1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 4-operand operation using an out-of-line helper. */ 728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, int ra, int data, gen_helper_gvec_4 *fn) 730 { 731 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 732 vec_full_reg_offset(s, rn), 733 vec_full_reg_offset(s, rm), 734 vec_full_reg_offset(s, ra), 735 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 736 } 737 738 /* 739 * Expand a 4-operand + fpstatus pointer + simd data value operation using 740 * an out-of-line helper. 741 */ 742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, bool is_fp16, int data, 744 gen_helper_gvec_4_ptr *fn) 745 { 746 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 747 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 748 vec_full_reg_offset(s, rn), 749 vec_full_reg_offset(s, rm), 750 vec_full_reg_offset(s, ra), fpst, 751 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 752 } 753 754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 755 * than the 32 bit equivalent. 756 */ 757 static inline void gen_set_NZ64(TCGv_i64 result) 758 { 759 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 760 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 761 } 762 763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 764 static inline void gen_logic_CC(int sf, TCGv_i64 result) 765 { 766 if (sf) { 767 gen_set_NZ64(result); 768 } else { 769 tcg_gen_extrl_i64_i32(cpu_ZF, result); 770 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 771 } 772 tcg_gen_movi_i32(cpu_CF, 0); 773 tcg_gen_movi_i32(cpu_VF, 0); 774 } 775 776 /* dest = T0 + T1; compute C, N, V and Z flags */ 777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 778 { 779 TCGv_i64 result, flag, tmp; 780 result = tcg_temp_new_i64(); 781 flag = tcg_temp_new_i64(); 782 tmp = tcg_temp_new_i64(); 783 784 tcg_gen_movi_i64(tmp, 0); 785 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 786 787 tcg_gen_extrl_i64_i32(cpu_CF, flag); 788 789 gen_set_NZ64(result); 790 791 tcg_gen_xor_i64(flag, result, t0); 792 tcg_gen_xor_i64(tmp, t0, t1); 793 tcg_gen_andc_i64(flag, flag, tmp); 794 tcg_gen_extrh_i64_i32(cpu_VF, flag); 795 796 tcg_gen_mov_i64(dest, result); 797 } 798 799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 TCGv_i32 t0_32 = tcg_temp_new_i32(); 802 TCGv_i32 t1_32 = tcg_temp_new_i32(); 803 TCGv_i32 tmp = tcg_temp_new_i32(); 804 805 tcg_gen_movi_i32(tmp, 0); 806 tcg_gen_extrl_i64_i32(t0_32, t0); 807 tcg_gen_extrl_i64_i32(t1_32, t1); 808 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 809 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 810 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 811 tcg_gen_xor_i32(tmp, t0_32, t1_32); 812 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 813 tcg_gen_extu_i32_i64(dest, cpu_NF); 814 } 815 816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 817 { 818 if (sf) { 819 gen_add64_CC(dest, t0, t1); 820 } else { 821 gen_add32_CC(dest, t0, t1); 822 } 823 } 824 825 /* dest = T0 - T1; compute C, N, V and Z flags */ 826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 827 { 828 /* 64 bit arithmetic */ 829 TCGv_i64 result, flag, tmp; 830 831 result = tcg_temp_new_i64(); 832 flag = tcg_temp_new_i64(); 833 tcg_gen_sub_i64(result, t0, t1); 834 835 gen_set_NZ64(result); 836 837 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 838 tcg_gen_extrl_i64_i32(cpu_CF, flag); 839 840 tcg_gen_xor_i64(flag, result, t0); 841 tmp = tcg_temp_new_i64(); 842 tcg_gen_xor_i64(tmp, t0, t1); 843 tcg_gen_and_i64(flag, flag, tmp); 844 tcg_gen_extrh_i64_i32(cpu_VF, flag); 845 tcg_gen_mov_i64(dest, result); 846 } 847 848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 849 { 850 /* 32 bit arithmetic */ 851 TCGv_i32 t0_32 = tcg_temp_new_i32(); 852 TCGv_i32 t1_32 = tcg_temp_new_i32(); 853 TCGv_i32 tmp; 854 855 tcg_gen_extrl_i64_i32(t0_32, t0); 856 tcg_gen_extrl_i64_i32(t1_32, t1); 857 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 858 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 859 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 860 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 861 tmp = tcg_temp_new_i32(); 862 tcg_gen_xor_i32(tmp, t0_32, t1_32); 863 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 864 tcg_gen_extu_i32_i64(dest, cpu_NF); 865 } 866 867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 868 { 869 if (sf) { 870 gen_sub64_CC(dest, t0, t1); 871 } else { 872 gen_sub32_CC(dest, t0, t1); 873 } 874 } 875 876 /* dest = T0 + T1 + CF; do not compute flags. */ 877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 878 { 879 TCGv_i64 flag = tcg_temp_new_i64(); 880 tcg_gen_extu_i32_i64(flag, cpu_CF); 881 tcg_gen_add_i64(dest, t0, t1); 882 tcg_gen_add_i64(dest, dest, flag); 883 884 if (!sf) { 885 tcg_gen_ext32u_i64(dest, dest); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 if (sf) { 893 TCGv_i64 result = tcg_temp_new_i64(); 894 TCGv_i64 cf_64 = tcg_temp_new_i64(); 895 TCGv_i64 vf_64 = tcg_temp_new_i64(); 896 TCGv_i64 tmp = tcg_temp_new_i64(); 897 TCGv_i64 zero = tcg_constant_i64(0); 898 899 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 900 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 901 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 902 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 903 gen_set_NZ64(result); 904 905 tcg_gen_xor_i64(vf_64, result, t0); 906 tcg_gen_xor_i64(tmp, t0, t1); 907 tcg_gen_andc_i64(vf_64, vf_64, tmp); 908 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 909 910 tcg_gen_mov_i64(dest, result); 911 } else { 912 TCGv_i32 t0_32 = tcg_temp_new_i32(); 913 TCGv_i32 t1_32 = tcg_temp_new_i32(); 914 TCGv_i32 tmp = tcg_temp_new_i32(); 915 TCGv_i32 zero = tcg_constant_i32(0); 916 917 tcg_gen_extrl_i64_i32(t0_32, t0); 918 tcg_gen_extrl_i64_i32(t1_32, t1); 919 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 920 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 921 922 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 923 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 924 tcg_gen_xor_i32(tmp, t0_32, t1_32); 925 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 926 tcg_gen_extu_i32_i64(dest, cpu_NF); 927 } 928 } 929 930 /* 931 * Load/Store generators 932 */ 933 934 /* 935 * Store from GPR register to memory. 936 */ 937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 938 TCGv_i64 tcg_addr, MemOp memop, int memidx, 939 bool iss_valid, 940 unsigned int iss_srt, 941 bool iss_sf, bool iss_ar) 942 { 943 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 944 945 if (iss_valid) { 946 uint32_t syn; 947 948 syn = syn_data_abort_with_iss(0, 949 (memop & MO_SIZE), 950 false, 951 iss_srt, 952 iss_sf, 953 iss_ar, 954 0, 0, 0, 0, 0, false); 955 disas_set_insn_syndrome(s, syn); 956 } 957 } 958 959 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 960 TCGv_i64 tcg_addr, MemOp memop, 961 bool iss_valid, 962 unsigned int iss_srt, 963 bool iss_sf, bool iss_ar) 964 { 965 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 966 iss_valid, iss_srt, iss_sf, iss_ar); 967 } 968 969 /* 970 * Load from memory to GPR register 971 */ 972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 973 MemOp memop, bool extend, int memidx, 974 bool iss_valid, unsigned int iss_srt, 975 bool iss_sf, bool iss_ar) 976 { 977 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 978 979 if (extend && (memop & MO_SIGN)) { 980 g_assert((memop & MO_SIZE) <= MO_32); 981 tcg_gen_ext32u_i64(dest, dest); 982 } 983 984 if (iss_valid) { 985 uint32_t syn; 986 987 syn = syn_data_abort_with_iss(0, 988 (memop & MO_SIZE), 989 (memop & MO_SIGN) != 0, 990 iss_srt, 991 iss_sf, 992 iss_ar, 993 0, 0, 0, 0, 0, false); 994 disas_set_insn_syndrome(s, syn); 995 } 996 } 997 998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 999 MemOp memop, bool extend, 1000 bool iss_valid, unsigned int iss_srt, 1001 bool iss_sf, bool iss_ar) 1002 { 1003 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1004 iss_valid, iss_srt, iss_sf, iss_ar); 1005 } 1006 1007 /* 1008 * Store from FP register to memory 1009 */ 1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1011 { 1012 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1013 TCGv_i64 tmplo = tcg_temp_new_i64(); 1014 1015 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1016 1017 if ((mop & MO_SIZE) < MO_128) { 1018 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1019 } else { 1020 TCGv_i64 tmphi = tcg_temp_new_i64(); 1021 TCGv_i128 t16 = tcg_temp_new_i128(); 1022 1023 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1024 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1025 1026 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1027 } 1028 } 1029 1030 /* 1031 * Load from memory to FP register 1032 */ 1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1034 { 1035 /* This always zero-extends and writes to a full 128 bit wide vector */ 1036 TCGv_i64 tmplo = tcg_temp_new_i64(); 1037 TCGv_i64 tmphi = NULL; 1038 1039 if ((mop & MO_SIZE) < MO_128) { 1040 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1041 } else { 1042 TCGv_i128 t16 = tcg_temp_new_i128(); 1043 1044 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1045 1046 tmphi = tcg_temp_new_i64(); 1047 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1048 } 1049 1050 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1051 1052 if (tmphi) { 1053 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1054 } 1055 clear_vec_high(s, tmphi != NULL, destidx); 1056 } 1057 1058 /* 1059 * Vector load/store helpers. 1060 * 1061 * The principal difference between this and a FP load is that we don't 1062 * zero extend as we are filling a partial chunk of the vector register. 1063 * These functions don't support 128 bit loads/stores, which would be 1064 * normal load/store operations. 1065 * 1066 * The _i32 versions are useful when operating on 32 bit quantities 1067 * (eg for floating point single or using Neon helper functions). 1068 */ 1069 1070 /* Get value of an element within a vector register */ 1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1072 int element, MemOp memop) 1073 { 1074 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1075 switch ((unsigned)memop) { 1076 case MO_8: 1077 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1078 break; 1079 case MO_16: 1080 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1081 break; 1082 case MO_32: 1083 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1084 break; 1085 case MO_8|MO_SIGN: 1086 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1087 break; 1088 case MO_16|MO_SIGN: 1089 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1090 break; 1091 case MO_32|MO_SIGN: 1092 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1093 break; 1094 case MO_64: 1095 case MO_64|MO_SIGN: 1096 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 default: 1099 g_assert_not_reached(); 1100 } 1101 } 1102 1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1104 int element, MemOp memop) 1105 { 1106 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1107 switch (memop) { 1108 case MO_8: 1109 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1110 break; 1111 case MO_16: 1112 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1113 break; 1114 case MO_8|MO_SIGN: 1115 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1116 break; 1117 case MO_16|MO_SIGN: 1118 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1119 break; 1120 case MO_32: 1121 case MO_32|MO_SIGN: 1122 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 default: 1125 g_assert_not_reached(); 1126 } 1127 } 1128 1129 /* Set value of an element within a vector register */ 1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1131 int element, MemOp memop) 1132 { 1133 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1134 switch (memop) { 1135 case MO_8: 1136 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1137 break; 1138 case MO_16: 1139 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1140 break; 1141 case MO_32: 1142 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1143 break; 1144 case MO_64: 1145 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1146 break; 1147 default: 1148 g_assert_not_reached(); 1149 } 1150 } 1151 1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1153 int destidx, int element, MemOp memop) 1154 { 1155 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1156 switch (memop) { 1157 case MO_8: 1158 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1159 break; 1160 case MO_16: 1161 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1162 break; 1163 case MO_32: 1164 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1165 break; 1166 default: 1167 g_assert_not_reached(); 1168 } 1169 } 1170 1171 /* Store from vector register to memory */ 1172 static void do_vec_st(DisasContext *s, int srcidx, int element, 1173 TCGv_i64 tcg_addr, MemOp mop) 1174 { 1175 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1176 1177 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1178 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1179 } 1180 1181 /* Load from memory to vector register */ 1182 static void do_vec_ld(DisasContext *s, int destidx, int element, 1183 TCGv_i64 tcg_addr, MemOp mop) 1184 { 1185 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1186 1187 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1188 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1189 } 1190 1191 /* Check that FP/Neon access is enabled. If it is, return 1192 * true. If not, emit code to generate an appropriate exception, 1193 * and return false; the caller should not emit any code for 1194 * the instruction. Note that this check must happen after all 1195 * unallocated-encoding checks (otherwise the syndrome information 1196 * for the resulting exception will be incorrect). 1197 */ 1198 static bool fp_access_check_only(DisasContext *s) 1199 { 1200 if (s->fp_excp_el) { 1201 assert(!s->fp_access_checked); 1202 s->fp_access_checked = true; 1203 1204 gen_exception_insn_el(s, 0, EXCP_UDEF, 1205 syn_fp_access_trap(1, 0xe, false, 0), 1206 s->fp_excp_el); 1207 return false; 1208 } 1209 s->fp_access_checked = true; 1210 return true; 1211 } 1212 1213 static bool fp_access_check(DisasContext *s) 1214 { 1215 if (!fp_access_check_only(s)) { 1216 return false; 1217 } 1218 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1219 gen_exception_insn(s, 0, EXCP_UDEF, 1220 syn_smetrap(SME_ET_Streaming, false)); 1221 return false; 1222 } 1223 return true; 1224 } 1225 1226 /* 1227 * Check that SVE access is enabled. If it is, return true. 1228 * If not, emit code to generate an appropriate exception and return false. 1229 * This function corresponds to CheckSVEEnabled(). 1230 */ 1231 bool sve_access_check(DisasContext *s) 1232 { 1233 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1234 assert(dc_isar_feature(aa64_sme, s)); 1235 if (!sme_sm_enabled_check(s)) { 1236 goto fail_exit; 1237 } 1238 } else if (s->sve_excp_el) { 1239 gen_exception_insn_el(s, 0, EXCP_UDEF, 1240 syn_sve_access_trap(), s->sve_excp_el); 1241 goto fail_exit; 1242 } 1243 s->sve_access_checked = true; 1244 return fp_access_check(s); 1245 1246 fail_exit: 1247 /* Assert that we only raise one exception per instruction. */ 1248 assert(!s->sve_access_checked); 1249 s->sve_access_checked = true; 1250 return false; 1251 } 1252 1253 /* 1254 * Check that SME access is enabled, raise an exception if not. 1255 * Note that this function corresponds to CheckSMEAccess and is 1256 * only used directly for cpregs. 1257 */ 1258 static bool sme_access_check(DisasContext *s) 1259 { 1260 if (s->sme_excp_el) { 1261 gen_exception_insn_el(s, 0, EXCP_UDEF, 1262 syn_smetrap(SME_ET_AccessTrap, false), 1263 s->sme_excp_el); 1264 return false; 1265 } 1266 return true; 1267 } 1268 1269 /* This function corresponds to CheckSMEEnabled. */ 1270 bool sme_enabled_check(DisasContext *s) 1271 { 1272 /* 1273 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1274 * to be zero when fp_excp_el has priority. This is because we need 1275 * sme_excp_el by itself for cpregs access checks. 1276 */ 1277 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1278 s->fp_access_checked = true; 1279 return sme_access_check(s); 1280 } 1281 return fp_access_check_only(s); 1282 } 1283 1284 /* Common subroutine for CheckSMEAnd*Enabled. */ 1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1286 { 1287 if (!sme_enabled_check(s)) { 1288 return false; 1289 } 1290 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1291 gen_exception_insn(s, 0, EXCP_UDEF, 1292 syn_smetrap(SME_ET_NotStreaming, false)); 1293 return false; 1294 } 1295 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1296 gen_exception_insn(s, 0, EXCP_UDEF, 1297 syn_smetrap(SME_ET_InactiveZA, false)); 1298 return false; 1299 } 1300 return true; 1301 } 1302 1303 /* 1304 * Expanders for AdvSIMD translation functions. 1305 */ 1306 1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1308 gen_helper_gvec_2 *fn) 1309 { 1310 if (!a->q && a->esz == MO_64) { 1311 return false; 1312 } 1313 if (fp_access_check(s)) { 1314 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1315 } 1316 return true; 1317 } 1318 1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1320 gen_helper_gvec_3 *fn) 1321 { 1322 if (!a->q && a->esz == MO_64) { 1323 return false; 1324 } 1325 if (fp_access_check(s)) { 1326 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1327 } 1328 return true; 1329 } 1330 1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1332 { 1333 if (!a->q && a->esz == MO_64) { 1334 return false; 1335 } 1336 if (fp_access_check(s)) { 1337 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1338 } 1339 return true; 1340 } 1341 1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1343 { 1344 if (a->esz == MO_64) { 1345 return false; 1346 } 1347 if (fp_access_check(s)) { 1348 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1349 } 1350 return true; 1351 } 1352 1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1354 { 1355 if (a->esz == MO_8) { 1356 return false; 1357 } 1358 return do_gvec_fn3_no64(s, a, fn); 1359 } 1360 1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1362 { 1363 if (!a->q && a->esz == MO_64) { 1364 return false; 1365 } 1366 if (fp_access_check(s)) { 1367 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1368 } 1369 return true; 1370 } 1371 1372 /* 1373 * This utility function is for doing register extension with an 1374 * optional shift. You will likely want to pass a temporary for the 1375 * destination register. See DecodeRegExtend() in the ARM ARM. 1376 */ 1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1378 int option, unsigned int shift) 1379 { 1380 int extsize = extract32(option, 0, 2); 1381 bool is_signed = extract32(option, 2, 1); 1382 1383 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1384 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1385 } 1386 1387 static inline void gen_check_sp_alignment(DisasContext *s) 1388 { 1389 /* The AArch64 architecture mandates that (if enabled via PSTATE 1390 * or SCTLR bits) there is a check that SP is 16-aligned on every 1391 * SP-relative load or store (with an exception generated if it is not). 1392 * In line with general QEMU practice regarding misaligned accesses, 1393 * we omit these checks for the sake of guest program performance. 1394 * This function is provided as a hook so we can more easily add these 1395 * checks in future (possibly as a "favour catching guest program bugs 1396 * over speed" user selectable option). 1397 */ 1398 } 1399 1400 /* 1401 * This provides a simple table based table lookup decoder. It is 1402 * intended to be used when the relevant bits for decode are too 1403 * awkwardly placed and switch/if based logic would be confusing and 1404 * deeply nested. Since it's a linear search through the table, tables 1405 * should be kept small. 1406 * 1407 * It returns the first handler where insn & mask == pattern, or 1408 * NULL if there is no match. 1409 * The table is terminated by an empty mask (i.e. 0) 1410 */ 1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1412 uint32_t insn) 1413 { 1414 const AArch64DecodeTable *tptr = table; 1415 1416 while (tptr->mask) { 1417 if ((insn & tptr->mask) == tptr->pattern) { 1418 return tptr->disas_fn; 1419 } 1420 tptr++; 1421 } 1422 return NULL; 1423 } 1424 1425 /* 1426 * The instruction disassembly implemented here matches 1427 * the instruction encoding classifications in chapter C4 1428 * of the ARM Architecture Reference Manual (DDI0487B_a); 1429 * classification names and decode diagrams here should generally 1430 * match up with those in the manual. 1431 */ 1432 1433 static bool trans_B(DisasContext *s, arg_i *a) 1434 { 1435 reset_btype(s); 1436 gen_goto_tb(s, 0, a->imm); 1437 return true; 1438 } 1439 1440 static bool trans_BL(DisasContext *s, arg_i *a) 1441 { 1442 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1443 reset_btype(s); 1444 gen_goto_tb(s, 0, a->imm); 1445 return true; 1446 } 1447 1448 1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1450 { 1451 DisasLabel match; 1452 TCGv_i64 tcg_cmp; 1453 1454 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1455 reset_btype(s); 1456 1457 match = gen_disas_label(s); 1458 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1459 tcg_cmp, 0, match.label); 1460 gen_goto_tb(s, 0, 4); 1461 set_disas_label(s, match); 1462 gen_goto_tb(s, 1, a->imm); 1463 return true; 1464 } 1465 1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1467 { 1468 DisasLabel match; 1469 TCGv_i64 tcg_cmp; 1470 1471 tcg_cmp = tcg_temp_new_i64(); 1472 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1473 1474 reset_btype(s); 1475 1476 match = gen_disas_label(s); 1477 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1478 tcg_cmp, 0, match.label); 1479 gen_goto_tb(s, 0, 4); 1480 set_disas_label(s, match); 1481 gen_goto_tb(s, 1, a->imm); 1482 return true; 1483 } 1484 1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1486 { 1487 /* BC.cond is only present with FEAT_HBC */ 1488 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1489 return false; 1490 } 1491 reset_btype(s); 1492 if (a->cond < 0x0e) { 1493 /* genuinely conditional branches */ 1494 DisasLabel match = gen_disas_label(s); 1495 arm_gen_test_cc(a->cond, match.label); 1496 gen_goto_tb(s, 0, 4); 1497 set_disas_label(s, match); 1498 gen_goto_tb(s, 1, a->imm); 1499 } else { 1500 /* 0xe and 0xf are both "always" conditions */ 1501 gen_goto_tb(s, 0, a->imm); 1502 } 1503 return true; 1504 } 1505 1506 static void set_btype_for_br(DisasContext *s, int rn) 1507 { 1508 if (dc_isar_feature(aa64_bti, s)) { 1509 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1510 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1511 } 1512 } 1513 1514 static void set_btype_for_blr(DisasContext *s) 1515 { 1516 if (dc_isar_feature(aa64_bti, s)) { 1517 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1518 set_btype(s, 2); 1519 } 1520 } 1521 1522 static bool trans_BR(DisasContext *s, arg_r *a) 1523 { 1524 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1525 set_btype_for_br(s, a->rn); 1526 s->base.is_jmp = DISAS_JUMP; 1527 return true; 1528 } 1529 1530 static bool trans_BLR(DisasContext *s, arg_r *a) 1531 { 1532 TCGv_i64 dst = cpu_reg(s, a->rn); 1533 TCGv_i64 lr = cpu_reg(s, 30); 1534 if (dst == lr) { 1535 TCGv_i64 tmp = tcg_temp_new_i64(); 1536 tcg_gen_mov_i64(tmp, dst); 1537 dst = tmp; 1538 } 1539 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1540 gen_a64_set_pc(s, dst); 1541 set_btype_for_blr(s); 1542 s->base.is_jmp = DISAS_JUMP; 1543 return true; 1544 } 1545 1546 static bool trans_RET(DisasContext *s, arg_r *a) 1547 { 1548 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1549 s->base.is_jmp = DISAS_JUMP; 1550 return true; 1551 } 1552 1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1554 TCGv_i64 modifier, bool use_key_a) 1555 { 1556 TCGv_i64 truedst; 1557 /* 1558 * Return the branch target for a BRAA/RETA/etc, which is either 1559 * just the destination dst, or that value with the pauth check 1560 * done and the code removed from the high bits. 1561 */ 1562 if (!s->pauth_active) { 1563 return dst; 1564 } 1565 1566 truedst = tcg_temp_new_i64(); 1567 if (use_key_a) { 1568 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1569 } else { 1570 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1571 } 1572 return truedst; 1573 } 1574 1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1576 { 1577 TCGv_i64 dst; 1578 1579 if (!dc_isar_feature(aa64_pauth, s)) { 1580 return false; 1581 } 1582 1583 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1584 gen_a64_set_pc(s, dst); 1585 set_btype_for_br(s, a->rn); 1586 s->base.is_jmp = DISAS_JUMP; 1587 return true; 1588 } 1589 1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1591 { 1592 TCGv_i64 dst, lr; 1593 1594 if (!dc_isar_feature(aa64_pauth, s)) { 1595 return false; 1596 } 1597 1598 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1599 lr = cpu_reg(s, 30); 1600 if (dst == lr) { 1601 TCGv_i64 tmp = tcg_temp_new_i64(); 1602 tcg_gen_mov_i64(tmp, dst); 1603 dst = tmp; 1604 } 1605 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1606 gen_a64_set_pc(s, dst); 1607 set_btype_for_blr(s); 1608 s->base.is_jmp = DISAS_JUMP; 1609 return true; 1610 } 1611 1612 static bool trans_RETA(DisasContext *s, arg_reta *a) 1613 { 1614 TCGv_i64 dst; 1615 1616 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1617 gen_a64_set_pc(s, dst); 1618 s->base.is_jmp = DISAS_JUMP; 1619 return true; 1620 } 1621 1622 static bool trans_BRA(DisasContext *s, arg_bra *a) 1623 { 1624 TCGv_i64 dst; 1625 1626 if (!dc_isar_feature(aa64_pauth, s)) { 1627 return false; 1628 } 1629 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1630 gen_a64_set_pc(s, dst); 1631 set_btype_for_br(s, a->rn); 1632 s->base.is_jmp = DISAS_JUMP; 1633 return true; 1634 } 1635 1636 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1637 { 1638 TCGv_i64 dst, lr; 1639 1640 if (!dc_isar_feature(aa64_pauth, s)) { 1641 return false; 1642 } 1643 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1644 lr = cpu_reg(s, 30); 1645 if (dst == lr) { 1646 TCGv_i64 tmp = tcg_temp_new_i64(); 1647 tcg_gen_mov_i64(tmp, dst); 1648 dst = tmp; 1649 } 1650 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1651 gen_a64_set_pc(s, dst); 1652 set_btype_for_blr(s); 1653 s->base.is_jmp = DISAS_JUMP; 1654 return true; 1655 } 1656 1657 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1658 { 1659 TCGv_i64 dst; 1660 1661 if (s->current_el == 0) { 1662 return false; 1663 } 1664 if (s->trap_eret) { 1665 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1666 return true; 1667 } 1668 dst = tcg_temp_new_i64(); 1669 tcg_gen_ld_i64(dst, tcg_env, 1670 offsetof(CPUARMState, elr_el[s->current_el])); 1671 1672 translator_io_start(&s->base); 1673 1674 gen_helper_exception_return(tcg_env, dst); 1675 /* Must exit loop to check un-masked IRQs */ 1676 s->base.is_jmp = DISAS_EXIT; 1677 return true; 1678 } 1679 1680 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1681 { 1682 TCGv_i64 dst; 1683 1684 if (!dc_isar_feature(aa64_pauth, s)) { 1685 return false; 1686 } 1687 if (s->current_el == 0) { 1688 return false; 1689 } 1690 /* The FGT trap takes precedence over an auth trap. */ 1691 if (s->trap_eret) { 1692 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1693 return true; 1694 } 1695 dst = tcg_temp_new_i64(); 1696 tcg_gen_ld_i64(dst, tcg_env, 1697 offsetof(CPUARMState, elr_el[s->current_el])); 1698 1699 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1700 1701 translator_io_start(&s->base); 1702 1703 gen_helper_exception_return(tcg_env, dst); 1704 /* Must exit loop to check un-masked IRQs */ 1705 s->base.is_jmp = DISAS_EXIT; 1706 return true; 1707 } 1708 1709 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1710 { 1711 return true; 1712 } 1713 1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1715 { 1716 /* 1717 * When running in MTTCG we don't generate jumps to the yield and 1718 * WFE helpers as it won't affect the scheduling of other vCPUs. 