177     gen_helper_gvec_fcge_s,
5178     gen_helper_gvec_fcge_d,
5179 };
5180 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5181 
5182 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5183     gen_helper_gvec_fcgt_h,
5184     gen_helper_gvec_fcgt_s,
5185     gen_helper_gvec_fcgt_d,
5186 };
5187 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5188 
5189 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5190     gen_helper_gvec_facge_h,
5191     gen_helper_gvec_facge_s,
5192     gen_helper_gvec_facge_d,
5193 };
5194 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5195 
5196 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5197     gen_helper_gvec_facgt_h,
5198     gen_helper_gvec_facgt_s,
5199     gen_helper_gvec_facgt_d,
5200 };
5201 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5202 
5203 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5204     gen_helper_gvec_fabd_h,
5205     gen_helper_gvec_fabd_s,
5206     gen_helper_gvec_fabd_d,
5207 };
5208 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5209 
5210 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5211     gen_helper_gvec_recps_h,
5212     gen_helper_gvec_recps_s,
5213     gen_helper_gvec_recps_d,
5214 };
5215 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5216 
5217 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5218     gen_helper_gvec_rsqrts_h,
5219     gen_helper_gvec_rsqrts_s,
5220     gen_helper_gvec_rsqrts_d,
5221 };
5222 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5223 
5224 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5225     gen_helper_gvec_faddp_h,
5226     gen_helper_gvec_faddp_s,
5227     gen_helper_gvec_faddp_d,
5228 };
5229 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5230 
5231 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5232     gen_helper_gvec_fmaxp_h,
5233     gen_helper_gvec_fmaxp_s,
5234     gen_helper_gvec_fmaxp_d,
5235 };
5236 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5237 
5238 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5239     gen_helper_gvec_fminp_h,
5240     gen_helper_gvec_fminp_s,
5241     gen_helper_gvec_fminp_d,
5242 };
5243 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5244 
5245 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5246     gen_helper_gvec_fmaxnump_h,
5247     gen_helper_gvec_fmaxnump_s,
5248     gen_helper_gvec_fmaxnump_d,
5249 };
5250 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5251 
5252 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5253     gen_helper_gvec_fminnump_h,
5254     gen_helper_gvec_fminnump_s,
5255     gen_helper_gvec_fminnump_d,
5256 };
5257 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5258 
5259 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5260 {
5261     if (fp_access_check(s)) {
5262         int data = (is_2 << 1) | is_s;
5263         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5264                            vec_full_reg_offset(s, a->rn),
5265                            vec_full_reg_offset(s, a->rm), tcg_env,
5266                            a->q ? 16 : 8, vec_full_reg_size(s),
5267                            data, gen_helper_gvec_fmlal_a64);
5268     }
5269     return true;
5270 }
5271 
5272 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5273 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5274 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5275 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5276 
5277 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5278 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5279 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5280 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5281 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5282 
5283 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5284 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5285 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5286 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5287 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5288 
5289 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5290 {
5291     if (fp_access_check(s)) {
5292         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5293     }
5294     return true;
5295 }
5296 
5297 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5298 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5299 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5300 
5301 /*
5302  * Advanced SIMD scalar/vector x indexed element
5303  */
5304 
5305 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5306 {
5307     switch (a->esz) {
5308     case MO_64:
5309         if (fp_access_check(s)) {
5310             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5311             TCGv_i64 t1 = tcg_temp_new_i64();
5312 
5313             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5314             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5315             write_fp_dreg(s, a->rd, t0);
5316         }
5317         break;
5318     case MO_32:
5319         if (fp_access_check(s)) {
5320             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5321             TCGv_i32 t1 = tcg_temp_new_i32();
5322 
5323             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5324             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5325             write_fp_sreg(s, a->rd, t0);
5326         }
5327         break;
5328     case MO_16:
5329         if (!dc_isar_feature(aa64_fp16, s)) {
5330             return false;
5331         }
5332         if (fp_access_check(s)) {
5333             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5334             TCGv_i32 t1 = tcg_temp_new_i32();
5335 
5336             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5337             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5338             write_fp_sreg(s, a->rd, t0);
5339         }
5340         break;
5341     default:
5342         g_assert_not_reached();
5343     }
5344     return true;
5345 }
5346 
5347 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5348 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5349 
5350 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5351 {
5352     switch (a->esz) {
5353     case MO_64:
5354         if (fp_access_check(s)) {
5355             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5356             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5357             TCGv_i64 t2 = tcg_temp_new_i64();
5358 
5359             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5360             if (neg) {
5361                 gen_vfp_negd(t1, t1);
5362             }
5363             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5364             write_fp_dreg(s, a->rd, t0);
5365         }
5366         break;
5367     case MO_32:
5368         if (fp_access_check(s)) {
5369             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5370             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5371             TCGv_i32 t2 = tcg_temp_new_i32();
5372 
5373             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5374             if (neg) {
5375                 gen_vfp_negs(t1, t1);
5376             }
5377             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5378             write_fp_sreg(s, a->rd, t0);
5379         }
5380         break;
5381     case MO_16:
5382         if (!dc_isar_feature(aa64_fp16, s)) {
5383             return false;
5384         }
5385         if (fp_access_check(s)) {
5386             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5387             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5388             TCGv_i32 t2 = tcg_temp_new_i32();
5389 
5390             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5391             if (neg) {
5392                 gen_vfp_negh(t1, t1);
5393             }
5394             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5395                                        fpstatus_ptr(FPST_FPCR_F16));
5396             write_fp_sreg(s, a->rd, t0);
5397         }
5398         break;
5399     default:
5400         g_assert_not_reached();
5401     }
5402     return true;
5403 }
5404 
5405 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5406 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5407 
5408 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5409                               gen_helper_gvec_3_ptr * const fns[3])
5410 {
5411     MemOp esz = a->esz;
5412 
5413     switch (esz) {
5414     case MO_64:
5415         if (!a->q) {
5416             return false;
5417         }
5418         break;
5419     case MO_32:
5420         break;
5421     case MO_16:
5422         if (!dc_isar_feature(aa64_fp16, s)) {
5423             return false;
5424         }
5425         break;
5426     default:
5427         g_assert_not_reached();
5428     }
5429     if (fp_access_check(s)) {
5430         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5431                           esz == MO_16, a->idx, fns[esz - 1]);
5432     }
5433     return true;
5434 }
5435 
5436 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5437     gen_helper_gvec_fmul_idx_h,
5438     gen_helper_gvec_fmul_idx_s,
5439     gen_helper_gvec_fmul_idx_d,
5440 };
5441 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5442 
5443 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5444     gen_helper_gvec_fmulx_idx_h,
5445     gen_helper_gvec_fmulx_idx_s,
5446     gen_helper_gvec_fmulx_idx_d,
5447 };
5448 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5449 
5450 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5451 {
5452     static gen_helper_gvec_4_ptr * const fns[3] = {
5453         gen_helper_gvec_fmla_idx_h,
5454         gen_helper_gvec_fmla_idx_s,
5455         gen_helper_gvec_fmla_idx_d,
5456     };
5457     MemOp esz = a->esz;
5458 
5459     switch (esz) {
5460     case MO_64:
5461         if (!a->q) {
5462             return false;
5463         }
5464         break;
5465     case MO_32:
5466         break;
5467     case MO_16:
5468         if (!dc_isar_feature(aa64_fp16, s)) {
5469             return false;
5470         }
5471         break;
5472     default:
5473         g_assert_not_reached();
5474     }
5475     if (fp_access_check(s)) {
5476         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5477                           esz == MO_16, (a->idx << 1) | neg,
5478                           fns[esz - 1]);
5479     }
5480     return true;
5481 }
5482 
5483 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5484 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5485 
5486 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5487 {
5488     if (fp_access_check(s)) {
5489         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5490         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5491                            vec_full_reg_offset(s, a->rn),
5492                            vec_full_reg_offset(s, a->rm), tcg_env,
5493                            a->q ? 16 : 8, vec_full_reg_size(s),
5494                            data, gen_helper_gvec_fmlal_idx_a64);
5495     }
5496     return true;
5497 }
5498 
5499 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5500 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5501 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5502 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5503 
5504 /*
5505  * Advanced SIMD scalar pairwise
5506  */
5507 
5508 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5509 {
5510     switch (a->esz) {
5511     case MO_64:
5512         if (fp_access_check(s)) {
5513             TCGv_i64 t0 = tcg_temp_new_i64();
5514             TCGv_i64 t1 = tcg_temp_new_i64();
5515 
5516             read_vec_element(s, t0, a->rn, 0, MO_64);
5517             read_vec_element(s, t1, a->rn, 1, MO_64);
5518             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5519             write_fp_dreg(s, a->rd, t0);
5520         }
5521         break;
5522     case MO_32:
5523         if (fp_access_check(s)) {
5524             TCGv_i32 t0 = tcg_temp_new_i32();
5525             TCGv_i32 t1 = tcg_temp_new_i32();
5526 
5527             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5528             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5529             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5530             write_fp_sreg(s, a->rd, t0);
5531         }
5532         break;
5533     case MO_16:
5534         if (!dc_isar_feature(aa64_fp16, s)) {
5535             return false;
5536         }
5537         if (fp_access_check(s)) {
5538             TCGv_i32 t0 = tcg_temp_new_i32();
5539             TCGv_i32 t1 = tcg_temp_new_i32();
5540 
5541             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5542             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5543             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5544             write_fp_sreg(s, a->rd, t0);
5545         }
5546         break;
5547     default:
5548         g_assert_not_reached();
5549     }
5550     return true;
5551 }
5552 
5553 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5554 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
5555 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
5556 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
5557 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
5558 
5559 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
5560 {
5561     if (fp_access_check(s)) {
5562         TCGv_i64 t0 = tcg_temp_new_i64();
5563         TCGv_i64 t1 = tcg_temp_new_i64();
5564 
5565         read_vec_element(s, t0, a->rn, 0, MO_64);
5566         read_vec_element(s, t1, a->rn, 1, MO_64);
5567         tcg_gen_add_i64(t0, t0, t1);
5568         write_fp_dreg(s, a->rd, t0);
5569     }
5570     return true;
5571 }
5572 
5573 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5574  * Note that it is the caller's responsibility to ensure that the
5575  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5576  * mandated semantics for out of range shifts.
5577  */
5578 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5579                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5580 {
5581     switch (shift_type) {
5582     case A64_SHIFT_TYPE_LSL:
5583         tcg_gen_shl_i64(dst, src, shift_amount);
5584         break;
5585     case A64_SHIFT_TYPE_LSR:
5586         tcg_gen_shr_i64(dst, src, shift_amount);
5587         break;
5588     case A64_SHIFT_TYPE_ASR:
5589         if (!sf) {
5590             tcg_gen_ext32s_i64(dst, src);
5591         }
5592         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5593         break;
5594     case A64_SHIFT_TYPE_ROR:
5595         if (sf) {
5596             tcg_gen_rotr_i64(dst, src, shift_amount);
5597         } else {
5598             TCGv_i32 t0, t1;
5599             t0 = tcg_temp_new_i32();
5600             t1 = tcg_temp_new_i32();
5601             tcg_gen_extrl_i64_i32(t0, src);
5602             tcg_gen_extrl_i64_i32(t1, shift_amount);
5603             tcg_gen_rotr_i32(t0, t0, t1);
5604             tcg_gen_extu_i32_i64(dst, t0);
5605         }
5606         break;
5607     default:
5608         assert(FALSE); /* all shift types should be handled */
5609         break;
5610     }
5611 
5612     if (!sf) { /* zero extend final result */
5613         tcg_gen_ext32u_i64(dst, dst);
5614     }
5615 }
5616 
5617 /* Shift a TCGv src by immediate, put result in dst.
5618  * The shift amount must be in range (this should always be true as the
5619  * relevant instructions will UNDEF on bad shift immediates).
5620  */
5621 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5622                           enum a64_shift_type shift_type, unsigned int shift_i)
5623 {
5624     assert(shift_i < (sf ? 64 : 32));
5625 
5626     if (shift_i == 0) {
5627         tcg_gen_mov_i64(dst, src);
5628     } else {
5629         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5630     }
5631 }
5632 
5633 /* Logical (shifted register)
5634  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5635  * +----+-----+-----------+-------+---+------+--------+------+------+
5636  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5637  * +----+-----+-----------+-------+---+------+--------+------+------+
5638  */
5639 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5640 {
5641     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5642     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5643 
5644     sf = extract32(insn, 31, 1);
5645     opc = extract32(insn, 29, 2);
5646     shift_type = extract32(insn, 22, 2);
5647     invert = extract32(insn, 21, 1);
5648     rm = extract32(insn, 16, 5);
5649     shift_amount = extract32(insn, 10, 6);
5650     rn = extract32(insn, 5, 5);
5651     rd = extract32(insn, 0, 5);
5652 
5653     if (!sf && (shift_amount & (1 << 5))) {
5654         unallocated_encoding(s);
5655         return;
5656     }
5657 
5658     tcg_rd = cpu_reg(s, rd);
5659 
5660     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5661         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5662          * register-register MOV and MVN, so it is worth special casing.
5663          */
5664         tcg_rm = cpu_reg(s, rm);
5665         if (invert) {
5666             tcg_gen_not_i64(tcg_rd, tcg_rm);
5667             if (!sf) {
5668                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5669             }
5670         } else {
5671             if (sf) {
5672                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5673             } else {
5674                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5675             }
5676         }
5677         return;
5678     }
5679 
5680     tcg_rm = read_cpu_reg(s, rm, sf);
5681 
5682     if (shift_amount) {
5683         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5684     }
5685 
5686     tcg_rn = cpu_reg(s, rn);
5687 
5688     switch (opc | (invert << 2)) {
5689     case 0: /* AND */
5690     case 3: /* ANDS */
5691         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5692         break;
5693     case 1: /* ORR */
5694         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5695         break;
5696     case 2: /* EOR */
5697         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5698         break;
5699     case 4: /* BIC */
5700     case 7: /* BICS */
5701         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5702         break;
5703     case 5: /* ORN */
5704         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5705         break;
5706     case 6: /* EON */
5707         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5708         break;
5709     default:
5710         assert(FALSE);
5711         break;
5712     }
5713 
5714     if (!sf) {
5715         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5716     }
5717 
5718     if (opc == 3) {
5719         gen_logic_CC(sf, tcg_rd);
5720     }
5721 }
5722 
5723 /*
5724  * Add/subtract (extended register)
5725  *
5726  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5727  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5728  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5729  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5730  *
5731  *  sf: 0 -> 32bit, 1 -> 64bit
5732  *  op: 0 -> add  , 1 -> sub
5733  *   S: 1 -> set flags
5734  * opt: 00
5735  * option: extension type (see DecodeRegExtend)
5736  * imm3: optional shift to Rm
5737  *
5738  * Rd = Rn + LSL(extend(Rm), amount)
5739  */
5740 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5741 {
5742     int rd = extract32(insn, 0, 5);
5743     int rn = extract32(insn, 5, 5);
5744     int imm3 = extract32(insn, 10, 3);
5745     int option = extract32(insn, 13, 3);
5746     int rm = extract32(insn, 16, 5);
5747     int opt = extract32(insn, 22, 2);
5748     bool setflags = extract32(insn, 29, 1);
5749     bool sub_op = extract32(insn, 30, 1);
5750     bool sf = extract32(insn, 31, 1);
5751 
5752     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5753     TCGv_i64 tcg_rd;
5754     TCGv_i64 tcg_result;
5755 
5756     if (imm3 > 4 || opt != 0) {
5757         unallocated_encoding(s);
5758         return;
5759     }
5760 
5761     /* non-flag setting ops may use SP */
5762     if (!setflags) {
5763         tcg_rd = cpu_reg_sp(s, rd);
5764     } else {
5765         tcg_rd = cpu_reg(s, rd);
5766     }
5767     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5768 
5769     tcg_rm = read_cpu_reg(s, rm, sf);
5770     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5771 
5772     tcg_result = tcg_temp_new_i64();
5773 
5774     if (!setflags) {
5775         if (sub_op) {
5776             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5777         } else {
5778             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5779         }
5780     } else {
5781         if (sub_op) {
5782             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5783         } else {
5784             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5785         }
5786     }
5787 
5788     if (sf) {
5789         tcg_gen_mov_i64(tcg_rd, tcg_result);
5790     } else {
5791         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5792     }
5793 }
5794 
5795 /*
5796  * Add/subtract (shifted register)
5797  *
5798  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5799  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5800  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5801  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5802  *
5803  *    sf: 0 -> 32bit, 1 -> 64bit
5804  *    op: 0 -> add  , 1 -> sub
5805  *     S: 1 -> set flags
5806  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5807  *  imm6: Shift amount to apply to Rm before the add/sub
5808  */
5809 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5810 {
5811     int rd = extract32(insn, 0, 5);
5812     int rn = extract32(insn, 5, 5);
5813     int imm6 = extract32(insn, 10, 6);
5814     int rm = extract32(insn, 16, 5);
5815     int shift_type = extract32(insn, 22, 2);
5816     bool setflags = extract32(insn, 29, 1);
5817     bool sub_op = extract32(insn, 30, 1);
5818     bool sf = extract32(insn, 31, 1);
5819 
5820     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5821     TCGv_i64 tcg_rn, tcg_rm;
5822     TCGv_i64 tcg_result;
5823 
5824     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5825         unallocated_encoding(s);
5826         return;
5827     }
5828 
5829     tcg_rn = read_cpu_reg(s, rn, sf);
5830     tcg_rm = read_cpu_reg(s, rm, sf);
5831 
5832     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5833 
5834     tcg_result = tcg_temp_new_i64();
5835 
5836     if (!setflags) {
5837         if (sub_op) {
5838             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5839         } else {
5840             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5841         }
5842     } else {
5843         if (sub_op) {
5844             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5845         } else {
5846             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5847         }
5848     }
5849 
5850     if (sf) {
5851         tcg_gen_mov_i64(tcg_rd, tcg_result);
5852     } else {
5853         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5854     }
5855 }
5856 
5857 /* Data-processing (3 source)
5858  *
5859  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5860  *  +--+------+-----------+------+------+----+------+------+------+
5861  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5862  *  +--+------+-----------+------+------+----+------+------+------+
5863  */
5864 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5865 {
5866     int rd = extract32(insn, 0, 5);
5867     int rn = extract32(insn, 5, 5);
5868     int ra = extract32(insn, 10, 5);
5869     int rm = extract32(insn, 16, 5);
5870     int op_id = (extract32(insn, 29, 3) << 4) |
5871         (extract32(insn, 21, 3) << 1) |
5872         extract32(insn, 15, 1);
5873     bool sf = extract32(insn, 31, 1);
5874     bool is_sub = extract32(op_id, 0, 1);
5875     bool is_high = extract32(op_id, 2, 1);
5876     bool is_signed = false;
5877     TCGv_i64 tcg_op1;
5878     TCGv_i64 tcg_op2;
5879     TCGv_i64 tcg_tmp;
5880 
5881     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5882     switch (op_id) {
5883     case 0x42: /* SMADDL */
5884     case 0x43: /* SMSUBL */
5885     case 0x44: /* SMULH */
5886         is_signed = true;
5887         break;
5888     case 0x0: /* MADD (32bit) */
5889     case 0x1: /* MSUB (32bit) */
5890     case 0x40: /* MADD (64bit) */
5891     case 0x41: /* MSUB (64bit) */
5892     case 0x4a: /* UMADDL */
5893     case 0x4b: /* UMSUBL */
5894     case 0x4c: /* UMULH */
5895         break;
5896     default:
5897         unallocated_encoding(s);
5898         return;
5899     }
5900 
5901     if (is_high) {
5902         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5903         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5904         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5905         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5906 
5907         if (is_signed) {
5908             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5909         } else {
5910             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5911         }
5912         return;
5913     }
5914 
5915     tcg_op1 = tcg_temp_new_i64();
5916     tcg_op2 = tcg_temp_new_i64();
5917     tcg_tmp = tcg_temp_new_i64();
5918 
5919     if (op_id < 0x42) {
5920         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5921         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5922     } else {
5923         if (is_signed) {
5924             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5925             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5926         } else {
5927             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5928             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5929         }
5930     }
5931 
5932     if (ra == 31 && !is_sub) {
5933         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5934         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5935     } else {
5936         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5937         if (is_sub) {
5938             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5939         } else {
5940             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5941         }
5942     }
5943 
5944     if (!sf) {
5945         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5946     }
5947 }
5948 
5949 /* Add/subtract (with carry)
5950  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5951  * +--+--+--+------------------------+------+-------------+------+-----+
5952  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5953  * +--+--+--+------------------------+------+-------------+------+-----+
5954  */
5955 
5956 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5957 {
5958     unsigned int sf, op, setflags, rm, rn, rd;
5959     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5960 
5961     sf = extract32(insn, 31, 1);
5962     op = extract32(insn, 30, 1);
5963     setflags = extract32(insn, 29, 1);
5964     rm = extract32(insn, 16, 5);
5965     rn = extract32(insn, 5, 5);
5966     rd = extract32(insn, 0, 5);
5967 
5968     tcg_rd = cpu_reg(s, rd);
5969     tcg_rn = cpu_reg(s, rn);
5970 
5971     if (op) {
5972         tcg_y = tcg_temp_new_i64();
5973         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5974     } else {
5975         tcg_y = cpu_reg(s, rm);
5976     }
5977 
5978     if (setflags) {
5979         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5980     } else {
5981         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5982     }
5983 }
5984 
5985 /*
5986  * Rotate right into flags
5987  *  31 30 29                21       15          10      5  4      0
5988  * +--+--+--+-----------------+--------+-----------+------+--+------+
5989  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5990  * +--+--+--+-----------------+--------+-----------+------+--+------+
5991  */
5992 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5993 {
5994     int mask = extract32(insn, 0, 4);
5995     int o2 = extract32(insn, 4, 1);
5996     int rn = extract32(insn, 5, 5);
5997     int imm6 = extract32(insn, 15, 6);
5998     int sf_op_s = extract32(insn, 29, 3);
5999     TCGv_i64 tcg_rn;
6000     TCGv_i32 nzcv;
6001 
6002     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6003         unallocated_encoding(s);
6004         return;
6005     }
6006 
6007     tcg_rn = read_cpu_reg(s, rn, 1);
6008     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6009 
6010     nzcv = tcg_temp_new_i32();
6011     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6012 
6013     if (mask & 8) { /* N */
6014         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6015     }
6016     if (mask & 4) { /* Z */
6017         tcg_gen_not_i32(cpu_ZF, nzcv);
6018         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6019     }
6020     if (mask & 2) { /* C */
6021         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6022     }
6023     if (mask & 1) { /* V */
6024         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6025     }
6026 }
6027 
6028 /*
6029  * Evaluate into flags
6030  *  31 30 29                21        15   14        10      5  4      0
6031  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6032  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6033  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6034  */
6035 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6036 {
6037     int o3_mask = extract32(insn, 0, 5);
6038     int rn = extract32(insn, 5, 5);
6039     int o2 = extract32(insn, 15, 6);
6040     int sz = extract32(insn, 14, 1);
6041     int sf_op_s = extract32(insn, 29, 3);
6042     TCGv_i32 tmp;
6043     int shift;
6044 
6045     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6046         !dc_isar_feature(aa64_condm_4, s)) {
6047         unallocated_encoding(s);
6048         return;
6049     }
6050     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6051 
6052     tmp = tcg_temp_new_i32();
6053     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6054     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6055     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6056     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6057     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6058 }
6059 
6060 /* Conditional compare (immediate / register)
6061  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6062  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6063  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6064  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6065  *        [1]                             y                [0]       [0]
6066  */
6067 static void disas_cc(DisasContext *s, uint32_t insn)
6068 {
6069     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6070     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6071     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6072     DisasCompare c;
6073 
6074     if (!extract32(insn, 29, 1)) {
6075         unallocated_encoding(s);
6076         return;
6077     }
6078     if (insn & (1 << 10 | 1 << 4)) {
6079         unallocated_encoding(s);
6080         return;
6081     }
6082     sf = extract32(insn, 31, 1);
6083     op = extract32(insn, 30, 1);
6084     is_imm = extract32(insn, 11, 1);
6085     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6086     cond = extract32(insn, 12, 4);
6087     rn = extract32(insn, 5, 5);
6088     nzcv = extract32(insn, 0, 4);
6089 
6090     /* Set T0 = !COND.  */
6091     tcg_t0 = tcg_temp_new_i32();
6092     arm_test_cc(&c, cond);
6093     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6094 
6095     /* Load the arguments for the new comparison.  */
6096     if (is_imm) {
6097         tcg_y = tcg_temp_new_i64();
6098         tcg_gen_movi_i64(tcg_y, y);
6099     } else {
6100         tcg_y = cpu_reg(s, y);
6101     }
6102     tcg_rn = cpu_reg(s, rn);
6103 
6104     /* Set the flags for the new comparison.  */
6105     tcg_tmp = tcg_temp_new_i64();
6106     if (op) {
6107         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6108     } else {
6109         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6110     }
6111 
6112     /* If COND was false, force the flags to #nzcv.  Compute two masks
6113      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6114      * For tcg hosts that support ANDC, we can make do with just T1.
6115      * In either case, allow the tcg optimizer to delete any unused mask.
