1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg-op.h" 24 #include "tcg/tcg-op-gvec.h" 25 #include "qemu/log.h" 26 #include "arm_ldst.h" 27 #include "translate.h" 28 #include "internals.h" 29 #include "qemu/host-utils.h" 30 #include "semihosting/semihost.h" 31 #include "exec/gen-icount.h" 32 #include "exec/helper-proto.h" 33 #include "exec/helper-gen.h" 34 #include "exec/log.h" 35 #include "cpregs.h" 36 #include "translate-a64.h" 37 #include "qemu/atomic128.h" 38 39 static TCGv_i64 cpu_X[32]; 40 static TCGv_i64 cpu_pc; 41 42 /* Load/store exclusive handling */ 43 static TCGv_i64 cpu_exclusive_high; 44 45 static const char *regnames[] = { 46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 50 }; 51 52 enum a64_shift_type { 53 A64_SHIFT_TYPE_LSL = 0, 54 A64_SHIFT_TYPE_LSR = 1, 55 A64_SHIFT_TYPE_ASR = 2, 56 A64_SHIFT_TYPE_ROR = 3 57 }; 58 59 /* Table based decoder typedefs - used when the relevant bits for decode 60 * are too awkwardly scattered across the instruction (eg SIMD). 61 */ 62 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 63 64 typedef struct AArch64DecodeTable { 65 uint32_t pattern; 66 uint32_t mask; 67 AArch64DecodeFn *disas_fn; 68 } AArch64DecodeTable; 69 70 /* initialize TCG globals. */ 71 void a64_translate_init(void) 72 { 73 int i; 74 75 cpu_pc = tcg_global_mem_new_i64(cpu_env, 76 offsetof(CPUARMState, pc), 77 "pc"); 78 for (i = 0; i < 32; i++) { 79 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 80 offsetof(CPUARMState, xregs[i]), 81 regnames[i]); 82 } 83 84 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 85 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 86 } 87 88 /* 89 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 90 */ 91 static int get_a64_user_mem_index(DisasContext *s) 92 { 93 /* 94 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 95 * which is the usual mmu_idx for this cpu state. 96 */ 97 ARMMMUIdx useridx = s->mmu_idx; 98 99 if (s->unpriv) { 100 /* 101 * We have pre-computed the condition for AccType_UNPRIV. 102 * Therefore we should never get here with a mmu_idx for 103 * which we do not know the corresponding user mmu_idx. 104 */ 105 switch (useridx) { 106 case ARMMMUIdx_E10_1: 107 case ARMMMUIdx_E10_1_PAN: 108 useridx = ARMMMUIdx_E10_0; 109 break; 110 case ARMMMUIdx_E20_2: 111 case ARMMMUIdx_E20_2_PAN: 112 useridx = ARMMMUIdx_E20_0; 113 break; 114 default: 115 g_assert_not_reached(); 116 } 117 } 118 return arm_to_core_mmu_idx(useridx); 119 } 120 121 static void set_btype_raw(int val) 122 { 123 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 124 offsetof(CPUARMState, btype)); 125 } 126 127 static void set_btype(DisasContext *s, int val) 128 { 129 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 130 tcg_debug_assert(val >= 1 && val <= 3); 131 set_btype_raw(val); 132 s->btype = -1; 133 } 134 135 static void reset_btype(DisasContext *s) 136 { 137 if (s->btype != 0) { 138 set_btype_raw(0); 139 s->btype = 0; 140 } 141 } 142 143 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 144 { 145 assert(s->pc_save != -1); 146 if (tb_cflags(s->base.tb) & CF_PCREL) { 147 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 148 } else { 149 tcg_gen_movi_i64(dest, s->pc_curr + diff); 150 } 151 } 152 153 void gen_a64_update_pc(DisasContext *s, target_long diff) 154 { 155 gen_pc_plus_diff(s, cpu_pc, diff); 156 s->pc_save = s->pc_curr + diff; 157 } 158 159 /* 160 * Handle Top Byte Ignore (TBI) bits. 161 * 162 * If address tagging is enabled via the TCR TBI bits: 163 * + for EL2 and EL3 there is only one TBI bit, and if it is set 164 * then the address is zero-extended, clearing bits [63:56] 165 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 166 * and TBI1 controls addressses with bit 55 == 1. 167 * If the appropriate TBI bit is set for the address then 168 * the address is sign-extended from bit 55 into bits [63:56] 169 * 170 * Here We have concatenated TBI{1,0} into tbi. 171 */ 172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 173 TCGv_i64 src, int tbi) 174 { 175 if (tbi == 0) { 176 /* Load unmodified address */ 177 tcg_gen_mov_i64(dst, src); 178 } else if (!regime_has_2_ranges(s->mmu_idx)) { 179 /* Force tag byte to all zero */ 180 tcg_gen_extract_i64(dst, src, 0, 56); 181 } else { 182 /* Sign-extend from bit 55. */ 183 tcg_gen_sextract_i64(dst, src, 0, 56); 184 185 switch (tbi) { 186 case 1: 187 /* tbi0 but !tbi1: only use the extension if positive */ 188 tcg_gen_and_i64(dst, dst, src); 189 break; 190 case 2: 191 /* !tbi0 but tbi1: only use the extension if negative */ 192 tcg_gen_or_i64(dst, dst, src); 193 break; 194 case 3: 195 /* tbi0 and tbi1: always use the extension */ 196 break; 197 default: 198 g_assert_not_reached(); 199 } 200 } 201 } 202 203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 204 { 205 /* 206 * If address tagging is enabled for instructions via the TCR TBI bits, 207 * then loading an address into the PC will clear out any tag. 208 */ 209 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 210 s->pc_save = -1; 211 } 212 213 /* 214 * Handle MTE and/or TBI. 215 * 216 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 217 * for the tag to be present in the FAR_ELx register. But for user-only 218 * mode we do not have a TLB with which to implement this, so we must 219 * remove the top byte now. 220 * 221 * Always return a fresh temporary that we can increment independently 222 * of the write-back address. 223 */ 224 225 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 226 { 227 TCGv_i64 clean = tcg_temp_new_i64(); 228 #ifdef CONFIG_USER_ONLY 229 gen_top_byte_ignore(s, clean, addr, s->tbid); 230 #else 231 tcg_gen_mov_i64(clean, addr); 232 #endif 233 return clean; 234 } 235 236 /* Insert a zero tag into src, with the result at dst. */ 237 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 238 { 239 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 240 } 241 242 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 243 MMUAccessType acc, int log2_size) 244 { 245 gen_helper_probe_access(cpu_env, ptr, 246 tcg_constant_i32(acc), 247 tcg_constant_i32(get_mem_index(s)), 248 tcg_constant_i32(1 << log2_size)); 249 } 250 251 /* 252 * For MTE, check a single logical or atomic access. This probes a single 253 * address, the exact one specified. The size and alignment of the access 254 * is not relevant to MTE, per se, but watchpoints do require the size, 255 * and we want to recognize those before making any other changes to state. 256 */ 257 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 258 bool is_write, bool tag_checked, 259 int log2_size, bool is_unpriv, 260 int core_idx) 261 { 262 if (tag_checked && s->mte_active[is_unpriv]) { 263 TCGv_i64 ret; 264 int desc = 0; 265 266 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 267 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 268 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 269 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 270 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 271 272 ret = tcg_temp_new_i64(); 273 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 274 275 return ret; 276 } 277 return clean_data_tbi(s, addr); 278 } 279 280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 281 bool tag_checked, int log2_size) 282 { 283 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 284 false, get_mem_index(s)); 285 } 286 287 /* 288 * For MTE, check multiple logical sequential accesses. 289 */ 290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 291 bool tag_checked, int size) 292 { 293 if (tag_checked && s->mte_active[0]) { 294 TCGv_i64 ret; 295 int desc = 0; 296 297 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 298 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 299 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 300 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 301 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 302 303 ret = tcg_temp_new_i64(); 304 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 305 306 return ret; 307 } 308 return clean_data_tbi(s, addr); 309 } 310 311 typedef struct DisasCompare64 { 312 TCGCond cond; 313 TCGv_i64 value; 314 } DisasCompare64; 315 316 static void a64_test_cc(DisasCompare64 *c64, int cc) 317 { 318 DisasCompare c32; 319 320 arm_test_cc(&c32, cc); 321 322 /* 323 * Sign-extend the 32-bit value so that the GE/LT comparisons work 324 * properly. The NE/EQ comparisons are also fine with this choice. 325 */ 326 c64->cond = c32.cond; 327 c64->value = tcg_temp_new_i64(); 328 tcg_gen_ext_i32_i64(c64->value, c32.value); 329 } 330 331 static void gen_rebuild_hflags(DisasContext *s) 332 { 333 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 334 } 335 336 static void gen_exception_internal(int excp) 337 { 338 assert(excp_is_internal(excp)); 339 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 340 } 341 342 static void gen_exception_internal_insn(DisasContext *s, int excp) 343 { 344 gen_a64_update_pc(s, 0); 345 gen_exception_internal(excp); 346 s->base.is_jmp = DISAS_NORETURN; 347 } 348 349 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 350 { 351 gen_a64_update_pc(s, 0); 352 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 353 s->base.is_jmp = DISAS_NORETURN; 354 } 355 356 static void gen_step_complete_exception(DisasContext *s) 357 { 358 /* We just completed step of an insn. Move from Active-not-pending 359 * to Active-pending, and then also take the swstep exception. 360 * This corresponds to making the (IMPDEF) choice to prioritize 361 * swstep exceptions over asynchronous exceptions taken to an exception 362 * level where debug is disabled. This choice has the advantage that 363 * we do not need to maintain internal state corresponding to the 364 * ISV/EX syndrome bits between completion of the step and generation 365 * of the exception, and our syndrome information is always correct. 366 */ 367 gen_ss_advance(s); 368 gen_swstep_exception(s, 1, s->is_ldex); 369 s->base.is_jmp = DISAS_NORETURN; 370 } 371 372 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 373 { 374 if (s->ss_active) { 375 return false; 376 } 377 return translator_use_goto_tb(&s->base, dest); 378 } 379 380 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 381 { 382 if (use_goto_tb(s, s->pc_curr + diff)) { 383 /* 384 * For pcrel, the pc must always be up-to-date on entry to 385 * the linked TB, so that it can use simple additions for all 386 * further adjustments. For !pcrel, the linked TB is compiled 387 * to know its full virtual address, so we can delay the 388 * update to pc to the unlinked path. A long chain of links 389 * can thus avoid many updates to the PC. 390 */ 391 if (tb_cflags(s->base.tb) & CF_PCREL) { 392 gen_a64_update_pc(s, diff); 393 tcg_gen_goto_tb(n); 394 } else { 395 tcg_gen_goto_tb(n); 396 gen_a64_update_pc(s, diff); 397 } 398 tcg_gen_exit_tb(s->base.tb, n); 399 s->base.is_jmp = DISAS_NORETURN; 400 } else { 401 gen_a64_update_pc(s, diff); 402 if (s->ss_active) { 403 gen_step_complete_exception(s); 404 } else { 405 tcg_gen_lookup_and_goto_ptr(); 406 s->base.is_jmp = DISAS_NORETURN; 407 } 408 } 409 } 410 411 /* 412 * Register access functions 413 * 414 * These functions are used for directly accessing a register in where 415 * changes to the final register value are likely to be made. If you 416 * need to use a register for temporary calculation (e.g. index type 417 * operations) use the read_* form. 418 * 419 * B1.2.1 Register mappings 420 * 421 * In instruction register encoding 31 can refer to ZR (zero register) or 422 * the SP (stack pointer) depending on context. In QEMU's case we map SP 423 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 424 * This is the point of the _sp forms. 425 */ 426 TCGv_i64 cpu_reg(DisasContext *s, int reg) 427 { 428 if (reg == 31) { 429 TCGv_i64 t = tcg_temp_new_i64(); 430 tcg_gen_movi_i64(t, 0); 431 return t; 432 } else { 433 return cpu_X[reg]; 434 } 435 } 436 437 /* register access for when 31 == SP */ 438 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 439 { 440 return cpu_X[reg]; 441 } 442 443 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 444 * representing the register contents. This TCGv is an auto-freed 445 * temporary so it need not be explicitly freed, and may be modified. 446 */ 447 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 448 { 449 TCGv_i64 v = tcg_temp_new_i64(); 450 if (reg != 31) { 451 if (sf) { 452 tcg_gen_mov_i64(v, cpu_X[reg]); 453 } else { 454 tcg_gen_ext32u_i64(v, cpu_X[reg]); 455 } 456 } else { 457 tcg_gen_movi_i64(v, 0); 458 } 459 return v; 460 } 461 462 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 463 { 464 TCGv_i64 v = tcg_temp_new_i64(); 465 if (sf) { 466 tcg_gen_mov_i64(v, cpu_X[reg]); 467 } else { 468 tcg_gen_ext32u_i64(v, cpu_X[reg]); 469 } 470 return v; 471 } 472 473 /* Return the offset into CPUARMState of a slice (from 474 * the least significant end) of FP register Qn (ie 475 * Dn, Sn, Hn or Bn). 476 * (Note that this is not the same mapping as for A32; see cpu.h) 477 */ 478 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 479 { 480 return vec_reg_offset(s, regno, 0, size); 481 } 482 483 /* Offset of the high half of the 128 bit vector Qn */ 484 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 485 { 486 return vec_reg_offset(s, regno, 1, MO_64); 487 } 488 489 /* Convenience accessors for reading and writing single and double 490 * FP registers. Writing clears the upper parts of the associated 491 * 128 bit vector register, as required by the architecture. 492 * Note that unlike the GP register accessors, the values returned 493 * by the read functions must be manually freed. 494 */ 495 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 496 { 497 TCGv_i64 v = tcg_temp_new_i64(); 498 499 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 500 return v; 501 } 502 503 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 504 { 505 TCGv_i32 v = tcg_temp_new_i32(); 506 507 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 508 return v; 509 } 510 511 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 512 { 513 TCGv_i32 v = tcg_temp_new_i32(); 514 515 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 516 return v; 517 } 518 519 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 520 * If SVE is not enabled, then there are only 128 bits in the vector. 521 */ 522 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 523 { 524 unsigned ofs = fp_reg_offset(s, rd, MO_64); 525 unsigned vsz = vec_full_reg_size(s); 526 527 /* Nop move, with side effect of clearing the tail. */ 528 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 529 } 530 531 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 532 { 533 unsigned ofs = fp_reg_offset(s, reg, MO_64); 534 535 tcg_gen_st_i64(v, cpu_env, ofs); 536 clear_vec_high(s, false, reg); 537 } 538 539 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 540 { 541 TCGv_i64 tmp = tcg_temp_new_i64(); 542 543 tcg_gen_extu_i32_i64(tmp, v); 544 write_fp_dreg(s, reg, tmp); 545 } 546 547 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 548 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 549 GVecGen2Fn *gvec_fn, int vece) 550 { 551 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 552 is_q ? 16 : 8, vec_full_reg_size(s)); 553 } 554 555 /* Expand a 2-operand + immediate AdvSIMD vector operation using 556 * an expander function. 557 */ 558 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 559 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 560 { 561 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 562 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 563 } 564 565 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 566 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 567 GVecGen3Fn *gvec_fn, int vece) 568 { 569 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 570 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 571 } 572 573 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 574 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 575 int rx, GVecGen4Fn *gvec_fn, int vece) 576 { 577 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 578 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 579 is_q ? 16 : 8, vec_full_reg_size(s)); 580 } 581 582 /* Expand a 2-operand operation using an out-of-line helper. */ 583 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 584 int rn, int data, gen_helper_gvec_2 *fn) 585 { 586 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 587 vec_full_reg_offset(s, rn), 588 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 589 } 590 591 /* Expand a 3-operand operation using an out-of-line helper. */ 592 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 593 int rn, int rm, int data, gen_helper_gvec_3 *fn) 594 { 595 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 596 vec_full_reg_offset(s, rn), 597 vec_full_reg_offset(s, rm), 598 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 599 } 600 601 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 602 * an out-of-line helper. 603 */ 604 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 605 int rm, bool is_fp16, int data, 606 gen_helper_gvec_3_ptr *fn) 607 { 608 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 609 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 610 vec_full_reg_offset(s, rn), 611 vec_full_reg_offset(s, rm), fpst, 612 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 613 } 614 615 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 616 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 617 int rm, gen_helper_gvec_3_ptr *fn) 618 { 619 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 620 621 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 622 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 623 vec_full_reg_offset(s, rn), 624 vec_full_reg_offset(s, rm), qc_ptr, 625 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 626 } 627 628 /* Expand a 4-operand operation using an out-of-line helper. */ 629 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 630 int rm, int ra, int data, gen_helper_gvec_4 *fn) 631 { 632 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 633 vec_full_reg_offset(s, rn), 634 vec_full_reg_offset(s, rm), 635 vec_full_reg_offset(s, ra), 636 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 637 } 638 639 /* 640 * Expand a 4-operand + fpstatus pointer + simd data value operation using 641 * an out-of-line helper. 642 */ 643 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 644 int rm, int ra, bool is_fp16, int data, 645 gen_helper_gvec_4_ptr *fn) 646 { 647 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 648 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 649 vec_full_reg_offset(s, rn), 650 vec_full_reg_offset(s, rm), 651 vec_full_reg_offset(s, ra), fpst, 652 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 653 } 654 655 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 656 * than the 32 bit equivalent. 657 */ 658 static inline void gen_set_NZ64(TCGv_i64 result) 659 { 660 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 661 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 662 } 663 664 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 665 static inline void gen_logic_CC(int sf, TCGv_i64 result) 666 { 667 if (sf) { 668 gen_set_NZ64(result); 669 } else { 670 tcg_gen_extrl_i64_i32(cpu_ZF, result); 671 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 672 } 673 tcg_gen_movi_i32(cpu_CF, 0); 674 tcg_gen_movi_i32(cpu_VF, 0); 675 } 676 677 /* dest = T0 + T1; compute C, N, V and Z flags */ 678 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 679 { 680 if (sf) { 681 TCGv_i64 result, flag, tmp; 682 result = tcg_temp_new_i64(); 683 flag = tcg_temp_new_i64(); 684 tmp = tcg_temp_new_i64(); 685 686 tcg_gen_movi_i64(tmp, 0); 687 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 688 689 tcg_gen_extrl_i64_i32(cpu_CF, flag); 690 691 gen_set_NZ64(result); 692 693 tcg_gen_xor_i64(flag, result, t0); 694 tcg_gen_xor_i64(tmp, t0, t1); 695 tcg_gen_andc_i64(flag, flag, tmp); 696 tcg_gen_extrh_i64_i32(cpu_VF, flag); 697 698 tcg_gen_mov_i64(dest, result); 699 } else { 700 /* 32 bit arithmetic */ 701 TCGv_i32 t0_32 = tcg_temp_new_i32(); 702 TCGv_i32 t1_32 = tcg_temp_new_i32(); 703 TCGv_i32 tmp = tcg_temp_new_i32(); 704 705 tcg_gen_movi_i32(tmp, 0); 706 tcg_gen_extrl_i64_i32(t0_32, t0); 707 tcg_gen_extrl_i64_i32(t1_32, t1); 708 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 709 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 710 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 711 tcg_gen_xor_i32(tmp, t0_32, t1_32); 712 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 713 tcg_gen_extu_i32_i64(dest, cpu_NF); 714 } 715 } 716 717 /* dest = T0 - T1; compute C, N, V and Z flags */ 718 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 719 { 720 if (sf) { 721 /* 64 bit arithmetic */ 722 TCGv_i64 result, flag, tmp; 723 724 result = tcg_temp_new_i64(); 725 flag = tcg_temp_new_i64(); 726 tcg_gen_sub_i64(result, t0, t1); 727 728 gen_set_NZ64(result); 729 730 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 731 tcg_gen_extrl_i64_i32(cpu_CF, flag); 732 733 tcg_gen_xor_i64(flag, result, t0); 734 tmp = tcg_temp_new_i64(); 735 tcg_gen_xor_i64(tmp, t0, t1); 736 tcg_gen_and_i64(flag, flag, tmp); 737 tcg_gen_extrh_i64_i32(cpu_VF, flag); 738 tcg_gen_mov_i64(dest, result); 739 } else { 740 /* 32 bit arithmetic */ 741 TCGv_i32 t0_32 = tcg_temp_new_i32(); 742 TCGv_i32 t1_32 = tcg_temp_new_i32(); 743 TCGv_i32 tmp; 744 745 tcg_gen_extrl_i64_i32(t0_32, t0); 746 tcg_gen_extrl_i64_i32(t1_32, t1); 747 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 748 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 749 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 750 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 751 tmp = tcg_temp_new_i32(); 752 tcg_gen_xor_i32(tmp, t0_32, t1_32); 753 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 754 tcg_gen_extu_i32_i64(dest, cpu_NF); 755 } 756 } 757 758 /* dest = T0 + T1 + CF; do not compute flags. */ 759 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 760 { 761 TCGv_i64 flag = tcg_temp_new_i64(); 762 tcg_gen_extu_i32_i64(flag, cpu_CF); 763 tcg_gen_add_i64(dest, t0, t1); 764 tcg_gen_add_i64(dest, dest, flag); 765 766 if (!sf) { 767 tcg_gen_ext32u_i64(dest, dest); 768 } 769 } 770 771 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 772 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 773 { 774 if (sf) { 775 TCGv_i64 result = tcg_temp_new_i64(); 776 TCGv_i64 cf_64 = tcg_temp_new_i64(); 777 TCGv_i64 vf_64 = tcg_temp_new_i64(); 778 TCGv_i64 tmp = tcg_temp_new_i64(); 779 TCGv_i64 zero = tcg_constant_i64(0); 780 781 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 782 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 783 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 784 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 785 gen_set_NZ64(result); 786 787 tcg_gen_xor_i64(vf_64, result, t0); 788 tcg_gen_xor_i64(tmp, t0, t1); 789 tcg_gen_andc_i64(vf_64, vf_64, tmp); 790 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 791 792 tcg_gen_mov_i64(dest, result); 793 } else { 794 TCGv_i32 t0_32 = tcg_temp_new_i32(); 795 TCGv_i32 t1_32 = tcg_temp_new_i32(); 796 TCGv_i32 tmp = tcg_temp_new_i32(); 797 TCGv_i32 zero = tcg_constant_i32(0); 798 799 tcg_gen_extrl_i64_i32(t0_32, t0); 800 tcg_gen_extrl_i64_i32(t1_32, t1); 801 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 802 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 803 804 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 805 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 806 tcg_gen_xor_i32(tmp, t0_32, t1_32); 807 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 808 tcg_gen_extu_i32_i64(dest, cpu_NF); 809 } 810 } 811 812 /* 813 * Load/Store generators 814 */ 815 816 /* 817 * Store from GPR register to memory. 818 */ 819 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 820 TCGv_i64 tcg_addr, MemOp memop, int memidx, 821 bool iss_valid, 822 unsigned int iss_srt, 823 bool iss_sf, bool iss_ar) 824 { 825 memop = finalize_memop(s, memop); 826 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 827 828 if (iss_valid) { 829 uint32_t syn; 830 831 syn = syn_data_abort_with_iss(0, 832 (memop & MO_SIZE), 833 false, 834 iss_srt, 835 iss_sf, 836 iss_ar, 837 0, 0, 0, 0, 0, false); 838 disas_set_insn_syndrome(s, syn); 839 } 840 } 841 842 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 843 TCGv_i64 tcg_addr, MemOp memop, 844 bool iss_valid, 845 unsigned int iss_srt, 846 bool iss_sf, bool iss_ar) 847 { 848 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 849 iss_valid, iss_srt, iss_sf, iss_ar); 850 } 851 852 /* 853 * Load from memory to GPR register 854 */ 855 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 856 MemOp memop, bool extend, int memidx, 857 bool iss_valid, unsigned int iss_srt, 858 bool iss_sf, bool iss_ar) 859 { 860 memop = finalize_memop(s, memop); 861 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 862 863 if (extend && (memop & MO_SIGN)) { 864 g_assert((memop & MO_SIZE) <= MO_32); 865 tcg_gen_ext32u_i64(dest, dest); 866 } 867 868 if (iss_valid) { 869 uint32_t syn; 870 871 syn = syn_data_abort_with_iss(0, 872 (memop & MO_SIZE), 873 (memop & MO_SIGN) != 0, 874 iss_srt, 875 iss_sf, 876 iss_ar, 877 0, 0, 0, 0, 0, false); 878 disas_set_insn_syndrome(s, syn); 879 } 880 } 881 882 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 883 MemOp memop, bool extend, 884 bool iss_valid, unsigned int iss_srt, 885 bool iss_sf, bool iss_ar) 886 { 887 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 888 iss_valid, iss_srt, iss_sf, iss_ar); 889 } 890 891 /* 892 * Store from FP register to memory 893 */ 894 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 895 { 896 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 897 TCGv_i64 tmplo = tcg_temp_new_i64(); 898 MemOp mop; 899 900 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 901 902 if (size < 4) { 903 mop = finalize_memop(s, size); 904 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 905 } else { 906 bool be = s->be_data == MO_BE; 907 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); 908 TCGv_i64 tmphi = tcg_temp_new_i64(); 909 910 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 911 912 mop = s->be_data | MO_UQ; 913 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 914 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 915 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 916 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr, 917 get_mem_index(s), mop); 918 } 919 } 920 921 /* 922 * Load from memory to FP register 923 */ 924 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 925 { 926 /* This always zero-extends and writes to a full 128 bit wide vector */ 927 TCGv_i64 tmplo = tcg_temp_new_i64(); 928 TCGv_i64 tmphi = NULL; 929 MemOp mop; 930 931 if (size < 4) { 932 mop = finalize_memop(s, size); 933 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 934 } else { 935 bool be = s->be_data == MO_BE; 936 TCGv_i64 tcg_hiaddr; 937 938 tmphi = tcg_temp_new_i64(); 939 tcg_hiaddr = tcg_temp_new_i64(); 940 941 mop = s->be_data | MO_UQ; 942 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 943 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 944 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 945 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr, 946 get_mem_index(s), mop); 947 } 948 949 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 950 951 if (tmphi) { 952 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 953 } 954 clear_vec_high(s, tmphi != NULL, destidx); 955 } 956 957 /* 958 * Vector load/store helpers. 959 * 960 * The principal difference between this and a FP load is that we don't 961 * zero extend as we are filling a partial chunk of the vector register. 962 * These functions don't support 128 bit loads/stores, which would be 963 * normal load/store operations. 964 * 965 * The _i32 versions are useful when operating on 32 bit quantities 966 * (eg for floating point single or using Neon helper functions). 967 */ 968 969 /* Get value of an element within a vector register */ 970 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 971 int element, MemOp memop) 972 { 973 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 974 switch ((unsigned)memop) { 975 case MO_8: 976 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 977 break; 978 case MO_16: 979 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 980 break; 981 case MO_32: 982 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 983 break; 984 case MO_8|MO_SIGN: 985 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 986 break; 987 case MO_16|MO_SIGN: 988 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 989 break; 990 case MO_32|MO_SIGN: 991 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 992 break; 993 case MO_64: 994 case MO_64|MO_SIGN: 995 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 996 break; 997 default: 998 g_assert_not_reached(); 999 } 1000 } 1001 1002 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1003 int element, MemOp memop) 1004 { 1005 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1006 switch (memop) { 1007 case MO_8: 1008 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1009 break; 1010 case MO_16: 1011 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1012 break; 1013 case MO_8|MO_SIGN: 1014 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1015 break; 1016 case MO_16|MO_SIGN: 1017 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1018 break; 1019 case MO_32: 1020 case MO_32|MO_SIGN: 1021 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1022 break; 1023 default: 1024 g_assert_not_reached(); 1025 } 1026 } 1027 1028 /* Set value of an element within a vector register */ 1029 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1030 int element, MemOp memop) 1031 { 1032 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1033 switch (memop) { 1034 case MO_8: 1035 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1036 break; 1037 case MO_16: 1038 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1039 break; 1040 case MO_32: 1041 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1042 break; 1043 case MO_64: 1044 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1045 break; 1046 default: 1047 g_assert_not_reached(); 1048 } 1049 } 1050 1051 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1052 int destidx, int element, MemOp memop) 1053 { 1054 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1055 switch (memop) { 1056 case MO_8: 1057 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1058 break; 1059 case MO_16: 1060 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1061 break; 1062 case MO_32: 1063 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1064 break; 1065 default: 1066 g_assert_not_reached(); 1067 } 1068 } 1069 1070 /* Store from vector register to memory */ 1071 static void do_vec_st(DisasContext *s, int srcidx, int element, 1072 TCGv_i64 tcg_addr, MemOp mop) 1073 { 1074 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1075 1076 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1077 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1078 } 1079 1080 /* Load from memory to vector register */ 1081 static void do_vec_ld(DisasContext *s, int destidx, int element, 1082 TCGv_i64 tcg_addr, MemOp mop) 1083 { 1084 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1085 1086 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1087 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1088 } 1089 1090 /* Check that FP/Neon access is enabled. If it is, return 1091 * true. If not, emit code to generate an appropriate exception, 1092 * and return false; the caller should not emit any code for 1093 * the instruction. Note that this check must happen after all 1094 * unallocated-encoding checks (otherwise the syndrome information 1095 * for the resulting exception will be incorrect). 1096 */ 1097 static bool fp_access_check_only(DisasContext *s) 1098 { 1099 if (s->fp_excp_el) { 1100 assert(!s->fp_access_checked); 1101 s->fp_access_checked = true; 1102 1103 gen_exception_insn_el(s, 0, EXCP_UDEF, 1104 syn_fp_access_trap(1, 0xe, false, 0), 1105 s->fp_excp_el); 1106 return false; 1107 } 1108 s->fp_access_checked = true; 1109 return true; 1110 } 1111 1112 static bool fp_access_check(DisasContext *s) 1113 { 1114 if (!fp_access_check_only(s)) { 1115 return false; 1116 } 1117 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1118 gen_exception_insn(s, 0, EXCP_UDEF, 1119 syn_smetrap(SME_ET_Streaming, false)); 1120 return false; 1121 } 1122 return true; 1123 } 1124 1125 /* 1126 * Check that SVE access is enabled. If it is, return true. 1127 * If not, emit code to generate an appropriate exception and return false. 1128 * This function corresponds to CheckSVEEnabled(). 1129 */ 1130 bool sve_access_check(DisasContext *s) 1131 { 1132 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1133 assert(dc_isar_feature(aa64_sme, s)); 1134 if (!sme_sm_enabled_check(s)) { 1135 goto fail_exit; 1136 } 1137 } else if (s->sve_excp_el) { 1138 gen_exception_insn_el(s, 0, EXCP_UDEF, 1139 syn_sve_access_trap(), s->sve_excp_el); 1140 goto fail_exit; 1141 } 1142 s->sve_access_checked = true; 1143 return fp_access_check(s); 1144 1145 fail_exit: 1146 /* Assert that we only raise one exception per instruction. */ 1147 assert(!s->sve_access_checked); 1148 s->sve_access_checked = true; 1149 return false; 1150 } 1151 1152 /* 1153 * Check that SME access is enabled, raise an exception if not. 1154 * Note that this function corresponds to CheckSMEAccess and is 1155 * only used directly for cpregs. 1156 */ 1157 static bool sme_access_check(DisasContext *s) 1158 { 1159 if (s->sme_excp_el) { 1160 gen_exception_insn_el(s, 0, EXCP_UDEF, 1161 syn_smetrap(SME_ET_AccessTrap, false), 1162 s->sme_excp_el); 1163 return false; 1164 } 1165 return true; 1166 } 1167 1168 /* This function corresponds to CheckSMEEnabled. */ 1169 bool sme_enabled_check(DisasContext *s) 1170 { 1171 /* 1172 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1173 * to be zero when fp_excp_el has priority. This is because we need 1174 * sme_excp_el by itself for cpregs access checks. 1175 */ 1176 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1177 s->fp_access_checked = true; 1178 return sme_access_check(s); 1179 } 1180 return fp_access_check_only(s); 1181 } 1182 1183 /* Common subroutine for CheckSMEAnd*Enabled. */ 1184 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1185 { 1186 if (!sme_enabled_check(s)) { 1187 return false; 1188 } 1189 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1190 gen_exception_insn(s, 0, EXCP_UDEF, 1191 syn_smetrap(SME_ET_NotStreaming, false)); 1192 return false; 1193 } 1194 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1195 gen_exception_insn(s, 0, EXCP_UDEF, 1196 syn_smetrap(SME_ET_InactiveZA, false)); 1197 return false; 1198 } 1199 return true; 1200 } 1201 1202 /* 1203 * This utility function is for doing register extension with an 1204 * optional shift. You will likely want to pass a temporary for the 1205 * destination register. See DecodeRegExtend() in the ARM ARM. 1206 */ 1207 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1208 int option, unsigned int shift) 1209 { 1210 int extsize = extract32(option, 0, 2); 1211 bool is_signed = extract32(option, 2, 1); 1212 1213 if (is_signed) { 1214 switch (extsize) { 1215 case 0: 1216 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1217 break; 1218 case 1: 1219 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1220 break; 1221 case 2: 1222 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1223 break; 1224 case 3: 1225 tcg_gen_mov_i64(tcg_out, tcg_in); 1226 break; 1227 } 1228 } else { 1229 switch (extsize) { 1230 case 0: 1231 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1232 break; 1233 case 1: 1234 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1235 break; 1236 case 2: 1237 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1238 break; 1239 case 3: 1240 tcg_gen_mov_i64(tcg_out, tcg_in); 1241 break; 1242 } 1243 } 1244 1245 if (shift) { 1246 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1247 } 1248 } 1249 1250 static inline void gen_check_sp_alignment(DisasContext *s) 1251 { 1252 /* The AArch64 architecture mandates that (if enabled via PSTATE 1253 * or SCTLR bits) there is a check that SP is 16-aligned on every 1254 * SP-relative load or store (with an exception generated if it is not). 1255 * In line with general QEMU practice regarding misaligned accesses, 1256 * we omit these checks for the sake of guest program performance. 1257 * This function is provided as a hook so we can more easily add these 1258 * checks in future (possibly as a "favour catching guest program bugs 1259 * over speed" user selectable option). 1260 */ 1261 } 1262 1263 /* 1264 * This provides a simple table based table lookup decoder. It is 1265 * intended to be used when the relevant bits for decode are too 1266 * awkwardly placed and switch/if based logic would be confusing and 1267 * deeply nested. Since it's a linear search through the table, tables 1268 * should be kept small. 1269 * 1270 * It returns the first handler where insn & mask == pattern, or 1271 * NULL if there is no match. 1272 * The table is terminated by an empty mask (i.e. 0) 1273 */ 1274 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1275 uint32_t insn) 1276 { 1277 const AArch64DecodeTable *tptr = table; 1278 1279 while (tptr->mask) { 1280 if ((insn & tptr->mask) == tptr->pattern) { 1281 return tptr->disas_fn; 1282 } 1283 tptr++; 1284 } 1285 return NULL; 1286 } 1287 1288 /* 1289 * The instruction disassembly implemented here matches 1290 * the instruction encoding classifications in chapter C4 1291 * of the ARM Architecture Reference Manual (DDI0487B_a); 1292 * classification names and decode diagrams here should generally 1293 * match up with those in the manual. 1294 */ 1295 1296 /* Unconditional branch (immediate) 1297 * 31 30 26 25 0 1298 * +----+-----------+-------------------------------------+ 1299 * | op | 0 0 1 0 1 | imm26 | 1300 * +----+-----------+-------------------------------------+ 1301 */ 1302 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) 1303 { 1304 int64_t diff = sextract32(insn, 0, 26) * 4; 1305 1306 if (insn & (1U << 31)) { 1307 /* BL Branch with link */ 1308 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1309 } 1310 1311 /* B Branch / BL Branch with link */ 1312 reset_btype(s); 1313 gen_goto_tb(s, 0, diff); 1314 } 1315 1316 /* Compare and branch (immediate) 1317 * 31 30 25 24 23 5 4 0 1318 * +----+-------------+----+---------------------+--------+ 1319 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | 1320 * +----+-------------+----+---------------------+--------+ 1321 */ 1322 static void disas_comp_b_imm(DisasContext *s, uint32_t insn) 1323 { 1324 unsigned int sf, op, rt; 1325 int64_t diff; 1326 DisasLabel match; 1327 TCGv_i64 tcg_cmp; 1328 1329 sf = extract32(insn, 31, 1); 1330 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ 1331 rt = extract32(insn, 0, 5); 1332 diff = sextract32(insn, 5, 19) * 4; 1333 1334 tcg_cmp = read_cpu_reg(s, rt, sf); 1335 reset_btype(s); 1336 1337 match = gen_disas_label(s); 1338 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1339 tcg_cmp, 0, match.label); 1340 gen_goto_tb(s, 0, 4); 1341 set_disas_label(s, match); 1342 gen_goto_tb(s, 1, diff); 1343 } 1344 1345 /* Test and branch (immediate) 1346 * 31 30 25 24 23 19 18 5 4 0 1347 * +----+-------------+----+-------+-------------+------+ 1348 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | 1349 * +----+-------------+----+-------+-------------+------+ 1350 */ 1351 static void disas_test_b_imm(DisasContext *s, uint32_t insn) 1352 { 1353 unsigned int bit_pos, op, rt; 1354 int64_t diff; 1355 DisasLabel match; 1356 TCGv_i64 tcg_cmp; 1357 1358 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); 1359 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ 1360 diff = sextract32(insn, 5, 14) * 4; 1361 rt = extract32(insn, 0, 5); 1362 1363 tcg_cmp = tcg_temp_new_i64(); 1364 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); 1365 1366 reset_btype(s); 1367 1368 match = gen_disas_label(s); 1369 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1370 tcg_cmp, 0, match.label); 1371 gen_goto_tb(s, 0, 4); 1372 set_disas_label(s, match); 1373 gen_goto_tb(s, 1, diff); 1374 } 1375 1376 /* Conditional branch (immediate) 1377 * 31 25 24 23 5 4 3 0 1378 * +---------------+----+---------------------+----+------+ 1379 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | 1380 * +---------------+----+---------------------+----+------+ 1381 */ 1382 static void disas_cond_b_imm(DisasContext *s, uint32_t insn) 1383 { 1384 unsigned int cond; 1385 int64_t diff; 1386 1387 if ((insn & (1 << 4)) || (insn & (1 << 24))) { 1388 unallocated_encoding(s); 1389 return; 1390 } 1391 diff = sextract32(insn, 5, 19) * 4; 1392 cond = extract32(insn, 0, 4); 1393 1394 reset_btype(s); 1395 if (cond < 0x0e) { 1396 /* genuinely conditional branches */ 1397 DisasLabel match = gen_disas_label(s); 1398 arm_gen_test_cc(cond, match.label); 1399 gen_goto_tb(s, 0, 4); 1400 set_disas_label(s, match); 1401 gen_goto_tb(s, 1, diff); 1402 } else { 1403 /* 0xe and 0xf are both "always" conditions */ 1404 gen_goto_tb(s, 0, diff); 1405 } 1406 } 1407 1408 /* HINT instruction group, including various allocated HINTs */ 1409 static void handle_hint(DisasContext *s, uint32_t insn, 1410 unsigned int op1, unsigned int op2, unsigned int crm) 1411 { 1412 unsigned int selector = crm << 3 | op2; 1413 1414 if (op1 != 3) { 1415 unallocated_encoding(s); 1416 return; 1417 } 1418 1419 switch (selector) { 1420 case 0b00000: /* NOP */ 1421 break; 1422 case 0b00011: /* WFI */ 1423 s->base.is_jmp = DISAS_WFI; 1424 break; 1425 case 0b00001: /* YIELD */ 1426 /* When running in MTTCG we don't generate jumps to the yield and 1427 * WFE helpers as it won't affect the scheduling of other vCPUs. 1428 * If we wanted to more completely model WFE/SEV so we don't busy 1429 * spin unnecessarily we would need to do something more involved. 1430 */ 1431 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1432 s->base.is_jmp = DISAS_YIELD; 1433 } 1434 break; 1435 case 0b00010: /* WFE */ 1436 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1437 s->base.is_jmp = DISAS_WFE; 1438 } 1439 break; 1440 case 0b00100: /* SEV */ 1441 case 0b00101: /* SEVL */ 1442 case 0b00110: /* DGH */ 1443 /* we treat all as NOP at least for now */ 1444 break; 1445 case 0b00111: /* XPACLRI */ 1446 if (s->pauth_active) { 1447 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1448 } 1449 break; 1450 case 0b01000: /* PACIA1716 */ 1451 if (s->pauth_active) { 1452 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1453 } 1454 break; 1455 case 0b01010: /* PACIB1716 */ 1456 if (s->pauth_active) { 1457 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1458 } 1459 break; 1460 case 0b01100: /* AUTIA1716 */ 1461 if (s->pauth_active) { 1462 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1463 } 1464 break; 1465 case 0b01110: /* AUTIB1716 */ 1466 if (s->pauth_active) { 1467 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1468 } 1469 break; 1470 case 0b10000: /* ESB */ 1471 /* Without RAS, we must implement this as NOP. */ 1472 if (dc_isar_feature(aa64_ras, s)) { 1473 /* 1474 * QEMU does not have a source of physical SErrors, 1475 * so we are only concerned with virtual SErrors. 1476 * The pseudocode in the ARM for this case is 1477 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1478 * AArch64.vESBOperation(); 1479 * Most of the condition can be evaluated at translation time. 1480 * Test for EL2 present, and defer test for SEL2 to runtime. 1481 */ 1482 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1483 gen_helper_vesb(cpu_env); 1484 } 1485 } 1486 break; 1487 case 0b11000: /* PACIAZ */ 1488 if (s->pauth_active) { 1489 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1490 tcg_constant_i64(0)); 1491 } 1492 break; 1493 case 0b11001: /* PACIASP */ 1494 if (s->pauth_active) { 1495 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1496 } 1497 break; 1498 case 0b11010: /* PACIBZ */ 1499 if (s->pauth_active) { 1500 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1501 tcg_constant_i64(0)); 1502 } 1503 break; 1504 case 0b11011: /* PACIBSP */ 1505 if (s->pauth_active) { 1506 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1507 } 1508 break; 1509 case 0b11100: /* AUTIAZ */ 1510 if (s->pauth_active) { 1511 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1512 tcg_constant_i64(0)); 1513 } 1514 break; 1515 case 0b11101: /* AUTIASP */ 1516 if (s->pauth_active) { 1517 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1518 } 1519 break; 1520 case 0b11110: /* AUTIBZ */ 1521 if (s->pauth_active) { 1522 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1523 tcg_constant_i64(0)); 1524 } 1525 break; 1526 case 0b11111: /* AUTIBSP */ 1527 if (s->pauth_active) { 1528 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1529 } 1530 break; 1531 default: 1532 /* default specified as NOP equivalent */ 1533 break; 1534 } 1535 } 1536 1537 static void gen_clrex(DisasContext *s, uint32_t insn) 1538 { 1539 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1540 } 1541 1542 /* CLREX, DSB, DMB, ISB */ 1543 static void handle_sync(DisasContext *s, uint32_t insn, 1544 unsigned int op1, unsigned int op2, unsigned int crm) 1545 { 1546 TCGBar bar; 1547 1548 if (op1 != 3) { 1549 unallocated_encoding(s); 1550 return; 1551 } 1552 1553 switch (op2) { 1554 case 2: /* CLREX */ 1555 gen_clrex(s, insn); 1556 return; 1557 case 4: /* DSB */ 1558 case 5: /* DMB */ 1559 switch (crm & 3) { 1560 case 1: /* MBReqTypes_Reads */ 1561 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1562 break; 1563 case 2: /* MBReqTypes_Writes */ 1564 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1565 break; 1566 default: /* MBReqTypes_All */ 1567 bar = TCG_BAR_SC | TCG_MO_ALL; 1568 break; 1569 } 1570 tcg_gen_mb(bar); 1571 return; 1572 case 6: /* ISB */ 1573 /* We need to break the TB after this insn to execute 1574 * a self-modified code correctly and also to take 1575 * any pending interrupts immediately. 1576 */ 1577 reset_btype(s); 1578 gen_goto_tb(s, 0, 4); 1579 return; 1580 1581 case 7: /* SB */ 1582 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1583 goto do_unallocated; 1584 } 1585 /* 1586 * TODO: There is no speculation barrier opcode for TCG; 1587 * MB and end the TB instead. 1588 */ 1589 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1590 gen_goto_tb(s, 0, 4); 1591 return; 1592 1593 default: 1594 do_unallocated: 1595 unallocated_encoding(s); 1596 return; 1597 } 1598 } 1599 1600 static void gen_xaflag(void) 1601 { 1602 TCGv_i32 z = tcg_temp_new_i32(); 1603 1604 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1605 1606 /* 1607 * (!C & !Z) << 31 1608 * (!(C | Z)) << 31 1609 * ~((C | Z) << 31) 1610 * ~-(C | Z) 1611 * (C | Z) - 1 1612 */ 1613 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1614 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1615 1616 /* !(Z & C) */ 1617 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1618 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1619 1620 /* (!C & Z) << 31 -> -(Z & ~C) */ 1621 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1622 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1623 1624 /* C | Z */ 1625 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1626 } 1627 1628 static void gen_axflag(void) 1629 { 1630 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1631 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1632 1633 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1634 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1635 1636 tcg_gen_movi_i32(cpu_NF, 0); 1637 tcg_gen_movi_i32(cpu_VF, 0); 1638 } 1639 1640 /* MSR (immediate) - move immediate to processor state field */ 1641 static void handle_msr_i(DisasContext *s, uint32_t insn, 1642 unsigned int op1, unsigned int op2, unsigned int crm) 1643 { 1644 int op = op1 << 3 | op2; 1645 1646 /* End the TB by default, chaining is ok. */ 1647 s->base.is_jmp = DISAS_TOO_MANY; 1648 1649 switch (op) { 1650 case 0x00: /* CFINV */ 1651 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1652 goto do_unallocated; 1653 } 1654 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1655 s->base.is_jmp = DISAS_NEXT; 1656 break; 1657 1658 case 0x01: /* XAFlag */ 1659 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1660 goto do_unallocated; 1661 } 1662 gen_xaflag(); 1663 s->base.is_jmp = DISAS_NEXT; 1664 break; 1665 1666 case 0x02: /* AXFlag */ 1667 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1668 goto do_unallocated; 1669 } 1670 gen_axflag(); 1671 s->base.is_jmp = DISAS_NEXT; 1672 break; 1673 1674 case 0x03: /* UAO */ 1675 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1676 goto do_unallocated; 1677 } 1678 if (crm & 1) { 1679 set_pstate_bits(PSTATE_UAO); 1680 } else { 1681 clear_pstate_bits(PSTATE_UAO); 1682 } 1683 gen_rebuild_hflags(s); 1684 break; 1685 1686 case 0x04: /* PAN */ 1687 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1688 goto do_unallocated; 1689 } 1690 if (crm & 1) { 1691 set_pstate_bits(PSTATE_PAN); 1692 } else { 1693 clear_pstate_bits(PSTATE_PAN); 1694 } 1695 gen_rebuild_hflags(s); 1696 break; 1697 1698 case 0x05: /* SPSel */ 1699 if (s->current_el == 0) { 1700 goto do_unallocated; 1701 } 1702 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1703 break; 1704 1705 case 0x19: /* SSBS */ 1706 if (!dc_isar_feature(aa64_ssbs, s)) { 1707 goto do_unallocated; 1708 } 1709 if (crm & 1) { 1710 set_pstate_bits(PSTATE_SSBS); 1711 } else { 1712 clear_pstate_bits(PSTATE_SSBS); 1713 } 1714 /* Don't need to rebuild hflags since SSBS is a nop */ 1715 break; 1716 1717 case 0x1a: /* DIT */ 1718 if (!dc_isar_feature(aa64_dit, s)) { 1719 goto do_unallocated; 1720 } 1721 if (crm & 1) { 1722 set_pstate_bits(PSTATE_DIT); 1723 } else { 1724 clear_pstate_bits(PSTATE_DIT); 1725 } 1726 /* There's no need to rebuild hflags because DIT is a nop */ 1727 break; 1728 1729 case 0x1e: /* DAIFSet */ 1730 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1731 break; 1732 1733 case 0x1f: /* DAIFClear */ 1734 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1735 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1736 s->base.is_jmp = DISAS_UPDATE_EXIT; 1737 break; 1738 1739 case 0x1c: /* TCO */ 1740 if (dc_isar_feature(aa64_mte, s)) { 1741 /* Full MTE is enabled -- set the TCO bit as directed. */ 1742 if (crm & 1) { 1743 set_pstate_bits(PSTATE_TCO); 1744 } else { 1745 clear_pstate_bits(PSTATE_TCO); 1746 } 1747 gen_rebuild_hflags(s); 1748 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1749 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1750 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1751 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1752 s->base.is_jmp = DISAS_NEXT; 1753 } else { 1754 goto do_unallocated; 1755 } 1756 break; 1757 1758 case 0x1b: /* SVCR* */ 1759 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1760 goto do_unallocated; 1761 } 1762 if (sme_access_check(s)) { 1763 int old = s->pstate_sm | (s->pstate_za << 1); 1764 int new = (crm & 1) * 3; 1765 int msk = (crm >> 1) & 3; 1766 1767 if ((old ^ new) & msk) { 1768 /* At least one bit changes. */ 1769 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1770 tcg_constant_i32(msk)); 1771 } else { 1772 s->base.is_jmp = DISAS_NEXT; 1773 } 1774 } 1775 break; 1776 1777 default: 1778 do_unallocated: 1779 unallocated_encoding(s); 1780 return; 1781 } 1782 } 1783 1784 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1785 { 1786 TCGv_i32 tmp = tcg_temp_new_i32(); 1787 TCGv_i32 nzcv = tcg_temp_new_i32(); 1788 1789 /* build bit 31, N */ 1790 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1791 /* build bit 30, Z */ 1792 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1793 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1794 /* build bit 29, C */ 1795 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1796 /* build bit 28, V */ 1797 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1798 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1799 /* generate result */ 1800 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1801 } 1802 1803 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1804 { 1805 TCGv_i32 nzcv = tcg_temp_new_i32(); 1806 1807 /* take NZCV from R[t] */ 1808 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1809 1810 /* bit 31, N */ 1811 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1812 /* bit 30, Z */ 1813 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1814 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1815 /* bit 29, C */ 1816 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1817 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1818 /* bit 28, V */ 1819 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1820 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1821 } 1822 1823 static void gen_sysreg_undef(DisasContext *s, bool isread, 1824 uint8_t op0, uint8_t op1, uint8_t op2, 1825 uint8_t crn, uint8_t crm, uint8_t rt) 1826 { 1827 /* 1828 * Generate code to emit an UNDEF with correct syndrome 1829 * information for a failed system register access. 