1719 * If we wanted to more completely model WFE/SEV so we don't busy 1720 * spin unnecessarily we would need to do something more involved. 1721 */ 1722 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1723 s->base.is_jmp = DISAS_YIELD; 1724 } 1725 return true; 1726 } 1727 1728 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1729 { 1730 s->base.is_jmp = DISAS_WFI; 1731 return true; 1732 } 1733 1734 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1735 { 1736 /* 1737 * When running in MTTCG we don't generate jumps to the yield and 1738 * WFE helpers as it won't affect the scheduling of other vCPUs. 1739 * If we wanted to more completely model WFE/SEV so we don't busy 1740 * spin unnecessarily we would need to do something more involved. 1741 */ 1742 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1743 s->base.is_jmp = DISAS_WFE; 1744 } 1745 return true; 1746 } 1747 1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a) 1749 { 1750 if (!dc_isar_feature(aa64_wfxt, s)) { 1751 return false; 1752 } 1753 1754 /* 1755 * Because we need to pass the register value to the helper, 1756 * it's easier to emit the code now, unlike trans_WFI which 1757 * defers it to aarch64_tr_tb_stop(). That means we need to 1758 * check ss_active so that single-stepping a WFIT doesn't halt. 1759 */ 1760 if (s->ss_active) { 1761 /* Act like a NOP under architectural singlestep */ 1762 return true; 1763 } 1764 1765 gen_a64_update_pc(s, 4); 1766 gen_helper_wfit(tcg_env, cpu_reg(s, a->rd)); 1767 /* Go back to the main loop to check for interrupts */ 1768 s->base.is_jmp = DISAS_EXIT; 1769 return true; 1770 } 1771 1772 static bool trans_WFET(DisasContext *s, arg_WFET *a) 1773 { 1774 if (!dc_isar_feature(aa64_wfxt, s)) { 1775 return false; 1776 } 1777 1778 /* 1779 * We rely here on our WFE implementation being a NOP, so we 1780 * don't need to do anything different to handle the WFET timeout 1781 * from what trans_WFE does. 1782 */ 1783 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1784 s->base.is_jmp = DISAS_WFE; 1785 } 1786 return true; 1787 } 1788 1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1790 { 1791 if (s->pauth_active) { 1792 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1793 } 1794 return true; 1795 } 1796 1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1798 { 1799 if (s->pauth_active) { 1800 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1801 } 1802 return true; 1803 } 1804 1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1806 { 1807 if (s->pauth_active) { 1808 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1809 } 1810 return true; 1811 } 1812 1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1814 { 1815 if (s->pauth_active) { 1816 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1817 } 1818 return true; 1819 } 1820 1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1822 { 1823 if (s->pauth_active) { 1824 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1825 } 1826 return true; 1827 } 1828 1829 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1830 { 1831 /* Without RAS, we must implement this as NOP. */ 1832 if (dc_isar_feature(aa64_ras, s)) { 1833 /* 1834 * QEMU does not have a source of physical SErrors, 1835 * so we are only concerned with virtual SErrors. 1836 * The pseudocode in the ARM for this case is 1837 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1838 * AArch64.vESBOperation(); 1839 * Most of the condition can be evaluated at translation time. 1840 * Test for EL2 present, and defer test for SEL2 to runtime. 1841 */ 1842 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1843 gen_helper_vesb(tcg_env); 1844 } 1845 } 1846 return true; 1847 } 1848 1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1850 { 1851 if (s->pauth_active) { 1852 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1853 } 1854 return true; 1855 } 1856 1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1858 { 1859 if (s->pauth_active) { 1860 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1861 } 1862 return true; 1863 } 1864 1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1866 { 1867 if (s->pauth_active) { 1868 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1869 } 1870 return true; 1871 } 1872 1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1874 { 1875 if (s->pauth_active) { 1876 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1877 } 1878 return true; 1879 } 1880 1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1882 { 1883 if (s->pauth_active) { 1884 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1885 } 1886 return true; 1887 } 1888 1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1890 { 1891 if (s->pauth_active) { 1892 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1893 } 1894 return true; 1895 } 1896 1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1898 { 1899 if (s->pauth_active) { 1900 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1901 } 1902 return true; 1903 } 1904 1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1906 { 1907 if (s->pauth_active) { 1908 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1909 } 1910 return true; 1911 } 1912 1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1914 { 1915 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1916 return true; 1917 } 1918 1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1920 { 1921 /* We handle DSB and DMB the same way */ 1922 TCGBar bar; 1923 1924 switch (a->types) { 1925 case 1: /* MBReqTypes_Reads */ 1926 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1927 break; 1928 case 2: /* MBReqTypes_Writes */ 1929 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1930 break; 1931 default: /* MBReqTypes_All */ 1932 bar = TCG_BAR_SC | TCG_MO_ALL; 1933 break; 1934 } 1935 tcg_gen_mb(bar); 1936 return true; 1937 } 1938 1939 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1940 { 1941 /* 1942 * We need to break the TB after this insn to execute 1943 * self-modifying code correctly and also to take 1944 * any pending interrupts immediately. 1945 */ 1946 reset_btype(s); 1947 gen_goto_tb(s, 0, 4); 1948 return true; 1949 } 1950 1951 static bool trans_SB(DisasContext *s, arg_SB *a) 1952 { 1953 if (!dc_isar_feature(aa64_sb, s)) { 1954 return false; 1955 } 1956 /* 1957 * TODO: There is no speculation barrier opcode for TCG; 1958 * MB and end the TB instead. 1959 */ 1960 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1961 gen_goto_tb(s, 0, 4); 1962 return true; 1963 } 1964 1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1966 { 1967 if (!dc_isar_feature(aa64_condm_4, s)) { 1968 return false; 1969 } 1970 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1971 return true; 1972 } 1973 1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1975 { 1976 TCGv_i32 z; 1977 1978 if (!dc_isar_feature(aa64_condm_5, s)) { 1979 return false; 1980 } 1981 1982 z = tcg_temp_new_i32(); 1983 1984 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1985 1986 /* 1987 * (!C & !Z) << 31 1988 * (!(C | Z)) << 31 1989 * ~((C | Z) << 31) 1990 * ~-(C | Z) 1991 * (C | Z) - 1 1992 */ 1993 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1994 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1995 1996 /* !(Z & C) */ 1997 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1998 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1999 2000 /* (!C & Z) << 31 -> -(Z & ~C) */ 2001 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 2002 tcg_gen_neg_i32(cpu_VF, cpu_VF); 2003 2004 /* C | Z */ 2005 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 2006 2007 return true; 2008 } 2009 2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 2011 { 2012 if (!dc_isar_feature(aa64_condm_5, s)) { 2013 return false; 2014 } 2015 2016 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 2017 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 2018 2019 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 2020 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 2021 2022 tcg_gen_movi_i32(cpu_NF, 0); 2023 tcg_gen_movi_i32(cpu_VF, 0); 2024 2025 return true; 2026 } 2027 2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 2029 { 2030 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 2031 return false; 2032 } 2033 if (a->imm & 1) { 2034 set_pstate_bits(PSTATE_UAO); 2035 } else { 2036 clear_pstate_bits(PSTATE_UAO); 2037 } 2038 gen_rebuild_hflags(s); 2039 s->base.is_jmp = DISAS_TOO_MANY; 2040 return true; 2041 } 2042 2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 2044 { 2045 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 2046 return false; 2047 } 2048 if (a->imm & 1) { 2049 set_pstate_bits(PSTATE_PAN); 2050 } else { 2051 clear_pstate_bits(PSTATE_PAN); 2052 } 2053 gen_rebuild_hflags(s); 2054 s->base.is_jmp = DISAS_TOO_MANY; 2055 return true; 2056 } 2057 2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2059 { 2060 if (s->current_el == 0) { 2061 return false; 2062 } 2063 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2064 s->base.is_jmp = DISAS_TOO_MANY; 2065 return true; 2066 } 2067 2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2069 { 2070 if (!dc_isar_feature(aa64_ssbs, s)) { 2071 return false; 2072 } 2073 if (a->imm & 1) { 2074 set_pstate_bits(PSTATE_SSBS); 2075 } else { 2076 clear_pstate_bits(PSTATE_SSBS); 2077 } 2078 /* Don't need to rebuild hflags since SSBS is a nop */ 2079 s->base.is_jmp = DISAS_TOO_MANY; 2080 return true; 2081 } 2082 2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2084 { 2085 if (!dc_isar_feature(aa64_dit, s)) { 2086 return false; 2087 } 2088 if (a->imm & 1) { 2089 set_pstate_bits(PSTATE_DIT); 2090 } else { 2091 clear_pstate_bits(PSTATE_DIT); 2092 } 2093 /* There's no need to rebuild hflags because DIT is a nop */ 2094 s->base.is_jmp = DISAS_TOO_MANY; 2095 return true; 2096 } 2097 2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2099 { 2100 if (dc_isar_feature(aa64_mte, s)) { 2101 /* Full MTE is enabled -- set the TCO bit as directed. */ 2102 if (a->imm & 1) { 2103 set_pstate_bits(PSTATE_TCO); 2104 } else { 2105 clear_pstate_bits(PSTATE_TCO); 2106 } 2107 gen_rebuild_hflags(s); 2108 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2109 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2110 return true; 2111 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2112 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2113 return true; 2114 } else { 2115 /* Insn not present */ 2116 return false; 2117 } 2118 } 2119 2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2121 { 2122 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2123 s->base.is_jmp = DISAS_TOO_MANY; 2124 return true; 2125 } 2126 2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2128 { 2129 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2130 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2131 s->base.is_jmp = DISAS_UPDATE_EXIT; 2132 return true; 2133 } 2134 2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2136 { 2137 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2138 return false; 2139 } 2140 2141 if (a->imm == 0) { 2142 clear_pstate_bits(PSTATE_ALLINT); 2143 } else if (s->current_el > 1) { 2144 set_pstate_bits(PSTATE_ALLINT); 2145 } else { 2146 gen_helper_msr_set_allint_el1(tcg_env); 2147 } 2148 2149 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2150 s->base.is_jmp = DISAS_UPDATE_EXIT; 2151 return true; 2152 } 2153 2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2155 { 2156 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2157 return false; 2158 } 2159 if (sme_access_check(s)) { 2160 int old = s->pstate_sm | (s->pstate_za << 1); 2161 int new = a->imm * 3; 2162 2163 if ((old ^ new) & a->mask) { 2164 /* At least one bit changes. */ 2165 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2166 tcg_constant_i32(a->mask)); 2167 s->base.is_jmp = DISAS_TOO_MANY; 2168 } 2169 } 2170 return true; 2171 } 2172 2173 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2174 { 2175 TCGv_i32 tmp = tcg_temp_new_i32(); 2176 TCGv_i32 nzcv = tcg_temp_new_i32(); 2177 2178 /* build bit 31, N */ 2179 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2180 /* build bit 30, Z */ 2181 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2182 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2183 /* build bit 29, C */ 2184 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2185 /* build bit 28, V */ 2186 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2187 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2188 /* generate result */ 2189 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2190 } 2191 2192 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2193 { 2194 TCGv_i32 nzcv = tcg_temp_new_i32(); 2195 2196 /* take NZCV from R[t] */ 2197 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2198 2199 /* bit 31, N */ 2200 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2201 /* bit 30, Z */ 2202 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2203 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2204 /* bit 29, C */ 2205 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2206 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2207 /* bit 28, V */ 2208 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2209 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2210 } 2211 2212 static void gen_sysreg_undef(DisasContext *s, bool isread, 2213 uint8_t op0, uint8_t op1, uint8_t op2, 2214 uint8_t crn, uint8_t crm, uint8_t rt) 2215 { 2216 /* 2217 * Generate code to emit an UNDEF with correct syndrome 2218 * information for a failed system register access. 2219 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2220 * but if FEAT_IDST is implemented then read accesses to registers 2221 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2222 * syndrome. 2223 */ 2224 uint32_t syndrome; 2225 2226 if (isread && dc_isar_feature(aa64_ids, s) && 2227 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2228 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2229 } else { 2230 syndrome = syn_uncategorized(); 2231 } 2232 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2233 } 2234 2235 /* MRS - move from system register 2236 * MSR (register) - move to system register 2237 * SYS 2238 * SYSL 2239 * These are all essentially the same insn in 'read' and 'write' 2240 * versions, with varying op0 fields. 2241 */ 2242 static void handle_sys(DisasContext *s, bool isread, 2243 unsigned int op0, unsigned int op1, unsigned int op2, 2244 unsigned int crn, unsigned int crm, unsigned int rt) 2245 { 2246 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2247 crn, crm, op0, op1, op2); 2248 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2249 bool need_exit_tb = false; 2250 bool nv_trap_to_el2 = false; 2251 bool nv_redirect_reg = false; 2252 bool skip_fp_access_checks = false; 2253 bool nv2_mem_redirect = false; 2254 TCGv_ptr tcg_ri = NULL; 2255 TCGv_i64 tcg_rt; 2256 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2257 2258 if (crn == 11 || crn == 15) { 2259 /* 2260 * Check for TIDCP trap, which must take precedence over 2261 * the UNDEF for "no such register" etc. 2262 */ 2263 switch (s->current_el) { 2264 case 0: 2265 if (dc_isar_feature(aa64_tidcp1, s)) { 2266 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2267 } 2268 break; 2269 case 1: 2270 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2271 break; 2272 } 2273 } 2274 2275 if (!ri) { 2276 /* Unknown register; this might be a guest error or a QEMU 2277 * unimplemented feature. 2278 */ 2279 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2280 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2281 isread ? "read" : "write", op0, op1, crn, crm, op2); 2282 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2283 return; 2284 } 2285 2286 if (s->nv2 && ri->nv2_redirect_offset) { 2287 /* 2288 * Some registers always redirect to memory; some only do so if 2289 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2290 * pairs which share an offset; see the table in R_CSRPQ). 2291 */ 2292 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2293 nv2_mem_redirect = s->nv1; 2294 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2295 nv2_mem_redirect = !s->nv1; 2296 } else { 2297 nv2_mem_redirect = true; 2298 } 2299 } 2300 2301 /* Check access permissions */ 2302 if (!cp_access_ok(s->current_el, ri, isread)) { 2303 /* 2304 * FEAT_NV/NV2 handling does not do the usual FP access checks 2305 * for registers only accessible at EL2 (though it *does* do them 2306 * for registers accessible at EL1). 2307 */ 2308 skip_fp_access_checks = true; 2309 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2310 /* 2311 * This is one of the few EL2 registers which should redirect 2312 * to the equivalent EL1 register. We do that after running 2313 * the EL2 register's accessfn. 2314 */ 2315 nv_redirect_reg = true; 2316 assert(!nv2_mem_redirect); 2317 } else if (nv2_mem_redirect) { 2318 /* 2319 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2320 * UNDEF to EL1. 2321 */ 2322 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2323 /* 2324 * This register / instruction exists and is an EL2 register, so 2325 * we must trap to EL2 if accessed in nested virtualization EL1 2326 * instead of UNDEFing. We'll do that after the usual access checks. 2327 * (This makes a difference only for a couple of registers like 2328 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2329 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2330 * an accessfn which does nothing when called from EL1, because 2331 * the trap-to-EL3 controls which would apply to that register 2332 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2333 */ 2334 nv_trap_to_el2 = true; 2335 } else { 2336 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2337 return; 2338 } 2339 } 2340 2341 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2342 /* Emit code to perform further access permissions checks at 2343 * runtime; this may result in an exception. 2344 */ 2345 gen_a64_update_pc(s, 0); 2346 tcg_ri = tcg_temp_new_ptr(); 2347 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2348 tcg_constant_i32(key), 2349 tcg_constant_i32(syndrome), 2350 tcg_constant_i32(isread)); 2351 } else if (ri->type & ARM_CP_RAISES_EXC) { 2352 /* 2353 * The readfn or writefn might raise an exception; 2354 * synchronize the CPU state in case it does. 2355 */ 2356 gen_a64_update_pc(s, 0); 2357 } 2358 2359 if (!skip_fp_access_checks) { 2360 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2361 return; 2362 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2363 return; 2364 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2365 return; 2366 } 2367 } 2368 2369 if (nv_trap_to_el2) { 2370 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2371 return; 2372 } 2373 2374 if (nv_redirect_reg) { 2375 /* 2376 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2377 * Conveniently in all cases the encoding of the EL1 register is 2378 * identical to the EL2 register except that opc1 is 0. 2379 * Get the reginfo for the EL1 register to use for the actual access. 2380 * We don't use the EL1 register's access function, and 2381 * fine-grained-traps on EL1 also do not apply here. 2382 */ 2383 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2384 crn, crm, op0, 0, op2); 2385 ri = get_arm_cp_reginfo(s->cp_regs, key); 2386 assert(ri); 2387 assert(cp_access_ok(s->current_el, ri, isread)); 2388 /* 2389 * We might not have done an update_pc earlier, so check we don't 2390 * need it. We could support this in future if necessary. 2391 */ 2392 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2393 } 2394 2395 if (nv2_mem_redirect) { 2396 /* 2397 * This system register is being redirected into an EL2 memory access. 2398 * This means it is not an IO operation, doesn't change hflags, 2399 * and need not end the TB, because it has no side effects. 2400 * 2401 * The access is 64-bit single copy atomic, guaranteed aligned because 2402 * of the definition of VCNR_EL2. Its endianness depends on 2403 * SCTLR_EL2.EE, not on the data endianness of EL1. 2404 * It is done under either the EL2 translation regime or the EL2&0 2405 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2406 * PSTATE.PAN is 0. 2407 */ 2408 TCGv_i64 ptr = tcg_temp_new_i64(); 2409 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2410 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2411 int memidx = arm_to_core_mmu_idx(armmemidx); 2412 uint32_t syn; 2413 2414 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2415 2416 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2417 tcg_gen_addi_i64(ptr, ptr, 2418 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2419 tcg_rt = cpu_reg(s, rt); 2420 2421 syn = syn_data_abort_vncr(0, !isread, 0); 2422 disas_set_insn_syndrome(s, syn); 2423 if (isread) { 2424 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2425 } else { 2426 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2427 } 2428 return; 2429 } 2430 2431 /* Handle special cases first */ 2432 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2433 case 0: 2434 break; 2435 case ARM_CP_NOP: 2436 return; 2437 case ARM_CP_NZCV: 2438 tcg_rt = cpu_reg(s, rt); 2439 if (isread) { 2440 gen_get_nzcv(tcg_rt); 2441 } else { 2442 gen_set_nzcv(tcg_rt); 2443 } 2444 return; 2445 case ARM_CP_CURRENTEL: 2446 { 2447 /* 2448 * Reads as current EL value from pstate, which is 2449 * guaranteed to be constant by the tb flags. 2450 * For nested virt we should report EL2. 2451 */ 2452 int el = s->nv ? 2 : s->current_el; 2453 tcg_rt = cpu_reg(s, rt); 2454 tcg_gen_movi_i64(tcg_rt, el << 2); 2455 return; 2456 } 2457 case ARM_CP_DC_ZVA: 2458 /* Writes clear the aligned block of memory which rt points into. */ 2459 if (s->mte_active[0]) { 2460 int desc = 0; 2461 2462 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2463 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2464 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2465 2466 tcg_rt = tcg_temp_new_i64(); 2467 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2468 tcg_constant_i32(desc), cpu_reg(s, rt)); 2469 } else { 2470 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2471 } 2472 gen_helper_dc_zva(tcg_env, tcg_rt); 2473 return; 2474 case ARM_CP_DC_GVA: 2475 { 2476 TCGv_i64 clean_addr, tag; 2477 2478 /* 2479 * DC_GVA, like DC_ZVA, requires that we supply the original 2480 * pointer for an invalid page. Probe that address first. 2481 */ 2482 tcg_rt = cpu_reg(s, rt); 2483 clean_addr = clean_data_tbi(s, tcg_rt); 2484 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2485 2486 if (s->ata[0]) { 2487 /* Extract the tag from the register to match STZGM. */ 2488 tag = tcg_temp_new_i64(); 2489 tcg_gen_shri_i64(tag, tcg_rt, 56); 2490 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2491 } 2492 } 2493 return; 2494 case ARM_CP_DC_GZVA: 2495 { 2496 TCGv_i64 clean_addr, tag; 2497 2498 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2499 tcg_rt = cpu_reg(s, rt); 2500 clean_addr = clean_data_tbi(s, tcg_rt); 2501 gen_helper_dc_zva(tcg_env, clean_addr); 2502 2503 if (s->ata[0]) { 2504 /* Extract the tag from the register to match STZGM. */ 2505 tag = tcg_temp_new_i64(); 2506 tcg_gen_shri_i64(tag, tcg_rt, 56); 2507 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2508 } 2509 } 2510 return; 2511 default: 2512 g_assert_not_reached(); 2513 } 2514 2515 if (ri->type & ARM_CP_IO) { 2516 /* I/O operations must end the TB here (whether read or write) */ 2517 need_exit_tb = translator_io_start(&s->base); 2518 } 2519 2520 tcg_rt = cpu_reg(s, rt); 2521 2522 if (isread) { 2523 if (ri->type & ARM_CP_CONST) { 2524 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2525 } else if (ri->readfn) { 2526 if (!tcg_ri) { 2527 tcg_ri = gen_lookup_cp_reg(key); 2528 } 2529 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2530 } else { 2531 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2532 } 2533 } else { 2534 if (ri->type & ARM_CP_CONST) { 2535 /* If not forbidden by access permissions, treat as WI */ 2536 return; 2537 } else if (ri->writefn) { 2538 if (!tcg_ri) { 2539 tcg_ri = gen_lookup_cp_reg(key); 2540 } 2541 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2542 } else { 2543 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2544 } 2545 } 2546 2547 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2548 /* 2549 * A write to any coprocessor register that ends a TB 2550 * must rebuild the hflags for the next TB. 2551 */ 2552 gen_rebuild_hflags(s); 2553 /* 2554 * We default to ending the TB on a coprocessor register write, 2555 * but allow this to be suppressed by the register definition 2556 * (usually only necessary to work around guest bugs). 2557 */ 2558 need_exit_tb = true; 2559 } 2560 if (need_exit_tb) { 2561 s->base.is_jmp = DISAS_UPDATE_EXIT; 2562 } 2563 } 2564 2565 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2566 { 2567 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2568 return true; 2569 } 2570 2571 static bool trans_SVC(DisasContext *s, arg_i *a) 2572 { 2573 /* 2574 * For SVC, HVC and SMC we advance the single-step state 2575 * machine before taking the exception. This is architecturally 2576 * mandated, to ensure that single-stepping a system call 2577 * instruction works properly. 2578 */ 2579 uint32_t syndrome = syn_aa64_svc(a->imm); 2580 if (s->fgt_svc) { 2581 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2582 return true; 2583 } 2584 gen_ss_advance(s); 2585 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2586 return true; 2587 } 2588 2589 static bool trans_HVC(DisasContext *s, arg_i *a) 2590 { 2591 int target_el = s->current_el == 3 ? 3 : 2; 2592 2593 if (s->current_el == 0) { 2594 unallocated_encoding(s); 2595 return true; 2596 } 2597 /* 2598 * The pre HVC helper handles cases when HVC gets trapped 2599 * as an undefined insn by runtime configuration. 2600 */ 2601 gen_a64_update_pc(s, 0); 2602 gen_helper_pre_hvc(tcg_env); 2603 /* Architecture requires ss advance before we do the actual work */ 2604 gen_ss_advance(s); 2605 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2606 return true; 2607 } 2608 2609 static bool trans_SMC(DisasContext *s, arg_i *a) 2610 { 2611 if (s->current_el == 0) { 2612 unallocated_encoding(s); 2613 return true; 2614 } 2615 gen_a64_update_pc(s, 0); 2616 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2617 /* Architecture requires ss advance before we do the actual work */ 2618 gen_ss_advance(s); 2619 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2620 return true; 2621 } 2622 2623 static bool trans_BRK(DisasContext *s, arg_i *a) 2624 { 2625 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2626 return true; 2627 } 2628 2629 static bool trans_HLT(DisasContext *s, arg_i *a) 2630 { 2631 /* 2632 * HLT. This has two purposes. 2633 * Architecturally, it is an external halting debug instruction. 2634 * Since QEMU doesn't implement external debug, we treat this as 2635 * it is required for halting debug disabled: it will UNDEF. 2636 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2637 */ 2638 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2639 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2640 } else { 2641 unallocated_encoding(s); 2642 } 2643 return true; 2644 } 2645 2646 /* 2647 * Load/Store exclusive instructions are implemented by remembering 2648 * the value/address loaded, and seeing if these are the same 2649 * when the store is performed. This is not actually the architecturally 2650 * mandated semantics, but it works for typical guest code sequences 2651 * and avoids having to monitor regular stores. 