6116      */
6117     tcg_t1 = tcg_temp_new_i32();
6118     tcg_t2 = tcg_temp_new_i32();
6119     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6120     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6121 
6122     if (nzcv & 8) { /* N */
6123         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6124     } else {
6125         if (TCG_TARGET_HAS_andc_i32) {
6126             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6127         } else {
6128             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6129         }
6130     }
6131     if (nzcv & 4) { /* Z */
6132         if (TCG_TARGET_HAS_andc_i32) {
6133             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6134         } else {
6135             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6136         }
6137     } else {
6138         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6139     }
6140     if (nzcv & 2) { /* C */
6141         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6142     } else {
6143         if (TCG_TARGET_HAS_andc_i32) {
6144             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6145         } else {
6146             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6147         }
6148     }
6149     if (nzcv & 1) { /* V */
6150         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6151     } else {
6152         if (TCG_TARGET_HAS_andc_i32) {
6153             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6154         } else {
6155             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6156         }
6157     }
6158 }
6159 
6160 /* Conditional select
6161  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6162  * +----+----+---+-----------------+------+------+-----+------+------+
6163  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6164  * +----+----+---+-----------------+------+------+-----+------+------+
6165  */
6166 static void disas_cond_select(DisasContext *s, uint32_t insn)
6167 {
6168     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6169     TCGv_i64 tcg_rd, zero;
6170     DisasCompare64 c;
6171 
6172     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6173         /* S == 1 or op2<1> == 1 */
6174         unallocated_encoding(s);
6175         return;
6176     }
6177     sf = extract32(insn, 31, 1);
6178     else_inv = extract32(insn, 30, 1);
6179     rm = extract32(insn, 16, 5);
6180     cond = extract32(insn, 12, 4);
6181     else_inc = extract32(insn, 10, 1);
6182     rn = extract32(insn, 5, 5);
6183     rd = extract32(insn, 0, 5);
6184 
6185     tcg_rd = cpu_reg(s, rd);
6186 
6187     a64_test_cc(&c, cond);
6188     zero = tcg_constant_i64(0);
6189 
6190     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6191         /* CSET & CSETM.  */
6192         if (else_inv) {
6193             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6194                                    tcg_rd, c.value, zero);
6195         } else {
6196             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6197                                 tcg_rd, c.value, zero);
6198         }
6199     } else {
6200         TCGv_i64 t_true = cpu_reg(s, rn);
6201         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6202         if (else_inv && else_inc) {
6203             tcg_gen_neg_i64(t_false, t_false);
6204         } else if (else_inv) {
6205             tcg_gen_not_i64(t_false, t_false);
6206         } else if (else_inc) {
6207             tcg_gen_addi_i64(t_false, t_false, 1);
6208         }
6209         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6210     }
6211 
6212     if (!sf) {
6213         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6214     }
6215 }
6216 
6217 static void handle_clz(DisasContext *s, unsigned int sf,
6218                        unsigned int rn, unsigned int rd)
6219 {
6220     TCGv_i64 tcg_rd, tcg_rn;
6221     tcg_rd = cpu_reg(s, rd);
6222     tcg_rn = cpu_reg(s, rn);
6223 
6224     if (sf) {
6225         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6226     } else {
6227         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6228         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6229         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6230         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6231     }
6232 }
6233 
6234 static void handle_cls(DisasContext *s, unsigned int sf,
6235                        unsigned int rn, unsigned int rd)
6236 {
6237     TCGv_i64 tcg_rd, tcg_rn;
6238     tcg_rd = cpu_reg(s, rd);
6239     tcg_rn = cpu_reg(s, rn);
6240 
6241     if (sf) {
6242         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6243     } else {
6244         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6245         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6246         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6247         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6248     }
6249 }
6250 
6251 static void handle_rbit(DisasContext *s, unsigned int sf,
6252                         unsigned int rn, unsigned int rd)
6253 {
6254     TCGv_i64 tcg_rd, tcg_rn;
6255     tcg_rd = cpu_reg(s, rd);
6256     tcg_rn = cpu_reg(s, rn);
6257 
6258     if (sf) {
6259         gen_helper_rbit64(tcg_rd, tcg_rn);
6260     } else {
6261         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6262         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6263         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6264         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6265     }
6266 }
6267 
6268 /* REV with sf==1, opcode==3 ("REV64") */
6269 static void handle_rev64(DisasContext *s, unsigned int sf,
6270                          unsigned int rn, unsigned int rd)
6271 {
6272     if (!sf) {
6273         unallocated_encoding(s);
6274         return;
6275     }
6276     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6277 }
6278 
6279 /* REV with sf==0, opcode==2
6280  * REV32 (sf==1, opcode==2)
6281  */
6282 static void handle_rev32(DisasContext *s, unsigned int sf,
6283                          unsigned int rn, unsigned int rd)
6284 {
6285     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6286     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6287 
6288     if (sf) {
6289         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6290         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6291     } else {
6292         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6293     }
6294 }
6295 
6296 /* REV16 (opcode==1) */
6297 static void handle_rev16(DisasContext *s, unsigned int sf,
6298                          unsigned int rn, unsigned int rd)
6299 {
6300     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6301     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6302     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6303     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6304 
6305     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6306     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6307     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6308     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6309     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6310 }
6311 
6312 /* Data-processing (1 source)
6313  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6314  * +----+---+---+-----------------+---------+--------+------+------+
6315  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6316  * +----+---+---+-----------------+---------+--------+------+------+
6317  */
6318 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6319 {
6320     unsigned int sf, opcode, opcode2, rn, rd;
6321     TCGv_i64 tcg_rd;
6322 
6323     if (extract32(insn, 29, 1)) {
6324         unallocated_encoding(s);
6325         return;
6326     }
6327 
6328     sf = extract32(insn, 31, 1);
6329     opcode = extract32(insn, 10, 6);
6330     opcode2 = extract32(insn, 16, 5);
6331     rn = extract32(insn, 5, 5);
6332     rd = extract32(insn, 0, 5);
6333 
6334 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6335 
6336     switch (MAP(sf, opcode2, opcode)) {
6337     case MAP(0, 0x00, 0x00): /* RBIT */
6338     case MAP(1, 0x00, 0x00):
6339         handle_rbit(s, sf, rn, rd);
6340         break;
6341     case MAP(0, 0x00, 0x01): /* REV16 */
6342     case MAP(1, 0x00, 0x01):
6343         handle_rev16(s, sf, rn, rd);
6344         break;
6345     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6346     case MAP(1, 0x00, 0x02):
6347         handle_rev32(s, sf, rn, rd);
6348         break;
6349     case MAP(1, 0x00, 0x03): /* REV64 */
6350         handle_rev64(s, sf, rn, rd);
6351         break;
6352     case MAP(0, 0x00, 0x04): /* CLZ */
6353     case MAP(1, 0x00, 0x04):
6354         handle_clz(s, sf, rn, rd);
6355         break;
6356     case MAP(0, 0x00, 0x05): /* CLS */
6357     case MAP(1, 0x00, 0x05):
6358         handle_cls(s, sf, rn, rd);
6359         break;
6360     case MAP(1, 0x01, 0x00): /* PACIA */
6361         if (s->pauth_active) {
6362             tcg_rd = cpu_reg(s, rd);
6363             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6364         } else if (!dc_isar_feature(aa64_pauth, s)) {
6365             goto do_unallocated;
6366         }
6367         break;
6368     case MAP(1, 0x01, 0x01): /* PACIB */
6369         if (s->pauth_active) {
6370             tcg_rd = cpu_reg(s, rd);
6371             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6372         } else if (!dc_isar_feature(aa64_pauth, s)) {
6373             goto do_unallocated;
6374         }
6375         break;
6376     case MAP(1, 0x01, 0x02): /* PACDA */
6377         if (s->pauth_active) {
6378             tcg_rd = cpu_reg(s, rd);
6379             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6380         } else if (!dc_isar_feature(aa64_pauth, s)) {
6381             goto do_unallocated;
6382         }
6383         break;
6384     case MAP(1, 0x01, 0x03): /* PACDB */
6385         if (s->pauth_active) {
6386             tcg_rd = cpu_reg(s, rd);
6387             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6388         } else if (!dc_isar_feature(aa64_pauth, s)) {
6389             goto do_unallocated;
6390         }
6391         break;
6392     case MAP(1, 0x01, 0x04): /* AUTIA */
6393         if (s->pauth_active) {
6394             tcg_rd = cpu_reg(s, rd);
6395             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6396         } else if (!dc_isar_feature(aa64_pauth, s)) {
6397             goto do_unallocated;
6398         }
6399         break;
6400     case MAP(1, 0x01, 0x05): /* AUTIB */
6401         if (s->pauth_active) {
6402             tcg_rd = cpu_reg(s, rd);
6403             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6404         } else if (!dc_isar_feature(aa64_pauth, s)) {
6405             goto do_unallocated;
6406         }
6407         break;
6408     case MAP(1, 0x01, 0x06): /* AUTDA */
6409         if (s->pauth_active) {
6410             tcg_rd = cpu_reg(s, rd);
6411             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6412         } else if (!dc_isar_feature(aa64_pauth, s)) {
6413             goto do_unallocated;
6414         }
6415         break;
6416     case MAP(1, 0x01, 0x07): /* AUTDB */
6417         if (s->pauth_active) {
6418             tcg_rd = cpu_reg(s, rd);
6419             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6420         } else if (!dc_isar_feature(aa64_pauth, s)) {
6421             goto do_unallocated;
6422         }
6423         break;
6424     case MAP(1, 0x01, 0x08): /* PACIZA */
6425         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6426             goto do_unallocated;
6427         } else if (s->pauth_active) {
6428             tcg_rd = cpu_reg(s, rd);
6429             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6430         }
6431         break;
6432     case MAP(1, 0x01, 0x09): /* PACIZB */
6433         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6434             goto do_unallocated;
6435         } else if (s->pauth_active) {
6436             tcg_rd = cpu_reg(s, rd);
6437             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6438         }
6439         break;
6440     case MAP(1, 0x01, 0x0a): /* PACDZA */
6441         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6442             goto do_unallocated;
6443         } else if (s->pauth_active) {
6444             tcg_rd = cpu_reg(s, rd);
6445             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6446         }
6447         break;
6448     case MAP(1, 0x01, 0x0b): /* PACDZB */
6449         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6450             goto do_unallocated;
6451         } else if (s->pauth_active) {
6452             tcg_rd = cpu_reg(s, rd);
6453             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6454         }
6455         break;
6456     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6457         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6458             goto do_unallocated;
6459         } else if (s->pauth_active) {
6460             tcg_rd = cpu_reg(s, rd);
6461             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6462         }
6463         break;
6464     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6465         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6466             goto do_unallocated;
6467         } else if (s->pauth_active) {
6468             tcg_rd = cpu_reg(s, rd);
6469             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6470         }
6471         break;
6472     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6473         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6474             goto do_unallocated;
6475         } else if (s->pauth_active) {
6476             tcg_rd = cpu_reg(s, rd);
6477             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6478         }
6479         break;
6480     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6481         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6482             goto do_unallocated;
6483         } else if (s->pauth_active) {
6484             tcg_rd = cpu_reg(s, rd);
6485             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6486         }
6487         break;
6488     case MAP(1, 0x01, 0x10): /* XPACI */
6489         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6490             goto do_unallocated;
6491         } else if (s->pauth_active) {
6492             tcg_rd = cpu_reg(s, rd);
6493             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6494         }
6495         break;
6496     case MAP(1, 0x01, 0x11): /* XPACD */
6497         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6498             goto do_unallocated;
6499         } else if (s->pauth_active) {
6500             tcg_rd = cpu_reg(s, rd);
6501             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6502         }
6503         break;
6504     default:
6505     do_unallocated:
6506         unallocated_encoding(s);
6507         break;
6508     }
6509 
6510 #undef MAP
6511 }
6512 
6513 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6514                        unsigned int rm, unsigned int rn, unsigned int rd)
6515 {
6516     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6517     tcg_rd = cpu_reg(s, rd);
6518 
6519     if (!sf && is_signed) {
6520         tcg_n = tcg_temp_new_i64();
6521         tcg_m = tcg_temp_new_i64();
6522         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6523         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6524     } else {
6525         tcg_n = read_cpu_reg(s, rn, sf);
6526         tcg_m = read_cpu_reg(s, rm, sf);
6527     }
6528 
6529     if (is_signed) {
6530         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6531     } else {
6532         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6533     }
6534 
6535     if (!sf) { /* zero extend final result */
6536         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6537     }
6538 }
6539 
6540 /* LSLV, LSRV, ASRV, RORV */
6541 static void handle_shift_reg(DisasContext *s,
6542                              enum a64_shift_type shift_type, unsigned int sf,
6543                              unsigned int rm, unsigned int rn, unsigned int rd)
6544 {
6545     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6546     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6547     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6548 
6549     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6550     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6551 }
6552 
6553 /* CRC32[BHWX], CRC32C[BHWX] */
6554 static void handle_crc32(DisasContext *s,
6555                          unsigned int sf, unsigned int sz, bool crc32c,
6556                          unsigned int rm, unsigned int rn, unsigned int rd)
6557 {
6558     TCGv_i64 tcg_acc, tcg_val;
6559     TCGv_i32 tcg_bytes;
6560 
6561     if (!dc_isar_feature(aa64_crc32, s)
6562         || (sf == 1 && sz != 3)
6563         || (sf == 0 && sz == 3)) {
6564         unallocated_encoding(s);
6565         return;
6566     }
6567 
6568     if (sz == 3) {
6569         tcg_val = cpu_reg(s, rm);
6570     } else {
6571         uint64_t mask;
6572         switch (sz) {
6573         case 0:
6574             mask = 0xFF;
6575             break;
6576         case 1:
6577             mask = 0xFFFF;
6578             break;
6579         case 2:
6580             mask = 0xFFFFFFFF;
6581             break;
6582         default:
6583             g_assert_not_reached();
6584         }
6585         tcg_val = tcg_temp_new_i64();
6586         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6587     }
6588 
6589     tcg_acc = cpu_reg(s, rn);
6590     tcg_bytes = tcg_constant_i32(1 << sz);
6591 
6592     if (crc32c) {
6593         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6594     } else {
6595         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6596     }
6597 }
6598 
6599 /* Data-processing (2 source)
6600  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6601  * +----+---+---+-----------------+------+--------+------+------+
6602  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6603  * +----+---+---+-----------------+------+--------+------+------+
6604  */
6605 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6606 {
6607     unsigned int sf, rm, opcode, rn, rd, setflag;
6608     sf = extract32(insn, 31, 1);
6609     setflag = extract32(insn, 29, 1);
6610     rm = extract32(insn, 16, 5);
6611     opcode = extract32(insn, 10, 6);
6612     rn = extract32(insn, 5, 5);
6613     rd = extract32(insn, 0, 5);
6614 
6615     if (setflag && opcode != 0) {
6616         unallocated_encoding(s);
6617         return;
6618     }
6619 
6620     switch (opcode) {
6621     case 0: /* SUBP(S) */
6622         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6623             goto do_unallocated;
6624         } else {
6625             TCGv_i64 tcg_n, tcg_m, tcg_d;
6626 
6627             tcg_n = read_cpu_reg_sp(s, rn, true);
6628             tcg_m = read_cpu_reg_sp(s, rm, true);
6629             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6630             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6631             tcg_d = cpu_reg(s, rd);
6632 
6633             if (setflag) {
6634                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6635             } else {
6636                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6637             }
6638         }
6639         break;
6640     case 2: /* UDIV */
6641         handle_div(s, false, sf, rm, rn, rd);
6642         break;
6643     case 3: /* SDIV */
6644         handle_div(s, true, sf, rm, rn, rd);
6645         break;
6646     case 4: /* IRG */
6647         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6648             goto do_unallocated;
6649         }
6650         if (s->ata[0]) {
6651             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6652                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6653         } else {
6654             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6655                                              cpu_reg_sp(s, rn));
6656         }
6657         break;
6658     case 5: /* GMI */
6659         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6660             goto do_unallocated;
6661         } else {
6662             TCGv_i64 t = tcg_temp_new_i64();
6663 
6664             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6665             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6666             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6667         }
6668         break;
6669     case 8: /* LSLV */
6670         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6671         break;
6672     case 9: /* LSRV */
6673         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6674         break;
6675     case 10: /* ASRV */
6676         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6677         break;
6678     case 11: /* RORV */
6679         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6680         break;
6681     case 12: /* PACGA */
6682         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6683             goto do_unallocated;
6684         }
6685         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6686                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6687         break;
6688     case 16:
6689     case 17:
6690     case 18:
6691     case 19:
6692     case 20:
6693     case 21:
6694     case 22:
6695     case 23: /* CRC32 */
6696     {
6697         int sz = extract32(opcode, 0, 2);
6698         bool crc32c = extract32(opcode, 2, 1);
6699         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6700         break;
6701     }
6702     default:
6703     do_unallocated:
6704         unallocated_encoding(s);
6705         break;
6706     }
6707 }
6708 
6709 /*
6710  * Data processing - register
6711  *  31  30 29  28      25    21  20  16      10         0
6712  * +--+---+--+---+-------+-----+-------+-------+---------+
6713  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6714  * +--+---+--+---+-------+-----+-------+-------+---------+
6715  */
6716 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6717 {
6718     int op0 = extract32(insn, 30, 1);
6719     int op1 = extract32(insn, 28, 1);
6720     int op2 = extract32(insn, 21, 4);
6721     int op3 = extract32(insn, 10, 6);
6722 
6723     if (!op1) {
6724         if (op2 & 8) {
6725             if (op2 & 1) {
6726                 /* Add/sub (extended register) */
6727                 disas_add_sub_ext_reg(s, insn);
6728             } else {
6729                 /* Add/sub (shifted register) */
6730                 disas_add_sub_reg(s, insn);
6731             }
6732         } else {
6733             /* Logical (shifted register) */
6734             disas_logic_reg(s, insn);
6735         }
6736         return;
6737     }
6738 
6739     switch (op2) {
6740     case 0x0:
6741         switch (op3) {
6742         case 0x00: /* Add/subtract (with carry) */
6743             disas_adc_sbc(s, insn);
6744             break;
6745 
6746         case 0x01: /* Rotate right into flags */
6747         case 0x21:
6748             disas_rotate_right_into_flags(s, insn);
6749             break;
6750 
6751         case 0x02: /* Evaluate into flags */
6752         case 0x12:
6753         case 0x22:
6754         case 0x32:
6755             disas_evaluate_into_flags(s, insn);
6756             break;
6757 
6758         default:
6759             goto do_unallocated;
6760         }
6761         break;
6762 
6763     case 0x2: /* Conditional compare */
6764         disas_cc(s, insn); /* both imm and reg forms */
6765         break;
6766 
6767     case 0x4: /* Conditional select */
6768         disas_cond_select(s, insn);
6769         break;
6770 
6771     case 0x6: /* Data-processing */
6772         if (op0) {    /* (1 source) */
6773             disas_data_proc_1src(s, insn);
6774         } else {      /* (2 source) */
6775             disas_data_proc_2src(s, insn);
6776         }
6777         break;
6778     case 0x8 ... 0xf: /* (3 source) */
6779         disas_data_proc_3src(s, insn);
6780         break;
6781 
6782     default:
6783     do_unallocated:
6784         unallocated_encoding(s);
6785         break;
6786     }
6787 }
6788 
6789 static void handle_fp_compare(DisasContext *s, int size,
6790                               unsigned int rn, unsigned int rm,
6791                               bool cmp_with_zero, bool signal_all_nans)
6792 {
6793     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6794     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6795 
6796     if (size == MO_64) {
6797         TCGv_i64 tcg_vn, tcg_vm;
6798 
6799         tcg_vn = read_fp_dreg(s, rn);
6800         if (cmp_with_zero) {
6801             tcg_vm = tcg_constant_i64(0);
6802         } else {
6803             tcg_vm = read_fp_dreg(s, rm);
6804         }
6805         if (signal_all_nans) {
6806             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6807         } else {
6808             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6809         }
6810     } else {
6811         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6812         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6813 
6814         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6815         if (cmp_with_zero) {
6816             tcg_gen_movi_i32(tcg_vm, 0);
6817         } else {
6818             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6819         }
6820 
6821         switch (size) {
6822         case MO_32:
6823             if (signal_all_nans) {
6824                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6825             } else {
6826                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6827             }
6828             break;
6829         case MO_16:
6830             if (signal_all_nans) {
6831                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6832             } else {
6833                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6834             }
6835             break;
6836         default:
6837             g_assert_not_reached();
6838         }
6839     }
6840 
6841     gen_set_nzcv(tcg_flags);
6842 }
6843 
6844 /* Floating point compare
6845  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6846  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6847  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6848  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6849  */
6850 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6851 {
6852     unsigned int mos, type, rm, op, rn, opc, op2r;
6853     int size;
6854 
6855     mos = extract32(insn, 29, 3);
6856     type = extract32(insn, 22, 2);
6857     rm = extract32(insn, 16, 5);
6858     op = extract32(insn, 14, 2);
6859     rn = extract32(insn, 5, 5);
6860     opc = extract32(insn, 3, 2);
6861     op2r = extract32(insn, 0, 3);
6862 
6863     if (mos || op || op2r) {
6864         unallocated_encoding(s);
6865         return;
6866     }
6867 
6868     switch (type) {
6869     case 0:
6870         size = MO_32;
6871         break;
6872     case 1:
6873         size = MO_64;
6874         break;
6875     case 3:
6876         size = MO_16;
6877         if (dc_isar_feature(aa64_fp16, s)) {
6878             break;
6879         }
6880         /* fallthru */
6881     default:
6882         unallocated_encoding(s);
6883         return;
6884     }
6885 
6886     if (!fp_access_check(s)) {
6887         return;
6888     }
6889 
6890     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6891 }
6892 
6893 /* Floating point conditional compare
6894  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6895  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6896  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6897  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6898  */
6899 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6900 {
6901     unsigned int mos, type, rm, cond, rn, op, nzcv;
6902     TCGLabel *label_continue = NULL;
6903     int size;
6904 
6905     mos = extract32(insn, 29, 3);
6906     type = extract32(insn, 22, 2);
6907     rm = extract32(insn, 16, 5);
6908     cond = extract32(insn, 12, 4);
6909     rn = extract32(insn, 5, 5);
6910     op = extract32(insn, 4, 1);
6911     nzcv = extract32(insn, 0, 4);
6912 
6913     if (mos) {
6914         unallocated_encoding(s);
6915         return;
6916     }
6917 
6918     switch (type) {
6919     case 0:
6920         size = MO_32;
6921         break;
6922     case 1:
6923         size = MO_64;
6924         break;
6925     case 3:
6926         size = MO_16;
6927         if (dc_isar_feature(aa64_fp16, s)) {
6928             break;
6929         }
6930         /* fallthru */
6931     default:
6932         unallocated_encoding(s);
6933         return;
6934     }
6935 
6936     if (!fp_access_check(s)) {
6937         return;
6938     }
6939 
6940     if (cond < 0x0e) { /* not always */
6941         TCGLabel *label_match = gen_new_label();
6942         label_continue = gen_new_label();
6943         arm_gen_test_cc(cond, label_match);
6944         /* nomatch: */
6945         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6946         tcg_gen_br(label_continue);
6947         gen_set_label(label_match);
6948     }
6949 
6950     handle_fp_compare(s, size, rn, rm, false, op);
6951 
6952     if (cond < 0x0e) {
6953         gen_set_label(label_continue);
6954     }
6955 }
6956 
6957 /* Floating point conditional select
6958  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6959  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6960  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6961  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6962  */
6963 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6964 {
6965     unsigned int mos, type, rm, cond, rn, rd;
6966     TCGv_i64 t_true, t_false;
6967     DisasCompare64 c;
6968     MemOp sz;
6969 
6970     mos = extract32(insn, 29, 3);
6971     type = extract32(insn, 22, 2);
6972     rm = extract32(insn, 16, 5);
6973     cond = extract32(insn, 12, 4);
6974     rn = extract32(insn, 5, 5);
6975     rd = extract32(insn, 0, 5);
6976 
6977     if (mos) {
6978         unallocated_encoding(s);
6979         return;
6980     }
6981 
6982     switch (type) {
6983     case 0:
6984         sz = MO_32;
6985         break;
6986     case 1:
6987         sz = MO_64;
6988         break;
6989     case 3:
6990         sz = MO_16;
6991         if (dc_isar_feature(aa64_fp16, s)) {
6992             break;
6993         }
6994         /* fallthru */
6995     default:
6996         unallocated_encoding(s);
6997         return;
6998     }
6999 
7000     if (!fp_access_check(s)) {
7001         return;
7002     }
7003 
7004     /* Zero extend sreg & hreg inputs to 64 bits now.  */
7005     t_true = tcg_temp_new_i64();
7006     t_false = tcg_temp_new_i64();
7007     read_vec_element(s, t_true, rn, 0, sz);
7008     read_vec_element(s, t_false, rm, 0, sz);
7009 
7010     a64_test_cc(&c, cond);
7011     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
7012                         t_true, t_false);
7013 
7014     /* Note that sregs & hregs write back zeros to the high bits,
7015        and we've already done the zero-extension.  */
7016     write_fp_dreg(s, rd, t_true);
7017 }
7018 
7019 /* Floating-point data-processing (1 source) - half precision */
7020 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7021 {
7022     TCGv_ptr fpst = NULL;
7023     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7024     TCGv_i32 tcg_res = tcg_temp_new_i32();
7025 
7026     switch (opcode) {
7027     case 0x0: /* FMOV */
7028         tcg_gen_mov_i32(tcg_res, tcg_op);
7029         break;
7030     case 0x1: /* FABS */
7031         gen_vfp_absh(tcg_res, tcg_op);
7032         break;
7033     case 0x2: /* FNEG */
7034         gen_vfp_negh(tcg_res, tcg_op);
7035         break;
7036     case 0x3: /* FSQRT */
7037         fpst = fpstatus_ptr(FPST_FPCR_F16);
7038         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7039         break;
7040     case 0x8: /* FRINTN */
7041     case 0x9: /* FRINTP */
7042     case 0xa: /* FRINTM */
7043     case 0xb: /* FRINTZ */
7044     case 0xc: /* FRINTA */
7045     {
7046         TCGv_i32 tcg_rmode;
7047 
7048         fpst = fpstatus_ptr(FPST_FPCR_F16);
7049         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7050         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7051         gen_restore_rmode(tcg_rmode, fpst);
7052         break;
7053     }
7054     case 0xe: /* FRINTX */
7055         fpst = fpstatus_ptr(FPST_FPCR_F16);
7056         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7057         break;
7058     case 0xf: /* FRINTI */
7059         fpst = fpstatus_ptr(FPST_FPCR_F16);
7060         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7061         break;
7062     default:
7063         g_assert_not_reached();
7064     }
7065 
7066     write_fp_sreg(s, rd, tcg_res);
7067 }
7068 
7069 /* Floating-point data-processing (1 source) - single precision */
7070 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7071 {
7072     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7073     TCGv_i32 tcg_op, tcg_res;
7074     TCGv_ptr fpst;
7075     int rmode = -1;
7076 
7077     tcg_op = read_fp_sreg(s, rn);
7078     tcg_res = tcg_temp_new_i32();
7079 
7080     switch (opcode) {
7081     case 0x0: /* FMOV */
7082         tcg_gen_mov_i32(tcg_res, tcg_op);
7083         goto done;
7084     case 0x1: /* FABS */
7085         gen_vfp_abss(tcg_res, tcg_op);
7086         goto done;
7087     case 0x2: /* FNEG */
7088         gen_vfp_negs(tcg_res, tcg_op);
7089         goto done;
7090     case 0x3: /* FSQRT */
7091         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7092         goto done;
7093     case 0x6: /* BFCVT */
7094         gen_fpst = gen_helper_bfcvt;
7095         break;
7096     case 0x8: /* FRINTN */
7097     case 0x9: /* FRINTP */
7098     case 0xa: /* FRINTM */
7099     case 0xb: /* FRINTZ */
7100     case 0xc: /* FRINTA */
7101         rmode = opcode & 7;
7102         gen_fpst = gen_helper_rints;
7103         break;
7104     case 0xe: /* FRINTX */
7105         gen_fpst = gen_helper_rints_exact;
7106         break;
7107     case 0xf: /* FRINTI */
7108         gen_fpst = gen_helper_rints;
7109         break;
7110     case 0x10: /* FRINT32Z */
7111         rmode = FPROUNDING_ZERO;
7112         gen_fpst = gen_helper_frint32_s;
7113         break;
7114     case 0x11: /* FRINT32X */
7115         gen_fpst = gen_helper_frint32_s;
7116         break;
7117     case 0x12: /* FRINT64Z */
7118         rmode = FPROUNDING_ZERO;
7119         gen_fpst = gen_helper_frint64_s;
7120         break;
7121     case 0x13: /* FRINT64X */
7122         gen_fpst = gen_helper_frint64_s;
7123         break;
7124     default:
7125         g_assert_not_reached();
7126     }
7127 
7128     fpst = fpstatus_ptr(FPST_FPCR);
7129     if (rmode >= 0) {
7130         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7131         gen_fpst(tcg_res, tcg_op, fpst);
7132         gen_restore_rmode(tcg_rmode, fpst);
7133     } else {
7134         gen_fpst(tcg_res, tcg_op, fpst);
7135     }
7136 
7137  done:
7138     write_fp_sreg(s, rd, tcg_res);
7139 }
7140 
7141 /* Floating-point data-processing (1 source) - double precision */
7142 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7143 {
7144     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7145     TCGv_i64 tcg_op, tcg_res;
7146     TCGv_ptr fpst;
7147     int rmode = -1;
7148 
7149     switch (opcode) {
7150     case 0x0: /* FMOV */
7151         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7152         return;
7153     }
7154 
7155     tcg_op = read_fp_dreg(s, rn);
7156     tcg_res = tcg_temp_new_i64();
7157 
7158     switch (opcode) {
7159     case 0x1: /* FABS */
7160         gen_vfp_absd(tcg_res, tcg_op);
7161         goto done;
7162     case 0x2: /* FNEG */
7163         gen_vfp_negd(tcg_res, tcg_op);
7164         goto done;
7165     case 0x3: /* FSQRT */
7166         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7167         goto done;
7168     case 0x8: /* FRINTN */
7169     case 0x9: /* FRINTP */
7170     case 0xa: /* FRINTM */
7171     case 0xb: /* FRINTZ */
7172     case 0xc: /* FRINTA */
7173         rmode = opcode & 7;
7174         gen_fpst = gen_helper_rintd;
7175         break;
7176     case 0xe: /* FRINTX */
7177         gen_fpst = gen_helper_rintd_exact;
7178         break;
7179     case 0xf: /* FRINTI */
7180         gen_fpst = gen_helper_rintd;
7181         break;
7182     case 0x10: /* FRINT32Z */
7183         rmode = FPROUNDING_ZERO;
7184         gen_fpst = gen_helper_frint32_d;
7185         break;
7186     case 0x11: /* FRINT32X */
7187         gen_fpst = gen_helper_frint32_d;
7188         break;
7189     case 0x12: /* FRINT64Z */
7190         rmode = FPROUNDING_ZERO;
7191         gen_fpst = gen_helper_frint64_d;
7192         break;
7193     case 0x13: /* FRINT64X */
7194         gen_fpst = gen_helper_frint64_d;
7195         break;
7196     default:
7197         g_assert_not_reached();
7198     }
7199 
7200     fpst = fpstatus_ptr(FPST_FPCR);
7201     if (rmode >= 0) {
7202         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7203         gen_fpst(tcg_res, tcg_op, fpst);
7204         gen_restore_rmode(tcg_rmode, fpst);
7205     } else {
7206         gen_fpst(tcg_res, tcg_op, fpst);
7207     }
7208 
7209  done:
7210     write_fp_dreg(s, rd, tcg_res);
7211 }
7212 
7213 static void handle_fp_fcvt(DisasContext *s, int opcode,
7214                            int rd, int rn, int dtype, int ntype)
7215 {
7216     switch (ntype) {
7217     case 0x0:
7218     {
7219         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7220         if (dtype == 1) {
7221             /* Single to double */
7222             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7223             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7224             write_fp_dreg(s, rd, tcg_rd);
7225         } else {
7226             /* Single to half */
7227             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7228             TCGv_i32 ahp = get_ahp_flag();
7229             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7230 
7231             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7232             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7233             write_fp_sreg(s, rd, tcg_rd);
7234         }
7235         break;
7236     }
7237     case 0x1:
7238     {
7239         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7240         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7241         if (dtype == 0) {
7242             /* Double to single */
7243             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7244         } else {
7245             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7246             TCGv_i32 ahp = get_ahp_flag();
7247             /* Double to half */
7248             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7249             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7250         }
7251         write_fp_sreg(s, rd, tcg_rd);
7252         break;
7253     }
7254     case 0x3:
7255     {
7256         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7257         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7258         TCGv_i32 tcg_ahp = get_ahp_flag();
7259         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7260         if (dtype == 0) {
7261             /* Half to single */
7262             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7263             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7264             write_fp_sreg(s, rd, tcg_rd);
7265         } else {
7266             /* Half to double */
7267             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7268             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7269             write_fp_dreg(s, rd, tcg_rd);
7270         }
7271         break;
7272     }
7273     default:
7274         g_assert_not_reached();
7275     }
7276 }
7277 
7278 /* Floating point data-processing (1 source)
7279  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7280  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7281  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7282  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7283  */
7284 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7285 {
7286     int mos = extract32(insn, 29, 3);
7287     int type = extract32(insn, 22, 2);
7288     int opcode = extract32(insn, 15, 6);
7289     int rn = extract32(insn, 5, 5);
7290     int rd = extract32(insn, 0, 5);
7291 
7292     if (mos) {
7293         goto do_unallocated;
7294     }
7295 
7296     switch (opcode) {
7297     case 0x4: case 0x5: case 0x7:
7298     {
7299         /* FCVT between half, single and double precision */
7300         int dtype = extract32(opcode, 0, 2);
7301         if (type == 2 || dtype == type) {
7302             goto do_unallocated;
7303         }
7304         if (!fp_access_check(s)) {
7305             return;
7306         }
7307 
7308         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7309         break;
7310     }
7311 
7312     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7313         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7314             goto do_unallocated;
7315         }
7316         /* fall through */
7317     case 0x0 ... 0x3:
7318     case 0x8 ... 0xc:
7319     case 0xe ... 0xf:
7320         /* 32-to-32 and 64-to-64 ops */
7321         switch (type) {
7322         case 0:
7323             if (!fp_access_check(s)) {
7324                 return;
7325             }
7326             handle_fp_1src_single(s, opcode, rd, rn);
7327             break;
7328         case 1:
7329             if (!fp_access_check(s)) {
7330                 return;
7331             }
7332             handle_fp_1src_double(s, opcode, rd, rn);
7333             break;
7334         case 3:
7335             if (!dc_isar_feature(aa64_fp16, s)) {
7336                 goto do_unallocated;
7337             }
7338 
7339             if (!fp_access_check(s)) {
7340                 return;
7341             }
7342             handle_fp_1src_half(s, opcode, rd, rn);
7343             break;
7344         default:
7345             goto do_unallocated;
7346         }
7347         break;
7348 
7349     case 0x6:
7350         switch (type) {
7351         case 1: /* BFCVT */
7352             if (!dc_isar_feature(aa64_bf16, s)) {
7353                 goto do_unallocated;
7354             }
7355             if (!fp_access_check(s)) {
7356                 return;
7357             }
7358             handle_fp_1src_single(s, opcode, rd, rn);
7359             break;
7360         default:
7361             goto do_unallocated;
7362         }
7363         break;
7364 
7365     default:
7366     do_unallocated:
7367         unallocated_encoding(s);
7368         break;
7369     }
7370 }
7371 
7372 /* Floating-point data-processing (3 source) - single precision */
7373 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7374                                   int rd, int rn, int rm, int ra)
7375 {
7376     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7377     TCGv_i32 tcg_res = tcg_temp_new_i32();
7378     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7379 
7380     tcg_op1 = read_fp_sreg(s, rn);
7381     tcg_op2 = read_fp_sreg(s, rm);
7382     tcg_op3 = read_fp_sreg(s, ra);
7383 
7384     /* These are fused multiply-add, and must be done as one
7385      * floating point operation with no rounding between the
7386      * multiplication and addition steps.