1830 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1831 * but if FEAT_IDST is implemented then read accesses to registers 1832 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1833 * syndrome. 1834 */ 1835 uint32_t syndrome; 1836 1837 if (isread && dc_isar_feature(aa64_ids, s) && 1838 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 1839 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1840 } else { 1841 syndrome = syn_uncategorized(); 1842 } 1843 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 1844 } 1845 1846 /* MRS - move from system register 1847 * MSR (register) - move to system register 1848 * SYS 1849 * SYSL 1850 * These are all essentially the same insn in 'read' and 'write' 1851 * versions, with varying op0 fields. 1852 */ 1853 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 1854 unsigned int op0, unsigned int op1, unsigned int op2, 1855 unsigned int crn, unsigned int crm, unsigned int rt) 1856 { 1857 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 1858 crn, crm, op0, op1, op2); 1859 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 1860 TCGv_ptr tcg_ri = NULL; 1861 TCGv_i64 tcg_rt; 1862 1863 if (!ri) { 1864 /* Unknown register; this might be a guest error or a QEMU 1865 * unimplemented feature. 1866 */ 1867 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 1868 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 1869 isread ? "read" : "write", op0, op1, crn, crm, op2); 1870 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1871 return; 1872 } 1873 1874 /* Check access permissions */ 1875 if (!cp_access_ok(s->current_el, ri, isread)) { 1876 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1877 return; 1878 } 1879 1880 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 1881 /* Emit code to perform further access permissions checks at 1882 * runtime; this may result in an exception. 1883 */ 1884 uint32_t syndrome; 1885 1886 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1887 gen_a64_update_pc(s, 0); 1888 tcg_ri = tcg_temp_new_ptr(); 1889 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 1890 tcg_constant_i32(key), 1891 tcg_constant_i32(syndrome), 1892 tcg_constant_i32(isread)); 1893 } else if (ri->type & ARM_CP_RAISES_EXC) { 1894 /* 1895 * The readfn or writefn might raise an exception; 1896 * synchronize the CPU state in case it does. 1897 */ 1898 gen_a64_update_pc(s, 0); 1899 } 1900 1901 /* Handle special cases first */ 1902 switch (ri->type & ARM_CP_SPECIAL_MASK) { 1903 case 0: 1904 break; 1905 case ARM_CP_NOP: 1906 return; 1907 case ARM_CP_NZCV: 1908 tcg_rt = cpu_reg(s, rt); 1909 if (isread) { 1910 gen_get_nzcv(tcg_rt); 1911 } else { 1912 gen_set_nzcv(tcg_rt); 1913 } 1914 return; 1915 case ARM_CP_CURRENTEL: 1916 /* Reads as current EL value from pstate, which is 1917 * guaranteed to be constant by the tb flags. 1918 */ 1919 tcg_rt = cpu_reg(s, rt); 1920 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 1921 return; 1922 case ARM_CP_DC_ZVA: 1923 /* Writes clear the aligned block of memory which rt points into. */ 1924 if (s->mte_active[0]) { 1925 int desc = 0; 1926 1927 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 1928 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 1929 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 1930 1931 tcg_rt = tcg_temp_new_i64(); 1932 gen_helper_mte_check_zva(tcg_rt, cpu_env, 1933 tcg_constant_i32(desc), cpu_reg(s, rt)); 1934 } else { 1935 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 1936 } 1937 gen_helper_dc_zva(cpu_env, tcg_rt); 1938 return; 1939 case ARM_CP_DC_GVA: 1940 { 1941 TCGv_i64 clean_addr, tag; 1942 1943 /* 1944 * DC_GVA, like DC_ZVA, requires that we supply the original 1945 * pointer for an invalid page. Probe that address first. 1946 */ 1947 tcg_rt = cpu_reg(s, rt); 1948 clean_addr = clean_data_tbi(s, tcg_rt); 1949 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 1950 1951 if (s->ata) { 1952 /* Extract the tag from the register to match STZGM. */ 1953 tag = tcg_temp_new_i64(); 1954 tcg_gen_shri_i64(tag, tcg_rt, 56); 1955 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1956 } 1957 } 1958 return; 1959 case ARM_CP_DC_GZVA: 1960 { 1961 TCGv_i64 clean_addr, tag; 1962 1963 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 1964 tcg_rt = cpu_reg(s, rt); 1965 clean_addr = clean_data_tbi(s, tcg_rt); 1966 gen_helper_dc_zva(cpu_env, clean_addr); 1967 1968 if (s->ata) { 1969 /* Extract the tag from the register to match STZGM. */ 1970 tag = tcg_temp_new_i64(); 1971 tcg_gen_shri_i64(tag, tcg_rt, 56); 1972 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1973 } 1974 } 1975 return; 1976 default: 1977 g_assert_not_reached(); 1978 } 1979 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 1980 return; 1981 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 1982 return; 1983 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 1984 return; 1985 } 1986 1987 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 1988 gen_io_start(); 1989 } 1990 1991 tcg_rt = cpu_reg(s, rt); 1992 1993 if (isread) { 1994 if (ri->type & ARM_CP_CONST) { 1995 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 1996 } else if (ri->readfn) { 1997 if (!tcg_ri) { 1998 tcg_ri = gen_lookup_cp_reg(key); 1999 } 2000 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2001 } else { 2002 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2003 } 2004 } else { 2005 if (ri->type & ARM_CP_CONST) { 2006 /* If not forbidden by access permissions, treat as WI */ 2007 return; 2008 } else if (ri->writefn) { 2009 if (!tcg_ri) { 2010 tcg_ri = gen_lookup_cp_reg(key); 2011 } 2012 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2013 } else { 2014 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2015 } 2016 } 2017 2018 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2019 /* I/O operations must end the TB here (whether read or write) */ 2020 s->base.is_jmp = DISAS_UPDATE_EXIT; 2021 } 2022 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2023 /* 2024 * A write to any coprocessor regiser that ends a TB 2025 * must rebuild the hflags for the next TB. 2026 */ 2027 gen_rebuild_hflags(s); 2028 /* 2029 * We default to ending the TB on a coprocessor register write, 2030 * but allow this to be suppressed by the register definition 2031 * (usually only necessary to work around guest bugs). 2032 */ 2033 s->base.is_jmp = DISAS_UPDATE_EXIT; 2034 } 2035 } 2036 2037 /* System 2038 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2039 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2040 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2041 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2042 */ 2043 static void disas_system(DisasContext *s, uint32_t insn) 2044 { 2045 unsigned int l, op0, op1, crn, crm, op2, rt; 2046 l = extract32(insn, 21, 1); 2047 op0 = extract32(insn, 19, 2); 2048 op1 = extract32(insn, 16, 3); 2049 crn = extract32(insn, 12, 4); 2050 crm = extract32(insn, 8, 4); 2051 op2 = extract32(insn, 5, 3); 2052 rt = extract32(insn, 0, 5); 2053 2054 if (op0 == 0) { 2055 if (l || rt != 31) { 2056 unallocated_encoding(s); 2057 return; 2058 } 2059 switch (crn) { 2060 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2061 handle_hint(s, insn, op1, op2, crm); 2062 break; 2063 case 3: /* CLREX, DSB, DMB, ISB */ 2064 handle_sync(s, insn, op1, op2, crm); 2065 break; 2066 case 4: /* MSR (immediate) */ 2067 handle_msr_i(s, insn, op1, op2, crm); 2068 break; 2069 default: 2070 unallocated_encoding(s); 2071 break; 2072 } 2073 return; 2074 } 2075 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2076 } 2077 2078 /* Exception generation 2079 * 2080 * 31 24 23 21 20 5 4 2 1 0 2081 * +-----------------+-----+------------------------+-----+----+ 2082 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2083 * +-----------------------+------------------------+----------+ 2084 */ 2085 static void disas_exc(DisasContext *s, uint32_t insn) 2086 { 2087 int opc = extract32(insn, 21, 3); 2088 int op2_ll = extract32(insn, 0, 5); 2089 int imm16 = extract32(insn, 5, 16); 2090 uint32_t syndrome; 2091 2092 switch (opc) { 2093 case 0: 2094 /* For SVC, HVC and SMC we advance the single-step state 2095 * machine before taking the exception. This is architecturally 2096 * mandated, to ensure that single-stepping a system call 2097 * instruction works properly. 2098 */ 2099 switch (op2_ll) { 2100 case 1: /* SVC */ 2101 syndrome = syn_aa64_svc(imm16); 2102 if (s->fgt_svc) { 2103 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2104 break; 2105 } 2106 gen_ss_advance(s); 2107 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2108 break; 2109 case 2: /* HVC */ 2110 if (s->current_el == 0) { 2111 unallocated_encoding(s); 2112 break; 2113 } 2114 /* The pre HVC helper handles cases when HVC gets trapped 2115 * as an undefined insn by runtime configuration. 2116 */ 2117 gen_a64_update_pc(s, 0); 2118 gen_helper_pre_hvc(cpu_env); 2119 gen_ss_advance(s); 2120 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2121 break; 2122 case 3: /* SMC */ 2123 if (s->current_el == 0) { 2124 unallocated_encoding(s); 2125 break; 2126 } 2127 gen_a64_update_pc(s, 0); 2128 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2129 gen_ss_advance(s); 2130 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2131 break; 2132 default: 2133 unallocated_encoding(s); 2134 break; 2135 } 2136 break; 2137 case 1: 2138 if (op2_ll != 0) { 2139 unallocated_encoding(s); 2140 break; 2141 } 2142 /* BRK */ 2143 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2144 break; 2145 case 2: 2146 if (op2_ll != 0) { 2147 unallocated_encoding(s); 2148 break; 2149 } 2150 /* HLT. This has two purposes. 2151 * Architecturally, it is an external halting debug instruction. 2152 * Since QEMU doesn't implement external debug, we treat this as 2153 * it is required for halting debug disabled: it will UNDEF. 2154 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2155 */ 2156 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2157 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2158 } else { 2159 unallocated_encoding(s); 2160 } 2161 break; 2162 case 5: 2163 if (op2_ll < 1 || op2_ll > 3) { 2164 unallocated_encoding(s); 2165 break; 2166 } 2167 /* DCPS1, DCPS2, DCPS3 */ 2168 unallocated_encoding(s); 2169 break; 2170 default: 2171 unallocated_encoding(s); 2172 break; 2173 } 2174 } 2175 2176 /* Unconditional branch (register) 2177 * 31 25 24 21 20 16 15 10 9 5 4 0 2178 * +---------------+-------+-------+-------+------+-------+ 2179 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | 2180 * +---------------+-------+-------+-------+------+-------+ 2181 */ 2182 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) 2183 { 2184 unsigned int opc, op2, op3, rn, op4; 2185 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */ 2186 TCGv_i64 dst; 2187 TCGv_i64 modifier; 2188 2189 opc = extract32(insn, 21, 4); 2190 op2 = extract32(insn, 16, 5); 2191 op3 = extract32(insn, 10, 6); 2192 rn = extract32(insn, 5, 5); 2193 op4 = extract32(insn, 0, 5); 2194 2195 if (op2 != 0x1f) { 2196 goto do_unallocated; 2197 } 2198 2199 switch (opc) { 2200 case 0: /* BR */ 2201 case 1: /* BLR */ 2202 case 2: /* RET */ 2203 btype_mod = opc; 2204 switch (op3) { 2205 case 0: 2206 /* BR, BLR, RET */ 2207 if (op4 != 0) { 2208 goto do_unallocated; 2209 } 2210 dst = cpu_reg(s, rn); 2211 break; 2212 2213 case 2: 2214 case 3: 2215 if (!dc_isar_feature(aa64_pauth, s)) { 2216 goto do_unallocated; 2217 } 2218 if (opc == 2) { 2219 /* RETAA, RETAB */ 2220 if (rn != 0x1f || op4 != 0x1f) { 2221 goto do_unallocated; 2222 } 2223 rn = 30; 2224 modifier = cpu_X[31]; 2225 } else { 2226 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */ 2227 if (op4 != 0x1f) { 2228 goto do_unallocated; 2229 } 2230 modifier = tcg_constant_i64(0); 2231 } 2232 if (s->pauth_active) { 2233 dst = tcg_temp_new_i64(); 2234 if (op3 == 2) { 2235 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2236 } else { 2237 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2238 } 2239 } else { 2240 dst = cpu_reg(s, rn); 2241 } 2242 break; 2243 2244 default: 2245 goto do_unallocated; 2246 } 2247 /* BLR also needs to load return address */ 2248 if (opc == 1) { 2249 TCGv_i64 lr = cpu_reg(s, 30); 2250 if (dst == lr) { 2251 TCGv_i64 tmp = tcg_temp_new_i64(); 2252 tcg_gen_mov_i64(tmp, dst); 2253 dst = tmp; 2254 } 2255 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2256 } 2257 gen_a64_set_pc(s, dst); 2258 break; 2259 2260 case 8: /* BRAA */ 2261 case 9: /* BLRAA */ 2262 if (!dc_isar_feature(aa64_pauth, s)) { 2263 goto do_unallocated; 2264 } 2265 if ((op3 & ~1) != 2) { 2266 goto do_unallocated; 2267 } 2268 btype_mod = opc & 1; 2269 if (s->pauth_active) { 2270 dst = tcg_temp_new_i64(); 2271 modifier = cpu_reg_sp(s, op4); 2272 if (op3 == 2) { 2273 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2274 } else { 2275 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2276 } 2277 } else { 2278 dst = cpu_reg(s, rn); 2279 } 2280 /* BLRAA also needs to load return address */ 2281 if (opc == 9) { 2282 TCGv_i64 lr = cpu_reg(s, 30); 2283 if (dst == lr) { 2284 TCGv_i64 tmp = tcg_temp_new_i64(); 2285 tcg_gen_mov_i64(tmp, dst); 2286 dst = tmp; 2287 } 2288 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2289 } 2290 gen_a64_set_pc(s, dst); 2291 break; 2292 2293 case 4: /* ERET */ 2294 if (s->current_el == 0) { 2295 goto do_unallocated; 2296 } 2297 switch (op3) { 2298 case 0: /* ERET */ 2299 if (op4 != 0) { 2300 goto do_unallocated; 2301 } 2302 if (s->fgt_eret) { 2303 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2304 return; 2305 } 2306 dst = tcg_temp_new_i64(); 2307 tcg_gen_ld_i64(dst, cpu_env, 2308 offsetof(CPUARMState, elr_el[s->current_el])); 2309 break; 2310 2311 case 2: /* ERETAA */ 2312 case 3: /* ERETAB */ 2313 if (!dc_isar_feature(aa64_pauth, s)) { 2314 goto do_unallocated; 2315 } 2316 if (rn != 0x1f || op4 != 0x1f) { 2317 goto do_unallocated; 2318 } 2319 /* The FGT trap takes precedence over an auth trap. */ 2320 if (s->fgt_eret) { 2321 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2322 return; 2323 } 2324 dst = tcg_temp_new_i64(); 2325 tcg_gen_ld_i64(dst, cpu_env, 2326 offsetof(CPUARMState, elr_el[s->current_el])); 2327 if (s->pauth_active) { 2328 modifier = cpu_X[31]; 2329 if (op3 == 2) { 2330 gen_helper_autia(dst, cpu_env, dst, modifier); 2331 } else { 2332 gen_helper_autib(dst, cpu_env, dst, modifier); 2333 } 2334 } 2335 break; 2336 2337 default: 2338 goto do_unallocated; 2339 } 2340 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 2341 gen_io_start(); 2342 } 2343 2344 gen_helper_exception_return(cpu_env, dst); 2345 /* Must exit loop to check un-masked IRQs */ 2346 s->base.is_jmp = DISAS_EXIT; 2347 return; 2348 2349 case 5: /* DRPS */ 2350 if (op3 != 0 || op4 != 0 || rn != 0x1f) { 2351 goto do_unallocated; 2352 } else { 2353 unallocated_encoding(s); 2354 } 2355 return; 2356 2357 default: 2358 do_unallocated: 2359 unallocated_encoding(s); 2360 return; 2361 } 2362 2363 switch (btype_mod) { 2364 case 0: /* BR */ 2365 if (dc_isar_feature(aa64_bti, s)) { 2366 /* BR to {x16,x17} or !guard -> 1, else 3. */ 2367 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 2368 } 2369 break; 2370 2371 case 1: /* BLR */ 2372 if (dc_isar_feature(aa64_bti, s)) { 2373 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 2374 set_btype(s, 2); 2375 } 2376 break; 2377 2378 default: /* RET or none of the above. */ 2379 /* BTYPE will be set to 0 by normal end-of-insn processing. */ 2380 break; 2381 } 2382 2383 s->base.is_jmp = DISAS_JUMP; 2384 } 2385 2386 /* Branches, exception generating and system instructions */ 2387 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2388 { 2389 switch (extract32(insn, 25, 7)) { 2390 case 0x0a: case 0x0b: 2391 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ 2392 disas_uncond_b_imm(s, insn); 2393 break; 2394 case 0x1a: case 0x5a: /* Compare & branch (immediate) */ 2395 disas_comp_b_imm(s, insn); 2396 break; 2397 case 0x1b: case 0x5b: /* Test & branch (immediate) */ 2398 disas_test_b_imm(s, insn); 2399 break; 2400 case 0x2a: /* Conditional branch (immediate) */ 2401 disas_cond_b_imm(s, insn); 2402 break; 2403 case 0x6a: /* Exception generation / System */ 2404 if (insn & (1 << 24)) { 2405 if (extract32(insn, 22, 2) == 0) { 2406 disas_system(s, insn); 2407 } else { 2408 unallocated_encoding(s); 2409 } 2410 } else { 2411 disas_exc(s, insn); 2412 } 2413 break; 2414 case 0x6b: /* Unconditional branch (register) */ 2415 disas_uncond_b_reg(s, insn); 2416 break; 2417 default: 2418 unallocated_encoding(s); 2419 break; 2420 } 2421 } 2422 2423 /* 2424 * Load/Store exclusive instructions are implemented by remembering 2425 * the value/address loaded, and seeing if these are the same 2426 * when the store is performed. This is not actually the architecturally 2427 * mandated semantics, but it works for typical guest code sequences 2428 * and avoids having to monitor regular stores. 2429 * 2430 * The store exclusive uses the atomic cmpxchg primitives to avoid 2431 * races in multi-threaded linux-user and when MTTCG softmmu is 2432 * enabled. 2433 */ 2434 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2435 TCGv_i64 addr, int size, bool is_pair) 2436 { 2437 int idx = get_mem_index(s); 2438 MemOp memop = s->be_data; 2439 2440 g_assert(size <= 3); 2441 if (is_pair) { 2442 g_assert(size >= 2); 2443 if (size == 2) { 2444 /* The pair must be single-copy atomic for the doubleword. */ 2445 memop |= MO_64 | MO_ALIGN; 2446 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2447 if (s->be_data == MO_LE) { 2448 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2449 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2450 } else { 2451 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2452 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2453 } 2454 } else { 2455 /* The pair must be single-copy atomic for *each* doubleword, not 2456 the entire quadword, however it must be quadword aligned. */ 2457 memop |= MO_64; 2458 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, 2459 memop | MO_ALIGN_16); 2460 2461 TCGv_i64 addr2 = tcg_temp_new_i64(); 2462 tcg_gen_addi_i64(addr2, addr, 8); 2463 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); 2464 2465 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2466 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2467 } 2468 } else { 2469 memop |= size | MO_ALIGN; 2470 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2471 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2472 } 2473 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2474 } 2475 2476 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2477 TCGv_i64 addr, int size, int is_pair) 2478 { 2479 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2480 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2481 * [addr] = {Rt}; 2482 * if (is_pair) { 2483 * [addr + datasize] = {Rt2}; 2484 * } 2485 * {Rd} = 0; 2486 * } else { 2487 * {Rd} = 1; 2488 * } 2489 * env->exclusive_addr = -1; 2490 */ 2491 TCGLabel *fail_label = gen_new_label(); 2492 TCGLabel *done_label = gen_new_label(); 2493 TCGv_i64 tmp; 2494 2495 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2496 2497 tmp = tcg_temp_new_i64(); 2498 if (is_pair) { 2499 if (size == 2) { 2500 if (s->be_data == MO_LE) { 2501 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2502 } else { 2503 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2504 } 2505 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2506 cpu_exclusive_val, tmp, 2507 get_mem_index(s), 2508 MO_64 | MO_ALIGN | s->be_data); 2509 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2510 } else { 2511 TCGv_i128 t16 = tcg_temp_new_i128(); 2512 TCGv_i128 c16 = tcg_temp_new_i128(); 2513 TCGv_i64 a, b; 2514 2515 if (s->be_data == MO_LE) { 2516 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2517 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2518 cpu_exclusive_high); 2519 } else { 2520 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2521 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2522 cpu_exclusive_val); 2523 } 2524 2525 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2526 get_mem_index(s), 2527 MO_128 | MO_ALIGN | s->be_data); 2528 2529 a = tcg_temp_new_i64(); 2530 b = tcg_temp_new_i64(); 2531 if (s->be_data == MO_LE) { 2532 tcg_gen_extr_i128_i64(a, b, t16); 2533 } else { 2534 tcg_gen_extr_i128_i64(b, a, t16); 2535 } 2536 2537 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2538 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2539 tcg_gen_or_i64(tmp, a, b); 2540 2541 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2542 } 2543 } else { 2544 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2545 cpu_reg(s, rt), get_mem_index(s), 2546 size | MO_ALIGN | s->be_data); 2547 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2548 } 2549 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2550 tcg_gen_br(done_label); 2551 2552 gen_set_label(fail_label); 2553 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2554 gen_set_label(done_label); 2555 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2556 } 2557 2558 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2559 int rn, int size) 2560 { 2561 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2562 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2563 int memidx = get_mem_index(s); 2564 TCGv_i64 clean_addr; 2565 2566 if (rn == 31) { 2567 gen_check_sp_alignment(s); 2568 } 2569 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2570 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2571 size | MO_ALIGN | s->be_data); 2572 } 2573 2574 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2575 int rn, int size) 2576 { 2577 TCGv_i64 s1 = cpu_reg(s, rs); 2578 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2579 TCGv_i64 t1 = cpu_reg(s, rt); 2580 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2581 TCGv_i64 clean_addr; 2582 int memidx = get_mem_index(s); 2583 2584 if (rn == 31) { 2585 gen_check_sp_alignment(s); 2586 } 2587 2588 /* This is a single atomic access, despite the "pair". */ 2589 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2590 2591 if (size == 2) { 2592 TCGv_i64 cmp = tcg_temp_new_i64(); 2593 TCGv_i64 val = tcg_temp_new_i64(); 2594 2595 if (s->be_data == MO_LE) { 2596 tcg_gen_concat32_i64(val, t1, t2); 2597 tcg_gen_concat32_i64(cmp, s1, s2); 2598 } else { 2599 tcg_gen_concat32_i64(val, t2, t1); 2600 tcg_gen_concat32_i64(cmp, s2, s1); 2601 } 2602 2603 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2604 MO_64 | MO_ALIGN | s->be_data); 2605 2606 if (s->be_data == MO_LE) { 2607 tcg_gen_extr32_i64(s1, s2, cmp); 2608 } else { 2609 tcg_gen_extr32_i64(s2, s1, cmp); 2610 } 2611 } else { 2612 TCGv_i128 cmp = tcg_temp_new_i128(); 2613 TCGv_i128 val = tcg_temp_new_i128(); 2614 2615 if (s->be_data == MO_LE) { 2616 tcg_gen_concat_i64_i128(val, t1, t2); 2617 tcg_gen_concat_i64_i128(cmp, s1, s2); 2618 } else { 2619 tcg_gen_concat_i64_i128(val, t2, t1); 2620 tcg_gen_concat_i64_i128(cmp, s2, s1); 2621 } 2622 2623 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2624 MO_128 | MO_ALIGN | s->be_data); 2625 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extr_i128_i64(s1, s2, cmp); 2628 } else { 2629 tcg_gen_extr_i128_i64(s2, s1, cmp); 2630 } 2631 } 2632 } 2633 2634 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2635 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2636 */ 2637 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2638 { 2639 int opc0 = extract32(opc, 0, 1); 2640 int regsize; 2641 2642 if (is_signed) { 2643 regsize = opc0 ? 32 : 64; 2644 } else { 2645 regsize = size == 3 ? 64 : 32; 2646 } 2647 return regsize == 64; 2648 } 2649 2650 /* Load/store exclusive 2651 * 2652 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2653 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2654 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2655 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2656 * 2657 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2658 * L: 0 -> store, 1 -> load 2659 * o2: 0 -> exclusive, 1 -> not 2660 * o1: 0 -> single register, 1 -> register pair 2661 * o0: 1 -> load-acquire/store-release, 0 -> not 2662 */ 2663 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2664 { 2665 int rt = extract32(insn, 0, 5); 2666 int rn = extract32(insn, 5, 5); 2667 int rt2 = extract32(insn, 10, 5); 2668 int rs = extract32(insn, 16, 5); 2669 int is_lasr = extract32(insn, 15, 1); 2670 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2671 int size = extract32(insn, 30, 2); 2672 TCGv_i64 clean_addr; 2673 2674 switch (o2_L_o1_o0) { 2675 case 0x0: /* STXR */ 2676 case 0x1: /* STLXR */ 2677 if (rn == 31) { 2678 gen_check_sp_alignment(s); 2679 } 2680 if (is_lasr) { 2681 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2682 } 2683 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2684 true, rn != 31, size); 2685 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2686 return; 2687 2688 case 0x4: /* LDXR */ 2689 case 0x5: /* LDAXR */ 2690 if (rn == 31) { 2691 gen_check_sp_alignment(s); 2692 } 2693 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2694 false, rn != 31, size); 2695 s->is_ldex = true; 2696 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2697 if (is_lasr) { 2698 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2699 } 2700 return; 2701 2702 case 0x8: /* STLLR */ 2703 if (!dc_isar_feature(aa64_lor, s)) { 2704 break; 2705 } 2706 /* StoreLORelease is the same as Store-Release for QEMU. */ 2707 /* fall through */ 2708 case 0x9: /* STLR */ 2709 /* Generate ISS for non-exclusive accesses including LASR. */ 2710 if (rn == 31) { 2711 gen_check_sp_alignment(s); 2712 } 2713 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2714 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2715 true, rn != 31, size); 2716 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2717 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2718 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2719 return; 2720 2721 case 0xc: /* LDLAR */ 2722 if (!dc_isar_feature(aa64_lor, s)) { 2723 break; 2724 } 2725 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2726 /* fall through */ 2727 case 0xd: /* LDAR */ 2728 /* Generate ISS for non-exclusive accesses including LASR. */ 2729 if (rn == 31) { 2730 gen_check_sp_alignment(s); 2731 } 2732 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2733 false, rn != 31, size); 2734 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2735 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2736 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2737 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2738 return; 2739 2740 case 0x2: case 0x3: /* CASP / STXP */ 2741 if (size & 2) { /* STXP / STLXP */ 2742 if (rn == 31) { 2743 gen_check_sp_alignment(s); 2744 } 2745 if (is_lasr) { 2746 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2747 } 2748 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2749 true, rn != 31, size); 2750 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2751 return; 2752 } 2753 if (rt2 == 31 2754 && ((rt | rs) & 1) == 0 2755 && dc_isar_feature(aa64_atomics, s)) { 2756 /* CASP / CASPL */ 2757 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2758 return; 2759 } 2760 break; 2761 2762 case 0x6: case 0x7: /* CASPA / LDXP */ 2763 if (size & 2) { /* LDXP / LDAXP */ 2764 if (rn == 31) { 2765 gen_check_sp_alignment(s); 2766 } 2767 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2768 false, rn != 31, size); 2769 s->is_ldex = true; 2770 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2771 if (is_lasr) { 2772 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2773 } 2774 return; 2775 } 2776 if (rt2 == 31 2777 && ((rt | rs) & 1) == 0 2778 && dc_isar_feature(aa64_atomics, s)) { 2779 /* CASPA / CASPAL */ 2780 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2781 return; 2782 } 2783 break; 2784 2785 case 0xa: /* CAS */ 2786 case 0xb: /* CASL */ 2787 case 0xe: /* CASA */ 2788 case 0xf: /* CASAL */ 2789 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2790 gen_compare_and_swap(s, rs, rt, rn, size); 2791 return; 2792 } 2793 break; 2794 } 2795 unallocated_encoding(s); 2796 } 2797 2798 /* 2799 * Load register (literal) 2800 * 2801 * 31 30 29 27 26 25 24 23 5 4 0 2802 * +-----+-------+---+-----+-------------------+-------+ 2803 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2804 * +-----+-------+---+-----+-------------------+-------+ 2805 * 2806 * V: 1 -> vector (simd/fp) 2807 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2808 * 10-> 32 bit signed, 11 -> prefetch 2809 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2810 */ 2811 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2812 { 2813 int rt = extract32(insn, 0, 5); 2814 int64_t imm = sextract32(insn, 5, 19) << 2; 2815 bool is_vector = extract32(insn, 26, 1); 2816 int opc = extract32(insn, 30, 2); 2817 bool is_signed = false; 2818 int size = 2; 2819 TCGv_i64 tcg_rt, clean_addr; 2820 2821 if (is_vector) { 2822 if (opc == 3) { 2823 unallocated_encoding(s); 2824 return; 2825 } 2826 size = 2 + opc; 2827 if (!fp_access_check(s)) { 2828 return; 2829 } 2830 } else { 2831 if (opc == 3) { 2832 /* PRFM (literal) : prefetch */ 2833 return; 2834 } 2835 size = 2 + extract32(opc, 0, 1); 2836 is_signed = extract32(opc, 1, 1); 2837 } 2838 2839 tcg_rt = cpu_reg(s, rt); 2840 2841 clean_addr = tcg_temp_new_i64(); 2842 gen_pc_plus_diff(s, clean_addr, imm); 2843 if (is_vector) { 2844 do_fp_ld(s, rt, clean_addr, size); 2845 } else { 2846 /* Only unsigned 32bit loads target 32bit registers. */ 2847 bool iss_sf = opc != 0; 2848 2849 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2850 false, true, rt, iss_sf, false); 2851 } 2852 } 2853 2854 /* 2855 * LDNP (Load Pair - non-temporal hint) 2856 * LDP (Load Pair - non vector) 2857 * LDPSW (Load Pair Signed Word - non vector) 2858 * STNP (Store Pair - non-temporal hint) 2859 * STP (Store Pair - non vector) 2860 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2861 * LDP (Load Pair of SIMD&FP) 2862 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2863 * STP (Store Pair of SIMD&FP) 2864 * 2865 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2866 * +-----+-------+---+---+-------+---+-----------------------------+ 2867 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2868 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2869 * 2870 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2871 * LDPSW/STGP 01 2872 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2873 * V: 0 -> GPR, 1 -> Vector 2874 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2875 * 10 -> signed offset, 11 -> pre-index 2876 * L: 0 -> Store 1 -> Load 2877 * 2878 * Rt, Rt2 = GPR or SIMD registers to be stored 2879 * Rn = general purpose register containing address 2880 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2881 */ 2882 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2883 { 2884 int rt = extract32(insn, 0, 5); 2885 int rn = extract32(insn, 5, 5); 2886 int rt2 = extract32(insn, 10, 5); 2887 uint64_t offset = sextract64(insn, 15, 7); 2888 int index = extract32(insn, 23, 2); 2889 bool is_vector = extract32(insn, 26, 1); 2890 bool is_load = extract32(insn, 22, 1); 2891 int opc = extract32(insn, 30, 2); 2892 2893 bool is_signed = false; 2894 bool postindex = false; 2895 bool wback = false; 2896 bool set_tag = false; 2897 2898 TCGv_i64 clean_addr, dirty_addr; 2899 2900 int size; 2901 2902 if (opc == 3) { 2903 unallocated_encoding(s); 2904 return; 2905 } 2906 2907 if (is_vector) { 2908 size = 2 + opc; 2909 } else if (opc == 1 && !is_load) { 2910 /* STGP */ 2911 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2912 unallocated_encoding(s); 2913 return; 2914 } 2915 size = 3; 2916 set_tag = true; 2917 } else { 2918 size = 2 + extract32(opc, 1, 1); 2919 is_signed = extract32(opc, 0, 1); 2920 if (!is_load && is_signed) { 2921 unallocated_encoding(s); 2922 return; 2923 } 2924 } 2925 2926 switch (index) { 2927 case 1: /* post-index */ 2928 postindex = true; 2929 wback = true; 2930 break; 2931 case 0: 2932 /* signed offset with "non-temporal" hint. Since we don't emulate 2933 * caches we don't care about hints to the cache system about 2934 * data access patterns, and handle this identically to plain 2935 * signed offset. 2936 */ 2937 if (is_signed) { 2938 /* There is no non-temporal-hint version of LDPSW */ 2939 unallocated_encoding(s); 2940 return; 2941 } 2942 postindex = false; 2943 break; 2944 case 2: /* signed offset, rn not updated */ 2945 postindex = false; 2946 break; 2947 case 3: /* pre-index */ 2948 postindex = false; 2949 wback = true; 2950 break; 2951 } 2952 2953 if (is_vector && !fp_access_check(s)) { 2954 return; 2955 } 2956 2957 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2958 2959 if (rn == 31) { 2960 gen_check_sp_alignment(s); 2961 } 2962 2963 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2964 if (!postindex) { 2965 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2966 } 2967 2968 if (set_tag) { 2969 if (!s->ata) { 2970 /* 2971 * TODO: We could rely on the stores below, at least for 2972 * system mode, if we arrange to add MO_ALIGN_16. 2973 */ 2974 gen_helper_stg_stub(cpu_env, dirty_addr); 2975 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2976 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2977 } else { 2978 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2979 } 2980 } 2981 2982 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2983 (wback || rn != 31) && !set_tag, 2 << size); 2984 2985 if (is_vector) { 2986 if (is_load) { 2987 do_fp_ld(s, rt, clean_addr, size); 2988 } else { 2989 do_fp_st(s, rt, clean_addr, size); 2990 } 2991 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2992 if (is_load) { 2993 do_fp_ld(s, rt2, clean_addr, size); 2994 } else { 2995 do_fp_st(s, rt2, clean_addr, size); 2996 } 2997 } else { 2998 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2999 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3000 3001 if (is_load) { 3002 TCGv_i64 tmp = tcg_temp_new_i64(); 3003 3004 /* Do not modify tcg_rt before recognizing any exception 3005 * from the second load. 3006 */ 3007 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 3008 false, false, 0, false, false); 3009 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3010 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 3011 false, false, 0, false, false); 3012 3013 tcg_gen_mov_i64(tcg_rt, tmp); 3014 } else { 3015 do_gpr_st(s, tcg_rt, clean_addr, size, 3016 false, 0, false, false); 3017 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3018 do_gpr_st(s, tcg_rt2, clean_addr, size, 3019 false, 0, false, false); 3020 } 3021 } 3022 3023 if (wback) { 3024 if (postindex) { 3025 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3026 } 3027 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3028 } 3029 } 3030 3031 /* 3032 * Load/store (immediate post-indexed) 3033 * Load/store (immediate pre-indexed) 3034 * Load/store (unscaled immediate) 3035 * 3036 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3037 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3038 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3039 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3040 * 3041 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3042 10 -> unprivileged 3043 * V = 0 -> non-vector 3044 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3045 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3046 */ 3047 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3048 int opc, 3049 int size, 3050 int rt, 3051 bool is_vector) 3052 { 3053 int rn = extract32(insn, 5, 5); 3054 int imm9 = sextract32(insn, 12, 9); 3055 int idx = extract32(insn, 10, 2); 3056 bool is_signed = false; 3057 bool is_store = false; 3058 bool is_extended = false; 3059 bool is_unpriv = (idx == 2); 3060 bool iss_valid; 3061 bool post_index; 3062 bool writeback; 3063 int memidx; 3064 3065 TCGv_i64 clean_addr, dirty_addr; 3066 3067 if (is_vector) { 3068 size |= (opc & 2) << 1; 3069 if (size > 4 || is_unpriv) { 3070 unallocated_encoding(s); 3071 return; 3072 } 3073 is_store = ((opc & 1) == 0); 3074 if (!fp_access_check(s)) { 3075 return; 3076 } 3077 } else { 3078 if (size == 3 && opc == 2) { 3079 /* PRFM - prefetch */ 3080 if (idx != 0) { 3081 unallocated_encoding(s); 3082 return; 3083 } 3084 return; 3085 } 3086 if (opc == 3 && size > 1) { 3087 unallocated_encoding(s); 3088 return; 3089 } 3090 is_store = (opc == 0); 3091 is_signed = extract32(opc, 1, 1); 3092 is_extended = (size < 3) && extract32(opc, 0, 1); 3093 } 3094 3095 switch (idx) { 3096 case 0: 3097 case 2: 3098 post_index = false; 3099 writeback = false; 3100 break; 3101 case 1: 3102 post_index = true; 3103 writeback = true; 3104 break; 3105 case 3: 3106 post_index = false; 3107 writeback = true; 3108 break; 3109 default: 3110 g_assert_not_reached(); 3111 } 3112 3113 iss_valid = !is_vector && !writeback; 3114 3115 if (rn == 31) { 3116 gen_check_sp_alignment(s); 3117 } 3118 3119 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3120 if (!post_index) { 3121 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3122 } 3123 3124 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3125 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3126 writeback || rn != 31, 3127 size, is_unpriv, memidx); 3128 3129 if (is_vector) { 3130 if (is_store) { 3131 do_fp_st(s, rt, clean_addr, size); 3132 } else { 3133 do_fp_ld(s, rt, clean_addr, size); 3134 } 3135 } else { 3136 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3137 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3138 3139 if (is_store) { 3140 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3141 iss_valid, rt, iss_sf, false); 3142 } else { 3143 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3144 is_extended, memidx, 3145 iss_valid, rt, iss_sf, false); 3146 } 3147 } 3148 3149 if (writeback) { 3150 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3151 if (post_index) { 3152 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3153 } 3154 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3155 } 3156 } 3157 3158 /* 3159 * Load/store (register offset) 3160 * 3161 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3162 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3163 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3164 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3165 * 3166 * For non-vector: 3167 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3168 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3169 * For vector: 3170 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3171 * opc<0>: 0 -> store, 1 -> load 3172 * V: 1 -> vector/simd 3173 * opt: extend encoding (see DecodeRegExtend) 3174 * S: if S=1 then scale (essentially index by sizeof(size)) 3175 * Rt: register to transfer into/out of 3176 * Rn: address register or SP for base 3177 * Rm: offset register or ZR for offset 3178 */ 3179 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3180 int opc, 3181 int size, 3182 int rt, 3183 bool is_vector) 3184 { 3185 int rn = extract32(insn, 5, 5); 3186 int shift = extract32(insn, 12, 1); 3187 int rm = extract32(insn, 16, 5); 3188 int opt = extract32(insn, 13, 3); 3189 bool is_signed = false; 3190 bool is_store = false; 3191 bool is_extended = false; 3192 3193 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3194 3195 if (extract32(opt, 1, 1) == 0) { 3196 unallocated_encoding(s); 3197 return; 3198 } 3199 3200 if (is_vector) { 3201 size |= (opc & 2) << 1; 3202 if (size > 4) { 3203 unallocated_encoding(s); 3204 return; 3205 } 3206 is_store = !extract32(opc, 0, 1); 3207 if (!fp_access_check(s)) { 3208 return; 3209 } 3210 } else { 3211 if (size == 3 && opc == 2) { 3212 /* PRFM - prefetch */ 3213 return; 3214 } 3215 if (opc == 3 && size > 1) { 3216 unallocated_encoding(s); 3217 return; 3218 } 3219 is_store = (opc == 0); 3220 is_signed = extract32(opc, 1, 1); 3221 is_extended = (size < 3) && extract32(opc, 0, 1); 3222 } 3223 3224 if (rn == 31) { 3225 gen_check_sp_alignment(s); 3226 } 3227 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3228 3229 tcg_rm = read_cpu_reg(s, rm, 1); 3230 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3231 3232 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3233 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3234 3235 if (is_vector) { 3236 if (is_store) { 3237 do_fp_st(s, rt, clean_addr, size); 3238 } else { 3239 do_fp_ld(s, rt, clean_addr, size); 3240 } 3241 } else { 3242 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3243 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3244 if (is_store) { 3245 do_gpr_st(s, tcg_rt, clean_addr, size, 3246 true, rt, iss_sf, false); 3247 } else { 3248 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3249 is_extended, true, rt, iss_sf, false); 3250 } 3251 } 3252 } 3253 3254 /* 3255 * Load/store (unsigned immediate) 3256 * 3257 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3258 * +----+-------+---+-----+-----+------------+-------+------+ 3259 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3260 * +----+-------+---+-----+-----+------------+-------+------+ 3261 * 3262 * For non-vector: 3263 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3264 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3265 * For vector: 3266 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3267 * opc<0>: 0 -> store, 1 -> load 3268 * Rn: base address register (inc SP) 3269 * Rt: target register 3270 */ 3271 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3272 int opc, 3273 int size, 3274 int rt, 3275 bool is_vector) 3276 { 3277 int rn = extract32(insn, 5, 5); 3278 unsigned int imm12 = extract32(insn, 10, 12); 3279 unsigned int offset; 3280 3281 TCGv_i64 clean_addr, dirty_addr; 3282 3283 bool is_store; 3284 bool is_signed = false; 3285 bool is_extended = false; 3286 3287 if (is_vector) { 3288 size |= (opc & 2) << 1; 3289 if (size > 4) { 3290 unallocated_encoding(s); 3291 return; 3292 } 3293 is_store = !extract32(opc, 0, 1); 3294 if (!fp_access_check(s)) { 3295 return; 3296 } 3297 } else { 3298 if (size == 3 && opc == 2) { 3299 /* PRFM - prefetch */ 3300 return; 3301 } 3302 if (opc == 3 && size > 1) { 3303 unallocated_encoding(s); 3304 return; 3305 } 3306 is_store = (opc == 0); 3307 is_signed = extract32(opc, 1, 1); 3308 is_extended = (size < 3) && extract32(opc, 0, 1); 3309 } 3310 3311 if (rn == 31) { 3312 gen_check_sp_alignment(s); 3313 } 3314 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3315 offset = imm12 << size; 3316 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3317 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3318 3319 if (is_vector) { 3320 if (is_store) { 3321 do_fp_st(s, rt, clean_addr, size); 3322 } else { 3323 do_fp_ld(s, rt, clean_addr, size); 3324 } 3325 } else { 3326 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3327 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3328 if (is_store) { 3329 do_gpr_st(s, tcg_rt, clean_addr, size, 3330 true, rt, iss_sf, false); 3331 } else { 3332 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3333 is_extended, true, rt, iss_sf, false); 3334 } 3335 } 3336 } 3337 3338 /* Atomic memory operations 3339 * 3340 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3341 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3342 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3343 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3344 * 3345 * Rt: the result register 3346 * Rn: base address or SP 3347 * Rs: the source register for the operation 3348 * V: vector flag (always 0 as of v8.3) 3349 * A: acquire flag 3350 * R: release flag 3351 */ 3352 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3353 int size, int rt, bool is_vector) 3354 { 3355 int rs = extract32(insn, 16, 5); 3356 int rn = extract32(insn, 5, 5); 3357 int o3_opc = extract32(insn, 12, 4); 3358 bool r = extract32(insn, 22, 1); 3359 bool a = extract32(insn, 23, 1); 3360 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3361 AtomicThreeOpFn *fn = NULL; 3362 MemOp mop = s->be_data | size | MO_ALIGN; 3363 3364 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3365 unallocated_encoding(s); 3366 return; 3367 } 3368 switch (o3_opc) { 3369 case 000: /* LDADD */ 3370 fn = tcg_gen_atomic_fetch_add_i64; 3371 break; 3372 case 001: /* LDCLR */ 3373 fn = tcg_gen_atomic_fetch_and_i64; 3374 break; 3375 case 002: /* LDEOR */ 3376 fn = tcg_gen_atomic_fetch_xor_i64; 3377 break; 3378 case 003: /* LDSET */ 3379 fn = tcg_gen_atomic_fetch_or_i64; 3380 break; 3381 case 004: /* LDSMAX */ 3382 fn = tcg_gen_atomic_fetch_smax_i64; 3383 mop |= MO_SIGN; 3384 break; 3385 case 005: /* LDSMIN */ 3386 fn = tcg_gen_atomic_fetch_smin_i64; 3387 mop |= MO_SIGN; 3388 break; 3389 case 006: /* LDUMAX */ 3390 fn = tcg_gen_atomic_fetch_umax_i64; 3391 break; 3392 case 007: /* LDUMIN */ 3393 fn = tcg_gen_atomic_fetch_umin_i64; 3394 break; 3395 case 010: /* SWP */ 3396 fn = tcg_gen_atomic_xchg_i64; 3397 break; 3398 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3399 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3400 rs != 31 || a != 1 || r != 0) { 3401 unallocated_encoding(s); 3402 return; 3403 } 3404 break; 3405 default: 3406 unallocated_encoding(s); 3407 return; 3408 } 3409 3410 if (rn == 31) { 3411 gen_check_sp_alignment(s); 3412 } 3413 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3414 3415 if (o3_opc == 014) { 3416 /* 3417 * LDAPR* are a special case because they are a simple load, not a 3418 * fetch-and-do-something op. 3419 * The architectural consistency requirements here are weaker than 3420 * full load-acquire (we only need "load-acquire processor consistent"), 3421 * but we choose to implement them as full LDAQ. 3422 */ 3423 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3424 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3425 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3426 return; 3427 } 3428 3429 tcg_rs = read_cpu_reg(s, rs, true); 3430 tcg_rt = cpu_reg(s, rt); 3431 3432 if (o3_opc == 1) { /* LDCLR */ 3433 tcg_gen_not_i64(tcg_rs, tcg_rs); 3434 } 3435 3436 /* The tcg atomic primitives are all full barriers. Therefore we 3437 * can ignore the Acquire and Release bits of this instruction. 3438 */ 3439 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3440 3441 if ((mop & MO_SIGN) && size != MO_64) { 3442 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3443 } 3444 } 3445 3446 /* 3447 * PAC memory operations 3448 * 3449 * 31 30 27 26 24 22 21 12 11 10 5 0 3450 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3451 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3452 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3453 * 3454 * Rt: the result register 3455 * Rn: base address or SP 3456 * V: vector flag (always 0 as of v8.3) 3457 * M: clear for key DA, set for key DB 3458 * W: pre-indexing flag 3459 * S: sign for imm9. 3460 */ 3461 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3462 int size, int rt, bool is_vector) 3463 { 3464 int rn = extract32(insn, 5, 5); 3465 bool is_wback = extract32(insn, 11, 1); 3466 bool use_key_a = !extract32(insn, 23, 1); 3467 int offset; 3468 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3469 3470 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3471 unallocated_encoding(s); 3472 return; 3473 } 3474 3475 if (rn == 31) { 3476 gen_check_sp_alignment(s); 3477 } 3478 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3479 3480 if (s->pauth_active) { 3481 if (use_key_a) { 3482 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3483 tcg_constant_i64(0)); 3484 } else { 3485 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3486 tcg_constant_i64(0)); 3487 } 3488 } 3489 3490 /* Form the 10-bit signed, scaled offset. */ 3491 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3492 offset = sextract32(offset << size, 0, 10 + size); 3493 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3494 3495 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3496 clean_addr = gen_mte_check1(s, dirty_addr, false, 3497 is_wback || rn != 31, size); 3498 3499 tcg_rt = cpu_reg(s, rt); 3500 do_gpr_ld(s, tcg_rt, clean_addr, size, 3501 /* extend */ false, /* iss_valid */ !is_wback, 3502 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3503 3504 if (is_wback) { 3505 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3506 } 3507 } 3508 3509 /* 3510 * LDAPR/STLR (unscaled immediate) 3511 * 3512 * 31 30 24 22 21 12 10 5 0 3513 * +------+-------------+-----+---+--------+-----+----+-----+ 3514 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3515 * +------+-------------+-----+---+--------+-----+----+-----+ 3516 * 3517 * Rt: source or destination register 3518 * Rn: base register 3519 * imm9: unscaled immediate offset 3520 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3521 * size: size of load/store 3522 */ 3523 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3524 { 3525 int rt = extract32(insn, 0, 5); 3526 int rn = extract32(insn, 5, 5); 3527 int offset = sextract32(insn, 12, 9); 3528 int opc = extract32(insn, 22, 2); 3529 int size = extract32(insn, 30, 2); 3530 TCGv_i64 clean_addr, dirty_addr; 3531 bool is_store = false; 3532 bool extend = false; 3533 bool iss_sf; 3534 MemOp mop; 3535 3536 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3537 unallocated_encoding(s); 3538 return; 3539 } 3540 3541 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3542 mop = size | MO_ALIGN; 3543 3544 switch (opc) { 3545 case 0: /* STLURB */ 3546 is_store = true; 3547 break; 3548 case 1: /* LDAPUR* */ 3549 break; 3550 case 2: /* LDAPURS* 64-bit variant */ 3551 if (size == 3) { 3552 unallocated_encoding(s); 3553 return; 3554 } 3555 mop |= MO_SIGN; 3556 break; 3557 case 3: /* LDAPURS* 32-bit variant */ 3558 if (size > 1) { 3559 unallocated_encoding(s); 3560 return; 3561 } 3562 mop |= MO_SIGN; 3563 extend = true; /* zero-extend 32->64 after signed load */ 3564 break; 3565 default: 3566 g_assert_not_reached(); 3567 } 3568 3569 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3570 3571 if (rn == 31) { 3572 gen_check_sp_alignment(s); 3573 } 3574 3575 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3576 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3577 clean_addr = clean_data_tbi(s, dirty_addr); 3578 3579 if (is_store) { 3580 /* Store-Release semantics */ 3581 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3582 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3583 } else { 3584 /* 3585 * Load-AcquirePC semantics; we implement as the slightly more 3586 * restrictive Load-Acquire. 