2652 * 2653 * The store exclusive uses the atomic cmpxchg primitives to avoid 2654 * races in multi-threaded linux-user and when MTTCG softmmu is 2655 * enabled. 2656 */ 2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2658 int size, bool is_pair) 2659 { 2660 int idx = get_mem_index(s); 2661 TCGv_i64 dirty_addr, clean_addr; 2662 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2663 2664 s->is_ldex = true; 2665 dirty_addr = cpu_reg_sp(s, rn); 2666 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2667 2668 g_assert(size <= 3); 2669 if (is_pair) { 2670 g_assert(size >= 2); 2671 if (size == 2) { 2672 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2673 if (s->be_data == MO_LE) { 2674 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2675 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2676 } else { 2677 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2678 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2679 } 2680 } else { 2681 TCGv_i128 t16 = tcg_temp_new_i128(); 2682 2683 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2684 2685 if (s->be_data == MO_LE) { 2686 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2687 cpu_exclusive_high, t16); 2688 } else { 2689 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2690 cpu_exclusive_val, t16); 2691 } 2692 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2693 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2694 } 2695 } else { 2696 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2697 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2698 } 2699 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2700 } 2701 2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2703 int rn, int size, int is_pair) 2704 { 2705 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2706 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2707 * [addr] = {Rt}; 2708 * if (is_pair) { 2709 * [addr + datasize] = {Rt2}; 2710 * } 2711 * {Rd} = 0; 2712 * } else { 2713 * {Rd} = 1; 2714 * } 2715 * env->exclusive_addr = -1; 2716 */ 2717 TCGLabel *fail_label = gen_new_label(); 2718 TCGLabel *done_label = gen_new_label(); 2719 TCGv_i64 tmp, clean_addr; 2720 MemOp memop; 2721 2722 /* 2723 * FIXME: We are out of spec here. We have recorded only the address 2724 * from load_exclusive, not the entire range, and we assume that the 2725 * size of the access on both sides match. The architecture allows the 2726 * store to be smaller than the load, so long as the stored bytes are 2727 * within the range recorded by the load. 2728 */ 2729 2730 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2731 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2732 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2733 2734 /* 2735 * The write, and any associated faults, only happen if the virtual 2736 * and physical addresses pass the exclusive monitor check. These 2737 * faults are exceedingly unlikely, because normally the guest uses 2738 * the exact same address register for the load_exclusive, and we 2739 * would have recognized these faults there. 2740 * 2741 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2742 * unaligned 4-byte write within the range of an aligned 8-byte load. 2743 * With LSE2, the store would need to cross a 16-byte boundary when the 2744 * load did not, which would mean the store is outside the range 2745 * recorded for the monitor, which would have failed a corrected monitor 2746 * check above. For now, we assume no size change and retain the 2747 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2748 * 2749 * It is possible to trigger an MTE fault, by performing the load with 2750 * a virtual address with a valid tag and performing the store with the 2751 * same virtual address and a different invalid tag. 2752 */ 2753 memop = size + is_pair; 2754 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2755 memop |= MO_ALIGN; 2756 } 2757 memop = finalize_memop(s, memop); 2758 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2759 2760 tmp = tcg_temp_new_i64(); 2761 if (is_pair) { 2762 if (size == 2) { 2763 if (s->be_data == MO_LE) { 2764 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2765 } else { 2766 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2767 } 2768 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2769 cpu_exclusive_val, tmp, 2770 get_mem_index(s), memop); 2771 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2772 } else { 2773 TCGv_i128 t16 = tcg_temp_new_i128(); 2774 TCGv_i128 c16 = tcg_temp_new_i128(); 2775 TCGv_i64 a, b; 2776 2777 if (s->be_data == MO_LE) { 2778 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2779 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2780 cpu_exclusive_high); 2781 } else { 2782 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2783 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2784 cpu_exclusive_val); 2785 } 2786 2787 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2788 get_mem_index(s), memop); 2789 2790 a = tcg_temp_new_i64(); 2791 b = tcg_temp_new_i64(); 2792 if (s->be_data == MO_LE) { 2793 tcg_gen_extr_i128_i64(a, b, t16); 2794 } else { 2795 tcg_gen_extr_i128_i64(b, a, t16); 2796 } 2797 2798 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2799 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2800 tcg_gen_or_i64(tmp, a, b); 2801 2802 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2803 } 2804 } else { 2805 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2806 cpu_reg(s, rt), get_mem_index(s), memop); 2807 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2808 } 2809 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2810 tcg_gen_br(done_label); 2811 2812 gen_set_label(fail_label); 2813 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2814 gen_set_label(done_label); 2815 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2816 } 2817 2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2819 int rn, int size) 2820 { 2821 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2822 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2823 int memidx = get_mem_index(s); 2824 TCGv_i64 clean_addr; 2825 MemOp memop; 2826 2827 if (rn == 31) { 2828 gen_check_sp_alignment(s); 2829 } 2830 memop = check_atomic_align(s, rn, size); 2831 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2832 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2833 memidx, memop); 2834 } 2835 2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2837 int rn, int size) 2838 { 2839 TCGv_i64 s1 = cpu_reg(s, rs); 2840 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2841 TCGv_i64 t1 = cpu_reg(s, rt); 2842 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2843 TCGv_i64 clean_addr; 2844 int memidx = get_mem_index(s); 2845 MemOp memop; 2846 2847 if (rn == 31) { 2848 gen_check_sp_alignment(s); 2849 } 2850 2851 /* This is a single atomic access, despite the "pair". */ 2852 memop = check_atomic_align(s, rn, size + 1); 2853 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2854 2855 if (size == 2) { 2856 TCGv_i64 cmp = tcg_temp_new_i64(); 2857 TCGv_i64 val = tcg_temp_new_i64(); 2858 2859 if (s->be_data == MO_LE) { 2860 tcg_gen_concat32_i64(val, t1, t2); 2861 tcg_gen_concat32_i64(cmp, s1, s2); 2862 } else { 2863 tcg_gen_concat32_i64(val, t2, t1); 2864 tcg_gen_concat32_i64(cmp, s2, s1); 2865 } 2866 2867 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2868 2869 if (s->be_data == MO_LE) { 2870 tcg_gen_extr32_i64(s1, s2, cmp); 2871 } else { 2872 tcg_gen_extr32_i64(s2, s1, cmp); 2873 } 2874 } else { 2875 TCGv_i128 cmp = tcg_temp_new_i128(); 2876 TCGv_i128 val = tcg_temp_new_i128(); 2877 2878 if (s->be_data == MO_LE) { 2879 tcg_gen_concat_i64_i128(val, t1, t2); 2880 tcg_gen_concat_i64_i128(cmp, s1, s2); 2881 } else { 2882 tcg_gen_concat_i64_i128(val, t2, t1); 2883 tcg_gen_concat_i64_i128(cmp, s2, s1); 2884 } 2885 2886 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2887 2888 if (s->be_data == MO_LE) { 2889 tcg_gen_extr_i128_i64(s1, s2, cmp); 2890 } else { 2891 tcg_gen_extr_i128_i64(s2, s1, cmp); 2892 } 2893 } 2894 } 2895 2896 /* 2897 * Compute the ISS.SF bit for syndrome information if an exception 2898 * is taken on a load or store. This indicates whether the instruction 2899 * is accessing a 32-bit or 64-bit register. This logic is derived 2900 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2901 */ 2902 static bool ldst_iss_sf(int size, bool sign, bool ext) 2903 { 2904 2905 if (sign) { 2906 /* 2907 * Signed loads are 64 bit results if we are not going to 2908 * do a zero-extend from 32 to 64 after the load. 2909 * (For a store, sign and ext are always false.) 2910 */ 2911 return !ext; 2912 } else { 2913 /* Unsigned loads/stores work at the specified size */ 2914 return size == MO_64; 2915 } 2916 } 2917 2918 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2919 { 2920 if (a->rn == 31) { 2921 gen_check_sp_alignment(s); 2922 } 2923 if (a->lasr) { 2924 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2925 } 2926 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2927 return true; 2928 } 2929 2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2931 { 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2936 if (a->lasr) { 2937 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2938 } 2939 return true; 2940 } 2941 2942 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2943 { 2944 TCGv_i64 clean_addr; 2945 MemOp memop; 2946 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2947 2948 /* 2949 * StoreLORelease is the same as Store-Release for QEMU, but 2950 * needs the feature-test. 2951 */ 2952 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2953 return false; 2954 } 2955 /* Generate ISS for non-exclusive accesses including LASR. */ 2956 if (a->rn == 31) { 2957 gen_check_sp_alignment(s); 2958 } 2959 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2960 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2961 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2962 true, a->rn != 31, memop); 2963 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2964 iss_sf, a->lasr); 2965 return true; 2966 } 2967 2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2969 { 2970 TCGv_i64 clean_addr; 2971 MemOp memop; 2972 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2973 2974 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2975 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2976 return false; 2977 } 2978 /* Generate ISS for non-exclusive accesses including LASR. */ 2979 if (a->rn == 31) { 2980 gen_check_sp_alignment(s); 2981 } 2982 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2983 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2984 false, a->rn != 31, memop); 2985 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2986 a->rt, iss_sf, a->lasr); 2987 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2988 return true; 2989 } 2990 2991 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2992 { 2993 if (a->rn == 31) { 2994 gen_check_sp_alignment(s); 2995 } 2996 if (a->lasr) { 2997 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2998 } 2999 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 3000 return true; 3001 } 3002 3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 3004 { 3005 if (a->rn == 31) { 3006 gen_check_sp_alignment(s); 3007 } 3008 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 3009 if (a->lasr) { 3010 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3011 } 3012 return true; 3013 } 3014 3015 static bool trans_CASP(DisasContext *s, arg_CASP *a) 3016 { 3017 if (!dc_isar_feature(aa64_atomics, s)) { 3018 return false; 3019 } 3020 if (((a->rt | a->rs) & 1) != 0) { 3021 return false; 3022 } 3023 3024 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 3025 return true; 3026 } 3027 3028 static bool trans_CAS(DisasContext *s, arg_CAS *a) 3029 { 3030 if (!dc_isar_feature(aa64_atomics, s)) { 3031 return false; 3032 } 3033 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 3034 return true; 3035 } 3036 3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 3038 { 3039 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 3040 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 3041 TCGv_i64 clean_addr = tcg_temp_new_i64(); 3042 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3043 3044 gen_pc_plus_diff(s, clean_addr, a->imm); 3045 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3046 false, true, a->rt, iss_sf, false); 3047 return true; 3048 } 3049 3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3051 { 3052 /* Load register (literal), vector version */ 3053 TCGv_i64 clean_addr; 3054 MemOp memop; 3055 3056 if (!fp_access_check(s)) { 3057 return true; 3058 } 3059 memop = finalize_memop_asimd(s, a->sz); 3060 clean_addr = tcg_temp_new_i64(); 3061 gen_pc_plus_diff(s, clean_addr, a->imm); 3062 do_fp_ld(s, a->rt, clean_addr, memop); 3063 return true; 3064 } 3065 3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3067 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3068 uint64_t offset, bool is_store, MemOp mop) 3069 { 3070 if (a->rn == 31) { 3071 gen_check_sp_alignment(s); 3072 } 3073 3074 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3075 if (!a->p) { 3076 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3077 } 3078 3079 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3080 (a->w || a->rn != 31), 2 << a->sz, mop); 3081 } 3082 3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3084 TCGv_i64 dirty_addr, uint64_t offset) 3085 { 3086 if (a->w) { 3087 if (a->p) { 3088 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3089 } 3090 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3091 } 3092 } 3093 3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 /* 3104 * We built mop above for the single logical access -- rebuild it 3105 * now for the paired operation. 3106 * 3107 * With LSE2, non-sign-extending pairs are treated atomically if 3108 * aligned, and if unaligned one of the pair will be completely 3109 * within a 16-byte block and that element will be atomic. 3110 * Otherwise each element is separately atomic. 3111 * In all cases, issue one operation with the correct atomicity. 3112 */ 3113 mop = a->sz + 1; 3114 if (s->align_mem) { 3115 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3116 } 3117 mop = finalize_memop_pair(s, mop); 3118 if (a->sz == 2) { 3119 TCGv_i64 tmp = tcg_temp_new_i64(); 3120 3121 if (s->be_data == MO_LE) { 3122 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3123 } else { 3124 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3125 } 3126 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3127 } else { 3128 TCGv_i128 tmp = tcg_temp_new_i128(); 3129 3130 if (s->be_data == MO_LE) { 3131 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3132 } else { 3133 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3134 } 3135 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3136 } 3137 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3138 return true; 3139 } 3140 3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3142 { 3143 uint64_t offset = a->imm << a->sz; 3144 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3145 MemOp mop = finalize_memop(s, a->sz); 3146 3147 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3148 tcg_rt = cpu_reg(s, a->rt); 3149 tcg_rt2 = cpu_reg(s, a->rt2); 3150 3151 /* 3152 * We built mop above for the single logical access -- rebuild it 3153 * now for the paired operation. 3154 * 3155 * With LSE2, non-sign-extending pairs are treated atomically if 3156 * aligned, and if unaligned one of the pair will be completely 3157 * within a 16-byte block and that element will be atomic. 3158 * Otherwise each element is separately atomic. 3159 * In all cases, issue one operation with the correct atomicity. 3160 * 3161 * This treats sign-extending loads like zero-extending loads, 3162 * since that reuses the most code below. 3163 */ 3164 mop = a->sz + 1; 3165 if (s->align_mem) { 3166 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3167 } 3168 mop = finalize_memop_pair(s, mop); 3169 if (a->sz == 2) { 3170 int o2 = s->be_data == MO_LE ? 32 : 0; 3171 int o1 = o2 ^ 32; 3172 3173 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3174 if (a->sign) { 3175 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3176 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3177 } else { 3178 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3179 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3180 } 3181 } else { 3182 TCGv_i128 tmp = tcg_temp_new_i128(); 3183 3184 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3185 if (s->be_data == MO_LE) { 3186 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3187 } else { 3188 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3189 } 3190 } 3191 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3192 return true; 3193 } 3194 3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3196 { 3197 uint64_t offset = a->imm << a->sz; 3198 TCGv_i64 clean_addr, dirty_addr; 3199 MemOp mop; 3200 3201 if (!fp_access_check(s)) { 3202 return true; 3203 } 3204 3205 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3206 mop = finalize_memop_asimd(s, a->sz); 3207 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3208 do_fp_st(s, a->rt, clean_addr, mop); 3209 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3210 do_fp_st(s, a->rt2, clean_addr, mop); 3211 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3212 return true; 3213 } 3214 3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3216 { 3217 uint64_t offset = a->imm << a->sz; 3218 TCGv_i64 clean_addr, dirty_addr; 3219 MemOp mop; 3220 3221 if (!fp_access_check(s)) { 3222 return true; 3223 } 3224 3225 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3226 mop = finalize_memop_asimd(s, a->sz); 3227 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3228 do_fp_ld(s, a->rt, clean_addr, mop); 3229 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3230 do_fp_ld(s, a->rt2, clean_addr, mop); 3231 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3232 return true; 3233 } 3234 3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3236 { 3237 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3238 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3239 MemOp mop; 3240 TCGv_i128 tmp; 3241 3242 /* STGP only comes in one size. */ 3243 tcg_debug_assert(a->sz == MO_64); 3244 3245 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3246 return false; 3247 } 3248 3249 if (a->rn == 31) { 3250 gen_check_sp_alignment(s); 3251 } 3252 3253 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3254 if (!a->p) { 3255 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3256 } 3257 3258 clean_addr = clean_data_tbi(s, dirty_addr); 3259 tcg_rt = cpu_reg(s, a->rt); 3260 tcg_rt2 = cpu_reg(s, a->rt2); 3261 3262 /* 3263 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3264 * and one tag operation. We implement it as one single aligned 16-byte 3265 * memory operation for convenience. Note that the alignment ensures 3266 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3267 */ 3268 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3269 3270 tmp = tcg_temp_new_i128(); 3271 if (s->be_data == MO_LE) { 3272 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3273 } else { 3274 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3275 } 3276 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3277 3278 /* Perform the tag store, if tag access enabled. */ 3279 if (s->ata[0]) { 3280 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3281 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3282 } else { 3283 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3284 } 3285 } 3286 3287 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3288 return true; 3289 } 3290 3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3292 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3293 uint64_t offset, bool is_store, MemOp mop) 3294 { 3295 int memidx; 3296 3297 if (a->rn == 31) { 3298 gen_check_sp_alignment(s); 3299 } 3300 3301 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3302 if (!a->p) { 3303 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3304 } 3305 memidx = get_a64_user_mem_index(s, a->unpriv); 3306 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3307 a->w || a->rn != 31, 3308 mop, a->unpriv, memidx); 3309 } 3310 3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3312 TCGv_i64 dirty_addr, uint64_t offset) 3313 { 3314 if (a->w) { 3315 if (a->p) { 3316 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3317 } 3318 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3319 } 3320 } 3321 3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3323 { 3324 bool iss_sf, iss_valid = !a->w; 3325 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3326 int memidx = get_a64_user_mem_index(s, a->unpriv); 3327 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3328 3329 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3330 3331 tcg_rt = cpu_reg(s, a->rt); 3332 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3333 3334 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3335 iss_valid, a->rt, iss_sf, false); 3336 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3337 return true; 3338 } 3339 3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3341 { 3342 bool iss_sf, iss_valid = !a->w; 3343 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3344 int memidx = get_a64_user_mem_index(s, a->unpriv); 3345 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3346 3347 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3348 3349 tcg_rt = cpu_reg(s, a->rt); 3350 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3351 3352 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3353 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3354 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3355 return true; 3356 } 3357 3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3359 { 3360 TCGv_i64 clean_addr, dirty_addr; 3361 MemOp mop; 3362 3363 if (!fp_access_check(s)) { 3364 return true; 3365 } 3366 mop = finalize_memop_asimd(s, a->sz); 3367 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3368 do_fp_st(s, a->rt, clean_addr, mop); 3369 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3370 return true; 3371 } 3372 3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3374 { 3375 TCGv_i64 clean_addr, dirty_addr; 3376 MemOp mop; 3377 3378 if (!fp_access_check(s)) { 3379 return true; 3380 } 3381 mop = finalize_memop_asimd(s, a->sz); 3382 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3383 do_fp_ld(s, a->rt, clean_addr, mop); 3384 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3385 return true; 3386 } 3387 3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3389 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3390 bool is_store, MemOp memop) 3391 { 3392 TCGv_i64 tcg_rm; 3393 3394 if (a->rn == 31) { 3395 gen_check_sp_alignment(s); 3396 } 3397 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3398 3399 tcg_rm = read_cpu_reg(s, a->rm, 1); 3400 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3401 3402 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3403 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3404 } 3405 3406 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3407 { 3408 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3409 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3410 MemOp memop; 3411 3412 if (extract32(a->opt, 1, 1) == 0) { 3413 return false; 3414 } 3415 3416 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3417 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3418 tcg_rt = cpu_reg(s, a->rt); 3419 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3420 a->ext, true, a->rt, iss_sf, false); 3421 return true; 3422 } 3423 3424 static bool trans_STR(DisasContext *s, arg_ldst *a) 3425 { 3426 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3427 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3428 MemOp memop; 3429 3430 if (extract32(a->opt, 1, 1) == 0) { 3431 return false; 3432 } 3433 3434 memop = finalize_memop(s, a->sz); 3435 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3436 tcg_rt = cpu_reg(s, a->rt); 3437 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3438 return true; 3439 } 3440 3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3442 { 3443 TCGv_i64 clean_addr, dirty_addr; 3444 MemOp memop; 3445 3446 if (extract32(a->opt, 1, 1) == 0) { 3447 return false; 3448 } 3449 3450 if (!fp_access_check(s)) { 3451 return true; 3452 } 3453 3454 memop = finalize_memop_asimd(s, a->sz); 3455 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3456 do_fp_ld(s, a->rt, clean_addr, memop); 3457 return true; 3458 } 3459 3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3461 { 3462 TCGv_i64 clean_addr, dirty_addr; 3463 MemOp memop; 3464 3465 if (extract32(a->opt, 1, 1) == 0) { 3466 return false; 3467 } 3468 3469 if (!fp_access_check(s)) { 3470 return true; 3471 } 3472 3473 memop = finalize_memop_asimd(s, a->sz); 3474 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3475 do_fp_st(s, a->rt, clean_addr, memop); 3476 return true; 3477 } 3478 3479 3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3481 int sign, bool invert) 3482 { 3483 MemOp mop = a->sz | sign; 3484 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3485 3486 if (a->rn == 31) { 3487 gen_check_sp_alignment(s); 3488 } 3489 mop = check_atomic_align(s, a->rn, mop); 3490 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3491 a->rn != 31, mop); 3492 tcg_rs = read_cpu_reg(s, a->rs, true); 3493 tcg_rt = cpu_reg(s, a->rt); 3494 if (invert) { 3495 tcg_gen_not_i64(tcg_rs, tcg_rs); 3496 } 3497 /* 3498 * The tcg atomic primitives are all full barriers. Therefore we 3499 * can ignore the Acquire and Release bits of this instruction. 3500 */ 3501 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3502 3503 if (mop & MO_SIGN) { 3504 switch (a->sz) { 3505 case MO_8: 3506 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3507 break; 3508 case MO_16: 3509 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3510 break; 3511 case MO_32: 3512 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3513 break; 3514 case MO_64: 3515 break; 3516 default: 3517 g_assert_not_reached(); 3518 } 3519 } 3520 return true; 3521 } 3522 3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3532 3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3534 { 3535 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3536 TCGv_i64 clean_addr; 3537 MemOp mop; 3538 3539 if (!dc_isar_feature(aa64_atomics, s) || 3540 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3541 return false; 3542 } 3543 if (a->rn == 31) { 3544 gen_check_sp_alignment(s); 3545 } 3546 mop = check_ordered_align(s, a->rn, 0, false, a->sz); 3547 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3548 a->rn != 31, mop); 3549 /* 3550 * LDAPR* are a special case because they are a simple load, not a 3551 * fetch-and-do-something op. 3552 * The architectural consistency requirements here are weaker than 3553 * full load-acquire (we only need "load-acquire processor consistent"), 3554 * but we choose to implement them as full LDAQ. 3555 */ 3556 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3557 true, a->rt, iss_sf, true); 3558 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3559 return true; 3560 } 3561 3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3563 { 3564 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3565 MemOp memop; 3566 3567 /* Load with pointer authentication */ 3568 if (!dc_isar_feature(aa64_pauth, s)) { 3569 return false; 3570 } 3571 3572 if (a->rn == 31) { 3573 gen_check_sp_alignment(s); 3574 } 3575 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3576 3577 if (s->pauth_active) { 3578 if (!a->m) { 3579 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3580 tcg_constant_i64(0)); 3581 } else { 3582 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3583 tcg_constant_i64(0)); 3584 } 3585 } 3586 3587 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3588 3589 memop = finalize_memop(s, MO_64); 3590 3591 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3592 clean_addr = gen_mte_check1(s, dirty_addr, false, 3593 a->w || a->rn != 31, memop); 3594 3595 tcg_rt = cpu_reg(s, a->rt); 3596 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3597 /* extend */ false, /* iss_valid */ !a->w, 3598 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3599 3600 if (a->w) { 3601 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3602 } 3603 return true; 3604 } 3605 3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3607 { 3608 TCGv_i64 clean_addr, dirty_addr; 3609 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3610 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3611 3612 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3613 return false; 3614 } 3615 3616 if (a->rn == 31) { 3617 gen_check_sp_alignment(s); 3618 } 3619 3620 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3621 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3622 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3623 clean_addr = clean_data_tbi(s, dirty_addr); 3624 3625 /* 3626 * Load-AcquirePC semantics; we implement as the slightly more 3627 * restrictive Load-Acquire. 