7387      * NB that doing the negations here as separate steps is
7388      * correct : an input NaN should come out with its sign bit
7389      * flipped if it is a negated-input.
7390      */
7391     if (o1 == true) {
7392         gen_vfp_negs(tcg_op3, tcg_op3);
7393     }
7394 
7395     if (o0 != o1) {
7396         gen_vfp_negs(tcg_op1, tcg_op1);
7397     }
7398 
7399     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7400 
7401     write_fp_sreg(s, rd, tcg_res);
7402 }
7403 
7404 /* Floating-point data-processing (3 source) - double precision */
7405 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7406                                   int rd, int rn, int rm, int ra)
7407 {
7408     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7409     TCGv_i64 tcg_res = tcg_temp_new_i64();
7410     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7411 
7412     tcg_op1 = read_fp_dreg(s, rn);
7413     tcg_op2 = read_fp_dreg(s, rm);
7414     tcg_op3 = read_fp_dreg(s, ra);
7415 
7416     /* These are fused multiply-add, and must be done as one
7417      * floating point operation with no rounding between the
7418      * multiplication and addition steps.
7419      * NB that doing the negations here as separate steps is
7420      * correct : an input NaN should come out with its sign bit
7421      * flipped if it is a negated-input.
7422      */
7423     if (o1 == true) {
7424         gen_vfp_negd(tcg_op3, tcg_op3);
7425     }
7426 
7427     if (o0 != o1) {
7428         gen_vfp_negd(tcg_op1, tcg_op1);
7429     }
7430 
7431     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7432 
7433     write_fp_dreg(s, rd, tcg_res);
7434 }
7435 
7436 /* Floating-point data-processing (3 source) - half precision */
7437 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7438                                 int rd, int rn, int rm, int ra)
7439 {
7440     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7441     TCGv_i32 tcg_res = tcg_temp_new_i32();
7442     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7443 
7444     tcg_op1 = read_fp_hreg(s, rn);
7445     tcg_op2 = read_fp_hreg(s, rm);
7446     tcg_op3 = read_fp_hreg(s, ra);
7447 
7448     /* These are fused multiply-add, and must be done as one
7449      * floating point operation with no rounding between the
7450      * multiplication and addition steps.
7451      * NB that doing the negations here as separate steps is
7452      * correct : an input NaN should come out with its sign bit
7453      * flipped if it is a negated-input.
7454      */
7455     if (o1 == true) {
7456         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7457     }
7458 
7459     if (o0 != o1) {
7460         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7461     }
7462 
7463     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7464 
7465     write_fp_sreg(s, rd, tcg_res);
7466 }
7467 
7468 /* Floating point data-processing (3 source)
7469  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7470  * +---+---+---+-----------+------+----+------+----+------+------+------+
7471  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7472  * +---+---+---+-----------+------+----+------+----+------+------+------+
7473  */
7474 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7475 {
7476     int mos = extract32(insn, 29, 3);
7477     int type = extract32(insn, 22, 2);
7478     int rd = extract32(insn, 0, 5);
7479     int rn = extract32(insn, 5, 5);
7480     int ra = extract32(insn, 10, 5);
7481     int rm = extract32(insn, 16, 5);
7482     bool o0 = extract32(insn, 15, 1);
7483     bool o1 = extract32(insn, 21, 1);
7484 
7485     if (mos) {
7486         unallocated_encoding(s);
7487         return;
7488     }
7489 
7490     switch (type) {
7491     case 0:
7492         if (!fp_access_check(s)) {
7493             return;
7494         }
7495         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7496         break;
7497     case 1:
7498         if (!fp_access_check(s)) {
7499             return;
7500         }
7501         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7502         break;
7503     case 3:
7504         if (!dc_isar_feature(aa64_fp16, s)) {
7505             unallocated_encoding(s);
7506             return;
7507         }
7508         if (!fp_access_check(s)) {
7509             return;
7510         }
7511         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7512         break;
7513     default:
7514         unallocated_encoding(s);
7515     }
7516 }
7517 
7518 /* Floating point immediate
7519  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7520  * +---+---+---+-----------+------+---+------------+-------+------+------+
7521  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7522  * +---+---+---+-----------+------+---+------------+-------+------+------+
7523  */
7524 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7525 {
7526     int rd = extract32(insn, 0, 5);
7527     int imm5 = extract32(insn, 5, 5);
7528     int imm8 = extract32(insn, 13, 8);
7529     int type = extract32(insn, 22, 2);
7530     int mos = extract32(insn, 29, 3);
7531     uint64_t imm;
7532     MemOp sz;
7533 
7534     if (mos || imm5) {
7535         unallocated_encoding(s);
7536         return;
7537     }
7538 
7539     switch (type) {
7540     case 0:
7541         sz = MO_32;
7542         break;
7543     case 1:
7544         sz = MO_64;
7545         break;
7546     case 3:
7547         sz = MO_16;
7548         if (dc_isar_feature(aa64_fp16, s)) {
7549             break;
7550         }
7551         /* fallthru */
7552     default:
7553         unallocated_encoding(s);
7554         return;
7555     }
7556 
7557     if (!fp_access_check(s)) {
7558         return;
7559     }
7560 
7561     imm = vfp_expand_imm(sz, imm8);
7562     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7563 }
7564 
7565 /* Handle floating point <=> fixed point conversions. Note that we can
7566  * also deal with fp <=> integer conversions as a special case (scale == 64)
7567  * OPTME: consider handling that special case specially or at least skipping
7568  * the call to scalbn in the helpers for zero shifts.
7569  */
7570 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7571                            bool itof, int rmode, int scale, int sf, int type)
7572 {
7573     bool is_signed = !(opcode & 1);
7574     TCGv_ptr tcg_fpstatus;
7575     TCGv_i32 tcg_shift, tcg_single;
7576     TCGv_i64 tcg_double;
7577 
7578     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7579 
7580     tcg_shift = tcg_constant_i32(64 - scale);
7581 
7582     if (itof) {
7583         TCGv_i64 tcg_int = cpu_reg(s, rn);
7584         if (!sf) {
7585             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7586 
7587             if (is_signed) {
7588                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7589             } else {
7590                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7591             }
7592 
7593             tcg_int = tcg_extend;
7594         }
7595 
7596         switch (type) {
7597         case 1: /* float64 */
7598             tcg_double = tcg_temp_new_i64();
7599             if (is_signed) {
7600                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7601                                      tcg_shift, tcg_fpstatus);
7602             } else {
7603                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7604                                      tcg_shift, tcg_fpstatus);
7605             }
7606             write_fp_dreg(s, rd, tcg_double);
7607             break;
7608 
7609         case 0: /* float32 */
7610             tcg_single = tcg_temp_new_i32();
7611             if (is_signed) {
7612                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7613                                      tcg_shift, tcg_fpstatus);
7614             } else {
7615                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7616                                      tcg_shift, tcg_fpstatus);
7617             }
7618             write_fp_sreg(s, rd, tcg_single);
7619             break;
7620 
7621         case 3: /* float16 */
7622             tcg_single = tcg_temp_new_i32();
7623             if (is_signed) {
7624                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7625                                      tcg_shift, tcg_fpstatus);
7626             } else {
7627                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7628                                      tcg_shift, tcg_fpstatus);
7629             }
7630             write_fp_sreg(s, rd, tcg_single);
7631             break;
7632 
7633         default:
7634             g_assert_not_reached();
7635         }
7636     } else {
7637         TCGv_i64 tcg_int = cpu_reg(s, rd);
7638         TCGv_i32 tcg_rmode;
7639 
7640         if (extract32(opcode, 2, 1)) {
7641             /* There are too many rounding modes to all fit into rmode,
7642              * so FCVTA[US] is a special case.
7643              */
7644             rmode = FPROUNDING_TIEAWAY;
7645         }
7646 
7647         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7648 
7649         switch (type) {
7650         case 1: /* float64 */
7651             tcg_double = read_fp_dreg(s, rn);
7652             if (is_signed) {
7653                 if (!sf) {
7654                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7655                                          tcg_shift, tcg_fpstatus);
7656                 } else {
7657                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7658                                          tcg_shift, tcg_fpstatus);
7659                 }
7660             } else {
7661                 if (!sf) {
7662                     gen_helper_vfp_tould(tcg_int, tcg_double,
7663                                          tcg_shift, tcg_fpstatus);
7664                 } else {
7665                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7666                                          tcg_shift, tcg_fpstatus);
7667                 }
7668             }
7669             if (!sf) {
7670                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7671             }
7672             break;
7673 
7674         case 0: /* float32 */
7675             tcg_single = read_fp_sreg(s, rn);
7676             if (sf) {
7677                 if (is_signed) {
7678                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7679                                          tcg_shift, tcg_fpstatus);
7680                 } else {
7681                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7682                                          tcg_shift, tcg_fpstatus);
7683                 }
7684             } else {
7685                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7686                 if (is_signed) {
7687                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7688                                          tcg_shift, tcg_fpstatus);
7689                 } else {
7690                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7691                                          tcg_shift, tcg_fpstatus);
7692                 }
7693                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7694             }
7695             break;
7696 
7697         case 3: /* float16 */
7698             tcg_single = read_fp_sreg(s, rn);
7699             if (sf) {
7700                 if (is_signed) {
7701                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7702                                          tcg_shift, tcg_fpstatus);
7703                 } else {
7704                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7705                                          tcg_shift, tcg_fpstatus);
7706                 }
7707             } else {
7708                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7709                 if (is_signed) {
7710                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7711                                          tcg_shift, tcg_fpstatus);
7712                 } else {
7713                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7714                                          tcg_shift, tcg_fpstatus);
7715                 }
7716                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7717             }
7718             break;
7719 
7720         default:
7721             g_assert_not_reached();
7722         }
7723 
7724         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7725     }
7726 }
7727 
7728 /* Floating point <-> fixed point conversions
7729  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7730  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7731  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7732  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7733  */
7734 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7735 {
7736     int rd = extract32(insn, 0, 5);
7737     int rn = extract32(insn, 5, 5);
7738     int scale = extract32(insn, 10, 6);
7739     int opcode = extract32(insn, 16, 3);
7740     int rmode = extract32(insn, 19, 2);
7741     int type = extract32(insn, 22, 2);
7742     bool sbit = extract32(insn, 29, 1);
7743     bool sf = extract32(insn, 31, 1);
7744     bool itof;
7745 
7746     if (sbit || (!sf && scale < 32)) {
7747         unallocated_encoding(s);
7748         return;
7749     }
7750 
7751     switch (type) {
7752     case 0: /* float32 */
7753     case 1: /* float64 */
7754         break;
7755     case 3: /* float16 */
7756         if (dc_isar_feature(aa64_fp16, s)) {
7757             break;
7758         }
7759         /* fallthru */
7760     default:
7761         unallocated_encoding(s);
7762         return;
7763     }
7764 
7765     switch ((rmode << 3) | opcode) {
7766     case 0x2: /* SCVTF */
7767     case 0x3: /* UCVTF */
7768         itof = true;
7769         break;
7770     case 0x18: /* FCVTZS */
7771     case 0x19: /* FCVTZU */
7772         itof = false;
7773         break;
7774     default:
7775         unallocated_encoding(s);
7776         return;
7777     }
7778 
7779     if (!fp_access_check(s)) {
7780         return;
7781     }
7782 
7783     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7784 }
7785 
7786 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7787 {
7788     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7789      * without conversion.
7790      */
7791 
7792     if (itof) {
7793         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7794         TCGv_i64 tmp;
7795 
7796         switch (type) {
7797         case 0:
7798             /* 32 bit */
7799             tmp = tcg_temp_new_i64();
7800             tcg_gen_ext32u_i64(tmp, tcg_rn);
7801             write_fp_dreg(s, rd, tmp);
7802             break;
7803         case 1:
7804             /* 64 bit */
7805             write_fp_dreg(s, rd, tcg_rn);
7806             break;
7807         case 2:
7808             /* 64 bit to top half. */
7809             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7810             clear_vec_high(s, true, rd);
7811             break;
7812         case 3:
7813             /* 16 bit */
7814             tmp = tcg_temp_new_i64();
7815             tcg_gen_ext16u_i64(tmp, tcg_rn);
7816             write_fp_dreg(s, rd, tmp);
7817             break;
7818         default:
7819             g_assert_not_reached();
7820         }
7821     } else {
7822         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7823 
7824         switch (type) {
7825         case 0:
7826             /* 32 bit */
7827             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7828             break;
7829         case 1:
7830             /* 64 bit */
7831             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7832             break;
7833         case 2:
7834             /* 64 bits from top half */
7835             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7836             break;
7837         case 3:
7838             /* 16 bit */
7839             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7840             break;
7841         default:
7842             g_assert_not_reached();
7843         }
7844     }
7845 }
7846 
7847 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7848 {
7849     TCGv_i64 t = read_fp_dreg(s, rn);
7850     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7851 
7852     gen_helper_fjcvtzs(t, t, fpstatus);
7853 
7854     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7855     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7856     tcg_gen_movi_i32(cpu_CF, 0);
7857     tcg_gen_movi_i32(cpu_NF, 0);
7858     tcg_gen_movi_i32(cpu_VF, 0);
7859 }
7860 
7861 /* Floating point <-> integer conversions
7862  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7863  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7864  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7865  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7866  */
7867 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7868 {
7869     int rd = extract32(insn, 0, 5);
7870     int rn = extract32(insn, 5, 5);
7871     int opcode = extract32(insn, 16, 3);
7872     int rmode = extract32(insn, 19, 2);
7873     int type = extract32(insn, 22, 2);
7874     bool sbit = extract32(insn, 29, 1);
7875     bool sf = extract32(insn, 31, 1);
7876     bool itof = false;
7877 
7878     if (sbit) {
7879         goto do_unallocated;
7880     }
7881 
7882     switch (opcode) {
7883     case 2: /* SCVTF */
7884     case 3: /* UCVTF */
7885         itof = true;
7886         /* fallthru */
7887     case 4: /* FCVTAS */
7888     case 5: /* FCVTAU */
7889         if (rmode != 0) {
7890             goto do_unallocated;
7891         }
7892         /* fallthru */
7893     case 0: /* FCVT[NPMZ]S */
7894     case 1: /* FCVT[NPMZ]U */
7895         switch (type) {
7896         case 0: /* float32 */
7897         case 1: /* float64 */
7898             break;
7899         case 3: /* float16 */
7900             if (!dc_isar_feature(aa64_fp16, s)) {
7901                 goto do_unallocated;
7902             }
7903             break;
7904         default:
7905             goto do_unallocated;
7906         }
7907         if (!fp_access_check(s)) {
7908             return;
7909         }
7910         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7911         break;
7912 
7913     default:
7914         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7915         case 0b01100110: /* FMOV half <-> 32-bit int */
7916         case 0b01100111:
7917         case 0b11100110: /* FMOV half <-> 64-bit int */
7918         case 0b11100111:
7919             if (!dc_isar_feature(aa64_fp16, s)) {
7920                 goto do_unallocated;
7921             }
7922             /* fallthru */
7923         case 0b00000110: /* FMOV 32-bit */
7924         case 0b00000111:
7925         case 0b10100110: /* FMOV 64-bit */
7926         case 0b10100111:
7927         case 0b11001110: /* FMOV top half of 128-bit */
7928         case 0b11001111:
7929             if (!fp_access_check(s)) {
7930                 return;
7931             }
7932             itof = opcode & 1;
7933             handle_fmov(s, rd, rn, type, itof);
7934             break;
7935 
7936         case 0b00111110: /* FJCVTZS */
7937             if (!dc_isar_feature(aa64_jscvt, s)) {
7938                 goto do_unallocated;
7939             } else if (fp_access_check(s)) {
7940                 handle_fjcvtzs(s, rd, rn);
7941             }
7942             break;
7943 
7944         default:
7945         do_unallocated:
7946             unallocated_encoding(s);
7947             return;
7948         }
7949         break;
7950     }
7951 }
7952 
7953 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7954  *   31  30  29 28     25 24                          0
7955  * +---+---+---+---------+-----------------------------+
7956  * |   | 0 |   | 1 1 1 1 |                             |
7957  * +---+---+---+---------+-----------------------------+
7958  */
7959 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7960 {
7961     if (extract32(insn, 24, 1)) {
7962         /* Floating point data-processing (3 source) */
7963         disas_fp_3src(s, insn);
7964     } else if (extract32(insn, 21, 1) == 0) {
7965         /* Floating point to fixed point conversions */
7966         disas_fp_fixed_conv(s, insn);
7967     } else {
7968         switch (extract32(insn, 10, 2)) {
7969         case 1:
7970             /* Floating point conditional compare */
7971             disas_fp_ccomp(s, insn);
7972             break;
7973         case 2:
7974             /* Floating point data-processing (2 source) */
7975             unallocated_encoding(s); /* in decodetree */
7976             break;
7977         case 3:
7978             /* Floating point conditional select */
7979             disas_fp_csel(s, insn);
7980             break;
7981         case 0:
7982             switch (ctz32(extract32(insn, 12, 4))) {
7983             case 0: /* [15:12] == xxx1 */
7984                 /* Floating point immediate */
7985                 disas_fp_imm(s, insn);
7986                 break;
7987             case 1: /* [15:12] == xx10 */
7988                 /* Floating point compare */
7989                 disas_fp_compare(s, insn);
7990                 break;
7991             case 2: /* [15:12] == x100 */
7992                 /* Floating point data-processing (1 source) */
7993                 disas_fp_1src(s, insn);
7994                 break;
7995             case 3: /* [15:12] == 1000 */
7996                 unallocated_encoding(s);
7997                 break;
7998             default: /* [15:12] == 0000 */
7999                 /* Floating point <-> integer conversions */
8000                 disas_fp_int_conv(s, insn);
8001                 break;
8002             }
8003             break;
8004         }
8005     }
8006 }
8007 
8008 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8009                      int pos)
8010 {
8011     /* Extract 64 bits from the middle of two concatenated 64 bit
8012      * vector register slices left:right. The extracted bits start
8013      * at 'pos' bits into the right (least significant) side.
8014      * We return the result in tcg_right, and guarantee not to
8015      * trash tcg_left.
8016      */
8017     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8018     assert(pos > 0 && pos < 64);
8019 
8020     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8021     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8022     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8023 }
8024 
8025 /* EXT
8026  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8027  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8028  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8029  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8030  */
8031 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8032 {
8033     int is_q = extract32(insn, 30, 1);
8034     int op2 = extract32(insn, 22, 2);
8035     int imm4 = extract32(insn, 11, 4);
8036     int rm = extract32(insn, 16, 5);
8037     int rn = extract32(insn, 5, 5);
8038     int rd = extract32(insn, 0, 5);
8039     int pos = imm4 << 3;
8040     TCGv_i64 tcg_resl, tcg_resh;
8041 
8042     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8043         unallocated_encoding(s);
8044         return;
8045     }
8046 
8047     if (!fp_access_check(s)) {
8048         return;
8049     }
8050 
8051     tcg_resh = tcg_temp_new_i64();
8052     tcg_resl = tcg_temp_new_i64();
8053 
8054     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8055      * either extracting 128 bits from a 128:128 concatenation, or
8056      * extracting 64 bits from a 64:64 concatenation.
8057      */
8058     if (!is_q) {
8059         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8060         if (pos != 0) {
8061             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8062             do_ext64(s, tcg_resh, tcg_resl, pos);
8063         }
8064     } else {
8065         TCGv_i64 tcg_hh;
8066         typedef struct {
8067             int reg;
8068             int elt;
8069         } EltPosns;
8070         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8071         EltPosns *elt = eltposns;
8072 
8073         if (pos >= 64) {
8074             elt++;
8075             pos -= 64;
8076         }
8077 
8078         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8079         elt++;
8080         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8081         elt++;
8082         if (pos != 0) {
8083             do_ext64(s, tcg_resh, tcg_resl, pos);
8084             tcg_hh = tcg_temp_new_i64();
8085             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8086             do_ext64(s, tcg_hh, tcg_resh, pos);
8087         }
8088     }
8089 
8090     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8091     if (is_q) {
8092         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8093     }
8094     clear_vec_high(s, is_q, rd);
8095 }
8096 
8097 /* TBL/TBX
8098  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8099  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8100  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8101  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8102  */
8103 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8104 {
8105     int op2 = extract32(insn, 22, 2);
8106     int is_q = extract32(insn, 30, 1);
8107     int rm = extract32(insn, 16, 5);
8108     int rn = extract32(insn, 5, 5);
8109     int rd = extract32(insn, 0, 5);
8110     int is_tbx = extract32(insn, 12, 1);
8111     int len = (extract32(insn, 13, 2) + 1) * 16;
8112 
8113     if (op2 != 0) {
8114         unallocated_encoding(s);
8115         return;
8116     }
8117 
8118     if (!fp_access_check(s)) {
8119         return;
8120     }
8121 
8122     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8123                        vec_full_reg_offset(s, rm), tcg_env,
8124                        is_q ? 16 : 8, vec_full_reg_size(s),
8125                        (len << 6) | (is_tbx << 5) | rn,
8126                        gen_helper_simd_tblx);
8127 }
8128 
8129 /* ZIP/UZP/TRN
8130  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8131  * +---+---+-------------+------+---+------+---+------------------+------+
8132  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8133  * +---+---+-------------+------+---+------+---+------------------+------+
8134  */
8135 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8136 {
8137     int rd = extract32(insn, 0, 5);
8138     int rn = extract32(insn, 5, 5);
8139     int rm = extract32(insn, 16, 5);
8140     int size = extract32(insn, 22, 2);
8141     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8142      * bit 2 indicates 1 vs 2 variant of the insn.
8143      */
8144     int opcode = extract32(insn, 12, 2);
8145     bool part = extract32(insn, 14, 1);
8146     bool is_q = extract32(insn, 30, 1);
8147     int esize = 8 << size;
8148     int i;
8149     int datasize = is_q ? 128 : 64;
8150     int elements = datasize / esize;
8151     TCGv_i64 tcg_res[2], tcg_ele;
8152 
8153     if (opcode == 0 || (size == 3 && !is_q)) {
8154         unallocated_encoding(s);
8155         return;
8156     }
8157 
8158     if (!fp_access_check(s)) {
8159         return;
8160     }
8161 
8162     tcg_res[0] = tcg_temp_new_i64();
8163     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8164     tcg_ele = tcg_temp_new_i64();
8165 
8166     for (i = 0; i < elements; i++) {
8167         int o, w;
8168 
8169         switch (opcode) {
8170         case 1: /* UZP1/2 */
8171         {
8172             int midpoint = elements / 2;
8173             if (i < midpoint) {
8174                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8175             } else {
8176                 read_vec_element(s, tcg_ele, rm,
8177                                  2 * (i - midpoint) + part, size);
8178             }
8179             break;
8180         }
8181         case 2: /* TRN1/2 */
8182             if (i & 1) {
8183                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8184             } else {
8185                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8186             }
8187             break;
8188         case 3: /* ZIP1/2 */
8189         {
8190             int base = part * elements / 2;
8191             if (i & 1) {
8192                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8193             } else {
8194                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8195             }
8196             break;
8197         }
8198         default:
8199             g_assert_not_reached();
8200         }
8201 
8202         w = (i * esize) / 64;
8203         o = (i * esize) % 64;
8204         if (o == 0) {
8205             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8206         } else {
8207             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8208             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8209         }
8210     }
8211 
8212     for (i = 0; i <= is_q; ++i) {
8213         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8214     }
8215     clear_vec_high(s, is_q, rd);
8216 }
8217 
8218 /*
8219  * do_reduction_op helper
8220  *
8221  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8222  * important for correct NaN propagation that we do these
8223  * operations in exactly the order specified by the pseudocode.
8224  *
8225  * This is a recursive function, TCG temps should be freed by the
8226  * calling function once it is done with the values.