3587 */ 3588 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3589 extend, true, rt, iss_sf, true); 3590 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3591 } 3592 } 3593 3594 /* Load/store register (all forms) */ 3595 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3596 { 3597 int rt = extract32(insn, 0, 5); 3598 int opc = extract32(insn, 22, 2); 3599 bool is_vector = extract32(insn, 26, 1); 3600 int size = extract32(insn, 30, 2); 3601 3602 switch (extract32(insn, 24, 2)) { 3603 case 0: 3604 if (extract32(insn, 21, 1) == 0) { 3605 /* Load/store register (unscaled immediate) 3606 * Load/store immediate pre/post-indexed 3607 * Load/store register unprivileged 3608 */ 3609 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3610 return; 3611 } 3612 switch (extract32(insn, 10, 2)) { 3613 case 0: 3614 disas_ldst_atomic(s, insn, size, rt, is_vector); 3615 return; 3616 case 2: 3617 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3618 return; 3619 default: 3620 disas_ldst_pac(s, insn, size, rt, is_vector); 3621 return; 3622 } 3623 break; 3624 case 1: 3625 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3626 return; 3627 } 3628 unallocated_encoding(s); 3629 } 3630 3631 /* AdvSIMD load/store multiple structures 3632 * 3633 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3634 * +---+---+---------------+---+-------------+--------+------+------+------+ 3635 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3636 * +---+---+---------------+---+-------------+--------+------+------+------+ 3637 * 3638 * AdvSIMD load/store multiple structures (post-indexed) 3639 * 3640 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3641 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3642 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3643 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3644 * 3645 * Rt: first (or only) SIMD&FP register to be transferred 3646 * Rn: base address or SP 3647 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3648 */ 3649 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3650 { 3651 int rt = extract32(insn, 0, 5); 3652 int rn = extract32(insn, 5, 5); 3653 int rm = extract32(insn, 16, 5); 3654 int size = extract32(insn, 10, 2); 3655 int opcode = extract32(insn, 12, 4); 3656 bool is_store = !extract32(insn, 22, 1); 3657 bool is_postidx = extract32(insn, 23, 1); 3658 bool is_q = extract32(insn, 30, 1); 3659 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3660 MemOp endian, align, mop; 3661 3662 int total; /* total bytes */ 3663 int elements; /* elements per vector */ 3664 int rpt; /* num iterations */ 3665 int selem; /* structure elements */ 3666 int r; 3667 3668 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3669 unallocated_encoding(s); 3670 return; 3671 } 3672 3673 if (!is_postidx && rm != 0) { 3674 unallocated_encoding(s); 3675 return; 3676 } 3677 3678 /* From the shared decode logic */ 3679 switch (opcode) { 3680 case 0x0: 3681 rpt = 1; 3682 selem = 4; 3683 break; 3684 case 0x2: 3685 rpt = 4; 3686 selem = 1; 3687 break; 3688 case 0x4: 3689 rpt = 1; 3690 selem = 3; 3691 break; 3692 case 0x6: 3693 rpt = 3; 3694 selem = 1; 3695 break; 3696 case 0x7: 3697 rpt = 1; 3698 selem = 1; 3699 break; 3700 case 0x8: 3701 rpt = 1; 3702 selem = 2; 3703 break; 3704 case 0xa: 3705 rpt = 2; 3706 selem = 1; 3707 break; 3708 default: 3709 unallocated_encoding(s); 3710 return; 3711 } 3712 3713 if (size == 3 && !is_q && selem != 1) { 3714 /* reserved */ 3715 unallocated_encoding(s); 3716 return; 3717 } 3718 3719 if (!fp_access_check(s)) { 3720 return; 3721 } 3722 3723 if (rn == 31) { 3724 gen_check_sp_alignment(s); 3725 } 3726 3727 /* For our purposes, bytes are always little-endian. */ 3728 endian = s->be_data; 3729 if (size == 0) { 3730 endian = MO_LE; 3731 } 3732 3733 total = rpt * selem * (is_q ? 16 : 8); 3734 tcg_rn = cpu_reg_sp(s, rn); 3735 3736 /* 3737 * Issue the MTE check vs the logical repeat count, before we 3738 * promote consecutive little-endian elements below. 3739 */ 3740 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3741 total); 3742 3743 /* 3744 * Consecutive little-endian elements from a single register 3745 * can be promoted to a larger little-endian operation. 3746 */ 3747 align = MO_ALIGN; 3748 if (selem == 1 && endian == MO_LE) { 3749 align = pow2_align(size); 3750 size = 3; 3751 } 3752 if (!s->align_mem) { 3753 align = 0; 3754 } 3755 mop = endian | size | align; 3756 3757 elements = (is_q ? 16 : 8) >> size; 3758 tcg_ebytes = tcg_constant_i64(1 << size); 3759 for (r = 0; r < rpt; r++) { 3760 int e; 3761 for (e = 0; e < elements; e++) { 3762 int xs; 3763 for (xs = 0; xs < selem; xs++) { 3764 int tt = (rt + r + xs) % 32; 3765 if (is_store) { 3766 do_vec_st(s, tt, e, clean_addr, mop); 3767 } else { 3768 do_vec_ld(s, tt, e, clean_addr, mop); 3769 } 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (!is_store) { 3776 /* For non-quad operations, setting a slice of the low 3777 * 64 bits of the register clears the high 64 bits (in 3778 * the ARM ARM pseudocode this is implicit in the fact 3779 * that 'rval' is a 64 bit wide variable). 3780 * For quad operations, we might still need to zero the 3781 * high bits of SVE. 3782 */ 3783 for (r = 0; r < rpt * selem; r++) { 3784 int tt = (rt + r) % 32; 3785 clear_vec_high(s, is_q, tt); 3786 } 3787 } 3788 3789 if (is_postidx) { 3790 if (rm == 31) { 3791 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3792 } else { 3793 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3794 } 3795 } 3796 } 3797 3798 /* AdvSIMD load/store single structure 3799 * 3800 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3801 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3802 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3803 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3804 * 3805 * AdvSIMD load/store single structure (post-indexed) 3806 * 3807 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3808 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3809 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3810 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3811 * 3812 * Rt: first (or only) SIMD&FP register to be transferred 3813 * Rn: base address or SP 3814 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3815 * index = encoded in Q:S:size dependent on size 3816 * 3817 * lane_size = encoded in R, opc 3818 * transfer width = encoded in opc, S, size 3819 */ 3820 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3821 { 3822 int rt = extract32(insn, 0, 5); 3823 int rn = extract32(insn, 5, 5); 3824 int rm = extract32(insn, 16, 5); 3825 int size = extract32(insn, 10, 2); 3826 int S = extract32(insn, 12, 1); 3827 int opc = extract32(insn, 13, 3); 3828 int R = extract32(insn, 21, 1); 3829 int is_load = extract32(insn, 22, 1); 3830 int is_postidx = extract32(insn, 23, 1); 3831 int is_q = extract32(insn, 30, 1); 3832 3833 int scale = extract32(opc, 1, 2); 3834 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3835 bool replicate = false; 3836 int index = is_q << 3 | S << 2 | size; 3837 int xs, total; 3838 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3839 MemOp mop; 3840 3841 if (extract32(insn, 31, 1)) { 3842 unallocated_encoding(s); 3843 return; 3844 } 3845 if (!is_postidx && rm != 0) { 3846 unallocated_encoding(s); 3847 return; 3848 } 3849 3850 switch (scale) { 3851 case 3: 3852 if (!is_load || S) { 3853 unallocated_encoding(s); 3854 return; 3855 } 3856 scale = size; 3857 replicate = true; 3858 break; 3859 case 0: 3860 break; 3861 case 1: 3862 if (extract32(size, 0, 1)) { 3863 unallocated_encoding(s); 3864 return; 3865 } 3866 index >>= 1; 3867 break; 3868 case 2: 3869 if (extract32(size, 1, 1)) { 3870 unallocated_encoding(s); 3871 return; 3872 } 3873 if (!extract32(size, 0, 1)) { 3874 index >>= 2; 3875 } else { 3876 if (S) { 3877 unallocated_encoding(s); 3878 return; 3879 } 3880 index >>= 3; 3881 scale = 3; 3882 } 3883 break; 3884 default: 3885 g_assert_not_reached(); 3886 } 3887 3888 if (!fp_access_check(s)) { 3889 return; 3890 } 3891 3892 if (rn == 31) { 3893 gen_check_sp_alignment(s); 3894 } 3895 3896 total = selem << scale; 3897 tcg_rn = cpu_reg_sp(s, rn); 3898 3899 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3900 total); 3901 mop = finalize_memop(s, scale); 3902 3903 tcg_ebytes = tcg_constant_i64(1 << scale); 3904 for (xs = 0; xs < selem; xs++) { 3905 if (replicate) { 3906 /* Load and replicate to all elements */ 3907 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3908 3909 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3910 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3911 (is_q + 1) * 8, vec_full_reg_size(s), 3912 tcg_tmp); 3913 } else { 3914 /* Load/store one element per register */ 3915 if (is_load) { 3916 do_vec_ld(s, rt, index, clean_addr, mop); 3917 } else { 3918 do_vec_st(s, rt, index, clean_addr, mop); 3919 } 3920 } 3921 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3922 rt = (rt + 1) % 32; 3923 } 3924 3925 if (is_postidx) { 3926 if (rm == 31) { 3927 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3928 } else { 3929 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3930 } 3931 } 3932 } 3933 3934 /* 3935 * Load/Store memory tags 3936 * 3937 * 31 30 29 24 22 21 12 10 5 0 3938 * +-----+-------------+-----+---+------+-----+------+------+ 3939 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3940 * +-----+-------------+-----+---+------+-----+------+------+ 3941 */ 3942 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3943 { 3944 int rt = extract32(insn, 0, 5); 3945 int rn = extract32(insn, 5, 5); 3946 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3947 int op2 = extract32(insn, 10, 2); 3948 int op1 = extract32(insn, 22, 2); 3949 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3950 int index = 0; 3951 TCGv_i64 addr, clean_addr, tcg_rt; 3952 3953 /* We checked insn bits [29:24,21] in the caller. */ 3954 if (extract32(insn, 30, 2) != 3) { 3955 goto do_unallocated; 3956 } 3957 3958 /* 3959 * @index is a tri-state variable which has 3 states: 3960 * < 0 : post-index, writeback 3961 * = 0 : signed offset 3962 * > 0 : pre-index, writeback 3963 */ 3964 switch (op1) { 3965 case 0: 3966 if (op2 != 0) { 3967 /* STG */ 3968 index = op2 - 2; 3969 } else { 3970 /* STZGM */ 3971 if (s->current_el == 0 || offset != 0) { 3972 goto do_unallocated; 3973 } 3974 is_mult = is_zero = true; 3975 } 3976 break; 3977 case 1: 3978 if (op2 != 0) { 3979 /* STZG */ 3980 is_zero = true; 3981 index = op2 - 2; 3982 } else { 3983 /* LDG */ 3984 is_load = true; 3985 } 3986 break; 3987 case 2: 3988 if (op2 != 0) { 3989 /* ST2G */ 3990 is_pair = true; 3991 index = op2 - 2; 3992 } else { 3993 /* STGM */ 3994 if (s->current_el == 0 || offset != 0) { 3995 goto do_unallocated; 3996 } 3997 is_mult = true; 3998 } 3999 break; 4000 case 3: 4001 if (op2 != 0) { 4002 /* STZ2G */ 4003 is_pair = is_zero = true; 4004 index = op2 - 2; 4005 } else { 4006 /* LDGM */ 4007 if (s->current_el == 0 || offset != 0) { 4008 goto do_unallocated; 4009 } 4010 is_mult = is_load = true; 4011 } 4012 break; 4013 4014 default: 4015 do_unallocated: 4016 unallocated_encoding(s); 4017 return; 4018 } 4019 4020 if (is_mult 4021 ? !dc_isar_feature(aa64_mte, s) 4022 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4023 goto do_unallocated; 4024 } 4025 4026 if (rn == 31) { 4027 gen_check_sp_alignment(s); 4028 } 4029 4030 addr = read_cpu_reg_sp(s, rn, true); 4031 if (index >= 0) { 4032 /* pre-index or signed offset */ 4033 tcg_gen_addi_i64(addr, addr, offset); 4034 } 4035 4036 if (is_mult) { 4037 tcg_rt = cpu_reg(s, rt); 4038 4039 if (is_zero) { 4040 int size = 4 << s->dcz_blocksize; 4041 4042 if (s->ata) { 4043 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4044 } 4045 /* 4046 * The non-tags portion of STZGM is mostly like DC_ZVA, 4047 * except the alignment happens before the access. 4048 */ 4049 clean_addr = clean_data_tbi(s, addr); 4050 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4051 gen_helper_dc_zva(cpu_env, clean_addr); 4052 } else if (s->ata) { 4053 if (is_load) { 4054 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4055 } else { 4056 gen_helper_stgm(cpu_env, addr, tcg_rt); 4057 } 4058 } else { 4059 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4060 int size = 4 << GMID_EL1_BS; 4061 4062 clean_addr = clean_data_tbi(s, addr); 4063 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4064 gen_probe_access(s, clean_addr, acc, size); 4065 4066 if (is_load) { 4067 /* The result tags are zeros. */ 4068 tcg_gen_movi_i64(tcg_rt, 0); 4069 } 4070 } 4071 return; 4072 } 4073 4074 if (is_load) { 4075 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4076 tcg_rt = cpu_reg(s, rt); 4077 if (s->ata) { 4078 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4079 } else { 4080 clean_addr = clean_data_tbi(s, addr); 4081 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4082 gen_address_with_allocation_tag0(tcg_rt, addr); 4083 } 4084 } else { 4085 tcg_rt = cpu_reg_sp(s, rt); 4086 if (!s->ata) { 4087 /* 4088 * For STG and ST2G, we need to check alignment and probe memory. 4089 * TODO: For STZG and STZ2G, we could rely on the stores below, 4090 * at least for system mode; user-only won't enforce alignment. 4091 */ 4092 if (is_pair) { 4093 gen_helper_st2g_stub(cpu_env, addr); 4094 } else { 4095 gen_helper_stg_stub(cpu_env, addr); 4096 } 4097 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4098 if (is_pair) { 4099 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4100 } else { 4101 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4102 } 4103 } else { 4104 if (is_pair) { 4105 gen_helper_st2g(cpu_env, addr, tcg_rt); 4106 } else { 4107 gen_helper_stg(cpu_env, addr, tcg_rt); 4108 } 4109 } 4110 } 4111 4112 if (is_zero) { 4113 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4114 TCGv_i64 tcg_zero = tcg_constant_i64(0); 4115 int mem_index = get_mem_index(s); 4116 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE; 4117 4118 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, 4119 MO_UQ | MO_ALIGN_16); 4120 for (i = 8; i < n; i += 8) { 4121 tcg_gen_addi_i64(clean_addr, clean_addr, 8); 4122 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ); 4123 } 4124 } 4125 4126 if (index != 0) { 4127 /* pre-index or post-index */ 4128 if (index < 0) { 4129 /* post-index */ 4130 tcg_gen_addi_i64(addr, addr, offset); 4131 } 4132 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4133 } 4134 } 4135 4136 /* Loads and stores */ 4137 static void disas_ldst(DisasContext *s, uint32_t insn) 4138 { 4139 switch (extract32(insn, 24, 6)) { 4140 case 0x08: /* Load/store exclusive */ 4141 disas_ldst_excl(s, insn); 4142 break; 4143 case 0x18: case 0x1c: /* Load register (literal) */ 4144 disas_ld_lit(s, insn); 4145 break; 4146 case 0x28: case 0x29: 4147 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4148 disas_ldst_pair(s, insn); 4149 break; 4150 case 0x38: case 0x39: 4151 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4152 disas_ldst_reg(s, insn); 4153 break; 4154 case 0x0c: /* AdvSIMD load/store multiple structures */ 4155 disas_ldst_multiple_struct(s, insn); 4156 break; 4157 case 0x0d: /* AdvSIMD load/store single structure */ 4158 disas_ldst_single_struct(s, insn); 4159 break; 4160 case 0x19: 4161 if (extract32(insn, 21, 1) != 0) { 4162 disas_ldst_tag(s, insn); 4163 } else if (extract32(insn, 10, 2) == 0) { 4164 disas_ldst_ldapr_stlr(s, insn); 4165 } else { 4166 unallocated_encoding(s); 4167 } 4168 break; 4169 default: 4170 unallocated_encoding(s); 4171 break; 4172 } 4173 } 4174 4175 /* PC-rel. addressing 4176 * 31 30 29 28 24 23 5 4 0 4177 * +----+-------+-----------+-------------------+------+ 4178 * | op | immlo | 1 0 0 0 0 | immhi | Rd | 4179 * +----+-------+-----------+-------------------+------+ 4180 */ 4181 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn) 4182 { 4183 unsigned int page, rd; 4184 int64_t offset; 4185 4186 page = extract32(insn, 31, 1); 4187 /* SignExtend(immhi:immlo) -> offset */ 4188 offset = sextract64(insn, 5, 19); 4189 offset = offset << 2 | extract32(insn, 29, 2); 4190 rd = extract32(insn, 0, 5); 4191 4192 if (page) { 4193 /* ADRP (page based) */ 4194 offset <<= 12; 4195 /* The page offset is ok for CF_PCREL. */ 4196 offset -= s->pc_curr & 0xfff; 4197 } 4198 4199 gen_pc_plus_diff(s, cpu_reg(s, rd), offset); 4200 } 4201 4202 /* 4203 * Add/subtract (immediate) 4204 * 4205 * 31 30 29 28 23 22 21 10 9 5 4 0 4206 * +--+--+--+-------------+--+-------------+-----+-----+ 4207 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd | 4208 * +--+--+--+-------------+--+-------------+-----+-----+ 4209 * 4210 * sf: 0 -> 32bit, 1 -> 64bit 4211 * op: 0 -> add , 1 -> sub 4212 * S: 1 -> set flags 4213 * sh: 1 -> LSL imm by 12 4214 */ 4215 static void disas_add_sub_imm(DisasContext *s, uint32_t insn) 4216 { 4217 int rd = extract32(insn, 0, 5); 4218 int rn = extract32(insn, 5, 5); 4219 uint64_t imm = extract32(insn, 10, 12); 4220 bool shift = extract32(insn, 22, 1); 4221 bool setflags = extract32(insn, 29, 1); 4222 bool sub_op = extract32(insn, 30, 1); 4223 bool is_64bit = extract32(insn, 31, 1); 4224 4225 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 4226 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd); 4227 TCGv_i64 tcg_result; 4228 4229 if (shift) { 4230 imm <<= 12; 4231 } 4232 4233 tcg_result = tcg_temp_new_i64(); 4234 if (!setflags) { 4235 if (sub_op) { 4236 tcg_gen_subi_i64(tcg_result, tcg_rn, imm); 4237 } else { 4238 tcg_gen_addi_i64(tcg_result, tcg_rn, imm); 4239 } 4240 } else { 4241 TCGv_i64 tcg_imm = tcg_constant_i64(imm); 4242 if (sub_op) { 4243 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4244 } else { 4245 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4246 } 4247 } 4248 4249 if (is_64bit) { 4250 tcg_gen_mov_i64(tcg_rd, tcg_result); 4251 } else { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4253 } 4254 } 4255 4256 /* 4257 * Add/subtract (immediate, with tags) 4258 * 4259 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0 4260 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4261 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd | 4262 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4263 * 4264 * op: 0 -> add, 1 -> sub 4265 */ 4266 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn) 4267 { 4268 int rd = extract32(insn, 0, 5); 4269 int rn = extract32(insn, 5, 5); 4270 int uimm4 = extract32(insn, 10, 4); 4271 int uimm6 = extract32(insn, 16, 6); 4272 bool sub_op = extract32(insn, 30, 1); 4273 TCGv_i64 tcg_rn, tcg_rd; 4274 int imm; 4275 4276 /* Test all of sf=1, S=0, o2=0, o3=0. */ 4277 if ((insn & 0xa040c000u) != 0x80000000u || 4278 !dc_isar_feature(aa64_mte_insn_reg, s)) { 4279 unallocated_encoding(s); 4280 return; 4281 } 4282 4283 imm = uimm6 << LOG2_TAG_GRANULE; 4284 if (sub_op) { 4285 imm = -imm; 4286 } 4287 4288 tcg_rn = cpu_reg_sp(s, rn); 4289 tcg_rd = cpu_reg_sp(s, rd); 4290 4291 if (s->ata) { 4292 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4293 tcg_constant_i32(imm), 4294 tcg_constant_i32(uimm4)); 4295 } else { 4296 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4297 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4298 } 4299 } 4300 4301 /* The input should be a value in the bottom e bits (with higher 4302 * bits zero); returns that value replicated into every element 4303 * of size e in a 64 bit integer. 4304 */ 4305 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4306 { 4307 assert(e != 0); 4308 while (e < 64) { 4309 mask |= mask << e; 4310 e *= 2; 4311 } 4312 return mask; 4313 } 4314 4315 /* Return a value with the bottom len bits set (where 0 < len <= 64) */ 4316 static inline uint64_t bitmask64(unsigned int length) 4317 { 4318 assert(length > 0 && length <= 64); 4319 return ~0ULL >> (64 - length); 4320 } 4321 4322 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we 4323 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4324 * value (ie should cause a guest UNDEF exception), and true if they are 4325 * valid, in which case the decoded bit pattern is written to result. 4326 */ 4327 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4328 unsigned int imms, unsigned int immr) 4329 { 4330 uint64_t mask; 4331 unsigned e, levels, s, r; 4332 int len; 4333 4334 assert(immn < 2 && imms < 64 && immr < 64); 4335 4336 /* The bit patterns we create here are 64 bit patterns which 4337 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4338 * 64 bits each. Each element contains the same value: a run 4339 * of between 1 and e-1 non-zero bits, rotated within the 4340 * element by between 0 and e-1 bits. 4341 * 4342 * The element size and run length are encoded into immn (1 bit) 4343 * and imms (6 bits) as follows: 4344 * 64 bit elements: immn = 1, imms = <length of run - 1> 4345 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4346 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4347 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4348 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4349 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4350 * Notice that immn = 0, imms = 11111x is the only combination 4351 * not covered by one of the above options; this is reserved. 4352 * Further, <length of run - 1> all-ones is a reserved pattern. 4353 * 4354 * In all cases the rotation is by immr % e (and immr is 6 bits). 4355 */ 4356 4357 /* First determine the element size */ 4358 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4359 if (len < 1) { 4360 /* This is the immn == 0, imms == 0x11111x case */ 4361 return false; 4362 } 4363 e = 1 << len; 4364 4365 levels = e - 1; 4366 s = imms & levels; 4367 r = immr & levels; 4368 4369 if (s == levels) { 4370 /* <length of run - 1> mustn't be all-ones. */ 4371 return false; 4372 } 4373 4374 /* Create the value of one element: s+1 set bits rotated 4375 * by r within the element (which is e bits wide)... 4376 */ 4377 mask = bitmask64(s + 1); 4378 if (r) { 4379 mask = (mask >> r) | (mask << (e - r)); 4380 mask &= bitmask64(e); 4381 } 4382 /* ...then replicate the element over the whole 64 bit value */ 4383 mask = bitfield_replicate(mask, e); 4384 *result = mask; 4385 return true; 4386 } 4387 4388 /* Logical (immediate) 4389 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4390 * +----+-----+-------------+---+------+------+------+------+ 4391 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd | 4392 * +----+-----+-------------+---+------+------+------+------+ 4393 */ 4394 static void disas_logic_imm(DisasContext *s, uint32_t insn) 4395 { 4396 unsigned int sf, opc, is_n, immr, imms, rn, rd; 4397 TCGv_i64 tcg_rd, tcg_rn; 4398 uint64_t wmask; 4399 bool is_and = false; 4400 4401 sf = extract32(insn, 31, 1); 4402 opc = extract32(insn, 29, 2); 4403 is_n = extract32(insn, 22, 1); 4404 immr = extract32(insn, 16, 6); 4405 imms = extract32(insn, 10, 6); 4406 rn = extract32(insn, 5, 5); 4407 rd = extract32(insn, 0, 5); 4408 4409 if (!sf && is_n) { 4410 unallocated_encoding(s); 4411 return; 4412 } 4413 4414 if (opc == 0x3) { /* ANDS */ 4415 tcg_rd = cpu_reg(s, rd); 4416 } else { 4417 tcg_rd = cpu_reg_sp(s, rd); 4418 } 4419 tcg_rn = cpu_reg(s, rn); 4420 4421 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) { 4422 /* some immediate field values are reserved */ 4423 unallocated_encoding(s); 4424 return; 4425 } 4426 4427 if (!sf) { 4428 wmask &= 0xffffffff; 4429 } 4430 4431 switch (opc) { 4432 case 0x3: /* ANDS */ 4433 case 0x0: /* AND */ 4434 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask); 4435 is_and = true; 4436 break; 4437 case 0x1: /* ORR */ 4438 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask); 4439 break; 4440 case 0x2: /* EOR */ 4441 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask); 4442 break; 4443 default: 4444 assert(FALSE); /* must handle all above */ 4445 break; 4446 } 4447 4448 if (!sf && !is_and) { 4449 /* zero extend final result; we know we can skip this for AND 4450 * since the immediate had the high 32 bits clear. 4451 */ 4452 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4453 } 4454 4455 if (opc == 3) { /* ANDS */ 4456 gen_logic_CC(sf, tcg_rd); 4457 } 4458 } 4459 4460 /* 4461 * Move wide (immediate) 4462 * 4463 * 31 30 29 28 23 22 21 20 5 4 0 4464 * +--+-----+-------------+-----+----------------+------+ 4465 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd | 4466 * +--+-----+-------------+-----+----------------+------+ 4467 * 4468 * sf: 0 -> 32 bit, 1 -> 64 bit 4469 * opc: 00 -> N, 10 -> Z, 11 -> K 4470 * hw: shift/16 (0,16, and sf only 32, 48) 4471 */ 4472 static void disas_movw_imm(DisasContext *s, uint32_t insn) 4473 { 4474 int rd = extract32(insn, 0, 5); 4475 uint64_t imm = extract32(insn, 5, 16); 4476 int sf = extract32(insn, 31, 1); 4477 int opc = extract32(insn, 29, 2); 4478 int pos = extract32(insn, 21, 2) << 4; 4479 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4480 4481 if (!sf && (pos >= 32)) { 4482 unallocated_encoding(s); 4483 return; 4484 } 4485 4486 switch (opc) { 4487 case 0: /* MOVN */ 4488 case 2: /* MOVZ */ 4489 imm <<= pos; 4490 if (opc == 0) { 4491 imm = ~imm; 4492 } 4493 if (!sf) { 4494 imm &= 0xffffffffu; 4495 } 4496 tcg_gen_movi_i64(tcg_rd, imm); 4497 break; 4498 case 3: /* MOVK */ 4499 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16); 4500 if (!sf) { 4501 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4502 } 4503 break; 4504 default: 4505 unallocated_encoding(s); 4506 break; 4507 } 4508 } 4509 4510 /* Bitfield 4511 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4512 * +----+-----+-------------+---+------+------+------+------+ 4513 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd | 4514 * +----+-----+-------------+---+------+------+------+------+ 4515 */ 4516 static void disas_bitfield(DisasContext *s, uint32_t insn) 4517 { 4518 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len; 4519 TCGv_i64 tcg_rd, tcg_tmp; 4520 4521 sf = extract32(insn, 31, 1); 4522 opc = extract32(insn, 29, 2); 4523 n = extract32(insn, 22, 1); 4524 ri = extract32(insn, 16, 6); 4525 si = extract32(insn, 10, 6); 4526 rn = extract32(insn, 5, 5); 4527 rd = extract32(insn, 0, 5); 4528 bitsize = sf ? 64 : 32; 4529 4530 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) { 4531 unallocated_encoding(s); 4532 return; 4533 } 4534 4535 tcg_rd = cpu_reg(s, rd); 4536 4537 /* Suppress the zero-extend for !sf. Since RI and SI are constrained 4538 to be smaller than bitsize, we'll never reference data outside the 4539 low 32-bits anyway. */ 4540 tcg_tmp = read_cpu_reg(s, rn, 1); 4541 4542 /* Recognize simple(r) extractions. */ 4543 if (si >= ri) { 4544 /* Wd<s-r:0> = Wn<s:r> */ 4545 len = (si - ri) + 1; 4546 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */ 4547 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4548 goto done; 4549 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */ 4550 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4551 return; 4552 } 4553 /* opc == 1, BFXIL fall through to deposit */ 4554 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4555 pos = 0; 4556 } else { 4557 /* Handle the ri > si case with a deposit 4558 * Wd<32+s-r,32-r> = Wn<s:0> 4559 */ 4560 len = si + 1; 4561 pos = (bitsize - ri) & (bitsize - 1); 4562 } 4563 4564 if (opc == 0 && len < ri) { 4565 /* SBFM: sign extend the destination field from len to fill 4566 the balance of the word. Let the deposit below insert all 4567 of those sign bits. */ 4568 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4569 len = ri; 4570 } 4571 4572 if (opc == 1) { /* BFM, BFXIL */ 4573 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4574 } else { 4575 /* SBFM or UBFM: We start with zero, and we haven't modified 4576 any bits outside bitsize, therefore the zero-extension 4577 below is unneeded. */ 4578 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4579 return; 4580 } 4581 4582 done: 4583 if (!sf) { /* zero extend final result */ 4584 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4585 } 4586 } 4587 4588 /* Extract 4589 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0 4590 * +----+------+-------------+---+----+------+--------+------+------+ 4591 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd | 4592 * +----+------+-------------+---+----+------+--------+------+------+ 4593 */ 4594 static void disas_extract(DisasContext *s, uint32_t insn) 4595 { 4596 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0; 4597 4598 sf = extract32(insn, 31, 1); 4599 n = extract32(insn, 22, 1); 4600 rm = extract32(insn, 16, 5); 4601 imm = extract32(insn, 10, 6); 4602 rn = extract32(insn, 5, 5); 4603 rd = extract32(insn, 0, 5); 4604 op21 = extract32(insn, 29, 2); 4605 op0 = extract32(insn, 21, 1); 4606 bitsize = sf ? 64 : 32; 4607 4608 if (sf != n || op21 || op0 || imm >= bitsize) { 4609 unallocated_encoding(s); 4610 } else { 4611 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4612 4613 tcg_rd = cpu_reg(s, rd); 4614 4615 if (unlikely(imm == 0)) { 4616 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4617 * so an extract from bit 0 is a special case. 4618 */ 4619 if (sf) { 4620 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm)); 4621 } else { 4622 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm)); 4623 } 4624 } else { 4625 tcg_rm = cpu_reg(s, rm); 4626 tcg_rn = cpu_reg(s, rn); 4627 4628 if (sf) { 4629 /* Specialization to ROR happens in EXTRACT2. */ 4630 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm); 4631 } else { 4632 TCGv_i32 t0 = tcg_temp_new_i32(); 4633 4634 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4635 if (rm == rn) { 4636 tcg_gen_rotri_i32(t0, t0, imm); 4637 } else { 4638 TCGv_i32 t1 = tcg_temp_new_i32(); 4639 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4640 tcg_gen_extract2_i32(t0, t0, t1, imm); 4641 } 4642 tcg_gen_extu_i32_i64(tcg_rd, t0); 4643 } 4644 } 4645 } 4646 } 4647 4648 /* Data processing - immediate */ 4649 static void disas_data_proc_imm(DisasContext *s, uint32_t insn) 4650 { 4651 switch (extract32(insn, 23, 6)) { 4652 case 0x20: case 0x21: /* PC-rel. addressing */ 4653 disas_pc_rel_adr(s, insn); 4654 break; 4655 case 0x22: /* Add/subtract (immediate) */ 4656 disas_add_sub_imm(s, insn); 4657 break; 4658 case 0x23: /* Add/subtract (immediate, with tags) */ 4659 disas_add_sub_imm_with_tags(s, insn); 4660 break; 4661 case 0x24: /* Logical (immediate) */ 4662 disas_logic_imm(s, insn); 4663 break; 4664 case 0x25: /* Move wide (immediate) */ 4665 disas_movw_imm(s, insn); 4666 break; 4667 case 0x26: /* Bitfield */ 4668 disas_bitfield(s, insn); 4669 break; 4670 case 0x27: /* Extract */ 4671 disas_extract(s, insn); 4672 break; 4673 default: 4674 unallocated_encoding(s); 4675 break; 4676 } 4677 } 4678 4679 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4680 * Note that it is the caller's responsibility to ensure that the 4681 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4682 * mandated semantics for out of range shifts. 4683 */ 4684 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4685 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4686 { 4687 switch (shift_type) { 4688 case A64_SHIFT_TYPE_LSL: 4689 tcg_gen_shl_i64(dst, src, shift_amount); 4690 break; 4691 case A64_SHIFT_TYPE_LSR: 4692 tcg_gen_shr_i64(dst, src, shift_amount); 4693 break; 4694 case A64_SHIFT_TYPE_ASR: 4695 if (!sf) { 4696 tcg_gen_ext32s_i64(dst, src); 4697 } 4698 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4699 break; 4700 case A64_SHIFT_TYPE_ROR: 4701 if (sf) { 4702 tcg_gen_rotr_i64(dst, src, shift_amount); 4703 } else { 4704 TCGv_i32 t0, t1; 4705 t0 = tcg_temp_new_i32(); 4706 t1 = tcg_temp_new_i32(); 4707 tcg_gen_extrl_i64_i32(t0, src); 4708 tcg_gen_extrl_i64_i32(t1, shift_amount); 4709 tcg_gen_rotr_i32(t0, t0, t1); 4710 tcg_gen_extu_i32_i64(dst, t0); 4711 } 4712 break; 4713 default: 4714 assert(FALSE); /* all shift types should be handled */ 4715 break; 4716 } 4717 4718 if (!sf) { /* zero extend final result */ 4719 tcg_gen_ext32u_i64(dst, dst); 4720 } 4721 } 4722 4723 /* Shift a TCGv src by immediate, put result in dst. 4724 * The shift amount must be in range (this should always be true as the 4725 * relevant instructions will UNDEF on bad shift immediates). 4726 */ 4727 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4728 enum a64_shift_type shift_type, unsigned int shift_i) 4729 { 4730 assert(shift_i < (sf ? 64 : 32)); 4731 4732 if (shift_i == 0) { 4733 tcg_gen_mov_i64(dst, src); 4734 } else { 4735 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4736 } 4737 } 4738 4739 /* Logical (shifted register) 4740 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4741 * +----+-----+-----------+-------+---+------+--------+------+------+ 4742 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4743 * +----+-----+-----------+-------+---+------+--------+------+------+ 4744 */ 4745 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4746 { 4747 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4748 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4749 4750 sf = extract32(insn, 31, 1); 4751 opc = extract32(insn, 29, 2); 4752 shift_type = extract32(insn, 22, 2); 4753 invert = extract32(insn, 21, 1); 4754 rm = extract32(insn, 16, 5); 4755 shift_amount = extract32(insn, 10, 6); 4756 rn = extract32(insn, 5, 5); 4757 rd = extract32(insn, 0, 5); 4758 4759 if (!sf && (shift_amount & (1 << 5))) { 4760 unallocated_encoding(s); 4761 return; 4762 } 4763 4764 tcg_rd = cpu_reg(s, rd); 4765 4766 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4767 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4768 * register-register MOV and MVN, so it is worth special casing. 4769 */ 4770 tcg_rm = cpu_reg(s, rm); 4771 if (invert) { 4772 tcg_gen_not_i64(tcg_rd, tcg_rm); 4773 if (!sf) { 4774 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4775 } 4776 } else { 4777 if (sf) { 4778 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4779 } else { 4780 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4781 } 4782 } 4783 return; 4784 } 4785 4786 tcg_rm = read_cpu_reg(s, rm, sf); 4787 4788 if (shift_amount) { 4789 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4790 } 4791 4792 tcg_rn = cpu_reg(s, rn); 4793 4794 switch (opc | (invert << 2)) { 4795 case 0: /* AND */ 4796 case 3: /* ANDS */ 4797 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4798 break; 4799 case 1: /* ORR */ 4800 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4801 break; 4802 case 2: /* EOR */ 4803 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4804 break; 4805 case 4: /* BIC */ 4806 case 7: /* BICS */ 4807 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4808 break; 4809 case 5: /* ORN */ 4810 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4811 break; 4812 case 6: /* EON */ 4813 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4814 break; 4815 default: 4816 assert(FALSE); 4817 break; 4818 } 4819 4820 if (!sf) { 4821 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4822 } 4823 4824 if (opc == 3) { 4825 gen_logic_CC(sf, tcg_rd); 4826 } 4827 } 4828 4829 /* 4830 * Add/subtract (extended register) 4831 * 4832 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4833 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4834 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4835 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4836 * 4837 * sf: 0 -> 32bit, 1 -> 64bit 4838 * op: 0 -> add , 1 -> sub 4839 * S: 1 -> set flags 4840 * opt: 00 4841 * option: extension type (see DecodeRegExtend) 4842 * imm3: optional shift to Rm 4843 * 4844 * Rd = Rn + LSL(extend(Rm), amount) 4845 */ 4846 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4847 { 4848 int rd = extract32(insn, 0, 5); 4849 int rn = extract32(insn, 5, 5); 4850 int imm3 = extract32(insn, 10, 3); 4851 int option = extract32(insn, 13, 3); 4852 int rm = extract32(insn, 16, 5); 4853 int opt = extract32(insn, 22, 2); 4854 bool setflags = extract32(insn, 29, 1); 4855 bool sub_op = extract32(insn, 30, 1); 4856 bool sf = extract32(insn, 31, 1); 4857 4858 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4859 TCGv_i64 tcg_rd; 4860 TCGv_i64 tcg_result; 4861 4862 if (imm3 > 4 || opt != 0) { 4863 unallocated_encoding(s); 4864 return; 4865 } 4866 4867 /* non-flag setting ops may use SP */ 4868 if (!setflags) { 4869 tcg_rd = cpu_reg_sp(s, rd); 4870 } else { 4871 tcg_rd = cpu_reg(s, rd); 4872 } 4873 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4874 4875 tcg_rm = read_cpu_reg(s, rm, sf); 4876 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4877 4878 tcg_result = tcg_temp_new_i64(); 4879 4880 if (!setflags) { 4881 if (sub_op) { 4882 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4883 } else { 4884 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4885 } 4886 } else { 4887 if (sub_op) { 4888 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4889 } else { 4890 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4891 } 4892 } 4893 4894 if (sf) { 4895 tcg_gen_mov_i64(tcg_rd, tcg_result); 4896 } else { 4897 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4898 } 4899 } 4900 4901 /* 4902 * Add/subtract (shifted register) 4903 * 4904 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4905 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4906 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4907 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4908 * 4909 * sf: 0 -> 32bit, 1 -> 64bit 4910 * op: 0 -> add , 1 -> sub 4911 * S: 1 -> set flags 4912 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4913 * imm6: Shift amount to apply to Rm before the add/sub 4914 */ 4915 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4916 { 4917 int rd = extract32(insn, 0, 5); 4918 int rn = extract32(insn, 5, 5); 4919 int imm6 = extract32(insn, 10, 6); 4920 int rm = extract32(insn, 16, 5); 4921 int shift_type = extract32(insn, 22, 2); 4922 bool setflags = extract32(insn, 29, 1); 4923 bool sub_op = extract32(insn, 30, 1); 4924 bool sf = extract32(insn, 31, 1); 4925 4926 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4927 TCGv_i64 tcg_rn, tcg_rm; 4928 TCGv_i64 tcg_result; 4929 4930 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4931 unallocated_encoding(s); 4932 return; 4933 } 4934 4935 tcg_rn = read_cpu_reg(s, rn, sf); 4936 tcg_rm = read_cpu_reg(s, rm, sf); 4937 4938 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4939 4940 tcg_result = tcg_temp_new_i64(); 4941 4942 if (!setflags) { 4943 if (sub_op) { 4944 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4945 } else { 4946 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4947 } 4948 } else { 4949 if (sub_op) { 4950 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4951 } else { 4952 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4953 } 4954 } 4955 4956 if (sf) { 4957 tcg_gen_mov_i64(tcg_rd, tcg_result); 4958 } else { 4959 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4960 } 4961 } 4962 4963 /* Data-processing (3 source) 4964 * 4965 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4966 * +--+------+-----------+------+------+----+------+------+------+ 4967 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4968 * +--+------+-----------+------+------+----+------+------+------+ 4969 */ 4970 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4971 { 4972 int rd = extract32(insn, 0, 5); 4973 int rn = extract32(insn, 5, 5); 4974 int ra = extract32(insn, 10, 5); 4975 int rm = extract32(insn, 16, 5); 4976 int op_id = (extract32(insn, 29, 3) << 4) | 4977 (extract32(insn, 21, 3) << 1) | 4978 extract32(insn, 15, 1); 4979 bool sf = extract32(insn, 31, 1); 4980 bool is_sub = extract32(op_id, 0, 1); 4981 bool is_high = extract32(op_id, 2, 1); 4982 bool is_signed = false; 4983 TCGv_i64 tcg_op1; 4984 TCGv_i64 tcg_op2; 4985 TCGv_i64 tcg_tmp; 4986 4987 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4988 switch (op_id) { 4989 case 0x42: /* SMADDL */ 4990 case 0x43: /* SMSUBL */ 4991 case 0x44: /* SMULH */ 4992 is_signed = true; 4993 break; 4994 case 0x0: /* MADD (32bit) */ 4995 case 0x1: /* MSUB (32bit) */ 4996 case 0x40: /* MADD (64bit) */ 4997 case 0x41: /* MSUB (64bit) */ 4998 case 0x4a: /* UMADDL */ 4999 case 0x4b: /* UMSUBL */ 5000 case 0x4c: /* UMULH */ 5001 break; 5002 default: 5003 unallocated_encoding(s); 5004 return; 5005 } 5006 5007 if (is_high) { 5008 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5009 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5010 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5011 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5012 5013 if (is_signed) { 5014 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5015 } else { 5016 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5017 } 5018 return; 5019 } 5020 5021 tcg_op1 = tcg_temp_new_i64(); 5022 tcg_op2 = tcg_temp_new_i64(); 5023 tcg_tmp = tcg_temp_new_i64(); 5024 5025 if (op_id < 0x42) { 5026 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5027 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5028 } else { 5029 if (is_signed) { 5030 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5031 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5032 } else { 5033 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5034 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5035 } 5036 } 5037 5038 if (ra == 31 && !is_sub) { 5039 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5040 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5041 } else { 5042 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5043 if (is_sub) { 5044 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5045 } else { 5046 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5047 } 5048 } 5049 5050 if (!sf) { 5051 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5052 } 5053 } 5054 5055 /* Add/subtract (with carry) 5056 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5057 * +--+--+--+------------------------+------+-------------+------+-----+ 5058 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5059 * +--+--+--+------------------------+------+-------------+------+-----+ 5060 */ 5061 5062 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5063 { 5064 unsigned int sf, op, setflags, rm, rn, rd; 5065 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5066 5067 sf = extract32(insn, 31, 1); 5068 op = extract32(insn, 30, 1); 5069 setflags = extract32(insn, 29, 1); 5070 rm = extract32(insn, 16, 5); 5071 rn = extract32(insn, 5, 5); 5072 rd = extract32(insn, 0, 5); 5073 5074 tcg_rd = cpu_reg(s, rd); 5075 tcg_rn = cpu_reg(s, rn); 5076 5077 if (op) { 5078 tcg_y = tcg_temp_new_i64(); 5079 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5080 } else { 5081 tcg_y = cpu_reg(s, rm); 5082 } 5083 5084 if (setflags) { 5085 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5086 } else { 5087 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5088 } 5089 } 5090 5091 /* 5092 * Rotate right into flags 5093 * 31 30 29 21 15 10 5 4 0 5094 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5095 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5096 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5097 */ 5098 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5099 { 5100 int mask = extract32(insn, 0, 4); 5101 int o2 = extract32(insn, 4, 1); 5102 int rn = extract32(insn, 5, 5); 5103 int imm6 = extract32(insn, 15, 6); 5104 int sf_op_s = extract32(insn, 29, 3); 5105 TCGv_i64 tcg_rn; 5106 TCGv_i32 nzcv; 5107 5108 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5109 unallocated_encoding(s); 5110 return; 5111 } 5112 5113 tcg_rn = read_cpu_reg(s, rn, 1); 5114 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5115 5116 nzcv = tcg_temp_new_i32(); 5117 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5118 5119 if (mask & 8) { /* N */ 5120 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5121 } 5122 if (mask & 4) { /* Z */ 5123 tcg_gen_not_i32(cpu_ZF, nzcv); 5124 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5125 } 5126 if (mask & 2) { /* C */ 5127 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5128 } 5129 if (mask & 1) { /* V */ 5130 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5131 } 5132 } 5133 5134 /* 5135 * Evaluate into flags 5136 * 31 30 29 21 15 14 10 5 4 0 5137 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5138 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5139 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5140 */ 5141 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5142 { 5143 int o3_mask = extract32(insn, 0, 5); 5144 int rn = extract32(insn, 5, 5); 5145 int o2 = extract32(insn, 15, 6); 5146 int sz = extract32(insn, 14, 1); 5147 int sf_op_s = extract32(insn, 29, 3); 5148 TCGv_i32 tmp; 5149 int shift; 5150 5151 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5152 !dc_isar_feature(aa64_condm_4, s)) { 5153 unallocated_encoding(s); 5154 return; 5155 } 5156 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5157 5158 tmp = tcg_temp_new_i32(); 5159 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5160 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5161 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5162 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5163 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5164 } 5165 5166 /* Conditional compare (immediate / register) 5167 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5168 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5169 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5170 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5171 * [1] y [0] [0] 5172 */ 5173 static void disas_cc(DisasContext *s, uint32_t insn) 5174 { 5175 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5176 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5177 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5178 DisasCompare c; 5179 5180 if (!extract32(insn, 29, 1)) { 5181 unallocated_encoding(s); 5182 return; 5183 } 5184 if (insn & (1 << 10 | 1 << 4)) { 5185 unallocated_encoding(s); 5186 return; 5187 } 5188 sf = extract32(insn, 31, 1); 5189 op = extract32(insn, 30, 1); 5190 is_imm = extract32(insn, 11, 1); 5191 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5192 cond = extract32(insn, 12, 4); 5193 rn = extract32(insn, 5, 5); 5194 nzcv = extract32(insn, 0, 4); 5195 5196 /* Set T0 = !COND. */ 5197 tcg_t0 = tcg_temp_new_i32(); 5198 arm_test_cc(&c, cond); 5199 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5200 5201 /* Load the arguments for the new comparison. */ 5202 if (is_imm) { 5203 tcg_y = tcg_temp_new_i64(); 5204 tcg_gen_movi_i64(tcg_y, y); 5205 } else { 5206 tcg_y = cpu_reg(s, y); 5207 } 5208 tcg_rn = cpu_reg(s, rn); 5209 5210 /* Set the flags for the new comparison. */ 5211 tcg_tmp = tcg_temp_new_i64(); 5212 if (op) { 5213 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5214 } else { 5215 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5216 } 5217 5218 /* If COND was false, force the flags to #nzcv. Compute two masks 5219 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5220 * For tcg hosts that support ANDC, we can make do with just T1. 