3628 */ 3629 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3630 a->rt, iss_sf, true); 3631 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3632 return true; 3633 } 3634 3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3636 { 3637 TCGv_i64 clean_addr, dirty_addr; 3638 MemOp mop = a->sz; 3639 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3640 3641 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3642 return false; 3643 } 3644 3645 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3646 3647 if (a->rn == 31) { 3648 gen_check_sp_alignment(s); 3649 } 3650 3651 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3652 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3653 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3654 clean_addr = clean_data_tbi(s, dirty_addr); 3655 3656 /* Store-Release semantics */ 3657 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3658 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3659 return true; 3660 } 3661 3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3663 { 3664 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3665 MemOp endian, align, mop; 3666 3667 int total; /* total bytes */ 3668 int elements; /* elements per vector */ 3669 int r; 3670 int size = a->sz; 3671 3672 if (!a->p && a->rm != 0) { 3673 /* For non-postindexed accesses the Rm field must be 0 */ 3674 return false; 3675 } 3676 if (size == 3 && !a->q && a->selem != 1) { 3677 return false; 3678 } 3679 if (!fp_access_check(s)) { 3680 return true; 3681 } 3682 3683 if (a->rn == 31) { 3684 gen_check_sp_alignment(s); 3685 } 3686 3687 /* For our purposes, bytes are always little-endian. */ 3688 endian = s->be_data; 3689 if (size == 0) { 3690 endian = MO_LE; 3691 } 3692 3693 total = a->rpt * a->selem * (a->q ? 16 : 8); 3694 tcg_rn = cpu_reg_sp(s, a->rn); 3695 3696 /* 3697 * Issue the MTE check vs the logical repeat count, before we 3698 * promote consecutive little-endian elements below. 3699 */ 3700 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3701 finalize_memop_asimd(s, size)); 3702 3703 /* 3704 * Consecutive little-endian elements from a single register 3705 * can be promoted to a larger little-endian operation. 3706 */ 3707 align = MO_ALIGN; 3708 if (a->selem == 1 && endian == MO_LE) { 3709 align = pow2_align(size); 3710 size = 3; 3711 } 3712 if (!s->align_mem) { 3713 align = 0; 3714 } 3715 mop = endian | size | align; 3716 3717 elements = (a->q ? 16 : 8) >> size; 3718 tcg_ebytes = tcg_constant_i64(1 << size); 3719 for (r = 0; r < a->rpt; r++) { 3720 int e; 3721 for (e = 0; e < elements; e++) { 3722 int xs; 3723 for (xs = 0; xs < a->selem; xs++) { 3724 int tt = (a->rt + r + xs) % 32; 3725 do_vec_ld(s, tt, e, clean_addr, mop); 3726 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3727 } 3728 } 3729 } 3730 3731 /* 3732 * For non-quad operations, setting a slice of the low 64 bits of 3733 * the register clears the high 64 bits (in the ARM ARM pseudocode 3734 * this is implicit in the fact that 'rval' is a 64 bit wide 3735 * variable). For quad operations, we might still need to zero 3736 * the high bits of SVE. 3737 */ 3738 for (r = 0; r < a->rpt * a->selem; r++) { 3739 int tt = (a->rt + r) % 32; 3740 clear_vec_high(s, a->q, tt); 3741 } 3742 3743 if (a->p) { 3744 if (a->rm == 31) { 3745 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3746 } else { 3747 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3748 } 3749 } 3750 return true; 3751 } 3752 3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3754 { 3755 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3756 MemOp endian, align, mop; 3757 3758 int total; /* total bytes */ 3759 int elements; /* elements per vector */ 3760 int r; 3761 int size = a->sz; 3762 3763 if (!a->p && a->rm != 0) { 3764 /* For non-postindexed accesses the Rm field must be 0 */ 3765 return false; 3766 } 3767 if (size == 3 && !a->q && a->selem != 1) { 3768 return false; 3769 } 3770 if (!fp_access_check(s)) { 3771 return true; 3772 } 3773 3774 if (a->rn == 31) { 3775 gen_check_sp_alignment(s); 3776 } 3777 3778 /* For our purposes, bytes are always little-endian. */ 3779 endian = s->be_data; 3780 if (size == 0) { 3781 endian = MO_LE; 3782 } 3783 3784 total = a->rpt * a->selem * (a->q ? 16 : 8); 3785 tcg_rn = cpu_reg_sp(s, a->rn); 3786 3787 /* 3788 * Issue the MTE check vs the logical repeat count, before we 3789 * promote consecutive little-endian elements below. 3790 */ 3791 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3792 finalize_memop_asimd(s, size)); 3793 3794 /* 3795 * Consecutive little-endian elements from a single register 3796 * can be promoted to a larger little-endian operation. 3797 */ 3798 align = MO_ALIGN; 3799 if (a->selem == 1 && endian == MO_LE) { 3800 align = pow2_align(size); 3801 size = 3; 3802 } 3803 if (!s->align_mem) { 3804 align = 0; 3805 } 3806 mop = endian | size | align; 3807 3808 elements = (a->q ? 16 : 8) >> size; 3809 tcg_ebytes = tcg_constant_i64(1 << size); 3810 for (r = 0; r < a->rpt; r++) { 3811 int e; 3812 for (e = 0; e < elements; e++) { 3813 int xs; 3814 for (xs = 0; xs < a->selem; xs++) { 3815 int tt = (a->rt + r + xs) % 32; 3816 do_vec_st(s, tt, e, clean_addr, mop); 3817 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3818 } 3819 } 3820 } 3821 3822 if (a->p) { 3823 if (a->rm == 31) { 3824 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3825 } else { 3826 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3827 } 3828 } 3829 return true; 3830 } 3831 3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3833 { 3834 int xs, total, rt; 3835 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3836 MemOp mop; 3837 3838 if (!a->p && a->rm != 0) { 3839 return false; 3840 } 3841 if (!fp_access_check(s)) { 3842 return true; 3843 } 3844 3845 if (a->rn == 31) { 3846 gen_check_sp_alignment(s); 3847 } 3848 3849 total = a->selem << a->scale; 3850 tcg_rn = cpu_reg_sp(s, a->rn); 3851 3852 mop = finalize_memop_asimd(s, a->scale); 3853 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3854 total, mop); 3855 3856 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3857 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3858 do_vec_st(s, rt, a->index, clean_addr, mop); 3859 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3860 } 3861 3862 if (a->p) { 3863 if (a->rm == 31) { 3864 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3865 } else { 3866 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3867 } 3868 } 3869 return true; 3870 } 3871 3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3873 { 3874 int xs, total, rt; 3875 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3876 MemOp mop; 3877 3878 if (!a->p && a->rm != 0) { 3879 return false; 3880 } 3881 if (!fp_access_check(s)) { 3882 return true; 3883 } 3884 3885 if (a->rn == 31) { 3886 gen_check_sp_alignment(s); 3887 } 3888 3889 total = a->selem << a->scale; 3890 tcg_rn = cpu_reg_sp(s, a->rn); 3891 3892 mop = finalize_memop_asimd(s, a->scale); 3893 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3894 total, mop); 3895 3896 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3897 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3898 do_vec_ld(s, rt, a->index, clean_addr, mop); 3899 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3900 } 3901 3902 if (a->p) { 3903 if (a->rm == 31) { 3904 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3905 } else { 3906 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3907 } 3908 } 3909 return true; 3910 } 3911 3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3913 { 3914 int xs, total, rt; 3915 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3916 MemOp mop; 3917 3918 if (!a->p && a->rm != 0) { 3919 return false; 3920 } 3921 if (!fp_access_check(s)) { 3922 return true; 3923 } 3924 3925 if (a->rn == 31) { 3926 gen_check_sp_alignment(s); 3927 } 3928 3929 total = a->selem << a->scale; 3930 tcg_rn = cpu_reg_sp(s, a->rn); 3931 3932 mop = finalize_memop_asimd(s, a->scale); 3933 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3934 total, mop); 3935 3936 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3937 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3938 /* Load and replicate to all elements */ 3939 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3940 3941 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3942 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3943 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3944 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3945 } 3946 3947 if (a->p) { 3948 if (a->rm == 31) { 3949 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3950 } else { 3951 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3952 } 3953 } 3954 return true; 3955 } 3956 3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3958 { 3959 TCGv_i64 addr, clean_addr, tcg_rt; 3960 int size = 4 << s->dcz_blocksize; 3961 3962 if (!dc_isar_feature(aa64_mte, s)) { 3963 return false; 3964 } 3965 if (s->current_el == 0) { 3966 return false; 3967 } 3968 3969 if (a->rn == 31) { 3970 gen_check_sp_alignment(s); 3971 } 3972 3973 addr = read_cpu_reg_sp(s, a->rn, true); 3974 tcg_gen_addi_i64(addr, addr, a->imm); 3975 tcg_rt = cpu_reg(s, a->rt); 3976 3977 if (s->ata[0]) { 3978 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3979 } 3980 /* 3981 * The non-tags portion of STZGM is mostly like DC_ZVA, 3982 * except the alignment happens before the access. 3983 */ 3984 clean_addr = clean_data_tbi(s, addr); 3985 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3986 gen_helper_dc_zva(tcg_env, clean_addr); 3987 return true; 3988 } 3989 3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3991 { 3992 TCGv_i64 addr, clean_addr, tcg_rt; 3993 3994 if (!dc_isar_feature(aa64_mte, s)) { 3995 return false; 3996 } 3997 if (s->current_el == 0) { 3998 return false; 3999 } 4000 4001 if (a->rn == 31) { 4002 gen_check_sp_alignment(s); 4003 } 4004 4005 addr = read_cpu_reg_sp(s, a->rn, true); 4006 tcg_gen_addi_i64(addr, addr, a->imm); 4007 tcg_rt = cpu_reg(s, a->rt); 4008 4009 if (s->ata[0]) { 4010 gen_helper_stgm(tcg_env, addr, tcg_rt); 4011 } else { 4012 MMUAccessType acc = MMU_DATA_STORE; 4013 int size = 4 << s->gm_blocksize; 4014 4015 clean_addr = clean_data_tbi(s, addr); 4016 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4017 gen_probe_access(s, clean_addr, acc, size); 4018 } 4019 return true; 4020 } 4021 4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 4023 { 4024 TCGv_i64 addr, clean_addr, tcg_rt; 4025 4026 if (!dc_isar_feature(aa64_mte, s)) { 4027 return false; 4028 } 4029 if (s->current_el == 0) { 4030 return false; 4031 } 4032 4033 if (a->rn == 31) { 4034 gen_check_sp_alignment(s); 4035 } 4036 4037 addr = read_cpu_reg_sp(s, a->rn, true); 4038 tcg_gen_addi_i64(addr, addr, a->imm); 4039 tcg_rt = cpu_reg(s, a->rt); 4040 4041 if (s->ata[0]) { 4042 gen_helper_ldgm(tcg_rt, tcg_env, addr); 4043 } else { 4044 MMUAccessType acc = MMU_DATA_LOAD; 4045 int size = 4 << s->gm_blocksize; 4046 4047 clean_addr = clean_data_tbi(s, addr); 4048 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4049 gen_probe_access(s, clean_addr, acc, size); 4050 /* The result tags are zeros. */ 4051 tcg_gen_movi_i64(tcg_rt, 0); 4052 } 4053 return true; 4054 } 4055 4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4057 { 4058 TCGv_i64 addr, clean_addr, tcg_rt; 4059 4060 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4061 return false; 4062 } 4063 4064 if (a->rn == 31) { 4065 gen_check_sp_alignment(s); 4066 } 4067 4068 addr = read_cpu_reg_sp(s, a->rn, true); 4069 if (!a->p) { 4070 /* pre-index or signed offset */ 4071 tcg_gen_addi_i64(addr, addr, a->imm); 4072 } 4073 4074 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4075 tcg_rt = cpu_reg(s, a->rt); 4076 if (s->ata[0]) { 4077 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4078 } else { 4079 /* 4080 * Tag access disabled: we must check for aborts on the load 4081 * load from [rn+offset], and then insert a 0 tag into rt. 4082 */ 4083 clean_addr = clean_data_tbi(s, addr); 4084 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4085 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4086 } 4087 4088 if (a->w) { 4089 /* pre-index or post-index */ 4090 if (a->p) { 4091 /* post-index */ 4092 tcg_gen_addi_i64(addr, addr, a->imm); 4093 } 4094 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4095 } 4096 return true; 4097 } 4098 4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4100 { 4101 TCGv_i64 addr, tcg_rt; 4102 4103 if (a->rn == 31) { 4104 gen_check_sp_alignment(s); 4105 } 4106 4107 addr = read_cpu_reg_sp(s, a->rn, true); 4108 if (!a->p) { 4109 /* pre-index or signed offset */ 4110 tcg_gen_addi_i64(addr, addr, a->imm); 4111 } 4112 tcg_rt = cpu_reg_sp(s, a->rt); 4113 if (!s->ata[0]) { 4114 /* 4115 * For STG and ST2G, we need to check alignment and probe memory. 4116 * TODO: For STZG and STZ2G, we could rely on the stores below, 4117 * at least for system mode; user-only won't enforce alignment. 4118 */ 4119 if (is_pair) { 4120 gen_helper_st2g_stub(tcg_env, addr); 4121 } else { 4122 gen_helper_stg_stub(tcg_env, addr); 4123 } 4124 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4125 if (is_pair) { 4126 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4127 } else { 4128 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4129 } 4130 } else { 4131 if (is_pair) { 4132 gen_helper_st2g(tcg_env, addr, tcg_rt); 4133 } else { 4134 gen_helper_stg(tcg_env, addr, tcg_rt); 4135 } 4136 } 4137 4138 if (is_zero) { 4139 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4140 TCGv_i64 zero64 = tcg_constant_i64(0); 4141 TCGv_i128 zero128 = tcg_temp_new_i128(); 4142 int mem_index = get_mem_index(s); 4143 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4144 4145 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4146 4147 /* This is 1 or 2 atomic 16-byte operations. */ 4148 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4149 if (is_pair) { 4150 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4151 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4152 } 4153 } 4154 4155 if (a->w) { 4156 /* pre-index or post-index */ 4157 if (a->p) { 4158 /* post-index */ 4159 tcg_gen_addi_i64(addr, addr, a->imm); 4160 } 4161 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4162 } 4163 return true; 4164 } 4165 4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4170 4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4172 4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4174 bool is_setg, SetFn fn) 4175 { 4176 int memidx; 4177 uint32_t syndrome, desc = 0; 4178 4179 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4180 return false; 4181 } 4182 4183 /* 4184 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4185 * us to pull this check before the CheckMOPSEnabled() test 4186 * (which we do in the helper function) 4187 */ 4188 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4189 a->rd == 31 || a->rn == 31) { 4190 return false; 4191 } 4192 4193 memidx = get_a64_user_mem_index(s, a->unpriv); 4194 4195 /* 4196 * We pass option_a == true, matching our implementation; 4197 * we pass wrong_option == false: helper function may set that bit. 4198 */ 4199 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4200 is_epilogue, false, true, a->rd, a->rs, a->rn); 4201 4202 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4203 /* We may need to do MTE tag checking, so assemble the descriptor */ 4204 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4205 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4206 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4207 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4208 } 4209 /* The helper function always needs the memidx even with MTE disabled */ 4210 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4211 4212 /* 4213 * The helper needs the register numbers, but since they're in 4214 * the syndrome anyway, we let it extract them from there rather 4215 * than passing in an extra three integer arguments. 4216 */ 4217 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4218 return true; 4219 } 4220 4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4227 4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4229 4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4231 { 4232 int rmemidx, wmemidx; 4233 uint32_t syndrome, rdesc = 0, wdesc = 0; 4234 bool wunpriv = extract32(a->options, 0, 1); 4235 bool runpriv = extract32(a->options, 1, 1); 4236 4237 /* 4238 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4239 * us to pull this check before the CheckMOPSEnabled() test 4240 * (which we do in the helper function) 4241 */ 4242 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4243 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4244 return false; 4245 } 4246 4247 rmemidx = get_a64_user_mem_index(s, runpriv); 4248 wmemidx = get_a64_user_mem_index(s, wunpriv); 4249 4250 /* 4251 * We pass option_a == true, matching our implementation; 4252 * we pass wrong_option == false: helper function may set that bit. 4253 */ 4254 syndrome = syn_mop(false, false, a->options, is_epilogue, 4255 false, true, a->rd, a->rs, a->rn); 4256 4257 /* If we need to do MTE tag checking, assemble the descriptors */ 4258 if (s->mte_active[runpriv]) { 4259 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4260 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4261 } 4262 if (s->mte_active[wunpriv]) { 4263 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4264 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4265 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4266 } 4267 /* The helper function needs these parts of the descriptor regardless */ 4268 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4269 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4270 4271 /* 4272 * The helper needs the register numbers, but since they're in 4273 * the syndrome anyway, we let it extract them from there rather 4274 * than passing in an extra three integer arguments. 4275 */ 4276 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4277 tcg_constant_i32(rdesc)); 4278 return true; 4279 } 4280 4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4287 4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4289 4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4291 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4292 { 4293 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4294 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4295 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4296 4297 fn(tcg_rd, tcg_rn, tcg_imm); 4298 if (!a->sf) { 4299 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4300 } 4301 return true; 4302 } 4303 4304 /* 4305 * PC-rel. addressing 4306 */ 4307 4308 static bool trans_ADR(DisasContext *s, arg_ri *a) 4309 { 4310 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4311 return true; 4312 } 4313 4314 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4315 { 4316 int64_t offset = (int64_t)a->imm << 12; 4317 4318 /* The page offset is ok for CF_PCREL. */ 4319 offset -= s->pc_curr & 0xfff; 4320 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4321 return true; 4322 } 4323 4324 /* 4325 * Add/subtract (immediate) 4326 */ 4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4331 4332 /* 4333 * Add/subtract (immediate, with tags) 4334 */ 4335 4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4337 bool sub_op) 4338 { 4339 TCGv_i64 tcg_rn, tcg_rd; 4340 int imm; 4341 4342 imm = a->uimm6 << LOG2_TAG_GRANULE; 4343 if (sub_op) { 4344 imm = -imm; 4345 } 4346 4347 tcg_rn = cpu_reg_sp(s, a->rn); 4348 tcg_rd = cpu_reg_sp(s, a->rd); 4349 4350 if (s->ata[0]) { 4351 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4352 tcg_constant_i32(imm), 4353 tcg_constant_i32(a->uimm4)); 4354 } else { 4355 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4356 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4357 } 4358 return true; 4359 } 4360 4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4363 4364 /* The input should be a value in the bottom e bits (with higher 4365 * bits zero); returns that value replicated into every element 4366 * of size e in a 64 bit integer. 4367 */ 4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4369 { 4370 assert(e != 0); 4371 while (e < 64) { 4372 mask |= mask << e; 4373 e *= 2; 4374 } 4375 return mask; 4376 } 4377 4378 /* 4379 * Logical (immediate) 4380 */ 4381 4382 /* 4383 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4384 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4385 * value (ie should cause a guest UNDEF exception), and true if they are 4386 * valid, in which case the decoded bit pattern is written to result. 4387 */ 4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4389 unsigned int imms, unsigned int immr) 4390 { 4391 uint64_t mask; 4392 unsigned e, levels, s, r; 4393 int len; 4394 4395 assert(immn < 2 && imms < 64 && immr < 64); 4396 4397 /* The bit patterns we create here are 64 bit patterns which 4398 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4399 * 64 bits each. Each element contains the same value: a run 4400 * of between 1 and e-1 non-zero bits, rotated within the 4401 * element by between 0 and e-1 bits. 4402 * 4403 * The element size and run length are encoded into immn (1 bit) 4404 * and imms (6 bits) as follows: 4405 * 64 bit elements: immn = 1, imms = <length of run - 1> 4406 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4407 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4408 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4409 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4410 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4411 * Notice that immn = 0, imms = 11111x is the only combination 4412 * not covered by one of the above options; this is reserved. 4413 * Further, <length of run - 1> all-ones is a reserved pattern. 4414 * 4415 * In all cases the rotation is by immr % e (and immr is 6 bits). 4416 */ 4417 4418 /* First determine the element size */ 4419 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4420 if (len < 1) { 4421 /* This is the immn == 0, imms == 0x11111x case */ 4422 return false; 4423 } 4424 e = 1 << len; 4425 4426 levels = e - 1; 4427 s = imms & levels; 4428 r = immr & levels; 4429 4430 if (s == levels) { 4431 /* <length of run - 1> mustn't be all-ones. */ 4432 return false; 4433 } 4434 4435 /* Create the value of one element: s+1 set bits rotated 4436 * by r within the element (which is e bits wide)... 4437 */ 4438 mask = MAKE_64BIT_MASK(0, s + 1); 4439 if (r) { 4440 mask = (mask >> r) | (mask << (e - r)); 4441 mask &= MAKE_64BIT_MASK(0, e); 4442 } 4443 /* ...then replicate the element over the whole 64 bit value */ 4444 mask = bitfield_replicate(mask, e); 4445 *result = mask; 4446 return true; 4447 } 4448 4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4450 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4451 { 4452 TCGv_i64 tcg_rd, tcg_rn; 4453 uint64_t imm; 4454 4455 /* Some immediate field values are reserved. */ 4456 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4457 extract32(a->dbm, 0, 6), 4458 extract32(a->dbm, 6, 6))) { 4459 return false; 4460 } 4461 if (!a->sf) { 4462 imm &= 0xffffffffull; 4463 } 4464 4465 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4466 tcg_rn = cpu_reg(s, a->rn); 4467 4468 fn(tcg_rd, tcg_rn, imm); 4469 if (set_cc) { 4470 gen_logic_CC(a->sf, tcg_rd); 4471 } 4472 if (!a->sf) { 4473 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4474 } 4475 return true; 4476 } 4477 4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4482 4483 /* 4484 * Move wide (immediate) 4485 */ 4486 4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4488 { 4489 int pos = a->hw << 4; 4490 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4491 return true; 4492 } 4493 4494 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4495 { 4496 int pos = a->hw << 4; 4497 uint64_t imm = a->imm; 4498 4499 imm = ~(imm << pos); 4500 if (!a->sf) { 4501 imm = (uint32_t)imm; 4502 } 4503 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4504 return true; 4505 } 4506 4507 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4508 { 4509 int pos = a->hw << 4; 4510 TCGv_i64 tcg_rd, tcg_im; 4511 4512 tcg_rd = cpu_reg(s, a->rd); 4513 tcg_im = tcg_constant_i64(a->imm); 4514 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4515 if (!a->sf) { 4516 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4517 } 4518 return true; 4519 } 4520 4521 /* 4522 * Bitfield 4523 */ 4524 4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4526 { 4527 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4528 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 unsigned int bitsize = a->sf ? 64 : 32; 4530 unsigned int ri = a->immr; 4531 unsigned int si = a->imms; 4532 unsigned int pos, len; 4533 4534 if (si >= ri) { 4535 /* Wd<s-r:0> = Wn<s:r> */ 4536 len = (si - ri) + 1; 4537 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4538 if (!a->sf) { 4539 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4540 } 4541 } else { 4542 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4543 len = si + 1; 4544 pos = (bitsize - ri) & (bitsize - 1); 4545 4546 if (len < ri) { 4547 /* 4548 * Sign extend the destination field from len to fill the 4549 * balance of the word. Let the deposit below insert all 4550 * of those sign bits. 4551 */ 4552 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4553 len = ri; 4554 } 4555 4556 /* 4557 * We start with zero, and we haven't modified any bits outside 4558 * bitsize, therefore no final zero-extension is unneeded for !sf. 4559 */ 4560 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4561 } 4562 return true; 4563 } 4564 4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4566 { 4567 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4568 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4569 unsigned int bitsize = a->sf ? 64 : 32; 4570 unsigned int ri = a->immr; 4571 unsigned int si = a->imms; 4572 unsigned int pos, len; 4573 4574 tcg_rd = cpu_reg(s, a->rd); 4575 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4576 4577 if (si >= ri) { 4578 /* Wd<s-r:0> = Wn<s:r> */ 4579 len = (si - ri) + 1; 4580 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4581 } else { 4582 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4583 len = si + 1; 4584 pos = (bitsize - ri) & (bitsize - 1); 4585 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4586 } 4587 return true; 4588 } 4589 4590 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4591 { 4592 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4593 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4594 unsigned int bitsize = a->sf ? 