8227  */
8228 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8229                                 int esize, int size, int vmap, TCGv_ptr fpst)
8230 {
8231     if (esize == size) {
8232         int element;
8233         MemOp msize = esize == 16 ? MO_16 : MO_32;
8234         TCGv_i32 tcg_elem;
8235 
8236         /* We should have one register left here */
8237         assert(ctpop8(vmap) == 1);
8238         element = ctz32(vmap);
8239         assert(element < 8);
8240 
8241         tcg_elem = tcg_temp_new_i32();
8242         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8243         return tcg_elem;
8244     } else {
8245         int bits = size / 2;
8246         int shift = ctpop8(vmap) / 2;
8247         int vmap_lo = (vmap >> shift) & vmap;
8248         int vmap_hi = (vmap & ~vmap_lo);
8249         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8250 
8251         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8252         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8253         tcg_res = tcg_temp_new_i32();
8254 
8255         switch (fpopcode) {
8256         case 0x0c: /* fmaxnmv half-precision */
8257             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8258             break;
8259         case 0x0f: /* fmaxv half-precision */
8260             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8261             break;
8262         case 0x1c: /* fminnmv half-precision */
8263             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8264             break;
8265         case 0x1f: /* fminv half-precision */
8266             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8267             break;
8268         case 0x2c: /* fmaxnmv */
8269             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8270             break;
8271         case 0x2f: /* fmaxv */
8272             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8273             break;
8274         case 0x3c: /* fminnmv */
8275             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8276             break;
8277         case 0x3f: /* fminv */
8278             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8279             break;
8280         default:
8281             g_assert_not_reached();
8282         }
8283         return tcg_res;
8284     }
8285 }
8286 
8287 /* AdvSIMD across lanes
8288  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8289  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8290  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8291  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8292  */
8293 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8294 {
8295     int rd = extract32(insn, 0, 5);
8296     int rn = extract32(insn, 5, 5);
8297     int size = extract32(insn, 22, 2);
8298     int opcode = extract32(insn, 12, 5);
8299     bool is_q = extract32(insn, 30, 1);
8300     bool is_u = extract32(insn, 29, 1);
8301     bool is_fp = false;
8302     bool is_min = false;
8303     int esize;
8304     int elements;
8305     int i;
8306     TCGv_i64 tcg_res, tcg_elt;
8307 
8308     switch (opcode) {
8309     case 0x1b: /* ADDV */
8310         if (is_u) {
8311             unallocated_encoding(s);
8312             return;
8313         }
8314         /* fall through */
8315     case 0x3: /* SADDLV, UADDLV */
8316     case 0xa: /* SMAXV, UMAXV */
8317     case 0x1a: /* SMINV, UMINV */
8318         if (size == 3 || (size == 2 && !is_q)) {
8319             unallocated_encoding(s);
8320             return;
8321         }
8322         break;
8323     case 0xc: /* FMAXNMV, FMINNMV */
8324     case 0xf: /* FMAXV, FMINV */
8325         /* Bit 1 of size field encodes min vs max and the actual size
8326          * depends on the encoding of the U bit. If not set (and FP16
8327          * enabled) then we do half-precision float instead of single
8328          * precision.
8329          */
8330         is_min = extract32(size, 1, 1);
8331         is_fp = true;
8332         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8333             size = 1;
8334         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8335             unallocated_encoding(s);
8336             return;
8337         } else {
8338             size = 2;
8339         }
8340         break;
8341     default:
8342         unallocated_encoding(s);
8343         return;
8344     }
8345 
8346     if (!fp_access_check(s)) {
8347         return;
8348     }
8349 
8350     esize = 8 << size;
8351     elements = (is_q ? 128 : 64) / esize;
8352 
8353     tcg_res = tcg_temp_new_i64();
8354     tcg_elt = tcg_temp_new_i64();
8355 
8356     /* These instructions operate across all lanes of a vector
8357      * to produce a single result. We can guarantee that a 64
8358      * bit intermediate is sufficient:
8359      *  + for [US]ADDLV the maximum element size is 32 bits, and
8360      *    the result type is 64 bits
8361      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8362      *    same as the element size, which is 32 bits at most
8363      * For the integer operations we can choose to work at 64
8364      * or 32 bits and truncate at the end; for simplicity
8365      * we use 64 bits always. The floating point
8366      * ops do require 32 bit intermediates, though.
8367      */
8368     if (!is_fp) {
8369         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8370 
8371         for (i = 1; i < elements; i++) {
8372             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8373 
8374             switch (opcode) {
8375             case 0x03: /* SADDLV / UADDLV */
8376             case 0x1b: /* ADDV */
8377                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8378                 break;
8379             case 0x0a: /* SMAXV / UMAXV */
8380                 if (is_u) {
8381                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8382                 } else {
8383                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8384                 }
8385                 break;
8386             case 0x1a: /* SMINV / UMINV */
8387                 if (is_u) {
8388                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8389                 } else {
8390                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8391                 }
8392                 break;
8393             default:
8394                 g_assert_not_reached();
8395             }
8396 
8397         }
8398     } else {
8399         /* Floating point vector reduction ops which work across 32
8400          * bit (single) or 16 bit (half-precision) intermediates.
8401          * Note that correct NaN propagation requires that we do these
8402          * operations in exactly the order specified by the pseudocode.
8403          */
8404         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8405         int fpopcode = opcode | is_min << 4 | is_u << 5;
8406         int vmap = (1 << elements) - 1;
8407         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8408                                              (is_q ? 128 : 64), vmap, fpst);
8409         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8410     }
8411 
8412     /* Now truncate the result to the width required for the final output */
8413     if (opcode == 0x03) {
8414         /* SADDLV, UADDLV: result is 2*esize */
8415         size++;
8416     }
8417 
8418     switch (size) {
8419     case 0:
8420         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8421         break;
8422     case 1:
8423         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8424         break;
8425     case 2:
8426         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8427         break;
8428     case 3:
8429         break;
8430     default:
8431         g_assert_not_reached();
8432     }
8433 
8434     write_fp_dreg(s, rd, tcg_res);
8435 }
8436 
8437 /* AdvSIMD modified immediate
8438  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8439  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8440  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8441  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8442  *
8443  * There are a number of operations that can be carried out here:
8444  *   MOVI - move (shifted) imm into register
8445  *   MVNI - move inverted (shifted) imm into register
8446  *   ORR  - bitwise OR of (shifted) imm with register
8447  *   BIC  - bitwise clear of (shifted) imm with register
8448  * With ARMv8.2 we also have:
8449  *   FMOV half-precision
8450  */
8451 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8452 {
8453     int rd = extract32(insn, 0, 5);
8454     int cmode = extract32(insn, 12, 4);
8455     int o2 = extract32(insn, 11, 1);
8456     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8457     bool is_neg = extract32(insn, 29, 1);
8458     bool is_q = extract32(insn, 30, 1);
8459     uint64_t imm = 0;
8460 
8461     if (o2) {
8462         if (cmode != 0xf || is_neg) {
8463             unallocated_encoding(s);
8464             return;
8465         }
8466         /* FMOV (vector, immediate) - half-precision */
8467         if (!dc_isar_feature(aa64_fp16, s)) {
8468             unallocated_encoding(s);
8469             return;
8470         }
8471         imm = vfp_expand_imm(MO_16, abcdefgh);
8472         /* now duplicate across the lanes */
8473         imm = dup_const(MO_16, imm);
8474     } else {
8475         if (cmode == 0xf && is_neg && !is_q) {
8476             unallocated_encoding(s);
8477             return;
8478         }
8479         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8480     }
8481 
8482     if (!fp_access_check(s)) {
8483         return;
8484     }
8485 
8486     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8487         /* MOVI or MVNI, with MVNI negation handled above.  */
8488         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8489                              vec_full_reg_size(s), imm);
8490     } else {
8491         /* ORR or BIC, with BIC negation to AND handled above.  */
8492         if (is_neg) {
8493             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8494         } else {
8495             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8496         }
8497     }
8498 }
8499 
8500 /*
8501  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8502  *
8503  * This code is handles the common shifting code and is used by both
8504  * the vector and scalar code.
8505  */
8506 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8507                                     TCGv_i64 tcg_rnd, bool accumulate,
8508                                     bool is_u, int size, int shift)
8509 {
8510     bool extended_result = false;
8511     bool round = tcg_rnd != NULL;
8512     int ext_lshift = 0;
8513     TCGv_i64 tcg_src_hi;
8514 
8515     if (round && size == 3) {
8516         extended_result = true;
8517         ext_lshift = 64 - shift;
8518         tcg_src_hi = tcg_temp_new_i64();
8519     } else if (shift == 64) {
8520         if (!accumulate && is_u) {
8521             /* result is zero */
8522             tcg_gen_movi_i64(tcg_res, 0);
8523             return;
8524         }
8525     }
8526 
8527     /* Deal with the rounding step */
8528     if (round) {
8529         if (extended_result) {
8530             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8531             if (!is_u) {
8532                 /* take care of sign extending tcg_res */
8533                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8534                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8535                                  tcg_src, tcg_src_hi,
8536                                  tcg_rnd, tcg_zero);
8537             } else {
8538                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8539                                  tcg_src, tcg_zero,
8540                                  tcg_rnd, tcg_zero);
8541             }
8542         } else {
8543             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8544         }
8545     }
8546 
8547     /* Now do the shift right */
8548     if (round && extended_result) {
8549         /* extended case, >64 bit precision required */
8550         if (ext_lshift == 0) {
8551             /* special case, only high bits matter */
8552             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8553         } else {
8554             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8555             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8556             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8557         }
8558     } else {
8559         if (is_u) {
8560             if (shift == 64) {
8561                 /* essentially shifting in 64 zeros */
8562                 tcg_gen_movi_i64(tcg_src, 0);
8563             } else {
8564                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8565             }
8566         } else {
8567             if (shift == 64) {
8568                 /* effectively extending the sign-bit */
8569                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8570             } else {
8571                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8572             }
8573         }
8574     }
8575 
8576     if (accumulate) {
8577         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8578     } else {
8579         tcg_gen_mov_i64(tcg_res, tcg_src);
8580     }
8581 }
8582 
8583 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8584 static void handle_scalar_simd_shri(DisasContext *s,
8585                                     bool is_u, int immh, int immb,
8586                                     int opcode, int rn, int rd)
8587 {
8588     const int size = 3;
8589     int immhb = immh << 3 | immb;
8590     int shift = 2 * (8 << size) - immhb;
8591     bool accumulate = false;
8592     bool round = false;
8593     bool insert = false;
8594     TCGv_i64 tcg_rn;
8595     TCGv_i64 tcg_rd;
8596     TCGv_i64 tcg_round;
8597 
8598     if (!extract32(immh, 3, 1)) {
8599         unallocated_encoding(s);
8600         return;
8601     }
8602 
8603     if (!fp_access_check(s)) {
8604         return;
8605     }
8606 
8607     switch (opcode) {
8608     case 0x02: /* SSRA / USRA (accumulate) */
8609         accumulate = true;
8610         break;
8611     case 0x04: /* SRSHR / URSHR (rounding) */
8612         round = true;
8613         break;
8614     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8615         accumulate = round = true;
8616         break;
8617     case 0x08: /* SRI */
8618         insert = true;
8619         break;
8620     }
8621 
8622     if (round) {
8623         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8624     } else {
8625         tcg_round = NULL;
8626     }
8627 
8628     tcg_rn = read_fp_dreg(s, rn);
8629     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8630 
8631     if (insert) {
8632         /* shift count same as element size is valid but does nothing;
8633          * special case to avoid potential shift by 64.
8634          */
8635         int esize = 8 << size;
8636         if (shift != esize) {
8637             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8638             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8639         }
8640     } else {
8641         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8642                                 accumulate, is_u, size, shift);
8643     }
8644 
8645     write_fp_dreg(s, rd, tcg_rd);
8646 }
8647 
8648 /* SHL/SLI - Scalar shift left */
8649 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8650                                     int immh, int immb, int opcode,
8651                                     int rn, int rd)
8652 {
8653     int size = 32 - clz32(immh) - 1;
8654     int immhb = immh << 3 | immb;
8655     int shift = immhb - (8 << size);
8656     TCGv_i64 tcg_rn;
8657     TCGv_i64 tcg_rd;
8658 
8659     if (!extract32(immh, 3, 1)) {
8660         unallocated_encoding(s);
8661         return;
8662     }
8663 
8664     if (!fp_access_check(s)) {
8665         return;
8666     }
8667 
8668     tcg_rn = read_fp_dreg(s, rn);
8669     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8670 
8671     if (insert) {
8672         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8673     } else {
8674         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8675     }
8676 
8677     write_fp_dreg(s, rd, tcg_rd);
8678 }
8679 
8680 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8681  * (signed/unsigned) narrowing */
8682 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8683                                    bool is_u_shift, bool is_u_narrow,
8684                                    int immh, int immb, int opcode,
8685                                    int rn, int rd)
8686 {
8687     int immhb = immh << 3 | immb;
8688     int size = 32 - clz32(immh) - 1;
8689     int esize = 8 << size;
8690     int shift = (2 * esize) - immhb;
8691     int elements = is_scalar ? 1 : (64 / esize);
8692     bool round = extract32(opcode, 0, 1);
8693     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8694     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8695     TCGv_i32 tcg_rd_narrowed;
8696     TCGv_i64 tcg_final;
8697 
8698     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8699         { gen_helper_neon_narrow_sat_s8,
8700           gen_helper_neon_unarrow_sat8 },
8701         { gen_helper_neon_narrow_sat_s16,
8702           gen_helper_neon_unarrow_sat16 },
8703         { gen_helper_neon_narrow_sat_s32,
8704           gen_helper_neon_unarrow_sat32 },
8705         { NULL, NULL },
8706     };
8707     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8708         gen_helper_neon_narrow_sat_u8,
8709         gen_helper_neon_narrow_sat_u16,
8710         gen_helper_neon_narrow_sat_u32,
8711         NULL
8712     };
8713     NeonGenNarrowEnvFn *narrowfn;
8714 
8715     int i;
8716 
8717     assert(size < 4);
8718 
8719     if (extract32(immh, 3, 1)) {
8720         unallocated_encoding(s);
8721         return;
8722     }
8723 
8724     if (!fp_access_check(s)) {
8725         return;
8726     }
8727 
8728     if (is_u_shift) {
8729         narrowfn = unsigned_narrow_fns[size];
8730     } else {
8731         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8732     }
8733 
8734     tcg_rn = tcg_temp_new_i64();
8735     tcg_rd = tcg_temp_new_i64();
8736     tcg_rd_narrowed = tcg_temp_new_i32();
8737     tcg_final = tcg_temp_new_i64();
8738 
8739     if (round) {
8740         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8741     } else {
8742         tcg_round = NULL;
8743     }
8744 
8745     for (i = 0; i < elements; i++) {
8746         read_vec_element(s, tcg_rn, rn, i, ldop);
8747         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8748                                 false, is_u_shift, size+1, shift);
8749         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8750         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8751         if (i == 0) {
8752             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8753         } else {
8754             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8755         }
8756     }
8757 
8758     if (!is_q) {
8759         write_vec_element(s, tcg_final, rd, 0, MO_64);
8760     } else {
8761         write_vec_element(s, tcg_final, rd, 1, MO_64);
8762     }
8763     clear_vec_high(s, is_q, rd);
8764 }
8765 
8766 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8767 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8768                              bool src_unsigned, bool dst_unsigned,
8769                              int immh, int immb, int rn, int rd)
8770 {
8771     int immhb = immh << 3 | immb;
8772     int size = 32 - clz32(immh) - 1;
8773     int shift = immhb - (8 << size);
8774     int pass;
8775 
8776     assert(immh != 0);
8777     assert(!(scalar && is_q));
8778 
8779     if (!scalar) {
8780         if (!is_q && extract32(immh, 3, 1)) {
8781             unallocated_encoding(s);
8782             return;
8783         }
8784 
8785         /* Since we use the variable-shift helpers we must
8786          * replicate the shift count into each element of
8787          * the tcg_shift value.
8788          */
8789         switch (size) {
8790         case 0:
8791             shift |= shift << 8;
8792             /* fall through */
8793         case 1:
8794             shift |= shift << 16;
8795             break;
8796         case 2:
8797         case 3:
8798             break;
8799         default:
8800             g_assert_not_reached();
8801         }
8802     }
8803 
8804     if (!fp_access_check(s)) {
8805         return;
8806     }
8807 
8808     if (size == 3) {
8809         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8810         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8811             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8812             { NULL, gen_helper_neon_qshl_u64 },
8813         };
8814         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8815         int maxpass = is_q ? 2 : 1;
8816 
8817         for (pass = 0; pass < maxpass; pass++) {
8818             TCGv_i64 tcg_op = tcg_temp_new_i64();
8819 
8820             read_vec_element(s, tcg_op, rn, pass, MO_64);
8821             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8822             write_vec_element(s, tcg_op, rd, pass, MO_64);
8823         }
8824         clear_vec_high(s, is_q, rd);
8825     } else {
8826         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8827         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8828             {
8829                 { gen_helper_neon_qshl_s8,
8830                   gen_helper_neon_qshl_s16,
8831                   gen_helper_neon_qshl_s32 },
8832                 { gen_helper_neon_qshlu_s8,
8833                   gen_helper_neon_qshlu_s16,
8834                   gen_helper_neon_qshlu_s32 }
8835             }, {
8836                 { NULL, NULL, NULL },
8837                 { gen_helper_neon_qshl_u8,
8838                   gen_helper_neon_qshl_u16,
8839                   gen_helper_neon_qshl_u32 }
8840             }
8841         };
8842         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8843         MemOp memop = scalar ? size : MO_32;
8844         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8845 
8846         for (pass = 0; pass < maxpass; pass++) {
8847             TCGv_i32 tcg_op = tcg_temp_new_i32();
8848 
8849             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8850             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8851             if (scalar) {
8852                 switch (size) {
8853                 case 0:
8854                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8855                     break;
8856                 case 1:
8857                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8858                     break;
8859                 case 2:
8860                     break;
8861                 default:
8862                     g_assert_not_reached();
8863                 }
8864                 write_fp_sreg(s, rd, tcg_op);
8865             } else {
8866                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8867             }
8868         }
8869 
8870         if (!scalar) {
8871             clear_vec_high(s, is_q, rd);
8872         }
8873     }
8874 }
8875 
8876 /* Common vector code for handling integer to FP conversion */
8877 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8878                                    int elements, int is_signed,
8879                                    int fracbits, int size)
8880 {
8881     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8882     TCGv_i32 tcg_shift = NULL;
8883 
8884     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8885     int pass;
8886 
8887     if (fracbits || size == MO_64) {
8888         tcg_shift = tcg_constant_i32(fracbits);
8889     }
8890 
8891     if (size == MO_64) {
8892         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8893         TCGv_i64 tcg_double = tcg_temp_new_i64();
8894 
8895         for (pass = 0; pass < elements; pass++) {
8896             read_vec_element(s, tcg_int64, rn, pass, mop);
8897 
8898             if (is_signed) {
8899                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8900                                      tcg_shift, tcg_fpst);
8901             } else {
8902                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8903                                      tcg_shift, tcg_fpst);
8904             }
8905             if (elements == 1) {
8906                 write_fp_dreg(s, rd, tcg_double);
8907             } else {
8908                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8909             }
8910         }
8911     } else {
8912         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8913         TCGv_i32 tcg_float = tcg_temp_new_i32();
8914 
8915         for (pass = 0; pass < elements; pass++) {
8916             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8917 
8918             switch (size) {
8919             case MO_32:
8920                 if (fracbits) {
8921                     if (is_signed) {
8922                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8923                                              tcg_shift, tcg_fpst);
8924                     } else {
8925                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8926                                              tcg_shift, tcg_fpst);
8927                     }
8928                 } else {
8929                     if (is_signed) {
8930                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8931                     } else {
8932                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8933                     }
8934                 }
8935                 break;
8936             case MO_16:
8937                 if (fracbits) {
8938                     if (is_signed) {
8939                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8940                                              tcg_shift, tcg_fpst);
8941                     } else {
8942                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8943                                              tcg_shift, tcg_fpst);
8944                     }
8945                 } else {
8946                     if (is_signed) {
8947                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8948                     } else {
8949                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8950                     }
8951                 }
8952                 break;
8953             default:
8954                 g_assert_not_reached();
8955             }
8956 
8957             if (elements == 1) {
8958                 write_fp_sreg(s, rd, tcg_float);
8959             } else {
8960                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8961             }
8962         }
8963     }
8964 
8965     clear_vec_high(s, elements << size == 16, rd);
8966 }
8967 
8968 /* UCVTF/SCVTF - Integer to FP conversion */
8969 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8970                                          bool is_q, bool is_u,
8971                                          int immh, int immb, int opcode,
8972                                          int rn, int rd)
8973 {
8974     int size, elements, fracbits;
8975     int immhb = immh << 3 | immb;
8976 
8977     if (immh & 8) {
8978         size = MO_64;
8979         if (!is_scalar && !is_q) {
8980             unallocated_encoding(s);
8981             return;
8982         }
8983     } else if (immh & 4) {
8984         size = MO_32;
8985     } else if (immh & 2) {
8986         size = MO_16;
8987         if (!dc_isar_feature(aa64_fp16, s)) {
8988             unallocated_encoding(s);
8989             return;
8990         }
8991     } else {
8992         /* immh == 0 would be a failure of the decode logic */
8993         g_assert(immh == 1);
8994         unallocated_encoding(s);
8995         return;
8996     }
8997 
8998     if (is_scalar) {
8999         elements = 1;
9000     } else {
9001         elements = (8 << is_q) >> size;
9002     }
9003     fracbits = (16 << size) - immhb;
9004 
9005     if (!fp_access_check(s)) {
9006         return;
9007     }
9008 
9009     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9010 }
9011 
9012 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9013 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9014                                          bool is_q, bool is_u,
9015                                          int immh, int immb, int rn, int rd)
9016 {
9017     int immhb = immh << 3 | immb;
9018     int pass, size, fracbits;
9019     TCGv_ptr tcg_fpstatus;
9020     TCGv_i32 tcg_rmode, tcg_shift;
9021 
9022     if (immh & 0x8) {
9023         size = MO_64;
9024         if (!is_scalar && !is_q) {
9025             unallocated_encoding(s);
9026             return;
9027         }
9028     } else if (immh & 0x4) {
9029         size = MO_32;
9030     } else if (immh & 0x2) {
9031         size = MO_16;
9032         if (!dc_isar_feature(aa64_fp16, s)) {
9033             unallocated_encoding(s);
9034             return;
9035         }
9036     } else {
9037         /* Should have split out AdvSIMD modified immediate earlier.  */
9038         assert(immh == 1);
9039         unallocated_encoding(s);
9040         return;
9041     }
9042 
9043     if (!fp_access_check(s)) {
9044         return;
9045     }
9046 
9047     assert(!(is_scalar && is_q));
9048 
9049     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9050     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9051     fracbits = (16 << size) - immhb;
9052     tcg_shift = tcg_constant_i32(fracbits);
9053 
9054     if (size == MO_64) {
9055         int maxpass = is_scalar ? 1 : 2;
9056 
9057         for (pass = 0; pass < maxpass; pass++) {
9058             TCGv_i64 tcg_op = tcg_temp_new_i64();
9059 
9060             read_vec_element(s, tcg_op, rn, pass, MO_64);
9061             if (is_u) {
9062                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9063             } else {
9064                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9065             }
9066             write_vec_element(s, tcg_op, rd, pass, MO_64);
9067         }
9068         clear_vec_high(s, is_q, rd);
9069     } else {
9070         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9071         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9072 
9073         switch (size) {
9074         case MO_16:
9075             if (is_u) {
9076                 fn = gen_helper_vfp_touhh;
9077             } else {
9078                 fn = gen_helper_vfp_toshh;
9079             }
9080             break;
9081         case MO_32:
9082             if (is_u) {
9083                 fn = gen_helper_vfp_touls;
9084             } else {
9085                 fn = gen_helper_vfp_tosls;
9086             }
9087             break;
9088         default:
9089             g_assert_not_reached();
9090         }
9091 
9092         for (pass = 0; pass < maxpass; pass++) {
9093             TCGv_i32 tcg_op = tcg_temp_new_i32();
9094 
9095             read_vec_element_i32(s, tcg_op, rn, pass, size);
9096             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9097             if (is_scalar) {
9098                 if (size == MO_16 && !is_u) {
9099                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9100                 }
9101                 write_fp_sreg(s, rd, tcg_op);
9102             } else {
9103                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9104             }
9105         }
9106         if (!is_scalar) {
9107             clear_vec_high(s, is_q, rd);
9108         }
9109     }
9110 
9111     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9112 }
9113 
9114 /* AdvSIMD scalar shift by immediate
9115  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9116  * +-----+---+-------------+------+------+--------+---+------+------+
9117  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9118  * +-----+---+-------------+------+------+--------+---+------+------+
9119  *
9120  * This is the scalar version so it works on a fixed sized registers
9121  */
9122 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9123 {
9124     int rd = extract32(insn, 0, 5);
9125     int rn = extract32(insn, 5, 5);
9126     int opcode = extract32(insn, 11, 5);
9127     int immb = extract32(insn, 16, 3);
9128     int immh = extract32(insn, 19, 4);
9129     bool is_u = extract32(insn, 29, 1);
9130 
9131     if (immh == 0) {
9132         unallocated_encoding(s);
9133         return;
9134     }
9135 
9136     switch (opcode) {
9137     case 0x08: /* SRI */
9138         if (!is_u) {
9139             unallocated_encoding(s);
9140             return;
9141         }
9142         /* fall through */
9143     case 0x00: /* SSHR / USHR */
9144     case 0x02: /* SSRA / USRA */
9145     case 0x04: /* SRSHR / URSHR */
9146     case 0x06: /* SRSRA / URSRA */
9147         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9148         break;
9149     case 0x0a: /* SHL / SLI */
9150         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9151         break;
9152     case 0x1c: /* SCVTF, UCVTF */
9153         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9154                                      opcode, rn, rd);
9155         break;
9156     case 0x10: /* SQSHRUN, SQSHRUN2 */
9157     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9158         if (!is_u) {
9159             unallocated_encoding(s);
9160             return;
9161         }
9162         handle_vec_simd_sqshrn(s, true, false, false, true,
9163                                immh, immb, opcode, rn, rd);
9164         break;
9165     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9166     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9167         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9168                                immh, immb, opcode, rn, rd);
9169         break;
9170     case 0xc: /* SQSHLU */
9171         if (!is_u) {
9172             unallocated_encoding(s);
9173             return;
9174         }
9175         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9176         break;
9177     case 0xe: /* SQSHL, UQSHL */
9178         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9179         break;
9180     case 0x1f: /* FCVTZS, FCVTZU */
9181         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9182         break;
9183     default:
9184         unallocated_encoding(s);
9185         break;
9186     }
9187 }
9188 
9189 /* AdvSIMD scalar three different
9190  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9191  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9192  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9193  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9194  */
9195 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9196 {
9197     bool is_u = extract32(insn, 29, 1);
9198     int size = extract32(insn, 22, 2);
9199     int opcode = extract32(insn, 12, 4);
9200     int rm = extract32(insn, 16, 5);
9201     int rn = extract32(insn, 5, 5);
9202     int rd = extract32(insn, 0, 5);
9203 
9204     if (is_u) {
9205         unallocated_encoding(s);
9206         return;
9207     }
9208 
9209     switch (opcode) {
9210     case 0x9: /* SQDMLAL, SQDMLAL2 */
9211     case 0xb: /* SQDMLSL, SQDMLSL2 */
9212     case 0xd: /* SQDMULL, SQDMULL2 */
9213         if (size == 0 || size == 3) {
9214             unallocated_encoding(s);
9215             return;
9216         }
9217         break;
9218     default:
9219         unallocated_encoding(s);
9220         return;
9221     }
9222 
9223     if (!fp_access_check(s)) {
9224         return;
9225     }
9226 
9227     if (size == 2) {
9228         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9229         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9230         TCGv_i64 tcg_res = tcg_temp_new_i64();
9231 
9232         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9233         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9234 
9235         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9236         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9237 
9238         switch (opcode) {
9239         case 0xd: /* SQDMULL, SQDMULL2 */
9240             break;
9241         case 0xb: /* SQDMLSL, SQDMLSL2 */
9242             tcg_gen_neg_i64(tcg_res, tcg_res);
9243             /* fall through */
9244         case 0x9: /* SQDMLAL, SQDMLAL2 */
9245             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9246             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9247                                               tcg_res, tcg_op1);
9248             break;
9249         default:
9250             g_assert_not_reached();
9251         }
9252 
9253         write_fp_dreg(s, rd, tcg_res);
9254     } else {
9255         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9256         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9257         TCGv_i64 tcg_res = tcg_temp_new_i64();
9258 
9259         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9260         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9261 
9262         switch (opcode) {
9263         case 0xd: /* SQDMULL, SQDMULL2 */
9264             break;
9265         case 0xb: /* SQDMLSL, SQDMLSL2 */
9266             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9267             /* fall through */
9268         case 0x9: /* SQDMLAL, SQDMLAL2 */
9269         {
9270             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9271             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9272             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9273                                               tcg_res, tcg_op3);
9274             break;
9275         }
9276         default:
9277             g_assert_not_reached();
9278         }
9279 
9280         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9281         write_fp_dreg(s, rd, tcg_res);
9282     }
9283 }
9284 
9285 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9286                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9287 {
9288     /* Handle 64x64->64 opcodes which are shared between the scalar
9289      * and vector 3-same groups. We cover every opcode where size == 3
9290      * is valid in either the three-reg-same (integer, not pairwise)
9291      * or scalar-three-reg-same groups.