5221 * In either case, allow the tcg optimizer to delete any unused mask. 5222 */ 5223 tcg_t1 = tcg_temp_new_i32(); 5224 tcg_t2 = tcg_temp_new_i32(); 5225 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5226 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5227 5228 if (nzcv & 8) { /* N */ 5229 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5230 } else { 5231 if (TCG_TARGET_HAS_andc_i32) { 5232 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5233 } else { 5234 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5235 } 5236 } 5237 if (nzcv & 4) { /* Z */ 5238 if (TCG_TARGET_HAS_andc_i32) { 5239 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5240 } else { 5241 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5242 } 5243 } else { 5244 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5245 } 5246 if (nzcv & 2) { /* C */ 5247 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5248 } else { 5249 if (TCG_TARGET_HAS_andc_i32) { 5250 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5251 } else { 5252 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5253 } 5254 } 5255 if (nzcv & 1) { /* V */ 5256 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5257 } else { 5258 if (TCG_TARGET_HAS_andc_i32) { 5259 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5260 } else { 5261 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5262 } 5263 } 5264 } 5265 5266 /* Conditional select 5267 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5268 * +----+----+---+-----------------+------+------+-----+------+------+ 5269 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5270 * +----+----+---+-----------------+------+------+-----+------+------+ 5271 */ 5272 static void disas_cond_select(DisasContext *s, uint32_t insn) 5273 { 5274 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5275 TCGv_i64 tcg_rd, zero; 5276 DisasCompare64 c; 5277 5278 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5279 /* S == 1 or op2<1> == 1 */ 5280 unallocated_encoding(s); 5281 return; 5282 } 5283 sf = extract32(insn, 31, 1); 5284 else_inv = extract32(insn, 30, 1); 5285 rm = extract32(insn, 16, 5); 5286 cond = extract32(insn, 12, 4); 5287 else_inc = extract32(insn, 10, 1); 5288 rn = extract32(insn, 5, 5); 5289 rd = extract32(insn, 0, 5); 5290 5291 tcg_rd = cpu_reg(s, rd); 5292 5293 a64_test_cc(&c, cond); 5294 zero = tcg_constant_i64(0); 5295 5296 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5297 /* CSET & CSETM. */ 5298 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5299 if (else_inv) { 5300 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5301 } 5302 } else { 5303 TCGv_i64 t_true = cpu_reg(s, rn); 5304 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5305 if (else_inv && else_inc) { 5306 tcg_gen_neg_i64(t_false, t_false); 5307 } else if (else_inv) { 5308 tcg_gen_not_i64(t_false, t_false); 5309 } else if (else_inc) { 5310 tcg_gen_addi_i64(t_false, t_false, 1); 5311 } 5312 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5313 } 5314 5315 if (!sf) { 5316 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5317 } 5318 } 5319 5320 static void handle_clz(DisasContext *s, unsigned int sf, 5321 unsigned int rn, unsigned int rd) 5322 { 5323 TCGv_i64 tcg_rd, tcg_rn; 5324 tcg_rd = cpu_reg(s, rd); 5325 tcg_rn = cpu_reg(s, rn); 5326 5327 if (sf) { 5328 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5329 } else { 5330 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5331 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5332 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5333 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5334 } 5335 } 5336 5337 static void handle_cls(DisasContext *s, unsigned int sf, 5338 unsigned int rn, unsigned int rd) 5339 { 5340 TCGv_i64 tcg_rd, tcg_rn; 5341 tcg_rd = cpu_reg(s, rd); 5342 tcg_rn = cpu_reg(s, rn); 5343 5344 if (sf) { 5345 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5346 } else { 5347 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5348 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5349 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5350 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5351 } 5352 } 5353 5354 static void handle_rbit(DisasContext *s, unsigned int sf, 5355 unsigned int rn, unsigned int rd) 5356 { 5357 TCGv_i64 tcg_rd, tcg_rn; 5358 tcg_rd = cpu_reg(s, rd); 5359 tcg_rn = cpu_reg(s, rn); 5360 5361 if (sf) { 5362 gen_helper_rbit64(tcg_rd, tcg_rn); 5363 } else { 5364 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5365 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5366 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5367 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5368 } 5369 } 5370 5371 /* REV with sf==1, opcode==3 ("REV64") */ 5372 static void handle_rev64(DisasContext *s, unsigned int sf, 5373 unsigned int rn, unsigned int rd) 5374 { 5375 if (!sf) { 5376 unallocated_encoding(s); 5377 return; 5378 } 5379 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5380 } 5381 5382 /* REV with sf==0, opcode==2 5383 * REV32 (sf==1, opcode==2) 5384 */ 5385 static void handle_rev32(DisasContext *s, unsigned int sf, 5386 unsigned int rn, unsigned int rd) 5387 { 5388 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5389 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5390 5391 if (sf) { 5392 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5393 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5394 } else { 5395 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5396 } 5397 } 5398 5399 /* REV16 (opcode==1) */ 5400 static void handle_rev16(DisasContext *s, unsigned int sf, 5401 unsigned int rn, unsigned int rd) 5402 { 5403 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5404 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5405 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5406 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5407 5408 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5409 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5410 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5411 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5412 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5413 } 5414 5415 /* Data-processing (1 source) 5416 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5417 * +----+---+---+-----------------+---------+--------+------+------+ 5418 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5419 * +----+---+---+-----------------+---------+--------+------+------+ 5420 */ 5421 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5422 { 5423 unsigned int sf, opcode, opcode2, rn, rd; 5424 TCGv_i64 tcg_rd; 5425 5426 if (extract32(insn, 29, 1)) { 5427 unallocated_encoding(s); 5428 return; 5429 } 5430 5431 sf = extract32(insn, 31, 1); 5432 opcode = extract32(insn, 10, 6); 5433 opcode2 = extract32(insn, 16, 5); 5434 rn = extract32(insn, 5, 5); 5435 rd = extract32(insn, 0, 5); 5436 5437 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5438 5439 switch (MAP(sf, opcode2, opcode)) { 5440 case MAP(0, 0x00, 0x00): /* RBIT */ 5441 case MAP(1, 0x00, 0x00): 5442 handle_rbit(s, sf, rn, rd); 5443 break; 5444 case MAP(0, 0x00, 0x01): /* REV16 */ 5445 case MAP(1, 0x00, 0x01): 5446 handle_rev16(s, sf, rn, rd); 5447 break; 5448 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5449 case MAP(1, 0x00, 0x02): 5450 handle_rev32(s, sf, rn, rd); 5451 break; 5452 case MAP(1, 0x00, 0x03): /* REV64 */ 5453 handle_rev64(s, sf, rn, rd); 5454 break; 5455 case MAP(0, 0x00, 0x04): /* CLZ */ 5456 case MAP(1, 0x00, 0x04): 5457 handle_clz(s, sf, rn, rd); 5458 break; 5459 case MAP(0, 0x00, 0x05): /* CLS */ 5460 case MAP(1, 0x00, 0x05): 5461 handle_cls(s, sf, rn, rd); 5462 break; 5463 case MAP(1, 0x01, 0x00): /* PACIA */ 5464 if (s->pauth_active) { 5465 tcg_rd = cpu_reg(s, rd); 5466 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5467 } else if (!dc_isar_feature(aa64_pauth, s)) { 5468 goto do_unallocated; 5469 } 5470 break; 5471 case MAP(1, 0x01, 0x01): /* PACIB */ 5472 if (s->pauth_active) { 5473 tcg_rd = cpu_reg(s, rd); 5474 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5475 } else if (!dc_isar_feature(aa64_pauth, s)) { 5476 goto do_unallocated; 5477 } 5478 break; 5479 case MAP(1, 0x01, 0x02): /* PACDA */ 5480 if (s->pauth_active) { 5481 tcg_rd = cpu_reg(s, rd); 5482 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5483 } else if (!dc_isar_feature(aa64_pauth, s)) { 5484 goto do_unallocated; 5485 } 5486 break; 5487 case MAP(1, 0x01, 0x03): /* PACDB */ 5488 if (s->pauth_active) { 5489 tcg_rd = cpu_reg(s, rd); 5490 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5491 } else if (!dc_isar_feature(aa64_pauth, s)) { 5492 goto do_unallocated; 5493 } 5494 break; 5495 case MAP(1, 0x01, 0x04): /* AUTIA */ 5496 if (s->pauth_active) { 5497 tcg_rd = cpu_reg(s, rd); 5498 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5499 } else if (!dc_isar_feature(aa64_pauth, s)) { 5500 goto do_unallocated; 5501 } 5502 break; 5503 case MAP(1, 0x01, 0x05): /* AUTIB */ 5504 if (s->pauth_active) { 5505 tcg_rd = cpu_reg(s, rd); 5506 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5507 } else if (!dc_isar_feature(aa64_pauth, s)) { 5508 goto do_unallocated; 5509 } 5510 break; 5511 case MAP(1, 0x01, 0x06): /* AUTDA */ 5512 if (s->pauth_active) { 5513 tcg_rd = cpu_reg(s, rd); 5514 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5515 } else if (!dc_isar_feature(aa64_pauth, s)) { 5516 goto do_unallocated; 5517 } 5518 break; 5519 case MAP(1, 0x01, 0x07): /* AUTDB */ 5520 if (s->pauth_active) { 5521 tcg_rd = cpu_reg(s, rd); 5522 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5523 } else if (!dc_isar_feature(aa64_pauth, s)) { 5524 goto do_unallocated; 5525 } 5526 break; 5527 case MAP(1, 0x01, 0x08): /* PACIZA */ 5528 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5529 goto do_unallocated; 5530 } else if (s->pauth_active) { 5531 tcg_rd = cpu_reg(s, rd); 5532 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5533 } 5534 break; 5535 case MAP(1, 0x01, 0x09): /* PACIZB */ 5536 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5537 goto do_unallocated; 5538 } else if (s->pauth_active) { 5539 tcg_rd = cpu_reg(s, rd); 5540 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5541 } 5542 break; 5543 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5544 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5545 goto do_unallocated; 5546 } else if (s->pauth_active) { 5547 tcg_rd = cpu_reg(s, rd); 5548 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5549 } 5550 break; 5551 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5552 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5553 goto do_unallocated; 5554 } else if (s->pauth_active) { 5555 tcg_rd = cpu_reg(s, rd); 5556 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5557 } 5558 break; 5559 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5560 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5561 goto do_unallocated; 5562 } else if (s->pauth_active) { 5563 tcg_rd = cpu_reg(s, rd); 5564 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5565 } 5566 break; 5567 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5568 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5569 goto do_unallocated; 5570 } else if (s->pauth_active) { 5571 tcg_rd = cpu_reg(s, rd); 5572 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5573 } 5574 break; 5575 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5576 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5577 goto do_unallocated; 5578 } else if (s->pauth_active) { 5579 tcg_rd = cpu_reg(s, rd); 5580 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5581 } 5582 break; 5583 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5584 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5585 goto do_unallocated; 5586 } else if (s->pauth_active) { 5587 tcg_rd = cpu_reg(s, rd); 5588 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5589 } 5590 break; 5591 case MAP(1, 0x01, 0x10): /* XPACI */ 5592 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5593 goto do_unallocated; 5594 } else if (s->pauth_active) { 5595 tcg_rd = cpu_reg(s, rd); 5596 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5597 } 5598 break; 5599 case MAP(1, 0x01, 0x11): /* XPACD */ 5600 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5601 goto do_unallocated; 5602 } else if (s->pauth_active) { 5603 tcg_rd = cpu_reg(s, rd); 5604 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5605 } 5606 break; 5607 default: 5608 do_unallocated: 5609 unallocated_encoding(s); 5610 break; 5611 } 5612 5613 #undef MAP 5614 } 5615 5616 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5617 unsigned int rm, unsigned int rn, unsigned int rd) 5618 { 5619 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5620 tcg_rd = cpu_reg(s, rd); 5621 5622 if (!sf && is_signed) { 5623 tcg_n = tcg_temp_new_i64(); 5624 tcg_m = tcg_temp_new_i64(); 5625 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5626 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5627 } else { 5628 tcg_n = read_cpu_reg(s, rn, sf); 5629 tcg_m = read_cpu_reg(s, rm, sf); 5630 } 5631 5632 if (is_signed) { 5633 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5634 } else { 5635 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5636 } 5637 5638 if (!sf) { /* zero extend final result */ 5639 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5640 } 5641 } 5642 5643 /* LSLV, LSRV, ASRV, RORV */ 5644 static void handle_shift_reg(DisasContext *s, 5645 enum a64_shift_type shift_type, unsigned int sf, 5646 unsigned int rm, unsigned int rn, unsigned int rd) 5647 { 5648 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5649 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5650 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5651 5652 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5653 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5654 } 5655 5656 /* CRC32[BHWX], CRC32C[BHWX] */ 5657 static void handle_crc32(DisasContext *s, 5658 unsigned int sf, unsigned int sz, bool crc32c, 5659 unsigned int rm, unsigned int rn, unsigned int rd) 5660 { 5661 TCGv_i64 tcg_acc, tcg_val; 5662 TCGv_i32 tcg_bytes; 5663 5664 if (!dc_isar_feature(aa64_crc32, s) 5665 || (sf == 1 && sz != 3) 5666 || (sf == 0 && sz == 3)) { 5667 unallocated_encoding(s); 5668 return; 5669 } 5670 5671 if (sz == 3) { 5672 tcg_val = cpu_reg(s, rm); 5673 } else { 5674 uint64_t mask; 5675 switch (sz) { 5676 case 0: 5677 mask = 0xFF; 5678 break; 5679 case 1: 5680 mask = 0xFFFF; 5681 break; 5682 case 2: 5683 mask = 0xFFFFFFFF; 5684 break; 5685 default: 5686 g_assert_not_reached(); 5687 } 5688 tcg_val = tcg_temp_new_i64(); 5689 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5690 } 5691 5692 tcg_acc = cpu_reg(s, rn); 5693 tcg_bytes = tcg_constant_i32(1 << sz); 5694 5695 if (crc32c) { 5696 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5697 } else { 5698 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5699 } 5700 } 5701 5702 /* Data-processing (2 source) 5703 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5704 * +----+---+---+-----------------+------+--------+------+------+ 5705 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5706 * +----+---+---+-----------------+------+--------+------+------+ 5707 */ 5708 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5709 { 5710 unsigned int sf, rm, opcode, rn, rd, setflag; 5711 sf = extract32(insn, 31, 1); 5712 setflag = extract32(insn, 29, 1); 5713 rm = extract32(insn, 16, 5); 5714 opcode = extract32(insn, 10, 6); 5715 rn = extract32(insn, 5, 5); 5716 rd = extract32(insn, 0, 5); 5717 5718 if (setflag && opcode != 0) { 5719 unallocated_encoding(s); 5720 return; 5721 } 5722 5723 switch (opcode) { 5724 case 0: /* SUBP(S) */ 5725 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5726 goto do_unallocated; 5727 } else { 5728 TCGv_i64 tcg_n, tcg_m, tcg_d; 5729 5730 tcg_n = read_cpu_reg_sp(s, rn, true); 5731 tcg_m = read_cpu_reg_sp(s, rm, true); 5732 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5733 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5734 tcg_d = cpu_reg(s, rd); 5735 5736 if (setflag) { 5737 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5738 } else { 5739 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5740 } 5741 } 5742 break; 5743 case 2: /* UDIV */ 5744 handle_div(s, false, sf, rm, rn, rd); 5745 break; 5746 case 3: /* SDIV */ 5747 handle_div(s, true, sf, rm, rn, rd); 5748 break; 5749 case 4: /* IRG */ 5750 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5751 goto do_unallocated; 5752 } 5753 if (s->ata) { 5754 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5755 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5756 } else { 5757 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5758 cpu_reg_sp(s, rn)); 5759 } 5760 break; 5761 case 5: /* GMI */ 5762 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5763 goto do_unallocated; 5764 } else { 5765 TCGv_i64 t = tcg_temp_new_i64(); 5766 5767 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5768 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5769 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5770 } 5771 break; 5772 case 8: /* LSLV */ 5773 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5774 break; 5775 case 9: /* LSRV */ 5776 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5777 break; 5778 case 10: /* ASRV */ 5779 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5780 break; 5781 case 11: /* RORV */ 5782 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5783 break; 5784 case 12: /* PACGA */ 5785 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5786 goto do_unallocated; 5787 } 5788 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5789 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5790 break; 5791 case 16: 5792 case 17: 5793 case 18: 5794 case 19: 5795 case 20: 5796 case 21: 5797 case 22: 5798 case 23: /* CRC32 */ 5799 { 5800 int sz = extract32(opcode, 0, 2); 5801 bool crc32c = extract32(opcode, 2, 1); 5802 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5803 break; 5804 } 5805 default: 5806 do_unallocated: 5807 unallocated_encoding(s); 5808 break; 5809 } 5810 } 5811 5812 /* 5813 * Data processing - register 5814 * 31 30 29 28 25 21 20 16 10 0 5815 * +--+---+--+---+-------+-----+-------+-------+---------+ 5816 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5817 * +--+---+--+---+-------+-----+-------+-------+---------+ 5818 */ 5819 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5820 { 5821 int op0 = extract32(insn, 30, 1); 5822 int op1 = extract32(insn, 28, 1); 5823 int op2 = extract32(insn, 21, 4); 5824 int op3 = extract32(insn, 10, 6); 5825 5826 if (!op1) { 5827 if (op2 & 8) { 5828 if (op2 & 1) { 5829 /* Add/sub (extended register) */ 5830 disas_add_sub_ext_reg(s, insn); 5831 } else { 5832 /* Add/sub (shifted register) */ 5833 disas_add_sub_reg(s, insn); 5834 } 5835 } else { 5836 /* Logical (shifted register) */ 5837 disas_logic_reg(s, insn); 5838 } 5839 return; 5840 } 5841 5842 switch (op2) { 5843 case 0x0: 5844 switch (op3) { 5845 case 0x00: /* Add/subtract (with carry) */ 5846 disas_adc_sbc(s, insn); 5847 break; 5848 5849 case 0x01: /* Rotate right into flags */ 5850 case 0x21: 5851 disas_rotate_right_into_flags(s, insn); 5852 break; 5853 5854 case 0x02: /* Evaluate into flags */ 5855 case 0x12: 5856 case 0x22: 5857 case 0x32: 5858 disas_evaluate_into_flags(s, insn); 5859 break; 5860 5861 default: 5862 goto do_unallocated; 5863 } 5864 break; 5865 5866 case 0x2: /* Conditional compare */ 5867 disas_cc(s, insn); /* both imm and reg forms */ 5868 break; 5869 5870 case 0x4: /* Conditional select */ 5871 disas_cond_select(s, insn); 5872 break; 5873 5874 case 0x6: /* Data-processing */ 5875 if (op0) { /* (1 source) */ 5876 disas_data_proc_1src(s, insn); 5877 } else { /* (2 source) */ 5878 disas_data_proc_2src(s, insn); 5879 } 5880 break; 5881 case 0x8 ... 0xf: /* (3 source) */ 5882 disas_data_proc_3src(s, insn); 5883 break; 5884 5885 default: 5886 do_unallocated: 5887 unallocated_encoding(s); 5888 break; 5889 } 5890 } 5891 5892 static void handle_fp_compare(DisasContext *s, int size, 5893 unsigned int rn, unsigned int rm, 5894 bool cmp_with_zero, bool signal_all_nans) 5895 { 5896 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5897 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5898 5899 if (size == MO_64) { 5900 TCGv_i64 tcg_vn, tcg_vm; 5901 5902 tcg_vn = read_fp_dreg(s, rn); 5903 if (cmp_with_zero) { 5904 tcg_vm = tcg_constant_i64(0); 5905 } else { 5906 tcg_vm = read_fp_dreg(s, rm); 5907 } 5908 if (signal_all_nans) { 5909 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5910 } else { 5911 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5912 } 5913 } else { 5914 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5915 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5916 5917 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5918 if (cmp_with_zero) { 5919 tcg_gen_movi_i32(tcg_vm, 0); 5920 } else { 5921 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5922 } 5923 5924 switch (size) { 5925 case MO_32: 5926 if (signal_all_nans) { 5927 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5928 } else { 5929 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5930 } 5931 break; 5932 case MO_16: 5933 if (signal_all_nans) { 5934 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5935 } else { 5936 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5937 } 5938 break; 5939 default: 5940 g_assert_not_reached(); 5941 } 5942 } 5943 5944 gen_set_nzcv(tcg_flags); 5945 } 5946 5947 /* Floating point compare 5948 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5949 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5950 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5951 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5952 */ 5953 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5954 { 5955 unsigned int mos, type, rm, op, rn, opc, op2r; 5956 int size; 5957 5958 mos = extract32(insn, 29, 3); 5959 type = extract32(insn, 22, 2); 5960 rm = extract32(insn, 16, 5); 5961 op = extract32(insn, 14, 2); 5962 rn = extract32(insn, 5, 5); 5963 opc = extract32(insn, 3, 2); 5964 op2r = extract32(insn, 0, 3); 5965 5966 if (mos || op || op2r) { 5967 unallocated_encoding(s); 5968 return; 5969 } 5970 5971 switch (type) { 5972 case 0: 5973 size = MO_32; 5974 break; 5975 case 1: 5976 size = MO_64; 5977 break; 5978 case 3: 5979 size = MO_16; 5980 if (dc_isar_feature(aa64_fp16, s)) { 5981 break; 5982 } 5983 /* fallthru */ 5984 default: 5985 unallocated_encoding(s); 5986 return; 5987 } 5988 5989 if (!fp_access_check(s)) { 5990 return; 5991 } 5992 5993 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5994 } 5995 5996 /* Floating point conditional compare 5997 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5998 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5999 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6000 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6001 */ 6002 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6003 { 6004 unsigned int mos, type, rm, cond, rn, op, nzcv; 6005 TCGLabel *label_continue = NULL; 6006 int size; 6007 6008 mos = extract32(insn, 29, 3); 6009 type = extract32(insn, 22, 2); 6010 rm = extract32(insn, 16, 5); 6011 cond = extract32(insn, 12, 4); 6012 rn = extract32(insn, 5, 5); 6013 op = extract32(insn, 4, 1); 6014 nzcv = extract32(insn, 0, 4); 6015 6016 if (mos) { 6017 unallocated_encoding(s); 6018 return; 6019 } 6020 6021 switch (type) { 6022 case 0: 6023 size = MO_32; 6024 break; 6025 case 1: 6026 size = MO_64; 6027 break; 6028 case 3: 6029 size = MO_16; 6030 if (dc_isar_feature(aa64_fp16, s)) { 6031 break; 6032 } 6033 /* fallthru */ 6034 default: 6035 unallocated_encoding(s); 6036 return; 6037 } 6038 6039 if (!fp_access_check(s)) { 6040 return; 6041 } 6042 6043 if (cond < 0x0e) { /* not always */ 6044 TCGLabel *label_match = gen_new_label(); 6045 label_continue = gen_new_label(); 6046 arm_gen_test_cc(cond, label_match); 6047 /* nomatch: */ 6048 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6049 tcg_gen_br(label_continue); 6050 gen_set_label(label_match); 6051 } 6052 6053 handle_fp_compare(s, size, rn, rm, false, op); 6054 6055 if (cond < 0x0e) { 6056 gen_set_label(label_continue); 6057 } 6058 } 6059 6060 /* Floating point conditional select 6061 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6062 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6063 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6064 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6065 */ 6066 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6067 { 6068 unsigned int mos, type, rm, cond, rn, rd; 6069 TCGv_i64 t_true, t_false; 6070 DisasCompare64 c; 6071 MemOp sz; 6072 6073 mos = extract32(insn, 29, 3); 6074 type = extract32(insn, 22, 2); 6075 rm = extract32(insn, 16, 5); 6076 cond = extract32(insn, 12, 4); 6077 rn = extract32(insn, 5, 5); 6078 rd = extract32(insn, 0, 5); 6079 6080 if (mos) { 6081 unallocated_encoding(s); 6082 return; 6083 } 6084 6085 switch (type) { 6086 case 0: 6087 sz = MO_32; 6088 break; 6089 case 1: 6090 sz = MO_64; 6091 break; 6092 case 3: 6093 sz = MO_16; 6094 if (dc_isar_feature(aa64_fp16, s)) { 6095 break; 6096 } 6097 /* fallthru */ 6098 default: 6099 unallocated_encoding(s); 6100 return; 6101 } 6102 6103 if (!fp_access_check(s)) { 6104 return; 6105 } 6106 6107 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6108 t_true = tcg_temp_new_i64(); 6109 t_false = tcg_temp_new_i64(); 6110 read_vec_element(s, t_true, rn, 0, sz); 6111 read_vec_element(s, t_false, rm, 0, sz); 6112 6113 a64_test_cc(&c, cond); 6114 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6115 t_true, t_false); 6116 6117 /* Note that sregs & hregs write back zeros to the high bits, 6118 and we've already done the zero-extension. */ 6119 write_fp_dreg(s, rd, t_true); 6120 } 6121 6122 /* Floating-point data-processing (1 source) - half precision */ 6123 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6124 { 6125 TCGv_ptr fpst = NULL; 6126 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6127 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6128 6129 switch (opcode) { 6130 case 0x0: /* FMOV */ 6131 tcg_gen_mov_i32(tcg_res, tcg_op); 6132 break; 6133 case 0x1: /* FABS */ 6134 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6135 break; 6136 case 0x2: /* FNEG */ 6137 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6138 break; 6139 case 0x3: /* FSQRT */ 6140 fpst = fpstatus_ptr(FPST_FPCR_F16); 6141 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6142 break; 6143 case 0x8: /* FRINTN */ 6144 case 0x9: /* FRINTP */ 6145 case 0xa: /* FRINTM */ 6146 case 0xb: /* FRINTZ */ 6147 case 0xc: /* FRINTA */ 6148 { 6149 TCGv_i32 tcg_rmode; 6150 6151 fpst = fpstatus_ptr(FPST_FPCR_F16); 6152 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6153 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6154 gen_restore_rmode(tcg_rmode, fpst); 6155 break; 6156 } 6157 case 0xe: /* FRINTX */ 6158 fpst = fpstatus_ptr(FPST_FPCR_F16); 6159 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6160 break; 6161 case 0xf: /* FRINTI */ 6162 fpst = fpstatus_ptr(FPST_FPCR_F16); 6163 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6164 break; 6165 default: 6166 g_assert_not_reached(); 6167 } 6168 6169 write_fp_sreg(s, rd, tcg_res); 6170 } 6171 6172 /* Floating-point data-processing (1 source) - single precision */ 6173 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6174 { 6175 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6176 TCGv_i32 tcg_op, tcg_res; 6177 TCGv_ptr fpst; 6178 int rmode = -1; 6179 6180 tcg_op = read_fp_sreg(s, rn); 6181 tcg_res = tcg_temp_new_i32(); 6182 6183 switch (opcode) { 6184 case 0x0: /* FMOV */ 6185 tcg_gen_mov_i32(tcg_res, tcg_op); 6186 goto done; 6187 case 0x1: /* FABS */ 6188 gen_helper_vfp_abss(tcg_res, tcg_op); 6189 goto done; 6190 case 0x2: /* FNEG */ 6191 gen_helper_vfp_negs(tcg_res, tcg_op); 6192 goto done; 6193 case 0x3: /* FSQRT */ 6194 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6195 goto done; 6196 case 0x6: /* BFCVT */ 6197 gen_fpst = gen_helper_bfcvt; 6198 break; 6199 case 0x8: /* FRINTN */ 6200 case 0x9: /* FRINTP */ 6201 case 0xa: /* FRINTM */ 6202 case 0xb: /* FRINTZ */ 6203 case 0xc: /* FRINTA */ 6204 rmode = opcode & 7; 6205 gen_fpst = gen_helper_rints; 6206 break; 6207 case 0xe: /* FRINTX */ 6208 gen_fpst = gen_helper_rints_exact; 6209 break; 6210 case 0xf: /* FRINTI */ 6211 gen_fpst = gen_helper_rints; 6212 break; 6213 case 0x10: /* FRINT32Z */ 6214 rmode = FPROUNDING_ZERO; 6215 gen_fpst = gen_helper_frint32_s; 6216 break; 6217 case 0x11: /* FRINT32X */ 6218 gen_fpst = gen_helper_frint32_s; 6219 break; 6220 case 0x12: /* FRINT64Z */ 6221 rmode = FPROUNDING_ZERO; 6222 gen_fpst = gen_helper_frint64_s; 6223 break; 6224 case 0x13: /* FRINT64X */ 6225 gen_fpst = gen_helper_frint64_s; 6226 break; 6227 default: 6228 g_assert_not_reached(); 6229 } 6230 6231 fpst = fpstatus_ptr(FPST_FPCR); 6232 if (rmode >= 0) { 6233 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6234 gen_fpst(tcg_res, tcg_op, fpst); 6235 gen_restore_rmode(tcg_rmode, fpst); 6236 } else { 6237 gen_fpst(tcg_res, tcg_op, fpst); 6238 } 6239 6240 done: 6241 write_fp_sreg(s, rd, tcg_res); 6242 } 6243 6244 /* Floating-point data-processing (1 source) - double precision */ 6245 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6246 { 6247 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6248 TCGv_i64 tcg_op, tcg_res; 6249 TCGv_ptr fpst; 6250 int rmode = -1; 6251 6252 switch (opcode) { 6253 case 0x0: /* FMOV */ 6254 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6255 return; 6256 } 6257 6258 tcg_op = read_fp_dreg(s, rn); 6259 tcg_res = tcg_temp_new_i64(); 6260 6261 switch (opcode) { 6262 case 0x1: /* FABS */ 6263 gen_helper_vfp_absd(tcg_res, tcg_op); 6264 goto done; 6265 case 0x2: /* FNEG */ 6266 gen_helper_vfp_negd(tcg_res, tcg_op); 6267 goto done; 6268 case 0x3: /* FSQRT */ 6269 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6270 goto done; 6271 case 0x8: /* FRINTN */ 6272 case 0x9: /* FRINTP */ 6273 case 0xa: /* FRINTM */ 6274 case 0xb: /* FRINTZ */ 6275 case 0xc: /* FRINTA */ 6276 rmode = opcode & 7; 6277 gen_fpst = gen_helper_rintd; 6278 break; 6279 case 0xe: /* FRINTX */ 6280 gen_fpst = gen_helper_rintd_exact; 6281 break; 6282 case 0xf: /* FRINTI */ 6283 gen_fpst = gen_helper_rintd; 6284 break; 6285 case 0x10: /* FRINT32Z */ 6286 rmode = FPROUNDING_ZERO; 6287 gen_fpst = gen_helper_frint32_d; 6288 break; 6289 case 0x11: /* FRINT32X */ 6290 gen_fpst = gen_helper_frint32_d; 6291 break; 6292 case 0x12: /* FRINT64Z */ 6293 rmode = FPROUNDING_ZERO; 6294 gen_fpst = gen_helper_frint64_d; 6295 break; 6296 case 0x13: /* FRINT64X */ 6297 gen_fpst = gen_helper_frint64_d; 6298 break; 6299 default: 6300 g_assert_not_reached(); 6301 } 6302 6303 fpst = fpstatus_ptr(FPST_FPCR); 6304 if (rmode >= 0) { 6305 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6306 gen_fpst(tcg_res, tcg_op, fpst); 6307 gen_restore_rmode(tcg_rmode, fpst); 6308 } else { 6309 gen_fpst(tcg_res, tcg_op, fpst); 6310 } 6311 6312 done: 6313 write_fp_dreg(s, rd, tcg_res); 6314 } 6315 6316 static void handle_fp_fcvt(DisasContext *s, int opcode, 6317 int rd, int rn, int dtype, int ntype) 6318 { 6319 switch (ntype) { 6320 case 0x0: 6321 { 6322 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6323 if (dtype == 1) { 6324 /* Single to double */ 6325 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6326 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6327 write_fp_dreg(s, rd, tcg_rd); 6328 } else { 6329 /* Single to half */ 6330 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6331 TCGv_i32 ahp = get_ahp_flag(); 6332 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6333 6334 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6335 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6336 write_fp_sreg(s, rd, tcg_rd); 6337 } 6338 break; 6339 } 6340 case 0x1: 6341 { 6342 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6343 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6344 if (dtype == 0) { 6345 /* Double to single */ 6346 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6347 } else { 6348 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6349 TCGv_i32 ahp = get_ahp_flag(); 6350 /* Double to half */ 6351 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6352 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6353 } 6354 write_fp_sreg(s, rd, tcg_rd); 6355 break; 6356 } 6357 case 0x3: 6358 { 6359 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6360 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6361 TCGv_i32 tcg_ahp = get_ahp_flag(); 6362 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6363 if (dtype == 0) { 6364 /* Half to single */ 6365 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6366 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6367 write_fp_sreg(s, rd, tcg_rd); 6368 } else { 6369 /* Half to double */ 6370 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6371 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6372 write_fp_dreg(s, rd, tcg_rd); 6373 } 6374 break; 6375 } 6376 default: 6377 g_assert_not_reached(); 6378 } 6379 } 6380 6381 /* Floating point data-processing (1 source) 6382 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6383 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6384 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6385 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6386 */ 6387 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6388 { 6389 int mos = extract32(insn, 29, 3); 6390 int type = extract32(insn, 22, 2); 6391 int opcode = extract32(insn, 15, 6); 6392 int rn = extract32(insn, 5, 5); 6393 int rd = extract32(insn, 0, 5); 6394 6395 if (mos) { 6396 goto do_unallocated; 6397 } 6398 6399 switch (opcode) { 6400 case 0x4: case 0x5: case 0x7: 6401 { 6402 /* FCVT between half, single and double precision */ 6403 int dtype = extract32(opcode, 0, 2); 6404 if (type == 2 || dtype == type) { 6405 goto do_unallocated; 6406 } 6407 if (!fp_access_check(s)) { 6408 return; 6409 } 6410 6411 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6412 break; 6413 } 6414 6415 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6416 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6417 goto do_unallocated; 6418 } 6419 /* fall through */ 6420 case 0x0 ... 0x3: 6421 case 0x8 ... 0xc: 6422 case 0xe ... 0xf: 6423 /* 32-to-32 and 64-to-64 ops */ 6424 switch (type) { 6425 case 0: 6426 if (!fp_access_check(s)) { 6427 return; 6428 } 6429 handle_fp_1src_single(s, opcode, rd, rn); 6430 break; 6431 case 1: 6432 if (!fp_access_check(s)) { 6433 return; 6434 } 6435 handle_fp_1src_double(s, opcode, rd, rn); 6436 break; 6437 case 3: 6438 if (!dc_isar_feature(aa64_fp16, s)) { 6439 goto do_unallocated; 6440 } 6441 6442 if (!fp_access_check(s)) { 6443 return; 6444 } 6445 handle_fp_1src_half(s, opcode, rd, rn); 6446 break; 6447 default: 6448 goto do_unallocated; 6449 } 6450 break; 6451 6452 case 0x6: 6453 switch (type) { 6454 case 1: /* BFCVT */ 6455 if (!dc_isar_feature(aa64_bf16, s)) { 6456 goto do_unallocated; 6457 } 6458 if (!fp_access_check(s)) { 6459 return; 6460 } 6461 handle_fp_1src_single(s, opcode, rd, rn); 6462 break; 6463 default: 6464 goto do_unallocated; 6465 } 6466 break; 6467 6468 default: 6469 do_unallocated: 6470 unallocated_encoding(s); 6471 break; 6472 } 6473 } 6474 6475 /* Floating-point data-processing (2 source) - single precision */ 6476 static void handle_fp_2src_single(DisasContext *s, int opcode, 6477 int rd, int rn, int rm) 6478 { 6479 TCGv_i32 tcg_op1; 6480 TCGv_i32 tcg_op2; 6481 TCGv_i32 tcg_res; 6482 TCGv_ptr fpst; 6483 6484 tcg_res = tcg_temp_new_i32(); 6485 fpst = fpstatus_ptr(FPST_FPCR); 6486 tcg_op1 = read_fp_sreg(s, rn); 6487 tcg_op2 = read_fp_sreg(s, rm); 6488 6489 switch (opcode) { 6490 case 0x0: /* FMUL */ 6491 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6492 break; 6493 case 0x1: /* FDIV */ 6494 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6495 break; 6496 case 0x2: /* FADD */ 6497 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6498 break; 6499 case 0x3: /* FSUB */ 6500 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6501 break; 6502 case 0x4: /* FMAX */ 6503 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6504 break; 6505 case 0x5: /* FMIN */ 6506 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6507 break; 6508 case 0x6: /* FMAXNM */ 6509 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6510 break; 6511 case 0x7: /* FMINNM */ 6512 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6513 break; 6514 case 0x8: /* FNMUL */ 6515 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6516 gen_helper_vfp_negs(tcg_res, tcg_res); 6517 break; 6518 } 6519 6520 write_fp_sreg(s, rd, tcg_res); 6521 } 6522 6523 /* Floating-point data-processing (2 source) - double precision */ 6524 static void handle_fp_2src_double(DisasContext *s, int opcode, 6525 int rd, int rn, int rm) 6526 { 6527 TCGv_i64 tcg_op1; 6528 TCGv_i64 tcg_op2; 6529 TCGv_i64 tcg_res; 6530 TCGv_ptr fpst; 6531 6532 tcg_res = tcg_temp_new_i64(); 6533 fpst = fpstatus_ptr(FPST_FPCR); 6534 tcg_op1 = read_fp_dreg(s, rn); 6535 tcg_op2 = read_fp_dreg(s, rm); 6536 6537 switch (opcode) { 6538 case 0x0: /* FMUL */ 6539 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6540 break; 6541 case 0x1: /* FDIV */ 6542 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6543 break; 6544 case 0x2: /* FADD */ 6545 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6546 break; 6547 case 0x3: /* FSUB */ 6548 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6549 break; 6550 case 0x4: /* FMAX */ 6551 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6552 break; 6553 case 0x5: /* FMIN */ 6554 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6555 break; 6556 case 0x6: /* FMAXNM */ 6557 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6558 break; 6559 case 0x7: /* FMINNM */ 6560 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6561 break; 6562 case 0x8: /* FNMUL */ 6563 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6564 gen_helper_vfp_negd(tcg_res, tcg_res); 6565 break; 6566 } 6567 6568 write_fp_dreg(s, rd, tcg_res); 6569 } 6570 6571 /* Floating-point data-processing (2 source) - half precision */ 6572 static void handle_fp_2src_half(DisasContext *s, int opcode, 6573 int rd, int rn, int rm) 6574 { 6575 TCGv_i32 tcg_op1; 6576 TCGv_i32 tcg_op2; 6577 TCGv_i32 tcg_res; 6578 TCGv_ptr fpst; 6579 6580 tcg_res = tcg_temp_new_i32(); 6581 fpst = fpstatus_ptr(FPST_FPCR_F16); 6582 tcg_op1 = read_fp_hreg(s, rn); 6583 tcg_op2 = read_fp_hreg(s, rm); 6584 6585 switch (opcode) { 6586 case 0x0: /* FMUL */ 6587 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6588 break; 6589 case 0x1: /* FDIV */ 6590 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6591 break; 6592 case 0x2: /* FADD */ 6593 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6594 break; 6595 case 0x3: /* FSUB */ 6596 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6597 break; 6598 case 0x4: /* FMAX */ 6599 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6600 break; 6601 case 0x5: /* FMIN */ 6602 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6603 break; 6604 case 0x6: /* FMAXNM */ 6605 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6606 break; 6607 case 0x7: /* FMINNM */ 6608 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6609 break; 6610 case 0x8: /* FNMUL */ 6611 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6612 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6613 break; 6614 default: 6615 g_assert_not_reached(); 6616 } 6617 6618 write_fp_sreg(s, rd, tcg_res); 6619 } 6620 6621 /* Floating point data-processing (2 source) 6622 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6623 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6624 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6625 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6626 */ 6627 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6628 { 6629 int mos = extract32(insn, 29, 3); 6630 int type = extract32(insn, 22, 2); 6631 int rd = extract32(insn, 0, 5); 6632 int rn = extract32(insn, 5, 5); 6633 int rm = extract32(insn, 16, 5); 6634 int opcode = extract32(insn, 12, 4); 6635 6636 if (opcode > 8 || mos) { 6637 unallocated_encoding(s); 6638 return; 6639 } 6640 6641 switch (type) { 6642 case 0: 6643 if (!fp_access_check(s)) { 6644 return; 6645 } 6646 handle_fp_2src_single(s, opcode, rd, rn, rm); 6647 break; 6648 case 1: 6649 if (!fp_access_check(s)) { 6650 return; 6651 } 6652 handle_fp_2src_double(s, opcode, rd, rn, rm); 6653 break; 6654 case 3: 6655 if (!dc_isar_feature(aa64_fp16, s)) { 6656 unallocated_encoding(s); 6657 return; 6658 } 6659 if (!fp_access_check(s)) { 6660 return; 6661 } 6662 handle_fp_2src_half(s, opcode, rd, rn, rm); 6663 break; 6664 default: 6665 unallocated_encoding(s); 6666 } 6667 } 6668 6669 /* Floating-point data-processing (3 source) - single precision */ 6670 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6671 int rd, int rn, int rm, int ra) 6672 { 6673 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6674 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6675 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6676 6677 tcg_op1 = read_fp_sreg(s, rn); 6678 tcg_op2 = read_fp_sreg(s, rm); 6679 tcg_op3 = read_fp_sreg(s, ra); 6680 6681 /* These are fused multiply-add, and must be done as one 6682 * floating point operation with no rounding between the 6683 * multiplication and addition steps. 6684 * NB that doing the negations here as separate steps is 6685 * correct : an input NaN should come out with its sign bit 6686 * flipped if it is a negated-input. 6687 */ 6688 if (o1 == true) { 6689 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6690 } 6691 6692 if (o0 != o1) { 6693 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6694 } 6695 6696 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6697 6698 write_fp_sreg(s, rd, tcg_res); 6699 } 6700 6701 /* Floating-point data-processing (3 source) - double precision */ 6702 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6703 int rd, int rn, int rm, int ra) 6704 { 6705 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6706 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6707 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6708 6709 tcg_op1 = read_fp_dreg(s, rn); 6710 tcg_op2 = read_fp_dreg(s, rm); 6711 tcg_op3 = read_fp_dreg(s, ra); 6712 6713 /* These are fused multiply-add, and must be done as one 6714 * floating point operation with no rounding between the 6715 * multiplication and addition steps. 6716 * NB that doing the negations here as separate steps is 6717 * correct : an input NaN should come out with its sign bit 6718 * flipped if it is a negated-input. 6719 */ 6720 if (o1 == true) { 6721 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6722 } 6723 6724 if (o0 != o1) { 6725 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6726 } 6727 6728 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6729 6730 write_fp_dreg(s, rd, tcg_res); 6731 } 6732 6733 /* Floating-point data-processing (3 source) - half precision */ 6734 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6735 int rd, int rn, int rm, int ra) 6736 { 6737 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6738 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6739 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6740 6741 tcg_op1 = read_fp_hreg(s, rn); 6742 tcg_op2 = read_fp_hreg(s, rm); 6743 tcg_op3 = read_fp_hreg(s, ra); 6744 6745 /* These are fused multiply-add, and must be done as one 6746 * floating point operation with no rounding between the 6747 * multiplication and addition steps. 6748 * NB that doing the negations here as separate steps is 6749 * correct : an input NaN should come out with its sign bit 6750 * flipped if it is a negated-input. 6751 */ 6752 if (o1 == true) { 6753 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6754 } 6755 6756 if (o0 != o1) { 6757 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6758 } 6759 6760 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6761 6762 write_fp_sreg(s, rd, tcg_res); 6763 } 6764 6765 /* Floating point data-processing (3 source) 6766 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6767 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6768 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6769 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6770 */ 6771 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6772 { 6773 int mos = extract32(insn, 29, 3); 6774 int type = extract32(insn, 22, 2); 6775 int rd = extract32(insn, 0, 5); 6776 int rn = extract32(insn, 5, 5); 6777 int ra = extract32(insn, 10, 5); 6778 int rm = extract32(insn, 16, 5); 6779 bool o0 = extract32(insn, 15, 1); 6780 bool o1 = extract32(insn, 21, 1); 6781 6782 if (mos) { 6783 unallocated_encoding(s); 6784 return; 6785 } 6786 6787 switch (type) { 6788 case 0: 6789 if (!fp_access_check(s)) { 6790 return; 6791 } 6792 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6793 break; 6794 case 1: 6795 if (!fp_access_check(s)) { 6796 return; 6797 } 6798 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6799 break; 6800 case 3: 6801 if (!dc_isar_feature(aa64_fp16, s)) { 6802 unallocated_encoding(s); 6803 return; 6804 } 6805 if (!fp_access_check(s)) { 6806 return; 6807 } 6808 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6809 break; 6810 default: 6811 unallocated_encoding(s); 6812 } 6813 } 6814 6815 /* Floating point immediate 6816 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6817 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6818 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6819 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6820 */ 6821 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6822 { 6823 int rd = extract32(insn, 0, 5); 6824 int imm5 = extract32(insn, 5, 5); 6825 int imm8 = extract32(insn, 13, 8); 6826 int type = extract32(insn, 22, 2); 6827 int mos = extract32(insn, 29, 3); 6828 uint64_t imm; 6829 MemOp sz; 6830 6831 if (mos || imm5) { 6832 unallocated_encoding(s); 6833 return; 6834 } 6835 6836 switch (type) { 6837 case 0: 6838 sz = MO_32; 6839 break; 6840 case 1: 6841 sz = MO_64; 6842 break; 6843 case 3: 6844 sz = MO_16; 6845 if (dc_isar_feature(aa64_fp16, s)) { 6846 break; 6847 } 6848 /* fallthru */ 6849 default: 6850 unallocated_encoding(s); 6851 return; 6852 } 6853 6854 if (!fp_access_check(s)) { 6855 return; 6856 } 6857 6858 imm = vfp_expand_imm(sz, imm8); 6859 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6860 } 6861 6862 /* Handle floating point <=> fixed point conversions. Note that we can 6863 * also deal with fp <=> integer conversions as a special case (scale == 64) 6864 * OPTME: consider handling that special case specially or at least skipping 6865 * the call to scalbn in the helpers for zero shifts. 6866 */ 6867 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6868 bool itof, int rmode, int scale, int sf, int type) 6869 { 6870 bool is_signed = !(opcode & 1); 6871 TCGv_ptr tcg_fpstatus; 6872 TCGv_i32 tcg_shift, tcg_single; 6873 TCGv_i64 tcg_double; 6874 6875 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6876 6877 tcg_shift = tcg_constant_i32(64 - scale); 6878 6879 if (itof) { 6880 TCGv_i64 tcg_int = cpu_reg(s, rn); 6881 if (!sf) { 6882 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6883 6884 if (is_signed) { 6885 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6886 } else { 6887 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6888 } 6889 6890 tcg_int = tcg_extend; 6891 } 6892 6893 switch (type) { 6894 case 1: /* float64 */ 6895 tcg_double = tcg_temp_new_i64(); 6896 if (is_signed) { 6897 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6898 tcg_shift, tcg_fpstatus); 6899 } else { 6900 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6901 tcg_shift, tcg_fpstatus); 6902 } 6903 write_fp_dreg(s, rd, tcg_double); 6904 break; 6905 6906 case 0: /* float32 */ 6907 tcg_single = tcg_temp_new_i32(); 6908 if (is_signed) { 6909 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6910 tcg_shift, tcg_fpstatus); 6911 } else { 6912 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6913 tcg_shift, tcg_fpstatus); 6914 } 6915 write_fp_sreg(s, rd, tcg_single); 6916 break; 6917 6918 case 3: /* float16 */ 6919 tcg_single = tcg_temp_new_i32(); 6920 if (is_signed) { 6921 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6922 tcg_shift, tcg_fpstatus); 6923 } else { 6924 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6925 tcg_shift, tcg_fpstatus); 6926 } 6927 write_fp_sreg(s, rd, tcg_single); 6928 break; 6929 6930 default: 6931 g_assert_not_reached(); 6932 } 6933 } else { 6934 TCGv_i64 tcg_int = cpu_reg(s, rd); 6935 TCGv_i32 tcg_rmode; 6936 6937 if (extract32(opcode, 2, 1)) { 6938 /* There are too many rounding modes to all fit into rmode, 6939 * so FCVTA[US] is a special case. 6940 */ 6941 rmode = FPROUNDING_TIEAWAY; 6942 } 6943 6944 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6945 6946 switch (type) { 6947 case 1: /* float64 */ 6948 tcg_double = read_fp_dreg(s, rn); 6949 if (is_signed) { 6950 if (!sf) { 6951 gen_helper_vfp_tosld(tcg_int, tcg_double, 6952 tcg_shift, tcg_fpstatus); 6953 } else { 6954 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6955 tcg_shift, tcg_fpstatus); 6956 } 6957 } else { 6958 if (!sf) { 6959 gen_helper_vfp_tould(tcg_int, tcg_double, 6960 tcg_shift, tcg_fpstatus); 6961 } else { 6962 gen_helper_vfp_touqd(tcg_int, tcg_double, 6963 tcg_shift, tcg_fpstatus); 6964 } 6965 } 6966 if (!sf) { 6967 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6968 } 6969 break; 6970 6971 case 0: /* float32 */ 6972 tcg_single = read_fp_sreg(s, rn); 6973 if (sf) { 6974 if (is_signed) { 6975 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6976 tcg_shift, tcg_fpstatus); 6977 } else { 6978 gen_helper_vfp_touqs(tcg_int, tcg_single, 6979 tcg_shift, tcg_fpstatus); 6980 } 6981 } else { 6982 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6983 if (is_signed) { 6984 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6985 tcg_shift, tcg_fpstatus); 6986 } else { 6987 gen_helper_vfp_touls(tcg_dest, tcg_single, 6988 tcg_shift, tcg_fpstatus); 6989 } 6990 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6991 } 6992 break; 6993 6994 case 3: /* float16 */ 6995 tcg_single = read_fp_sreg(s, rn); 6996 if (sf) { 6997 if (is_signed) { 6998 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6999 tcg_shift, tcg_fpstatus); 7000 } else { 7001 gen_helper_vfp_touqh(tcg_int, tcg_single, 7002 tcg_shift, tcg_fpstatus); 7003 } 7004 } else { 7005 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7006 if (is_signed) { 7007 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7008 tcg_shift, tcg_fpstatus); 7009 } else { 7010 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7011 tcg_shift, tcg_fpstatus); 7012 } 7013 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7014 } 7015 break; 7016 7017 default: 7018 g_assert_not_reached(); 7019 } 7020 7021 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7022 } 7023 } 7024 7025 /* Floating point <-> fixed point conversions 7026 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7027 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7028 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7029 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7030 */ 7031 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7032 { 7033 int rd = extract32(insn, 0, 5); 7034 int rn = extract32(insn, 5, 5); 7035 int scale = extract32(insn, 10, 6); 7036 int opcode = extract32(insn, 16, 3); 7037 int rmode = extract32(insn, 19, 2); 7038 int type = extract32(insn, 22, 2); 7039 bool sbit = extract32(insn, 29, 1); 7040 bool sf = extract32(insn, 31, 1); 7041 bool itof; 7042 7043 if (sbit || (!sf && scale < 32)) { 7044 unallocated_encoding(s); 7045 return; 7046 } 7047 7048 switch (type) { 7049 case 0: /* float32 */ 7050 case 1: /* float64 */ 7051 break; 7052 case 3: /* float16 */ 7053 if (dc_isar_feature(aa64_fp16, s)) { 7054 break; 7055 } 7056 /* fallthru */ 7057 default: 7058 unallocated_encoding(s); 7059 return; 7060 } 7061 7062 switch ((rmode << 3) | opcode) { 7063 case 0x2: /* SCVTF */ 7064 case 0x3: /* UCVTF */ 7065 itof = true; 7066 break; 7067 case 0x18: /* FCVTZS */ 7068 case 0x19: /* FCVTZU */ 7069 itof = false; 7070 break; 7071 default: 7072 unallocated_encoding(s); 7073 return; 7074 } 7075 7076 if (!fp_access_check(s)) { 7077 return; 7078 } 7079 7080 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7081 } 7082 7083 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7084 { 7085 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7086 * without conversion. 7087 */ 7088 7089 if (itof) { 7090 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7091 TCGv_i64 tmp; 7092 7093 switch (type) { 7094 case 0: 7095 /* 32 bit */ 7096 tmp = tcg_temp_new_i64(); 7097 tcg_gen_ext32u_i64(tmp, tcg_rn); 7098 write_fp_dreg(s, rd, tmp); 7099 break; 7100 case 1: 7101 /* 64 bit */ 7102 write_fp_dreg(s, rd, tcg_rn); 7103 break; 7104 case 2: 7105 /* 64 bit to top half. */ 7106 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7107 clear_vec_high(s, true, rd); 7108 break; 7109 case 3: 7110 /* 16 bit */ 7111 tmp = tcg_temp_new_i64(); 7112 tcg_gen_ext16u_i64(tmp, tcg_rn); 7113 write_fp_dreg(s, rd, tmp); 7114 break; 7115 default: 7116 g_assert_not_reached(); 7117 } 7118 } else { 7119 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7120 7121 switch (type) { 7122 case 0: 7123 /* 32 bit */ 7124 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7125 break; 7126 case 1: 7127 /* 64 bit */ 7128 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7129 break; 7130 case 2: 7131 /* 64 bits from top half */ 7132 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7133 break; 7134 case 3: 7135 /* 16 bit */ 7136 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7137 break; 7138 default: 7139 g_assert_not_reached(); 7140 } 7141 } 7142 } 7143 7144 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7145 { 7146 TCGv_i64 t = read_fp_dreg(s, rn); 7147 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7148 7149 gen_helper_fjcvtzs(t, t, fpstatus); 7150 7151 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7152 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7153 tcg_gen_movi_i32(cpu_CF, 0); 7154 tcg_gen_movi_i32(cpu_NF, 0); 7155 tcg_gen_movi_i32(cpu_VF, 0); 7156 } 7157 7158 /* Floating point <-> integer conversions 7159 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7160 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7161 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7162 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7163 */ 7164 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7165 { 7166 int rd = extract32(insn, 0, 5); 7167 int rn = extract32(insn, 5, 5); 7168 int opcode = extract32(insn, 16, 3); 7169 int rmode = extract32(insn, 19, 2); 7170 int type = extract32(insn, 22, 2); 7171 bool sbit = extract32(insn, 29, 1); 7172 bool sf = extract32(insn, 31, 1); 7173 bool itof = false; 7174 7175 if (sbit) { 7176 goto do_unallocated; 7177 } 7178 7179 switch (opcode) { 7180 case 2: /* SCVTF */ 7181 case 3: /* UCVTF */ 7182 itof = true; 7183 /* fallthru */ 7184 case 4: /* FCVTAS */ 7185 case 5: /* FCVTAU */ 7186 if (rmode != 0) { 7187 goto do_unallocated; 7188 } 7189 /* fallthru */ 7190 case 0: /* FCVT[NPMZ]S */ 7191 case 1: /* FCVT[NPMZ]U */ 7192 switch (type) { 7193 case 0: /* float32 */ 7194 case 1: /* float64 */ 7195 break; 7196 case 3: /* float16 */ 7197 if (!dc_isar_feature(aa64_fp16, s)) { 7198 goto do_unallocated; 7199 } 7200 break; 7201 default: 7202 goto do_unallocated; 7203 } 7204 if (!fp_access_check(s)) { 7205 return; 7206 } 7207 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7208 break; 7209 7210 default: 7211 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7212 case 0b01100110: /* FMOV half <-> 32-bit int */ 7213 case 0b01100111: 7214 case 0b11100110: /* FMOV half <-> 64-bit int */ 7215 case 0b11100111: 7216 if (!dc_isar_feature(aa64_fp16, s)) { 7217 goto do_unallocated; 7218 } 7219 /* fallthru */ 7220 case 0b00000110: /* FMOV 32-bit */ 7221 case 0b00000111: 7222 case 0b10100110: /* FMOV 64-bit */ 7223 case 0b10100111: 7224 case 0b11001110: /* FMOV top half of 128-bit */ 7225 case 0b11001111: 7226 if (!fp_access_check(s)) { 7227 return; 7228 } 7229 itof = opcode & 1; 7230 handle_fmov(s, rd, rn, type, itof); 7231 break; 7232 7233 case 0b00111110: /* FJCVTZS */ 7234 if (!dc_isar_feature(aa64_jscvt, s)) { 7235 goto do_unallocated; 7236 } else if (fp_access_check(s)) { 7237 handle_fjcvtzs(s, rd, rn); 7238 } 7239 break; 7240 7241 default: 7242 do_unallocated: 7243 unallocated_encoding(s); 7244 return; 7245 } 7246 break; 7247 } 7248 } 7249 7250 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7251 * 31 30 29 28 25 24 0 7252 * +---+---+---+---------+-----------------------------+ 7253 * | | 0 | | 1 1 1 1 | | 7254 * +---+---+---+---------+-----------------------------+ 7255 */ 7256 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7257 { 7258 if (extract32(insn, 24, 1)) { 7259 /* Floating point data-processing (3 source) */ 7260 disas_fp_3src(s, insn); 7261 } else if (extract32(insn, 21, 1) == 0) { 7262 /* Floating point to fixed point conversions */ 7263 disas_fp_fixed_conv(s, insn); 7264 } else { 7265 switch (extract32(insn, 10, 2)) { 7266 case 1: 7267 /* Floating point conditional compare */ 7268 disas_fp_ccomp(s, insn); 7269 break; 7270 case 2: 7271 /* Floating point data-processing (2 source) */ 7272 disas_fp_2src(s, insn); 7273 break; 7274 case 3: 7275 /* Floating point conditional select */ 7276 disas_fp_csel(s, insn); 7277 break; 7278 case 0: 7279 switch (ctz32(extract32(insn, 12, 4))) { 7280 case 0: /* [15:12] == xxx1 */ 7281 /* Floating point immediate */ 7282 disas_fp_imm(s, insn); 7283 break; 7284 case 1: /* [15:12] == xx10 */ 7285 /* Floating point compare */ 7286 disas_fp_compare(s, insn); 7287 break; 7288 case 2: /* [15:12] == x100 */ 7289 /* Floating point data-processing (1 source) */ 7290 disas_fp_1src(s, insn); 7291 break; 7292 case 3: /* [15:12] == 1000 */ 7293 unallocated_encoding(s); 7294 break; 7295 default: /* [15:12] == 0000 */ 7296 /* Floating point <-> integer conversions */ 7297 disas_fp_int_conv(s, insn); 7298 break; 7299 } 7300 break; 7301 } 7302 } 7303 } 7304 7305 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7306 int pos) 7307 { 7308 /* Extract 64 bits from the middle of two concatenated 64 bit 7309 * vector register slices left:right. The extracted bits start 7310 * at 'pos' bits into the right (least significant) side. 7311 * We return the result in tcg_right, and guarantee not to 7312 * trash tcg_left. 7313 */ 7314 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7315 assert(pos > 0 && pos < 64); 7316 7317 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7318 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7319 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7320 } 7321 7322 /* EXT 7323 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7324 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7325 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7326 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7327 */ 7328 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7329 { 7330 int is_q = extract32(insn, 30, 1); 7331 int op2 = extract32(insn, 22, 2); 7332 int imm4 = extract32(insn, 11, 4); 7333 int rm = extract32(insn, 16, 5); 7334 int rn = extract32(insn, 5, 5); 7335 int rd = extract32(insn, 0, 5); 7336 int pos = imm4 << 3; 7337 TCGv_i64 tcg_resl, tcg_resh; 7338 7339 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7340 unallocated_encoding(s); 7341 return; 7342 } 7343 7344 if (!fp_access_check(s)) { 7345 return; 7346 } 7347 7348 tcg_resh = tcg_temp_new_i64(); 7349 tcg_resl = tcg_temp_new_i64(); 7350 7351 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7352 * either extracting 128 bits from a 128:128 concatenation, or 7353 * extracting 64 bits from a 64:64 concatenation. 