64 : 32; 4595 unsigned int ri = a->immr; 4596 unsigned int si = a->imms; 4597 unsigned int pos, len; 4598 4599 tcg_rd = cpu_reg(s, a->rd); 4600 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4601 4602 if (si >= ri) { 4603 /* Wd<s-r:0> = Wn<s:r> */ 4604 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4605 len = (si - ri) + 1; 4606 pos = 0; 4607 } else { 4608 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4609 len = si + 1; 4610 pos = (bitsize - ri) & (bitsize - 1); 4611 } 4612 4613 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4614 if (!a->sf) { 4615 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4616 } 4617 return true; 4618 } 4619 4620 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4621 { 4622 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4623 4624 tcg_rd = cpu_reg(s, a->rd); 4625 4626 if (unlikely(a->imm == 0)) { 4627 /* 4628 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4629 * so an extract from bit 0 is a special case. 4630 */ 4631 if (a->sf) { 4632 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4633 } else { 4634 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4635 } 4636 } else { 4637 tcg_rm = cpu_reg(s, a->rm); 4638 tcg_rn = cpu_reg(s, a->rn); 4639 4640 if (a->sf) { 4641 /* Specialization to ROR happens in EXTRACT2. */ 4642 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4643 } else { 4644 TCGv_i32 t0 = tcg_temp_new_i32(); 4645 4646 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4647 if (a->rm == a->rn) { 4648 tcg_gen_rotri_i32(t0, t0, a->imm); 4649 } else { 4650 TCGv_i32 t1 = tcg_temp_new_i32(); 4651 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4652 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4653 } 4654 tcg_gen_extu_i32_i64(tcg_rd, t0); 4655 } 4656 } 4657 return true; 4658 } 4659 4660 /* 4661 * Cryptographic AES, SHA, SHA512 4662 */ 4663 4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4668 4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4673 4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4677 4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4681 4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4689 4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4692 4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4695 4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4697 { 4698 if (!dc_isar_feature(aa64_sm3, s)) { 4699 return false; 4700 } 4701 if (fp_access_check(s)) { 4702 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4703 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4704 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4705 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4706 unsigned vsz, dofs; 4707 4708 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4709 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4710 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4711 4712 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4713 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4714 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4715 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4716 4717 /* Clear the whole register first, then store bits [127:96]. */ 4718 vsz = vec_full_reg_size(s); 4719 dofs = vec_full_reg_offset(s, a->rd); 4720 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4721 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4722 } 4723 return true; 4724 } 4725 4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4727 { 4728 if (fp_access_check(s)) { 4729 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4730 } 4731 return true; 4732 } 4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4737 4738 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4739 { 4740 if (!dc_isar_feature(aa64_sha3, s)) { 4741 return false; 4742 } 4743 if (fp_access_check(s)) { 4744 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4745 vec_full_reg_offset(s, a->rn), 4746 vec_full_reg_offset(s, a->rm), a->imm, 16, 4747 vec_full_reg_size(s)); 4748 } 4749 return true; 4750 } 4751 4752 /* 4753 * Advanced SIMD copy 4754 */ 4755 4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4757 { 4758 unsigned esz = ctz32(imm); 4759 if (esz <= MO_64) { 4760 *pesz = esz; 4761 *pidx = imm >> (esz + 1); 4762 return true; 4763 } 4764 return false; 4765 } 4766 4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4768 { 4769 MemOp esz; 4770 unsigned idx; 4771 4772 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4773 return false; 4774 } 4775 if (fp_access_check(s)) { 4776 /* 4777 * This instruction just extracts the specified element and 4778 * zero-extends it into the bottom of the destination register. 4779 */ 4780 TCGv_i64 tmp = tcg_temp_new_i64(); 4781 read_vec_element(s, tmp, a->rn, idx, esz); 4782 write_fp_dreg(s, a->rd, tmp); 4783 } 4784 return true; 4785 } 4786 4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4788 { 4789 MemOp esz; 4790 unsigned idx; 4791 4792 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4793 return false; 4794 } 4795 if (esz == MO_64 && !a->q) { 4796 return false; 4797 } 4798 if (fp_access_check(s)) { 4799 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4800 vec_reg_offset(s, a->rn, idx, esz), 4801 a->q ? 16 : 8, vec_full_reg_size(s)); 4802 } 4803 return true; 4804 } 4805 4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4807 { 4808 MemOp esz; 4809 unsigned idx; 4810 4811 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4812 return false; 4813 } 4814 if (esz == MO_64 && !a->q) { 4815 return false; 4816 } 4817 if (fp_access_check(s)) { 4818 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4819 a->q ? 16 : 8, vec_full_reg_size(s), 4820 cpu_reg(s, a->rn)); 4821 } 4822 return true; 4823 } 4824 4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4826 { 4827 MemOp esz; 4828 unsigned idx; 4829 4830 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4831 return false; 4832 } 4833 if (is_signed) { 4834 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4835 return false; 4836 } 4837 } else { 4838 if (esz == MO_64 ? !a->q : a->q) { 4839 return false; 4840 } 4841 } 4842 if (fp_access_check(s)) { 4843 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4844 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4845 if (is_signed && !a->q) { 4846 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4847 } 4848 } 4849 return true; 4850 } 4851 4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4853 TRANS(UMOV, do_smov_umov, a, 0) 4854 4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4856 { 4857 MemOp esz; 4858 unsigned idx; 4859 4860 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4861 return false; 4862 } 4863 if (fp_access_check(s)) { 4864 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4865 clear_vec_high(s, true, a->rd); 4866 } 4867 return true; 4868 } 4869 4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4871 { 4872 MemOp esz; 4873 unsigned didx, sidx; 4874 4875 if (!decode_esz_idx(a->di, &esz, &didx)) { 4876 return false; 4877 } 4878 sidx = a->si >> esz; 4879 if (fp_access_check(s)) { 4880 TCGv_i64 tmp = tcg_temp_new_i64(); 4881 4882 read_vec_element(s, tmp, a->rn, sidx, esz); 4883 write_vec_element(s, tmp, a->rd, didx, esz); 4884 4885 /* INS is considered a 128-bit write for SVE. */ 4886 clear_vec_high(s, true, a->rd); 4887 } 4888 return true; 4889 } 4890 4891 /* 4892 * Advanced SIMD three same 4893 */ 4894 4895 typedef struct FPScalar { 4896 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4897 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4898 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4899 } FPScalar; 4900 4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4902 { 4903 switch (a->esz) { 4904 case MO_64: 4905 if (fp_access_check(s)) { 4906 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4907 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4908 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4909 write_fp_dreg(s, a->rd, t0); 4910 } 4911 break; 4912 case MO_32: 4913 if (fp_access_check(s)) { 4914 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4915 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4916 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4917 write_fp_sreg(s, a->rd, t0); 4918 } 4919 break; 4920 case MO_16: 4921 if (!dc_isar_feature(aa64_fp16, s)) { 4922 return false; 4923 } 4924 if (fp_access_check(s)) { 4925 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4926 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4927 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4928 write_fp_sreg(s, a->rd, t0); 4929 } 4930 break; 4931 default: 4932 return false; 4933 } 4934 return true; 4935 } 4936 4937 static const FPScalar f_scalar_fadd = { 4938 gen_helper_vfp_addh, 4939 gen_helper_vfp_adds, 4940 gen_helper_vfp_addd, 4941 }; 4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4943 4944 static const FPScalar f_scalar_fsub = { 4945 gen_helper_vfp_subh, 4946 gen_helper_vfp_subs, 4947 gen_helper_vfp_subd, 4948 }; 4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4950 4951 static const FPScalar f_scalar_fdiv = { 4952 gen_helper_vfp_divh, 4953 gen_helper_vfp_divs, 4954 gen_helper_vfp_divd, 4955 }; 4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4957 4958 static const FPScalar f_scalar_fmul = { 4959 gen_helper_vfp_mulh, 4960 gen_helper_vfp_muls, 4961 gen_helper_vfp_muld, 4962 }; 4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4964 4965 static const FPScalar f_scalar_fmax = { 4966 gen_helper_advsimd_maxh, 4967 gen_helper_vfp_maxs, 4968 gen_helper_vfp_maxd, 4969 }; 4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4971 4972 static const FPScalar f_scalar_fmin = { 4973 gen_helper_advsimd_minh, 4974 gen_helper_vfp_mins, 4975 gen_helper_vfp_mind, 4976 }; 4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4978 4979 static const FPScalar f_scalar_fmaxnm = { 4980 gen_helper_advsimd_maxnumh, 4981 gen_helper_vfp_maxnums, 4982 gen_helper_vfp_maxnumd, 4983 }; 4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4985 4986 static const FPScalar f_scalar_fminnm = { 4987 gen_helper_advsimd_minnumh, 4988 gen_helper_vfp_minnums, 4989 gen_helper_vfp_minnumd, 4990 }; 4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4992 4993 static const FPScalar f_scalar_fmulx = { 4994 gen_helper_advsimd_mulxh, 4995 gen_helper_vfp_mulxs, 4996 gen_helper_vfp_mulxd, 4997 }; 4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4999 5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5001 { 5002 gen_helper_vfp_mulh(d, n, m, s); 5003 gen_vfp_negh(d, d); 5004 } 5005 5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5007 { 5008 gen_helper_vfp_muls(d, n, m, s); 5009 gen_vfp_negs(d, d); 5010 } 5011 5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5013 { 5014 gen_helper_vfp_muld(d, n, m, s); 5015 gen_vfp_negd(d, d); 5016 } 5017 5018 static const FPScalar f_scalar_fnmul = { 5019 gen_fnmul_h, 5020 gen_fnmul_s, 5021 gen_fnmul_d, 5022 }; 5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 5024 5025 static const FPScalar f_scalar_fcmeq = { 5026 gen_helper_advsimd_ceq_f16, 5027 gen_helper_neon_ceq_f32, 5028 gen_helper_neon_ceq_f64, 5029 }; 5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 5031 5032 static const FPScalar f_scalar_fcmge = { 5033 gen_helper_advsimd_cge_f16, 5034 gen_helper_neon_cge_f32, 5035 gen_helper_neon_cge_f64, 5036 }; 5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 5038 5039 static const FPScalar f_scalar_fcmgt = { 5040 gen_helper_advsimd_cgt_f16, 5041 gen_helper_neon_cgt_f32, 5042 gen_helper_neon_cgt_f64, 5043 }; 5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 5045 5046 static const FPScalar f_scalar_facge = { 5047 gen_helper_advsimd_acge_f16, 5048 gen_helper_neon_acge_f32, 5049 gen_helper_neon_acge_f64, 5050 }; 5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5052 5053 static const FPScalar f_scalar_facgt = { 5054 gen_helper_advsimd_acgt_f16, 5055 gen_helper_neon_acgt_f32, 5056 gen_helper_neon_acgt_f64, 5057 }; 5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5059 5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5061 { 5062 gen_helper_vfp_subh(d, n, m, s); 5063 gen_vfp_absh(d, d); 5064 } 5065 5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5067 { 5068 gen_helper_vfp_subs(d, n, m, s); 5069 gen_vfp_abss(d, d); 5070 } 5071 5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5073 { 5074 gen_helper_vfp_subd(d, n, m, s); 5075 gen_vfp_absd(d, d); 5076 } 5077 5078 static const FPScalar f_scalar_fabd = { 5079 gen_fabd_h, 5080 gen_fabd_s, 5081 gen_fabd_d, 5082 }; 5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5084 5085 static const FPScalar f_scalar_frecps = { 5086 gen_helper_recpsf_f16, 5087 gen_helper_recpsf_f32, 5088 gen_helper_recpsf_f64, 5089 }; 5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5091 5092 static const FPScalar f_scalar_frsqrts = { 5093 gen_helper_rsqrtsf_f16, 5094 gen_helper_rsqrtsf_f32, 5095 gen_helper_rsqrtsf_f64, 5096 }; 5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5098 5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a, 5100 MemOp sgn_n, MemOp sgn_m, 5101 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp), 5102 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) 5103 { 5104 TCGv_i64 t0, t1, t2, qc; 5105 MemOp esz = a->esz; 5106 5107 if (!fp_access_check(s)) { 5108 return true; 5109 } 5110 5111 t0 = tcg_temp_new_i64(); 5112 t1 = tcg_temp_new_i64(); 5113 t2 = tcg_temp_new_i64(); 5114 qc = tcg_temp_new_i64(); 5115 read_vec_element(s, t1, a->rn, 0, esz | sgn_n); 5116 read_vec_element(s, t2, a->rm, 0, esz | sgn_m); 5117 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5118 5119 if (esz == MO_64) { 5120 gen_d(t0, qc, t1, t2); 5121 } else { 5122 gen_bhs(t0, qc, t1, t2, esz); 5123 tcg_gen_ext_i64(t0, t0, esz); 5124 } 5125 5126 write_fp_dreg(s, a->rd, t0); 5127 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5128 return true; 5129 } 5130 5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d) 5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d) 5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d) 5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d) 5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d) 5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d) 5137 5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a, 5139 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64)) 5140 { 5141 if (fp_access_check(s)) { 5142 TCGv_i64 t0 = tcg_temp_new_i64(); 5143 TCGv_i64 t1 = tcg_temp_new_i64(); 5144 5145 read_vec_element(s, t0, a->rn, 0, MO_64); 5146 read_vec_element(s, t1, a->rm, 0, MO_64); 5147 fn(t0, t0, t1); 5148 write_fp_dreg(s, a->rd, t0); 5149 } 5150 return true; 5151 } 5152 5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64) 5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64) 5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64) 5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64) 5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64) 5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64) 5159 5160 typedef struct ENVScalar2 { 5161 NeonGenTwoOpEnvFn *gen_bhs[3]; 5162 NeonGenTwo64OpEnvFn *gen_d; 5163 } ENVScalar2; 5164 5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f) 5166 { 5167 if (!fp_access_check(s)) { 5168 return true; 5169 } 5170 if (a->esz == MO_64) { 5171 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5172 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5173 f->gen_d(t0, tcg_env, t0, t1); 5174 write_fp_dreg(s, a->rd, t0); 5175 } else { 5176 TCGv_i32 t0 = tcg_temp_new_i32(); 5177 TCGv_i32 t1 = tcg_temp_new_i32(); 5178 5179 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5180 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5181 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 5182 write_fp_sreg(s, a->rd, t0); 5183 } 5184 return true; 5185 } 5186 5187 static const ENVScalar2 f_scalar_sqshl = { 5188 { gen_helper_neon_qshl_s8, 5189 gen_helper_neon_qshl_s16, 5190 gen_helper_neon_qshl_s32 }, 5191 gen_helper_neon_qshl_s64, 5192 }; 5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl) 5194 5195 static const ENVScalar2 f_scalar_uqshl = { 5196 { gen_helper_neon_qshl_u8, 5197 gen_helper_neon_qshl_u16, 5198 gen_helper_neon_qshl_u32 }, 5199 gen_helper_neon_qshl_u64, 5200 }; 5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl) 5202 5203 static const ENVScalar2 f_scalar_sqrshl = { 5204 { gen_helper_neon_qrshl_s8, 5205 gen_helper_neon_qrshl_s16, 5206 gen_helper_neon_qrshl_s32 }, 5207 gen_helper_neon_qrshl_s64, 5208 }; 5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl) 5210 5211 static const ENVScalar2 f_scalar_uqrshl = { 5212 { gen_helper_neon_qrshl_u8, 5213 gen_helper_neon_qrshl_u16, 5214 gen_helper_neon_qrshl_u32 }, 5215 gen_helper_neon_qrshl_u64, 5216 }; 5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl) 5218 5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a, 5220 const ENVScalar2 *f) 5221 { 5222 if (a->esz == MO_16 || a->esz == MO_32) { 5223 return do_env_scalar2(s, a, f); 5224 } 5225 return false; 5226 } 5227 5228 static const ENVScalar2 f_scalar_sqdmulh = { 5229 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 } 5230 }; 5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh) 5232 5233 static const ENVScalar2 f_scalar_sqrdmulh = { 5234 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 } 5235 }; 5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh) 5237 5238 typedef struct ENVScalar3 { 5239 NeonGenThreeOpEnvFn *gen_hs[2]; 5240 } ENVScalar3; 5241 5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a, 5243 const ENVScalar3 *f) 5244 { 5245 TCGv_i32 t0, t1, t2; 5246 5247 if (a->esz != MO_16 && a->esz != MO_32) { 5248 return false; 5249 } 5250 if (!fp_access_check(s)) { 5251 return true; 5252 } 5253 5254 t0 = tcg_temp_new_i32(); 5255 t1 = tcg_temp_new_i32(); 5256 t2 = tcg_temp_new_i32(); 5257 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5258 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5259 read_vec_element_i32(s, t2, a->rd, 0, a->esz); 5260 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2); 5261 write_fp_sreg(s, a->rd, t0); 5262 return true; 5263 } 5264 5265 static const ENVScalar3 f_scalar_sqrdmlah = { 5266 { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 } 5267 }; 5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah) 5269 5270 static const ENVScalar3 f_scalar_sqrdmlsh = { 5271 { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 } 5272 }; 5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh) 5274 5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond) 5276 { 5277 if (fp_access_check(s)) { 5278 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5279 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5280 tcg_gen_negsetcond_i64(cond, t0, t0, t1); 5281 write_fp_dreg(s, a->rd, t0); 5282 } 5283 return true; 5284 } 5285 5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT) 5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU) 5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE) 5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU) 5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ) 5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE) 5292 5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data, 5294 gen_helper_gvec_3_ptr * const fns[3]) 5295 { 5296 MemOp esz = a->esz; 5297 5298 switch (esz) { 5299 case MO_64: 5300 if (!a->q) { 5301 return false; 5302 } 5303 break; 5304 case MO_32: 5305 break; 5306 case MO_16: 5307 if (!dc_isar_feature(aa64_fp16, s)) { 5308 return false; 5309 } 5310 break; 5311 default: 5312 return false; 5313 } 5314 if (fp_access_check(s)) { 5315 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5316 esz == MO_16, data, fns[esz - 1]); 5317 } 5318 return true; 5319 } 5320 5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5322 gen_helper_gvec_fadd_h, 5323 gen_helper_gvec_fadd_s, 5324 gen_helper_gvec_fadd_d, 5325 }; 5326 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd) 5327 5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5329 gen_helper_gvec_fsub_h, 5330 gen_helper_gvec_fsub_s, 5331 gen_helper_gvec_fsub_d, 5332 }; 5333 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub) 5334 5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5336 gen_helper_gvec_fdiv_h, 5337 gen_helper_gvec_fdiv_s, 5338 gen_helper_gvec_fdiv_d, 5339 }; 5340 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv) 5341 5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5343 gen_helper_gvec_fmul_h, 5344 gen_helper_gvec_fmul_s, 5345 gen_helper_gvec_fmul_d, 5346 }; 5347 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul) 5348 5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5350 gen_helper_gvec_fmax_h, 5351 gen_helper_gvec_fmax_s, 5352 gen_helper_gvec_fmax_d, 5353 }; 5354 TRANS(FMAX_v, do_fp3_vector, a, 0, f_vector_fmax) 5355 5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5357 gen_helper_gvec_fmin_h, 5358 gen_helper_gvec_fmin_s, 5359 gen_helper_gvec_fmin_d, 5360 }; 5361 TRANS(FMIN_v, do_fp3_vector, a, 0, f_vector_fmin) 5362 5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5364 gen_helper_gvec_fmaxnum_h, 5365 gen_helper_gvec_fmaxnum_s, 5366 gen_helper_gvec_fmaxnum_d, 5367 }; 5368 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm) 5369 5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5371 gen_helper_gvec_fminnum_h, 5372 gen_helper_gvec_fminnum_s, 5373 gen_helper_gvec_fminnum_d, 5374 }; 5375 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm) 5376 5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5378 gen_helper_gvec_fmulx_h, 5379 gen_helper_gvec_fmulx_s, 5380 gen_helper_gvec_fmulx_d, 5381 }; 5382 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx) 5383 5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5385 gen_helper_gvec_vfma_h, 5386 gen_helper_gvec_vfma_s, 5387 gen_helper_gvec_vfma_d, 5388 }; 5389 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla) 5390 5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5392 gen_helper_gvec_vfms_h, 5393 gen_helper_gvec_vfms_s, 5394 gen_helper_gvec_vfms_d, 5395 }; 5396 TRANS(FMLS_v, do_fp3_vector, a, 0, f_vector_fmls) 5397 5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5399 gen_helper_gvec_fceq_h, 5400 gen_helper_gvec_fceq_s, 5401 gen_helper_gvec_fceq_d, 5402 }; 5403 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq) 5404 5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5406 gen_helper_gvec_fcge_h, 5407 gen_helper_gvec_fcge_s, 5408 gen_helper_gvec_fcge_d, 5409 }; 5410 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge) 5411 5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5413 gen_helper_gvec_fcgt_h, 5414 gen_helper_gvec_fcgt_s, 5415 gen_helper_gvec_fcgt_d, 5416 }; 5417 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt) 5418 5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5420 gen_helper_gvec_facge_h, 5421 gen_helper_gvec_facge_s, 5422 gen_helper_gvec_facge_d, 5423 }; 5424 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge) 5425 5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5427 gen_helper_gvec_facgt_h, 5428 gen_helper_gvec_facgt_s, 5429 gen_helper_gvec_facgt_d, 5430 }; 5431 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt) 5432 5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5434 gen_helper_gvec_fabd_h, 5435 gen_helper_gvec_fabd_s, 5436 gen_helper_gvec_fabd_d, 5437 }; 5438 TRANS(FABD_v, do_fp3_vector, a, 0, f_vector_fabd) 5439 5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5441 gen_helper_gvec_recps_h, 5442 gen_helper_gvec_recps_s, 5443 gen_helper_gvec_recps_d, 5444 }; 5445 TRANS(FRECPS_v, do_fp3_vector, a, 0, f_vector_frecps) 5446 5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5448 gen_helper_gvec_rsqrts_h, 5449 gen_helper_gvec_rsqrts_s, 5450 gen_helper_gvec_rsqrts_d, 5451 }; 5452 TRANS(FRSQRTS_v, do_fp3_vector, a, 0, f_vector_frsqrts) 5453 5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5455 gen_helper_gvec_faddp_h, 5456 gen_helper_gvec_faddp_s, 5457 gen_helper_gvec_faddp_d, 5458 }; 5459 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp) 5460 5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5462 gen_helper_gvec_fmaxp_h, 5463 gen_helper_gvec_fmaxp_s, 5464 gen_helper_gvec_fmaxp_d, 5465 }; 5466 TRANS(FMAXP_v, do_fp3_vector, a, 0, f_vector_fmaxp) 5467 5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5469 gen_helper_gvec_fminp_h, 5470 gen_helper_gvec_fminp_s, 5471 gen_helper_gvec_fminp_d, 5472 }; 5473 TRANS(FMINP_v, do_fp3_vector, a, 0, f_vector_fminp) 5474 5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5476 gen_helper_gvec_fmaxnump_h, 5477 gen_helper_gvec_fmaxnump_s, 5478 gen_helper_gvec_fmaxnump_d, 5479 }; 5480 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp) 5481 5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5483 gen_helper_gvec_fminnump_h, 5484 gen_helper_gvec_fminnump_s, 5485 gen_helper_gvec_fminnump_d, 5486 }; 5487 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp) 5488 5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2) 5490 { 5491 if (fp_access_check(s)) { 5492 int data = (is_2 << 1) | is_s; 5493 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5494 vec_full_reg_offset(s, a->rn), 5495 vec_full_reg_offset(s, a->rm), tcg_env, 5496 a->q ? 16 : 8, vec_full_reg_size(s), 5497 data, gen_helper_gvec_fmlal_a64); 5498 } 5499 return true; 5500 } 5501 5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false) 5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false) 5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true) 5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true) 5506 5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) 5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) 5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) 5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) 5512 5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and) 5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc) 5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or) 5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc) 5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor) 5518 5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c) 5520 { 5521 if (fp_access_check(s)) { 5522 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0); 5523 } 5524 return true; 5525 } 5526 5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm) 5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd) 5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn) 5530 5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc) 5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc) 5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc) 5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc) 5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc) 5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc) 5537 5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl) 5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl) 5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl) 5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl) 5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl) 5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl) 5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl) 5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl) 5546 5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add) 5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub) 5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd) 5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd) 5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub) 5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub) 5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd) 5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd) 5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax) 5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax) 5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin) 5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin) 5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba) 5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba) 5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd) 5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd) 5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul) 5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b) 5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla) 5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls) 5567 5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond) 5569 { 5570 if (a->esz == MO_64 && !a->q) { 5571 return false; 5572 } 5573 if (fp_access_check(s)) { 5574 tcg_gen_gvec_cmp(cond, a->esz, 5575 vec_full_reg_offset(s, a->rd), 5576 vec_full_reg_offset(s, a->rn), 5577 vec_full_reg_offset(s, a->rm), 5578 a->q ? 