9292      */
9293     TCGCond cond;
9294 
9295     switch (opcode) {
9296     case 0x1: /* SQADD */
9297         if (u) {
9298             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9299         } else {
9300             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9301         }
9302         break;
9303     case 0x5: /* SQSUB */
9304         if (u) {
9305             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9306         } else {
9307             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9308         }
9309         break;
9310     case 0x6: /* CMGT, CMHI */
9311         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9312     do_cmop:
9313         /* 64 bit integer comparison, result = test ? -1 : 0. */
9314         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9315         break;
9316     case 0x7: /* CMGE, CMHS */
9317         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9318         goto do_cmop;
9319     case 0x11: /* CMTST, CMEQ */
9320         if (u) {
9321             cond = TCG_COND_EQ;
9322             goto do_cmop;
9323         }
9324         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9325         break;
9326     case 0x8: /* SSHL, USHL */
9327         if (u) {
9328             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9329         } else {
9330             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9331         }
9332         break;
9333     case 0x9: /* SQSHL, UQSHL */
9334         if (u) {
9335             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9336         } else {
9337             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9338         }
9339         break;
9340     case 0xa: /* SRSHL, URSHL */
9341         if (u) {
9342             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9343         } else {
9344             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9345         }
9346         break;
9347     case 0xb: /* SQRSHL, UQRSHL */
9348         if (u) {
9349             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9350         } else {
9351             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9352         }
9353         break;
9354     case 0x10: /* ADD, SUB */
9355         if (u) {
9356             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9357         } else {
9358             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9359         }
9360         break;
9361     default:
9362         g_assert_not_reached();
9363     }
9364 }
9365 
9366 /* AdvSIMD scalar three same
9367  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9368  * +-----+---+-----------+------+---+------+--------+---+------+------+
9369  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9370  * +-----+---+-----------+------+---+------+--------+---+------+------+
9371  */
9372 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9373 {
9374     int rd = extract32(insn, 0, 5);
9375     int rn = extract32(insn, 5, 5);
9376     int opcode = extract32(insn, 11, 5);
9377     int rm = extract32(insn, 16, 5);
9378     int size = extract32(insn, 22, 2);
9379     bool u = extract32(insn, 29, 1);
9380     TCGv_i64 tcg_rd;
9381 
9382     switch (opcode) {
9383     case 0x1: /* SQADD, UQADD */
9384     case 0x5: /* SQSUB, UQSUB */
9385     case 0x9: /* SQSHL, UQSHL */
9386     case 0xb: /* SQRSHL, UQRSHL */
9387         break;
9388     case 0x8: /* SSHL, USHL */
9389     case 0xa: /* SRSHL, URSHL */
9390     case 0x6: /* CMGT, CMHI */
9391     case 0x7: /* CMGE, CMHS */
9392     case 0x11: /* CMTST, CMEQ */
9393     case 0x10: /* ADD, SUB (vector) */
9394         if (size != 3) {
9395             unallocated_encoding(s);
9396             return;
9397         }
9398         break;
9399     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9400         if (size != 1 && size != 2) {
9401             unallocated_encoding(s);
9402             return;
9403         }
9404         break;
9405     default:
9406         unallocated_encoding(s);
9407         return;
9408     }
9409 
9410     if (!fp_access_check(s)) {
9411         return;
9412     }
9413 
9414     tcg_rd = tcg_temp_new_i64();
9415 
9416     if (size == 3) {
9417         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9418         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9419 
9420         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9421     } else {
9422         /* Do a single operation on the lowest element in the vector.
9423          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9424          * no side effects for all these operations.
9425          * OPTME: special-purpose helpers would avoid doing some
9426          * unnecessary work in the helper for the 8 and 16 bit cases.
9427          */
9428         NeonGenTwoOpEnvFn *genenvfn;
9429         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9430         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9431         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9432 
9433         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9434         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9435 
9436         switch (opcode) {
9437         case 0x1: /* SQADD, UQADD */
9438         {
9439             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9440                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9441                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9442                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9443             };
9444             genenvfn = fns[size][u];
9445             break;
9446         }
9447         case 0x5: /* SQSUB, UQSUB */
9448         {
9449             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9450                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9451                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9452                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9453             };
9454             genenvfn = fns[size][u];
9455             break;
9456         }
9457         case 0x9: /* SQSHL, UQSHL */
9458         {
9459             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9460                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9461                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9462                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9463             };
9464             genenvfn = fns[size][u];
9465             break;
9466         }
9467         case 0xb: /* SQRSHL, UQRSHL */
9468         {
9469             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9470                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9471                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9472                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9473             };
9474             genenvfn = fns[size][u];
9475             break;
9476         }
9477         case 0x16: /* SQDMULH, SQRDMULH */
9478         {
9479             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9480                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9481                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9482             };
9483             assert(size == 1 || size == 2);
9484             genenvfn = fns[size - 1][u];
9485             break;
9486         }
9487         default:
9488             g_assert_not_reached();
9489         }
9490 
9491         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9492         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9493     }
9494 
9495     write_fp_dreg(s, rd, tcg_rd);
9496 }
9497 
9498 /* AdvSIMD scalar three same extra
9499  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9500  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9501  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9502  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9503  */
9504 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9505                                                    uint32_t insn)
9506 {
9507     int rd = extract32(insn, 0, 5);
9508     int rn = extract32(insn, 5, 5);
9509     int opcode = extract32(insn, 11, 4);
9510     int rm = extract32(insn, 16, 5);
9511     int size = extract32(insn, 22, 2);
9512     bool u = extract32(insn, 29, 1);
9513     TCGv_i32 ele1, ele2, ele3;
9514     TCGv_i64 res;
9515     bool feature;
9516 
9517     switch (u * 16 + opcode) {
9518     case 0x10: /* SQRDMLAH (vector) */
9519     case 0x11: /* SQRDMLSH (vector) */
9520         if (size != 1 && size != 2) {
9521             unallocated_encoding(s);
9522             return;
9523         }
9524         feature = dc_isar_feature(aa64_rdm, s);
9525         break;
9526     default:
9527         unallocated_encoding(s);
9528         return;
9529     }
9530     if (!feature) {
9531         unallocated_encoding(s);
9532         return;
9533     }
9534     if (!fp_access_check(s)) {
9535         return;
9536     }
9537 
9538     /* Do a single operation on the lowest element in the vector.
9539      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9540      * with no side effects for all these operations.
9541      * OPTME: special-purpose helpers would avoid doing some
9542      * unnecessary work in the helper for the 16 bit cases.
9543      */
9544     ele1 = tcg_temp_new_i32();
9545     ele2 = tcg_temp_new_i32();
9546     ele3 = tcg_temp_new_i32();
9547 
9548     read_vec_element_i32(s, ele1, rn, 0, size);
9549     read_vec_element_i32(s, ele2, rm, 0, size);
9550     read_vec_element_i32(s, ele3, rd, 0, size);
9551 
9552     switch (opcode) {
9553     case 0x0: /* SQRDMLAH */
9554         if (size == 1) {
9555             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9556         } else {
9557             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9558         }
9559         break;
9560     case 0x1: /* SQRDMLSH */
9561         if (size == 1) {
9562             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9563         } else {
9564             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9565         }
9566         break;
9567     default:
9568         g_assert_not_reached();
9569     }
9570 
9571     res = tcg_temp_new_i64();
9572     tcg_gen_extu_i32_i64(res, ele3);
9573     write_fp_dreg(s, rd, res);
9574 }
9575 
9576 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9577                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9578                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9579 {
9580     /* Handle 64->64 opcodes which are shared between the scalar and
9581      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9582      * is valid in either group and also the double-precision fp ops.
9583      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9584      * requires them.
9585      */
9586     TCGCond cond;
9587 
9588     switch (opcode) {
9589     case 0x4: /* CLS, CLZ */
9590         if (u) {
9591             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9592         } else {
9593             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9594         }
9595         break;
9596     case 0x5: /* NOT */
9597         /* This opcode is shared with CNT and RBIT but we have earlier
9598          * enforced that size == 3 if and only if this is the NOT insn.
9599          */
9600         tcg_gen_not_i64(tcg_rd, tcg_rn);
9601         break;
9602     case 0x7: /* SQABS, SQNEG */
9603         if (u) {
9604             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9605         } else {
9606             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9607         }
9608         break;
9609     case 0xa: /* CMLT */
9610         cond = TCG_COND_LT;
9611     do_cmop:
9612         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9613         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9614         break;
9615     case 0x8: /* CMGT, CMGE */
9616         cond = u ? TCG_COND_GE : TCG_COND_GT;
9617         goto do_cmop;
9618     case 0x9: /* CMEQ, CMLE */
9619         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9620         goto do_cmop;
9621     case 0xb: /* ABS, NEG */
9622         if (u) {
9623             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9624         } else {
9625             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9626         }
9627         break;
9628     case 0x2f: /* FABS */
9629         gen_vfp_absd(tcg_rd, tcg_rn);
9630         break;
9631     case 0x6f: /* FNEG */
9632         gen_vfp_negd(tcg_rd, tcg_rn);
9633         break;
9634     case 0x7f: /* FSQRT */
9635         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9636         break;
9637     case 0x1a: /* FCVTNS */
9638     case 0x1b: /* FCVTMS */
9639     case 0x1c: /* FCVTAS */
9640     case 0x3a: /* FCVTPS */
9641     case 0x3b: /* FCVTZS */
9642         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9643         break;
9644     case 0x5a: /* FCVTNU */
9645     case 0x5b: /* FCVTMU */
9646     case 0x5c: /* FCVTAU */
9647     case 0x7a: /* FCVTPU */
9648     case 0x7b: /* FCVTZU */
9649         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9650         break;
9651     case 0x18: /* FRINTN */
9652     case 0x19: /* FRINTM */
9653     case 0x38: /* FRINTP */
9654     case 0x39: /* FRINTZ */
9655     case 0x58: /* FRINTA */
9656     case 0x79: /* FRINTI */
9657         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9658         break;
9659     case 0x59: /* FRINTX */
9660         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9661         break;
9662     case 0x1e: /* FRINT32Z */
9663     case 0x5e: /* FRINT32X */
9664         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9665         break;
9666     case 0x1f: /* FRINT64Z */
9667     case 0x5f: /* FRINT64X */
9668         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9669         break;
9670     default:
9671         g_assert_not_reached();
9672     }
9673 }
9674 
9675 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9676                                    bool is_scalar, bool is_u, bool is_q,
9677                                    int size, int rn, int rd)
9678 {
9679     bool is_double = (size == MO_64);
9680     TCGv_ptr fpst;
9681 
9682     if (!fp_access_check(s)) {
9683         return;
9684     }
9685 
9686     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9687 
9688     if (is_double) {
9689         TCGv_i64 tcg_op = tcg_temp_new_i64();
9690         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9691         TCGv_i64 tcg_res = tcg_temp_new_i64();
9692         NeonGenTwoDoubleOpFn *genfn;
9693         bool swap = false;
9694         int pass;
9695 
9696         switch (opcode) {
9697         case 0x2e: /* FCMLT (zero) */
9698             swap = true;
9699             /* fallthrough */
9700         case 0x2c: /* FCMGT (zero) */
9701             genfn = gen_helper_neon_cgt_f64;
9702             break;
9703         case 0x2d: /* FCMEQ (zero) */
9704             genfn = gen_helper_neon_ceq_f64;
9705             break;
9706         case 0x6d: /* FCMLE (zero) */
9707             swap = true;
9708             /* fall through */
9709         case 0x6c: /* FCMGE (zero) */
9710             genfn = gen_helper_neon_cge_f64;
9711             break;
9712         default:
9713             g_assert_not_reached();
9714         }
9715 
9716         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9717             read_vec_element(s, tcg_op, rn, pass, MO_64);
9718             if (swap) {
9719                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9720             } else {
9721                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9722             }
9723             write_vec_element(s, tcg_res, rd, pass, MO_64);
9724         }
9725 
9726         clear_vec_high(s, !is_scalar, rd);
9727     } else {
9728         TCGv_i32 tcg_op = tcg_temp_new_i32();
9729         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9730         TCGv_i32 tcg_res = tcg_temp_new_i32();
9731         NeonGenTwoSingleOpFn *genfn;
9732         bool swap = false;
9733         int pass, maxpasses;
9734 
9735         if (size == MO_16) {
9736             switch (opcode) {
9737             case 0x2e: /* FCMLT (zero) */
9738                 swap = true;
9739                 /* fall through */
9740             case 0x2c: /* FCMGT (zero) */
9741                 genfn = gen_helper_advsimd_cgt_f16;
9742                 break;
9743             case 0x2d: /* FCMEQ (zero) */
9744                 genfn = gen_helper_advsimd_ceq_f16;
9745                 break;
9746             case 0x6d: /* FCMLE (zero) */
9747                 swap = true;
9748                 /* fall through */
9749             case 0x6c: /* FCMGE (zero) */
9750                 genfn = gen_helper_advsimd_cge_f16;
9751                 break;
9752             default:
9753                 g_assert_not_reached();
9754             }
9755         } else {
9756             switch (opcode) {
9757             case 0x2e: /* FCMLT (zero) */
9758                 swap = true;
9759                 /* fall through */
9760             case 0x2c: /* FCMGT (zero) */
9761                 genfn = gen_helper_neon_cgt_f32;
9762                 break;
9763             case 0x2d: /* FCMEQ (zero) */
9764                 genfn = gen_helper_neon_ceq_f32;
9765                 break;
9766             case 0x6d: /* FCMLE (zero) */
9767                 swap = true;
9768                 /* fall through */
9769             case 0x6c: /* FCMGE (zero) */
9770                 genfn = gen_helper_neon_cge_f32;
9771                 break;
9772             default:
9773                 g_assert_not_reached();
9774             }
9775         }
9776 
9777         if (is_scalar) {
9778             maxpasses = 1;
9779         } else {
9780             int vector_size = 8 << is_q;
9781             maxpasses = vector_size >> size;
9782         }
9783 
9784         for (pass = 0; pass < maxpasses; pass++) {
9785             read_vec_element_i32(s, tcg_op, rn, pass, size);
9786             if (swap) {
9787                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9788             } else {
9789                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9790             }
9791             if (is_scalar) {
9792                 write_fp_sreg(s, rd, tcg_res);
9793             } else {
9794                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9795             }
9796         }
9797 
9798         if (!is_scalar) {
9799             clear_vec_high(s, is_q, rd);
9800         }
9801     }
9802 }
9803 
9804 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9805                                     bool is_scalar, bool is_u, bool is_q,
9806                                     int size, int rn, int rd)
9807 {
9808     bool is_double = (size == 3);
9809     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9810 
9811     if (is_double) {
9812         TCGv_i64 tcg_op = tcg_temp_new_i64();
9813         TCGv_i64 tcg_res = tcg_temp_new_i64();
9814         int pass;
9815 
9816         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9817             read_vec_element(s, tcg_op, rn, pass, MO_64);
9818             switch (opcode) {
9819             case 0x3d: /* FRECPE */
9820                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9821                 break;
9822             case 0x3f: /* FRECPX */
9823                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9824                 break;
9825             case 0x7d: /* FRSQRTE */
9826                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9827                 break;
9828             default:
9829                 g_assert_not_reached();
9830             }
9831             write_vec_element(s, tcg_res, rd, pass, MO_64);
9832         }
9833         clear_vec_high(s, !is_scalar, rd);
9834     } else {
9835         TCGv_i32 tcg_op = tcg_temp_new_i32();
9836         TCGv_i32 tcg_res = tcg_temp_new_i32();
9837         int pass, maxpasses;
9838 
9839         if (is_scalar) {
9840             maxpasses = 1;
9841         } else {
9842             maxpasses = is_q ? 4 : 2;
9843         }
9844 
9845         for (pass = 0; pass < maxpasses; pass++) {
9846             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9847 
9848             switch (opcode) {
9849             case 0x3c: /* URECPE */
9850                 gen_helper_recpe_u32(tcg_res, tcg_op);
9851                 break;
9852             case 0x3d: /* FRECPE */
9853                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9854                 break;
9855             case 0x3f: /* FRECPX */
9856                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9857                 break;
9858             case 0x7d: /* FRSQRTE */
9859                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9860                 break;
9861             default:
9862                 g_assert_not_reached();
9863             }
9864 
9865             if (is_scalar) {
9866                 write_fp_sreg(s, rd, tcg_res);
9867             } else {
9868                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9869             }
9870         }
9871         if (!is_scalar) {
9872             clear_vec_high(s, is_q, rd);
9873         }
9874     }
9875 }
9876 
9877 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9878                                 int opcode, bool u, bool is_q,
9879                                 int size, int rn, int rd)
9880 {
9881     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9882      * in the source becomes a size element in the destination).
9883      */
9884     int pass;
9885     TCGv_i32 tcg_res[2];
9886     int destelt = is_q ? 2 : 0;
9887     int passes = scalar ? 1 : 2;
9888 
9889     if (scalar) {
9890         tcg_res[1] = tcg_constant_i32(0);
9891     }
9892 
9893     for (pass = 0; pass < passes; pass++) {
9894         TCGv_i64 tcg_op = tcg_temp_new_i64();
9895         NeonGenNarrowFn *genfn = NULL;
9896         NeonGenNarrowEnvFn *genenvfn = NULL;
9897 
9898         if (scalar) {
9899             read_vec_element(s, tcg_op, rn, pass, size + 1);
9900         } else {
9901             read_vec_element(s, tcg_op, rn, pass, MO_64);
9902         }
9903         tcg_res[pass] = tcg_temp_new_i32();
9904 
9905         switch (opcode) {
9906         case 0x12: /* XTN, SQXTUN */
9907         {
9908             static NeonGenNarrowFn * const xtnfns[3] = {
9909                 gen_helper_neon_narrow_u8,
9910                 gen_helper_neon_narrow_u16,
9911                 tcg_gen_extrl_i64_i32,
9912             };
9913             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9914                 gen_helper_neon_unarrow_sat8,
9915                 gen_helper_neon_unarrow_sat16,
9916                 gen_helper_neon_unarrow_sat32,
9917             };
9918             if (u) {
9919                 genenvfn = sqxtunfns[size];
9920             } else {
9921                 genfn = xtnfns[size];
9922             }
9923             break;
9924         }
9925         case 0x14: /* SQXTN, UQXTN */
9926         {
9927             static NeonGenNarrowEnvFn * const fns[3][2] = {
9928                 { gen_helper_neon_narrow_sat_s8,
9929                   gen_helper_neon_narrow_sat_u8 },
9930                 { gen_helper_neon_narrow_sat_s16,
9931                   gen_helper_neon_narrow_sat_u16 },
9932                 { gen_helper_neon_narrow_sat_s32,
9933                   gen_helper_neon_narrow_sat_u32 },
9934             };
9935             genenvfn = fns[size][u];
9936             break;
9937         }
9938         case 0x16: /* FCVTN, FCVTN2 */
9939             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9940             if (size == 2) {
9941                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9942             } else {
9943                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9944                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9945                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9946                 TCGv_i32 ahp = get_ahp_flag();
9947 
9948                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9949                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9950                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9951                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9952             }
9953             break;
9954         case 0x36: /* BFCVTN, BFCVTN2 */
9955             {
9956                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9957                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9958             }
9959             break;
9960         case 0x56:  /* FCVTXN, FCVTXN2 */
9961             /* 64 bit to 32 bit float conversion
9962              * with von Neumann rounding (round to odd)
9963              */
9964             assert(size == 2);
9965             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9966             break;
9967         default:
9968             g_assert_not_reached();
9969         }
9970 
9971         if (genfn) {
9972             genfn(tcg_res[pass], tcg_op);
9973         } else if (genenvfn) {
9974             genenvfn(tcg_res[pass], tcg_env, tcg_op);
9975         }
9976     }
9977 
9978     for (pass = 0; pass < 2; pass++) {
9979         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9980     }
9981     clear_vec_high(s, is_q, rd);
9982 }
9983 
9984 /* Remaining saturating accumulating ops */
9985 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9986                                 bool is_q, unsigned size, int rn, int rd)
9987 {
9988     if (!is_scalar) {
9989         gen_gvec_fn3(s, is_q, rd, rd, rn,
9990                      is_u ? gen_gvec_usqadd_qc : gen_gvec_suqadd_qc, size);
9991         return;
9992     }
9993 
9994     if (size == 3) {
9995         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9996         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9997 
9998         read_vec_element(s, tcg_rn, rn, 0, MO_64);
9999         read_vec_element(s, tcg_rd, rd, 0, MO_64);
10000 
10001         if (is_u) { /* USQADD */
10002             gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10003         } else { /* SUQADD */
10004             gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10005         }
10006         write_vec_element(s, tcg_rd, rd, 0, MO_64);
10007         clear_vec_high(s, false, rd);
10008     } else {
10009         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10010         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10011 
10012         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10013         read_vec_element_i32(s, tcg_rd, rd, 0, size);
10014 
10015         if (is_u) { /* USQADD */
10016             switch (size) {
10017             case 0:
10018                 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10019                 break;
10020             case 1:
10021                 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10022                 break;
10023             case 2:
10024                 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10025                 break;
10026             default:
10027                 g_assert_not_reached();
10028             }
10029         } else { /* SUQADD */
10030             switch (size) {
10031             case 0:
10032                 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10033                 break;
10034             case 1:
10035                 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10036                 break;
10037             case 2:
10038                 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10039                 break;
10040             default:
10041                 g_assert_not_reached();
10042             }
10043         }
10044 
10045         write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10046         write_vec_element_i32(s, tcg_rd, rd, 0, MO_32);
10047         clear_vec_high(s, false, rd);
10048     }
10049 }
10050 
10051 /* AdvSIMD scalar two reg misc
10052  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10053  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10054  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10055  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10056  */
10057 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10058 {
10059     int rd = extract32(insn, 0, 5);
10060     int rn = extract32(insn, 5, 5);
10061     int opcode = extract32(insn, 12, 5);
10062     int size = extract32(insn, 22, 2);
10063     bool u = extract32(insn, 29, 1);
10064     bool is_fcvt = false;
10065     int rmode;
10066     TCGv_i32 tcg_rmode;
10067     TCGv_ptr tcg_fpstatus;
10068 
10069     switch (opcode) {
10070     case 0x3: /* USQADD / SUQADD*/
10071         if (!fp_access_check(s)) {
10072             return;
10073         }
10074         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10075         return;
10076     case 0x7: /* SQABS / SQNEG */
10077         break;
10078     case 0xa: /* CMLT */
10079         if (u) {
10080             unallocated_encoding(s);
10081             return;
10082         }
10083         /* fall through */
10084     case 0x8: /* CMGT, CMGE */
10085     case 0x9: /* CMEQ, CMLE */
10086     case 0xb: /* ABS, NEG */
10087         if (size != 3) {
10088             unallocated_encoding(s);
10089             return;
10090         }
10091         break;
10092     case 0x12: /* SQXTUN */
10093         if (!u) {
10094             unallocated_encoding(s);
10095             return;
10096         }
10097         /* fall through */
10098     case 0x14: /* SQXTN, UQXTN */
10099         if (size == 3) {
10100             unallocated_encoding(s);
10101             return;
10102         }
10103         if (!fp_access_check(s)) {
10104             return;
10105         }
10106         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10107         return;
10108     case 0xc ... 0xf:
10109     case 0x16 ... 0x1d:
10110     case 0x1f:
10111         /* Floating point: U, size[1] and opcode indicate operation;
10112          * size[0] indicates single or double precision.
10113          */
10114         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10115         size = extract32(size, 0, 1) ? 3 : 2;
10116         switch (opcode) {
10117         case 0x2c: /* FCMGT (zero) */
10118         case 0x2d: /* FCMEQ (zero) */
10119         case 0x2e: /* FCMLT (zero) */
10120         case 0x6c: /* FCMGE (zero) */
10121         case 0x6d: /* FCMLE (zero) */
10122             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10123             return;
10124         case 0x1d: /* SCVTF */
10125         case 0x5d: /* UCVTF */
10126         {
10127             bool is_signed = (opcode == 0x1d);
10128             if (!fp_access_check(s)) {
10129                 return;
10130             }
10131             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10132             return;
10133         }
10134         case 0x3d: /* FRECPE */
10135         case 0x3f: /* FRECPX */
10136         case 0x7d: /* FRSQRTE */
10137             if (!fp_access_check(s)) {
10138                 return;
10139             }
10140             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10141             return;
10142         case 0x1a: /* FCVTNS */
10143         case 0x1b: /* FCVTMS */
10144         case 0x3a: /* FCVTPS */
10145         case 0x3b: /* FCVTZS */
10146         case 0x5a: /* FCVTNU */
10147         case 0x5b: /* FCVTMU */
10148         case 0x7a: /* FCVTPU */
10149         case 0x7b: /* FCVTZU */
10150             is_fcvt = true;
10151             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10152             break;
10153         case 0x1c: /* FCVTAS */
10154         case 0x5c: /* FCVTAU */
10155             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10156             is_fcvt = true;
10157             rmode = FPROUNDING_TIEAWAY;
10158             break;
10159         case 0x56: /* FCVTXN, FCVTXN2 */
10160             if (size == 2) {
10161                 unallocated_encoding(s);
10162                 return;
10163             }
10164             if (!fp_access_check(s)) {
10165                 return;
10166             }
10167             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10168             return;
10169         default:
10170             unallocated_encoding(s);
10171             return;
10172         }
10173         break;
10174     default:
10175         unallocated_encoding(s);
10176         return;
10177     }
10178 
10179     if (!fp_access_check(s)) {
10180         return;
10181     }
10182 
10183     if (is_fcvt) {
10184         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10185         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10186     } else {
10187         tcg_fpstatus = NULL;
10188         tcg_rmode = NULL;
10189     }
10190 
10191     if (size == 3) {
10192         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10193         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10194 
10195         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10196         write_fp_dreg(s, rd, tcg_rd);
10197     } else {
10198         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10199         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10200 
10201         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10202 
10203         switch (opcode) {
10204         case 0x7: /* SQABS, SQNEG */
10205         {
10206             NeonGenOneOpEnvFn *genfn;
10207             static NeonGenOneOpEnvFn * const fns[3][2] = {
10208                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10209                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10210                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10211             };
10212             genfn = fns[size][u];
10213             genfn(tcg_rd, tcg_env, tcg_rn);
10214             break;
10215         }
10216         case 0x1a: /* FCVTNS */
10217         case 0x1b: /* FCVTMS */
10218         case 0x1c: /* FCVTAS */
10219         case 0x3a: /* FCVTPS */
10220         case 0x3b: /* FCVTZS */
10221             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10222                                  tcg_fpstatus);
10223             break;
10224         case 0x5a: /* FCVTNU */
10225         case 0x5b: /* FCVTMU */
10226         case 0x5c: /* FCVTAU */
10227         case 0x7a: /* FCVTPU */
10228         case 0x7b: /* FCVTZU */
10229             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10230                                  tcg_fpstatus);
10231             break;
10232         default:
10233             g_assert_not_reached();
10234         }
10235 
10236         write_fp_sreg(s, rd, tcg_rd);
10237     }
10238 
10239     if (is_fcvt) {
10240         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10241     }
10242 }
10243 
10244 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10245 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10246                                  int immh, int immb, int opcode, int rn, int rd)
10247 {
10248     int size = 32 - clz32(immh) - 1;
10249     int immhb = immh << 3 | immb;
10250     int shift = 2 * (8 << size) - immhb;
10251     GVecGen2iFn *gvec_fn;
10252 
10253     if (extract32(immh, 3, 1) && !is_q) {
10254         unallocated_encoding(s);
10255         return;
10256     }
10257     tcg_debug_assert(size <= 3);
10258 
10259     if (!fp_access_check(s)) {
10260         return;
10261     }
10262 
10263     switch (opcode) {
10264     case 0x02: /* SSRA / USRA (accumulate) */
10265         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10266         break;
10267 
10268     case 0x08: /* SRI */
10269         gvec_fn = gen_gvec_sri;
10270         break;
10271 
10272     case 0x00: /* SSHR / USHR */
10273         if (is_u) {
10274             if (shift == 8 << size) {
10275                 /* Shift count the same size as element size produces zero.  */
10276                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10277                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10278                 return;
10279             }
10280             gvec_fn = tcg_gen_gvec_shri;
10281         } else {
10282             /* Shift count the same size as element size produces all sign.  */
10283             if (shift == 8 << size) {
10284                 shift -= 1;
10285             }
10286             gvec_fn = tcg_gen_gvec_sari;
10287         }
10288         break;
10289 
10290     case 0x04: /* SRSHR / URSHR (rounding) */
10291         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10292         break;
10293 
10294     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10295         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10296         break;
10297 
10298     default:
10299         g_assert_not_reached();
10300     }
10301 
10302     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10303 }
10304 
10305 /* SHL/SLI - Vector shift left */
10306 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10307                                  int immh, int immb, int opcode, int rn, int rd)
10308 {
10309     int size = 32 - clz32(immh) - 1;
10310     int immhb = immh << 3 | immb;
10311     int shift = immhb - (8 << size);
10312 
10313     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10314     assert(size >= 0 && size <= 3);
10315 
10316     if (extract32(immh, 3, 1) && !is_q) {
10317         unallocated_encoding(s);
10318         return;
10319     }
10320 
10321     if (!fp_access_check(s)) {
10322         return;
10323     }
10324 
10325     if (insert) {
10326         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10327     } else {
10328         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10329     }
10330 }
10331 
10332 /* USHLL/SHLL - Vector shift left with widening */
10333 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10334                                  int immh, int immb, int opcode, int rn, int rd)
10335 {
10336     int size = 32 - clz32(immh) - 1;
10337     int immhb = immh << 3 | immb;
10338     int shift = immhb - (8 << size);
10339     int dsize = 64;
10340     int esize = 8 << size;
10341     int elements = dsize/esize;
10342     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10343     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10344     int i;
10345 
10346     if (size >= 3) {
10347         unallocated_encoding(s);
10348         return;
10349     }
10350 
10351     if (!fp_access_check(s)) {
10352         return;
10353     }
10354 
10355     /* For the LL variants the store is larger than the load,
10356      * so if rd == rn we would overwrite parts of our input.