7354 */ 7355 if (!is_q) { 7356 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7357 if (pos != 0) { 7358 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7359 do_ext64(s, tcg_resh, tcg_resl, pos); 7360 } 7361 } else { 7362 TCGv_i64 tcg_hh; 7363 typedef struct { 7364 int reg; 7365 int elt; 7366 } EltPosns; 7367 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7368 EltPosns *elt = eltposns; 7369 7370 if (pos >= 64) { 7371 elt++; 7372 pos -= 64; 7373 } 7374 7375 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7376 elt++; 7377 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7378 elt++; 7379 if (pos != 0) { 7380 do_ext64(s, tcg_resh, tcg_resl, pos); 7381 tcg_hh = tcg_temp_new_i64(); 7382 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7383 do_ext64(s, tcg_hh, tcg_resh, pos); 7384 } 7385 } 7386 7387 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7388 if (is_q) { 7389 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7390 } 7391 clear_vec_high(s, is_q, rd); 7392 } 7393 7394 /* TBL/TBX 7395 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7396 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7397 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7398 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7399 */ 7400 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7401 { 7402 int op2 = extract32(insn, 22, 2); 7403 int is_q = extract32(insn, 30, 1); 7404 int rm = extract32(insn, 16, 5); 7405 int rn = extract32(insn, 5, 5); 7406 int rd = extract32(insn, 0, 5); 7407 int is_tbx = extract32(insn, 12, 1); 7408 int len = (extract32(insn, 13, 2) + 1) * 16; 7409 7410 if (op2 != 0) { 7411 unallocated_encoding(s); 7412 return; 7413 } 7414 7415 if (!fp_access_check(s)) { 7416 return; 7417 } 7418 7419 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7420 vec_full_reg_offset(s, rm), cpu_env, 7421 is_q ? 16 : 8, vec_full_reg_size(s), 7422 (len << 6) | (is_tbx << 5) | rn, 7423 gen_helper_simd_tblx); 7424 } 7425 7426 /* ZIP/UZP/TRN 7427 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7428 * +---+---+-------------+------+---+------+---+------------------+------+ 7429 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7430 * +---+---+-------------+------+---+------+---+------------------+------+ 7431 */ 7432 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7433 { 7434 int rd = extract32(insn, 0, 5); 7435 int rn = extract32(insn, 5, 5); 7436 int rm = extract32(insn, 16, 5); 7437 int size = extract32(insn, 22, 2); 7438 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7439 * bit 2 indicates 1 vs 2 variant of the insn. 7440 */ 7441 int opcode = extract32(insn, 12, 2); 7442 bool part = extract32(insn, 14, 1); 7443 bool is_q = extract32(insn, 30, 1); 7444 int esize = 8 << size; 7445 int i, ofs; 7446 int datasize = is_q ? 128 : 64; 7447 int elements = datasize / esize; 7448 TCGv_i64 tcg_res, tcg_resl, tcg_resh; 7449 7450 if (opcode == 0 || (size == 3 && !is_q)) { 7451 unallocated_encoding(s); 7452 return; 7453 } 7454 7455 if (!fp_access_check(s)) { 7456 return; 7457 } 7458 7459 tcg_resl = tcg_const_i64(0); 7460 tcg_resh = is_q ? tcg_const_i64(0) : NULL; 7461 tcg_res = tcg_temp_new_i64(); 7462 7463 for (i = 0; i < elements; i++) { 7464 switch (opcode) { 7465 case 1: /* UZP1/2 */ 7466 { 7467 int midpoint = elements / 2; 7468 if (i < midpoint) { 7469 read_vec_element(s, tcg_res, rn, 2 * i + part, size); 7470 } else { 7471 read_vec_element(s, tcg_res, rm, 7472 2 * (i - midpoint) + part, size); 7473 } 7474 break; 7475 } 7476 case 2: /* TRN1/2 */ 7477 if (i & 1) { 7478 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size); 7479 } else { 7480 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size); 7481 } 7482 break; 7483 case 3: /* ZIP1/2 */ 7484 { 7485 int base = part * elements / 2; 7486 if (i & 1) { 7487 read_vec_element(s, tcg_res, rm, base + (i >> 1), size); 7488 } else { 7489 read_vec_element(s, tcg_res, rn, base + (i >> 1), size); 7490 } 7491 break; 7492 } 7493 default: 7494 g_assert_not_reached(); 7495 } 7496 7497 ofs = i * esize; 7498 if (ofs < 64) { 7499 tcg_gen_shli_i64(tcg_res, tcg_res, ofs); 7500 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res); 7501 } else { 7502 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64); 7503 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res); 7504 } 7505 } 7506 7507 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7508 if (is_q) { 7509 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7510 } 7511 clear_vec_high(s, is_q, rd); 7512 } 7513 7514 /* 7515 * do_reduction_op helper 7516 * 7517 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7518 * important for correct NaN propagation that we do these 7519 * operations in exactly the order specified by the pseudocode. 7520 * 7521 * This is a recursive function, TCG temps should be freed by the 7522 * calling function once it is done with the values. 7523 */ 7524 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7525 int esize, int size, int vmap, TCGv_ptr fpst) 7526 { 7527 if (esize == size) { 7528 int element; 7529 MemOp msize = esize == 16 ? MO_16 : MO_32; 7530 TCGv_i32 tcg_elem; 7531 7532 /* We should have one register left here */ 7533 assert(ctpop8(vmap) == 1); 7534 element = ctz32(vmap); 7535 assert(element < 8); 7536 7537 tcg_elem = tcg_temp_new_i32(); 7538 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7539 return tcg_elem; 7540 } else { 7541 int bits = size / 2; 7542 int shift = ctpop8(vmap) / 2; 7543 int vmap_lo = (vmap >> shift) & vmap; 7544 int vmap_hi = (vmap & ~vmap_lo); 7545 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7546 7547 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7548 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7549 tcg_res = tcg_temp_new_i32(); 7550 7551 switch (fpopcode) { 7552 case 0x0c: /* fmaxnmv half-precision */ 7553 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7554 break; 7555 case 0x0f: /* fmaxv half-precision */ 7556 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7557 break; 7558 case 0x1c: /* fminnmv half-precision */ 7559 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7560 break; 7561 case 0x1f: /* fminv half-precision */ 7562 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7563 break; 7564 case 0x2c: /* fmaxnmv */ 7565 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7566 break; 7567 case 0x2f: /* fmaxv */ 7568 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7569 break; 7570 case 0x3c: /* fminnmv */ 7571 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7572 break; 7573 case 0x3f: /* fminv */ 7574 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7575 break; 7576 default: 7577 g_assert_not_reached(); 7578 } 7579 return tcg_res; 7580 } 7581 } 7582 7583 /* AdvSIMD across lanes 7584 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7585 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7586 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7587 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7588 */ 7589 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7590 { 7591 int rd = extract32(insn, 0, 5); 7592 int rn = extract32(insn, 5, 5); 7593 int size = extract32(insn, 22, 2); 7594 int opcode = extract32(insn, 12, 5); 7595 bool is_q = extract32(insn, 30, 1); 7596 bool is_u = extract32(insn, 29, 1); 7597 bool is_fp = false; 7598 bool is_min = false; 7599 int esize; 7600 int elements; 7601 int i; 7602 TCGv_i64 tcg_res, tcg_elt; 7603 7604 switch (opcode) { 7605 case 0x1b: /* ADDV */ 7606 if (is_u) { 7607 unallocated_encoding(s); 7608 return; 7609 } 7610 /* fall through */ 7611 case 0x3: /* SADDLV, UADDLV */ 7612 case 0xa: /* SMAXV, UMAXV */ 7613 case 0x1a: /* SMINV, UMINV */ 7614 if (size == 3 || (size == 2 && !is_q)) { 7615 unallocated_encoding(s); 7616 return; 7617 } 7618 break; 7619 case 0xc: /* FMAXNMV, FMINNMV */ 7620 case 0xf: /* FMAXV, FMINV */ 7621 /* Bit 1 of size field encodes min vs max and the actual size 7622 * depends on the encoding of the U bit. If not set (and FP16 7623 * enabled) then we do half-precision float instead of single 7624 * precision. 7625 */ 7626 is_min = extract32(size, 1, 1); 7627 is_fp = true; 7628 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7629 size = 1; 7630 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7631 unallocated_encoding(s); 7632 return; 7633 } else { 7634 size = 2; 7635 } 7636 break; 7637 default: 7638 unallocated_encoding(s); 7639 return; 7640 } 7641 7642 if (!fp_access_check(s)) { 7643 return; 7644 } 7645 7646 esize = 8 << size; 7647 elements = (is_q ? 128 : 64) / esize; 7648 7649 tcg_res = tcg_temp_new_i64(); 7650 tcg_elt = tcg_temp_new_i64(); 7651 7652 /* These instructions operate across all lanes of a vector 7653 * to produce a single result. We can guarantee that a 64 7654 * bit intermediate is sufficient: 7655 * + for [US]ADDLV the maximum element size is 32 bits, and 7656 * the result type is 64 bits 7657 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7658 * same as the element size, which is 32 bits at most 7659 * For the integer operations we can choose to work at 64 7660 * or 32 bits and truncate at the end; for simplicity 7661 * we use 64 bits always. The floating point 7662 * ops do require 32 bit intermediates, though. 7663 */ 7664 if (!is_fp) { 7665 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7666 7667 for (i = 1; i < elements; i++) { 7668 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7669 7670 switch (opcode) { 7671 case 0x03: /* SADDLV / UADDLV */ 7672 case 0x1b: /* ADDV */ 7673 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7674 break; 7675 case 0x0a: /* SMAXV / UMAXV */ 7676 if (is_u) { 7677 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7678 } else { 7679 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7680 } 7681 break; 7682 case 0x1a: /* SMINV / UMINV */ 7683 if (is_u) { 7684 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7685 } else { 7686 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7687 } 7688 break; 7689 default: 7690 g_assert_not_reached(); 7691 } 7692 7693 } 7694 } else { 7695 /* Floating point vector reduction ops which work across 32 7696 * bit (single) or 16 bit (half-precision) intermediates. 7697 * Note that correct NaN propagation requires that we do these 7698 * operations in exactly the order specified by the pseudocode. 7699 */ 7700 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7701 int fpopcode = opcode | is_min << 4 | is_u << 5; 7702 int vmap = (1 << elements) - 1; 7703 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7704 (is_q ? 128 : 64), vmap, fpst); 7705 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7706 } 7707 7708 /* Now truncate the result to the width required for the final output */ 7709 if (opcode == 0x03) { 7710 /* SADDLV, UADDLV: result is 2*esize */ 7711 size++; 7712 } 7713 7714 switch (size) { 7715 case 0: 7716 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7717 break; 7718 case 1: 7719 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7720 break; 7721 case 2: 7722 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7723 break; 7724 case 3: 7725 break; 7726 default: 7727 g_assert_not_reached(); 7728 } 7729 7730 write_fp_dreg(s, rd, tcg_res); 7731 } 7732 7733 /* DUP (Element, Vector) 7734 * 7735 * 31 30 29 21 20 16 15 10 9 5 4 0 7736 * +---+---+-------------------+--------+-------------+------+------+ 7737 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7738 * +---+---+-------------------+--------+-------------+------+------+ 7739 * 7740 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7741 */ 7742 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7743 int imm5) 7744 { 7745 int size = ctz32(imm5); 7746 int index; 7747 7748 if (size > 3 || (size == 3 && !is_q)) { 7749 unallocated_encoding(s); 7750 return; 7751 } 7752 7753 if (!fp_access_check(s)) { 7754 return; 7755 } 7756 7757 index = imm5 >> (size + 1); 7758 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7759 vec_reg_offset(s, rn, index, size), 7760 is_q ? 16 : 8, vec_full_reg_size(s)); 7761 } 7762 7763 /* DUP (element, scalar) 7764 * 31 21 20 16 15 10 9 5 4 0 7765 * +-----------------------+--------+-------------+------+------+ 7766 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7767 * +-----------------------+--------+-------------+------+------+ 7768 */ 7769 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7770 int imm5) 7771 { 7772 int size = ctz32(imm5); 7773 int index; 7774 TCGv_i64 tmp; 7775 7776 if (size > 3) { 7777 unallocated_encoding(s); 7778 return; 7779 } 7780 7781 if (!fp_access_check(s)) { 7782 return; 7783 } 7784 7785 index = imm5 >> (size + 1); 7786 7787 /* This instruction just extracts the specified element and 7788 * zero-extends it into the bottom of the destination register. 7789 */ 7790 tmp = tcg_temp_new_i64(); 7791 read_vec_element(s, tmp, rn, index, size); 7792 write_fp_dreg(s, rd, tmp); 7793 } 7794 7795 /* DUP (General) 7796 * 7797 * 31 30 29 21 20 16 15 10 9 5 4 0 7798 * +---+---+-------------------+--------+-------------+------+------+ 7799 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7800 * +---+---+-------------------+--------+-------------+------+------+ 7801 * 7802 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7803 */ 7804 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7805 int imm5) 7806 { 7807 int size = ctz32(imm5); 7808 uint32_t dofs, oprsz, maxsz; 7809 7810 if (size > 3 || ((size == 3) && !is_q)) { 7811 unallocated_encoding(s); 7812 return; 7813 } 7814 7815 if (!fp_access_check(s)) { 7816 return; 7817 } 7818 7819 dofs = vec_full_reg_offset(s, rd); 7820 oprsz = is_q ? 16 : 8; 7821 maxsz = vec_full_reg_size(s); 7822 7823 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7824 } 7825 7826 /* INS (Element) 7827 * 7828 * 31 21 20 16 15 14 11 10 9 5 4 0 7829 * +-----------------------+--------+------------+---+------+------+ 7830 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7831 * +-----------------------+--------+------------+---+------+------+ 7832 * 7833 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7834 * index: encoded in imm5<4:size+1> 7835 */ 7836 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7837 int imm4, int imm5) 7838 { 7839 int size = ctz32(imm5); 7840 int src_index, dst_index; 7841 TCGv_i64 tmp; 7842 7843 if (size > 3) { 7844 unallocated_encoding(s); 7845 return; 7846 } 7847 7848 if (!fp_access_check(s)) { 7849 return; 7850 } 7851 7852 dst_index = extract32(imm5, 1+size, 5); 7853 src_index = extract32(imm4, size, 4); 7854 7855 tmp = tcg_temp_new_i64(); 7856 7857 read_vec_element(s, tmp, rn, src_index, size); 7858 write_vec_element(s, tmp, rd, dst_index, size); 7859 7860 /* INS is considered a 128-bit write for SVE. */ 7861 clear_vec_high(s, true, rd); 7862 } 7863 7864 7865 /* INS (General) 7866 * 7867 * 31 21 20 16 15 10 9 5 4 0 7868 * +-----------------------+--------+-------------+------+------+ 7869 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7870 * +-----------------------+--------+-------------+------+------+ 7871 * 7872 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7873 * index: encoded in imm5<4:size+1> 7874 */ 7875 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7876 { 7877 int size = ctz32(imm5); 7878 int idx; 7879 7880 if (size > 3) { 7881 unallocated_encoding(s); 7882 return; 7883 } 7884 7885 if (!fp_access_check(s)) { 7886 return; 7887 } 7888 7889 idx = extract32(imm5, 1 + size, 4 - size); 7890 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7891 7892 /* INS is considered a 128-bit write for SVE. */ 7893 clear_vec_high(s, true, rd); 7894 } 7895 7896 /* 7897 * UMOV (General) 7898 * SMOV (General) 7899 * 7900 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7901 * +---+---+-------------------+--------+-------------+------+------+ 7902 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7903 * +---+---+-------------------+--------+-------------+------+------+ 7904 * 7905 * U: unsigned when set 7906 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7907 */ 7908 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7909 int rn, int rd, int imm5) 7910 { 7911 int size = ctz32(imm5); 7912 int element; 7913 TCGv_i64 tcg_rd; 7914 7915 /* Check for UnallocatedEncodings */ 7916 if (is_signed) { 7917 if (size > 2 || (size == 2 && !is_q)) { 7918 unallocated_encoding(s); 7919 return; 7920 } 7921 } else { 7922 if (size > 3 7923 || (size < 3 && is_q) 7924 || (size == 3 && !is_q)) { 7925 unallocated_encoding(s); 7926 return; 7927 } 7928 } 7929 7930 if (!fp_access_check(s)) { 7931 return; 7932 } 7933 7934 element = extract32(imm5, 1+size, 4); 7935 7936 tcg_rd = cpu_reg(s, rd); 7937 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7938 if (is_signed && !is_q) { 7939 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7940 } 7941 } 7942 7943 /* AdvSIMD copy 7944 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7945 * +---+---+----+-----------------+------+---+------+---+------+------+ 7946 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7947 * +---+---+----+-----------------+------+---+------+---+------+------+ 7948 */ 7949 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7950 { 7951 int rd = extract32(insn, 0, 5); 7952 int rn = extract32(insn, 5, 5); 7953 int imm4 = extract32(insn, 11, 4); 7954 int op = extract32(insn, 29, 1); 7955 int is_q = extract32(insn, 30, 1); 7956 int imm5 = extract32(insn, 16, 5); 7957 7958 if (op) { 7959 if (is_q) { 7960 /* INS (element) */ 7961 handle_simd_inse(s, rd, rn, imm4, imm5); 7962 } else { 7963 unallocated_encoding(s); 7964 } 7965 } else { 7966 switch (imm4) { 7967 case 0: 7968 /* DUP (element - vector) */ 7969 handle_simd_dupe(s, is_q, rd, rn, imm5); 7970 break; 7971 case 1: 7972 /* DUP (general) */ 7973 handle_simd_dupg(s, is_q, rd, rn, imm5); 7974 break; 7975 case 3: 7976 if (is_q) { 7977 /* INS (general) */ 7978 handle_simd_insg(s, rd, rn, imm5); 7979 } else { 7980 unallocated_encoding(s); 7981 } 7982 break; 7983 case 5: 7984 case 7: 7985 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7986 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7987 break; 7988 default: 7989 unallocated_encoding(s); 7990 break; 7991 } 7992 } 7993 } 7994 7995 /* AdvSIMD modified immediate 7996 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7997 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7998 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7999 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8000 * 8001 * There are a number of operations that can be carried out here: 8002 * MOVI - move (shifted) imm into register 8003 * MVNI - move inverted (shifted) imm into register 8004 * ORR - bitwise OR of (shifted) imm with register 8005 * BIC - bitwise clear of (shifted) imm with register 8006 * With ARMv8.2 we also have: 8007 * FMOV half-precision 8008 */ 8009 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8010 { 8011 int rd = extract32(insn, 0, 5); 8012 int cmode = extract32(insn, 12, 4); 8013 int o2 = extract32(insn, 11, 1); 8014 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8015 bool is_neg = extract32(insn, 29, 1); 8016 bool is_q = extract32(insn, 30, 1); 8017 uint64_t imm = 0; 8018 8019 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8020 /* Check for FMOV (vector, immediate) - half-precision */ 8021 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8022 unallocated_encoding(s); 8023 return; 8024 } 8025 } 8026 8027 if (!fp_access_check(s)) { 8028 return; 8029 } 8030 8031 if (cmode == 15 && o2 && !is_neg) { 8032 /* FMOV (vector, immediate) - half-precision */ 8033 imm = vfp_expand_imm(MO_16, abcdefgh); 8034 /* now duplicate across the lanes */ 8035 imm = dup_const(MO_16, imm); 8036 } else { 8037 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8038 } 8039 8040 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8041 /* MOVI or MVNI, with MVNI negation handled above. */ 8042 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8043 vec_full_reg_size(s), imm); 8044 } else { 8045 /* ORR or BIC, with BIC negation to AND handled above. */ 8046 if (is_neg) { 8047 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8048 } else { 8049 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8050 } 8051 } 8052 } 8053 8054 /* AdvSIMD scalar copy 8055 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8056 * +-----+----+-----------------+------+---+------+---+------+------+ 8057 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8058 * +-----+----+-----------------+------+---+------+---+------+------+ 8059 */ 8060 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8061 { 8062 int rd = extract32(insn, 0, 5); 8063 int rn = extract32(insn, 5, 5); 8064 int imm4 = extract32(insn, 11, 4); 8065 int imm5 = extract32(insn, 16, 5); 8066 int op = extract32(insn, 29, 1); 8067 8068 if (op != 0 || imm4 != 0) { 8069 unallocated_encoding(s); 8070 return; 8071 } 8072 8073 /* DUP (element, scalar) */ 8074 handle_simd_dupes(s, rd, rn, imm5); 8075 } 8076 8077 /* AdvSIMD scalar pairwise 8078 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8079 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8080 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8081 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8082 */ 8083 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8084 { 8085 int u = extract32(insn, 29, 1); 8086 int size = extract32(insn, 22, 2); 8087 int opcode = extract32(insn, 12, 5); 8088 int rn = extract32(insn, 5, 5); 8089 int rd = extract32(insn, 0, 5); 8090 TCGv_ptr fpst; 8091 8092 /* For some ops (the FP ones), size[1] is part of the encoding. 8093 * For ADDP strictly it is not but size[1] is always 1 for valid 8094 * encodings. 8095 */ 8096 opcode |= (extract32(size, 1, 1) << 5); 8097 8098 switch (opcode) { 8099 case 0x3b: /* ADDP */ 8100 if (u || size != 3) { 8101 unallocated_encoding(s); 8102 return; 8103 } 8104 if (!fp_access_check(s)) { 8105 return; 8106 } 8107 8108 fpst = NULL; 8109 break; 8110 case 0xc: /* FMAXNMP */ 8111 case 0xd: /* FADDP */ 8112 case 0xf: /* FMAXP */ 8113 case 0x2c: /* FMINNMP */ 8114 case 0x2f: /* FMINP */ 8115 /* FP op, size[0] is 32 or 64 bit*/ 8116 if (!u) { 8117 if (!dc_isar_feature(aa64_fp16, s)) { 8118 unallocated_encoding(s); 8119 return; 8120 } else { 8121 size = MO_16; 8122 } 8123 } else { 8124 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8125 } 8126 8127 if (!fp_access_check(s)) { 8128 return; 8129 } 8130 8131 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8132 break; 8133 default: 8134 unallocated_encoding(s); 8135 return; 8136 } 8137 8138 if (size == MO_64) { 8139 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8140 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8141 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8142 8143 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8144 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8145 8146 switch (opcode) { 8147 case 0x3b: /* ADDP */ 8148 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8149 break; 8150 case 0xc: /* FMAXNMP */ 8151 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8152 break; 8153 case 0xd: /* FADDP */ 8154 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8155 break; 8156 case 0xf: /* FMAXP */ 8157 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8158 break; 8159 case 0x2c: /* FMINNMP */ 8160 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8161 break; 8162 case 0x2f: /* FMINP */ 8163 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8164 break; 8165 default: 8166 g_assert_not_reached(); 8167 } 8168 8169 write_fp_dreg(s, rd, tcg_res); 8170 } else { 8171 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8172 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8173 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8174 8175 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8176 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8177 8178 if (size == MO_16) { 8179 switch (opcode) { 8180 case 0xc: /* FMAXNMP */ 8181 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8182 break; 8183 case 0xd: /* FADDP */ 8184 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8185 break; 8186 case 0xf: /* FMAXP */ 8187 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8188 break; 8189 case 0x2c: /* FMINNMP */ 8190 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8191 break; 8192 case 0x2f: /* FMINP */ 8193 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8194 break; 8195 default: 8196 g_assert_not_reached(); 8197 } 8198 } else { 8199 switch (opcode) { 8200 case 0xc: /* FMAXNMP */ 8201 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8202 break; 8203 case 0xd: /* FADDP */ 8204 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8205 break; 8206 case 0xf: /* FMAXP */ 8207 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8208 break; 8209 case 0x2c: /* FMINNMP */ 8210 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8211 break; 8212 case 0x2f: /* FMINP */ 8213 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8214 break; 8215 default: 8216 g_assert_not_reached(); 8217 } 8218 } 8219 8220 write_fp_sreg(s, rd, tcg_res); 8221 } 8222 } 8223 8224 /* 8225 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8226 * 8227 * This code is handles the common shifting code and is used by both 8228 * the vector and scalar code. 8229 */ 8230 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8231 TCGv_i64 tcg_rnd, bool accumulate, 8232 bool is_u, int size, int shift) 8233 { 8234 bool extended_result = false; 8235 bool round = tcg_rnd != NULL; 8236 int ext_lshift = 0; 8237 TCGv_i64 tcg_src_hi; 8238 8239 if (round && size == 3) { 8240 extended_result = true; 8241 ext_lshift = 64 - shift; 8242 tcg_src_hi = tcg_temp_new_i64(); 8243 } else if (shift == 64) { 8244 if (!accumulate && is_u) { 8245 /* result is zero */ 8246 tcg_gen_movi_i64(tcg_res, 0); 8247 return; 8248 } 8249 } 8250 8251 /* Deal with the rounding step */ 8252 if (round) { 8253 if (extended_result) { 8254 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8255 if (!is_u) { 8256 /* take care of sign extending tcg_res */ 8257 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8258 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8259 tcg_src, tcg_src_hi, 8260 tcg_rnd, tcg_zero); 8261 } else { 8262 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8263 tcg_src, tcg_zero, 8264 tcg_rnd, tcg_zero); 8265 } 8266 } else { 8267 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8268 } 8269 } 8270 8271 /* Now do the shift right */ 8272 if (round && extended_result) { 8273 /* extended case, >64 bit precision required */ 8274 if (ext_lshift == 0) { 8275 /* special case, only high bits matter */ 8276 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8277 } else { 8278 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8279 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8280 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8281 } 8282 } else { 8283 if (is_u) { 8284 if (shift == 64) { 8285 /* essentially shifting in 64 zeros */ 8286 tcg_gen_movi_i64(tcg_src, 0); 8287 } else { 8288 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8289 } 8290 } else { 8291 if (shift == 64) { 8292 /* effectively extending the sign-bit */ 8293 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8294 } else { 8295 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8296 } 8297 } 8298 } 8299 8300 if (accumulate) { 8301 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8302 } else { 8303 tcg_gen_mov_i64(tcg_res, tcg_src); 8304 } 8305 } 8306 8307 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8308 static void handle_scalar_simd_shri(DisasContext *s, 8309 bool is_u, int immh, int immb, 8310 int opcode, int rn, int rd) 8311 { 8312 const int size = 3; 8313 int immhb = immh << 3 | immb; 8314 int shift = 2 * (8 << size) - immhb; 8315 bool accumulate = false; 8316 bool round = false; 8317 bool insert = false; 8318 TCGv_i64 tcg_rn; 8319 TCGv_i64 tcg_rd; 8320 TCGv_i64 tcg_round; 8321 8322 if (!extract32(immh, 3, 1)) { 8323 unallocated_encoding(s); 8324 return; 8325 } 8326 8327 if (!fp_access_check(s)) { 8328 return; 8329 } 8330 8331 switch (opcode) { 8332 case 0x02: /* SSRA / USRA (accumulate) */ 8333 accumulate = true; 8334 break; 8335 case 0x04: /* SRSHR / URSHR (rounding) */ 8336 round = true; 8337 break; 8338 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8339 accumulate = round = true; 8340 break; 8341 case 0x08: /* SRI */ 8342 insert = true; 8343 break; 8344 } 8345 8346 if (round) { 8347 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8348 } else { 8349 tcg_round = NULL; 8350 } 8351 8352 tcg_rn = read_fp_dreg(s, rn); 8353 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8354 8355 if (insert) { 8356 /* shift count same as element size is valid but does nothing; 8357 * special case to avoid potential shift by 64. 8358 */ 8359 int esize = 8 << size; 8360 if (shift != esize) { 8361 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8362 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8363 } 8364 } else { 8365 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8366 accumulate, is_u, size, shift); 8367 } 8368 8369 write_fp_dreg(s, rd, tcg_rd); 8370 } 8371 8372 /* SHL/SLI - Scalar shift left */ 8373 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8374 int immh, int immb, int opcode, 8375 int rn, int rd) 8376 { 8377 int size = 32 - clz32(immh) - 1; 8378 int immhb = immh << 3 | immb; 8379 int shift = immhb - (8 << size); 8380 TCGv_i64 tcg_rn; 8381 TCGv_i64 tcg_rd; 8382 8383 if (!extract32(immh, 3, 1)) { 8384 unallocated_encoding(s); 8385 return; 8386 } 8387 8388 if (!fp_access_check(s)) { 8389 return; 8390 } 8391 8392 tcg_rn = read_fp_dreg(s, rn); 8393 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8394 8395 if (insert) { 8396 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8397 } else { 8398 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8399 } 8400 8401 write_fp_dreg(s, rd, tcg_rd); 8402 } 8403 8404 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8405 * (signed/unsigned) narrowing */ 8406 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8407 bool is_u_shift, bool is_u_narrow, 8408 int immh, int immb, int opcode, 8409 int rn, int rd) 8410 { 8411 int immhb = immh << 3 | immb; 8412 int size = 32 - clz32(immh) - 1; 8413 int esize = 8 << size; 8414 int shift = (2 * esize) - immhb; 8415 int elements = is_scalar ? 1 : (64 / esize); 8416 bool round = extract32(opcode, 0, 1); 8417 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8418 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8419 TCGv_i32 tcg_rd_narrowed; 8420 TCGv_i64 tcg_final; 8421 8422 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8423 { gen_helper_neon_narrow_sat_s8, 8424 gen_helper_neon_unarrow_sat8 }, 8425 { gen_helper_neon_narrow_sat_s16, 8426 gen_helper_neon_unarrow_sat16 }, 8427 { gen_helper_neon_narrow_sat_s32, 8428 gen_helper_neon_unarrow_sat32 }, 8429 { NULL, NULL }, 8430 }; 8431 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8432 gen_helper_neon_narrow_sat_u8, 8433 gen_helper_neon_narrow_sat_u16, 8434 gen_helper_neon_narrow_sat_u32, 8435 NULL 8436 }; 8437 NeonGenNarrowEnvFn *narrowfn; 8438 8439 int i; 8440 8441 assert(size < 4); 8442 8443 if (extract32(immh, 3, 1)) { 8444 unallocated_encoding(s); 8445 return; 8446 } 8447 8448 if (!fp_access_check(s)) { 8449 return; 8450 } 8451 8452 if (is_u_shift) { 8453 narrowfn = unsigned_narrow_fns[size]; 8454 } else { 8455 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8456 } 8457 8458 tcg_rn = tcg_temp_new_i64(); 8459 tcg_rd = tcg_temp_new_i64(); 8460 tcg_rd_narrowed = tcg_temp_new_i32(); 8461 tcg_final = tcg_const_i64(0); 8462 8463 if (round) { 8464 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8465 } else { 8466 tcg_round = NULL; 8467 } 8468 8469 for (i = 0; i < elements; i++) { 8470 read_vec_element(s, tcg_rn, rn, i, ldop); 8471 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8472 false, is_u_shift, size+1, shift); 8473 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8474 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8475 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8476 } 8477 8478 if (!is_q) { 8479 write_vec_element(s, tcg_final, rd, 0, MO_64); 8480 } else { 8481 write_vec_element(s, tcg_final, rd, 1, MO_64); 8482 } 8483 clear_vec_high(s, is_q, rd); 8484 } 8485 8486 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8487 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8488 bool src_unsigned, bool dst_unsigned, 8489 int immh, int immb, int rn, int rd) 8490 { 8491 int immhb = immh << 3 | immb; 8492 int size = 32 - clz32(immh) - 1; 8493 int shift = immhb - (8 << size); 8494 int pass; 8495 8496 assert(immh != 0); 8497 assert(!(scalar && is_q)); 8498 8499 if (!scalar) { 8500 if (!is_q && extract32(immh, 3, 1)) { 8501 unallocated_encoding(s); 8502 return; 8503 } 8504 8505 /* Since we use the variable-shift helpers we must 8506 * replicate the shift count into each element of 8507 * the tcg_shift value. 8508 */ 8509 switch (size) { 8510 case 0: 8511 shift |= shift << 8; 8512 /* fall through */ 8513 case 1: 8514 shift |= shift << 16; 8515 break; 8516 case 2: 8517 case 3: 8518 break; 8519 default: 8520 g_assert_not_reached(); 8521 } 8522 } 8523 8524 if (!fp_access_check(s)) { 8525 return; 8526 } 8527 8528 if (size == 3) { 8529 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8530 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8531 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8532 { NULL, gen_helper_neon_qshl_u64 }, 8533 }; 8534 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8535 int maxpass = is_q ? 2 : 1; 8536 8537 for (pass = 0; pass < maxpass; pass++) { 8538 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8539 8540 read_vec_element(s, tcg_op, rn, pass, MO_64); 8541 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8542 write_vec_element(s, tcg_op, rd, pass, MO_64); 8543 } 8544 clear_vec_high(s, is_q, rd); 8545 } else { 8546 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8547 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8548 { 8549 { gen_helper_neon_qshl_s8, 8550 gen_helper_neon_qshl_s16, 8551 gen_helper_neon_qshl_s32 }, 8552 { gen_helper_neon_qshlu_s8, 8553 gen_helper_neon_qshlu_s16, 8554 gen_helper_neon_qshlu_s32 } 8555 }, { 8556 { NULL, NULL, NULL }, 8557 { gen_helper_neon_qshl_u8, 8558 gen_helper_neon_qshl_u16, 8559 gen_helper_neon_qshl_u32 } 8560 } 8561 }; 8562 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8563 MemOp memop = scalar ? size : MO_32; 8564 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8565 8566 for (pass = 0; pass < maxpass; pass++) { 8567 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8568 8569 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8570 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8571 if (scalar) { 8572 switch (size) { 8573 case 0: 8574 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8575 break; 8576 case 1: 8577 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8578 break; 8579 case 2: 8580 break; 8581 default: 8582 g_assert_not_reached(); 8583 } 8584 write_fp_sreg(s, rd, tcg_op); 8585 } else { 8586 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8587 } 8588 } 8589 8590 if (!scalar) { 8591 clear_vec_high(s, is_q, rd); 8592 } 8593 } 8594 } 8595 8596 /* Common vector code for handling integer to FP conversion */ 8597 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8598 int elements, int is_signed, 8599 int fracbits, int size) 8600 { 8601 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8602 TCGv_i32 tcg_shift = NULL; 8603 8604 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8605 int pass; 8606 8607 if (fracbits || size == MO_64) { 8608 tcg_shift = tcg_constant_i32(fracbits); 8609 } 8610 8611 if (size == MO_64) { 8612 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8613 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8614 8615 for (pass = 0; pass < elements; pass++) { 8616 read_vec_element(s, tcg_int64, rn, pass, mop); 8617 8618 if (is_signed) { 8619 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8620 tcg_shift, tcg_fpst); 8621 } else { 8622 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8623 tcg_shift, tcg_fpst); 8624 } 8625 if (elements == 1) { 8626 write_fp_dreg(s, rd, tcg_double); 8627 } else { 8628 write_vec_element(s, tcg_double, rd, pass, MO_64); 8629 } 8630 } 8631 } else { 8632 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8633 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8634 8635 for (pass = 0; pass < elements; pass++) { 8636 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8637 8638 switch (size) { 8639 case MO_32: 8640 if (fracbits) { 8641 if (is_signed) { 8642 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8643 tcg_shift, tcg_fpst); 8644 } else { 8645 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8646 tcg_shift, tcg_fpst); 8647 } 8648 } else { 8649 if (is_signed) { 8650 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8651 } else { 8652 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8653 } 8654 } 8655 break; 8656 case MO_16: 8657 if (fracbits) { 8658 if (is_signed) { 8659 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8660 tcg_shift, tcg_fpst); 8661 } else { 8662 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8663 tcg_shift, tcg_fpst); 8664 } 8665 } else { 8666 if (is_signed) { 8667 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8668 } else { 8669 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8670 } 8671 } 8672 break; 8673 default: 8674 g_assert_not_reached(); 8675 } 8676 8677 if (elements == 1) { 8678 write_fp_sreg(s, rd, tcg_float); 8679 } else { 8680 write_vec_element_i32(s, tcg_float, rd, pass, size); 8681 } 8682 } 8683 } 8684 8685 clear_vec_high(s, elements << size == 16, rd); 8686 } 8687 8688 /* UCVTF/SCVTF - Integer to FP conversion */ 8689 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8690 bool is_q, bool is_u, 8691 int immh, int immb, int opcode, 8692 int rn, int rd) 8693 { 8694 int size, elements, fracbits; 8695 int immhb = immh << 3 | immb; 8696 8697 if (immh & 8) { 8698 size = MO_64; 8699 if (!is_scalar && !is_q) { 8700 unallocated_encoding(s); 8701 return; 8702 } 8703 } else if (immh & 4) { 8704 size = MO_32; 8705 } else if (immh & 2) { 8706 size = MO_16; 8707 if (!dc_isar_feature(aa64_fp16, s)) { 8708 unallocated_encoding(s); 8709 return; 8710 } 8711 } else { 8712 /* immh == 0 would be a failure of the decode logic */ 8713 g_assert(immh == 1); 8714 unallocated_encoding(s); 8715 return; 8716 } 8717 8718 if (is_scalar) { 8719 elements = 1; 8720 } else { 8721 elements = (8 << is_q) >> size; 8722 } 8723 fracbits = (16 << size) - immhb; 8724 8725 if (!fp_access_check(s)) { 8726 return; 8727 } 8728 8729 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8730 } 8731 8732 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8733 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8734 bool is_q, bool is_u, 8735 int immh, int immb, int rn, int rd) 8736 { 8737 int immhb = immh << 3 | immb; 8738 int pass, size, fracbits; 8739 TCGv_ptr tcg_fpstatus; 8740 TCGv_i32 tcg_rmode, tcg_shift; 8741 8742 if (immh & 0x8) { 8743 size = MO_64; 8744 if (!is_scalar && !is_q) { 8745 unallocated_encoding(s); 8746 return; 8747 } 8748 } else if (immh & 0x4) { 8749 size = MO_32; 8750 } else if (immh & 0x2) { 8751 size = MO_16; 8752 if (!dc_isar_feature(aa64_fp16, s)) { 8753 unallocated_encoding(s); 8754 return; 8755 } 8756 } else { 8757 /* Should have split out AdvSIMD modified immediate earlier. */ 8758 assert(immh == 1); 8759 unallocated_encoding(s); 8760 return; 8761 } 8762 8763 if (!fp_access_check(s)) { 8764 return; 8765 } 8766 8767 assert(!(is_scalar && is_q)); 8768 8769 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8770 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8771 fracbits = (16 << size) - immhb; 8772 tcg_shift = tcg_constant_i32(fracbits); 8773 8774 if (size == MO_64) { 8775 int maxpass = is_scalar ? 1 : 2; 8776 8777 for (pass = 0; pass < maxpass; pass++) { 8778 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8779 8780 read_vec_element(s, tcg_op, rn, pass, MO_64); 8781 if (is_u) { 8782 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8783 } else { 8784 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8785 } 8786 write_vec_element(s, tcg_op, rd, pass, MO_64); 8787 } 8788 clear_vec_high(s, is_q, rd); 8789 } else { 8790 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8791 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8792 8793 switch (size) { 8794 case MO_16: 8795 if (is_u) { 8796 fn = gen_helper_vfp_touhh; 8797 } else { 8798 fn = gen_helper_vfp_toshh; 8799 } 8800 break; 8801 case MO_32: 8802 if (is_u) { 8803 fn = gen_helper_vfp_touls; 8804 } else { 8805 fn = gen_helper_vfp_tosls; 8806 } 8807 break; 8808 default: 8809 g_assert_not_reached(); 8810 } 8811 8812 for (pass = 0; pass < maxpass; pass++) { 8813 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8814 8815 read_vec_element_i32(s, tcg_op, rn, pass, size); 8816 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8817 if (is_scalar) { 8818 write_fp_sreg(s, rd, tcg_op); 8819 } else { 8820 write_vec_element_i32(s, tcg_op, rd, pass, size); 8821 } 8822 } 8823 if (!is_scalar) { 8824 clear_vec_high(s, is_q, rd); 8825 } 8826 } 8827 8828 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8829 } 8830 8831 /* AdvSIMD scalar shift by immediate 8832 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8833 * +-----+---+-------------+------+------+--------+---+------+------+ 8834 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8835 * +-----+---+-------------+------+------+--------+---+------+------+ 8836 * 8837 * This is the scalar version so it works on a fixed sized registers 8838 */ 8839 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8840 { 8841 int rd = extract32(insn, 0, 5); 8842 int rn = extract32(insn, 5, 5); 8843 int opcode = extract32(insn, 11, 5); 8844 int immb = extract32(insn, 16, 3); 8845 int immh = extract32(insn, 19, 4); 8846 bool is_u = extract32(insn, 29, 1); 8847 8848 if (immh == 0) { 8849 unallocated_encoding(s); 8850 return; 8851 } 8852 8853 switch (opcode) { 8854 case 0x08: /* SRI */ 8855 if (!is_u) { 8856 unallocated_encoding(s); 8857 return; 8858 } 8859 /* fall through */ 8860 case 0x00: /* SSHR / USHR */ 8861 case 0x02: /* SSRA / USRA */ 8862 case 0x04: /* SRSHR / URSHR */ 8863 case 0x06: /* SRSRA / URSRA */ 8864 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8865 break; 8866 case 0x0a: /* SHL / SLI */ 8867 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8868 break; 8869 case 0x1c: /* SCVTF, UCVTF */ 8870 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8871 opcode, rn, rd); 8872 break; 8873 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8874 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8875 if (!is_u) { 8876 unallocated_encoding(s); 8877 return; 8878 } 8879 handle_vec_simd_sqshrn(s, true, false, false, true, 8880 immh, immb, opcode, rn, rd); 8881 break; 8882 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8883 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8884 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8885 immh, immb, opcode, rn, rd); 8886 break; 8887 case 0xc: /* SQSHLU */ 8888 if (!is_u) { 8889 unallocated_encoding(s); 8890 return; 8891 } 8892 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8893 break; 8894 case 0xe: /* SQSHL, UQSHL */ 8895 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8896 break; 8897 case 0x1f: /* FCVTZS, FCVTZU */ 8898 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8899 break; 8900 default: 8901 unallocated_encoding(s); 8902 break; 8903 } 8904 } 8905 8906 /* AdvSIMD scalar three different 8907 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8908 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8909 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8910 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8911 */ 8912 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8913 { 8914 bool is_u = extract32(insn, 29, 1); 8915 int size = extract32(insn, 22, 2); 8916 int opcode = extract32(insn, 12, 4); 8917 int rm = extract32(insn, 16, 5); 8918 int rn = extract32(insn, 5, 5); 8919 int rd = extract32(insn, 0, 5); 8920 8921 if (is_u) { 8922 unallocated_encoding(s); 8923 return; 8924 } 8925 8926 switch (opcode) { 8927 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8928 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8929 case 0xd: /* SQDMULL, SQDMULL2 */ 8930 if (size == 0 || size == 3) { 8931 unallocated_encoding(s); 8932 return; 8933 } 8934 break; 8935 default: 8936 unallocated_encoding(s); 8937 return; 8938 } 8939 8940 if (!fp_access_check(s)) { 8941 return; 8942 } 8943 8944 if (size == 2) { 8945 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8946 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8947 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8948 8949 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8950 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8951 8952 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8953 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8954 8955 switch (opcode) { 8956 case 0xd: /* SQDMULL, SQDMULL2 */ 8957 break; 8958 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8959 tcg_gen_neg_i64(tcg_res, tcg_res); 8960 /* fall through */ 8961 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8962 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8963 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8964 tcg_res, tcg_op1); 8965 break; 8966 default: 8967 g_assert_not_reached(); 8968 } 8969 8970 write_fp_dreg(s, rd, tcg_res); 8971 } else { 8972 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8973 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8974 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8975 8976 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8977 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8978 8979 switch (opcode) { 8980 case 0xd: /* SQDMULL, SQDMULL2 */ 8981 break; 8982 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8983 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8984 /* fall through */ 8985 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8986 { 8987 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8988 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8989 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8990 tcg_res, tcg_op3); 8991 break; 8992 } 8993 default: 8994 g_assert_not_reached(); 8995 } 8996 8997 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8998 write_fp_dreg(s, rd, tcg_res); 8999 } 9000 } 9001 9002 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9003 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9004 { 9005 /* Handle 64x64->64 opcodes which are shared between the scalar 9006 * and vector 3-same groups. We cover every opcode where size == 3 9007 * is valid in either the three-reg-same (integer, not pairwise) 9008 * or scalar-three-reg-same groups. 9009 */ 9010 TCGCond cond; 9011 9012 switch (opcode) { 9013 case 0x1: /* SQADD */ 9014 if (u) { 9015 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9016 } else { 9017 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9018 } 9019 break; 9020 case 0x5: /* SQSUB */ 9021 if (u) { 9022 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9023 } else { 9024 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9025 } 9026 break; 9027 case 0x6: /* CMGT, CMHI */ 9028 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9029 * We implement this using setcond (test) and then negating. 9030 */ 9031 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9032 do_cmop: 9033 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9034 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9035 break; 9036 case 0x7: /* CMGE, CMHS */ 9037 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9038 goto do_cmop; 9039 case 0x11: /* CMTST, CMEQ */ 9040 if (u) { 9041 cond = TCG_COND_EQ; 9042 goto do_cmop; 9043 } 9044 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9045 break; 9046 case 0x8: /* SSHL, USHL */ 9047 if (u) { 9048 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9049 } else { 9050 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9051 } 9052 break; 9053 case 0x9: /* SQSHL, UQSHL */ 9054 if (u) { 9055 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9056 } else { 9057 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9058 } 9059 break; 9060 case 0xa: /* SRSHL, URSHL */ 9061 if (u) { 9062 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9063 } else { 9064 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9065 } 9066 break; 9067 case 0xb: /* SQRSHL, UQRSHL */ 9068 if (u) { 9069 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9070 } else { 9071 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9072 } 9073 break; 9074 case 0x10: /* ADD, SUB */ 9075 if (u) { 9076 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9077 } else { 9078 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9079 } 9080 break; 9081 default: 9082 g_assert_not_reached(); 9083 } 9084 } 9085 9086 /* Handle the 3-same-operands float operations; shared by the scalar 9087 * and vector encodings. The caller must filter out any encodings 9088 * not allocated for the encoding it is dealing with. 9089 */ 9090 static void handle_3same_float(DisasContext *s, int size, int elements, 9091 int fpopcode, int rd, int rn, int rm) 9092 { 9093 int pass; 9094 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9095 9096 for (pass = 0; pass < elements; pass++) { 9097 if (size) { 9098 /* Double */ 9099 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9100 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9101 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9102 9103 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9104 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9105 9106 switch (fpopcode) { 9107 case 0x39: /* FMLS */ 9108 /* As usual for ARM, separate negation for fused multiply-add */ 9109 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9110 /* fall through */ 9111 case 0x19: /* FMLA */ 9112 read_vec_element(s, tcg_res, rd, pass, MO_64); 9113 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9114 tcg_res, fpst); 9115 break; 9116 case 0x18: /* FMAXNM */ 9117 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9118 break; 9119 case 0x1a: /* FADD */ 9120 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9121 break; 9122 case 0x1b: /* FMULX */ 9123 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9124 break; 9125 case 0x1c: /* FCMEQ */ 9126 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9127 break; 9128 case 0x1e: /* FMAX */ 9129 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9130 break; 9131 case 0x1f: /* FRECPS */ 9132 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9133 break; 9134 case 0x38: /* FMINNM */ 9135 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9136 break; 9137 case 0x3a: /* FSUB */ 9138 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9139 break; 9140 case 0x3e: /* FMIN */ 9141 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9142 break; 9143 case 0x3f: /* FRSQRTS */ 9144 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9145 break; 9146 case 0x5b: /* FMUL */ 9147 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9148 break; 9149 case 0x5c: /* FCMGE */ 9150 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9151 break; 9152 case 0x5d: /* FACGE */ 9153 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9154 break; 9155 case 0x5f: /* FDIV */ 9156 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9157 break; 9158 case 0x7a: /* FABD */ 9159 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9160 gen_helper_vfp_absd(tcg_res, tcg_res); 9161 break; 9162 case 0x7c: /* FCMGT */ 9163 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9164 break; 9165 case 0x7d: /* FACGT */ 9166 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9167 break; 9168 default: 9169 g_assert_not_reached(); 9170 } 9171 9172 write_vec_element(s, tcg_res, rd, pass, MO_64); 9173 } else { 9174 /* Single */ 9175 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9176 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9177 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9178 9179 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9180 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9181 9182 switch (fpopcode) { 9183 case 0x39: /* FMLS */ 9184 /* As usual for ARM, separate negation for fused multiply-add */ 9185 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9186 /* fall through */ 9187 case 0x19: /* FMLA */ 9188 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9189 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9190 tcg_res, fpst); 9191 break; 9192 case 0x1a: /* FADD */ 9193 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9194 break; 9195 case 0x1b: /* FMULX */ 9196 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9197 break; 9198 case 0x1c: /* FCMEQ */ 9199 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9200 break; 9201 case 0x1e: /* FMAX */ 9202 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9203 break; 9204 case 0x1f: /* FRECPS */ 9205 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9206 break; 9207 case 0x18: /* FMAXNM */ 9208 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9209 break; 9210 case 0x38: /* FMINNM */ 9211 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9212 break; 9213 case 0x3a: /* FSUB */ 9214 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9215 break; 9216 case 0x3e: /* FMIN */ 9217 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9218 break; 9219 case 0x3f: /* FRSQRTS */ 9220 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9221 break; 9222 case 0x5b: /* FMUL */ 9223 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9224 break; 9225 case 0x5c: /* FCMGE */ 9226 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9227 break; 9228 case 0x5d: /* FACGE */ 9229 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9230 break; 9231 case 0x5f: /* FDIV */ 9232 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9233 break; 9234 case 0x7a: /* FABD */ 9235 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9236 gen_helper_vfp_abss(tcg_res, tcg_res); 9237 break; 9238 case 0x7c: /* FCMGT */ 9239 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9240 break; 9241 case 0x7d: /* FACGT */ 9242 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9243 break; 9244 default: 9245 g_assert_not_reached(); 9246 } 9247 9248 if (elements == 1) { 9249 /* scalar single so clear high part */ 9250 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9251 9252 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9253 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9254 } else { 9255 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9256 } 9257 } 9258 } 9259 9260 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9261 } 9262 9263 /* AdvSIMD scalar three same 9264 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9265 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9266 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9267 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9268 */ 9269 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9270 { 9271 int rd = extract32(insn, 0, 5); 9272 int rn = extract32(insn, 5, 5); 9273 int opcode = extract32(insn, 11, 5); 9274 int rm = extract32(insn, 16, 5); 9275 int size = extract32(insn, 22, 2); 9276 bool u = extract32(insn, 29, 1); 9277 TCGv_i64 tcg_rd; 9278 9279 if (opcode >= 0x18) { 9280 /* Floating point: U, size[1] and opcode indicate operation */ 9281 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9282 switch (fpopcode) { 9283 case 0x1b: /* FMULX */ 9284 case 0x1f: /* FRECPS */ 9285 case 0x3f: /* FRSQRTS */ 9286 case 0x5d: /* FACGE */ 9287 case 0x7d: /* FACGT */ 9288 case 0x1c: /* FCMEQ */ 9289 case 0x5c: /* FCMGE */ 9290 case 0x7c: /* FCMGT */ 9291 case 0x7a: /* FABD */ 9292 break; 9293 default: 9294 unallocated_encoding(s); 9295 return; 9296 } 9297 9298 if (!fp_access_check(s)) { 9299 return; 9300 } 9301 9302 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9303 return; 9304 } 9305 9306 switch (opcode) { 9307 case 0x1: /* SQADD, UQADD */ 9308 case 0x5: /* SQSUB, UQSUB */ 9309 case 0x9: /* SQSHL, UQSHL */ 9310 case 0xb: /* SQRSHL, UQRSHL */ 9311 break; 9312 case 0x8: /* SSHL, USHL */ 9313 case 0xa: /* SRSHL, URSHL */ 9314 case 0x6: /* CMGT, CMHI */ 9315 case 0x7: /* CMGE, CMHS */ 9316 case 0x11: /* CMTST, CMEQ */ 9317 case 0x10: /* ADD, SUB (vector) */ 9318 if (size != 3) { 9319 unallocated_encoding(s); 9320 return; 9321 } 9322 break; 9323 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9324 if (size != 1 && size != 2) { 9325 unallocated_encoding(s); 9326 return; 9327 } 9328 break; 9329 default: 9330 unallocated_encoding(s); 9331 return; 9332 } 9333 9334 if (!fp_access_check(s)) { 9335 return; 9336 } 9337 9338 tcg_rd = tcg_temp_new_i64(); 9339 9340 if (size == 3) { 9341 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9342 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9343 9344 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9345 } else { 9346 /* Do a single operation on the lowest element in the vector. 