16 : 8, vec_full_reg_size(s)); 5579 } 5580 return true; 5581 } 5582 5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT) 5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU) 5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE) 5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU) 5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ) 5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst) 5589 5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc) 5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc) 5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc) 5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc) 5594 5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a, 5596 gen_helper_gvec_4 *fn) 5597 { 5598 if (fp_access_check(s)) { 5599 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn); 5600 } 5601 return true; 5602 } 5603 5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b) 5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b) 5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b) 5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot) 5608 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfmmla) 5609 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b) 5610 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b) 5611 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b) 5612 5613 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a) 5614 { 5615 if (!dc_isar_feature(aa64_bf16, s)) { 5616 return false; 5617 } 5618 if (fp_access_check(s)) { 5619 /* Q bit selects BFMLALB vs BFMLALT. */ 5620 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q, 5621 gen_helper_gvec_bfmlal); 5622 } 5623 return true; 5624 } 5625 5626 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = { 5627 gen_helper_gvec_fcaddh, 5628 gen_helper_gvec_fcadds, 5629 gen_helper_gvec_fcaddd, 5630 }; 5631 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0, f_vector_fcadd) 5632 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1, f_vector_fcadd) 5633 5634 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a) 5635 { 5636 gen_helper_gvec_4_ptr *fn; 5637 5638 if (!dc_isar_feature(aa64_fcma, s)) { 5639 return false; 5640 } 5641 switch (a->esz) { 5642 case MO_64: 5643 if (!a->q) { 5644 return false; 5645 } 5646 fn = gen_helper_gvec_fcmlad; 5647 break; 5648 case MO_32: 5649 fn = gen_helper_gvec_fcmlas; 5650 break; 5651 case MO_16: 5652 if (!dc_isar_feature(aa64_fp16, s)) { 5653 return false; 5654 } 5655 fn = gen_helper_gvec_fcmlah; 5656 break; 5657 default: 5658 return false; 5659 } 5660 if (fp_access_check(s)) { 5661 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5662 a->esz == MO_16, a->rot, fn); 5663 } 5664 return true; 5665 } 5666 5667 /* 5668 * Widening vector x vector/indexed. 5669 * 5670 * These read from the top or bottom half of a 128-bit vector. 5671 * After widening, optionally accumulate with a 128-bit vector. 5672 * Implement these inline, as the number of elements are limited 5673 * and the related SVE and SME operations on larger vectors use 5674 * even/odd elements instead of top/bottom half. 5675 * 5676 * If idx >= 0, operand 2 is indexed, otherwise vector. 5677 * If acc, operand 0 is loaded with rd. 5678 */ 5679 5680 /* For low half, iterating up. */ 5681 static bool do_3op_widening(DisasContext *s, MemOp memop, int top, 5682 int rd, int rn, int rm, int idx, 5683 NeonGenTwo64OpFn *fn, bool acc) 5684 { 5685 TCGv_i64 tcg_op0 = tcg_temp_new_i64(); 5686 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 5687 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 5688 MemOp esz = memop & MO_SIZE; 5689 int half = 8 >> esz; 5690 int top_swap, top_half; 5691 5692 /* There are no 64x64->128 bit operations. */ 5693 if (esz >= MO_64) { 5694 return false; 5695 } 5696 if (!fp_access_check(s)) { 5697 return true; 5698 } 5699 5700 if (idx >= 0) { 5701 read_vec_element(s, tcg_op2, rm, idx, memop); 5702 } 5703 5704 /* 5705 * For top half inputs, iterate forward; backward for bottom half. 5706 * This means the store to the destination will not occur until 5707 * overlapping input inputs are consumed. 5708 * Use top_swap to conditionally invert the forward iteration index. 5709 */ 5710 top_swap = top ? 0 : half - 1; 5711 top_half = top ? half : 0; 5712 5713 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) { 5714 int elt = elt_fwd ^ top_swap; 5715 5716 read_vec_element(s, tcg_op1, rn, elt + top_half, memop); 5717 if (idx < 0) { 5718 read_vec_element(s, tcg_op2, rm, elt + top_half, memop); 5719 } 5720 if (acc) { 5721 read_vec_element(s, tcg_op0, rd, elt, memop + 1); 5722 } 5723 fn(tcg_op0, tcg_op1, tcg_op2); 5724 write_vec_element(s, tcg_op0, rd, elt, esz + 1); 5725 } 5726 clear_vec_high(s, 1, rd); 5727 return true; 5728 } 5729 5730 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5731 { 5732 TCGv_i64 t = tcg_temp_new_i64(); 5733 tcg_gen_mul_i64(t, n, m); 5734 tcg_gen_add_i64(d, d, t); 5735 } 5736 5737 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5738 { 5739 TCGv_i64 t = tcg_temp_new_i64(); 5740 tcg_gen_mul_i64(t, n, m); 5741 tcg_gen_sub_i64(d, d, t); 5742 } 5743 5744 TRANS(SMULL_v, do_3op_widening, 5745 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5746 tcg_gen_mul_i64, false) 5747 TRANS(UMULL_v, do_3op_widening, 5748 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5749 tcg_gen_mul_i64, false) 5750 TRANS(SMLAL_v, do_3op_widening, 5751 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5752 gen_muladd_i64, true) 5753 TRANS(UMLAL_v, do_3op_widening, 5754 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5755 gen_muladd_i64, true) 5756 TRANS(SMLSL_v, do_3op_widening, 5757 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5758 gen_mulsub_i64, true) 5759 TRANS(UMLSL_v, do_3op_widening, 5760 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5761 gen_mulsub_i64, true) 5762 5763 TRANS(SMULL_vi, do_3op_widening, 5764 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5765 tcg_gen_mul_i64, false) 5766 TRANS(UMULL_vi, do_3op_widening, 5767 a->esz, a->q, a->rd, a->rn, a->rm, a->idx, 5768 tcg_gen_mul_i64, false) 5769 TRANS(SMLAL_vi, do_3op_widening, 5770 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5771 gen_muladd_i64, true) 5772 TRANS(UMLAL_vi, do_3op_widening, 5773 a->esz, a->q, a->rd, a->rn, a->rm, a->idx, 5774 gen_muladd_i64, true) 5775 TRANS(SMLSL_vi, do_3op_widening, 5776 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5777 gen_mulsub_i64, true) 5778 TRANS(UMLSL_vi, do_3op_widening, 5779 a->esz, a->q, a->rd, a->rn, a->rm, a->idx, 5780 gen_mulsub_i64, true) 5781 5782 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5783 { 5784 TCGv_i64 t1 = tcg_temp_new_i64(); 5785 TCGv_i64 t2 = tcg_temp_new_i64(); 5786 5787 tcg_gen_sub_i64(t1, n, m); 5788 tcg_gen_sub_i64(t2, m, n); 5789 tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2); 5790 } 5791 5792 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5793 { 5794 TCGv_i64 t1 = tcg_temp_new_i64(); 5795 TCGv_i64 t2 = tcg_temp_new_i64(); 5796 5797 tcg_gen_sub_i64(t1, n, m); 5798 tcg_gen_sub_i64(t2, m, n); 5799 tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2); 5800 } 5801 5802 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5803 { 5804 TCGv_i64 t = tcg_temp_new_i64(); 5805 gen_sabd_i64(t, n, m); 5806 tcg_gen_add_i64(d, d, t); 5807 } 5808 5809 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5810 { 5811 TCGv_i64 t = tcg_temp_new_i64(); 5812 gen_uabd_i64(t, n, m); 5813 tcg_gen_add_i64(d, d, t); 5814 } 5815 5816 TRANS(SADDL_v, do_3op_widening, 5817 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5818 tcg_gen_add_i64, false) 5819 TRANS(UADDL_v, do_3op_widening, 5820 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5821 tcg_gen_add_i64, false) 5822 TRANS(SSUBL_v, do_3op_widening, 5823 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5824 tcg_gen_sub_i64, false) 5825 TRANS(USUBL_v, do_3op_widening, 5826 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5827 tcg_gen_sub_i64, false) 5828 TRANS(SABDL_v, do_3op_widening, 5829 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5830 gen_sabd_i64, false) 5831 TRANS(UABDL_v, do_3op_widening, 5832 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5833 gen_uabd_i64, false) 5834 TRANS(SABAL_v, do_3op_widening, 5835 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5836 gen_saba_i64, true) 5837 TRANS(UABAL_v, do_3op_widening, 5838 a->esz, a->q, a->rd, a->rn, a->rm, -1, 5839 gen_uaba_i64, true) 5840 5841 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5842 { 5843 tcg_gen_mul_i64(d, n, m); 5844 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d); 5845 } 5846 5847 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5848 { 5849 tcg_gen_mul_i64(d, n, m); 5850 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d); 5851 } 5852 5853 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5854 { 5855 TCGv_i64 t = tcg_temp_new_i64(); 5856 5857 tcg_gen_mul_i64(t, n, m); 5858 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t); 5859 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t); 5860 } 5861 5862 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5863 { 5864 TCGv_i64 t = tcg_temp_new_i64(); 5865 5866 tcg_gen_mul_i64(t, n, m); 5867 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t); 5868 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t); 5869 } 5870 5871 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5872 { 5873 TCGv_i64 t = tcg_temp_new_i64(); 5874 5875 tcg_gen_mul_i64(t, n, m); 5876 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t); 5877 tcg_gen_neg_i64(t, t); 5878 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t); 5879 } 5880 5881 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 5882 { 5883 TCGv_i64 t = tcg_temp_new_i64(); 5884 5885 tcg_gen_mul_i64(t, n, m); 5886 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t); 5887 tcg_gen_neg_i64(t, t); 5888 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t); 5889 } 5890 5891 TRANS(SQDMULL_v, do_3op_widening, 5892 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5893 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false) 5894 TRANS(SQDMLAL_v, do_3op_widening, 5895 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5896 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true) 5897 TRANS(SQDMLSL_v, do_3op_widening, 5898 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 5899 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true) 5900 5901 TRANS(SQDMULL_vi, do_3op_widening, 5902 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5903 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false) 5904 TRANS(SQDMLAL_vi, do_3op_widening, 5905 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5906 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true) 5907 TRANS(SQDMLSL_vi, do_3op_widening, 5908 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 5909 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true) 5910 5911 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a, 5912 MemOp sign, bool sub) 5913 { 5914 TCGv_i64 tcg_op0, tcg_op1; 5915 MemOp esz = a->esz; 5916 int half = 8 >> esz; 5917 bool top = a->q; 5918 int top_swap = top ? 0 : half - 1; 5919 int top_half = top ? half : 0; 5920 5921 /* There are no 64x64->128 bit operations. */ 5922 if (esz >= MO_64) { 5923 return false; 5924 } 5925 if (!fp_access_check(s)) { 5926 return true; 5927 } 5928 tcg_op0 = tcg_temp_new_i64(); 5929 tcg_op1 = tcg_temp_new_i64(); 5930 5931 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) { 5932 int elt = elt_fwd ^ top_swap; 5933 5934 read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign); 5935 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1); 5936 if (sub) { 5937 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1); 5938 } else { 5939 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1); 5940 } 5941 write_vec_element(s, tcg_op0, a->rd, elt, esz + 1); 5942 } 5943 clear_vec_high(s, 1, a->rd); 5944 return true; 5945 } 5946 5947 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false) 5948 TRANS(UADDW, do_addsub_wide, a, 0, false) 5949 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true) 5950 TRANS(USUBW, do_addsub_wide, a, 0, true) 5951 5952 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a, 5953 bool sub, bool round) 5954 { 5955 TCGv_i64 tcg_op0, tcg_op1; 5956 MemOp esz = a->esz; 5957 int half = 8 >> esz; 5958 bool top = a->q; 5959 int ebits = 8 << esz; 5960 uint64_t rbit = 1ull << (ebits - 1); 5961 int top_swap, top_half; 5962 5963 /* There are no 128x128->64 bit operations. */ 5964 if (esz >= MO_64) { 5965 return false; 5966 } 5967 if (!fp_access_check(s)) { 5968 return true; 5969 } 5970 tcg_op0 = tcg_temp_new_i64(); 5971 tcg_op1 = tcg_temp_new_i64(); 5972 5973 /* 5974 * For top half inputs, iterate backward; forward for bottom half. 5975 * This means the store to the destination will not occur until 5976 * overlapping input inputs are consumed. 5977 */ 5978 top_swap = top ? half - 1 : 0; 5979 top_half = top ? half : 0; 5980 5981 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) { 5982 int elt = elt_fwd ^ top_swap; 5983 5984 read_vec_element(s, tcg_op1, a->rm, elt, esz + 1); 5985 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1); 5986 if (sub) { 5987 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1); 5988 } else { 5989 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1); 5990 } 5991 if (round) { 5992 tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit); 5993 } 5994 tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits); 5995 write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz); 5996 } 5997 clear_vec_high(s, top, a->rd); 5998 return true; 5999 } 6000 6001 TRANS(ADDHN, do_addsub_highnarrow, a, false, false) 6002 TRANS(SUBHN, do_addsub_highnarrow, a, true, false) 6003 TRANS(RADDHN, do_addsub_highnarrow, a, false, true) 6004 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true) 6005 6006 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn) 6007 { 6008 if (fp_access_check(s)) { 6009 /* The Q field specifies lo/hi half input for these insns. */ 6010 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn); 6011 } 6012 return true; 6013 } 6014 6015 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h) 6016 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q) 6017 6018 /* 6019 * Advanced SIMD scalar/vector x indexed element 6020 */ 6021 6022 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 6023 { 6024 switch (a->esz) { 6025 case MO_64: 6026 if (fp_access_check(s)) { 6027 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 6028 TCGv_i64 t1 = tcg_temp_new_i64(); 6029 6030 read_vec_element(s, t1, a->rm, a->idx, MO_64); 6031 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6032 write_fp_dreg(s, a->rd, t0); 6033 } 6034 break; 6035 case MO_32: 6036 if (fp_access_check(s)) { 6037 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 6038 TCGv_i32 t1 = tcg_temp_new_i32(); 6039 6040 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 6041 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6042 write_fp_sreg(s, a->rd, t0); 6043 } 6044 break; 6045 case MO_16: 6046 if (!dc_isar_feature(aa64_fp16, s)) { 6047 return false; 6048 } 6049 if (fp_access_check(s)) { 6050 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 6051 TCGv_i32 t1 = tcg_temp_new_i32(); 6052 6053 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 6054 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 6055 write_fp_sreg(s, a->rd, t0); 6056 } 6057 break; 6058 default: 6059 g_assert_not_reached(); 6060 } 6061 return true; 6062 } 6063 6064 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 6065 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 6066 6067 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 6068 { 6069 switch (a->esz) { 6070 case MO_64: 6071 if (fp_access_check(s)) { 6072 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 6073 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 6074 TCGv_i64 t2 = tcg_temp_new_i64(); 6075 6076 read_vec_element(s, t2, a->rm, a->idx, MO_64); 6077 if (neg) { 6078 gen_vfp_negd(t1, t1); 6079 } 6080 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 6081 write_fp_dreg(s, a->rd, t0); 6082 } 6083 break; 6084 case MO_32: 6085 if (fp_access_check(s)) { 6086 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 6087 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 6088 TCGv_i32 t2 = tcg_temp_new_i32(); 6089 6090 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 6091 if (neg) { 6092 gen_vfp_negs(t1, t1); 6093 } 6094 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 6095 write_fp_sreg(s, a->rd, t0); 6096 } 6097 break; 6098 case MO_16: 6099 if (!dc_isar_feature(aa64_fp16, s)) { 6100 return false; 6101 } 6102 if (fp_access_check(s)) { 6103 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 6104 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 6105 TCGv_i32 t2 = tcg_temp_new_i32(); 6106 6107 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 6108 if (neg) { 6109 gen_vfp_negh(t1, t1); 6110 } 6111 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 6112 fpstatus_ptr(FPST_FPCR_F16)); 6113 write_fp_sreg(s, a->rd, t0); 6114 } 6115 break; 6116 default: 6117 g_assert_not_reached(); 6118 } 6119 return true; 6120 } 6121 6122 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 6123 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 6124 6125 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a, 6126 const ENVScalar2 *f) 6127 { 6128 if (a->esz < MO_16 || a->esz > MO_32) { 6129 return false; 6130 } 6131 if (fp_access_check(s)) { 6132 TCGv_i32 t0 = tcg_temp_new_i32(); 6133 TCGv_i32 t1 = tcg_temp_new_i32(); 6134 6135 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 6136 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 6137 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 6138 write_fp_sreg(s, a->rd, t0); 6139 } 6140 return true; 6141 } 6142 6143 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh) 6144 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh) 6145 6146 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a, 6147 const ENVScalar3 *f) 6148 { 6149 if (a->esz < MO_16 || a->esz > MO_32) { 6150 return false; 6151 } 6152 if (fp_access_check(s)) { 6153 TCGv_i32 t0 = tcg_temp_new_i32(); 6154 TCGv_i32 t1 = tcg_temp_new_i32(); 6155 TCGv_i32 t2 = tcg_temp_new_i32(); 6156 6157 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 6158 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 6159 read_vec_element_i32(s, t2, a->rd, 0, a->esz); 6160 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2); 6161 write_fp_sreg(s, a->rd, t0); 6162 } 6163 return true; 6164 } 6165 6166 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah) 6167 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh) 6168 6169 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a, 6170 NeonGenTwo64OpFn *fn, bool acc) 6171 { 6172 if (fp_access_check(s)) { 6173 TCGv_i64 t0 = tcg_temp_new_i64(); 6174 TCGv_i64 t1 = tcg_temp_new_i64(); 6175 TCGv_i64 t2 = tcg_temp_new_i64(); 6176 unsigned vsz, dofs; 6177 6178 if (acc) { 6179 read_vec_element(s, t0, a->rd, 0, a->esz + 1); 6180 } 6181 read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN); 6182 read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN); 6183 fn(t0, t1, t2); 6184 6185 /* Clear the whole register first, then store scalar. */ 6186 vsz = vec_full_reg_size(s); 6187 dofs = vec_full_reg_offset(s, a->rd); 6188 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 6189 write_vec_element(s, t0, a->rd, 0, a->esz + 1); 6190 } 6191 return true; 6192 } 6193 6194 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a, 6195 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false) 6196 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a, 6197 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true) 6198 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a, 6199 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true) 6200 6201 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 6202 gen_helper_gvec_3_ptr * const fns[3]) 6203 { 6204 MemOp esz = a->esz; 6205 6206 switch (esz) { 6207 case MO_64: 6208 if (!a->q) { 6209 return false; 6210 } 6211 break; 6212 case MO_32: 6213 break; 6214 case MO_16: 6215 if (!dc_isar_feature(aa64_fp16, s)) { 6216 return false; 6217 } 6218 break; 6219 default: 6220 g_assert_not_reached(); 6221 } 6222 if (fp_access_check(s)) { 6223 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 6224 esz == MO_16, a->idx, fns[esz - 1]); 6225 } 6226 return true; 6227 } 6228 6229 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 6230 gen_helper_gvec_fmul_idx_h, 6231 gen_helper_gvec_fmul_idx_s, 6232 gen_helper_gvec_fmul_idx_d, 6233 }; 6234 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 6235 6236 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 6237 gen_helper_gvec_fmulx_idx_h, 6238 gen_helper_gvec_fmulx_idx_s, 6239 gen_helper_gvec_fmulx_idx_d, 6240 }; 6241 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 6242 6243 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 6244 { 6245 static gen_helper_gvec_4_ptr * const fns[3] = { 6246 gen_helper_gvec_fmla_idx_h, 6247 gen_helper_gvec_fmla_idx_s, 6248 gen_helper_gvec_fmla_idx_d, 6249 }; 6250 MemOp esz = a->esz; 6251 6252 switch (esz) { 6253 case MO_64: 6254 if (!a->q) { 6255 return false; 6256 } 6257 break; 6258 case MO_32: 6259 break; 6260 case MO_16: 6261 if (!dc_isar_feature(aa64_fp16, s)) { 6262 return false; 6263 } 6264 break; 6265 default: 6266 g_assert_not_reached(); 6267 } 6268 if (fp_access_check(s)) { 6269 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 6270 esz == MO_16, (a->idx << 1) | neg, 6271 fns[esz - 1]); 6272 } 6273 return true; 6274 } 6275 6276 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 6277 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 6278 6279 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2) 6280 { 6281 if (fp_access_check(s)) { 6282 int data = (a->idx << 2) | (is_2 << 1) | is_s; 6283 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 6284 vec_full_reg_offset(s, a->rn), 6285 vec_full_reg_offset(s, a->rm), tcg_env, 6286 a->q ? 16 : 8, vec_full_reg_size(s), 6287 data, gen_helper_gvec_fmlal_idx_a64); 6288 } 6289 return true; 6290 } 6291 6292 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false) 6293 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false) 6294 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true) 6295 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true) 6296 6297 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a, 6298 gen_helper_gvec_3 * const fns[2]) 6299 { 6300 assert(a->esz == MO_16 || a->esz == MO_32); 6301 if (fp_access_check(s)) { 6302 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]); 6303 } 6304 return true; 6305 } 6306 6307 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = { 6308 gen_helper_gvec_mul_idx_h, 6309 gen_helper_gvec_mul_idx_s, 6310 }; 6311 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul) 6312 6313 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub) 6314 { 6315 static gen_helper_gvec_4 * const fns[2][2] = { 6316 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h }, 6317 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s }, 6318 }; 6319 6320 assert(a->esz == MO_16 || a->esz == MO_32); 6321 if (fp_access_check(s)) { 6322 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 6323 a->idx, fns[a->esz - 1][sub]); 6324 } 6325 return true; 6326 } 6327 6328 TRANS(MLA_vi, do_mla_vector_idx, a, false) 6329 TRANS(MLS_vi, do_mla_vector_idx, a, true) 6330 6331 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a, 6332 gen_helper_gvec_4 * const fns[2]) 6333 { 6334 assert(a->esz == MO_16 || a->esz == MO_32); 6335 if (fp_access_check(s)) { 6336 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd), 6337 vec_full_reg_offset(s, a->rn), 6338 vec_full_reg_offset(s, a->rm), 6339 offsetof(CPUARMState, vfp.qc), 6340 a->q ? 