10357      * So load everything right now and use shifts in the main loop.
10358      */
10359     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10360 
10361     for (i = 0; i < elements; i++) {
10362         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10363         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10364         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10365         write_vec_element(s, tcg_rd, rd, i, size + 1);
10366     }
10367 }
10368 
10369 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10370 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10371                                  int immh, int immb, int opcode, int rn, int rd)
10372 {
10373     int immhb = immh << 3 | immb;
10374     int size = 32 - clz32(immh) - 1;
10375     int dsize = 64;
10376     int esize = 8 << size;
10377     int elements = dsize/esize;
10378     int shift = (2 * esize) - immhb;
10379     bool round = extract32(opcode, 0, 1);
10380     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10381     TCGv_i64 tcg_round;
10382     int i;
10383 
10384     if (extract32(immh, 3, 1)) {
10385         unallocated_encoding(s);
10386         return;
10387     }
10388 
10389     if (!fp_access_check(s)) {
10390         return;
10391     }
10392 
10393     tcg_rn = tcg_temp_new_i64();
10394     tcg_rd = tcg_temp_new_i64();
10395     tcg_final = tcg_temp_new_i64();
10396     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10397 
10398     if (round) {
10399         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10400     } else {
10401         tcg_round = NULL;
10402     }
10403 
10404     for (i = 0; i < elements; i++) {
10405         read_vec_element(s, tcg_rn, rn, i, size+1);
10406         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10407                                 false, true, size+1, shift);
10408 
10409         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10410     }
10411 
10412     if (!is_q) {
10413         write_vec_element(s, tcg_final, rd, 0, MO_64);
10414     } else {
10415         write_vec_element(s, tcg_final, rd, 1, MO_64);
10416     }
10417 
10418     clear_vec_high(s, is_q, rd);
10419 }
10420 
10421 
10422 /* AdvSIMD shift by immediate
10423  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10424  * +---+---+---+-------------+------+------+--------+---+------+------+
10425  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10426  * +---+---+---+-------------+------+------+--------+---+------+------+
10427  */
10428 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10429 {
10430     int rd = extract32(insn, 0, 5);
10431     int rn = extract32(insn, 5, 5);
10432     int opcode = extract32(insn, 11, 5);
10433     int immb = extract32(insn, 16, 3);
10434     int immh = extract32(insn, 19, 4);
10435     bool is_u = extract32(insn, 29, 1);
10436     bool is_q = extract32(insn, 30, 1);
10437 
10438     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10439     assert(immh != 0);
10440 
10441     switch (opcode) {
10442     case 0x08: /* SRI */
10443         if (!is_u) {
10444             unallocated_encoding(s);
10445             return;
10446         }
10447         /* fall through */
10448     case 0x00: /* SSHR / USHR */
10449     case 0x02: /* SSRA / USRA (accumulate) */
10450     case 0x04: /* SRSHR / URSHR (rounding) */
10451     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10452         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10453         break;
10454     case 0x0a: /* SHL / SLI */
10455         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10456         break;
10457     case 0x10: /* SHRN */
10458     case 0x11: /* RSHRN / SQRSHRUN */
10459         if (is_u) {
10460             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10461                                    opcode, rn, rd);
10462         } else {
10463             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10464         }
10465         break;
10466     case 0x12: /* SQSHRN / UQSHRN */
10467     case 0x13: /* SQRSHRN / UQRSHRN */
10468         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10469                                opcode, rn, rd);
10470         break;
10471     case 0x14: /* SSHLL / USHLL */
10472         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10473         break;
10474     case 0x1c: /* SCVTF / UCVTF */
10475         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10476                                      opcode, rn, rd);
10477         break;
10478     case 0xc: /* SQSHLU */
10479         if (!is_u) {
10480             unallocated_encoding(s);
10481             return;
10482         }
10483         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10484         break;
10485     case 0xe: /* SQSHL, UQSHL */
10486         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10487         break;
10488     case 0x1f: /* FCVTZS/ FCVTZU */
10489         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10490         return;
10491     default:
10492         unallocated_encoding(s);
10493         return;
10494     }
10495 }
10496 
10497 /* Generate code to do a "long" addition or subtraction, ie one done in
10498  * TCGv_i64 on vector lanes twice the width specified by size.
10499  */
10500 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10501                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10502 {
10503     static NeonGenTwo64OpFn * const fns[3][2] = {
10504         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10505         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10506         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10507     };
10508     NeonGenTwo64OpFn *genfn;
10509     assert(size < 3);
10510 
10511     genfn = fns[size][is_sub];
10512     genfn(tcg_res, tcg_op1, tcg_op2);
10513 }
10514 
10515 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10516                                 int opcode, int rd, int rn, int rm)
10517 {
10518     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10519     TCGv_i64 tcg_res[2];
10520     int pass, accop;
10521 
10522     tcg_res[0] = tcg_temp_new_i64();
10523     tcg_res[1] = tcg_temp_new_i64();
10524 
10525     /* Does this op do an adding accumulate, a subtracting accumulate,
10526      * or no accumulate at all?
10527      */
10528     switch (opcode) {
10529     case 5:
10530     case 8:
10531     case 9:
10532         accop = 1;
10533         break;
10534     case 10:
10535     case 11:
10536         accop = -1;
10537         break;
10538     default:
10539         accop = 0;
10540         break;
10541     }
10542 
10543     if (accop != 0) {
10544         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10545         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10546     }
10547 
10548     /* size == 2 means two 32x32->64 operations; this is worth special
10549      * casing because we can generally handle it inline.
10550      */
10551     if (size == 2) {
10552         for (pass = 0; pass < 2; pass++) {
10553             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10554             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10555             TCGv_i64 tcg_passres;
10556             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10557 
10558             int elt = pass + is_q * 2;
10559 
10560             read_vec_element(s, tcg_op1, rn, elt, memop);
10561             read_vec_element(s, tcg_op2, rm, elt, memop);
10562 
10563             if (accop == 0) {
10564                 tcg_passres = tcg_res[pass];
10565             } else {
10566                 tcg_passres = tcg_temp_new_i64();
10567             }
10568 
10569             switch (opcode) {
10570             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10571                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10572                 break;
10573             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10574                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10575                 break;
10576             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10577             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10578             {
10579                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10580                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10581 
10582                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10583                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10584                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10585                                     tcg_passres,
10586                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10587                 break;
10588             }
10589             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10590             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10591             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10592                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10593                 break;
10594             case 9: /* SQDMLAL, SQDMLAL2 */
10595             case 11: /* SQDMLSL, SQDMLSL2 */
10596             case 13: /* SQDMULL, SQDMULL2 */
10597                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10598                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10599                                                   tcg_passres, tcg_passres);
10600                 break;
10601             default:
10602                 g_assert_not_reached();
10603             }
10604 
10605             if (opcode == 9 || opcode == 11) {
10606                 /* saturating accumulate ops */
10607                 if (accop < 0) {
10608                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10609                 }
10610                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10611                                                   tcg_res[pass], tcg_passres);
10612             } else if (accop > 0) {
10613                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10614             } else if (accop < 0) {
10615                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10616             }
10617         }
10618     } else {
10619         /* size 0 or 1, generally helper functions */
10620         for (pass = 0; pass < 2; pass++) {
10621             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10622             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10623             TCGv_i64 tcg_passres;
10624             int elt = pass + is_q * 2;
10625 
10626             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10627             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10628 
10629             if (accop == 0) {
10630                 tcg_passres = tcg_res[pass];
10631             } else {
10632                 tcg_passres = tcg_temp_new_i64();
10633             }
10634 
10635             switch (opcode) {
10636             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10637             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10638             {
10639                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10640                 static NeonGenWidenFn * const widenfns[2][2] = {
10641                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10642                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10643                 };
10644                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10645 
10646                 widenfn(tcg_op2_64, tcg_op2);
10647                 widenfn(tcg_passres, tcg_op1);
10648                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10649                               tcg_passres, tcg_op2_64);
10650                 break;
10651             }
10652             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10653             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10654                 if (size == 0) {
10655                     if (is_u) {
10656                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10657                     } else {
10658                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10659                     }
10660                 } else {
10661                     if (is_u) {
10662                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10663                     } else {
10664                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10665                     }
10666                 }
10667                 break;
10668             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10669             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10670             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10671                 if (size == 0) {
10672                     if (is_u) {
10673                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10674                     } else {
10675                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10676                     }
10677                 } else {
10678                     if (is_u) {
10679                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10680                     } else {
10681                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10682                     }
10683                 }
10684                 break;
10685             case 9: /* SQDMLAL, SQDMLAL2 */
10686             case 11: /* SQDMLSL, SQDMLSL2 */
10687             case 13: /* SQDMULL, SQDMULL2 */
10688                 assert(size == 1);
10689                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10690                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10691                                                   tcg_passres, tcg_passres);
10692                 break;
10693             default:
10694                 g_assert_not_reached();
10695             }
10696 
10697             if (accop != 0) {
10698                 if (opcode == 9 || opcode == 11) {
10699                     /* saturating accumulate ops */
10700                     if (accop < 0) {
10701                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10702                     }
10703                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10704                                                       tcg_res[pass],
10705                                                       tcg_passres);
10706                 } else {
10707                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10708                                   tcg_res[pass], tcg_passres);
10709                 }
10710             }
10711         }
10712     }
10713 
10714     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10715     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10716 }
10717 
10718 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10719                             int opcode, int rd, int rn, int rm)
10720 {
10721     TCGv_i64 tcg_res[2];
10722     int part = is_q ? 2 : 0;
10723     int pass;
10724 
10725     for (pass = 0; pass < 2; pass++) {
10726         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10727         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10728         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10729         static NeonGenWidenFn * const widenfns[3][2] = {
10730             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10731             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10732             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10733         };
10734         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10735 
10736         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10737         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10738         widenfn(tcg_op2_wide, tcg_op2);
10739         tcg_res[pass] = tcg_temp_new_i64();
10740         gen_neon_addl(size, (opcode == 3),
10741                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10742     }
10743 
10744     for (pass = 0; pass < 2; pass++) {
10745         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10746     }
10747 }
10748 
10749 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10750 {
10751     tcg_gen_addi_i64(in, in, 1U << 31);
10752     tcg_gen_extrh_i64_i32(res, in);
10753 }
10754 
10755 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10756                                  int opcode, int rd, int rn, int rm)
10757 {
10758     TCGv_i32 tcg_res[2];
10759     int part = is_q ? 2 : 0;
10760     int pass;
10761 
10762     for (pass = 0; pass < 2; pass++) {
10763         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10764         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10765         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10766         static NeonGenNarrowFn * const narrowfns[3][2] = {
10767             { gen_helper_neon_narrow_high_u8,
10768               gen_helper_neon_narrow_round_high_u8 },
10769             { gen_helper_neon_narrow_high_u16,
10770               gen_helper_neon_narrow_round_high_u16 },
10771             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10772         };
10773         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10774 
10775         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10776         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10777 
10778         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10779 
10780         tcg_res[pass] = tcg_temp_new_i32();
10781         gennarrow(tcg_res[pass], tcg_wideres);
10782     }
10783 
10784     for (pass = 0; pass < 2; pass++) {
10785         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10786     }
10787     clear_vec_high(s, is_q, rd);
10788 }
10789 
10790 /* AdvSIMD three different
10791  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10792  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10793  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10794  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10795  */
10796 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10797 {
10798     /* Instructions in this group fall into three basic classes
10799      * (in each case with the operation working on each element in
10800      * the input vectors):
10801      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10802      *     128 bit input)
10803      * (2) wide 64 x 128 -> 128
10804      * (3) narrowing 128 x 128 -> 64
10805      * Here we do initial decode, catch unallocated cases and
10806      * dispatch to separate functions for each class.
10807      */
10808     int is_q = extract32(insn, 30, 1);
10809     int is_u = extract32(insn, 29, 1);
10810     int size = extract32(insn, 22, 2);
10811     int opcode = extract32(insn, 12, 4);
10812     int rm = extract32(insn, 16, 5);
10813     int rn = extract32(insn, 5, 5);
10814     int rd = extract32(insn, 0, 5);
10815 
10816     switch (opcode) {
10817     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10818     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10819         /* 64 x 128 -> 128 */
10820         if (size == 3) {
10821             unallocated_encoding(s);
10822             return;
10823         }
10824         if (!fp_access_check(s)) {
10825             return;
10826         }
10827         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10828         break;
10829     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10830     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10831         /* 128 x 128 -> 64 */
10832         if (size == 3) {
10833             unallocated_encoding(s);
10834             return;
10835         }
10836         if (!fp_access_check(s)) {
10837             return;
10838         }
10839         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10840         break;
10841     case 14: /* PMULL, PMULL2 */
10842         if (is_u) {
10843             unallocated_encoding(s);
10844             return;
10845         }
10846         switch (size) {
10847         case 0: /* PMULL.P8 */
10848             if (!fp_access_check(s)) {
10849                 return;
10850             }
10851             /* The Q field specifies lo/hi half input for this insn.  */
10852             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10853                              gen_helper_neon_pmull_h);
10854             break;
10855 
10856         case 3: /* PMULL.P64 */
10857             if (!dc_isar_feature(aa64_pmull, s)) {
10858                 unallocated_encoding(s);
10859                 return;
10860             }
10861             if (!fp_access_check(s)) {
10862                 return;
10863             }
10864             /* The Q field specifies lo/hi half input for this insn.  */
10865             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10866                              gen_helper_gvec_pmull_q);
10867             break;
10868 
10869         default:
10870             unallocated_encoding(s);
10871             break;
10872         }
10873         return;
10874     case 9: /* SQDMLAL, SQDMLAL2 */
10875     case 11: /* SQDMLSL, SQDMLSL2 */
10876     case 13: /* SQDMULL, SQDMULL2 */
10877         if (is_u || size == 0) {
10878             unallocated_encoding(s);
10879             return;
10880         }
10881         /* fall through */
10882     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10883     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10884     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10885     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10886     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10887     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10888     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10889         /* 64 x 64 -> 128 */
10890         if (size == 3) {
10891             unallocated_encoding(s);
10892             return;
10893         }
10894         if (!fp_access_check(s)) {
10895             return;
10896         }
10897 
10898         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10899         break;
10900     default:
10901         /* opcode 15 not allocated */
10902         unallocated_encoding(s);
10903         break;
10904     }
10905 }
10906 
10907 /* Integer op subgroup of C3.6.16. */
10908 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10909 {
10910     int is_q = extract32(insn, 30, 1);
10911     int u = extract32(insn, 29, 1);
10912     int size = extract32(insn, 22, 2);
10913     int opcode = extract32(insn, 11, 5);
10914     int rm = extract32(insn, 16, 5);
10915     int rn = extract32(insn, 5, 5);
10916     int rd = extract32(insn, 0, 5);
10917     int pass;
10918     TCGCond cond;
10919 
10920     switch (opcode) {
10921     case 0x13: /* MUL, PMUL */
10922         if (u && size != 0) {
10923             unallocated_encoding(s);
10924             return;
10925         }
10926         /* fall through */
10927     case 0x0: /* SHADD, UHADD */
10928     case 0x2: /* SRHADD, URHADD */
10929     case 0x4: /* SHSUB, UHSUB */
10930     case 0xc: /* SMAX, UMAX */
10931     case 0xd: /* SMIN, UMIN */
10932     case 0xe: /* SABD, UABD */
10933     case 0xf: /* SABA, UABA */
10934     case 0x12: /* MLA, MLS */
10935         if (size == 3) {
10936             unallocated_encoding(s);
10937             return;
10938         }
10939         break;
10940     case 0x16: /* SQDMULH, SQRDMULH */
10941         if (size == 0 || size == 3) {
10942             unallocated_encoding(s);
10943             return;
10944         }
10945         break;
10946     default:
10947         if (size == 3 && !is_q) {
10948             unallocated_encoding(s);
10949             return;
10950         }
10951         break;
10952     }
10953 
10954     if (!fp_access_check(s)) {
10955         return;
10956     }
10957 
10958     switch (opcode) {
10959     case 0x01: /* SQADD, UQADD */
10960         if (u) {
10961             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
10962         } else {
10963             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
10964         }
10965         return;
10966     case 0x05: /* SQSUB, UQSUB */
10967         if (u) {
10968             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
10969         } else {
10970             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
10971         }
10972         return;
10973     case 0x08: /* SSHL, USHL */
10974         if (u) {
10975             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
10976         } else {
10977             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
10978         }
10979         return;
10980     case 0x0c: /* SMAX, UMAX */
10981         if (u) {
10982             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
10983         } else {
10984             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
10985         }
10986         return;
10987     case 0x0d: /* SMIN, UMIN */
10988         if (u) {
10989             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
10990         } else {
10991             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
10992         }
10993         return;
10994     case 0xe: /* SABD, UABD */
10995         if (u) {
10996             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
10997         } else {
10998             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
10999         }
11000         return;
11001     case 0xf: /* SABA, UABA */
11002         if (u) {
11003             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11004         } else {
11005             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11006         }
11007         return;
11008     case 0x10: /* ADD, SUB */
11009         if (u) {
11010             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11011         } else {
11012             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11013         }
11014         return;
11015     case 0x13: /* MUL, PMUL */
11016         if (!u) { /* MUL */
11017             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11018         } else {  /* PMUL */
11019             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11020         }
11021         return;
11022     case 0x12: /* MLA, MLS */
11023         if (u) {
11024             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11025         } else {
11026             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11027         }
11028         return;
11029     case 0x16: /* SQDMULH, SQRDMULH */
11030         {
11031             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11032                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11033                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11034             };
11035             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11036         }
11037         return;
11038     case 0x11:
11039         if (!u) { /* CMTST */
11040             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11041             return;
11042         }
11043         /* else CMEQ */
11044         cond = TCG_COND_EQ;
11045         goto do_gvec_cmp;
11046     case 0x06: /* CMGT, CMHI */
11047         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11048         goto do_gvec_cmp;
11049     case 0x07: /* CMGE, CMHS */
11050         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11051     do_gvec_cmp:
11052         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11053                          vec_full_reg_offset(s, rn),
11054                          vec_full_reg_offset(s, rm),
11055                          is_q ? 16 : 8, vec_full_reg_size(s));
11056         return;
11057     }
11058 
11059     if (size == 3) {
11060         assert(is_q);
11061         for (pass = 0; pass < 2; pass++) {
11062             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11063             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11064             TCGv_i64 tcg_res = tcg_temp_new_i64();
11065 
11066             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11067             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11068 
11069             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11070 
11071             write_vec_element(s, tcg_res, rd, pass, MO_64);
11072         }
11073     } else {
11074         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11075             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11076             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11077             TCGv_i32 tcg_res = tcg_temp_new_i32();
11078             NeonGenTwoOpFn *genfn = NULL;
11079             NeonGenTwoOpEnvFn *genenvfn = NULL;
11080 
11081             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11082             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11083 
11084             switch (opcode) {
11085             case 0x0: /* SHADD, UHADD */
11086             {
11087                 static NeonGenTwoOpFn * const fns[3][2] = {
11088                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11089                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11090                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11091                 };
11092                 genfn = fns[size][u];
11093                 break;
11094             }
11095             case 0x2: /* SRHADD, URHADD */
11096             {
11097                 static NeonGenTwoOpFn * const fns[3][2] = {
11098                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11099                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11100                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11101                 };
11102                 genfn = fns[size][u];
11103                 break;
11104             }
11105             case 0x4: /* SHSUB, UHSUB */
11106             {
11107                 static NeonGenTwoOpFn * const fns[3][2] = {
11108                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11109                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11110                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11111                 };
11112                 genfn = fns[size][u];
11113                 break;
11114             }
11115             case 0x9: /* SQSHL, UQSHL */
11116             {
11117                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11118                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11119                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11120                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11121                 };
11122                 genenvfn = fns[size][u];
11123                 break;
11124             }
11125             case 0xa: /* SRSHL, URSHL */
11126             {
11127                 static NeonGenTwoOpFn * const fns[3][2] = {
11128                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11129                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11130                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11131                 };
11132                 genfn = fns[size][u];
11133                 break;
11134             }
11135             case 0xb: /* SQRSHL, UQRSHL */
11136             {
11137                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11138                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11139                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11140                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11141                 };
11142                 genenvfn = fns[size][u];
11143                 break;
11144             }
11145             default:
11146                 g_assert_not_reached();
11147             }
11148 
11149             if (genenvfn) {
11150                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11151             } else {
11152                 genfn(tcg_res, tcg_op1, tcg_op2);
11153             }
11154 
11155             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11156         }
11157     }
11158     clear_vec_high(s, is_q, rd);
11159 }
11160 
11161 /* AdvSIMD three same
11162  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11163  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11164  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11165  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11166  */
11167 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11168 {
11169     int opcode = extract32(insn, 11, 5);
11170 
11171     switch (opcode) {
11172     default:
11173         disas_simd_3same_int(s, insn);
11174         break;
11175     case 0x3: /* logic ops */
11176     case 0x14: /* SMAXP, UMAXP */
11177     case 0x15: /* SMINP, UMINP */
11178     case 0x17: /* ADDP */
11179     case 0x18 ... 0x31: /* floating point ops */
11180         unallocated_encoding(s);
11181         break;
11182     }
11183 }
11184 
11185 /* AdvSIMD three same extra
11186  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11187  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11188  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11189  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11190  */
11191 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11192 {
11193     int rd = extract32(insn, 0, 5);
11194     int rn = extract32(insn, 5, 5);
11195     int opcode = extract32(insn, 11, 4);
11196     int rm = extract32(insn, 16, 5);
11197     int size = extract32(insn, 22, 2);
11198     bool u = extract32(insn, 29, 1);
11199     bool is_q = extract32(insn, 30, 1);
11200     bool feature;
11201     int rot;
11202 
11203     switch (u * 16 + opcode) {
11204     case 0x10: /* SQRDMLAH (vector) */
11205     case 0x11: /* SQRDMLSH (vector) */
11206         if (size != 1 && size != 2) {
11207             unallocated_encoding(s);
11208             return;
11209         }
11210         feature = dc_isar_feature(aa64_rdm, s);
11211         break;
11212     case 0x02: /* SDOT (vector) */
11213     case 0x12: /* UDOT (vector) */
11214         if (size != MO_32) {
11215             unallocated_encoding(s);
11216             return;
11217         }
11218         feature = dc_isar_feature(aa64_dp, s);
11219         break;
11220     case 0x03: /* USDOT */
11221         if (size != MO_32) {
11222             unallocated_encoding(s);
11223             return;
11224         }
11225         feature = dc_isar_feature(aa64_i8mm, s);
11226         break;
11227     case 0x04: /* SMMLA */
11228     case 0x14: /* UMMLA */
11229     case 0x05: /* USMMLA */
11230         if (!is_q || size != MO_32) {
11231             unallocated_encoding(s);
11232             return;
11233         }
11234         feature = dc_isar_feature(aa64_i8mm, s);
11235         break;
11236     case 0x18: /* FCMLA, #0 */
11237     case 0x19: /* FCMLA, #90 */
11238     case 0x1a: /* FCMLA, #180 */
11239     case 0x1b: /* FCMLA, #270 */
11240     case 0x1c: /* FCADD, #90 */
11241     case 0x1e: /* FCADD, #270 */
11242         if (size == 0
11243             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11244             || (size == 3 && !is_q)) {
11245             unallocated_encoding(s);
11246             return;
11247         }
11248         feature = dc_isar_feature(aa64_fcma, s);
11249         break;
11250     case 0x1d: /* BFMMLA */
11251         if (size != MO_16 || !is_q) {
11252             unallocated_encoding(s);
11253             return;
11254         }
11255         feature = dc_isar_feature(aa64_bf16, s);
11256         break;
11257     case 0x1f:
11258         switch (size) {
11259         case 1: /* BFDOT */
11260         case 3: /* BFMLAL{B,T} */
11261             feature = dc_isar_feature(aa64_bf16, s);
11262             break;
11263         default:
11264             unallocated_encoding(s);
11265             return;
11266         }
11267         break;
11268     default:
11269         unallocated_encoding(s);
11270         return;
11271     }
11272     if (!feature) {
11273         unallocated_encoding(s);
11274         return;
11275     }
11276     if (!fp_access_check(s)) {
11277         return;
11278     }
11279 
11280     switch (opcode) {
11281     case 0x0: /* SQRDMLAH (vector) */
11282         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11283         return;
11284 
11285     case 0x1: /* SQRDMLSH (vector) */
11286         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11287         return;
11288 
11289     case 0x2: /* SDOT / UDOT */
11290         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11291                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11292         return;
11293 
11294     case 0x3: /* USDOT */
11295         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11296         return;
11297 
11298     case 0x04: /* SMMLA, UMMLA */
11299         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11300                          u ? gen_helper_gvec_ummla_b
11301                          : gen_helper_gvec_smmla_b);
11302         return;
11303     case 0x05: /* USMMLA */
11304         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11305         return;
11306 
11307     case 0x8: /* FCMLA, #0 */
11308     case 0x9: /* FCMLA, #90 */
11309     case 0xa: /* FCMLA, #180 */
11310     case 0xb: /* FCMLA, #270 */
11311         rot = extract32(opcode, 0, 2);
11312         switch (size) {
11313         case 1:
11314             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11315                               gen_helper_gvec_fcmlah);
11316             break;
11317         case 2:
11318             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11319                               gen_helper_gvec_fcmlas);
11320             break;
11321         case 3:
11322             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11323                               gen_helper_gvec_fcmlad);
11324             break;
11325         default:
11326             g_assert_not_reached();
11327         }
11328         return;
11329 
11330     case 0xc: /* FCADD, #90 */
11331     case 0xe: /* FCADD, #270 */
11332         rot = extract32(opcode, 1, 1);
11333         switch (size) {
11334         case 1:
11335             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11336                               gen_helper_gvec_fcaddh);
11337             break;
11338         case 2:
11339             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11340                               gen_helper_gvec_fcadds);
11341             break;
11342         case 3:
11343             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11344                               gen_helper_gvec_fcaddd);
11345             break;
11346         default:
11347             g_assert_not_reached();
11348         }
11349         return;
11350 
11351     case 0xd: /* BFMMLA */
11352         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11353         return;
11354     case 0xf:
11355         switch (size) {
11356         case 1: /* BFDOT */
11357             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11358             break;
11359         case 3: /* BFMLAL{B,T} */
11360             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11361                               gen_helper_gvec_bfmlal);
11362             break;
11363         default:
11364             g_assert_not_reached();
11365         }
11366         return;
11367 
11368     default:
11369         g_assert_not_reached();
11370     }
11371 }
11372 
11373 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11374                                   int size, int rn, int rd)
11375 {
11376     /* Handle 2-reg-misc ops which are widening (so each size element
11377      * in the source becomes a 2*size element in the destination.
11378      * The only instruction like this is FCVTL.