9347 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9348 * no side effects for all these operations. 9349 * OPTME: special-purpose helpers would avoid doing some 9350 * unnecessary work in the helper for the 8 and 16 bit cases. 9351 */ 9352 NeonGenTwoOpEnvFn *genenvfn; 9353 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9354 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9355 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9356 9357 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9358 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9359 9360 switch (opcode) { 9361 case 0x1: /* SQADD, UQADD */ 9362 { 9363 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9364 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9365 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9366 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9367 }; 9368 genenvfn = fns[size][u]; 9369 break; 9370 } 9371 case 0x5: /* SQSUB, UQSUB */ 9372 { 9373 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9374 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9375 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9376 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9377 }; 9378 genenvfn = fns[size][u]; 9379 break; 9380 } 9381 case 0x9: /* SQSHL, UQSHL */ 9382 { 9383 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9384 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9385 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9386 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9387 }; 9388 genenvfn = fns[size][u]; 9389 break; 9390 } 9391 case 0xb: /* SQRSHL, UQRSHL */ 9392 { 9393 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9394 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9395 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9396 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9397 }; 9398 genenvfn = fns[size][u]; 9399 break; 9400 } 9401 case 0x16: /* SQDMULH, SQRDMULH */ 9402 { 9403 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9404 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9405 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9406 }; 9407 assert(size == 1 || size == 2); 9408 genenvfn = fns[size - 1][u]; 9409 break; 9410 } 9411 default: 9412 g_assert_not_reached(); 9413 } 9414 9415 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9416 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9417 } 9418 9419 write_fp_dreg(s, rd, tcg_rd); 9420 } 9421 9422 /* AdvSIMD scalar three same FP16 9423 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9424 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9425 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9426 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9427 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9428 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9429 */ 9430 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9431 uint32_t insn) 9432 { 9433 int rd = extract32(insn, 0, 5); 9434 int rn = extract32(insn, 5, 5); 9435 int opcode = extract32(insn, 11, 3); 9436 int rm = extract32(insn, 16, 5); 9437 bool u = extract32(insn, 29, 1); 9438 bool a = extract32(insn, 23, 1); 9439 int fpopcode = opcode | (a << 3) | (u << 4); 9440 TCGv_ptr fpst; 9441 TCGv_i32 tcg_op1; 9442 TCGv_i32 tcg_op2; 9443 TCGv_i32 tcg_res; 9444 9445 switch (fpopcode) { 9446 case 0x03: /* FMULX */ 9447 case 0x04: /* FCMEQ (reg) */ 9448 case 0x07: /* FRECPS */ 9449 case 0x0f: /* FRSQRTS */ 9450 case 0x14: /* FCMGE (reg) */ 9451 case 0x15: /* FACGE */ 9452 case 0x1a: /* FABD */ 9453 case 0x1c: /* FCMGT (reg) */ 9454 case 0x1d: /* FACGT */ 9455 break; 9456 default: 9457 unallocated_encoding(s); 9458 return; 9459 } 9460 9461 if (!dc_isar_feature(aa64_fp16, s)) { 9462 unallocated_encoding(s); 9463 } 9464 9465 if (!fp_access_check(s)) { 9466 return; 9467 } 9468 9469 fpst = fpstatus_ptr(FPST_FPCR_F16); 9470 9471 tcg_op1 = read_fp_hreg(s, rn); 9472 tcg_op2 = read_fp_hreg(s, rm); 9473 tcg_res = tcg_temp_new_i32(); 9474 9475 switch (fpopcode) { 9476 case 0x03: /* FMULX */ 9477 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9478 break; 9479 case 0x04: /* FCMEQ (reg) */ 9480 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9481 break; 9482 case 0x07: /* FRECPS */ 9483 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9484 break; 9485 case 0x0f: /* FRSQRTS */ 9486 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9487 break; 9488 case 0x14: /* FCMGE (reg) */ 9489 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9490 break; 9491 case 0x15: /* FACGE */ 9492 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9493 break; 9494 case 0x1a: /* FABD */ 9495 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9496 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9497 break; 9498 case 0x1c: /* FCMGT (reg) */ 9499 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9500 break; 9501 case 0x1d: /* FACGT */ 9502 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9503 break; 9504 default: 9505 g_assert_not_reached(); 9506 } 9507 9508 write_fp_sreg(s, rd, tcg_res); 9509 } 9510 9511 /* AdvSIMD scalar three same extra 9512 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9513 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9514 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9515 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9516 */ 9517 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9518 uint32_t insn) 9519 { 9520 int rd = extract32(insn, 0, 5); 9521 int rn = extract32(insn, 5, 5); 9522 int opcode = extract32(insn, 11, 4); 9523 int rm = extract32(insn, 16, 5); 9524 int size = extract32(insn, 22, 2); 9525 bool u = extract32(insn, 29, 1); 9526 TCGv_i32 ele1, ele2, ele3; 9527 TCGv_i64 res; 9528 bool feature; 9529 9530 switch (u * 16 + opcode) { 9531 case 0x10: /* SQRDMLAH (vector) */ 9532 case 0x11: /* SQRDMLSH (vector) */ 9533 if (size != 1 && size != 2) { 9534 unallocated_encoding(s); 9535 return; 9536 } 9537 feature = dc_isar_feature(aa64_rdm, s); 9538 break; 9539 default: 9540 unallocated_encoding(s); 9541 return; 9542 } 9543 if (!feature) { 9544 unallocated_encoding(s); 9545 return; 9546 } 9547 if (!fp_access_check(s)) { 9548 return; 9549 } 9550 9551 /* Do a single operation on the lowest element in the vector. 9552 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9553 * with no side effects for all these operations. 9554 * OPTME: special-purpose helpers would avoid doing some 9555 * unnecessary work in the helper for the 16 bit cases. 9556 */ 9557 ele1 = tcg_temp_new_i32(); 9558 ele2 = tcg_temp_new_i32(); 9559 ele3 = tcg_temp_new_i32(); 9560 9561 read_vec_element_i32(s, ele1, rn, 0, size); 9562 read_vec_element_i32(s, ele2, rm, 0, size); 9563 read_vec_element_i32(s, ele3, rd, 0, size); 9564 9565 switch (opcode) { 9566 case 0x0: /* SQRDMLAH */ 9567 if (size == 1) { 9568 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9569 } else { 9570 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9571 } 9572 break; 9573 case 0x1: /* SQRDMLSH */ 9574 if (size == 1) { 9575 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9576 } else { 9577 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9578 } 9579 break; 9580 default: 9581 g_assert_not_reached(); 9582 } 9583 9584 res = tcg_temp_new_i64(); 9585 tcg_gen_extu_i32_i64(res, ele3); 9586 write_fp_dreg(s, rd, res); 9587 } 9588 9589 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9590 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9591 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9592 { 9593 /* Handle 64->64 opcodes which are shared between the scalar and 9594 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9595 * is valid in either group and also the double-precision fp ops. 9596 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9597 * requires them. 9598 */ 9599 TCGCond cond; 9600 9601 switch (opcode) { 9602 case 0x4: /* CLS, CLZ */ 9603 if (u) { 9604 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9605 } else { 9606 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9607 } 9608 break; 9609 case 0x5: /* NOT */ 9610 /* This opcode is shared with CNT and RBIT but we have earlier 9611 * enforced that size == 3 if and only if this is the NOT insn. 9612 */ 9613 tcg_gen_not_i64(tcg_rd, tcg_rn); 9614 break; 9615 case 0x7: /* SQABS, SQNEG */ 9616 if (u) { 9617 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9618 } else { 9619 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9620 } 9621 break; 9622 case 0xa: /* CMLT */ 9623 /* 64 bit integer comparison against zero, result is 9624 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9625 * subtracting 1. 9626 */ 9627 cond = TCG_COND_LT; 9628 do_cmop: 9629 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9630 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9631 break; 9632 case 0x8: /* CMGT, CMGE */ 9633 cond = u ? TCG_COND_GE : TCG_COND_GT; 9634 goto do_cmop; 9635 case 0x9: /* CMEQ, CMLE */ 9636 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9637 goto do_cmop; 9638 case 0xb: /* ABS, NEG */ 9639 if (u) { 9640 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9641 } else { 9642 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9643 } 9644 break; 9645 case 0x2f: /* FABS */ 9646 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9647 break; 9648 case 0x6f: /* FNEG */ 9649 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9650 break; 9651 case 0x7f: /* FSQRT */ 9652 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9653 break; 9654 case 0x1a: /* FCVTNS */ 9655 case 0x1b: /* FCVTMS */ 9656 case 0x1c: /* FCVTAS */ 9657 case 0x3a: /* FCVTPS */ 9658 case 0x3b: /* FCVTZS */ 9659 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9660 break; 9661 case 0x5a: /* FCVTNU */ 9662 case 0x5b: /* FCVTMU */ 9663 case 0x5c: /* FCVTAU */ 9664 case 0x7a: /* FCVTPU */ 9665 case 0x7b: /* FCVTZU */ 9666 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9667 break; 9668 case 0x18: /* FRINTN */ 9669 case 0x19: /* FRINTM */ 9670 case 0x38: /* FRINTP */ 9671 case 0x39: /* FRINTZ */ 9672 case 0x58: /* FRINTA */ 9673 case 0x79: /* FRINTI */ 9674 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9675 break; 9676 case 0x59: /* FRINTX */ 9677 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9678 break; 9679 case 0x1e: /* FRINT32Z */ 9680 case 0x5e: /* FRINT32X */ 9681 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9682 break; 9683 case 0x1f: /* FRINT64Z */ 9684 case 0x5f: /* FRINT64X */ 9685 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9686 break; 9687 default: 9688 g_assert_not_reached(); 9689 } 9690 } 9691 9692 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9693 bool is_scalar, bool is_u, bool is_q, 9694 int size, int rn, int rd) 9695 { 9696 bool is_double = (size == MO_64); 9697 TCGv_ptr fpst; 9698 9699 if (!fp_access_check(s)) { 9700 return; 9701 } 9702 9703 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9704 9705 if (is_double) { 9706 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9707 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9708 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9709 NeonGenTwoDoubleOpFn *genfn; 9710 bool swap = false; 9711 int pass; 9712 9713 switch (opcode) { 9714 case 0x2e: /* FCMLT (zero) */ 9715 swap = true; 9716 /* fallthrough */ 9717 case 0x2c: /* FCMGT (zero) */ 9718 genfn = gen_helper_neon_cgt_f64; 9719 break; 9720 case 0x2d: /* FCMEQ (zero) */ 9721 genfn = gen_helper_neon_ceq_f64; 9722 break; 9723 case 0x6d: /* FCMLE (zero) */ 9724 swap = true; 9725 /* fall through */ 9726 case 0x6c: /* FCMGE (zero) */ 9727 genfn = gen_helper_neon_cge_f64; 9728 break; 9729 default: 9730 g_assert_not_reached(); 9731 } 9732 9733 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9734 read_vec_element(s, tcg_op, rn, pass, MO_64); 9735 if (swap) { 9736 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9737 } else { 9738 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9739 } 9740 write_vec_element(s, tcg_res, rd, pass, MO_64); 9741 } 9742 9743 clear_vec_high(s, !is_scalar, rd); 9744 } else { 9745 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9746 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9747 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9748 NeonGenTwoSingleOpFn *genfn; 9749 bool swap = false; 9750 int pass, maxpasses; 9751 9752 if (size == MO_16) { 9753 switch (opcode) { 9754 case 0x2e: /* FCMLT (zero) */ 9755 swap = true; 9756 /* fall through */ 9757 case 0x2c: /* FCMGT (zero) */ 9758 genfn = gen_helper_advsimd_cgt_f16; 9759 break; 9760 case 0x2d: /* FCMEQ (zero) */ 9761 genfn = gen_helper_advsimd_ceq_f16; 9762 break; 9763 case 0x6d: /* FCMLE (zero) */ 9764 swap = true; 9765 /* fall through */ 9766 case 0x6c: /* FCMGE (zero) */ 9767 genfn = gen_helper_advsimd_cge_f16; 9768 break; 9769 default: 9770 g_assert_not_reached(); 9771 } 9772 } else { 9773 switch (opcode) { 9774 case 0x2e: /* FCMLT (zero) */ 9775 swap = true; 9776 /* fall through */ 9777 case 0x2c: /* FCMGT (zero) */ 9778 genfn = gen_helper_neon_cgt_f32; 9779 break; 9780 case 0x2d: /* FCMEQ (zero) */ 9781 genfn = gen_helper_neon_ceq_f32; 9782 break; 9783 case 0x6d: /* FCMLE (zero) */ 9784 swap = true; 9785 /* fall through */ 9786 case 0x6c: /* FCMGE (zero) */ 9787 genfn = gen_helper_neon_cge_f32; 9788 break; 9789 default: 9790 g_assert_not_reached(); 9791 } 9792 } 9793 9794 if (is_scalar) { 9795 maxpasses = 1; 9796 } else { 9797 int vector_size = 8 << is_q; 9798 maxpasses = vector_size >> size; 9799 } 9800 9801 for (pass = 0; pass < maxpasses; pass++) { 9802 read_vec_element_i32(s, tcg_op, rn, pass, size); 9803 if (swap) { 9804 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9805 } else { 9806 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9807 } 9808 if (is_scalar) { 9809 write_fp_sreg(s, rd, tcg_res); 9810 } else { 9811 write_vec_element_i32(s, tcg_res, rd, pass, size); 9812 } 9813 } 9814 9815 if (!is_scalar) { 9816 clear_vec_high(s, is_q, rd); 9817 } 9818 } 9819 } 9820 9821 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9822 bool is_scalar, bool is_u, bool is_q, 9823 int size, int rn, int rd) 9824 { 9825 bool is_double = (size == 3); 9826 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9827 9828 if (is_double) { 9829 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9830 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9831 int pass; 9832 9833 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9834 read_vec_element(s, tcg_op, rn, pass, MO_64); 9835 switch (opcode) { 9836 case 0x3d: /* FRECPE */ 9837 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9838 break; 9839 case 0x3f: /* FRECPX */ 9840 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9841 break; 9842 case 0x7d: /* FRSQRTE */ 9843 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9844 break; 9845 default: 9846 g_assert_not_reached(); 9847 } 9848 write_vec_element(s, tcg_res, rd, pass, MO_64); 9849 } 9850 clear_vec_high(s, !is_scalar, rd); 9851 } else { 9852 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9853 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9854 int pass, maxpasses; 9855 9856 if (is_scalar) { 9857 maxpasses = 1; 9858 } else { 9859 maxpasses = is_q ? 4 : 2; 9860 } 9861 9862 for (pass = 0; pass < maxpasses; pass++) { 9863 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9864 9865 switch (opcode) { 9866 case 0x3c: /* URECPE */ 9867 gen_helper_recpe_u32(tcg_res, tcg_op); 9868 break; 9869 case 0x3d: /* FRECPE */ 9870 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9871 break; 9872 case 0x3f: /* FRECPX */ 9873 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9874 break; 9875 case 0x7d: /* FRSQRTE */ 9876 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9877 break; 9878 default: 9879 g_assert_not_reached(); 9880 } 9881 9882 if (is_scalar) { 9883 write_fp_sreg(s, rd, tcg_res); 9884 } else { 9885 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9886 } 9887 } 9888 if (!is_scalar) { 9889 clear_vec_high(s, is_q, rd); 9890 } 9891 } 9892 } 9893 9894 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9895 int opcode, bool u, bool is_q, 9896 int size, int rn, int rd) 9897 { 9898 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9899 * in the source becomes a size element in the destination). 9900 */ 9901 int pass; 9902 TCGv_i32 tcg_res[2]; 9903 int destelt = is_q ? 2 : 0; 9904 int passes = scalar ? 1 : 2; 9905 9906 if (scalar) { 9907 tcg_res[1] = tcg_constant_i32(0); 9908 } 9909 9910 for (pass = 0; pass < passes; pass++) { 9911 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9912 NeonGenNarrowFn *genfn = NULL; 9913 NeonGenNarrowEnvFn *genenvfn = NULL; 9914 9915 if (scalar) { 9916 read_vec_element(s, tcg_op, rn, pass, size + 1); 9917 } else { 9918 read_vec_element(s, tcg_op, rn, pass, MO_64); 9919 } 9920 tcg_res[pass] = tcg_temp_new_i32(); 9921 9922 switch (opcode) { 9923 case 0x12: /* XTN, SQXTUN */ 9924 { 9925 static NeonGenNarrowFn * const xtnfns[3] = { 9926 gen_helper_neon_narrow_u8, 9927 gen_helper_neon_narrow_u16, 9928 tcg_gen_extrl_i64_i32, 9929 }; 9930 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9931 gen_helper_neon_unarrow_sat8, 9932 gen_helper_neon_unarrow_sat16, 9933 gen_helper_neon_unarrow_sat32, 9934 }; 9935 if (u) { 9936 genenvfn = sqxtunfns[size]; 9937 } else { 9938 genfn = xtnfns[size]; 9939 } 9940 break; 9941 } 9942 case 0x14: /* SQXTN, UQXTN */ 9943 { 9944 static NeonGenNarrowEnvFn * const fns[3][2] = { 9945 { gen_helper_neon_narrow_sat_s8, 9946 gen_helper_neon_narrow_sat_u8 }, 9947 { gen_helper_neon_narrow_sat_s16, 9948 gen_helper_neon_narrow_sat_u16 }, 9949 { gen_helper_neon_narrow_sat_s32, 9950 gen_helper_neon_narrow_sat_u32 }, 9951 }; 9952 genenvfn = fns[size][u]; 9953 break; 9954 } 9955 case 0x16: /* FCVTN, FCVTN2 */ 9956 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9957 if (size == 2) { 9958 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9959 } else { 9960 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9961 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9962 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9963 TCGv_i32 ahp = get_ahp_flag(); 9964 9965 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9966 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9967 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9968 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9969 } 9970 break; 9971 case 0x36: /* BFCVTN, BFCVTN2 */ 9972 { 9973 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9974 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9975 } 9976 break; 9977 case 0x56: /* FCVTXN, FCVTXN2 */ 9978 /* 64 bit to 32 bit float conversion 9979 * with von Neumann rounding (round to odd) 9980 */ 9981 assert(size == 2); 9982 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9983 break; 9984 default: 9985 g_assert_not_reached(); 9986 } 9987 9988 if (genfn) { 9989 genfn(tcg_res[pass], tcg_op); 9990 } else if (genenvfn) { 9991 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9992 } 9993 } 9994 9995 for (pass = 0; pass < 2; pass++) { 9996 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9997 } 9998 clear_vec_high(s, is_q, rd); 9999 } 10000 10001 /* Remaining saturating accumulating ops */ 10002 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10003 bool is_q, int size, int rn, int rd) 10004 { 10005 bool is_double = (size == 3); 10006 10007 if (is_double) { 10008 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10009 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10010 int pass; 10011 10012 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10013 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10014 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10015 10016 if (is_u) { /* USQADD */ 10017 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10018 } else { /* SUQADD */ 10019 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10020 } 10021 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10022 } 10023 clear_vec_high(s, !is_scalar, rd); 10024 } else { 10025 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10026 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10027 int pass, maxpasses; 10028 10029 if (is_scalar) { 10030 maxpasses = 1; 10031 } else { 10032 maxpasses = is_q ? 4 : 2; 10033 } 10034 10035 for (pass = 0; pass < maxpasses; pass++) { 10036 if (is_scalar) { 10037 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10038 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10039 } else { 10040 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10041 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10042 } 10043 10044 if (is_u) { /* USQADD */ 10045 switch (size) { 10046 case 0: 10047 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10048 break; 10049 case 1: 10050 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10051 break; 10052 case 2: 10053 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10054 break; 10055 default: 10056 g_assert_not_reached(); 10057 } 10058 } else { /* SUQADD */ 10059 switch (size) { 10060 case 0: 10061 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10062 break; 10063 case 1: 10064 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10065 break; 10066 case 2: 10067 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10068 break; 10069 default: 10070 g_assert_not_reached(); 10071 } 10072 } 10073 10074 if (is_scalar) { 10075 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10076 } 10077 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10078 } 10079 clear_vec_high(s, is_q, rd); 10080 } 10081 } 10082 10083 /* AdvSIMD scalar two reg misc 10084 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10085 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10086 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10087 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10088 */ 10089 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10090 { 10091 int rd = extract32(insn, 0, 5); 10092 int rn = extract32(insn, 5, 5); 10093 int opcode = extract32(insn, 12, 5); 10094 int size = extract32(insn, 22, 2); 10095 bool u = extract32(insn, 29, 1); 10096 bool is_fcvt = false; 10097 int rmode; 10098 TCGv_i32 tcg_rmode; 10099 TCGv_ptr tcg_fpstatus; 10100 10101 switch (opcode) { 10102 case 0x3: /* USQADD / SUQADD*/ 10103 if (!fp_access_check(s)) { 10104 return; 10105 } 10106 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10107 return; 10108 case 0x7: /* SQABS / SQNEG */ 10109 break; 10110 case 0xa: /* CMLT */ 10111 if (u) { 10112 unallocated_encoding(s); 10113 return; 10114 } 10115 /* fall through */ 10116 case 0x8: /* CMGT, CMGE */ 10117 case 0x9: /* CMEQ, CMLE */ 10118 case 0xb: /* ABS, NEG */ 10119 if (size != 3) { 10120 unallocated_encoding(s); 10121 return; 10122 } 10123 break; 10124 case 0x12: /* SQXTUN */ 10125 if (!u) { 10126 unallocated_encoding(s); 10127 return; 10128 } 10129 /* fall through */ 10130 case 0x14: /* SQXTN, UQXTN */ 10131 if (size == 3) { 10132 unallocated_encoding(s); 10133 return; 10134 } 10135 if (!fp_access_check(s)) { 10136 return; 10137 } 10138 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10139 return; 10140 case 0xc ... 0xf: 10141 case 0x16 ... 0x1d: 10142 case 0x1f: 10143 /* Floating point: U, size[1] and opcode indicate operation; 10144 * size[0] indicates single or double precision. 10145 */ 10146 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10147 size = extract32(size, 0, 1) ? 3 : 2; 10148 switch (opcode) { 10149 case 0x2c: /* FCMGT (zero) */ 10150 case 0x2d: /* FCMEQ (zero) */ 10151 case 0x2e: /* FCMLT (zero) */ 10152 case 0x6c: /* FCMGE (zero) */ 10153 case 0x6d: /* FCMLE (zero) */ 10154 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10155 return; 10156 case 0x1d: /* SCVTF */ 10157 case 0x5d: /* UCVTF */ 10158 { 10159 bool is_signed = (opcode == 0x1d); 10160 if (!fp_access_check(s)) { 10161 return; 10162 } 10163 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10164 return; 10165 } 10166 case 0x3d: /* FRECPE */ 10167 case 0x3f: /* FRECPX */ 10168 case 0x7d: /* FRSQRTE */ 10169 if (!fp_access_check(s)) { 10170 return; 10171 } 10172 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10173 return; 10174 case 0x1a: /* FCVTNS */ 10175 case 0x1b: /* FCVTMS */ 10176 case 0x3a: /* FCVTPS */ 10177 case 0x3b: /* FCVTZS */ 10178 case 0x5a: /* FCVTNU */ 10179 case 0x5b: /* FCVTMU */ 10180 case 0x7a: /* FCVTPU */ 10181 case 0x7b: /* FCVTZU */ 10182 is_fcvt = true; 10183 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10184 break; 10185 case 0x1c: /* FCVTAS */ 10186 case 0x5c: /* FCVTAU */ 10187 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10188 is_fcvt = true; 10189 rmode = FPROUNDING_TIEAWAY; 10190 break; 10191 case 0x56: /* FCVTXN, FCVTXN2 */ 10192 if (size == 2) { 10193 unallocated_encoding(s); 10194 return; 10195 } 10196 if (!fp_access_check(s)) { 10197 return; 10198 } 10199 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10200 return; 10201 default: 10202 unallocated_encoding(s); 10203 return; 10204 } 10205 break; 10206 default: 10207 unallocated_encoding(s); 10208 return; 10209 } 10210 10211 if (!fp_access_check(s)) { 10212 return; 10213 } 10214 10215 if (is_fcvt) { 10216 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10217 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10218 } else { 10219 tcg_fpstatus = NULL; 10220 tcg_rmode = NULL; 10221 } 10222 10223 if (size == 3) { 10224 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10225 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10226 10227 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10228 write_fp_dreg(s, rd, tcg_rd); 10229 } else { 10230 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10231 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10232 10233 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10234 10235 switch (opcode) { 10236 case 0x7: /* SQABS, SQNEG */ 10237 { 10238 NeonGenOneOpEnvFn *genfn; 10239 static NeonGenOneOpEnvFn * const fns[3][2] = { 10240 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10241 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10242 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10243 }; 10244 genfn = fns[size][u]; 10245 genfn(tcg_rd, cpu_env, tcg_rn); 10246 break; 10247 } 10248 case 0x1a: /* FCVTNS */ 10249 case 0x1b: /* FCVTMS */ 10250 case 0x1c: /* FCVTAS */ 10251 case 0x3a: /* FCVTPS */ 10252 case 0x3b: /* FCVTZS */ 10253 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10254 tcg_fpstatus); 10255 break; 10256 case 0x5a: /* FCVTNU */ 10257 case 0x5b: /* FCVTMU */ 10258 case 0x5c: /* FCVTAU */ 10259 case 0x7a: /* FCVTPU */ 10260 case 0x7b: /* FCVTZU */ 10261 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10262 tcg_fpstatus); 10263 break; 10264 default: 10265 g_assert_not_reached(); 10266 } 10267 10268 write_fp_sreg(s, rd, tcg_rd); 10269 } 10270 10271 if (is_fcvt) { 10272 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10273 } 10274 } 10275 10276 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10277 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10278 int immh, int immb, int opcode, int rn, int rd) 10279 { 10280 int size = 32 - clz32(immh) - 1; 10281 int immhb = immh << 3 | immb; 10282 int shift = 2 * (8 << size) - immhb; 10283 GVecGen2iFn *gvec_fn; 10284 10285 if (extract32(immh, 3, 1) && !is_q) { 10286 unallocated_encoding(s); 10287 return; 10288 } 10289 tcg_debug_assert(size <= 3); 10290 10291 if (!fp_access_check(s)) { 10292 return; 10293 } 10294 10295 switch (opcode) { 10296 case 0x02: /* SSRA / USRA (accumulate) */ 10297 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10298 break; 10299 10300 case 0x08: /* SRI */ 10301 gvec_fn = gen_gvec_sri; 10302 break; 10303 10304 case 0x00: /* SSHR / USHR */ 10305 if (is_u) { 10306 if (shift == 8 << size) { 10307 /* Shift count the same size as element size produces zero. */ 10308 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10309 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10310 return; 10311 } 10312 gvec_fn = tcg_gen_gvec_shri; 10313 } else { 10314 /* Shift count the same size as element size produces all sign. */ 10315 if (shift == 8 << size) { 10316 shift -= 1; 10317 } 10318 gvec_fn = tcg_gen_gvec_sari; 10319 } 10320 break; 10321 10322 case 0x04: /* SRSHR / URSHR (rounding) */ 10323 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10324 break; 10325 10326 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10327 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10328 break; 10329 10330 default: 10331 g_assert_not_reached(); 10332 } 10333 10334 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10335 } 10336 10337 /* SHL/SLI - Vector shift left */ 10338 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10339 int immh, int immb, int opcode, int rn, int rd) 10340 { 10341 int size = 32 - clz32(immh) - 1; 10342 int immhb = immh << 3 | immb; 10343 int shift = immhb - (8 << size); 10344 10345 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10346 assert(size >= 0 && size <= 3); 10347 10348 if (extract32(immh, 3, 1) && !is_q) { 10349 unallocated_encoding(s); 10350 return; 10351 } 10352 10353 if (!fp_access_check(s)) { 10354 return; 10355 } 10356 10357 if (insert) { 10358 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10359 } else { 10360 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10361 } 10362 } 10363 10364 /* USHLL/SHLL - Vector shift left with widening */ 10365 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10366 int immh, int immb, int opcode, int rn, int rd) 10367 { 10368 int size = 32 - clz32(immh) - 1; 10369 int immhb = immh << 3 | immb; 10370 int shift = immhb - (8 << size); 10371 int dsize = 64; 10372 int esize = 8 << size; 10373 int elements = dsize/esize; 10374 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10375 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10376 int i; 10377 10378 if (size >= 3) { 10379 unallocated_encoding(s); 10380 return; 10381 } 10382 10383 if (!fp_access_check(s)) { 10384 return; 10385 } 10386 10387 /* For the LL variants the store is larger than the load, 10388 * so if rd == rn we would overwrite parts of our input. 10389 * So load everything right now and use shifts in the main loop. 10390 */ 10391 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10392 10393 for (i = 0; i < elements; i++) { 10394 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10395 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10396 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10397 write_vec_element(s, tcg_rd, rd, i, size + 1); 10398 } 10399 } 10400 10401 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10402 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10403 int immh, int immb, int opcode, int rn, int rd) 10404 { 10405 int immhb = immh << 3 | immb; 10406 int size = 32 - clz32(immh) - 1; 10407 int dsize = 64; 10408 int esize = 8 << size; 10409 int elements = dsize/esize; 10410 int shift = (2 * esize) - immhb; 10411 bool round = extract32(opcode, 0, 1); 10412 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10413 TCGv_i64 tcg_round; 10414 int i; 10415 10416 if (extract32(immh, 3, 1)) { 10417 unallocated_encoding(s); 10418 return; 10419 } 10420 10421 if (!fp_access_check(s)) { 10422 return; 10423 } 10424 10425 tcg_rn = tcg_temp_new_i64(); 10426 tcg_rd = tcg_temp_new_i64(); 10427 tcg_final = tcg_temp_new_i64(); 10428 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10429 10430 if (round) { 10431 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10432 } else { 10433 tcg_round = NULL; 10434 } 10435 10436 for (i = 0; i < elements; i++) { 10437 read_vec_element(s, tcg_rn, rn, i, size+1); 10438 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10439 false, true, size+1, shift); 10440 10441 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10442 } 10443 10444 if (!is_q) { 10445 write_vec_element(s, tcg_final, rd, 0, MO_64); 10446 } else { 10447 write_vec_element(s, tcg_final, rd, 1, MO_64); 10448 } 10449 10450 clear_vec_high(s, is_q, rd); 10451 } 10452 10453 10454 /* AdvSIMD shift by immediate 10455 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10456 * +---+---+---+-------------+------+------+--------+---+------+------+ 10457 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10458 * +---+---+---+-------------+------+------+--------+---+------+------+ 10459 */ 10460 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10461 { 10462 int rd = extract32(insn, 0, 5); 10463 int rn = extract32(insn, 5, 5); 10464 int opcode = extract32(insn, 11, 5); 10465 int immb = extract32(insn, 16, 3); 10466 int immh = extract32(insn, 19, 4); 10467 bool is_u = extract32(insn, 29, 1); 10468 bool is_q = extract32(insn, 30, 1); 10469 10470 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10471 assert(immh != 0); 10472 10473 switch (opcode) { 10474 case 0x08: /* SRI */ 10475 if (!is_u) { 10476 unallocated_encoding(s); 10477 return; 10478 } 10479 /* fall through */ 10480 case 0x00: /* SSHR / USHR */ 10481 case 0x02: /* SSRA / USRA (accumulate) */ 10482 case 0x04: /* SRSHR / URSHR (rounding) */ 10483 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10484 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10485 break; 10486 case 0x0a: /* SHL / SLI */ 10487 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10488 break; 10489 case 0x10: /* SHRN */ 10490 case 0x11: /* RSHRN / SQRSHRUN */ 10491 if (is_u) { 10492 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10493 opcode, rn, rd); 10494 } else { 10495 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10496 } 10497 break; 10498 case 0x12: /* SQSHRN / UQSHRN */ 10499 case 0x13: /* SQRSHRN / UQRSHRN */ 10500 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10501 opcode, rn, rd); 10502 break; 10503 case 0x14: /* SSHLL / USHLL */ 10504 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10505 break; 10506 case 0x1c: /* SCVTF / UCVTF */ 10507 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10508 opcode, rn, rd); 10509 break; 10510 case 0xc: /* SQSHLU */ 10511 if (!is_u) { 10512 unallocated_encoding(s); 10513 return; 10514 } 10515 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10516 break; 10517 case 0xe: /* SQSHL, UQSHL */ 10518 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10519 break; 10520 case 0x1f: /* FCVTZS/ FCVTZU */ 10521 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10522 return; 10523 default: 10524 unallocated_encoding(s); 10525 return; 10526 } 10527 } 10528 10529 /* Generate code to do a "long" addition or subtraction, ie one done in 10530 * TCGv_i64 on vector lanes twice the width specified by size. 10531 */ 10532 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10533 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10534 { 10535 static NeonGenTwo64OpFn * const fns[3][2] = { 10536 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10537 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10538 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10539 }; 10540 NeonGenTwo64OpFn *genfn; 10541 assert(size < 3); 10542 10543 genfn = fns[size][is_sub]; 10544 genfn(tcg_res, tcg_op1, tcg_op2); 10545 } 10546 10547 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10548 int opcode, int rd, int rn, int rm) 10549 { 10550 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10551 TCGv_i64 tcg_res[2]; 10552 int pass, accop; 10553 10554 tcg_res[0] = tcg_temp_new_i64(); 10555 tcg_res[1] = tcg_temp_new_i64(); 10556 10557 /* Does this op do an adding accumulate, a subtracting accumulate, 10558 * or no accumulate at all? 10559 */ 10560 switch (opcode) { 10561 case 5: 10562 case 8: 10563 case 9: 10564 accop = 1; 10565 break; 10566 case 10: 10567 case 11: 10568 accop = -1; 10569 break; 10570 default: 10571 accop = 0; 10572 break; 10573 } 10574 10575 if (accop != 0) { 10576 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10577 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10578 } 10579 10580 /* size == 2 means two 32x32->64 operations; this is worth special 10581 * casing because we can generally handle it inline. 10582 */ 10583 if (size == 2) { 10584 for (pass = 0; pass < 2; pass++) { 10585 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10586 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10587 TCGv_i64 tcg_passres; 10588 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10589 10590 int elt = pass + is_q * 2; 10591 10592 read_vec_element(s, tcg_op1, rn, elt, memop); 10593 read_vec_element(s, tcg_op2, rm, elt, memop); 10594 10595 if (accop == 0) { 10596 tcg_passres = tcg_res[pass]; 10597 } else { 10598 tcg_passres = tcg_temp_new_i64(); 10599 } 10600 10601 switch (opcode) { 10602 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10603 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10604 break; 10605 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10606 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10607 break; 10608 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10609 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10610 { 10611 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10612 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10613 10614 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10615 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10616 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10617 tcg_passres, 10618 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10619 break; 10620 } 10621 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10622 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10623 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10624 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10625 break; 10626 case 9: /* SQDMLAL, SQDMLAL2 */ 10627 case 11: /* SQDMLSL, SQDMLSL2 */ 10628 case 13: /* SQDMULL, SQDMULL2 */ 10629 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10630 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10631 tcg_passres, tcg_passres); 10632 break; 10633 default: 10634 g_assert_not_reached(); 10635 } 10636 10637 if (opcode == 9 || opcode == 11) { 10638 /* saturating accumulate ops */ 10639 if (accop < 0) { 10640 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10641 } 10642 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10643 tcg_res[pass], tcg_passres); 10644 } else if (accop > 0) { 10645 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10646 } else if (accop < 0) { 10647 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10648 } 10649 } 10650 } else { 10651 /* size 0 or 1, generally helper functions */ 10652 for (pass = 0; pass < 2; pass++) { 10653 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10654 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10655 TCGv_i64 tcg_passres; 10656 int elt = pass + is_q * 2; 10657 10658 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10659 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10660 10661 if (accop == 0) { 10662 tcg_passres = tcg_res[pass]; 10663 } else { 10664 tcg_passres = tcg_temp_new_i64(); 10665 } 10666 10667 switch (opcode) { 10668 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10669 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10670 { 10671 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10672 static NeonGenWidenFn * const widenfns[2][2] = { 10673 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10674 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10675 }; 10676 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10677 10678 widenfn(tcg_op2_64, tcg_op2); 10679 widenfn(tcg_passres, tcg_op1); 10680 gen_neon_addl(size, (opcode == 2), tcg_passres, 10681 tcg_passres, tcg_op2_64); 10682 break; 10683 } 10684 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10685 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10686 if (size == 0) { 10687 if (is_u) { 10688 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10689 } else { 10690 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10691 } 10692 } else { 10693 if (is_u) { 10694 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10695 } else { 10696 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10697 } 10698 } 10699 break; 10700 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10701 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10702 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10703 if (size == 0) { 10704 if (is_u) { 10705 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10706 } else { 10707 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10708 } 10709 } else { 10710 if (is_u) { 10711 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10712 } else { 10713 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10714 } 10715 } 10716 break; 10717 case 9: /* SQDMLAL, SQDMLAL2 */ 10718 case 11: /* SQDMLSL, SQDMLSL2 */ 10719 case 13: /* SQDMULL, SQDMULL2 */ 10720 assert(size == 1); 10721 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10722 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10723 tcg_passres, tcg_passres); 10724 break; 10725 default: 10726 g_assert_not_reached(); 10727 } 10728 10729 if (accop != 0) { 10730 if (opcode == 9 || opcode == 11) { 10731 /* saturating accumulate ops */ 10732 if (accop < 0) { 10733 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10734 } 10735 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10736 tcg_res[pass], 10737 tcg_passres); 10738 } else { 10739 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10740 tcg_res[pass], tcg_passres); 10741 } 10742 } 10743 } 10744 } 10745 10746 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10747 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10748 } 10749 10750 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10751 int opcode, int rd, int rn, int rm) 10752 { 10753 TCGv_i64 tcg_res[2]; 10754 int part = is_q ? 2 : 0; 10755 int pass; 10756 10757 for (pass = 0; pass < 2; pass++) { 10758 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10759 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10760 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10761 static NeonGenWidenFn * const widenfns[3][2] = { 10762 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10763 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10764 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10765 }; 10766 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10767 10768 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10769 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10770 widenfn(tcg_op2_wide, tcg_op2); 10771 tcg_res[pass] = tcg_temp_new_i64(); 10772 gen_neon_addl(size, (opcode == 3), 10773 tcg_res[pass], tcg_op1, tcg_op2_wide); 10774 } 10775 10776 for (pass = 0; pass < 2; pass++) { 10777 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10778 } 10779 } 10780 10781 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10782 { 10783 tcg_gen_addi_i64(in, in, 1U << 31); 10784 tcg_gen_extrh_i64_i32(res, in); 10785 } 10786 10787 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10788 int opcode, int rd, int rn, int rm) 10789 { 10790 TCGv_i32 tcg_res[2]; 10791 int part = is_q ? 2 : 0; 10792 int pass; 10793 10794 for (pass = 0; pass < 2; pass++) { 10795 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10796 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10797 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10798 static NeonGenNarrowFn * const narrowfns[3][2] = { 10799 { gen_helper_neon_narrow_high_u8, 10800 gen_helper_neon_narrow_round_high_u8 }, 10801 { gen_helper_neon_narrow_high_u16, 10802 gen_helper_neon_narrow_round_high_u16 }, 10803 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10804 }; 10805 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10806 10807 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10808 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10809 10810 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10811 10812 tcg_res[pass] = tcg_temp_new_i32(); 10813 gennarrow(tcg_res[pass], tcg_wideres); 10814 } 10815 10816 for (pass = 0; pass < 2; pass++) { 10817 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10818 } 10819 clear_vec_high(s, is_q, rd); 10820 } 10821 10822 /* AdvSIMD three different 10823 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10824 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10825 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10826 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10827 */ 10828 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10829 { 10830 /* Instructions in this group fall into three basic classes 10831 * (in each case with the operation working on each element in 10832 * the input vectors): 10833 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10834 * 128 bit input) 10835 * (2) wide 64 x 128 -> 128 10836 * (3) narrowing 128 x 128 -> 64 10837 * Here we do initial decode, catch unallocated cases and 10838 * dispatch to separate functions for each class. 10839 */ 10840 int is_q = extract32(insn, 30, 1); 10841 int is_u = extract32(insn, 29, 1); 10842 int size = extract32(insn, 22, 2); 10843 int opcode = extract32(insn, 12, 4); 10844 int rm = extract32(insn, 16, 5); 10845 int rn = extract32(insn, 5, 5); 10846 int rd = extract32(insn, 0, 5); 10847 10848 switch (opcode) { 10849 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10850 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10851 /* 64 x 128 -> 128 */ 10852 if (size == 3) { 10853 unallocated_encoding(s); 10854 return; 10855 } 10856 if (!fp_access_check(s)) { 10857 return; 10858 } 10859 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10860 break; 10861 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10862 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10863 /* 128 x 128 -> 64 */ 10864 if (size == 3) { 10865 unallocated_encoding(s); 10866 return; 10867 } 10868 if (!fp_access_check(s)) { 10869 return; 10870 } 10871 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10872 break; 10873 case 14: /* PMULL, PMULL2 */ 10874 if (is_u) { 10875 unallocated_encoding(s); 10876 return; 10877 } 10878 switch (size) { 10879 case 0: /* PMULL.P8 */ 10880 if (!fp_access_check(s)) { 10881 return; 10882 } 10883 /* The Q field specifies lo/hi half input for this insn. */ 10884 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10885 gen_helper_neon_pmull_h); 10886 break; 10887 10888 case 3: /* PMULL.P64 */ 10889 if (!dc_isar_feature(aa64_pmull, s)) { 10890 unallocated_encoding(s); 10891 return; 10892 } 10893 if (!fp_access_check(s)) { 10894 return; 10895 } 10896 /* The Q field specifies lo/hi half input for this insn. */ 10897 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10898 gen_helper_gvec_pmull_q); 10899 break; 10900 10901 default: 10902 unallocated_encoding(s); 10903 break; 10904 } 10905 return; 10906 case 9: /* SQDMLAL, SQDMLAL2 */ 10907 case 11: /* SQDMLSL, SQDMLSL2 */ 10908 case 13: /* SQDMULL, SQDMULL2 */ 10909 if (is_u || size == 0) { 10910 unallocated_encoding(s); 10911 return; 10912 } 10913 /* fall through */ 10914 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10915 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10916 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10917 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10918 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10919 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10920 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10921 /* 64 x 64 -> 128 */ 10922 if (size == 3) { 10923 unallocated_encoding(s); 10924 return; 10925 } 10926 if (!fp_access_check(s)) { 10927 return; 10928 } 10929 10930 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10931 break; 10932 default: 10933 /* opcode 15 not allocated */ 10934 unallocated_encoding(s); 10935 break; 10936 } 10937 } 10938 10939 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10940 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10941 { 10942 int rd = extract32(insn, 0, 5); 10943 int rn = extract32(insn, 5, 5); 10944 int rm = extract32(insn, 16, 5); 10945 int size = extract32(insn, 22, 2); 10946 bool is_u = extract32(insn, 29, 1); 10947 bool is_q = extract32(insn, 30, 1); 10948 10949 if (!fp_access_check(s)) { 10950 return; 10951 } 10952 10953 switch (size + 4 * is_u) { 10954 case 0: /* AND */ 10955 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10956 return; 10957 case 1: /* BIC */ 10958 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10959 return; 10960 case 2: /* ORR */ 10961 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10962 return; 10963 case 3: /* ORN */ 10964 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10965 return; 10966 case 4: /* EOR */ 10967 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10968 return; 10969 10970 case 5: /* BSL bitwise select */ 10971 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10972 return; 10973 case 6: /* BIT, bitwise insert if true */ 10974 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10975 return; 10976 case 7: /* BIF, bitwise insert if false */ 10977 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10978 return; 10979 10980 default: 10981 g_assert_not_reached(); 10982 } 10983 } 10984 10985 /* Pairwise op subgroup of C3.6.16. 