16 : 8, vec_full_reg_size(s), 6341 a->idx, fns[a->esz - 1]); 6342 } 6343 return true; 6344 } 6345 6346 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = { 6347 gen_helper_neon_sqdmulh_idx_h, 6348 gen_helper_neon_sqdmulh_idx_s, 6349 }; 6350 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh) 6351 6352 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = { 6353 gen_helper_neon_sqrdmulh_idx_h, 6354 gen_helper_neon_sqrdmulh_idx_s, 6355 }; 6356 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh) 6357 6358 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = { 6359 gen_helper_neon_sqrdmlah_idx_h, 6360 gen_helper_neon_sqrdmlah_idx_s, 6361 }; 6362 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a, 6363 f_vector_idx_sqrdmlah) 6364 6365 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = { 6366 gen_helper_neon_sqrdmlsh_idx_h, 6367 gen_helper_neon_sqrdmlsh_idx_s, 6368 }; 6369 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a, 6370 f_vector_idx_sqrdmlsh) 6371 6372 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a, 6373 gen_helper_gvec_4 *fn) 6374 { 6375 if (fp_access_check(s)) { 6376 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn); 6377 } 6378 return true; 6379 } 6380 6381 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b) 6382 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b) 6383 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a, 6384 gen_helper_gvec_sudot_idx_b) 6385 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a, 6386 gen_helper_gvec_usdot_idx_b) 6387 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a, 6388 gen_helper_gvec_bfdot_idx) 6389 6390 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a) 6391 { 6392 if (!dc_isar_feature(aa64_bf16, s)) { 6393 return false; 6394 } 6395 if (fp_access_check(s)) { 6396 /* Q bit selects BFMLALB vs BFMLALT. */ 6397 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0, 6398 (a->idx << 1) | a->q, 6399 gen_helper_gvec_bfmlal_idx); 6400 } 6401 return true; 6402 } 6403 6404 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a) 6405 { 6406 gen_helper_gvec_4_ptr *fn; 6407 6408 if (!dc_isar_feature(aa64_fcma, s)) { 6409 return false; 6410 } 6411 switch (a->esz) { 6412 case MO_16: 6413 if (!dc_isar_feature(aa64_fp16, s)) { 6414 return false; 6415 } 6416 fn = gen_helper_gvec_fcmlah_idx; 6417 break; 6418 case MO_32: 6419 fn = gen_helper_gvec_fcmlas_idx; 6420 break; 6421 default: 6422 g_assert_not_reached(); 6423 } 6424 if (fp_access_check(s)) { 6425 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 6426 a->esz == MO_16, (a->idx << 2) | a->rot, fn); 6427 } 6428 return true; 6429 } 6430 6431 /* 6432 * Advanced SIMD scalar pairwise 6433 */ 6434 6435 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 6436 { 6437 switch (a->esz) { 6438 case MO_64: 6439 if (fp_access_check(s)) { 6440 TCGv_i64 t0 = tcg_temp_new_i64(); 6441 TCGv_i64 t1 = tcg_temp_new_i64(); 6442 6443 read_vec_element(s, t0, a->rn, 0, MO_64); 6444 read_vec_element(s, t1, a->rn, 1, MO_64); 6445 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6446 write_fp_dreg(s, a->rd, t0); 6447 } 6448 break; 6449 case MO_32: 6450 if (fp_access_check(s)) { 6451 TCGv_i32 t0 = tcg_temp_new_i32(); 6452 TCGv_i32 t1 = tcg_temp_new_i32(); 6453 6454 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 6455 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 6456 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6457 write_fp_sreg(s, a->rd, t0); 6458 } 6459 break; 6460 case MO_16: 6461 if (!dc_isar_feature(aa64_fp16, s)) { 6462 return false; 6463 } 6464 if (fp_access_check(s)) { 6465 TCGv_i32 t0 = tcg_temp_new_i32(); 6466 TCGv_i32 t1 = tcg_temp_new_i32(); 6467 6468 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 6469 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 6470 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 6471 write_fp_sreg(s, a->rd, t0); 6472 } 6473 break; 6474 default: 6475 g_assert_not_reached(); 6476 } 6477 return true; 6478 } 6479 6480 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 6481 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 6482 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 6483 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 6484 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 6485 6486 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 6487 { 6488 if (fp_access_check(s)) { 6489 TCGv_i64 t0 = tcg_temp_new_i64(); 6490 TCGv_i64 t1 = tcg_temp_new_i64(); 6491 6492 read_vec_element(s, t0, a->rn, 0, MO_64); 6493 read_vec_element(s, t1, a->rn, 1, MO_64); 6494 tcg_gen_add_i64(t0, t0, t1); 6495 write_fp_dreg(s, a->rd, t0); 6496 } 6497 return true; 6498 } 6499 6500 /* 6501 * Floating-point conditional select 6502 */ 6503 6504 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a) 6505 { 6506 TCGv_i64 t_true, t_false; 6507 DisasCompare64 c; 6508 6509 switch (a->esz) { 6510 case MO_32: 6511 case MO_64: 6512 break; 6513 case MO_16: 6514 if (!dc_isar_feature(aa64_fp16, s)) { 6515 return false; 6516 } 6517 break; 6518 default: 6519 return false; 6520 } 6521 6522 if (!fp_access_check(s)) { 6523 return true; 6524 } 6525 6526 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6527 t_true = tcg_temp_new_i64(); 6528 t_false = tcg_temp_new_i64(); 6529 read_vec_element(s, t_true, a->rn, 0, a->esz); 6530 read_vec_element(s, t_false, a->rm, 0, a->esz); 6531 6532 a64_test_cc(&c, a->cond); 6533 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6534 t_true, t_false); 6535 6536 /* 6537 * Note that sregs & hregs write back zeros to the high bits, 6538 * and we've already done the zero-extension. 6539 */ 6540 write_fp_dreg(s, a->rd, t_true); 6541 return true; 6542 } 6543 6544 /* 6545 * Floating-point data-processing (3 source) 6546 */ 6547 6548 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n) 6549 { 6550 TCGv_ptr fpst; 6551 6552 /* 6553 * These are fused multiply-add. Note that doing the negations here 6554 * as separate steps is correct: an input NaN should come out with 6555 * its sign bit flipped if it is a negated-input. 6556 */ 6557 switch (a->esz) { 6558 case MO_64: 6559 if (fp_access_check(s)) { 6560 TCGv_i64 tn = read_fp_dreg(s, a->rn); 6561 TCGv_i64 tm = read_fp_dreg(s, a->rm); 6562 TCGv_i64 ta = read_fp_dreg(s, a->ra); 6563 6564 if (neg_a) { 6565 gen_vfp_negd(ta, ta); 6566 } 6567 if (neg_n) { 6568 gen_vfp_negd(tn, tn); 6569 } 6570 fpst = fpstatus_ptr(FPST_FPCR); 6571 gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst); 6572 write_fp_dreg(s, a->rd, ta); 6573 } 6574 break; 6575 6576 case MO_32: 6577 if (fp_access_check(s)) { 6578 TCGv_i32 tn = read_fp_sreg(s, a->rn); 6579 TCGv_i32 tm = read_fp_sreg(s, a->rm); 6580 TCGv_i32 ta = read_fp_sreg(s, a->ra); 6581 6582 if (neg_a) { 6583 gen_vfp_negs(ta, ta); 6584 } 6585 if (neg_n) { 6586 gen_vfp_negs(tn, tn); 6587 } 6588 fpst = fpstatus_ptr(FPST_FPCR); 6589 gen_helper_vfp_muladds(ta, tn, tm, ta, fpst); 6590 write_fp_sreg(s, a->rd, ta); 6591 } 6592 break; 6593 6594 case MO_16: 6595 if (!dc_isar_feature(aa64_fp16, s)) { 6596 return false; 6597 } 6598 if (fp_access_check(s)) { 6599 TCGv_i32 tn = read_fp_hreg(s, a->rn); 6600 TCGv_i32 tm = read_fp_hreg(s, a->rm); 6601 TCGv_i32 ta = read_fp_hreg(s, a->ra); 6602 6603 if (neg_a) { 6604 gen_vfp_negh(ta, ta); 6605 } 6606 if (neg_n) { 6607 gen_vfp_negh(tn, tn); 6608 } 6609 fpst = fpstatus_ptr(FPST_FPCR_F16); 6610 gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst); 6611 write_fp_sreg(s, a->rd, ta); 6612 } 6613 break; 6614 6615 default: 6616 return false; 6617 } 6618 return true; 6619 } 6620 6621 TRANS(FMADD, do_fmadd, a, false, false) 6622 TRANS(FNMADD, do_fmadd, a, true, true) 6623 TRANS(FMSUB, do_fmadd, a, false, true) 6624 TRANS(FNMSUB, do_fmadd, a, true, false) 6625 6626 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 6627 * Note that it is the caller's responsibility to ensure that the 6628 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 6629 * mandated semantics for out of range shifts. 6630 */ 6631 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 6632 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 6633 { 6634 switch (shift_type) { 6635 case A64_SHIFT_TYPE_LSL: 6636 tcg_gen_shl_i64(dst, src, shift_amount); 6637 break; 6638 case A64_SHIFT_TYPE_LSR: 6639 tcg_gen_shr_i64(dst, src, shift_amount); 6640 break; 6641 case A64_SHIFT_TYPE_ASR: 6642 if (!sf) { 6643 tcg_gen_ext32s_i64(dst, src); 6644 } 6645 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 6646 break; 6647 case A64_SHIFT_TYPE_ROR: 6648 if (sf) { 6649 tcg_gen_rotr_i64(dst, src, shift_amount); 6650 } else { 6651 TCGv_i32 t0, t1; 6652 t0 = tcg_temp_new_i32(); 6653 t1 = tcg_temp_new_i32(); 6654 tcg_gen_extrl_i64_i32(t0, src); 6655 tcg_gen_extrl_i64_i32(t1, shift_amount); 6656 tcg_gen_rotr_i32(t0, t0, t1); 6657 tcg_gen_extu_i32_i64(dst, t0); 6658 } 6659 break; 6660 default: 6661 assert(FALSE); /* all shift types should be handled */ 6662 break; 6663 } 6664 6665 if (!sf) { /* zero extend final result */ 6666 tcg_gen_ext32u_i64(dst, dst); 6667 } 6668 } 6669 6670 /* Shift a TCGv src by immediate, put result in dst. 6671 * The shift amount must be in range (this should always be true as the 6672 * relevant instructions will UNDEF on bad shift immediates). 6673 */ 6674 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 6675 enum a64_shift_type shift_type, unsigned int shift_i) 6676 { 6677 assert(shift_i < (sf ? 64 : 32)); 6678 6679 if (shift_i == 0) { 6680 tcg_gen_mov_i64(dst, src); 6681 } else { 6682 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 6683 } 6684 } 6685 6686 /* Logical (shifted register) 6687 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 6688 * +----+-----+-----------+-------+---+------+--------+------+------+ 6689 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 6690 * +----+-----+-----------+-------+---+------+--------+------+------+ 6691 */ 6692 static void disas_logic_reg(DisasContext *s, uint32_t insn) 6693 { 6694 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 6695 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 6696 6697 sf = extract32(insn, 31, 1); 6698 opc = extract32(insn, 29, 2); 6699 shift_type = extract32(insn, 22, 2); 6700 invert = extract32(insn, 21, 1); 6701 rm = extract32(insn, 16, 5); 6702 shift_amount = extract32(insn, 10, 6); 6703 rn = extract32(insn, 5, 5); 6704 rd = extract32(insn, 0, 5); 6705 6706 if (!sf && (shift_amount & (1 << 5))) { 6707 unallocated_encoding(s); 6708 return; 6709 } 6710 6711 tcg_rd = cpu_reg(s, rd); 6712 6713 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 6714 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 6715 * register-register MOV and MVN, so it is worth special casing. 6716 */ 6717 tcg_rm = cpu_reg(s, rm); 6718 if (invert) { 6719 tcg_gen_not_i64(tcg_rd, tcg_rm); 6720 if (!sf) { 6721 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6722 } 6723 } else { 6724 if (sf) { 6725 tcg_gen_mov_i64(tcg_rd, tcg_rm); 6726 } else { 6727 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 6728 } 6729 } 6730 return; 6731 } 6732 6733 tcg_rm = read_cpu_reg(s, rm, sf); 6734 6735 if (shift_amount) { 6736 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 6737 } 6738 6739 tcg_rn = cpu_reg(s, rn); 6740 6741 switch (opc | (invert << 2)) { 6742 case 0: /* AND */ 6743 case 3: /* ANDS */ 6744 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 6745 break; 6746 case 1: /* ORR */ 6747 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 6748 break; 6749 case 2: /* EOR */ 6750 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 6751 break; 6752 case 4: /* BIC */ 6753 case 7: /* BICS */ 6754 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 6755 break; 6756 case 5: /* ORN */ 6757 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 6758 break; 6759 case 6: /* EON */ 6760 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 6761 break; 6762 default: 6763 assert(FALSE); 6764 break; 6765 } 6766 6767 if (!sf) { 6768 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6769 } 6770 6771 if (opc == 3) { 6772 gen_logic_CC(sf, tcg_rd); 6773 } 6774 } 6775 6776 /* 6777 * Add/subtract (extended register) 6778 * 6779 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 6780 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6781 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 6782 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6783 * 6784 * sf: 0 -> 32bit, 1 -> 64bit 6785 * op: 0 -> add , 1 -> sub 6786 * S: 1 -> set flags 6787 * opt: 00 6788 * option: extension type (see DecodeRegExtend) 6789 * imm3: optional shift to Rm 6790 * 6791 * Rd = Rn + LSL(extend(Rm), amount) 6792 */ 6793 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 6794 { 6795 int rd = extract32(insn, 0, 5); 6796 int rn = extract32(insn, 5, 5); 6797 int imm3 = extract32(insn, 10, 3); 6798 int option = extract32(insn, 13, 3); 6799 int rm = extract32(insn, 16, 5); 6800 int opt = extract32(insn, 22, 2); 6801 bool setflags = extract32(insn, 29, 1); 6802 bool sub_op = extract32(insn, 30, 1); 6803 bool sf = extract32(insn, 31, 1); 6804 6805 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 6806 TCGv_i64 tcg_rd; 6807 TCGv_i64 tcg_result; 6808 6809 if (imm3 > 4 || opt != 0) { 6810 unallocated_encoding(s); 6811 return; 6812 } 6813 6814 /* non-flag setting ops may use SP */ 6815 if (!setflags) { 6816 tcg_rd = cpu_reg_sp(s, rd); 6817 } else { 6818 tcg_rd = cpu_reg(s, rd); 6819 } 6820 tcg_rn = read_cpu_reg_sp(s, rn, sf); 6821 6822 tcg_rm = read_cpu_reg(s, rm, sf); 6823 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 6824 6825 tcg_result = tcg_temp_new_i64(); 6826 6827 if (!setflags) { 6828 if (sub_op) { 6829 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6830 } else { 6831 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6832 } 6833 } else { 6834 if (sub_op) { 6835 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6836 } else { 6837 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6838 } 6839 } 6840 6841 if (sf) { 6842 tcg_gen_mov_i64(tcg_rd, tcg_result); 6843 } else { 6844 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6845 } 6846 } 6847 6848 /* 6849 * Add/subtract (shifted register) 6850 * 6851 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 6852 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6853 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 6854 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6855 * 6856 * sf: 0 -> 32bit, 1 -> 64bit 6857 * op: 0 -> add , 1 -> sub 6858 * S: 1 -> set flags 6859 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 6860 * imm6: Shift amount to apply to Rm before the add/sub 6861 */ 6862 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 6863 { 6864 int rd = extract32(insn, 0, 5); 6865 int rn = extract32(insn, 5, 5); 6866 int imm6 = extract32(insn, 10, 6); 6867 int rm = extract32(insn, 16, 5); 6868 int shift_type = extract32(insn, 22, 2); 6869 bool setflags = extract32(insn, 29, 1); 6870 bool sub_op = extract32(insn, 30, 1); 6871 bool sf = extract32(insn, 31, 1); 6872 6873 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6874 TCGv_i64 tcg_rn, tcg_rm; 6875 TCGv_i64 tcg_result; 6876 6877 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 6878 unallocated_encoding(s); 6879 return; 6880 } 6881 6882 tcg_rn = read_cpu_reg(s, rn, sf); 6883 tcg_rm = read_cpu_reg(s, rm, sf); 6884 6885 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 6886 6887 tcg_result = tcg_temp_new_i64(); 6888 6889 if (!setflags) { 6890 if (sub_op) { 6891 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6892 } else { 6893 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6894 } 6895 } else { 6896 if (sub_op) { 6897 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6898 } else { 6899 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6900 } 6901 } 6902 6903 if (sf) { 6904 tcg_gen_mov_i64(tcg_rd, tcg_result); 6905 } else { 6906 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6907 } 6908 } 6909 6910 /* Data-processing (3 source) 6911 * 6912 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 6913 * +--+------+-----------+------+------+----+------+------+------+ 6914 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 6915 * +--+------+-----------+------+------+----+------+------+------+ 6916 */ 6917 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 6918 { 6919 int rd = extract32(insn, 0, 5); 6920 int rn = extract32(insn, 5, 5); 6921 int ra = extract32(insn, 10, 5); 6922 int rm = extract32(insn, 16, 5); 6923 int op_id = (extract32(insn, 29, 3) << 4) | 6924 (extract32(insn, 21, 3) << 1) | 6925 extract32(insn, 15, 1); 6926 bool sf = extract32(insn, 31, 1); 6927 bool is_sub = extract32(op_id, 0, 1); 6928 bool is_high = extract32(op_id, 2, 1); 6929 bool is_signed = false; 6930 TCGv_i64 tcg_op1; 6931 TCGv_i64 tcg_op2; 6932 TCGv_i64 tcg_tmp; 6933 6934 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 6935 switch (op_id) { 6936 case 0x42: /* SMADDL */ 6937 case 0x43: /* SMSUBL */ 6938 case 0x44: /* SMULH */ 6939 is_signed = true; 6940 break; 6941 case 0x0: /* MADD (32bit) */ 6942 case 0x1: /* MSUB (32bit) */ 6943 case 0x40: /* MADD (64bit) */ 6944 case 0x41: /* MSUB (64bit) */ 6945 case 0x4a: /* UMADDL */ 6946 case 0x4b: /* UMSUBL */ 6947 case 0x4c: /* UMULH */ 6948 break; 6949 default: 6950 unallocated_encoding(s); 6951 return; 6952 } 6953 6954 if (is_high) { 6955 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 6956 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6957 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6958 TCGv_i64 tcg_rm = cpu_reg(s, rm); 6959 6960 if (is_signed) { 6961 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 6962 } else { 6963 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 6964 } 6965 return; 6966 } 6967 6968 tcg_op1 = tcg_temp_new_i64(); 6969 tcg_op2 = tcg_temp_new_i64(); 6970 tcg_tmp = tcg_temp_new_i64(); 6971 6972 if (op_id < 0x42) { 6973 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 6974 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 6975 } else { 6976 if (is_signed) { 6977 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 6978 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 6979 } else { 6980 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 6981 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 6982 } 6983 } 6984 6985 if (ra == 31 && !is_sub) { 6986 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 6987 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 6988 } else { 6989 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 6990 if (is_sub) { 6991 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 6992 } else { 6993 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 6994 } 6995 } 6996 6997 if (!sf) { 6998 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 6999 } 7000 } 7001 7002 /* Add/subtract (with carry) 7003 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 7004 * +--+--+--+------------------------+------+-------------+------+-----+ 7005 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 7006 * +--+--+--+------------------------+------+-------------+------+-----+ 7007 */ 7008 7009 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 7010 { 7011 unsigned int sf, op, setflags, rm, rn, rd; 7012 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 7013 7014 sf = extract32(insn, 31, 1); 7015 op = extract32(insn, 30, 1); 7016 setflags = extract32(insn, 29, 1); 7017 rm = extract32(insn, 16, 5); 7018 rn = extract32(insn, 5, 5); 7019 rd = extract32(insn, 0, 5); 7020 7021 tcg_rd = cpu_reg(s, rd); 7022 tcg_rn = cpu_reg(s, rn); 7023 7024 if (op) { 7025 tcg_y = tcg_temp_new_i64(); 7026 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 7027 } else { 7028 tcg_y = cpu_reg(s, rm); 7029 } 7030 7031 if (setflags) { 7032 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 7033 } else { 7034 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 7035 } 7036 } 7037 7038 /* 7039 * Rotate right into flags 7040 * 31 30 29 21 15 10 5 4 0 7041 * +--+--+--+-----------------+--------+-----------+------+--+------+ 7042 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 7043 * +--+--+--+-----------------+--------+-----------+------+--+------+ 7044 */ 7045 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 7046 { 7047 int mask = extract32(insn, 0, 4); 7048 int o2 = extract32(insn, 4, 1); 7049 int rn = extract32(insn, 5, 5); 7050 int imm6 = extract32(insn, 15, 6); 7051 int sf_op_s = extract32(insn, 29, 3); 7052 TCGv_i64 tcg_rn; 7053 TCGv_i32 nzcv; 7054 7055 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 7056 unallocated_encoding(s); 7057 return; 7058 } 7059 7060 tcg_rn = read_cpu_reg(s, rn, 1); 7061 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 7062 7063 nzcv = tcg_temp_new_i32(); 7064 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 7065 7066 if (mask & 8) { /* N */ 7067 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 7068 } 7069 if (mask & 4) { /* Z */ 7070 tcg_gen_not_i32(cpu_ZF, nzcv); 7071 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 7072 } 7073 if (mask & 2) { /* C */ 7074 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 7075 } 7076 if (mask & 1) { /* V */ 7077 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 7078 } 7079 } 7080 7081 /* 7082 * Evaluate into flags 7083 * 31 30 29 21 15 14 10 5 4 0 7084 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 7085 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 7086 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 7087 */ 7088 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 7089 { 7090 int o3_mask = extract32(insn, 0, 5); 7091 int rn = extract32(insn, 5, 5); 7092 int o2 = extract32(insn, 15, 6); 7093 int sz = extract32(insn, 14, 1); 7094 int sf_op_s = extract32(insn, 29, 3); 7095 TCGv_i32 tmp; 7096 int shift; 7097 7098 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 7099 !dc_isar_feature(aa64_condm_4, s)) { 7100 unallocated_encoding(s); 7101 return; 7102 } 7103 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 7104 7105 tmp = tcg_temp_new_i32(); 7106 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 7107 tcg_gen_shli_i32(cpu_NF, tmp, shift); 7108 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 7109 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 7110 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 7111 } 7112 7113 /* Conditional compare (immediate / register) 7114 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 7115 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 7116 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 7117 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 7118 * [1] y [0] [0] 7119 */ 7120 static void disas_cc(DisasContext *s, uint32_t insn) 7121 { 7122 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 7123 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 7124 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 7125 DisasCompare c; 7126 7127 if (!extract32(insn, 29, 1)) { 7128 unallocated_encoding(s); 7129 return; 7130 } 7131 if (insn & (1 << 10 | 1 << 4)) { 7132 unallocated_encoding(s); 7133 return; 7134 } 7135 sf = extract32(insn, 31, 1); 7136 op = extract32(insn, 30, 1); 7137 is_imm = extract32(insn, 11, 1); 7138 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 7139 cond = extract32(insn, 12, 4); 7140 rn = extract32(insn, 5, 5); 7141 nzcv = extract32(insn, 0, 4); 7142 7143 /* Set T0 = !COND. */ 7144 tcg_t0 = tcg_temp_new_i32(); 7145 arm_test_cc(&c, cond); 7146 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 7147 7148 /* Load the arguments for the new comparison. */ 7149 if (is_imm) { 7150 tcg_y = tcg_temp_new_i64(); 7151 tcg_gen_movi_i64(tcg_y, y); 7152 } else { 7153 tcg_y = cpu_reg(s, y); 7154 } 7155 tcg_rn = cpu_reg(s, rn); 7156 7157 /* Set the flags for the new comparison. */ 7158 tcg_tmp = tcg_temp_new_i64(); 7159 if (op) { 7160 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 7161 } else { 7162 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 7163 } 7164 7165 /* If COND was false, force the flags to #nzcv. Compute two masks 7166 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 7167 * For tcg hosts that support ANDC, we can make do with just T1. 7168 * In either case, allow the tcg optimizer to delete any unused mask. 7169 */ 7170 tcg_t1 = tcg_temp_new_i32(); 7171 tcg_t2 = tcg_temp_new_i32(); 7172 tcg_gen_neg_i32(tcg_t1, tcg_t0); 7173 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 7174 7175 if (nzcv & 8) { /* N */ 7176 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 7177 } else { 7178 if (TCG_TARGET_HAS_andc_i32) { 7179 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 7180 } else { 7181 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 7182 } 7183 } 7184 if (nzcv & 4) { /* Z */ 7185 if (TCG_TARGET_HAS_andc_i32) { 7186 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 7187 } else { 7188 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 7189 } 7190 } else { 7191 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 7192 } 7193 if (nzcv & 2) { /* C */ 7194 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 7195 } else { 7196 if (TCG_TARGET_HAS_andc_i32) { 7197 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 7198 } else { 7199 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 7200 } 7201 } 7202 if (nzcv & 1) { /* V */ 7203 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 7204 } else { 7205 if (TCG_TARGET_HAS_andc_i32) { 7206 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 7207 } else { 7208 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 7209 } 7210 } 7211 } 7212 7213 /* Conditional select 7214 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 7215 * +----+----+---+-----------------+------+------+-----+------+------+ 7216 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 7217 * +----+----+---+-----------------+------+------+-----+------+------+ 7218 */ 7219 static void disas_cond_select(DisasContext *s, uint32_t insn) 7220 { 7221 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 7222 TCGv_i64 tcg_rd, zero; 7223 DisasCompare64 c; 7224 7225 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 7226 /* S == 1 or op2<1> == 1 */ 7227 unallocated_encoding(s); 7228 return; 7229 } 7230 sf = extract32(insn, 31, 1); 7231 else_inv = extract32(insn, 30, 1); 7232 rm = extract32(insn, 16, 5); 7233 cond = extract32(insn, 12, 4); 7234 else_inc = extract32(insn, 10, 1); 7235 rn = extract32(insn, 5, 5); 7236 rd = extract32(insn, 0, 5); 7237 7238 tcg_rd = cpu_reg(s, rd); 7239 7240 a64_test_cc(&c, cond); 7241 zero = tcg_constant_i64(0); 7242 7243 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 7244 /* CSET & CSETM. */ 7245 if (else_inv) { 7246 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 7247 tcg_rd, c.value, zero); 7248 } else { 7249 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 7250 tcg_rd, c.value, zero); 7251 } 7252 } else { 7253 TCGv_i64 t_true = cpu_reg(s, rn); 7254 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 7255 if (else_inv && else_inc) { 7256 tcg_gen_neg_i64(t_false, t_false); 7257 } else if (else_inv) { 7258 tcg_gen_not_i64(t_false, t_false); 7259 } else if (else_inc) { 7260 tcg_gen_addi_i64(t_false, t_false, 1); 7261 } 7262 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 7263 } 7264 7265 if (!sf) { 7266 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7267 } 7268 } 7269 7270 static void handle_clz(DisasContext *s, unsigned int sf, 7271 unsigned int rn, unsigned int rd) 7272 { 7273 TCGv_i64 tcg_rd, tcg_rn; 7274 tcg_rd = cpu_reg(s, rd); 7275 tcg_rn = cpu_reg(s, rn); 7276 7277 if (sf) { 7278 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 7279 } else { 7280 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 7281 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 7282 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 7283 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 7284 } 7285 } 7286 7287 static void handle_cls(DisasContext *s, unsigned int sf, 7288 unsigned int rn, unsigned int rd) 7289 { 7290 TCGv_i64 tcg_rd, tcg_rn; 7291 tcg_rd = cpu_reg(s, rd); 7292 tcg_rn = cpu_reg(s, rn); 7293 7294 if (sf) { 7295 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 7296 } else { 7297 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 7298 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 7299 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 7300 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 7301 } 7302 } 7303 7304 static void handle_rbit(DisasContext *s, unsigned int sf, 7305 unsigned int rn, unsigned int rd) 7306 { 7307 TCGv_i64 tcg_rd, tcg_rn; 7308 tcg_rd = cpu_reg(s, rd); 7309 tcg_rn = cpu_reg(s, rn); 7310 7311 if (sf) { 7312 gen_helper_rbit64(tcg_rd, tcg_rn); 7313 } else { 7314 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 7315 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 7316 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 7317 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 7318 } 7319 } 7320 7321 /* REV with sf==1, opcode==3 ("REV64") */ 7322 static void handle_rev64(DisasContext *s, unsigned int sf, 7323 unsigned int rn, unsigned int rd) 7324 { 7325 if (!sf) { 7326 unallocated_encoding(s); 7327 return; 7328 } 7329 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 7330 } 7331 7332 /* REV with sf==0, opcode==2 7333 * REV32 (sf==1, opcode==2) 7334 */ 7335 static void handle_rev32(DisasContext *s, unsigned int sf, 7336 unsigned int rn, unsigned int rd) 7337 { 7338 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7339 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7340 7341 if (sf) { 7342 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 7343 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 7344 } else { 7345 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 7346 } 7347 } 7348 7349 /* REV16 (opcode==1) */ 7350 static void handle_rev16(DisasContext *s, unsigned int sf, 7351 unsigned int rn, unsigned int rd) 7352 { 7353 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7354 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7355 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 7356 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 7357 7358 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 7359 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 7360 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 7361 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 7362 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 