11379      */
11380     int pass;
11381 
11382     if (size == 3) {
11383         /* 32 -> 64 bit fp conversion */
11384         TCGv_i64 tcg_res[2];
11385         int srcelt = is_q ? 2 : 0;
11386 
11387         for (pass = 0; pass < 2; pass++) {
11388             TCGv_i32 tcg_op = tcg_temp_new_i32();
11389             tcg_res[pass] = tcg_temp_new_i64();
11390 
11391             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11392             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11393         }
11394         for (pass = 0; pass < 2; pass++) {
11395             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11396         }
11397     } else {
11398         /* 16 -> 32 bit fp conversion */
11399         int srcelt = is_q ? 4 : 0;
11400         TCGv_i32 tcg_res[4];
11401         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11402         TCGv_i32 ahp = get_ahp_flag();
11403 
11404         for (pass = 0; pass < 4; pass++) {
11405             tcg_res[pass] = tcg_temp_new_i32();
11406 
11407             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11408             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11409                                            fpst, ahp);
11410         }
11411         for (pass = 0; pass < 4; pass++) {
11412             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11413         }
11414     }
11415 }
11416 
11417 static void handle_rev(DisasContext *s, int opcode, bool u,
11418                        bool is_q, int size, int rn, int rd)
11419 {
11420     int op = (opcode << 1) | u;
11421     int opsz = op + size;
11422     int grp_size = 3 - opsz;
11423     int dsize = is_q ? 128 : 64;
11424     int i;
11425 
11426     if (opsz >= 3) {
11427         unallocated_encoding(s);
11428         return;
11429     }
11430 
11431     if (!fp_access_check(s)) {
11432         return;
11433     }
11434 
11435     if (size == 0) {
11436         /* Special case bytes, use bswap op on each group of elements */
11437         int groups = dsize / (8 << grp_size);
11438 
11439         for (i = 0; i < groups; i++) {
11440             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11441 
11442             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11443             switch (grp_size) {
11444             case MO_16:
11445                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11446                 break;
11447             case MO_32:
11448                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11449                 break;
11450             case MO_64:
11451                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11452                 break;
11453             default:
11454                 g_assert_not_reached();
11455             }
11456             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11457         }
11458         clear_vec_high(s, is_q, rd);
11459     } else {
11460         int revmask = (1 << grp_size) - 1;
11461         int esize = 8 << size;
11462         int elements = dsize / esize;
11463         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11464         TCGv_i64 tcg_rd[2];
11465 
11466         for (i = 0; i < 2; i++) {
11467             tcg_rd[i] = tcg_temp_new_i64();
11468             tcg_gen_movi_i64(tcg_rd[i], 0);
11469         }
11470 
11471         for (i = 0; i < elements; i++) {
11472             int e_rev = (i & 0xf) ^ revmask;
11473             int w = (e_rev * esize) / 64;
11474             int o = (e_rev * esize) % 64;
11475 
11476             read_vec_element(s, tcg_rn, rn, i, size);
11477             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11478         }
11479 
11480         for (i = 0; i < 2; i++) {
11481             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11482         }
11483         clear_vec_high(s, true, rd);
11484     }
11485 }
11486 
11487 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11488                                   bool is_q, int size, int rn, int rd)
11489 {
11490     /* Implement the pairwise operations from 2-misc:
11491      * SADDLP, UADDLP, SADALP, UADALP.
11492      * These all add pairs of elements in the input to produce a
11493      * double-width result element in the output (possibly accumulating).
11494      */
11495     bool accum = (opcode == 0x6);
11496     int maxpass = is_q ? 2 : 1;
11497     int pass;
11498     TCGv_i64 tcg_res[2];
11499 
11500     if (size == 2) {
11501         /* 32 + 32 -> 64 op */
11502         MemOp memop = size + (u ? 0 : MO_SIGN);
11503 
11504         for (pass = 0; pass < maxpass; pass++) {
11505             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11506             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11507 
11508             tcg_res[pass] = tcg_temp_new_i64();
11509 
11510             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11511             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11512             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11513             if (accum) {
11514                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11515                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11516             }
11517         }
11518     } else {
11519         for (pass = 0; pass < maxpass; pass++) {
11520             TCGv_i64 tcg_op = tcg_temp_new_i64();
11521             NeonGenOne64OpFn *genfn;
11522             static NeonGenOne64OpFn * const fns[2][2] = {
11523                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11524                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11525             };
11526 
11527             genfn = fns[size][u];
11528 
11529             tcg_res[pass] = tcg_temp_new_i64();
11530 
11531             read_vec_element(s, tcg_op, rn, pass, MO_64);
11532             genfn(tcg_res[pass], tcg_op);
11533 
11534             if (accum) {
11535                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11536                 if (size == 0) {
11537                     gen_helper_neon_addl_u16(tcg_res[pass],
11538                                              tcg_res[pass], tcg_op);
11539                 } else {
11540                     gen_helper_neon_addl_u32(tcg_res[pass],
11541                                              tcg_res[pass], tcg_op);
11542                 }
11543             }
11544         }
11545     }
11546     if (!is_q) {
11547         tcg_res[1] = tcg_constant_i64(0);
11548     }
11549     for (pass = 0; pass < 2; pass++) {
11550         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11551     }
11552 }
11553 
11554 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11555 {
11556     /* Implement SHLL and SHLL2 */
11557     int pass;
11558     int part = is_q ? 2 : 0;
11559     TCGv_i64 tcg_res[2];
11560 
11561     for (pass = 0; pass < 2; pass++) {
11562         static NeonGenWidenFn * const widenfns[3] = {
11563             gen_helper_neon_widen_u8,
11564             gen_helper_neon_widen_u16,
11565             tcg_gen_extu_i32_i64,
11566         };
11567         NeonGenWidenFn *widenfn = widenfns[size];
11568         TCGv_i32 tcg_op = tcg_temp_new_i32();
11569 
11570         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11571         tcg_res[pass] = tcg_temp_new_i64();
11572         widenfn(tcg_res[pass], tcg_op);
11573         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11574     }
11575 
11576     for (pass = 0; pass < 2; pass++) {
11577         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11578     }
11579 }
11580 
11581 /* AdvSIMD two reg misc
11582  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11583  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11584  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11585  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11586  */
11587 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11588 {
11589     int size = extract32(insn, 22, 2);
11590     int opcode = extract32(insn, 12, 5);
11591     bool u = extract32(insn, 29, 1);
11592     bool is_q = extract32(insn, 30, 1);
11593     int rn = extract32(insn, 5, 5);
11594     int rd = extract32(insn, 0, 5);
11595     bool need_fpstatus = false;
11596     int rmode = -1;
11597     TCGv_i32 tcg_rmode;
11598     TCGv_ptr tcg_fpstatus;
11599 
11600     switch (opcode) {
11601     case 0x0: /* REV64, REV32 */
11602     case 0x1: /* REV16 */
11603         handle_rev(s, opcode, u, is_q, size, rn, rd);
11604         return;
11605     case 0x5: /* CNT, NOT, RBIT */
11606         if (u && size == 0) {
11607             /* NOT */
11608             break;
11609         } else if (u && size == 1) {
11610             /* RBIT */
11611             break;
11612         } else if (!u && size == 0) {
11613             /* CNT */
11614             break;
11615         }
11616         unallocated_encoding(s);
11617         return;
11618     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11619     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11620         if (size == 3) {
11621             unallocated_encoding(s);
11622             return;
11623         }
11624         if (!fp_access_check(s)) {
11625             return;
11626         }
11627 
11628         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11629         return;
11630     case 0x4: /* CLS, CLZ */
11631         if (size == 3) {
11632             unallocated_encoding(s);
11633             return;
11634         }
11635         break;
11636     case 0x2: /* SADDLP, UADDLP */
11637     case 0x6: /* SADALP, UADALP */
11638         if (size == 3) {
11639             unallocated_encoding(s);
11640             return;
11641         }
11642         if (!fp_access_check(s)) {
11643             return;
11644         }
11645         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11646         return;
11647     case 0x13: /* SHLL, SHLL2 */
11648         if (u == 0 || size == 3) {
11649             unallocated_encoding(s);
11650             return;
11651         }
11652         if (!fp_access_check(s)) {
11653             return;
11654         }
11655         handle_shll(s, is_q, size, rn, rd);
11656         return;
11657     case 0xa: /* CMLT */
11658         if (u == 1) {
11659             unallocated_encoding(s);
11660             return;
11661         }
11662         /* fall through */
11663     case 0x8: /* CMGT, CMGE */
11664     case 0x9: /* CMEQ, CMLE */
11665     case 0xb: /* ABS, NEG */
11666         if (size == 3 && !is_q) {
11667             unallocated_encoding(s);
11668             return;
11669         }
11670         break;
11671     case 0x3: /* SUQADD, USQADD */
11672         if (size == 3 && !is_q) {
11673             unallocated_encoding(s);
11674             return;
11675         }
11676         if (!fp_access_check(s)) {
11677             return;
11678         }
11679         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11680         return;
11681     case 0x7: /* SQABS, SQNEG */
11682         if (size == 3 && !is_q) {
11683             unallocated_encoding(s);
11684             return;
11685         }
11686         break;
11687     case 0xc ... 0xf:
11688     case 0x16 ... 0x1f:
11689     {
11690         /* Floating point: U, size[1] and opcode indicate operation;
11691          * size[0] indicates single or double precision.
11692          */
11693         int is_double = extract32(size, 0, 1);
11694         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11695         size = is_double ? 3 : 2;
11696         switch (opcode) {
11697         case 0x2f: /* FABS */
11698         case 0x6f: /* FNEG */
11699             if (size == 3 && !is_q) {
11700                 unallocated_encoding(s);
11701                 return;
11702             }
11703             break;
11704         case 0x1d: /* SCVTF */
11705         case 0x5d: /* UCVTF */
11706         {
11707             bool is_signed = (opcode == 0x1d) ? true : false;
11708             int elements = is_double ? 2 : is_q ? 4 : 2;
11709             if (is_double && !is_q) {
11710                 unallocated_encoding(s);
11711                 return;
11712             }
11713             if (!fp_access_check(s)) {
11714                 return;
11715             }
11716             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11717             return;
11718         }
11719         case 0x2c: /* FCMGT (zero) */
11720         case 0x2d: /* FCMEQ (zero) */
11721         case 0x2e: /* FCMLT (zero) */
11722         case 0x6c: /* FCMGE (zero) */
11723         case 0x6d: /* FCMLE (zero) */
11724             if (size == 3 && !is_q) {
11725                 unallocated_encoding(s);
11726                 return;
11727             }
11728             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11729             return;
11730         case 0x7f: /* FSQRT */
11731             if (size == 3 && !is_q) {
11732                 unallocated_encoding(s);
11733                 return;
11734             }
11735             break;
11736         case 0x1a: /* FCVTNS */
11737         case 0x1b: /* FCVTMS */
11738         case 0x3a: /* FCVTPS */
11739         case 0x3b: /* FCVTZS */
11740         case 0x5a: /* FCVTNU */
11741         case 0x5b: /* FCVTMU */
11742         case 0x7a: /* FCVTPU */
11743         case 0x7b: /* FCVTZU */
11744             need_fpstatus = true;
11745             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11746             if (size == 3 && !is_q) {
11747                 unallocated_encoding(s);
11748                 return;
11749             }
11750             break;
11751         case 0x5c: /* FCVTAU */
11752         case 0x1c: /* FCVTAS */
11753             need_fpstatus = true;
11754             rmode = FPROUNDING_TIEAWAY;
11755             if (size == 3 && !is_q) {
11756                 unallocated_encoding(s);
11757                 return;
11758             }
11759             break;
11760         case 0x3c: /* URECPE */
11761             if (size == 3) {
11762                 unallocated_encoding(s);
11763                 return;
11764             }
11765             /* fall through */
11766         case 0x3d: /* FRECPE */
11767         case 0x7d: /* FRSQRTE */
11768             if (size == 3 && !is_q) {
11769                 unallocated_encoding(s);
11770                 return;
11771             }
11772             if (!fp_access_check(s)) {
11773                 return;
11774             }
11775             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11776             return;
11777         case 0x56: /* FCVTXN, FCVTXN2 */
11778             if (size == 2) {
11779                 unallocated_encoding(s);
11780                 return;
11781             }
11782             /* fall through */
11783         case 0x16: /* FCVTN, FCVTN2 */
11784             /* handle_2misc_narrow does a 2*size -> size operation, but these
11785              * instructions encode the source size rather than dest size.
11786              */
11787             if (!fp_access_check(s)) {
11788                 return;
11789             }
11790             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11791             return;
11792         case 0x36: /* BFCVTN, BFCVTN2 */
11793             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11794                 unallocated_encoding(s);
11795                 return;
11796             }
11797             if (!fp_access_check(s)) {
11798                 return;
11799             }
11800             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11801             return;
11802         case 0x17: /* FCVTL, FCVTL2 */
11803             if (!fp_access_check(s)) {
11804                 return;
11805             }
11806             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11807             return;
11808         case 0x18: /* FRINTN */
11809         case 0x19: /* FRINTM */
11810         case 0x38: /* FRINTP */
11811         case 0x39: /* FRINTZ */
11812             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11813             /* fall through */
11814         case 0x59: /* FRINTX */
11815         case 0x79: /* FRINTI */
11816             need_fpstatus = true;
11817             if (size == 3 && !is_q) {
11818                 unallocated_encoding(s);
11819                 return;
11820             }
11821             break;
11822         case 0x58: /* FRINTA */
11823             rmode = FPROUNDING_TIEAWAY;
11824             need_fpstatus = true;
11825             if (size == 3 && !is_q) {
11826                 unallocated_encoding(s);
11827                 return;
11828             }
11829             break;
11830         case 0x7c: /* URSQRTE */
11831             if (size == 3) {
11832                 unallocated_encoding(s);
11833                 return;
11834             }
11835             break;
11836         case 0x1e: /* FRINT32Z */
11837         case 0x1f: /* FRINT64Z */
11838             rmode = FPROUNDING_ZERO;
11839             /* fall through */
11840         case 0x5e: /* FRINT32X */
11841         case 0x5f: /* FRINT64X */
11842             need_fpstatus = true;
11843             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11844                 unallocated_encoding(s);
11845                 return;
11846             }
11847             break;
11848         default:
11849             unallocated_encoding(s);
11850             return;
11851         }
11852         break;
11853     }
11854     default:
11855         unallocated_encoding(s);
11856         return;
11857     }
11858 
11859     if (!fp_access_check(s)) {
11860         return;
11861     }
11862 
11863     if (need_fpstatus || rmode >= 0) {
11864         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11865     } else {
11866         tcg_fpstatus = NULL;
11867     }
11868     if (rmode >= 0) {
11869         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11870     } else {
11871         tcg_rmode = NULL;
11872     }
11873 
11874     switch (opcode) {
11875     case 0x5:
11876         if (u && size == 0) { /* NOT */
11877             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11878             return;
11879         }
11880         break;
11881     case 0x8: /* CMGT, CMGE */
11882         if (u) {
11883             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11884         } else {
11885             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11886         }
11887         return;
11888     case 0x9: /* CMEQ, CMLE */
11889         if (u) {
11890             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11891         } else {
11892             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11893         }
11894         return;
11895     case 0xa: /* CMLT */
11896         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11897         return;
11898     case 0xb:
11899         if (u) { /* ABS, NEG */
11900             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11901         } else {
11902             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11903         }
11904         return;
11905     }
11906 
11907     if (size == 3) {
11908         /* All 64-bit element operations can be shared with scalar 2misc */
11909         int pass;
11910 
11911         /* Coverity claims (size == 3 && !is_q) has been eliminated
11912          * from all paths leading to here.
11913          */
11914         tcg_debug_assert(is_q);
11915         for (pass = 0; pass < 2; pass++) {
11916             TCGv_i64 tcg_op = tcg_temp_new_i64();
11917             TCGv_i64 tcg_res = tcg_temp_new_i64();
11918 
11919             read_vec_element(s, tcg_op, rn, pass, MO_64);
11920 
11921             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11922                             tcg_rmode, tcg_fpstatus);
11923 
11924             write_vec_element(s, tcg_res, rd, pass, MO_64);
11925         }
11926     } else {
11927         int pass;
11928 
11929         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11930             TCGv_i32 tcg_op = tcg_temp_new_i32();
11931             TCGv_i32 tcg_res = tcg_temp_new_i32();
11932 
11933             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11934 
11935             if (size == 2) {
11936                 /* Special cases for 32 bit elements */
11937                 switch (opcode) {
11938                 case 0x4: /* CLS */
11939                     if (u) {
11940                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11941                     } else {
11942                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11943                     }
11944                     break;
11945                 case 0x7: /* SQABS, SQNEG */
11946                     if (u) {
11947                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11948                     } else {
11949                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11950                     }
11951                     break;
11952                 case 0x2f: /* FABS */
11953                     gen_vfp_abss(tcg_res, tcg_op);
11954                     break;
11955                 case 0x6f: /* FNEG */
11956                     gen_vfp_negs(tcg_res, tcg_op);
11957                     break;
11958                 case 0x7f: /* FSQRT */
11959                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11960                     break;
11961                 case 0x1a: /* FCVTNS */
11962                 case 0x1b: /* FCVTMS */
11963                 case 0x1c: /* FCVTAS */
11964                 case 0x3a: /* FCVTPS */
11965                 case 0x3b: /* FCVTZS */
11966                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11967                                          tcg_constant_i32(0), tcg_fpstatus);
11968                     break;
11969                 case 0x5a: /* FCVTNU */
11970                 case 0x5b: /* FCVTMU */
11971                 case 0x5c: /* FCVTAU */
11972                 case 0x7a: /* FCVTPU */
11973                 case 0x7b: /* FCVTZU */
11974                     gen_helper_vfp_touls(tcg_res, tcg_op,
11975                                          tcg_constant_i32(0), tcg_fpstatus);
11976                     break;
11977                 case 0x18: /* FRINTN */
11978                 case 0x19: /* FRINTM */
11979                 case 0x38: /* FRINTP */
11980                 case 0x39: /* FRINTZ */
11981                 case 0x58: /* FRINTA */
11982                 case 0x79: /* FRINTI */
11983                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11984                     break;
11985                 case 0x59: /* FRINTX */
11986                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11987                     break;
11988                 case 0x7c: /* URSQRTE */
11989                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11990                     break;
11991                 case 0x1e: /* FRINT32Z */
11992                 case 0x5e: /* FRINT32X */
11993                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11994                     break;
11995                 case 0x1f: /* FRINT64Z */
11996                 case 0x5f: /* FRINT64X */
11997                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11998                     break;
11999                 default:
12000                     g_assert_not_reached();
12001                 }
12002             } else {
12003                 /* Use helpers for 8 and 16 bit elements */
12004                 switch (opcode) {
12005                 case 0x5: /* CNT, RBIT */
12006                     /* For these two insns size is part of the opcode specifier
12007                      * (handled earlier); they always operate on byte elements.
12008                      */
12009                     if (u) {
12010                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12011                     } else {
12012                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12013                     }
12014                     break;
12015                 case 0x7: /* SQABS, SQNEG */
12016                 {
12017                     NeonGenOneOpEnvFn *genfn;
12018                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12019                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12020                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12021                     };
12022                     genfn = fns[size][u];
12023                     genfn(tcg_res, tcg_env, tcg_op);
12024                     break;
12025                 }
12026                 case 0x4: /* CLS, CLZ */
12027                     if (u) {
12028                         if (size == 0) {
12029                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12030                         } else {
12031                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12032                         }
12033                     } else {
12034                         if (size == 0) {
12035                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12036                         } else {
12037                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12038                         }
12039                     }
12040                     break;
12041                 default:
12042                     g_assert_not_reached();
12043                 }
12044             }
12045 
12046             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12047         }
12048     }
12049     clear_vec_high(s, is_q, rd);
12050 
12051     if (tcg_rmode) {
12052         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12053     }
12054 }
12055 
12056 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12057  *
12058  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12059  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12060  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12061  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12062  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12063  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12064  *
12065  * This actually covers two groups where scalar access is governed by
12066  * bit 28. A bunch of the instructions (float to integral) only exist
12067  * in the vector form and are un-allocated for the scalar decode. Also
12068  * in the scalar decode Q is always 1.
12069  */
12070 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12071 {
12072     int fpop, opcode, a, u;
12073     int rn, rd;
12074     bool is_q;
12075     bool is_scalar;
12076     bool only_in_vector = false;
12077 
12078     int pass;
12079     TCGv_i32 tcg_rmode = NULL;
12080     TCGv_ptr tcg_fpstatus = NULL;
12081     bool need_fpst = true;
12082     int rmode = -1;
12083 
12084     if (!dc_isar_feature(aa64_fp16, s)) {
12085         unallocated_encoding(s);
12086         return;
12087     }
12088 
12089     rd = extract32(insn, 0, 5);
12090     rn = extract32(insn, 5, 5);
12091 
12092     a = extract32(insn, 23, 1);
12093     u = extract32(insn, 29, 1);
12094     is_scalar = extract32(insn, 28, 1);
12095     is_q = extract32(insn, 30, 1);
12096 
12097     opcode = extract32(insn, 12, 5);
12098     fpop = deposit32(opcode, 5, 1, a);
12099     fpop = deposit32(fpop, 6, 1, u);
12100 
12101     switch (fpop) {
12102     case 0x1d: /* SCVTF */
12103     case 0x5d: /* UCVTF */
12104     {
12105         int elements;
12106 
12107         if (is_scalar) {
12108             elements = 1;
12109         } else {
12110             elements = (is_q ? 8 : 4);
12111         }
12112 
12113         if (!fp_access_check(s)) {
12114             return;
12115         }
12116         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12117         return;
12118     }
12119     break;
12120     case 0x2c: /* FCMGT (zero) */
12121     case 0x2d: /* FCMEQ (zero) */
12122     case 0x2e: /* FCMLT (zero) */
12123     case 0x6c: /* FCMGE (zero) */
12124     case 0x6d: /* FCMLE (zero) */
12125         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12126         return;
12127     case 0x3d: /* FRECPE */
12128     case 0x3f: /* FRECPX */
12129         break;
12130     case 0x18: /* FRINTN */
12131         only_in_vector = true;
12132         rmode = FPROUNDING_TIEEVEN;
12133         break;
12134     case 0x19: /* FRINTM */
12135         only_in_vector = true;
12136         rmode = FPROUNDING_NEGINF;
12137         break;
12138     case 0x38: /* FRINTP */
12139         only_in_vector = true;
12140         rmode = FPROUNDING_POSINF;
12141         break;
12142     case 0x39: /* FRINTZ */
12143         only_in_vector = true;
12144         rmode = FPROUNDING_ZERO;
12145         break;
12146     case 0x58: /* FRINTA */
12147         only_in_vector = true;
12148         rmode = FPROUNDING_TIEAWAY;
12149         break;
12150     case 0x59: /* FRINTX */
12151     case 0x79: /* FRINTI */
12152         only_in_vector = true;
12153         /* current rounding mode */
12154         break;
12155     case 0x1a: /* FCVTNS */
12156         rmode = FPROUNDING_TIEEVEN;
12157         break;
12158     case 0x1b: /* FCVTMS */
12159         rmode = FPROUNDING_NEGINF;
12160         break;
12161     case 0x1c: /* FCVTAS */
12162         rmode = FPROUNDING_TIEAWAY;
12163         break;
12164     case 0x3a: /* FCVTPS */
12165         rmode = FPROUNDING_POSINF;
12166         break;
12167     case 0x3b: /* FCVTZS */
12168         rmode = FPROUNDING_ZERO;
12169         break;
12170     case 0x5a: /* FCVTNU */
12171         rmode = FPROUNDING_TIEEVEN;
12172         break;
12173     case 0x5b: /* FCVTMU */
12174         rmode = FPROUNDING_NEGINF;
12175         break;
12176     case 0x5c: /* FCVTAU */
12177         rmode = FPROUNDING_TIEAWAY;
12178         break;
12179     case 0x7a: /* FCVTPU */
12180         rmode = FPROUNDING_POSINF;
12181         break;
12182     case 0x7b: /* FCVTZU */
12183         rmode = FPROUNDING_ZERO;
12184         break;
12185     case 0x2f: /* FABS */
12186     case 0x6f: /* FNEG */
12187         need_fpst = false;
12188         break;
12189     case 0x7d: /* FRSQRTE */
12190     case 0x7f: /* FSQRT (vector) */
12191         break;
12192     default:
12193         unallocated_encoding(s);
12194         return;
12195     }
12196 
12197 
12198     /* Check additional constraints for the scalar encoding */
12199     if (is_scalar) {
12200         if (!is_q) {
12201             unallocated_encoding(s);
12202             return;
12203         }
12204         /* FRINTxx is only in the vector form */
12205         if (only_in_vector) {
12206             unallocated_encoding(s);
12207             return;
12208         }
12209     }
12210 
12211     if (!fp_access_check(s)) {
12212         return;
12213     }
12214 
12215     if (rmode >= 0 || need_fpst) {
12216         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12217     }
12218 
12219     if (rmode >= 0) {
12220         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12221     }
12222 
12223     if (is_scalar) {
12224         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12225         TCGv_i32 tcg_res = tcg_temp_new_i32();
12226 
12227         switch (fpop) {
12228         case 0x1a: /* FCVTNS */
12229         case 0x1b: /* FCVTMS */
12230         case 0x1c: /* FCVTAS */
12231         case 0x3a: /* FCVTPS */
12232         case 0x3b: /* FCVTZS */
12233             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12234             break;
12235         case 0x3d: /* FRECPE */
12236             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12237             break;
12238         case 0x3f: /* FRECPX */
12239             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12240             break;
12241         case 0x5a: /* FCVTNU */
12242         case 0x5b: /* FCVTMU */
12243         case 0x5c: /* FCVTAU */
12244         case 0x7a: /* FCVTPU */
12245         case 0x7b: /* FCVTZU */
12246             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12247             break;
12248         case 0x6f: /* FNEG */
12249             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12250             break;
12251         case 0x7d: /* FRSQRTE */
12252             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12253             break;
12254         default:
12255             g_assert_not_reached();
12256         }
12257 
12258         /* limit any sign extension going on */
12259         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12260         write_fp_sreg(s, rd, tcg_res);
12261     } else {
12262         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12263             TCGv_i32 tcg_op = tcg_temp_new_i32();
12264             TCGv_i32 tcg_res = tcg_temp_new_i32();
12265 
12266             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12267 
12268             switch (fpop) {
12269             case 0x1a: /* FCVTNS */
12270             case 0x1b: /* FCVTMS */
12271             case 0x1c: /* FCVTAS */
12272             case 0x3a: /* FCVTPS */
12273             case 0x3b: /* FCVTZS */
12274                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12275                 break;
12276             case 0x3d: /* FRECPE */
12277                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12278                 break;
12279             case 0x5a: /* FCVTNU */
12280             case 0x5b: /* FCVTMU */
12281             case 0x5c: /* FCVTAU */
12282             case 0x7a: /* FCVTPU */
12283             case 0x7b: /* FCVTZU */
12284                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12285                 break;
12286             case 0x18: /* FRINTN */
12287             case 0x19: /* FRINTM */
12288             case 0x38: /* FRINTP */
12289             case 0x39: /* FRINTZ */
12290             case 0x58: /* FRINTA */
12291             case 0x79: /* FRINTI */
12292                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12293                 break;
12294             case 0x59: /* FRINTX */
12295                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12296                 break;
12297             case 0x2f: /* FABS */
12298                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12299                 break;
12300             case 0x6f: /* FNEG */
12301                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12302                 break;
12303             case 0x7d: /* FRSQRTE */
12304                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12305                 break;
12306             case 0x7f: /* FSQRT */
12307                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12308                 break;
12309             default:
12310                 g_assert_not_reached();
12311             }
12312 
12313             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12314         }
12315 
12316         clear_vec_high(s, is_q, rd);
12317     }
12318 
12319     if (tcg_rmode) {
12320         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12321     }
12322 }
12323 
12324 /* AdvSIMD scalar x indexed element
12325  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12326  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12327  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12328  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12329  * AdvSIMD vector x indexed element
12330  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12331  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12332  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12333  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12334  */
12335 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12336 {
12337     /* This encoding has two kinds of instruction:
12338      *  normal, where we perform elt x idxelt => elt for each
12339      *     element in the vector
12340      *  long, where we perform elt x idxelt and generate a result of
12341      *     double the width of the input element
12342      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12343      */
12344     bool is_scalar = extract32(insn, 28, 1);
12345     bool is_q = extract32(insn, 30, 1);
12346     bool u = extract32(insn, 29, 1);
12347     int size = extract32(insn, 22, 2);
12348     int l = extract32(insn, 21, 1);
12349     int m = extract32(insn, 20, 1);
12350     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12351     int rm = extract32(insn, 16, 4);
12352     int opcode = extract32(insn, 12, 4);
12353     int h = extract32(insn, 11, 1);
12354     int rn = extract32(insn, 5, 5);
12355     int rd = extract32(insn, 0, 5);
12356     bool is_long = false;
12357     int is_fp = 0;
12358     bool is_fp16 = false;
12359     int index;
12360     TCGv_ptr fpst;
12361 
12362     switch (16 * u + opcode) {
12363     case 0x08: /* MUL */
12364     case 0x10: /* MLA */
12365     case 0x14: /* MLS */
12366         if (is_scalar) {
12367             unallocated_encoding(s);
12368             return;
12369         }
12370         break;
12371     case 0x02: /* SMLAL, SMLAL2 */
12372     case 0x12: /* UMLAL, UMLAL2 */
12373     case 0x06: /* SMLSL, SMLSL2 */
12374     case 0x16: /* UMLSL, UMLSL2 */
12375     case 0x0a: /* SMULL, SMULL2 */
12376     case 0x1a: /* UMULL, UMULL2 */
12377         if (is_scalar) {
12378             unallocated_encoding(s);
12379             return;
12380         }
12381         is_long = true;
12382         break;
12383     case 0x03: /* SQDMLAL, SQDMLAL2 */
12384     case 0x07: /* SQDMLSL, SQDMLSL2 */
12385     case 0x0b: /* SQDMULL, SQDMULL2 */
12386         is_long = true;
12387         break;
12388     case 0x0c: /* SQDMULH */
12389     case 0x0d: /* SQRDMULH */
12390         break;
12391     case 0x1d: /* SQRDMLAH */
12392     case 0x1f: /* SQRDMLSH */
12393         if (!dc_isar_feature(aa64_rdm, s)) {
12394             unallocated_encoding(s);
12395             return;
12396         }
12397         break;
12398     case 0x0e: /* SDOT */
12399     case 0x1e: /* UDOT */
12400         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12401             unallocated_encoding(s);
12402             return;
12403         }
12404         break;
12405     case 0x0f:
12406         switch (size) {
12407         case 0: /* SUDOT */
12408         case 2: /* USDOT */
12409             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12410                 unallocated_encoding(s);
12411                 return;
12412             }
12413             size = MO_32;
12414             break;
12415         case 1: /* BFDOT */
12416             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12417                 unallocated_encoding(s);
12418                 return;
12419             }
12420             size = MO_32;
12421             break;
12422         case 3: /* BFMLAL{B,T} */
12423             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12424                 unallocated_encoding(s);
12425                 return;
12426             }
12427             /* can't set is_fp without other incorrect size checks */
12428             size = MO_16;
12429             break;
12430         default:
12431             unallocated_encoding(s);
12432             return;
12433         }
12434         break;
12435     case 0x11: /* FCMLA #0 */
12436     case 0x13: /* FCMLA #90 */
12437     case 0x15: /* FCMLA #180 */
12438     case 0x17: /* FCMLA #270 */
12439         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12440             unallocated_encoding(s);
12441             return;
12442         }
12443         is_fp = 2;
12444         break;
12445     default:
12446     case 0x00: /* FMLAL */
12447     case 0x01: /* FMLA */
12448     case 0x04: /* FMLSL */
12449     case 0x05: /* FMLS */
12450     case 0x09: /* FMUL */
12451     case 0x18: /* FMLAL2 */
12452     case 0x19: /* FMULX */
12453     case 0x1c: /* FMLSL2 */
12454         unallocated_encoding(s);
12455         return;
12456     }
12457 
12458     switch (is_fp) {
12459     case 1: /* normal fp */
12460         unallocated_encoding(s); /* in decodetree */
12461         return;
12462 
12463     case 2: /* complex fp */
12464         /* Each indexable element is a complex pair.  */
12465         size += 1;
12466         switch (size) {
12467         case MO_32:
12468             if (h && !is_q) {
12469                 unallocated_encoding(s);
12470                 return;
12471             }
12472             is_fp16 = true;
12473             break;
12474         case MO_64:
12475             break;
12476         default:
12477             unallocated_encoding(s);
12478             return;
12479         }
12480         break;
12481 
12482     default: /* integer */
12483         switch (size) {
12484         case MO_8:
12485         case MO_64:
12486             unallocated_encoding(s);
12487             return;
12488         }
12489         break;
12490     }
12491     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12492         unallocated_encoding(s);
12493         return;
12494     }
12495 
12496     /* Given MemOp size, adjust register and indexing.  */
12497     switch (size) {
12498     case MO_16:
12499         index = h << 2 | l << 1 | m;
12500         break;
12501     case MO_32:
12502         index = h << 1 | l;
12503         rm |= m << 4;
12504         break;
12505     case MO_64:
12506         if (l || !is_q) {
12507             unallocated_encoding(s);
12508             return;
12509         }
12510         index = h;
12511         rm |= m << 4;
12512         break;
12513     default:
12514         g_assert_not_reached();
12515     }
12516 
12517     if (!fp_access_check(s)) {
12518         return;
12519     }
12520 
12521     if (is_fp) {
12522         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12523     } else {
12524         fpst = NULL;
12525     }
12526 
12527     switch (16 * u + opcode) {
12528     case 0x0e: /* SDOT */
12529     case 0x1e: /* UDOT */
12530         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12531                          u ? gen_helper_gvec_udot_idx_b
12532                          : gen_helper_gvec_sdot_idx_b);
12533         return;
12534     case 0x0f:
12535         switch (extract32(insn, 22, 2)) {
12536         case 0: /* SUDOT */
12537             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12538                              gen_helper_gvec_sudot_idx_b);
12539             return;
12540         case 1: /* BFDOT */
12541             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12542                              gen_helper_gvec_bfdot_idx);
12543             return;
12544         case 2: /* USDOT */
12545             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12546                              gen_helper_gvec_usdot_idx_b);
12547             return;
12548         case 3: /* BFMLAL{B,T} */
12549             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12550                               gen_helper_gvec_bfmlal_idx);
12551             return;
12552         }
12553         g_assert_not_reached();
12554     case 0x11: /* FCMLA #0 */
12555     case 0x13: /* FCMLA #90 */
12556     case 0x15: /* FCMLA #180 */
12557     case 0x17: /* FCMLA #270 */
12558         {
12559             int rot = extract32(insn, 13, 2);
12560             int data = (index << 2) | rot;
12561             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12562                                vec_full_reg_offset(s, rn),
12563                                vec_full_reg_offset(s, rm),
12564                                vec_full_reg_offset(s, rd), fpst,
12565                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12566                                size == MO_64
12567                                ? gen_helper_gvec_fcmlas_idx
12568                                : gen_helper_gvec_fcmlah_idx);
12569         }
12570         return;
12571 
12572     case 0x08: /* MUL */
12573         if (!is_long && !is_scalar) {
12574             static gen_helper_gvec_3 * const fns[3] = {
12575                 gen_helper_gvec_mul_idx_h,
12576                 gen_helper_gvec_mul_idx_s,
12577                 gen_helper_gvec_mul_idx_d,
12578             };
12579             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12580                                vec_full_reg_offset(s, rn),
12581                                vec_full_reg_offset(s, rm),
12582                                is_q ? 16 : 8, vec_full_reg_size(s),
12583                                index, fns[size - 1]);
12584             return;
12585         }
12586         break;
12587 
12588     case 0x10: /* MLA */
12589         if (!is_long && !is_scalar) {
12590             static gen_helper_gvec_4 * const fns[3] = {
12591                 gen_helper_gvec_mla_idx_h,
12592                 gen_helper_gvec_mla_idx_s,
12593                 gen_helper_gvec_mla_idx_d,
12594             };
12595             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12596                                vec_full_reg_offset(s, rn),
12597                                vec_full_reg_offset(s, rm),
12598                                vec_full_reg_offset(s, rd),
12599                                is_q ? 16 : 8, vec_full_reg_size(s),
12600                                index, fns[size - 1]);
12601             return;
12602         }
12603         break;
12604 
12605     case 0x14: /* MLS */
12606         if (!is_long && !is_scalar) {
12607             static gen_helper_gvec_4 * const fns[3] = {
12608                 gen_helper_gvec_mls_idx_h,
12609                 gen_helper_gvec_mls_idx_s,
12610                 gen_helper_gvec_mls_idx_d,
12611             };
12612             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12613                                vec_full_reg_offset(s, rn),
12614                                vec_full_reg_offset(s, rm),
12615                                vec_full_reg_offset(s, rd),
12616                                is_q ? 16 : 8, vec_full_reg_size(s),
12617                                index, fns[size - 1]);
12618             return;
12619         }
12620         break;
12621     }
12622 
12623     if (size == 3) {
12624         g_assert_not_reached();
12625     } else if (!is_long) {
12626         /* 32 bit floating point, or 16 or 32 bit integer.