10986 * 10987 * This is called directly or via the handle_3same_float for float pairwise 10988 * operations where the opcode and size are calculated differently. 10989 */ 10990 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10991 int size, int rn, int rm, int rd) 10992 { 10993 TCGv_ptr fpst; 10994 int pass; 10995 10996 /* Floating point operations need fpst */ 10997 if (opcode >= 0x58) { 10998 fpst = fpstatus_ptr(FPST_FPCR); 10999 } else { 11000 fpst = NULL; 11001 } 11002 11003 if (!fp_access_check(s)) { 11004 return; 11005 } 11006 11007 /* These operations work on the concatenated rm:rn, with each pair of 11008 * adjacent elements being operated on to produce an element in the result. 11009 */ 11010 if (size == 3) { 11011 TCGv_i64 tcg_res[2]; 11012 11013 for (pass = 0; pass < 2; pass++) { 11014 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11015 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11016 int passreg = (pass == 0) ? rn : rm; 11017 11018 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11019 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11020 tcg_res[pass] = tcg_temp_new_i64(); 11021 11022 switch (opcode) { 11023 case 0x17: /* ADDP */ 11024 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11025 break; 11026 case 0x58: /* FMAXNMP */ 11027 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11028 break; 11029 case 0x5a: /* FADDP */ 11030 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11031 break; 11032 case 0x5e: /* FMAXP */ 11033 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11034 break; 11035 case 0x78: /* FMINNMP */ 11036 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11037 break; 11038 case 0x7e: /* FMINP */ 11039 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11040 break; 11041 default: 11042 g_assert_not_reached(); 11043 } 11044 } 11045 11046 for (pass = 0; pass < 2; pass++) { 11047 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11048 } 11049 } else { 11050 int maxpass = is_q ? 4 : 2; 11051 TCGv_i32 tcg_res[4]; 11052 11053 for (pass = 0; pass < maxpass; pass++) { 11054 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11055 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11056 NeonGenTwoOpFn *genfn = NULL; 11057 int passreg = pass < (maxpass / 2) ? rn : rm; 11058 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11059 11060 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11061 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11062 tcg_res[pass] = tcg_temp_new_i32(); 11063 11064 switch (opcode) { 11065 case 0x17: /* ADDP */ 11066 { 11067 static NeonGenTwoOpFn * const fns[3] = { 11068 gen_helper_neon_padd_u8, 11069 gen_helper_neon_padd_u16, 11070 tcg_gen_add_i32, 11071 }; 11072 genfn = fns[size]; 11073 break; 11074 } 11075 case 0x14: /* SMAXP, UMAXP */ 11076 { 11077 static NeonGenTwoOpFn * const fns[3][2] = { 11078 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11079 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11080 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11081 }; 11082 genfn = fns[size][u]; 11083 break; 11084 } 11085 case 0x15: /* SMINP, UMINP */ 11086 { 11087 static NeonGenTwoOpFn * const fns[3][2] = { 11088 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11089 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11090 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11091 }; 11092 genfn = fns[size][u]; 11093 break; 11094 } 11095 /* The FP operations are all on single floats (32 bit) */ 11096 case 0x58: /* FMAXNMP */ 11097 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11098 break; 11099 case 0x5a: /* FADDP */ 11100 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11101 break; 11102 case 0x5e: /* FMAXP */ 11103 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11104 break; 11105 case 0x78: /* FMINNMP */ 11106 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11107 break; 11108 case 0x7e: /* FMINP */ 11109 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11110 break; 11111 default: 11112 g_assert_not_reached(); 11113 } 11114 11115 /* FP ops called directly, otherwise call now */ 11116 if (genfn) { 11117 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11118 } 11119 } 11120 11121 for (pass = 0; pass < maxpass; pass++) { 11122 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11123 } 11124 clear_vec_high(s, is_q, rd); 11125 } 11126 } 11127 11128 /* Floating point op subgroup of C3.6.16. */ 11129 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11130 { 11131 /* For floating point ops, the U, size[1] and opcode bits 11132 * together indicate the operation. size[0] indicates single 11133 * or double. 11134 */ 11135 int fpopcode = extract32(insn, 11, 5) 11136 | (extract32(insn, 23, 1) << 5) 11137 | (extract32(insn, 29, 1) << 6); 11138 int is_q = extract32(insn, 30, 1); 11139 int size = extract32(insn, 22, 1); 11140 int rm = extract32(insn, 16, 5); 11141 int rn = extract32(insn, 5, 5); 11142 int rd = extract32(insn, 0, 5); 11143 11144 int datasize = is_q ? 128 : 64; 11145 int esize = 32 << size; 11146 int elements = datasize / esize; 11147 11148 if (size == 1 && !is_q) { 11149 unallocated_encoding(s); 11150 return; 11151 } 11152 11153 switch (fpopcode) { 11154 case 0x58: /* FMAXNMP */ 11155 case 0x5a: /* FADDP */ 11156 case 0x5e: /* FMAXP */ 11157 case 0x78: /* FMINNMP */ 11158 case 0x7e: /* FMINP */ 11159 if (size && !is_q) { 11160 unallocated_encoding(s); 11161 return; 11162 } 11163 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11164 rn, rm, rd); 11165 return; 11166 case 0x1b: /* FMULX */ 11167 case 0x1f: /* FRECPS */ 11168 case 0x3f: /* FRSQRTS */ 11169 case 0x5d: /* FACGE */ 11170 case 0x7d: /* FACGT */ 11171 case 0x19: /* FMLA */ 11172 case 0x39: /* FMLS */ 11173 case 0x18: /* FMAXNM */ 11174 case 0x1a: /* FADD */ 11175 case 0x1c: /* FCMEQ */ 11176 case 0x1e: /* FMAX */ 11177 case 0x38: /* FMINNM */ 11178 case 0x3a: /* FSUB */ 11179 case 0x3e: /* FMIN */ 11180 case 0x5b: /* FMUL */ 11181 case 0x5c: /* FCMGE */ 11182 case 0x5f: /* FDIV */ 11183 case 0x7a: /* FABD */ 11184 case 0x7c: /* FCMGT */ 11185 if (!fp_access_check(s)) { 11186 return; 11187 } 11188 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11189 return; 11190 11191 case 0x1d: /* FMLAL */ 11192 case 0x3d: /* FMLSL */ 11193 case 0x59: /* FMLAL2 */ 11194 case 0x79: /* FMLSL2 */ 11195 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11196 unallocated_encoding(s); 11197 return; 11198 } 11199 if (fp_access_check(s)) { 11200 int is_s = extract32(insn, 23, 1); 11201 int is_2 = extract32(insn, 29, 1); 11202 int data = (is_2 << 1) | is_s; 11203 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11204 vec_full_reg_offset(s, rn), 11205 vec_full_reg_offset(s, rm), cpu_env, 11206 is_q ? 16 : 8, vec_full_reg_size(s), 11207 data, gen_helper_gvec_fmlal_a64); 11208 } 11209 return; 11210 11211 default: 11212 unallocated_encoding(s); 11213 return; 11214 } 11215 } 11216 11217 /* Integer op subgroup of C3.6.16. */ 11218 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11219 { 11220 int is_q = extract32(insn, 30, 1); 11221 int u = extract32(insn, 29, 1); 11222 int size = extract32(insn, 22, 2); 11223 int opcode = extract32(insn, 11, 5); 11224 int rm = extract32(insn, 16, 5); 11225 int rn = extract32(insn, 5, 5); 11226 int rd = extract32(insn, 0, 5); 11227 int pass; 11228 TCGCond cond; 11229 11230 switch (opcode) { 11231 case 0x13: /* MUL, PMUL */ 11232 if (u && size != 0) { 11233 unallocated_encoding(s); 11234 return; 11235 } 11236 /* fall through */ 11237 case 0x0: /* SHADD, UHADD */ 11238 case 0x2: /* SRHADD, URHADD */ 11239 case 0x4: /* SHSUB, UHSUB */ 11240 case 0xc: /* SMAX, UMAX */ 11241 case 0xd: /* SMIN, UMIN */ 11242 case 0xe: /* SABD, UABD */ 11243 case 0xf: /* SABA, UABA */ 11244 case 0x12: /* MLA, MLS */ 11245 if (size == 3) { 11246 unallocated_encoding(s); 11247 return; 11248 } 11249 break; 11250 case 0x16: /* SQDMULH, SQRDMULH */ 11251 if (size == 0 || size == 3) { 11252 unallocated_encoding(s); 11253 return; 11254 } 11255 break; 11256 default: 11257 if (size == 3 && !is_q) { 11258 unallocated_encoding(s); 11259 return; 11260 } 11261 break; 11262 } 11263 11264 if (!fp_access_check(s)) { 11265 return; 11266 } 11267 11268 switch (opcode) { 11269 case 0x01: /* SQADD, UQADD */ 11270 if (u) { 11271 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11272 } else { 11273 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11274 } 11275 return; 11276 case 0x05: /* SQSUB, UQSUB */ 11277 if (u) { 11278 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11279 } else { 11280 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11281 } 11282 return; 11283 case 0x08: /* SSHL, USHL */ 11284 if (u) { 11285 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11286 } else { 11287 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11288 } 11289 return; 11290 case 0x0c: /* SMAX, UMAX */ 11291 if (u) { 11292 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11293 } else { 11294 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11295 } 11296 return; 11297 case 0x0d: /* SMIN, UMIN */ 11298 if (u) { 11299 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11300 } else { 11301 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11302 } 11303 return; 11304 case 0xe: /* SABD, UABD */ 11305 if (u) { 11306 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11307 } else { 11308 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11309 } 11310 return; 11311 case 0xf: /* SABA, UABA */ 11312 if (u) { 11313 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11314 } else { 11315 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11316 } 11317 return; 11318 case 0x10: /* ADD, SUB */ 11319 if (u) { 11320 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11321 } else { 11322 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11323 } 11324 return; 11325 case 0x13: /* MUL, PMUL */ 11326 if (!u) { /* MUL */ 11327 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11328 } else { /* PMUL */ 11329 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11330 } 11331 return; 11332 case 0x12: /* MLA, MLS */ 11333 if (u) { 11334 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11335 } else { 11336 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11337 } 11338 return; 11339 case 0x16: /* SQDMULH, SQRDMULH */ 11340 { 11341 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11342 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11343 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11344 }; 11345 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11346 } 11347 return; 11348 case 0x11: 11349 if (!u) { /* CMTST */ 11350 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11351 return; 11352 } 11353 /* else CMEQ */ 11354 cond = TCG_COND_EQ; 11355 goto do_gvec_cmp; 11356 case 0x06: /* CMGT, CMHI */ 11357 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11358 goto do_gvec_cmp; 11359 case 0x07: /* CMGE, CMHS */ 11360 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11361 do_gvec_cmp: 11362 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11363 vec_full_reg_offset(s, rn), 11364 vec_full_reg_offset(s, rm), 11365 is_q ? 16 : 8, vec_full_reg_size(s)); 11366 return; 11367 } 11368 11369 if (size == 3) { 11370 assert(is_q); 11371 for (pass = 0; pass < 2; pass++) { 11372 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11373 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11374 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11375 11376 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11377 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11378 11379 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11380 11381 write_vec_element(s, tcg_res, rd, pass, MO_64); 11382 } 11383 } else { 11384 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11385 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11386 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11387 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11388 NeonGenTwoOpFn *genfn = NULL; 11389 NeonGenTwoOpEnvFn *genenvfn = NULL; 11390 11391 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11392 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11393 11394 switch (opcode) { 11395 case 0x0: /* SHADD, UHADD */ 11396 { 11397 static NeonGenTwoOpFn * const fns[3][2] = { 11398 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11399 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11400 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11401 }; 11402 genfn = fns[size][u]; 11403 break; 11404 } 11405 case 0x2: /* SRHADD, URHADD */ 11406 { 11407 static NeonGenTwoOpFn * const fns[3][2] = { 11408 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11409 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11410 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11411 }; 11412 genfn = fns[size][u]; 11413 break; 11414 } 11415 case 0x4: /* SHSUB, UHSUB */ 11416 { 11417 static NeonGenTwoOpFn * const fns[3][2] = { 11418 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11419 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11420 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11421 }; 11422 genfn = fns[size][u]; 11423 break; 11424 } 11425 case 0x9: /* SQSHL, UQSHL */ 11426 { 11427 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11428 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11429 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11430 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11431 }; 11432 genenvfn = fns[size][u]; 11433 break; 11434 } 11435 case 0xa: /* SRSHL, URSHL */ 11436 { 11437 static NeonGenTwoOpFn * const fns[3][2] = { 11438 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11439 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11440 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11441 }; 11442 genfn = fns[size][u]; 11443 break; 11444 } 11445 case 0xb: /* SQRSHL, UQRSHL */ 11446 { 11447 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11448 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11449 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11450 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11451 }; 11452 genenvfn = fns[size][u]; 11453 break; 11454 } 11455 default: 11456 g_assert_not_reached(); 11457 } 11458 11459 if (genenvfn) { 11460 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11461 } else { 11462 genfn(tcg_res, tcg_op1, tcg_op2); 11463 } 11464 11465 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11466 } 11467 } 11468 clear_vec_high(s, is_q, rd); 11469 } 11470 11471 /* AdvSIMD three same 11472 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11473 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11474 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11475 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11476 */ 11477 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11478 { 11479 int opcode = extract32(insn, 11, 5); 11480 11481 switch (opcode) { 11482 case 0x3: /* logic ops */ 11483 disas_simd_3same_logic(s, insn); 11484 break; 11485 case 0x17: /* ADDP */ 11486 case 0x14: /* SMAXP, UMAXP */ 11487 case 0x15: /* SMINP, UMINP */ 11488 { 11489 /* Pairwise operations */ 11490 int is_q = extract32(insn, 30, 1); 11491 int u = extract32(insn, 29, 1); 11492 int size = extract32(insn, 22, 2); 11493 int rm = extract32(insn, 16, 5); 11494 int rn = extract32(insn, 5, 5); 11495 int rd = extract32(insn, 0, 5); 11496 if (opcode == 0x17) { 11497 if (u || (size == 3 && !is_q)) { 11498 unallocated_encoding(s); 11499 return; 11500 } 11501 } else { 11502 if (size == 3) { 11503 unallocated_encoding(s); 11504 return; 11505 } 11506 } 11507 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11508 break; 11509 } 11510 case 0x18 ... 0x31: 11511 /* floating point ops, sz[1] and U are part of opcode */ 11512 disas_simd_3same_float(s, insn); 11513 break; 11514 default: 11515 disas_simd_3same_int(s, insn); 11516 break; 11517 } 11518 } 11519 11520 /* 11521 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11522 * 11523 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11524 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11525 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11526 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11527 * 11528 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11529 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11530 * 11531 */ 11532 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11533 { 11534 int opcode = extract32(insn, 11, 3); 11535 int u = extract32(insn, 29, 1); 11536 int a = extract32(insn, 23, 1); 11537 int is_q = extract32(insn, 30, 1); 11538 int rm = extract32(insn, 16, 5); 11539 int rn = extract32(insn, 5, 5); 11540 int rd = extract32(insn, 0, 5); 11541 /* 11542 * For these floating point ops, the U, a and opcode bits 11543 * together indicate the operation. 11544 */ 11545 int fpopcode = opcode | (a << 3) | (u << 4); 11546 int datasize = is_q ? 128 : 64; 11547 int elements = datasize / 16; 11548 bool pairwise; 11549 TCGv_ptr fpst; 11550 int pass; 11551 11552 switch (fpopcode) { 11553 case 0x0: /* FMAXNM */ 11554 case 0x1: /* FMLA */ 11555 case 0x2: /* FADD */ 11556 case 0x3: /* FMULX */ 11557 case 0x4: /* FCMEQ */ 11558 case 0x6: /* FMAX */ 11559 case 0x7: /* FRECPS */ 11560 case 0x8: /* FMINNM */ 11561 case 0x9: /* FMLS */ 11562 case 0xa: /* FSUB */ 11563 case 0xe: /* FMIN */ 11564 case 0xf: /* FRSQRTS */ 11565 case 0x13: /* FMUL */ 11566 case 0x14: /* FCMGE */ 11567 case 0x15: /* FACGE */ 11568 case 0x17: /* FDIV */ 11569 case 0x1a: /* FABD */ 11570 case 0x1c: /* FCMGT */ 11571 case 0x1d: /* FACGT */ 11572 pairwise = false; 11573 break; 11574 case 0x10: /* FMAXNMP */ 11575 case 0x12: /* FADDP */ 11576 case 0x16: /* FMAXP */ 11577 case 0x18: /* FMINNMP */ 11578 case 0x1e: /* FMINP */ 11579 pairwise = true; 11580 break; 11581 default: 11582 unallocated_encoding(s); 11583 return; 11584 } 11585 11586 if (!dc_isar_feature(aa64_fp16, s)) { 11587 unallocated_encoding(s); 11588 return; 11589 } 11590 11591 if (!fp_access_check(s)) { 11592 return; 11593 } 11594 11595 fpst = fpstatus_ptr(FPST_FPCR_F16); 11596 11597 if (pairwise) { 11598 int maxpass = is_q ? 8 : 4; 11599 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11600 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11601 TCGv_i32 tcg_res[8]; 11602 11603 for (pass = 0; pass < maxpass; pass++) { 11604 int passreg = pass < (maxpass / 2) ? rn : rm; 11605 int passelt = (pass << 1) & (maxpass - 1); 11606 11607 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11608 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11609 tcg_res[pass] = tcg_temp_new_i32(); 11610 11611 switch (fpopcode) { 11612 case 0x10: /* FMAXNMP */ 11613 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11614 fpst); 11615 break; 11616 case 0x12: /* FADDP */ 11617 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11618 break; 11619 case 0x16: /* FMAXP */ 11620 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11621 break; 11622 case 0x18: /* FMINNMP */ 11623 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11624 fpst); 11625 break; 11626 case 0x1e: /* FMINP */ 11627 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11628 break; 11629 default: 11630 g_assert_not_reached(); 11631 } 11632 } 11633 11634 for (pass = 0; pass < maxpass; pass++) { 11635 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11636 } 11637 } else { 11638 for (pass = 0; pass < elements; pass++) { 11639 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11640 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11641 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11642 11643 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11644 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11645 11646 switch (fpopcode) { 11647 case 0x0: /* FMAXNM */ 11648 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11649 break; 11650 case 0x1: /* FMLA */ 11651 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11652 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11653 fpst); 11654 break; 11655 case 0x2: /* FADD */ 11656 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11657 break; 11658 case 0x3: /* FMULX */ 11659 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11660 break; 11661 case 0x4: /* FCMEQ */ 11662 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11663 break; 11664 case 0x6: /* FMAX */ 11665 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11666 break; 11667 case 0x7: /* FRECPS */ 11668 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11669 break; 11670 case 0x8: /* FMINNM */ 11671 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11672 break; 11673 case 0x9: /* FMLS */ 11674 /* As usual for ARM, separate negation for fused multiply-add */ 11675 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11676 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11677 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11678 fpst); 11679 break; 11680 case 0xa: /* FSUB */ 11681 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11682 break; 11683 case 0xe: /* FMIN */ 11684 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11685 break; 11686 case 0xf: /* FRSQRTS */ 11687 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11688 break; 11689 case 0x13: /* FMUL */ 11690 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11691 break; 11692 case 0x14: /* FCMGE */ 11693 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11694 break; 11695 case 0x15: /* FACGE */ 11696 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11697 break; 11698 case 0x17: /* FDIV */ 11699 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11700 break; 11701 case 0x1a: /* FABD */ 11702 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11703 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11704 break; 11705 case 0x1c: /* FCMGT */ 11706 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11707 break; 11708 case 0x1d: /* FACGT */ 11709 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11710 break; 11711 default: 11712 g_assert_not_reached(); 11713 } 11714 11715 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11716 } 11717 } 11718 11719 clear_vec_high(s, is_q, rd); 11720 } 11721 11722 /* AdvSIMD three same extra 11723 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11724 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11725 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11726 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11727 */ 11728 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11729 { 11730 int rd = extract32(insn, 0, 5); 11731 int rn = extract32(insn, 5, 5); 11732 int opcode = extract32(insn, 11, 4); 11733 int rm = extract32(insn, 16, 5); 11734 int size = extract32(insn, 22, 2); 11735 bool u = extract32(insn, 29, 1); 11736 bool is_q = extract32(insn, 30, 1); 11737 bool feature; 11738 int rot; 11739 11740 switch (u * 16 + opcode) { 11741 case 0x10: /* SQRDMLAH (vector) */ 11742 case 0x11: /* SQRDMLSH (vector) */ 11743 if (size != 1 && size != 2) { 11744 unallocated_encoding(s); 11745 return; 11746 } 11747 feature = dc_isar_feature(aa64_rdm, s); 11748 break; 11749 case 0x02: /* SDOT (vector) */ 11750 case 0x12: /* UDOT (vector) */ 11751 if (size != MO_32) { 11752 unallocated_encoding(s); 11753 return; 11754 } 11755 feature = dc_isar_feature(aa64_dp, s); 11756 break; 11757 case 0x03: /* USDOT */ 11758 if (size != MO_32) { 11759 unallocated_encoding(s); 11760 return; 11761 } 11762 feature = dc_isar_feature(aa64_i8mm, s); 11763 break; 11764 case 0x04: /* SMMLA */ 11765 case 0x14: /* UMMLA */ 11766 case 0x05: /* USMMLA */ 11767 if (!is_q || size != MO_32) { 11768 unallocated_encoding(s); 11769 return; 11770 } 11771 feature = dc_isar_feature(aa64_i8mm, s); 11772 break; 11773 case 0x18: /* FCMLA, #0 */ 11774 case 0x19: /* FCMLA, #90 */ 11775 case 0x1a: /* FCMLA, #180 */ 11776 case 0x1b: /* FCMLA, #270 */ 11777 case 0x1c: /* FCADD, #90 */ 11778 case 0x1e: /* FCADD, #270 */ 11779 if (size == 0 11780 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11781 || (size == 3 && !is_q)) { 11782 unallocated_encoding(s); 11783 return; 11784 } 11785 feature = dc_isar_feature(aa64_fcma, s); 11786 break; 11787 case 0x1d: /* BFMMLA */ 11788 if (size != MO_16 || !is_q) { 11789 unallocated_encoding(s); 11790 return; 11791 } 11792 feature = dc_isar_feature(aa64_bf16, s); 11793 break; 11794 case 0x1f: 11795 switch (size) { 11796 case 1: /* BFDOT */ 11797 case 3: /* BFMLAL{B,T} */ 11798 feature = dc_isar_feature(aa64_bf16, s); 11799 break; 11800 default: 11801 unallocated_encoding(s); 11802 return; 11803 } 11804 break; 11805 default: 11806 unallocated_encoding(s); 11807 return; 11808 } 11809 if (!feature) { 11810 unallocated_encoding(s); 11811 return; 11812 } 11813 if (!fp_access_check(s)) { 11814 return; 11815 } 11816 11817 switch (opcode) { 11818 case 0x0: /* SQRDMLAH (vector) */ 11819 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11820 return; 11821 11822 case 0x1: /* SQRDMLSH (vector) */ 11823 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11824 return; 11825 11826 case 0x2: /* SDOT / UDOT */ 11827 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11828 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11829 return; 11830 11831 case 0x3: /* USDOT */ 11832 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11833 return; 11834 11835 case 0x04: /* SMMLA, UMMLA */ 11836 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11837 u ? gen_helper_gvec_ummla_b 11838 : gen_helper_gvec_smmla_b); 11839 return; 11840 case 0x05: /* USMMLA */ 11841 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11842 return; 11843 11844 case 0x8: /* FCMLA, #0 */ 11845 case 0x9: /* FCMLA, #90 */ 11846 case 0xa: /* FCMLA, #180 */ 11847 case 0xb: /* FCMLA, #270 */ 11848 rot = extract32(opcode, 0, 2); 11849 switch (size) { 11850 case 1: 11851 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11852 gen_helper_gvec_fcmlah); 11853 break; 11854 case 2: 11855 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11856 gen_helper_gvec_fcmlas); 11857 break; 11858 case 3: 11859 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11860 gen_helper_gvec_fcmlad); 11861 break; 11862 default: 11863 g_assert_not_reached(); 11864 } 11865 return; 11866 11867 case 0xc: /* FCADD, #90 */ 11868 case 0xe: /* FCADD, #270 */ 11869 rot = extract32(opcode, 1, 1); 11870 switch (size) { 11871 case 1: 11872 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11873 gen_helper_gvec_fcaddh); 11874 break; 11875 case 2: 11876 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11877 gen_helper_gvec_fcadds); 11878 break; 11879 case 3: 11880 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11881 gen_helper_gvec_fcaddd); 11882 break; 11883 default: 11884 g_assert_not_reached(); 11885 } 11886 return; 11887 11888 case 0xd: /* BFMMLA */ 11889 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11890 return; 11891 case 0xf: 11892 switch (size) { 11893 case 1: /* BFDOT */ 11894 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11895 break; 11896 case 3: /* BFMLAL{B,T} */ 11897 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11898 gen_helper_gvec_bfmlal); 11899 break; 11900 default: 11901 g_assert_not_reached(); 11902 } 11903 return; 11904 11905 default: 11906 g_assert_not_reached(); 11907 } 11908 } 11909 11910 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11911 int size, int rn, int rd) 11912 { 11913 /* Handle 2-reg-misc ops which are widening (so each size element 11914 * in the source becomes a 2*size element in the destination. 11915 * The only instruction like this is FCVTL. 11916 */ 11917 int pass; 11918 11919 if (size == 3) { 11920 /* 32 -> 64 bit fp conversion */ 11921 TCGv_i64 tcg_res[2]; 11922 int srcelt = is_q ? 2 : 0; 11923 11924 for (pass = 0; pass < 2; pass++) { 11925 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11926 tcg_res[pass] = tcg_temp_new_i64(); 11927 11928 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11929 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11930 } 11931 for (pass = 0; pass < 2; pass++) { 11932 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11933 } 11934 } else { 11935 /* 16 -> 32 bit fp conversion */ 11936 int srcelt = is_q ? 4 : 0; 11937 TCGv_i32 tcg_res[4]; 11938 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11939 TCGv_i32 ahp = get_ahp_flag(); 11940 11941 for (pass = 0; pass < 4; pass++) { 11942 tcg_res[pass] = tcg_temp_new_i32(); 11943 11944 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11945 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11946 fpst, ahp); 11947 } 11948 for (pass = 0; pass < 4; pass++) { 11949 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11950 } 11951 } 11952 } 11953 11954 static void handle_rev(DisasContext *s, int opcode, bool u, 11955 bool is_q, int size, int rn, int rd) 11956 { 11957 int op = (opcode << 1) | u; 11958 int opsz = op + size; 11959 int grp_size = 3 - opsz; 11960 int dsize = is_q ? 128 : 64; 11961 int i; 11962 11963 if (opsz >= 3) { 11964 unallocated_encoding(s); 11965 return; 11966 } 11967 11968 if (!fp_access_check(s)) { 11969 return; 11970 } 11971 11972 if (size == 0) { 11973 /* Special case bytes, use bswap op on each group of elements */ 11974 int groups = dsize / (8 << grp_size); 11975 11976 for (i = 0; i < groups; i++) { 11977 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11978 11979 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11980 switch (grp_size) { 11981 case MO_16: 11982 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11983 break; 11984 case MO_32: 11985 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11986 break; 11987 case MO_64: 11988 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11989 break; 11990 default: 11991 g_assert_not_reached(); 11992 } 11993 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11994 } 11995 clear_vec_high(s, is_q, rd); 11996 } else { 11997 int revmask = (1 << grp_size) - 1; 11998 int esize = 8 << size; 11999 int elements = dsize / esize; 12000 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12001 TCGv_i64 tcg_rd = tcg_const_i64(0); 12002 TCGv_i64 tcg_rd_hi = tcg_const_i64(0); 12003 12004 for (i = 0; i < elements; i++) { 12005 int e_rev = (i & 0xf) ^ revmask; 12006 int off = e_rev * esize; 12007 read_vec_element(s, tcg_rn, rn, i, size); 12008 if (off >= 64) { 12009 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi, 12010 tcg_rn, off - 64, esize); 12011 } else { 12012 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize); 12013 } 12014 } 12015 write_vec_element(s, tcg_rd, rd, 0, MO_64); 12016 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64); 12017 } 12018 } 12019 12020 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12021 bool is_q, int size, int rn, int rd) 12022 { 12023 /* Implement the pairwise operations from 2-misc: 12024 * SADDLP, UADDLP, SADALP, UADALP. 12025 * These all add pairs of elements in the input to produce a 12026 * double-width result element in the output (possibly accumulating). 12027 */ 12028 bool accum = (opcode == 0x6); 12029 int maxpass = is_q ? 2 : 1; 12030 int pass; 12031 TCGv_i64 tcg_res[2]; 12032 12033 if (size == 2) { 12034 /* 32 + 32 -> 64 op */ 12035 MemOp memop = size + (u ? 0 : MO_SIGN); 12036 12037 for (pass = 0; pass < maxpass; pass++) { 12038 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12039 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12040 12041 tcg_res[pass] = tcg_temp_new_i64(); 12042 12043 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12044 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12045 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12046 if (accum) { 12047 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12048 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12049 } 12050 } 12051 } else { 12052 for (pass = 0; pass < maxpass; pass++) { 12053 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12054 NeonGenOne64OpFn *genfn; 12055 static NeonGenOne64OpFn * const fns[2][2] = { 12056 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12057 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12058 }; 12059 12060 genfn = fns[size][u]; 12061 12062 tcg_res[pass] = tcg_temp_new_i64(); 12063 12064 read_vec_element(s, tcg_op, rn, pass, MO_64); 12065 genfn(tcg_res[pass], tcg_op); 12066 12067 if (accum) { 12068 read_vec_element(s, tcg_op, rd, pass, MO_64); 12069 if (size == 0) { 12070 gen_helper_neon_addl_u16(tcg_res[pass], 12071 tcg_res[pass], tcg_op); 12072 } else { 12073 gen_helper_neon_addl_u32(tcg_res[pass], 12074 tcg_res[pass], tcg_op); 12075 } 12076 } 12077 } 12078 } 12079 if (!is_q) { 12080 tcg_res[1] = tcg_constant_i64(0); 12081 } 12082 for (pass = 0; pass < 2; pass++) { 12083 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12084 } 12085 } 12086 12087 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12088 { 12089 /* Implement SHLL and SHLL2 */ 12090 int pass; 12091 int part = is_q ? 2 : 0; 12092 TCGv_i64 tcg_res[2]; 12093 12094 for (pass = 0; pass < 2; pass++) { 12095 static NeonGenWidenFn * const widenfns[3] = { 12096 gen_helper_neon_widen_u8, 12097 gen_helper_neon_widen_u16, 12098 tcg_gen_extu_i32_i64, 12099 }; 12100 NeonGenWidenFn *widenfn = widenfns[size]; 12101 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12102 12103 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12104 tcg_res[pass] = tcg_temp_new_i64(); 12105 widenfn(tcg_res[pass], tcg_op); 12106 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12107 } 12108 12109 for (pass = 0; pass < 2; pass++) { 12110 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12111 } 12112 } 12113 12114 /* AdvSIMD two reg misc 12115 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12116 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12117 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12118 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12119 */ 12120 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12121 { 12122 int size = extract32(insn, 22, 2); 12123 int opcode = extract32(insn, 12, 5); 12124 bool u = extract32(insn, 29, 1); 12125 bool is_q = extract32(insn, 30, 1); 12126 int rn = extract32(insn, 5, 5); 12127 int rd = extract32(insn, 0, 5); 12128 bool need_fpstatus = false; 12129 int rmode = -1; 12130 TCGv_i32 tcg_rmode; 12131 TCGv_ptr tcg_fpstatus; 12132 12133 switch (opcode) { 12134 case 0x0: /* REV64, REV32 */ 12135 case 0x1: /* REV16 */ 12136 handle_rev(s, opcode, u, is_q, size, rn, rd); 12137 return; 12138 case 0x5: /* CNT, NOT, RBIT */ 12139 if (u && size == 0) { 12140 /* NOT */ 12141 break; 12142 } else if (u && size == 1) { 12143 /* RBIT */ 12144 break; 12145 } else if (!u && size == 0) { 12146 /* CNT */ 12147 break; 12148 } 12149 unallocated_encoding(s); 12150 return; 12151 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12152 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12153 if (size == 3) { 12154 unallocated_encoding(s); 12155 return; 12156 } 12157 if (!fp_access_check(s)) { 12158 return; 12159 } 12160 12161 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12162 return; 12163 case 0x4: /* CLS, CLZ */ 12164 if (size == 3) { 12165 unallocated_encoding(s); 12166 return; 12167 } 12168 break; 12169 case 0x2: /* SADDLP, UADDLP */ 12170 case 0x6: /* SADALP, UADALP */ 12171 if (size == 3) { 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 if (!fp_access_check(s)) { 12176 return; 12177 } 12178 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12179 return; 12180 case 0x13: /* SHLL, SHLL2 */ 12181 if (u == 0 || size == 3) { 12182 unallocated_encoding(s); 12183 return; 12184 } 12185 if (!fp_access_check(s)) { 12186 return; 12187 } 12188 handle_shll(s, is_q, size, rn, rd); 12189 return; 12190 case 0xa: /* CMLT */ 12191 if (u == 1) { 12192 unallocated_encoding(s); 12193 return; 12194 } 12195 /* fall through */ 12196 case 0x8: /* CMGT, CMGE */ 12197 case 0x9: /* CMEQ, CMLE */ 12198 case 0xb: /* ABS, NEG */ 12199 if (size == 3 && !is_q) { 12200 unallocated_encoding(s); 12201 return; 12202 } 12203 break; 12204 case 0x3: /* SUQADD, USQADD */ 12205 if (size == 3 && !is_q) { 12206 unallocated_encoding(s); 12207 return; 12208 } 12209 if (!fp_access_check(s)) { 12210 return; 12211 } 12212 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12213 return; 12214 case 0x7: /* SQABS, SQNEG */ 12215 if (size == 3 && !is_q) { 12216 unallocated_encoding(s); 12217 return; 12218 } 12219 break; 12220 case 0xc ... 0xf: 12221 case 0x16 ... 0x1f: 12222 { 12223 /* Floating point: U, size[1] and opcode indicate operation; 12224 * size[0] indicates single or double precision. 12225 */ 12226 int is_double = extract32(size, 0, 1); 12227 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12228 size = is_double ? 3 : 2; 12229 switch (opcode) { 12230 case 0x2f: /* FABS */ 12231 case 0x6f: /* FNEG */ 12232 if (size == 3 && !is_q) { 12233 unallocated_encoding(s); 12234 return; 12235 } 12236 break; 12237 case 0x1d: /* SCVTF */ 12238 case 0x5d: /* UCVTF */ 12239 { 12240 bool is_signed = (opcode == 0x1d) ? true : false; 12241 int elements = is_double ? 2 : is_q ? 4 : 2; 12242 if (is_double && !is_q) { 12243 unallocated_encoding(s); 12244 return; 12245 } 12246 if (!fp_access_check(s)) { 12247 return; 12248 } 12249 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12250 return; 12251 } 12252 case 0x2c: /* FCMGT (zero) */ 12253 case 0x2d: /* FCMEQ (zero) */ 12254 case 0x2e: /* FCMLT (zero) */ 12255 case 0x6c: /* FCMGE (zero) */ 12256 case 0x6d: /* FCMLE (zero) */ 12257 if (size == 3 && !is_q) { 12258 unallocated_encoding(s); 12259 return; 12260 } 12261 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12262 return; 12263 case 0x7f: /* FSQRT */ 12264 if (size == 3 && !is_q) { 12265 unallocated_encoding(s); 12266 return; 12267 } 12268 break; 12269 case 0x1a: /* FCVTNS */ 12270 case 0x1b: /* FCVTMS */ 12271 case 0x3a: /* FCVTPS */ 12272 case 0x3b: /* FCVTZS */ 12273 case 0x5a: /* FCVTNU */ 12274 case 0x5b: /* FCVTMU */ 12275 case 0x7a: /* FCVTPU */ 12276 case 0x7b: /* FCVTZU */ 12277 need_fpstatus = true; 12278 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12279 if (size == 3 && !is_q) { 12280 unallocated_encoding(s); 12281 return; 12282 } 12283 break; 12284 case 0x5c: /* FCVTAU */ 12285 case 0x1c: /* FCVTAS */ 12286 need_fpstatus = true; 12287 rmode = FPROUNDING_TIEAWAY; 12288 if (size == 3 && !is_q) { 12289 unallocated_encoding(s); 12290 return; 12291 } 12292 break; 12293 case 0x3c: /* URECPE */ 12294 if (size == 3) { 12295 unallocated_encoding(s); 12296 return; 12297 } 12298 /* fall through */ 12299 case 0x3d: /* FRECPE */ 12300 case 0x7d: /* FRSQRTE */ 12301 if (size == 3 && !is_q) { 12302 unallocated_encoding(s); 12303 return; 12304 } 12305 if (!fp_access_check(s)) { 12306 return; 12307 } 12308 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12309 return; 12310 case 0x56: /* FCVTXN, FCVTXN2 */ 12311 if (size == 2) { 12312 unallocated_encoding(s); 12313 return; 12314 } 12315 /* fall through */ 12316 case 0x16: /* FCVTN, FCVTN2 */ 12317 /* handle_2misc_narrow does a 2*size -> size operation, but these 12318 * instructions encode the source size rather than dest size. 12319 */ 12320 if (!fp_access_check(s)) { 12321 return; 12322 } 12323 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12324 return; 12325 case 0x36: /* BFCVTN, BFCVTN2 */ 12326 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12327 unallocated_encoding(s); 12328 return; 12329 } 12330 if (!fp_access_check(s)) { 12331 return; 12332 } 12333 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12334 return; 12335 case 0x17: /* FCVTL, FCVTL2 */ 12336 if (!fp_access_check(s)) { 12337 return; 12338 } 12339 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12340 return; 12341 case 0x18: /* FRINTN */ 12342 case 0x19: /* FRINTM */ 12343 case 0x38: /* FRINTP */ 12344 case 0x39: /* FRINTZ */ 12345 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12346 /* fall through */ 12347 case 0x59: /* FRINTX */ 12348 case 0x79: /* FRINTI */ 12349 need_fpstatus = true; 12350 if (size == 3 && !is_q) { 12351 unallocated_encoding(s); 12352 return; 12353 } 12354 break; 12355 case 0x58: /* FRINTA */ 12356 rmode = FPROUNDING_TIEAWAY; 12357 need_fpstatus = true; 12358 if (size == 3 && !is_q) { 12359 unallocated_encoding(s); 12360 return; 12361 } 12362 break; 12363 case 0x7c: /* URSQRTE */ 12364 if (size == 3) { 12365 unallocated_encoding(s); 12366 return; 12367 } 12368 break; 12369 case 0x1e: /* FRINT32Z */ 12370 case 0x1f: /* FRINT64Z */ 12371 rmode = FPROUNDING_ZERO; 12372 /* fall through */ 12373 case 0x5e: /* FRINT32X */ 12374 case 0x5f: /* FRINT64X */ 12375 need_fpstatus = true; 12376 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12377 unallocated_encoding(s); 12378 return; 12379 } 12380 break; 12381 default: 12382 unallocated_encoding(s); 12383 return; 12384 } 12385 break; 12386 } 12387 default: 12388 unallocated_encoding(s); 12389 return; 12390 } 12391 12392 if (!fp_access_check(s)) { 12393 return; 12394 } 12395 12396 if (need_fpstatus || rmode >= 0) { 12397 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12398 } else { 12399 tcg_fpstatus = NULL; 12400 } 12401 if (rmode >= 0) { 12402 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12403 } else { 12404 tcg_rmode = NULL; 12405 } 12406 12407 switch (opcode) { 12408 case 0x5: 12409 if (u && size == 0) { /* NOT */ 12410 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12411 return; 12412 } 12413 break; 12414 case 0x8: /* CMGT, CMGE */ 12415 if (u) { 12416 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12417 } else { 12418 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12419 } 12420 return; 12421 case 0x9: /* CMEQ, CMLE */ 12422 if (u) { 12423 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12424 } else { 12425 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12426 } 12427 return; 12428 case 0xa: /* CMLT */ 12429 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12430 return; 12431 case 0xb: 12432 if (u) { /* ABS, NEG */ 12433 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12434 } else { 12435 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12436 } 12437 return; 12438 } 12439 12440 if (size == 3) { 12441 /* All 64-bit element operations can be shared with scalar 2misc */ 12442 int pass; 12443 12444 /* Coverity claims (size == 3 && !is_q) has been eliminated 12445 * from all paths leading to here. 12446 */ 12447 tcg_debug_assert(is_q); 12448 for (pass = 0; pass < 2; pass++) { 12449 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12450 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12451 12452 read_vec_element(s, tcg_op, rn, pass, MO_64); 12453 12454 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12455 tcg_rmode, tcg_fpstatus); 12456 12457 write_vec_element(s, tcg_res, rd, pass, MO_64); 12458 } 12459 } else { 12460 int pass; 12461 12462 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12463 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12464 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12465 12466 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12467 12468 if (size == 2) { 12469 /* Special cases for 32 bit elements */ 12470 switch (opcode) { 12471 case 0x4: /* CLS */ 12472 if (u) { 12473 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12474 } else { 12475 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12476 } 12477 break; 12478 case 0x7: /* SQABS, SQNEG */ 12479 if (u) { 12480 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12481 } else { 12482 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12483 } 12484 break; 12485 case 0x2f: /* FABS */ 12486 gen_helper_vfp_abss(tcg_res, tcg_op); 12487 break; 12488 case 0x6f: /* FNEG */ 12489 gen_helper_vfp_negs(tcg_res, tcg_op); 12490 break; 12491 case 0x7f: /* FSQRT */ 12492 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12493 break; 12494 case 0x1a: /* FCVTNS */ 12495 case 0x1b: /* FCVTMS */ 12496 case 0x1c: /* FCVTAS */ 12497 case 0x3a: /* FCVTPS */ 12498 case 0x3b: /* FCVTZS */ 12499 gen_helper_vfp_tosls(tcg_res, tcg_op, 12500 tcg_constant_i32(0), tcg_fpstatus); 12501 break; 12502 case 0x5a: /* FCVTNU */ 12503 case 0x5b: /* FCVTMU */ 12504 case 0x5c: /* FCVTAU */ 12505 case 0x7a: /* FCVTPU */ 12506 case 0x7b: /* FCVTZU */ 12507 gen_helper_vfp_touls(tcg_res, tcg_op, 12508 tcg_constant_i32(0), tcg_fpstatus); 12509 break; 12510 case 0x18: /* FRINTN */ 12511 case 0x19: /* FRINTM */ 12512 case 0x38: /* FRINTP */ 12513 case 0x39: /* FRINTZ */ 12514 case 0x58: /* FRINTA */ 12515 case 0x79: /* FRINTI */ 12516 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12517 break; 12518 case 0x59: /* FRINTX */ 12519 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12520 break; 12521 case 0x7c: /* URSQRTE */ 12522 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12523 break; 12524 case 0x1e: /* FRINT32Z */ 12525 case 0x5e: /* FRINT32X */ 12526 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12527 break; 12528 case 0x1f: /* FRINT64Z */ 12529 case 0x5f: /* FRINT64X */ 12530 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12531 break; 12532 default: 12533 g_assert_not_reached(); 12534 } 12535 } else { 12536 /* Use helpers for 8 and 16 bit elements */ 12537 switch (opcode) { 12538 case 0x5: /* CNT, RBIT */ 12539 /* For these two insns size is part of the opcode specifier 12540 * (handled earlier); they always operate on byte elements. 12541 */ 12542 if (u) { 12543 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12544 } else { 12545 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12546 } 12547 break; 12548 case 0x7: /* SQABS, SQNEG */ 12549 { 12550 NeonGenOneOpEnvFn *genfn; 12551 static NeonGenOneOpEnvFn * const fns[2][2] = { 12552 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12553 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12554 }; 12555 genfn = fns[size][u]; 12556 genfn(tcg_res, cpu_env, tcg_op); 12557 break; 12558 } 12559 case 0x4: /* CLS, CLZ */ 12560 if (u) { 12561 if (size == 0) { 12562 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12563 } else { 12564 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12565 } 12566 } else { 12567 if (size == 0) { 12568 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12569 } else { 12570 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12571 } 12572 } 12573 break; 12574 default: 12575 g_assert_not_reached(); 12576 } 12577 } 12578 12579 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12580 } 12581 } 12582 clear_vec_high(s, is_q, rd); 12583 12584 if (tcg_rmode) { 12585 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12586 } 12587 } 12588 12589 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12590 * 12591 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12592 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12593 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12594 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12595 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12596 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12597 * 12598 * This actually covers two groups where scalar access is governed by 12599 * bit 28. A bunch of the instructions (float to integral) only exist 12600 * in the vector form and are un-allocated for the scalar decode. Also 12601 * in the scalar decode Q is always 1. 12602 */ 12603 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12604 { 12605 int fpop, opcode, a, u; 12606 int rn, rd; 12607 bool is_q; 12608 bool is_scalar; 12609 bool only_in_vector = false; 12610 12611 int pass; 12612 TCGv_i32 tcg_rmode = NULL; 12613 TCGv_ptr tcg_fpstatus = NULL; 12614 bool need_fpst = true; 12615 int rmode = -1; 12616 12617 if (!dc_isar_feature(aa64_fp16, s)) { 12618 unallocated_encoding(s); 12619 return; 12620 } 12621 12622 rd = extract32(insn, 0, 5); 12623 rn = extract32(insn, 5, 5); 12624 12625 a = extract32(insn, 23, 1); 12626 u = extract32(insn, 29, 1); 12627 is_scalar = extract32(insn, 28, 1); 12628 is_q = extract32(insn, 30, 1); 12629 12630 opcode = extract32(insn, 12, 5); 12631 fpop = deposit32(opcode, 5, 1, a); 12632 fpop = deposit32(fpop, 6, 1, u); 12633 12634 switch (fpop) { 12635 case 0x1d: /* SCVTF */ 12636 case 0x5d: /* UCVTF */ 12637 { 12638 int elements; 12639 12640 if (is_scalar) { 12641 elements = 1; 12642 } else { 12643 elements = (is_q ? 