12627          * For the 16 bit scalar case we use the usual Neon helpers and
12628          * rely on the fact that 0 op 0 == 0 with no side effects.
12629          */
12630         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12631         int pass, maxpasses;
12632 
12633         if (is_scalar) {
12634             maxpasses = 1;
12635         } else {
12636             maxpasses = is_q ? 4 : 2;
12637         }
12638 
12639         read_vec_element_i32(s, tcg_idx, rm, index, size);
12640 
12641         if (size == 1 && !is_scalar) {
12642             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12643              * the index into both halves of the 32 bit tcg_idx and then use
12644              * the usual Neon helpers.
12645              */
12646             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12647         }
12648 
12649         for (pass = 0; pass < maxpasses; pass++) {
12650             TCGv_i32 tcg_op = tcg_temp_new_i32();
12651             TCGv_i32 tcg_res = tcg_temp_new_i32();
12652 
12653             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12654 
12655             switch (16 * u + opcode) {
12656             case 0x08: /* MUL */
12657             case 0x10: /* MLA */
12658             case 0x14: /* MLS */
12659             {
12660                 static NeonGenTwoOpFn * const fns[2][2] = {
12661                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12662                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12663                 };
12664                 NeonGenTwoOpFn *genfn;
12665                 bool is_sub = opcode == 0x4;
12666 
12667                 if (size == 1) {
12668                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12669                 } else {
12670                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12671                 }
12672                 if (opcode == 0x8) {
12673                     break;
12674                 }
12675                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12676                 genfn = fns[size - 1][is_sub];
12677                 genfn(tcg_res, tcg_op, tcg_res);
12678                 break;
12679             }
12680             case 0x0c: /* SQDMULH */
12681                 if (size == 1) {
12682                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12683                                                tcg_op, tcg_idx);
12684                 } else {
12685                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12686                                                tcg_op, tcg_idx);
12687                 }
12688                 break;
12689             case 0x0d: /* SQRDMULH */
12690                 if (size == 1) {
12691                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12692                                                 tcg_op, tcg_idx);
12693                 } else {
12694                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12695                                                 tcg_op, tcg_idx);
12696                 }
12697                 break;
12698             case 0x1d: /* SQRDMLAH */
12699                 read_vec_element_i32(s, tcg_res, rd, pass,
12700                                      is_scalar ? size : MO_32);
12701                 if (size == 1) {
12702                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
12703                                                 tcg_op, tcg_idx, tcg_res);
12704                 } else {
12705                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
12706                                                 tcg_op, tcg_idx, tcg_res);
12707                 }
12708                 break;
12709             case 0x1f: /* SQRDMLSH */
12710                 read_vec_element_i32(s, tcg_res, rd, pass,
12711                                      is_scalar ? size : MO_32);
12712                 if (size == 1) {
12713                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
12714                                                 tcg_op, tcg_idx, tcg_res);
12715                 } else {
12716                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
12717                                                 tcg_op, tcg_idx, tcg_res);
12718                 }
12719                 break;
12720             default:
12721             case 0x01: /* FMLA */
12722             case 0x05: /* FMLS */
12723             case 0x09: /* FMUL */
12724             case 0x19: /* FMULX */
12725                 g_assert_not_reached();
12726             }
12727 
12728             if (is_scalar) {
12729                 write_fp_sreg(s, rd, tcg_res);
12730             } else {
12731                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12732             }
12733         }
12734 
12735         clear_vec_high(s, is_q, rd);
12736     } else {
12737         /* long ops: 16x16->32 or 32x32->64 */
12738         TCGv_i64 tcg_res[2];
12739         int pass;
12740         bool satop = extract32(opcode, 0, 1);
12741         MemOp memop = MO_32;
12742 
12743         if (satop || !u) {
12744             memop |= MO_SIGN;
12745         }
12746 
12747         if (size == 2) {
12748             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12749 
12750             read_vec_element(s, tcg_idx, rm, index, memop);
12751 
12752             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12753                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12754                 TCGv_i64 tcg_passres;
12755                 int passelt;
12756 
12757                 if (is_scalar) {
12758                     passelt = 0;
12759                 } else {
12760                     passelt = pass + (is_q * 2);
12761                 }
12762 
12763                 read_vec_element(s, tcg_op, rn, passelt, memop);
12764 
12765                 tcg_res[pass] = tcg_temp_new_i64();
12766 
12767                 if (opcode == 0xa || opcode == 0xb) {
12768                     /* Non-accumulating ops */
12769                     tcg_passres = tcg_res[pass];
12770                 } else {
12771                     tcg_passres = tcg_temp_new_i64();
12772                 }
12773 
12774                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12775 
12776                 if (satop) {
12777                     /* saturating, doubling */
12778                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12779                                                       tcg_passres, tcg_passres);
12780                 }
12781 
12782                 if (opcode == 0xa || opcode == 0xb) {
12783                     continue;
12784                 }
12785 
12786                 /* Accumulating op: handle accumulate step */
12787                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12788 
12789                 switch (opcode) {
12790                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12791                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12792                     break;
12793                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12794                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12795                     break;
12796                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12797                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12798                     /* fall through */
12799                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12800                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12801                                                       tcg_res[pass],
12802                                                       tcg_passres);
12803                     break;
12804                 default:
12805                     g_assert_not_reached();
12806                 }
12807             }
12808 
12809             clear_vec_high(s, !is_scalar, rd);
12810         } else {
12811             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12812 
12813             assert(size == 1);
12814             read_vec_element_i32(s, tcg_idx, rm, index, size);
12815 
12816             if (!is_scalar) {
12817                 /* The simplest way to handle the 16x16 indexed ops is to
12818                  * duplicate the index into both halves of the 32 bit tcg_idx
12819                  * and then use the usual Neon helpers.
12820                  */
12821                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12822             }
12823 
12824             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12825                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12826                 TCGv_i64 tcg_passres;
12827 
12828                 if (is_scalar) {
12829                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12830                 } else {
12831                     read_vec_element_i32(s, tcg_op, rn,
12832                                          pass + (is_q * 2), MO_32);
12833                 }
12834 
12835                 tcg_res[pass] = tcg_temp_new_i64();
12836 
12837                 if (opcode == 0xa || opcode == 0xb) {
12838                     /* Non-accumulating ops */
12839                     tcg_passres = tcg_res[pass];
12840                 } else {
12841                     tcg_passres = tcg_temp_new_i64();
12842                 }
12843 
12844                 if (memop & MO_SIGN) {
12845                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12846                 } else {
12847                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12848                 }
12849                 if (satop) {
12850                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12851                                                       tcg_passres, tcg_passres);
12852                 }
12853 
12854                 if (opcode == 0xa || opcode == 0xb) {
12855                     continue;
12856                 }
12857 
12858                 /* Accumulating op: handle accumulate step */
12859                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12860 
12861                 switch (opcode) {
12862                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12863                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12864                                              tcg_passres);
12865                     break;
12866                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12867                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12868                                              tcg_passres);
12869                     break;
12870                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12871                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12872                     /* fall through */
12873                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12874                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12875                                                       tcg_res[pass],
12876                                                       tcg_passres);
12877                     break;
12878                 default:
12879                     g_assert_not_reached();
12880                 }
12881             }
12882 
12883             if (is_scalar) {
12884                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12885             }
12886         }
12887 
12888         if (is_scalar) {
12889             tcg_res[1] = tcg_constant_i64(0);
12890         }
12891 
12892         for (pass = 0; pass < 2; pass++) {
12893             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12894         }
12895     }
12896 }
12897 
12898 /* C3.6 Data processing - SIMD, inc Crypto
12899  *
12900  * As the decode gets a little complex we are using a table based
12901  * approach for this part of the decode.
12902  */
12903 static const AArch64DecodeTable data_proc_simd[] = {
12904     /* pattern  ,  mask     ,  fn                        */
12905     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
12906     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12907     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12908     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12909     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12910     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12911     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12912     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12913     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12914     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12915     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12916     { 0x2e000000, 0xbf208400, disas_simd_ext },
12917     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
12918     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
12919     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12920     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12921     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12922     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12923     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12924     { 0x00000000, 0x00000000, NULL }
12925 };
12926 
12927 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12928 {
12929     /* Note that this is called with all non-FP cases from
12930      * table C3-6 so it must UNDEF for entries not specifically
12931      * allocated to instructions in that table.
12932      */
12933     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12934     if (fn) {
12935         fn(s, insn);
12936     } else {
12937         unallocated_encoding(s);
12938     }
12939 }
12940 
12941 /* C3.6 Data processing - SIMD and floating point */
12942 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12943 {
12944     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12945         disas_data_proc_fp(s, insn);
12946     } else {
12947         /* SIMD, including crypto */
12948         disas_data_proc_simd(s, insn);
12949     }
12950 }
12951 
12952 static bool trans_OK(DisasContext *s, arg_OK *a)
12953 {
12954     return true;
12955 }
12956 
12957 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12958 {
12959     s->is_nonstreaming = true;
12960     return true;
12961 }
12962 
12963 /**
12964  * is_guarded_page:
12965  * @env: The cpu environment
12966  * @s: The DisasContext
12967  *
12968  * Return true if the page is guarded.
12969  */
12970 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12971 {
12972     uint64_t addr = s->base.pc_first;
12973 #ifdef CONFIG_USER_ONLY
12974     return page_get_flags(addr) & PAGE_BTI;
12975 #else
12976     CPUTLBEntryFull *full;
12977     void *host;
12978     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12979     int flags;
12980 
12981     /*
12982      * We test this immediately after reading an insn, which means
12983      * that the TLB entry must be present and valid, and thus this
12984      * access will never raise an exception.
12985      */
12986     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12987                               false, &host, &full, 0);
12988     assert(!(flags & TLB_INVALID_MASK));
12989 
12990     return full->extra.arm.guarded;
12991 #endif
12992 }
12993 
12994 /**
12995  * btype_destination_ok:
12996  * @insn: The instruction at the branch destination
12997  * @bt: SCTLR_ELx.BT
12998  * @btype: PSTATE.BTYPE, and is non-zero
12999  *
13000  * On a guarded page, there are a limited number of insns
13001  * that may be present at the branch target:
13002  *   - branch target identifiers,
13003  *   - paciasp, pacibsp,
13004  *   - BRK insn
13005  *   - HLT insn
13006  * Anything else causes a Branch Target Exception.
13007  *
13008  * Return true if the branch is compatible, false to raise BTITRAP.
13009  */
13010 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13011 {
13012     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13013         /* HINT space */
13014         switch (extract32(insn, 5, 7)) {
13015         case 0b011001: /* PACIASP */
13016         case 0b011011: /* PACIBSP */
13017             /*
13018              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13019              * with btype == 3.  Otherwise all btype are ok.
13020              */
13021             return !bt || btype != 3;
13022         case 0b100000: /* BTI */
13023             /* Not compatible with any btype.  */
13024             return false;
13025         case 0b100010: /* BTI c */
13026             /* Not compatible with btype == 3 */
13027             return btype != 3;
13028         case 0b100100: /* BTI j */
13029             /* Not compatible with btype == 2 */
13030             return btype != 2;
13031         case 0b100110: /* BTI jc */
13032             /* Compatible with any btype.  */
13033             return true;
13034         }
13035     } else {
13036         switch (insn & 0xffe0001fu) {
13037         case 0xd4200000u: /* BRK */
13038         case 0xd4400000u: /* HLT */
13039             /* Give priority to the breakpoint exception.  */
13040             return true;
13041         }
13042     }
13043     return false;
13044 }
13045 
13046 /* C3.1 A64 instruction index by encoding */
13047 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13048 {
13049     switch (extract32(insn, 25, 4)) {
13050     case 0x5:
13051     case 0xd:      /* Data processing - register */
13052         disas_data_proc_reg(s, insn);
13053         break;
13054     case 0x7:
13055     case 0xf:      /* Data processing - SIMD and floating point */
13056         disas_data_proc_simd_fp(s, insn);
13057         break;
13058     default:
13059         unallocated_encoding(s);
13060         break;
13061     }
13062 }
13063 
13064 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13065                                           CPUState *cpu)
13066 {
13067     DisasContext *dc = container_of(dcbase, DisasContext, base);
13068     CPUARMState *env = cpu_env(cpu);
13069     ARMCPU *arm_cpu = env_archcpu(env);
13070     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13071     int bound, core_mmu_idx;
13072 
13073     dc->isar = &arm_cpu->isar;
13074     dc->condjmp = 0;
13075     dc->pc_save = dc->base.pc_first;
13076     dc->aarch64 = true;
13077     dc->thumb = false;
13078     dc->sctlr_b = 0;
13079     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13080     dc->condexec_mask = 0;
13081     dc->condexec_cond = 0;
13082     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13083     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13084     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13085     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13086     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13087     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13088 #if !defined(CONFIG_USER_ONLY)
13089     dc->user = (dc->current_el == 0);
13090 #endif
13091     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13092     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13093     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13094     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13095     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13096     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13097     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13098     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13099     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13100     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13101     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13102     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13103     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13104     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13105     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13106     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13107     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13108     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13109     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13110     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13111     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13112     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13113     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13114     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13115     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13116     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13117     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13118     dc->vec_len = 0;
13119     dc->vec_stride = 0;
13120     dc->cp_regs = arm_cpu->cp_regs;
13121     dc->features = env->features;
13122     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13123     dc->gm_blocksize = arm_cpu->gm_blocksize;
13124 
13125 #ifdef CONFIG_USER_ONLY
13126     /* In sve_probe_page, we assume TBI is enabled. */
13127     tcg_debug_assert(dc->tbid & 1);
13128 #endif
13129 
13130     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13131 
13132     /* Single step state. The code-generation logic here is:
13133      *  SS_ACTIVE == 0:
13134      *   generate code with no special handling for single-stepping (except
13135      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13136      *   this happens anyway because those changes are all system register or
13137      *   PSTATE writes).
13138      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13139      *   emit code for one insn
13140      *   emit code to clear PSTATE.SS
13141      *   emit code to generate software step exception for completed step
13142      *   end TB (as usual for having generated an exception)
13143      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13144      *   emit code to generate a software step exception
13145      *   end the TB
13146      */
13147     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13148     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13149     dc->is_ldex = false;
13150 
13151     /* Bound the number of insns to execute to those left on the page.  */
13152     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13153 
13154     /* If architectural single step active, limit to 1.  */
13155     if (dc->ss_active) {
13156         bound = 1;
13157     }
13158     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13159 }
13160 
13161 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13162 {
13163 }
13164 
13165 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13166 {
13167     DisasContext *dc = container_of(dcbase, DisasContext, base);
13168     target_ulong pc_arg = dc->base.pc_next;
13169 
13170     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13171         pc_arg &= ~TARGET_PAGE_MASK;
13172     }
13173     tcg_gen_insn_start(pc_arg, 0, 0);
13174     dc->insn_start_updated = false;
13175 }
13176 
13177 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13178 {
13179     DisasContext *s = container_of(dcbase, DisasContext, base);
13180     CPUARMState *env = cpu_env(cpu);
13181     uint64_t pc = s->base.pc_next;
13182     uint32_t insn;
13183 
13184     /* Singlestep exceptions have the highest priority. */
13185     if (s->ss_active && !s->pstate_ss) {
13186         /* Singlestep state is Active-pending.
13187          * If we're in this state at the start of a TB then either
13188          *  a) we just took an exception to an EL which is being debugged
13189          *     and this is the first insn in the exception handler
13190          *  b) debug exceptions were masked and we just unmasked them
13191          *     without changing EL (eg by clearing PSTATE.D)
13192          * In either case we're going to take a swstep exception in the
13193          * "did not step an insn" case, and so the syndrome ISV and EX
13194          * bits should be zero.
13195          */
13196         assert(s->base.num_insns == 1);
13197         gen_swstep_exception(s, 0, 0);
13198         s->base.is_jmp = DISAS_NORETURN;
13199         s->base.pc_next = pc + 4;
13200         return;
13201     }
13202 
13203     if (pc & 3) {
13204         /*
13205          * PC alignment fault.  This has priority over the instruction abort
13206          * that we would receive from a translation fault via arm_ldl_code.
13207          * This should only be possible after an indirect branch, at the
13208          * start of the TB.
13209          */
13210         assert(s->base.num_insns == 1);
13211         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13212         s->base.is_jmp = DISAS_NORETURN;
13213         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13214         return;
13215     }
13216 
13217     s->pc_curr = pc;
13218     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13219     s->insn = insn;
13220     s->base.pc_next = pc + 4;
13221 
13222     s->fp_access_checked = false;
13223     s->sve_access_checked = false;
13224 
13225     if (s->pstate_il) {
13226         /*
13227          * Illegal execution state. This has priority over BTI
13228          * exceptions, but comes after instruction abort exceptions.
13229          */
13230         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13231         return;
13232     }
13233 
13234     if (dc_isar_feature(aa64_bti, s)) {
13235         if (s->base.num_insns == 1) {
13236             /*
13237              * At the first insn of the TB, compute s->guarded_page.
13238              * We delayed computing this until successfully reading
13239              * the first insn of the TB, above.  This (mostly) ensures
13240              * that the softmmu tlb entry has been populated, and the
13241              * page table GP bit is available.
13242              *
13243              * Note that we need to compute this even if btype == 0,
13244              * because this value is used for BR instructions later
13245              * where ENV is not available.
13246              */
13247             s->guarded_page = is_guarded_page(env, s);
13248 
13249             /* First insn can have btype set to non-zero.  */
13250             tcg_debug_assert(s->btype >= 0);
13251 
13252             /*
13253              * Note that the Branch Target Exception has fairly high
13254              * priority -- below debugging exceptions but above most
13255              * everything else.  This allows us to handle this now
13256              * instead of waiting until the insn is otherwise decoded.
13257              */
13258             if (s->btype != 0
13259                 && s->guarded_page
13260                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13261                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13262                 return;
13263             }
13264         } else {
13265             /* Not the first insn: btype must be 0.  */
13266             tcg_debug_assert(s->btype == 0);
13267         }
13268     }
13269 
13270     s->is_nonstreaming = false;
13271     if (s->sme_trap_nonstreaming) {
13272         disas_sme_fa64(s, insn);
13273     }
13274 
13275     if (!disas_a64(s, insn) &&
13276         !disas_sme(s, insn) &&
13277         !disas_sve(s, insn)) {
13278         disas_a64_legacy(s, insn);
13279     }
13280 
13281     /*
13282      * After execution of most insns, btype is reset to 0.
13283      * Note that we set btype == -1 when the insn sets btype.
13284      */
13285     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13286         reset_btype(s);
13287     }
13288 }
13289 
13290 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13291 {
13292     DisasContext *dc = container_of(dcbase, DisasContext, base);
13293 
13294     if (unlikely(dc->ss_active)) {
13295         /* Note that this means single stepping WFI doesn't halt the CPU.
13296          * For conditional branch insns this is harmless unreachable code as
13297          * gen_goto_tb() has already handled emitting the debug exception
13298          * (and thus a tb-jump is not possible when singlestepping).
13299          */
13300         switch (dc->base.is_jmp) {
13301         default:
13302             gen_a64_update_pc(dc, 4);
13303             /* fall through */
13304         case DISAS_EXIT:
13305         case DISAS_JUMP:
13306             gen_step_complete_exception(dc);
13307             break;
13308         case DISAS_NORETURN:
13309             break;
13310         }
13311     } else {
13312         switch (dc->base.is_jmp) {
13313         case DISAS_NEXT:
13314         case DISAS_TOO_MANY:
13315             gen_goto_tb(dc, 1, 4);
13316             break;
13317         default:
13318         case DISAS_UPDATE_EXIT:
13319             gen_a64_update_pc(dc, 4);
13320             /* fall through */
13321         case DISAS_EXIT:
13322             tcg_gen_exit_tb(NULL, 0);
13323             break;
13324         case DISAS_UPDATE_NOCHAIN:
13325             gen_a64_update_pc(dc, 4);
13326             /* fall through */
13327         case DISAS_JUMP:
13328             tcg_gen_lookup_and_goto_ptr();
13329             break;
13330         case DISAS_NORETURN:
13331         case DISAS_SWI:
13332             break;
13333         case DISAS_WFE:
13334             gen_a64_update_pc(dc, 4);
13335             gen_helper_wfe(tcg_env);
13336             break;
13337         case DISAS_YIELD:
13338             gen_a64_update_pc(dc, 4);
13339             gen_helper_yield(tcg_env);
13340             break;
13341         case DISAS_WFI:
13342             /*
13343              * This is a special case because we don't want to just halt
13344              * the CPU if trying to debug across a WFI.
13345              */
13346             gen_a64_update_pc(dc, 4);
13347             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
13348             /*
13349              * The helper doesn't necessarily throw an exception, but we
13350              * must go back to the main loop to check for interrupts anyway.
13351              */
13352             tcg_gen_exit_tb(NULL, 0);
13353             break;
13354         }
13355     }
13356 }
13357 
13358 const TranslatorOps aarch64_translator_ops = {
13359     .init_disas_context = aarch64_tr_init_disas_context,
13360     .tb_start           = aarch64_tr_tb_start,
13361     .insn_start         = aarch64_tr_insn_start,
13362     .translate_insn     = aarch64_tr_translate_insn,
13363     .tb_stop            = aarch64_tr_tb_stop,
13364 };
13365