8 : 4); 12644 } 12645 12646 if (!fp_access_check(s)) { 12647 return; 12648 } 12649 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12650 return; 12651 } 12652 break; 12653 case 0x2c: /* FCMGT (zero) */ 12654 case 0x2d: /* FCMEQ (zero) */ 12655 case 0x2e: /* FCMLT (zero) */ 12656 case 0x6c: /* FCMGE (zero) */ 12657 case 0x6d: /* FCMLE (zero) */ 12658 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12659 return; 12660 case 0x3d: /* FRECPE */ 12661 case 0x3f: /* FRECPX */ 12662 break; 12663 case 0x18: /* FRINTN */ 12664 only_in_vector = true; 12665 rmode = FPROUNDING_TIEEVEN; 12666 break; 12667 case 0x19: /* FRINTM */ 12668 only_in_vector = true; 12669 rmode = FPROUNDING_NEGINF; 12670 break; 12671 case 0x38: /* FRINTP */ 12672 only_in_vector = true; 12673 rmode = FPROUNDING_POSINF; 12674 break; 12675 case 0x39: /* FRINTZ */ 12676 only_in_vector = true; 12677 rmode = FPROUNDING_ZERO; 12678 break; 12679 case 0x58: /* FRINTA */ 12680 only_in_vector = true; 12681 rmode = FPROUNDING_TIEAWAY; 12682 break; 12683 case 0x59: /* FRINTX */ 12684 case 0x79: /* FRINTI */ 12685 only_in_vector = true; 12686 /* current rounding mode */ 12687 break; 12688 case 0x1a: /* FCVTNS */ 12689 rmode = FPROUNDING_TIEEVEN; 12690 break; 12691 case 0x1b: /* FCVTMS */ 12692 rmode = FPROUNDING_NEGINF; 12693 break; 12694 case 0x1c: /* FCVTAS */ 12695 rmode = FPROUNDING_TIEAWAY; 12696 break; 12697 case 0x3a: /* FCVTPS */ 12698 rmode = FPROUNDING_POSINF; 12699 break; 12700 case 0x3b: /* FCVTZS */ 12701 rmode = FPROUNDING_ZERO; 12702 break; 12703 case 0x5a: /* FCVTNU */ 12704 rmode = FPROUNDING_TIEEVEN; 12705 break; 12706 case 0x5b: /* FCVTMU */ 12707 rmode = FPROUNDING_NEGINF; 12708 break; 12709 case 0x5c: /* FCVTAU */ 12710 rmode = FPROUNDING_TIEAWAY; 12711 break; 12712 case 0x7a: /* FCVTPU */ 12713 rmode = FPROUNDING_POSINF; 12714 break; 12715 case 0x7b: /* FCVTZU */ 12716 rmode = FPROUNDING_ZERO; 12717 break; 12718 case 0x2f: /* FABS */ 12719 case 0x6f: /* FNEG */ 12720 need_fpst = false; 12721 break; 12722 case 0x7d: /* FRSQRTE */ 12723 case 0x7f: /* FSQRT (vector) */ 12724 break; 12725 default: 12726 unallocated_encoding(s); 12727 return; 12728 } 12729 12730 12731 /* Check additional constraints for the scalar encoding */ 12732 if (is_scalar) { 12733 if (!is_q) { 12734 unallocated_encoding(s); 12735 return; 12736 } 12737 /* FRINTxx is only in the vector form */ 12738 if (only_in_vector) { 12739 unallocated_encoding(s); 12740 return; 12741 } 12742 } 12743 12744 if (!fp_access_check(s)) { 12745 return; 12746 } 12747 12748 if (rmode >= 0 || need_fpst) { 12749 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12750 } 12751 12752 if (rmode >= 0) { 12753 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12754 } 12755 12756 if (is_scalar) { 12757 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12758 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12759 12760 switch (fpop) { 12761 case 0x1a: /* FCVTNS */ 12762 case 0x1b: /* FCVTMS */ 12763 case 0x1c: /* FCVTAS */ 12764 case 0x3a: /* FCVTPS */ 12765 case 0x3b: /* FCVTZS */ 12766 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12767 break; 12768 case 0x3d: /* FRECPE */ 12769 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12770 break; 12771 case 0x3f: /* FRECPX */ 12772 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12773 break; 12774 case 0x5a: /* FCVTNU */ 12775 case 0x5b: /* FCVTMU */ 12776 case 0x5c: /* FCVTAU */ 12777 case 0x7a: /* FCVTPU */ 12778 case 0x7b: /* FCVTZU */ 12779 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12780 break; 12781 case 0x6f: /* FNEG */ 12782 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12783 break; 12784 case 0x7d: /* FRSQRTE */ 12785 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12786 break; 12787 default: 12788 g_assert_not_reached(); 12789 } 12790 12791 /* limit any sign extension going on */ 12792 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12793 write_fp_sreg(s, rd, tcg_res); 12794 } else { 12795 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12796 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12797 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12798 12799 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12800 12801 switch (fpop) { 12802 case 0x1a: /* FCVTNS */ 12803 case 0x1b: /* FCVTMS */ 12804 case 0x1c: /* FCVTAS */ 12805 case 0x3a: /* FCVTPS */ 12806 case 0x3b: /* FCVTZS */ 12807 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12808 break; 12809 case 0x3d: /* FRECPE */ 12810 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12811 break; 12812 case 0x5a: /* FCVTNU */ 12813 case 0x5b: /* FCVTMU */ 12814 case 0x5c: /* FCVTAU */ 12815 case 0x7a: /* FCVTPU */ 12816 case 0x7b: /* FCVTZU */ 12817 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12818 break; 12819 case 0x18: /* FRINTN */ 12820 case 0x19: /* FRINTM */ 12821 case 0x38: /* FRINTP */ 12822 case 0x39: /* FRINTZ */ 12823 case 0x58: /* FRINTA */ 12824 case 0x79: /* FRINTI */ 12825 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12826 break; 12827 case 0x59: /* FRINTX */ 12828 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12829 break; 12830 case 0x2f: /* FABS */ 12831 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12832 break; 12833 case 0x6f: /* FNEG */ 12834 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12835 break; 12836 case 0x7d: /* FRSQRTE */ 12837 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12838 break; 12839 case 0x7f: /* FSQRT */ 12840 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12841 break; 12842 default: 12843 g_assert_not_reached(); 12844 } 12845 12846 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12847 } 12848 12849 clear_vec_high(s, is_q, rd); 12850 } 12851 12852 if (tcg_rmode) { 12853 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12854 } 12855 } 12856 12857 /* AdvSIMD scalar x indexed element 12858 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12859 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12860 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12861 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12862 * AdvSIMD vector x indexed element 12863 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12864 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12865 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12866 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12867 */ 12868 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12869 { 12870 /* This encoding has two kinds of instruction: 12871 * normal, where we perform elt x idxelt => elt for each 12872 * element in the vector 12873 * long, where we perform elt x idxelt and generate a result of 12874 * double the width of the input element 12875 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12876 */ 12877 bool is_scalar = extract32(insn, 28, 1); 12878 bool is_q = extract32(insn, 30, 1); 12879 bool u = extract32(insn, 29, 1); 12880 int size = extract32(insn, 22, 2); 12881 int l = extract32(insn, 21, 1); 12882 int m = extract32(insn, 20, 1); 12883 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12884 int rm = extract32(insn, 16, 4); 12885 int opcode = extract32(insn, 12, 4); 12886 int h = extract32(insn, 11, 1); 12887 int rn = extract32(insn, 5, 5); 12888 int rd = extract32(insn, 0, 5); 12889 bool is_long = false; 12890 int is_fp = 0; 12891 bool is_fp16 = false; 12892 int index; 12893 TCGv_ptr fpst; 12894 12895 switch (16 * u + opcode) { 12896 case 0x08: /* MUL */ 12897 case 0x10: /* MLA */ 12898 case 0x14: /* MLS */ 12899 if (is_scalar) { 12900 unallocated_encoding(s); 12901 return; 12902 } 12903 break; 12904 case 0x02: /* SMLAL, SMLAL2 */ 12905 case 0x12: /* UMLAL, UMLAL2 */ 12906 case 0x06: /* SMLSL, SMLSL2 */ 12907 case 0x16: /* UMLSL, UMLSL2 */ 12908 case 0x0a: /* SMULL, SMULL2 */ 12909 case 0x1a: /* UMULL, UMULL2 */ 12910 if (is_scalar) { 12911 unallocated_encoding(s); 12912 return; 12913 } 12914 is_long = true; 12915 break; 12916 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12917 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12918 case 0x0b: /* SQDMULL, SQDMULL2 */ 12919 is_long = true; 12920 break; 12921 case 0x0c: /* SQDMULH */ 12922 case 0x0d: /* SQRDMULH */ 12923 break; 12924 case 0x01: /* FMLA */ 12925 case 0x05: /* FMLS */ 12926 case 0x09: /* FMUL */ 12927 case 0x19: /* FMULX */ 12928 is_fp = 1; 12929 break; 12930 case 0x1d: /* SQRDMLAH */ 12931 case 0x1f: /* SQRDMLSH */ 12932 if (!dc_isar_feature(aa64_rdm, s)) { 12933 unallocated_encoding(s); 12934 return; 12935 } 12936 break; 12937 case 0x0e: /* SDOT */ 12938 case 0x1e: /* UDOT */ 12939 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12940 unallocated_encoding(s); 12941 return; 12942 } 12943 break; 12944 case 0x0f: 12945 switch (size) { 12946 case 0: /* SUDOT */ 12947 case 2: /* USDOT */ 12948 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12949 unallocated_encoding(s); 12950 return; 12951 } 12952 size = MO_32; 12953 break; 12954 case 1: /* BFDOT */ 12955 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12956 unallocated_encoding(s); 12957 return; 12958 } 12959 size = MO_32; 12960 break; 12961 case 3: /* BFMLAL{B,T} */ 12962 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12963 unallocated_encoding(s); 12964 return; 12965 } 12966 /* can't set is_fp without other incorrect size checks */ 12967 size = MO_16; 12968 break; 12969 default: 12970 unallocated_encoding(s); 12971 return; 12972 } 12973 break; 12974 case 0x11: /* FCMLA #0 */ 12975 case 0x13: /* FCMLA #90 */ 12976 case 0x15: /* FCMLA #180 */ 12977 case 0x17: /* FCMLA #270 */ 12978 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12979 unallocated_encoding(s); 12980 return; 12981 } 12982 is_fp = 2; 12983 break; 12984 case 0x00: /* FMLAL */ 12985 case 0x04: /* FMLSL */ 12986 case 0x18: /* FMLAL2 */ 12987 case 0x1c: /* FMLSL2 */ 12988 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12989 unallocated_encoding(s); 12990 return; 12991 } 12992 size = MO_16; 12993 /* is_fp, but we pass cpu_env not fp_status. */ 12994 break; 12995 default: 12996 unallocated_encoding(s); 12997 return; 12998 } 12999 13000 switch (is_fp) { 13001 case 1: /* normal fp */ 13002 /* convert insn encoded size to MemOp size */ 13003 switch (size) { 13004 case 0: /* half-precision */ 13005 size = MO_16; 13006 is_fp16 = true; 13007 break; 13008 case MO_32: /* single precision */ 13009 case MO_64: /* double precision */ 13010 break; 13011 default: 13012 unallocated_encoding(s); 13013 return; 13014 } 13015 break; 13016 13017 case 2: /* complex fp */ 13018 /* Each indexable element is a complex pair. */ 13019 size += 1; 13020 switch (size) { 13021 case MO_32: 13022 if (h && !is_q) { 13023 unallocated_encoding(s); 13024 return; 13025 } 13026 is_fp16 = true; 13027 break; 13028 case MO_64: 13029 break; 13030 default: 13031 unallocated_encoding(s); 13032 return; 13033 } 13034 break; 13035 13036 default: /* integer */ 13037 switch (size) { 13038 case MO_8: 13039 case MO_64: 13040 unallocated_encoding(s); 13041 return; 13042 } 13043 break; 13044 } 13045 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13046 unallocated_encoding(s); 13047 return; 13048 } 13049 13050 /* Given MemOp size, adjust register and indexing. */ 13051 switch (size) { 13052 case MO_16: 13053 index = h << 2 | l << 1 | m; 13054 break; 13055 case MO_32: 13056 index = h << 1 | l; 13057 rm |= m << 4; 13058 break; 13059 case MO_64: 13060 if (l || !is_q) { 13061 unallocated_encoding(s); 13062 return; 13063 } 13064 index = h; 13065 rm |= m << 4; 13066 break; 13067 default: 13068 g_assert_not_reached(); 13069 } 13070 13071 if (!fp_access_check(s)) { 13072 return; 13073 } 13074 13075 if (is_fp) { 13076 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13077 } else { 13078 fpst = NULL; 13079 } 13080 13081 switch (16 * u + opcode) { 13082 case 0x0e: /* SDOT */ 13083 case 0x1e: /* UDOT */ 13084 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13085 u ? gen_helper_gvec_udot_idx_b 13086 : gen_helper_gvec_sdot_idx_b); 13087 return; 13088 case 0x0f: 13089 switch (extract32(insn, 22, 2)) { 13090 case 0: /* SUDOT */ 13091 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13092 gen_helper_gvec_sudot_idx_b); 13093 return; 13094 case 1: /* BFDOT */ 13095 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13096 gen_helper_gvec_bfdot_idx); 13097 return; 13098 case 2: /* USDOT */ 13099 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13100 gen_helper_gvec_usdot_idx_b); 13101 return; 13102 case 3: /* BFMLAL{B,T} */ 13103 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13104 gen_helper_gvec_bfmlal_idx); 13105 return; 13106 } 13107 g_assert_not_reached(); 13108 case 0x11: /* FCMLA #0 */ 13109 case 0x13: /* FCMLA #90 */ 13110 case 0x15: /* FCMLA #180 */ 13111 case 0x17: /* FCMLA #270 */ 13112 { 13113 int rot = extract32(insn, 13, 2); 13114 int data = (index << 2) | rot; 13115 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13116 vec_full_reg_offset(s, rn), 13117 vec_full_reg_offset(s, rm), 13118 vec_full_reg_offset(s, rd), fpst, 13119 is_q ? 16 : 8, vec_full_reg_size(s), data, 13120 size == MO_64 13121 ? gen_helper_gvec_fcmlas_idx 13122 : gen_helper_gvec_fcmlah_idx); 13123 } 13124 return; 13125 13126 case 0x00: /* FMLAL */ 13127 case 0x04: /* FMLSL */ 13128 case 0x18: /* FMLAL2 */ 13129 case 0x1c: /* FMLSL2 */ 13130 { 13131 int is_s = extract32(opcode, 2, 1); 13132 int is_2 = u; 13133 int data = (index << 2) | (is_2 << 1) | is_s; 13134 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13135 vec_full_reg_offset(s, rn), 13136 vec_full_reg_offset(s, rm), cpu_env, 13137 is_q ? 16 : 8, vec_full_reg_size(s), 13138 data, gen_helper_gvec_fmlal_idx_a64); 13139 } 13140 return; 13141 13142 case 0x08: /* MUL */ 13143 if (!is_long && !is_scalar) { 13144 static gen_helper_gvec_3 * const fns[3] = { 13145 gen_helper_gvec_mul_idx_h, 13146 gen_helper_gvec_mul_idx_s, 13147 gen_helper_gvec_mul_idx_d, 13148 }; 13149 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13150 vec_full_reg_offset(s, rn), 13151 vec_full_reg_offset(s, rm), 13152 is_q ? 16 : 8, vec_full_reg_size(s), 13153 index, fns[size - 1]); 13154 return; 13155 } 13156 break; 13157 13158 case 0x10: /* MLA */ 13159 if (!is_long && !is_scalar) { 13160 static gen_helper_gvec_4 * const fns[3] = { 13161 gen_helper_gvec_mla_idx_h, 13162 gen_helper_gvec_mla_idx_s, 13163 gen_helper_gvec_mla_idx_d, 13164 }; 13165 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13166 vec_full_reg_offset(s, rn), 13167 vec_full_reg_offset(s, rm), 13168 vec_full_reg_offset(s, rd), 13169 is_q ? 16 : 8, vec_full_reg_size(s), 13170 index, fns[size - 1]); 13171 return; 13172 } 13173 break; 13174 13175 case 0x14: /* MLS */ 13176 if (!is_long && !is_scalar) { 13177 static gen_helper_gvec_4 * const fns[3] = { 13178 gen_helper_gvec_mls_idx_h, 13179 gen_helper_gvec_mls_idx_s, 13180 gen_helper_gvec_mls_idx_d, 13181 }; 13182 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13183 vec_full_reg_offset(s, rn), 13184 vec_full_reg_offset(s, rm), 13185 vec_full_reg_offset(s, rd), 13186 is_q ? 16 : 8, vec_full_reg_size(s), 13187 index, fns[size - 1]); 13188 return; 13189 } 13190 break; 13191 } 13192 13193 if (size == 3) { 13194 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13195 int pass; 13196 13197 assert(is_fp && is_q && !is_long); 13198 13199 read_vec_element(s, tcg_idx, rm, index, MO_64); 13200 13201 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13202 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13203 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13204 13205 read_vec_element(s, tcg_op, rn, pass, MO_64); 13206 13207 switch (16 * u + opcode) { 13208 case 0x05: /* FMLS */ 13209 /* As usual for ARM, separate negation for fused multiply-add */ 13210 gen_helper_vfp_negd(tcg_op, tcg_op); 13211 /* fall through */ 13212 case 0x01: /* FMLA */ 13213 read_vec_element(s, tcg_res, rd, pass, MO_64); 13214 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13215 break; 13216 case 0x09: /* FMUL */ 13217 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13218 break; 13219 case 0x19: /* FMULX */ 13220 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13221 break; 13222 default: 13223 g_assert_not_reached(); 13224 } 13225 13226 write_vec_element(s, tcg_res, rd, pass, MO_64); 13227 } 13228 13229 clear_vec_high(s, !is_scalar, rd); 13230 } else if (!is_long) { 13231 /* 32 bit floating point, or 16 or 32 bit integer. 13232 * For the 16 bit scalar case we use the usual Neon helpers and 13233 * rely on the fact that 0 op 0 == 0 with no side effects. 13234 */ 13235 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13236 int pass, maxpasses; 13237 13238 if (is_scalar) { 13239 maxpasses = 1; 13240 } else { 13241 maxpasses = is_q ? 4 : 2; 13242 } 13243 13244 read_vec_element_i32(s, tcg_idx, rm, index, size); 13245 13246 if (size == 1 && !is_scalar) { 13247 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13248 * the index into both halves of the 32 bit tcg_idx and then use 13249 * the usual Neon helpers. 13250 */ 13251 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13252 } 13253 13254 for (pass = 0; pass < maxpasses; pass++) { 13255 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13256 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13257 13258 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13259 13260 switch (16 * u + opcode) { 13261 case 0x08: /* MUL */ 13262 case 0x10: /* MLA */ 13263 case 0x14: /* MLS */ 13264 { 13265 static NeonGenTwoOpFn * const fns[2][2] = { 13266 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13267 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13268 }; 13269 NeonGenTwoOpFn *genfn; 13270 bool is_sub = opcode == 0x4; 13271 13272 if (size == 1) { 13273 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13274 } else { 13275 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13276 } 13277 if (opcode == 0x8) { 13278 break; 13279 } 13280 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13281 genfn = fns[size - 1][is_sub]; 13282 genfn(tcg_res, tcg_op, tcg_res); 13283 break; 13284 } 13285 case 0x05: /* FMLS */ 13286 case 0x01: /* FMLA */ 13287 read_vec_element_i32(s, tcg_res, rd, pass, 13288 is_scalar ? size : MO_32); 13289 switch (size) { 13290 case 1: 13291 if (opcode == 0x5) { 13292 /* As usual for ARM, separate negation for fused 13293 * multiply-add */ 13294 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13295 } 13296 if (is_scalar) { 13297 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13298 tcg_res, fpst); 13299 } else { 13300 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13301 tcg_res, fpst); 13302 } 13303 break; 13304 case 2: 13305 if (opcode == 0x5) { 13306 /* As usual for ARM, separate negation for 13307 * fused multiply-add */ 13308 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13309 } 13310 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13311 tcg_res, fpst); 13312 break; 13313 default: 13314 g_assert_not_reached(); 13315 } 13316 break; 13317 case 0x09: /* FMUL */ 13318 switch (size) { 13319 case 1: 13320 if (is_scalar) { 13321 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13322 tcg_idx, fpst); 13323 } else { 13324 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13325 tcg_idx, fpst); 13326 } 13327 break; 13328 case 2: 13329 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13330 break; 13331 default: 13332 g_assert_not_reached(); 13333 } 13334 break; 13335 case 0x19: /* FMULX */ 13336 switch (size) { 13337 case 1: 13338 if (is_scalar) { 13339 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13340 tcg_idx, fpst); 13341 } else { 13342 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13343 tcg_idx, fpst); 13344 } 13345 break; 13346 case 2: 13347 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13348 break; 13349 default: 13350 g_assert_not_reached(); 13351 } 13352 break; 13353 case 0x0c: /* SQDMULH */ 13354 if (size == 1) { 13355 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13356 tcg_op, tcg_idx); 13357 } else { 13358 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13359 tcg_op, tcg_idx); 13360 } 13361 break; 13362 case 0x0d: /* SQRDMULH */ 13363 if (size == 1) { 13364 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13365 tcg_op, tcg_idx); 13366 } else { 13367 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13368 tcg_op, tcg_idx); 13369 } 13370 break; 13371 case 0x1d: /* SQRDMLAH */ 13372 read_vec_element_i32(s, tcg_res, rd, pass, 13373 is_scalar ? size : MO_32); 13374 if (size == 1) { 13375 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13376 tcg_op, tcg_idx, tcg_res); 13377 } else { 13378 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13379 tcg_op, tcg_idx, tcg_res); 13380 } 13381 break; 13382 case 0x1f: /* SQRDMLSH */ 13383 read_vec_element_i32(s, tcg_res, rd, pass, 13384 is_scalar ? size : MO_32); 13385 if (size == 1) { 13386 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13387 tcg_op, tcg_idx, tcg_res); 13388 } else { 13389 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13390 tcg_op, tcg_idx, tcg_res); 13391 } 13392 break; 13393 default: 13394 g_assert_not_reached(); 13395 } 13396 13397 if (is_scalar) { 13398 write_fp_sreg(s, rd, tcg_res); 13399 } else { 13400 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13401 } 13402 } 13403 13404 clear_vec_high(s, is_q, rd); 13405 } else { 13406 /* long ops: 16x16->32 or 32x32->64 */ 13407 TCGv_i64 tcg_res[2]; 13408 int pass; 13409 bool satop = extract32(opcode, 0, 1); 13410 MemOp memop = MO_32; 13411 13412 if (satop || !u) { 13413 memop |= MO_SIGN; 13414 } 13415 13416 if (size == 2) { 13417 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13418 13419 read_vec_element(s, tcg_idx, rm, index, memop); 13420 13421 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13422 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13423 TCGv_i64 tcg_passres; 13424 int passelt; 13425 13426 if (is_scalar) { 13427 passelt = 0; 13428 } else { 13429 passelt = pass + (is_q * 2); 13430 } 13431 13432 read_vec_element(s, tcg_op, rn, passelt, memop); 13433 13434 tcg_res[pass] = tcg_temp_new_i64(); 13435 13436 if (opcode == 0xa || opcode == 0xb) { 13437 /* Non-accumulating ops */ 13438 tcg_passres = tcg_res[pass]; 13439 } else { 13440 tcg_passres = tcg_temp_new_i64(); 13441 } 13442 13443 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13444 13445 if (satop) { 13446 /* saturating, doubling */ 13447 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13448 tcg_passres, tcg_passres); 13449 } 13450 13451 if (opcode == 0xa || opcode == 0xb) { 13452 continue; 13453 } 13454 13455 /* Accumulating op: handle accumulate step */ 13456 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13457 13458 switch (opcode) { 13459 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13460 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13461 break; 13462 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13463 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13464 break; 13465 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13466 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13467 /* fall through */ 13468 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13469 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13470 tcg_res[pass], 13471 tcg_passres); 13472 break; 13473 default: 13474 g_assert_not_reached(); 13475 } 13476 } 13477 13478 clear_vec_high(s, !is_scalar, rd); 13479 } else { 13480 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13481 13482 assert(size == 1); 13483 read_vec_element_i32(s, tcg_idx, rm, index, size); 13484 13485 if (!is_scalar) { 13486 /* The simplest way to handle the 16x16 indexed ops is to 13487 * duplicate the index into both halves of the 32 bit tcg_idx 13488 * and then use the usual Neon helpers. 13489 */ 13490 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13491 } 13492 13493 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13494 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13495 TCGv_i64 tcg_passres; 13496 13497 if (is_scalar) { 13498 read_vec_element_i32(s, tcg_op, rn, pass, size); 13499 } else { 13500 read_vec_element_i32(s, tcg_op, rn, 13501 pass + (is_q * 2), MO_32); 13502 } 13503 13504 tcg_res[pass] = tcg_temp_new_i64(); 13505 13506 if (opcode == 0xa || opcode == 0xb) { 13507 /* Non-accumulating ops */ 13508 tcg_passres = tcg_res[pass]; 13509 } else { 13510 tcg_passres = tcg_temp_new_i64(); 13511 } 13512 13513 if (memop & MO_SIGN) { 13514 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13515 } else { 13516 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13517 } 13518 if (satop) { 13519 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13520 tcg_passres, tcg_passres); 13521 } 13522 13523 if (opcode == 0xa || opcode == 0xb) { 13524 continue; 13525 } 13526 13527 /* Accumulating op: handle accumulate step */ 13528 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13529 13530 switch (opcode) { 13531 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13532 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13533 tcg_passres); 13534 break; 13535 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13536 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13537 tcg_passres); 13538 break; 13539 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13540 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13541 /* fall through */ 13542 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13543 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13544 tcg_res[pass], 13545 tcg_passres); 13546 break; 13547 default: 13548 g_assert_not_reached(); 13549 } 13550 } 13551 13552 if (is_scalar) { 13553 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13554 } 13555 } 13556 13557 if (is_scalar) { 13558 tcg_res[1] = tcg_constant_i64(0); 13559 } 13560 13561 for (pass = 0; pass < 2; pass++) { 13562 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13563 } 13564 } 13565 } 13566 13567 /* Crypto AES 13568 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13569 * +-----------------+------+-----------+--------+-----+------+------+ 13570 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13571 * +-----------------+------+-----------+--------+-----+------+------+ 13572 */ 13573 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13574 { 13575 int size = extract32(insn, 22, 2); 13576 int opcode = extract32(insn, 12, 5); 13577 int rn = extract32(insn, 5, 5); 13578 int rd = extract32(insn, 0, 5); 13579 int decrypt; 13580 gen_helper_gvec_2 *genfn2 = NULL; 13581 gen_helper_gvec_3 *genfn3 = NULL; 13582 13583 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13584 unallocated_encoding(s); 13585 return; 13586 } 13587 13588 switch (opcode) { 13589 case 0x4: /* AESE */ 13590 decrypt = 0; 13591 genfn3 = gen_helper_crypto_aese; 13592 break; 13593 case 0x6: /* AESMC */ 13594 decrypt = 0; 13595 genfn2 = gen_helper_crypto_aesmc; 13596 break; 13597 case 0x5: /* AESD */ 13598 decrypt = 1; 13599 genfn3 = gen_helper_crypto_aese; 13600 break; 13601 case 0x7: /* AESIMC */ 13602 decrypt = 1; 13603 genfn2 = gen_helper_crypto_aesmc; 13604 break; 13605 default: 13606 unallocated_encoding(s); 13607 return; 13608 } 13609 13610 if (!fp_access_check(s)) { 13611 return; 13612 } 13613 if (genfn2) { 13614 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13615 } else { 13616 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13617 } 13618 } 13619 13620 /* Crypto three-reg SHA 13621 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13622 * +-----------------+------+---+------+---+--------+-----+------+------+ 13623 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13624 * +-----------------+------+---+------+---+--------+-----+------+------+ 13625 */ 13626 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13627 { 13628 int size = extract32(insn, 22, 2); 13629 int opcode = extract32(insn, 12, 3); 13630 int rm = extract32(insn, 16, 5); 13631 int rn = extract32(insn, 5, 5); 13632 int rd = extract32(insn, 0, 5); 13633 gen_helper_gvec_3 *genfn; 13634 bool feature; 13635 13636 if (size != 0) { 13637 unallocated_encoding(s); 13638 return; 13639 } 13640 13641 switch (opcode) { 13642 case 0: /* SHA1C */ 13643 genfn = gen_helper_crypto_sha1c; 13644 feature = dc_isar_feature(aa64_sha1, s); 13645 break; 13646 case 1: /* SHA1P */ 13647 genfn = gen_helper_crypto_sha1p; 13648 feature = dc_isar_feature(aa64_sha1, s); 13649 break; 13650 case 2: /* SHA1M */ 13651 genfn = gen_helper_crypto_sha1m; 13652 feature = dc_isar_feature(aa64_sha1, s); 13653 break; 13654 case 3: /* SHA1SU0 */ 13655 genfn = gen_helper_crypto_sha1su0; 13656 feature = dc_isar_feature(aa64_sha1, s); 13657 break; 13658 case 4: /* SHA256H */ 13659 genfn = gen_helper_crypto_sha256h; 13660 feature = dc_isar_feature(aa64_sha256, s); 13661 break; 13662 case 5: /* SHA256H2 */ 13663 genfn = gen_helper_crypto_sha256h2; 13664 feature = dc_isar_feature(aa64_sha256, s); 13665 break; 13666 case 6: /* SHA256SU1 */ 13667 genfn = gen_helper_crypto_sha256su1; 13668 feature = dc_isar_feature(aa64_sha256, s); 13669 break; 13670 default: 13671 unallocated_encoding(s); 13672 return; 13673 } 13674 13675 if (!feature) { 13676 unallocated_encoding(s); 13677 return; 13678 } 13679 13680 if (!fp_access_check(s)) { 13681 return; 13682 } 13683 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13684 } 13685 13686 /* Crypto two-reg SHA 13687 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13688 * +-----------------+------+-----------+--------+-----+------+------+ 13689 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13690 * +-----------------+------+-----------+--------+-----+------+------+ 13691 */ 13692 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13693 { 13694 int size = extract32(insn, 22, 2); 13695 int opcode = extract32(insn, 12, 5); 13696 int rn = extract32(insn, 5, 5); 13697 int rd = extract32(insn, 0, 5); 13698 gen_helper_gvec_2 *genfn; 13699 bool feature; 13700 13701 if (size != 0) { 13702 unallocated_encoding(s); 13703 return; 13704 } 13705 13706 switch (opcode) { 13707 case 0: /* SHA1H */ 13708 feature = dc_isar_feature(aa64_sha1, s); 13709 genfn = gen_helper_crypto_sha1h; 13710 break; 13711 case 1: /* SHA1SU1 */ 13712 feature = dc_isar_feature(aa64_sha1, s); 13713 genfn = gen_helper_crypto_sha1su1; 13714 break; 13715 case 2: /* SHA256SU0 */ 13716 feature = dc_isar_feature(aa64_sha256, s); 13717 genfn = gen_helper_crypto_sha256su0; 13718 break; 13719 default: 13720 unallocated_encoding(s); 13721 return; 13722 } 13723 13724 if (!feature) { 13725 unallocated_encoding(s); 13726 return; 13727 } 13728 13729 if (!fp_access_check(s)) { 13730 return; 13731 } 13732 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13733 } 13734 13735 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13736 { 13737 tcg_gen_rotli_i64(d, m, 1); 13738 tcg_gen_xor_i64(d, d, n); 13739 } 13740 13741 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13742 { 13743 tcg_gen_rotli_vec(vece, d, m, 1); 13744 tcg_gen_xor_vec(vece, d, d, n); 13745 } 13746 13747 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13748 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13749 { 13750 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13751 static const GVecGen3 op = { 13752 .fni8 = gen_rax1_i64, 13753 .fniv = gen_rax1_vec, 13754 .opt_opc = vecop_list, 13755 .fno = gen_helper_crypto_rax1, 13756 .vece = MO_64, 13757 }; 13758 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13759 } 13760 13761 /* Crypto three-reg SHA512 13762 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13763 * +-----------------------+------+---+---+-----+--------+------+------+ 13764 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13765 * +-----------------------+------+---+---+-----+--------+------+------+ 13766 */ 13767 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13768 { 13769 int opcode = extract32(insn, 10, 2); 13770 int o = extract32(insn, 14, 1); 13771 int rm = extract32(insn, 16, 5); 13772 int rn = extract32(insn, 5, 5); 13773 int rd = extract32(insn, 0, 5); 13774 bool feature; 13775 gen_helper_gvec_3 *oolfn = NULL; 13776 GVecGen3Fn *gvecfn = NULL; 13777 13778 if (o == 0) { 13779 switch (opcode) { 13780 case 0: /* SHA512H */ 13781 feature = dc_isar_feature(aa64_sha512, s); 13782 oolfn = gen_helper_crypto_sha512h; 13783 break; 13784 case 1: /* SHA512H2 */ 13785 feature = dc_isar_feature(aa64_sha512, s); 13786 oolfn = gen_helper_crypto_sha512h2; 13787 break; 13788 case 2: /* SHA512SU1 */ 13789 feature = dc_isar_feature(aa64_sha512, s); 13790 oolfn = gen_helper_crypto_sha512su1; 13791 break; 13792 case 3: /* RAX1 */ 13793 feature = dc_isar_feature(aa64_sha3, s); 13794 gvecfn = gen_gvec_rax1; 13795 break; 13796 default: 13797 g_assert_not_reached(); 13798 } 13799 } else { 13800 switch (opcode) { 13801 case 0: /* SM3PARTW1 */ 13802 feature = dc_isar_feature(aa64_sm3, s); 13803 oolfn = gen_helper_crypto_sm3partw1; 13804 break; 13805 case 1: /* SM3PARTW2 */ 13806 feature = dc_isar_feature(aa64_sm3, s); 13807 oolfn = gen_helper_crypto_sm3partw2; 13808 break; 13809 case 2: /* SM4EKEY */ 13810 feature = dc_isar_feature(aa64_sm4, s); 13811 oolfn = gen_helper_crypto_sm4ekey; 13812 break; 13813 default: 13814 unallocated_encoding(s); 13815 return; 13816 } 13817 } 13818 13819 if (!feature) { 13820 unallocated_encoding(s); 13821 return; 13822 } 13823 13824 if (!fp_access_check(s)) { 13825 return; 13826 } 13827 13828 if (oolfn) { 13829 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13830 } else { 13831 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13832 } 13833 } 13834 13835 /* Crypto two-reg SHA512 13836 * 31 12 11 10 9 5 4 0 13837 * +-----------------------------------------+--------+------+------+ 13838 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13839 * +-----------------------------------------+--------+------+------+ 13840 */ 13841 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13842 { 13843 int opcode = extract32(insn, 10, 2); 13844 int rn = extract32(insn, 5, 5); 13845 int rd = extract32(insn, 0, 5); 13846 bool feature; 13847 13848 switch (opcode) { 13849 case 0: /* SHA512SU0 */ 13850 feature = dc_isar_feature(aa64_sha512, s); 13851 break; 13852 case 1: /* SM4E */ 13853 feature = dc_isar_feature(aa64_sm4, s); 13854 break; 13855 default: 13856 unallocated_encoding(s); 13857 return; 13858 } 13859 13860 if (!feature) { 13861 unallocated_encoding(s); 13862 return; 13863 } 13864 13865 if (!fp_access_check(s)) { 13866 return; 13867 } 13868 13869 switch (opcode) { 13870 case 0: /* SHA512SU0 */ 13871 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13872 break; 13873 case 1: /* SM4E */ 13874 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13875 break; 13876 default: 13877 g_assert_not_reached(); 13878 } 13879 } 13880 13881 /* Crypto four-register 13882 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13883 * +-------------------+-----+------+---+------+------+------+ 13884 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13885 * +-------------------+-----+------+---+------+------+------+ 13886 */ 13887 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13888 { 13889 int op0 = extract32(insn, 21, 2); 13890 int rm = extract32(insn, 16, 5); 13891 int ra = extract32(insn, 10, 5); 13892 int rn = extract32(insn, 5, 5); 13893 int rd = extract32(insn, 0, 5); 13894 bool feature; 13895 13896 switch (op0) { 13897 case 0: /* EOR3 */ 13898 case 1: /* BCAX */ 13899 feature = dc_isar_feature(aa64_sha3, s); 13900 break; 13901 case 2: /* SM3SS1 */ 13902 feature = dc_isar_feature(aa64_sm3, s); 13903 break; 13904 default: 13905 unallocated_encoding(s); 13906 return; 13907 } 13908 13909 if (!feature) { 13910 unallocated_encoding(s); 13911 return; 13912 } 13913 13914 if (!fp_access_check(s)) { 13915 return; 13916 } 13917 13918 if (op0 < 2) { 13919 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13920 int pass; 13921 13922 tcg_op1 = tcg_temp_new_i64(); 13923 tcg_op2 = tcg_temp_new_i64(); 13924 tcg_op3 = tcg_temp_new_i64(); 13925 tcg_res[0] = tcg_temp_new_i64(); 13926 tcg_res[1] = tcg_temp_new_i64(); 13927 13928 for (pass = 0; pass < 2; pass++) { 13929 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13930 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13931 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13932 13933 if (op0 == 0) { 13934 /* EOR3 */ 13935 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13936 } else { 13937 /* BCAX */ 13938 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13939 } 13940 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13941 } 13942 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13943 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13944 } else { 13945 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13946 13947 tcg_op1 = tcg_temp_new_i32(); 13948 tcg_op2 = tcg_temp_new_i32(); 13949 tcg_op3 = tcg_temp_new_i32(); 13950 tcg_res = tcg_temp_new_i32(); 13951 tcg_zero = tcg_constant_i32(0); 13952 13953 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13954 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13955 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13956 13957 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13958 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13959 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13960 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13961 13962 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13963 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13964 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13965 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13966 } 13967 } 13968 13969 /* Crypto XAR 13970 * 31 21 20 16 15 10 9 5 4 0 13971 * +-----------------------+------+--------+------+------+ 13972 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13973 * +-----------------------+------+--------+------+------+ 13974 */ 13975 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13976 { 13977 int rm = extract32(insn, 16, 5); 13978 int imm6 = extract32(insn, 10, 6); 13979 int rn = extract32(insn, 5, 5); 13980 int rd = extract32(insn, 0, 5); 13981 13982 if (!dc_isar_feature(aa64_sha3, s)) { 13983 unallocated_encoding(s); 13984 return; 13985 } 13986 13987 if (!fp_access_check(s)) { 13988 return; 13989 } 13990 13991 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13992 vec_full_reg_offset(s, rn), 13993 vec_full_reg_offset(s, rm), imm6, 16, 13994 vec_full_reg_size(s)); 13995 } 13996 13997 /* Crypto three-reg imm2 13998 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13999 * +-----------------------+------+-----+------+--------+------+------+ 14000 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14001 * +-----------------------+------+-----+------+--------+------+------+ 14002 */ 14003 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14004 { 14005 static gen_helper_gvec_3 * const fns[4] = { 14006 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14007 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14008 }; 14009 int opcode = extract32(insn, 10, 2); 14010 int imm2 = extract32(insn, 12, 2); 14011 int rm = extract32(insn, 16, 5); 14012 int rn = extract32(insn, 5, 5); 14013 int rd = extract32(insn, 0, 5); 14014 14015 if (!dc_isar_feature(aa64_sm3, s)) { 14016 unallocated_encoding(s); 14017 return; 14018 } 14019 14020 if (!fp_access_check(s)) { 14021 return; 14022 } 14023 14024 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14025 } 14026 14027 /* C3.6 Data processing - SIMD, inc Crypto 14028 * 14029 * As the decode gets a little complex we are using a table based 14030 * approach for this part of the decode. 14031 */ 14032 static const AArch64DecodeTable data_proc_simd[] = { 14033 /* pattern , mask , fn */ 14034 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14035 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14036 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14037 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14038 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14039 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14040 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14041 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14042 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14043 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14044 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14045 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14046 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14047 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14048 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14049 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14050 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14051 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14052 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14053 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14054 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14055 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14056 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14057 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14058 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14059 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14060 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14061 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14062 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14063 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14064 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14065 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14066 { 0x00000000, 0x00000000, NULL } 14067 }; 14068 14069 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14070 { 14071 /* Note that this is called with all non-FP cases from 14072 * table C3-6 so it must UNDEF for entries not specifically 14073 * allocated to instructions in that table. 14074 */ 14075 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14076 if (fn) { 14077 fn(s, insn); 14078 } else { 14079 unallocated_encoding(s); 14080 } 14081 } 14082 14083 /* C3.6 Data processing - SIMD and floating point */ 14084 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14085 { 14086 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14087 disas_data_proc_fp(s, insn); 14088 } else { 14089 /* SIMD, including crypto */ 14090 disas_data_proc_simd(s, insn); 14091 } 14092 } 14093 14094 /* 14095 * Include the generated SME FA64 decoder. 14096 */ 14097 14098 #include "decode-sme-fa64.c.inc" 14099 14100 static bool trans_OK(DisasContext *s, arg_OK *a) 14101 { 14102 return true; 14103 } 14104 14105 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14106 { 14107 s->is_nonstreaming = true; 14108 return true; 14109 } 14110 14111 /** 14112 * is_guarded_page: 14113 * @env: The cpu environment 14114 * @s: The DisasContext 14115 * 14116 * Return true if the page is guarded. 14117 */ 14118 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14119 { 14120 uint64_t addr = s->base.pc_first; 14121 #ifdef CONFIG_USER_ONLY 14122 return page_get_flags(addr) & PAGE_BTI; 14123 #else 14124 CPUTLBEntryFull *full; 14125 void *host; 14126 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14127 int flags; 14128 14129 /* 14130 * We test this immediately after reading an insn, which means 14131 * that the TLB entry must be present and valid, and thus this 14132 * access will never raise an exception. 14133 */ 14134 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14135 false, &host, &full, 0); 14136 assert(!(flags & TLB_INVALID_MASK)); 14137 14138 return full->guarded; 14139 #endif 14140 } 14141 14142 /** 14143 * btype_destination_ok: 14144 * @insn: The instruction at the branch destination 14145 * @bt: SCTLR_ELx.BT 14146 * @btype: PSTATE.BTYPE, and is non-zero 14147 * 14148 * On a guarded page, there are a limited number of insns 14149 * that may be present at the branch target: 14150 * - branch target identifiers, 14151 * - paciasp, pacibsp, 14152 * - BRK insn 14153 * - HLT insn 14154 * Anything else causes a Branch Target Exception. 14155 * 14156 * Return true if the branch is compatible, false to raise BTITRAP. 14157 */ 14158 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14159 { 14160 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14161 /* HINT space */ 14162 switch (extract32(insn, 5, 7)) { 14163 case 0b011001: /* PACIASP */ 14164 case 0b011011: /* PACIBSP */ 14165 /* 14166 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14167 * with btype == 3. Otherwise all btype are ok. 14168 */ 14169 return !bt || btype != 3; 14170 case 0b100000: /* BTI */ 14171 /* Not compatible with any btype. */ 14172 return false; 14173 case 0b100010: /* BTI c */ 14174 /* Not compatible with btype == 3 */ 14175 return btype != 3; 14176 case 0b100100: /* BTI j */ 14177 /* Not compatible with btype == 2 */ 14178 return btype != 2; 14179 case 0b100110: /* BTI jc */ 14180 /* Compatible with any btype. */ 14181 return true; 14182 } 14183 } else { 14184 switch (insn & 0xffe0001fu) { 14185 case 0xd4200000u: /* BRK */ 14186 case 0xd4400000u: /* HLT */ 14187 /* Give priority to the breakpoint exception. */ 14188 return true; 14189 } 14190 } 14191 return false; 14192 } 14193 14194 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14195 CPUState *cpu) 14196 { 14197 DisasContext *dc = container_of(dcbase, DisasContext, base); 14198 CPUARMState *env = cpu->env_ptr; 14199 ARMCPU *arm_cpu = env_archcpu(env); 14200 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14201 int bound, core_mmu_idx; 14202 14203 dc->isar = &arm_cpu->isar; 14204 dc->condjmp = 0; 14205 dc->pc_save = dc->base.pc_first; 14206 dc->aarch64 = true; 14207 dc->thumb = false; 14208 dc->sctlr_b = 0; 14209 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14210 dc->condexec_mask = 0; 14211 dc->condexec_cond = 0; 14212 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14213 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14214 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14215 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14216 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14217 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14218 #if !defined(CONFIG_USER_ONLY) 14219 dc->user = (dc->current_el == 0); 14220 #endif 14221 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14222 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14223 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14224 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14225 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14226 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14227 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14228 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14229 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14230 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14231 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14232 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14233 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14234 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14235 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14236 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14237 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14238 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14239 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14240 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14241 dc->vec_len = 0; 14242 dc->vec_stride = 0; 14243 dc->cp_regs = arm_cpu->cp_regs; 14244 dc->features = env->features; 14245 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14246 14247 #ifdef CONFIG_USER_ONLY 14248 /* In sve_probe_page, we assume TBI is enabled. */ 14249 tcg_debug_assert(dc->tbid & 1); 14250 #endif 14251 14252 /* Single step state. The code-generation logic here is: 14253 * SS_ACTIVE == 0: 14254 * generate code with no special handling for single-stepping (except 14255 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14256 * this happens anyway because those changes are all system register or 14257 * PSTATE writes). 14258 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14259 * emit code for one insn 14260 * emit code to clear PSTATE.SS 14261 * emit code to generate software step exception for completed step 14262 * end TB (as usual for having generated an exception) 14263 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14264 * emit code to generate a software step exception 14265 * end the TB 14266 */ 14267 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14268 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14269 dc->is_ldex = false; 14270 14271 /* Bound the number of insns to execute to those left on the page. */ 14272 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14273 14274 /* If architectural single step active, limit to 1. */ 14275 if (dc->ss_active) { 14276 bound = 1; 14277 } 14278 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14279 } 14280 14281 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14282 { 14283 } 14284 14285 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14286 { 14287 DisasContext *dc = container_of(dcbase, DisasContext, base); 14288 target_ulong pc_arg = dc->base.pc_next; 14289 14290 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14291 pc_arg &= ~TARGET_PAGE_MASK; 14292 } 14293 tcg_gen_insn_start(pc_arg, 0, 0); 14294 dc->insn_start = tcg_last_op(); 14295 } 14296 14297 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14298 { 14299 DisasContext *s = container_of(dcbase, DisasContext, base); 14300 CPUARMState *env = cpu->env_ptr; 14301 uint64_t pc = s->base.pc_next; 14302 uint32_t insn; 14303 14304 /* Singlestep exceptions have the highest priority. */ 14305 if (s->ss_active && !s->pstate_ss) { 14306 /* Singlestep state is Active-pending. 14307 * If we're in this state at the start of a TB then either 14308 * a) we just took an exception to an EL which is being debugged 14309 * and this is the first insn in the exception handler 14310 * b) debug exceptions were masked and we just unmasked them 14311 * without changing EL (eg by clearing PSTATE.D) 14312 * In either case we're going to take a swstep exception in the 14313 * "did not step an insn" case, and so the syndrome ISV and EX 14314 * bits should be zero. 14315 */ 14316 assert(s->base.num_insns == 1); 14317 gen_swstep_exception(s, 0, 0); 14318 s->base.is_jmp = DISAS_NORETURN; 14319 s->base.pc_next = pc + 4; 14320 return; 14321 } 14322 14323 if (pc & 3) { 14324 /* 14325 * PC alignment fault. This has priority over the instruction abort 14326 * that we would receive from a translation fault via arm_ldl_code. 14327 * This should only be possible after an indirect branch, at the 14328 * start of the TB. 14329 */ 14330 assert(s->base.num_insns == 1); 14331 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14332 s->base.is_jmp = DISAS_NORETURN; 14333 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14334 return; 14335 } 14336 14337 s->pc_curr = pc; 14338 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14339 s->insn = insn; 14340 s->base.pc_next = pc + 4; 14341 14342 s->fp_access_checked = false; 14343 s->sve_access_checked = false; 14344 14345 if (s->pstate_il) { 14346 /* 14347 * Illegal execution state. This has priority over BTI 14348 * exceptions, but comes after instruction abort exceptions. 14349 */ 14350 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14351 return; 14352 } 14353 14354 if (dc_isar_feature(aa64_bti, s)) { 14355 if (s->base.num_insns == 1) { 14356 /* 14357 * At the first insn of the TB, compute s->guarded_page. 14358 * We delayed computing this until successfully reading 14359 * the first insn of the TB, above. This (mostly) ensures 14360 * that the softmmu tlb entry has been populated, and the 14361 * page table GP bit is available. 14362 * 14363 * Note that we need to compute this even if btype == 0, 14364 * because this value is used for BR instructions later 14365 * where ENV is not available. 14366 */ 14367 s->guarded_page = is_guarded_page(env, s); 14368 14369 /* First insn can have btype set to non-zero. */ 14370 tcg_debug_assert(s->btype >= 0); 14371 14372 /* 14373 * Note that the Branch Target Exception has fairly high 14374 * priority -- below debugging exceptions but above most 14375 * everything else. This allows us to handle this now 14376 * instead of waiting until the insn is otherwise decoded. 14377 */ 14378 if (s->btype != 0 14379 && s->guarded_page 14380 && !btype_destination_ok(insn, s->bt, s->btype)) { 14381 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14382 return; 14383 } 14384 } else { 14385 /* Not the first insn: btype must be 0. */ 14386 tcg_debug_assert(s->btype == 0); 14387 } 14388 } 14389 14390 s->is_nonstreaming = false; 14391 if (s->sme_trap_nonstreaming) { 14392 disas_sme_fa64(s, insn); 14393 } 14394 14395 switch (extract32(insn, 25, 4)) { 14396 case 0x0: 14397 if (!extract32(insn, 31, 1) || !disas_sme(s, insn)) { 14398 unallocated_encoding(s); 14399 } 14400 break; 14401 case 0x1: case 0x3: /* UNALLOCATED */ 14402 unallocated_encoding(s); 14403 break; 14404 case 0x2: 14405 if (!disas_sve(s, insn)) { 14406 unallocated_encoding(s); 14407 } 14408 break; 14409 case 0x8: case 0x9: /* Data processing - immediate */ 14410 disas_data_proc_imm(s, insn); 14411 break; 14412 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14413 disas_b_exc_sys(s, insn); 14414 break; 14415 case 0x4: 14416 case 0x6: 14417 case 0xc: 14418 case 0xe: /* Loads and stores */ 14419 disas_ldst(s, insn); 14420 break; 14421 case 0x5: 14422 case 0xd: /* Data processing - register */ 14423 disas_data_proc_reg(s, insn); 14424 break; 14425 case 0x7: 14426 case 0xf: /* Data processing - SIMD and floating point */ 14427 disas_data_proc_simd_fp(s, insn); 14428 break; 14429 default: 14430 assert(FALSE); /* all 15 cases should be handled above */ 14431 break; 14432 } 14433 14434 /* 14435 * After execution of most insns, btype is reset to 0. 14436 * Note that we set btype == -1 when the insn sets btype. 14437 */ 14438 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14439 reset_btype(s); 14440 } 14441 } 14442 14443 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14444 { 14445 DisasContext *dc = container_of(dcbase, DisasContext, base); 14446 14447 if (unlikely(dc->ss_active)) { 14448 /* Note that this means single stepping WFI doesn't halt the CPU. 14449 * For conditional branch insns this is harmless unreachable code as 14450 * gen_goto_tb() has already handled emitting the debug exception 14451 * (and thus a tb-jump is not possible when singlestepping). 14452 */ 14453 switch (dc->base.is_jmp) { 14454 default: 14455 gen_a64_update_pc(dc, 4); 14456 /* fall through */ 14457 case DISAS_EXIT: 14458 case DISAS_JUMP: 14459 gen_step_complete_exception(dc); 14460 break; 14461 case DISAS_NORETURN: 14462 break; 14463 } 14464 } else { 14465 switch (dc->base.is_jmp) { 14466 case DISAS_NEXT: 14467 case DISAS_TOO_MANY: 14468 gen_goto_tb(dc, 1, 4); 14469 break; 14470 default: 14471 case DISAS_UPDATE_EXIT: 14472 gen_a64_update_pc(dc, 4); 14473 /* fall through */ 14474 case DISAS_EXIT: 14475 tcg_gen_exit_tb(NULL, 0); 14476 break; 14477 case DISAS_UPDATE_NOCHAIN: 14478 gen_a64_update_pc(dc, 4); 14479 /* fall through */ 14480 case DISAS_JUMP: 14481 tcg_gen_lookup_and_goto_ptr(); 14482 break; 14483 case DISAS_NORETURN: 14484 case DISAS_SWI: 14485 break; 14486 case DISAS_WFE: 14487 gen_a64_update_pc(dc, 4); 14488 gen_helper_wfe(cpu_env); 14489 break; 14490 case DISAS_YIELD: 14491 gen_a64_update_pc(dc, 4); 14492 gen_helper_yield(cpu_env); 14493 break; 14494 case DISAS_WFI: 14495 /* 14496 * This is a special case because we don't want to just halt 14497 * the CPU if trying to debug across a WFI. 14498 */ 14499 gen_a64_update_pc(dc, 4); 14500 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14501 /* 14502 * The helper doesn't necessarily throw an exception, but we 14503 * must go back to the main loop to check for interrupts anyway. 14504 */ 14505 tcg_gen_exit_tb(NULL, 0); 14506 break; 14507 } 14508 } 14509 } 14510 14511 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14512 CPUState *cpu, FILE *logfile) 14513 { 14514 DisasContext *dc = container_of(dcbase, DisasContext, base); 14515 14516 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14517 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14518 } 14519 14520 const TranslatorOps aarch64_translator_ops = { 14521 .init_disas_context = aarch64_tr_init_disas_context, 14522 .tb_start = aarch64_tr_tb_start, 14523 .insn_start = aarch64_tr_insn_start, 14524 .translate_insn = aarch64_tr_translate_insn, 14525 .tb_stop = aarch64_tr_tb_stop, 14526 .disas_log = aarch64_tr_disas_log, 14527 }; 14528