7363 } 7364 7365 /* Data-processing (1 source) 7366 * 31 30 29 28 21 20 16 15 10 9 5 4 0 7367 * +----+---+---+-----------------+---------+--------+------+------+ 7368 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 7369 * +----+---+---+-----------------+---------+--------+------+------+ 7370 */ 7371 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 7372 { 7373 unsigned int sf, opcode, opcode2, rn, rd; 7374 TCGv_i64 tcg_rd; 7375 7376 if (extract32(insn, 29, 1)) { 7377 unallocated_encoding(s); 7378 return; 7379 } 7380 7381 sf = extract32(insn, 31, 1); 7382 opcode = extract32(insn, 10, 6); 7383 opcode2 = extract32(insn, 16, 5); 7384 rn = extract32(insn, 5, 5); 7385 rd = extract32(insn, 0, 5); 7386 7387 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 7388 7389 switch (MAP(sf, opcode2, opcode)) { 7390 case MAP(0, 0x00, 0x00): /* RBIT */ 7391 case MAP(1, 0x00, 0x00): 7392 handle_rbit(s, sf, rn, rd); 7393 break; 7394 case MAP(0, 0x00, 0x01): /* REV16 */ 7395 case MAP(1, 0x00, 0x01): 7396 handle_rev16(s, sf, rn, rd); 7397 break; 7398 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 7399 case MAP(1, 0x00, 0x02): 7400 handle_rev32(s, sf, rn, rd); 7401 break; 7402 case MAP(1, 0x00, 0x03): /* REV64 */ 7403 handle_rev64(s, sf, rn, rd); 7404 break; 7405 case MAP(0, 0x00, 0x04): /* CLZ */ 7406 case MAP(1, 0x00, 0x04): 7407 handle_clz(s, sf, rn, rd); 7408 break; 7409 case MAP(0, 0x00, 0x05): /* CLS */ 7410 case MAP(1, 0x00, 0x05): 7411 handle_cls(s, sf, rn, rd); 7412 break; 7413 case MAP(1, 0x01, 0x00): /* PACIA */ 7414 if (s->pauth_active) { 7415 tcg_rd = cpu_reg(s, rd); 7416 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7417 } else if (!dc_isar_feature(aa64_pauth, s)) { 7418 goto do_unallocated; 7419 } 7420 break; 7421 case MAP(1, 0x01, 0x01): /* PACIB */ 7422 if (s->pauth_active) { 7423 tcg_rd = cpu_reg(s, rd); 7424 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7425 } else if (!dc_isar_feature(aa64_pauth, s)) { 7426 goto do_unallocated; 7427 } 7428 break; 7429 case MAP(1, 0x01, 0x02): /* PACDA */ 7430 if (s->pauth_active) { 7431 tcg_rd = cpu_reg(s, rd); 7432 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7433 } else if (!dc_isar_feature(aa64_pauth, s)) { 7434 goto do_unallocated; 7435 } 7436 break; 7437 case MAP(1, 0x01, 0x03): /* PACDB */ 7438 if (s->pauth_active) { 7439 tcg_rd = cpu_reg(s, rd); 7440 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7441 } else if (!dc_isar_feature(aa64_pauth, s)) { 7442 goto do_unallocated; 7443 } 7444 break; 7445 case MAP(1, 0x01, 0x04): /* AUTIA */ 7446 if (s->pauth_active) { 7447 tcg_rd = cpu_reg(s, rd); 7448 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7449 } else if (!dc_isar_feature(aa64_pauth, s)) { 7450 goto do_unallocated; 7451 } 7452 break; 7453 case MAP(1, 0x01, 0x05): /* AUTIB */ 7454 if (s->pauth_active) { 7455 tcg_rd = cpu_reg(s, rd); 7456 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7457 } else if (!dc_isar_feature(aa64_pauth, s)) { 7458 goto do_unallocated; 7459 } 7460 break; 7461 case MAP(1, 0x01, 0x06): /* AUTDA */ 7462 if (s->pauth_active) { 7463 tcg_rd = cpu_reg(s, rd); 7464 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7465 } else if (!dc_isar_feature(aa64_pauth, s)) { 7466 goto do_unallocated; 7467 } 7468 break; 7469 case MAP(1, 0x01, 0x07): /* AUTDB */ 7470 if (s->pauth_active) { 7471 tcg_rd = cpu_reg(s, rd); 7472 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7473 } else if (!dc_isar_feature(aa64_pauth, s)) { 7474 goto do_unallocated; 7475 } 7476 break; 7477 case MAP(1, 0x01, 0x08): /* PACIZA */ 7478 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7479 goto do_unallocated; 7480 } else if (s->pauth_active) { 7481 tcg_rd = cpu_reg(s, rd); 7482 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7483 } 7484 break; 7485 case MAP(1, 0x01, 0x09): /* PACIZB */ 7486 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7487 goto do_unallocated; 7488 } else if (s->pauth_active) { 7489 tcg_rd = cpu_reg(s, rd); 7490 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7491 } 7492 break; 7493 case MAP(1, 0x01, 0x0a): /* PACDZA */ 7494 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7495 goto do_unallocated; 7496 } else if (s->pauth_active) { 7497 tcg_rd = cpu_reg(s, rd); 7498 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7499 } 7500 break; 7501 case MAP(1, 0x01, 0x0b): /* PACDZB */ 7502 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7503 goto do_unallocated; 7504 } else if (s->pauth_active) { 7505 tcg_rd = cpu_reg(s, rd); 7506 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7507 } 7508 break; 7509 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 7510 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7511 goto do_unallocated; 7512 } else if (s->pauth_active) { 7513 tcg_rd = cpu_reg(s, rd); 7514 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7515 } 7516 break; 7517 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 7518 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7519 goto do_unallocated; 7520 } else if (s->pauth_active) { 7521 tcg_rd = cpu_reg(s, rd); 7522 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7523 } 7524 break; 7525 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 7526 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7527 goto do_unallocated; 7528 } else if (s->pauth_active) { 7529 tcg_rd = cpu_reg(s, rd); 7530 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7531 } 7532 break; 7533 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 7534 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7535 goto do_unallocated; 7536 } else if (s->pauth_active) { 7537 tcg_rd = cpu_reg(s, rd); 7538 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7539 } 7540 break; 7541 case MAP(1, 0x01, 0x10): /* XPACI */ 7542 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7543 goto do_unallocated; 7544 } else if (s->pauth_active) { 7545 tcg_rd = cpu_reg(s, rd); 7546 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 7547 } 7548 break; 7549 case MAP(1, 0x01, 0x11): /* XPACD */ 7550 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7551 goto do_unallocated; 7552 } else if (s->pauth_active) { 7553 tcg_rd = cpu_reg(s, rd); 7554 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 7555 } 7556 break; 7557 default: 7558 do_unallocated: 7559 unallocated_encoding(s); 7560 break; 7561 } 7562 7563 #undef MAP 7564 } 7565 7566 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 7567 unsigned int rm, unsigned int rn, unsigned int rd) 7568 { 7569 TCGv_i64 tcg_n, tcg_m, tcg_rd; 7570 tcg_rd = cpu_reg(s, rd); 7571 7572 if (!sf && is_signed) { 7573 tcg_n = tcg_temp_new_i64(); 7574 tcg_m = tcg_temp_new_i64(); 7575 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 7576 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 7577 } else { 7578 tcg_n = read_cpu_reg(s, rn, sf); 7579 tcg_m = read_cpu_reg(s, rm, sf); 7580 } 7581 7582 if (is_signed) { 7583 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 7584 } else { 7585 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 7586 } 7587 7588 if (!sf) { /* zero extend final result */ 7589 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7590 } 7591 } 7592 7593 /* LSLV, LSRV, ASRV, RORV */ 7594 static void handle_shift_reg(DisasContext *s, 7595 enum a64_shift_type shift_type, unsigned int sf, 7596 unsigned int rm, unsigned int rn, unsigned int rd) 7597 { 7598 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 7599 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7600 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 7601 7602 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 7603 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 7604 } 7605 7606 /* CRC32[BHWX], CRC32C[BHWX] */ 7607 static void handle_crc32(DisasContext *s, 7608 unsigned int sf, unsigned int sz, bool crc32c, 7609 unsigned int rm, unsigned int rn, unsigned int rd) 7610 { 7611 TCGv_i64 tcg_acc, tcg_val; 7612 TCGv_i32 tcg_bytes; 7613 7614 if (!dc_isar_feature(aa64_crc32, s) 7615 || (sf == 1 && sz != 3) 7616 || (sf == 0 && sz == 3)) { 7617 unallocated_encoding(s); 7618 return; 7619 } 7620 7621 if (sz == 3) { 7622 tcg_val = cpu_reg(s, rm); 7623 } else { 7624 uint64_t mask; 7625 switch (sz) { 7626 case 0: 7627 mask = 0xFF; 7628 break; 7629 case 1: 7630 mask = 0xFFFF; 7631 break; 7632 case 2: 7633 mask = 0xFFFFFFFF; 7634 break; 7635 default: 7636 g_assert_not_reached(); 7637 } 7638 tcg_val = tcg_temp_new_i64(); 7639 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 7640 } 7641 7642 tcg_acc = cpu_reg(s, rn); 7643 tcg_bytes = tcg_constant_i32(1 << sz); 7644 7645 if (crc32c) { 7646 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 7647 } else { 7648 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 7649 } 7650 } 7651 7652 /* Data-processing (2 source) 7653 * 31 30 29 28 21 20 16 15 10 9 5 4 0 7654 * +----+---+---+-----------------+------+--------+------+------+ 7655 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 7656 * +----+---+---+-----------------+------+--------+------+------+ 7657 */ 7658 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 7659 { 7660 unsigned int sf, rm, opcode, rn, rd, setflag; 7661 sf = extract32(insn, 31, 1); 7662 setflag = extract32(insn, 29, 1); 7663 rm = extract32(insn, 16, 5); 7664 opcode = extract32(insn, 10, 6); 7665 rn = extract32(insn, 5, 5); 7666 rd = extract32(insn, 0, 5); 7667 7668 if (setflag && opcode != 0) { 7669 unallocated_encoding(s); 7670 return; 7671 } 7672 7673 switch (opcode) { 7674 case 0: /* SUBP(S) */ 7675 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7676 goto do_unallocated; 7677 } else { 7678 TCGv_i64 tcg_n, tcg_m, tcg_d; 7679 7680 tcg_n = read_cpu_reg_sp(s, rn, true); 7681 tcg_m = read_cpu_reg_sp(s, rm, true); 7682 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 7683 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 7684 tcg_d = cpu_reg(s, rd); 7685 7686 if (setflag) { 7687 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 7688 } else { 7689 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 7690 } 7691 } 7692 break; 7693 case 2: /* UDIV */ 7694 handle_div(s, false, sf, rm, rn, rd); 7695 break; 7696 case 3: /* SDIV */ 7697 handle_div(s, true, sf, rm, rn, rd); 7698 break; 7699 case 4: /* IRG */ 7700 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7701 goto do_unallocated; 7702 } 7703 if (s->ata[0]) { 7704 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 7705 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 7706 } else { 7707 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 7708 cpu_reg_sp(s, rn)); 7709 } 7710 break; 7711 case 5: /* GMI */ 7712 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7713 goto do_unallocated; 7714 } else { 7715 TCGv_i64 t = tcg_temp_new_i64(); 7716 7717 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 7718 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 7719 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 7720 } 7721 break; 7722 case 8: /* LSLV */ 7723 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 7724 break; 7725 case 9: /* LSRV */ 7726 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 7727 break; 7728 case 10: /* ASRV */ 7729 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 7730 break; 7731 case 11: /* RORV */ 7732 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 7733 break; 7734 case 12: /* PACGA */ 7735 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 7736 goto do_unallocated; 7737 } 7738 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 7739 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 7740 break; 7741 case 16: 7742 case 17: 7743 case 18: 7744 case 19: 7745 case 20: 7746 case 21: 7747 case 22: 7748 case 23: /* CRC32 */ 7749 { 7750 int sz = extract32(opcode, 0, 2); 7751 bool crc32c = extract32(opcode, 2, 1); 7752 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 7753 break; 7754 } 7755 default: 7756 do_unallocated: 7757 unallocated_encoding(s); 7758 break; 7759 } 7760 } 7761 7762 /* 7763 * Data processing - register 7764 * 31 30 29 28 25 21 20 16 10 0 7765 * +--+---+--+---+-------+-----+-------+-------+---------+ 7766 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 7767 * +--+---+--+---+-------+-----+-------+-------+---------+ 7768 */ 7769 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 7770 { 7771 int op0 = extract32(insn, 30, 1); 7772 int op1 = extract32(insn, 28, 1); 7773 int op2 = extract32(insn, 21, 4); 7774 int op3 = extract32(insn, 10, 6); 7775 7776 if (!op1) { 7777 if (op2 & 8) { 7778 if (op2 & 1) { 7779 /* Add/sub (extended register) */ 7780 disas_add_sub_ext_reg(s, insn); 7781 } else { 7782 /* Add/sub (shifted register) */ 7783 disas_add_sub_reg(s, insn); 7784 } 7785 } else { 7786 /* Logical (shifted register) */ 7787 disas_logic_reg(s, insn); 7788 } 7789 return; 7790 } 7791 7792 switch (op2) { 7793 case 0x0: 7794 switch (op3) { 7795 case 0x00: /* Add/subtract (with carry) */ 7796 disas_adc_sbc(s, insn); 7797 break; 7798 7799 case 0x01: /* Rotate right into flags */ 7800 case 0x21: 7801 disas_rotate_right_into_flags(s, insn); 7802 break; 7803 7804 case 0x02: /* Evaluate into flags */ 7805 case 0x12: 7806 case 0x22: 7807 case 0x32: 7808 disas_evaluate_into_flags(s, insn); 7809 break; 7810 7811 default: 7812 goto do_unallocated; 7813 } 7814 break; 7815 7816 case 0x2: /* Conditional compare */ 7817 disas_cc(s, insn); /* both imm and reg forms */ 7818 break; 7819 7820 case 0x4: /* Conditional select */ 7821 disas_cond_select(s, insn); 7822 break; 7823 7824 case 0x6: /* Data-processing */ 7825 if (op0) { /* (1 source) */ 7826 disas_data_proc_1src(s, insn); 7827 } else { /* (2 source) */ 7828 disas_data_proc_2src(s, insn); 7829 } 7830 break; 7831 case 0x8 ... 0xf: /* (3 source) */ 7832 disas_data_proc_3src(s, insn); 7833 break; 7834 7835 default: 7836 do_unallocated: 7837 unallocated_encoding(s); 7838 break; 7839 } 7840 } 7841 7842 static void handle_fp_compare(DisasContext *s, int size, 7843 unsigned int rn, unsigned int rm, 7844 bool cmp_with_zero, bool signal_all_nans) 7845 { 7846 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 7847 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7848 7849 if (size == MO_64) { 7850 TCGv_i64 tcg_vn, tcg_vm; 7851 7852 tcg_vn = read_fp_dreg(s, rn); 7853 if (cmp_with_zero) { 7854 tcg_vm = tcg_constant_i64(0); 7855 } else { 7856 tcg_vm = read_fp_dreg(s, rm); 7857 } 7858 if (signal_all_nans) { 7859 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7860 } else { 7861 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7862 } 7863 } else { 7864 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 7865 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 7866 7867 read_vec_element_i32(s, tcg_vn, rn, 0, size); 7868 if (cmp_with_zero) { 7869 tcg_gen_movi_i32(tcg_vm, 0); 7870 } else { 7871 read_vec_element_i32(s, tcg_vm, rm, 0, size); 7872 } 7873 7874 switch (size) { 7875 case MO_32: 7876 if (signal_all_nans) { 7877 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7878 } else { 7879 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7880 } 7881 break; 7882 case MO_16: 7883 if (signal_all_nans) { 7884 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7885 } else { 7886 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7887 } 7888 break; 7889 default: 7890 g_assert_not_reached(); 7891 } 7892 } 7893 7894 gen_set_nzcv(tcg_flags); 7895 } 7896 7897 /* Floating point compare 7898 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 7899 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7900 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 7901 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7902 */ 7903 static void disas_fp_compare(DisasContext *s, uint32_t insn) 7904 { 7905 unsigned int mos, type, rm, op, rn, opc, op2r; 7906 int size; 7907 7908 mos = extract32(insn, 29, 3); 7909 type = extract32(insn, 22, 2); 7910 rm = extract32(insn, 16, 5); 7911 op = extract32(insn, 14, 2); 7912 rn = extract32(insn, 5, 5); 7913 opc = extract32(insn, 3, 2); 7914 op2r = extract32(insn, 0, 3); 7915 7916 if (mos || op || op2r) { 7917 unallocated_encoding(s); 7918 return; 7919 } 7920 7921 switch (type) { 7922 case 0: 7923 size = MO_32; 7924 break; 7925 case 1: 7926 size = MO_64; 7927 break; 7928 case 3: 7929 size = MO_16; 7930 if (dc_isar_feature(aa64_fp16, s)) { 7931 break; 7932 } 7933 /* fallthru */ 7934 default: 7935 unallocated_encoding(s); 7936 return; 7937 } 7938 7939 if (!fp_access_check(s)) { 7940 return; 7941 } 7942 7943 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 7944 } 7945 7946 /* Floating point conditional compare 7947 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 7948 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7949 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 7950 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7951 */ 7952 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 7953 { 7954 unsigned int mos, type, rm, cond, rn, op, nzcv; 7955 TCGLabel *label_continue = NULL; 7956 int size; 7957 7958 mos = extract32(insn, 29, 3); 7959 type = extract32(insn, 22, 2); 7960 rm = extract32(insn, 16, 5); 7961 cond = extract32(insn, 12, 4); 7962 rn = extract32(insn, 5, 5); 7963 op = extract32(insn, 4, 1); 7964 nzcv = extract32(insn, 0, 4); 7965 7966 if (mos) { 7967 unallocated_encoding(s); 7968 return; 7969 } 7970 7971 switch (type) { 7972 case 0: 7973 size = MO_32; 7974 break; 7975 case 1: 7976 size = MO_64; 7977 break; 7978 case 3: 7979 size = MO_16; 7980 if (dc_isar_feature(aa64_fp16, s)) { 7981 break; 7982 } 7983 /* fallthru */ 7984 default: 7985 unallocated_encoding(s); 7986 return; 7987 } 7988 7989 if (!fp_access_check(s)) { 7990 return; 7991 } 7992 7993 if (cond < 0x0e) { /* not always */ 7994 TCGLabel *label_match = gen_new_label(); 7995 label_continue = gen_new_label(); 7996 arm_gen_test_cc(cond, label_match); 7997 /* nomatch: */ 7998 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 7999 tcg_gen_br(label_continue); 8000 gen_set_label(label_match); 8001 } 8002 8003 handle_fp_compare(s, size, rn, rm, false, op); 8004 8005 if (cond < 0x0e) { 8006 gen_set_label(label_continue); 8007 } 8008 } 8009 8010 /* Floating-point data-processing (1 source) - half precision */ 8011 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 8012 { 8013 TCGv_ptr fpst = NULL; 8014 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 8015 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8016 8017 switch (opcode) { 8018 case 0x0: /* FMOV */ 8019 tcg_gen_mov_i32(tcg_res, tcg_op); 8020 break; 8021 case 0x1: /* FABS */ 8022 gen_vfp_absh(tcg_res, tcg_op); 8023 break; 8024 case 0x2: /* FNEG */ 8025 gen_vfp_negh(tcg_res, tcg_op); 8026 break; 8027 case 0x3: /* FSQRT */ 8028 fpst = fpstatus_ptr(FPST_FPCR_F16); 8029 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 8030 break; 8031 case 0x8: /* FRINTN */ 8032 case 0x9: /* FRINTP */ 8033 case 0xa: /* FRINTM */ 8034 case 0xb: /* FRINTZ */ 8035 case 0xc: /* FRINTA */ 8036 { 8037 TCGv_i32 tcg_rmode; 8038 8039 fpst = fpstatus_ptr(FPST_FPCR_F16); 8040 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 8041 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 8042 gen_restore_rmode(tcg_rmode, fpst); 8043 break; 8044 } 8045 case 0xe: /* FRINTX */ 8046 fpst = fpstatus_ptr(FPST_FPCR_F16); 8047 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 8048 break; 8049 case 0xf: /* FRINTI */ 8050 fpst = fpstatus_ptr(FPST_FPCR_F16); 8051 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 8052 break; 8053 default: 8054 g_assert_not_reached(); 8055 } 8056 8057 write_fp_sreg(s, rd, tcg_res); 8058 } 8059 8060 /* Floating-point data-processing (1 source) - single precision */ 8061 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 8062 { 8063 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 8064 TCGv_i32 tcg_op, tcg_res; 8065 TCGv_ptr fpst; 8066 int rmode = -1; 8067 8068 tcg_op = read_fp_sreg(s, rn); 8069 tcg_res = tcg_temp_new_i32(); 8070 8071 switch (opcode) { 8072 case 0x0: /* FMOV */ 8073 tcg_gen_mov_i32(tcg_res, tcg_op); 8074 goto done; 8075 case 0x1: /* FABS */ 8076 gen_vfp_abss(tcg_res, tcg_op); 8077 goto done; 8078 case 0x2: /* FNEG */ 8079 gen_vfp_negs(tcg_res, tcg_op); 8080 goto done; 8081 case 0x3: /* FSQRT */ 8082 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 8083 goto done; 8084 case 0x6: /* BFCVT */ 8085 gen_fpst = gen_helper_bfcvt; 8086 break; 8087 case 0x8: /* FRINTN */ 8088 case 0x9: /* FRINTP */ 8089 case 0xa: /* FRINTM */ 8090 case 0xb: /* FRINTZ */ 8091 case 0xc: /* FRINTA */ 8092 rmode = opcode & 7; 8093 gen_fpst = gen_helper_rints; 8094 break; 8095 case 0xe: /* FRINTX */ 8096 gen_fpst = gen_helper_rints_exact; 8097 break; 8098 case 0xf: /* FRINTI */ 8099 gen_fpst = gen_helper_rints; 8100 break; 8101 case 0x10: /* FRINT32Z */ 8102 rmode = FPROUNDING_ZERO; 8103 gen_fpst = gen_helper_frint32_s; 8104 break; 8105 case 0x11: /* FRINT32X */ 8106 gen_fpst = gen_helper_frint32_s; 8107 break; 8108 case 0x12: /* FRINT64Z */ 8109 rmode = FPROUNDING_ZERO; 8110 gen_fpst = gen_helper_frint64_s; 8111 break; 8112 case 0x13: /* FRINT64X */ 8113 gen_fpst = gen_helper_frint64_s; 8114 break; 8115 default: 8116 g_assert_not_reached(); 8117 } 8118 8119 fpst = fpstatus_ptr(FPST_FPCR); 8120 if (rmode >= 0) { 8121 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 8122 gen_fpst(tcg_res, tcg_op, fpst); 8123 gen_restore_rmode(tcg_rmode, fpst); 8124 } else { 8125 gen_fpst(tcg_res, tcg_op, fpst); 8126 } 8127 8128 done: 8129 write_fp_sreg(s, rd, tcg_res); 8130 } 8131 8132 /* Floating-point data-processing (1 source) - double precision */ 8133 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 8134 { 8135 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 8136 TCGv_i64 tcg_op, tcg_res; 8137 TCGv_ptr fpst; 8138 int rmode = -1; 8139 8140 switch (opcode) { 8141 case 0x0: /* FMOV */ 8142 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 8143 return; 8144 } 8145 8146 tcg_op = read_fp_dreg(s, rn); 8147 tcg_res = tcg_temp_new_i64(); 8148 8149 switch (opcode) { 8150 case 0x1: /* FABS */ 8151 gen_vfp_absd(tcg_res, tcg_op); 8152 goto done; 8153 case 0x2: /* FNEG */ 8154 gen_vfp_negd(tcg_res, tcg_op); 8155 goto done; 8156 case 0x3: /* FSQRT */ 8157 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 8158 goto done; 8159 case 0x8: /* FRINTN */ 8160 case 0x9: /* FRINTP */ 8161 case 0xa: /* FRINTM */ 8162 case 0xb: /* FRINTZ */ 8163 case 0xc: /* FRINTA */ 8164 rmode = opcode & 7; 8165 gen_fpst = gen_helper_rintd; 8166 break; 8167 case 0xe: /* FRINTX */ 8168 gen_fpst = gen_helper_rintd_exact; 8169 break; 8170 case 0xf: /* FRINTI */ 8171 gen_fpst = gen_helper_rintd; 8172 break; 8173 case 0x10: /* FRINT32Z */ 8174 rmode = FPROUNDING_ZERO; 8175 gen_fpst = gen_helper_frint32_d; 8176 break; 8177 case 0x11: /* FRINT32X */ 8178 gen_fpst = gen_helper_frint32_d; 8179 break; 8180 case 0x12: /* FRINT64Z */ 8181 rmode = FPROUNDING_ZERO; 8182 gen_fpst = gen_helper_frint64_d; 8183 break; 8184 case 0x13: /* FRINT64X */ 8185 gen_fpst = gen_helper_frint64_d; 8186 break; 8187 default: 8188 g_assert_not_reached(); 8189 } 8190 8191 fpst = fpstatus_ptr(FPST_FPCR); 8192 if (rmode >= 0) { 8193 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 8194 gen_fpst(tcg_res, tcg_op, fpst); 8195 gen_restore_rmode(tcg_rmode, fpst); 8196 } else { 8197 gen_fpst(tcg_res, tcg_op, fpst); 8198 } 8199 8200 done: 8201 write_fp_dreg(s, rd, tcg_res); 8202 } 8203 8204 static void handle_fp_fcvt(DisasContext *s, int opcode, 8205 int rd, int rn, int dtype, int ntype) 8206 { 8207 switch (ntype) { 8208 case 0x0: 8209 { 8210 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 8211 if (dtype == 1) { 8212 /* Single to double */ 8213 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 8214 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 8215 write_fp_dreg(s, rd, tcg_rd); 8216 } else { 8217 /* Single to half */ 8218 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 8219 TCGv_i32 ahp = get_ahp_flag(); 8220 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8221 8222 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 8223 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 8224 write_fp_sreg(s, rd, tcg_rd); 8225 } 8226 break; 8227 } 8228 case 0x1: 8229 { 8230 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 8231 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 8232 if (dtype == 0) { 8233 /* Double to single */ 8234 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 8235 } else { 8236 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8237 TCGv_i32 ahp = get_ahp_flag(); 8238 /* Double to half */ 8239 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 8240 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 8241 } 8242 write_fp_sreg(s, rd, tcg_rd); 8243 break; 8244 } 8245 case 0x3: 8246 { 8247 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 8248 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 8249 TCGv_i32 tcg_ahp = get_ahp_flag(); 8250 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 8251 if (dtype == 0) { 8252 /* Half to single */ 8253 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 8254 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 8255 write_fp_sreg(s, rd, tcg_rd); 8256 } else { 8257 /* Half to double */ 8258 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 8259 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 8260 write_fp_dreg(s, rd, tcg_rd); 8261 } 8262 break; 8263 } 8264 default: 8265 g_assert_not_reached(); 8266 } 8267 } 8268 8269 /* Floating point data-processing (1 source) 8270 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 8271 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 8272 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 8273 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 8274 */ 8275 static void disas_fp_1src(DisasContext *s, uint32_t insn) 8276 { 8277 int mos = extract32(insn, 29, 3); 8278 int type = extract32(insn, 22, 2); 8279 int opcode = extract32(insn, 15, 6); 8280 int rn = extract32(insn, 5, 5); 8281 int rd = extract32(insn, 0, 5); 8282 8283 if (mos) { 8284 goto do_unallocated; 8285 } 8286 8287 switch (opcode) { 8288 case 0x4: case 0x5: case 0x7: 8289 { 8290 /* FCVT between half, single and double precision */ 8291 int dtype = extract32(opcode, 0, 2); 8292 if (type == 2 || dtype == type) { 8293 goto do_unallocated; 8294 } 8295 if (!fp_access_check(s)) { 8296 return; 8297 } 8298 8299 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 8300 break; 8301 } 8302 8303 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 8304 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 8305 goto do_unallocated; 8306 } 8307 /* fall through */ 8308 case 0x0 ... 0x3: 8309 case 0x8 ... 0xc: 8310 case 0xe ... 0xf: 8311 /* 32-to-32 and 64-to-64 ops */ 8312 switch (type) { 8313 case 0: 8314 if (!fp_access_check(s)) { 8315 return; 8316 } 8317 handle_fp_1src_single(s, opcode, rd, rn); 8318 break; 8319 case 1: 8320 if (!fp_access_check(s)) { 8321 return; 8322 } 8323 handle_fp_1src_double(s, opcode, rd, rn); 8324 break; 8325 case 3: 8326 if (!dc_isar_feature(aa64_fp16, s)) { 8327 goto do_unallocated; 8328 } 8329 8330 if (!fp_access_check(s)) { 8331 return; 8332 } 8333 handle_fp_1src_half(s, opcode, rd, rn); 8334 break; 8335 default: 8336 goto do_unallocated; 8337 } 8338 break; 8339 8340 case 0x6: 8341 switch (type) { 8342 case 1: /* BFCVT */ 8343 if (!dc_isar_feature(aa64_bf16, s)) { 8344 goto do_unallocated; 8345 } 8346 if (!fp_access_check(s)) { 8347 return; 8348 } 8349 handle_fp_1src_single(s, opcode, rd, rn); 8350 break; 8351 default: 8352 goto do_unallocated; 8353 } 8354 break; 8355 8356 default: 8357 do_unallocated: 8358 unallocated_encoding(s); 8359 break; 8360 } 8361 } 8362 8363 /* Floating point immediate 8364 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 8365 * +---+---+---+-----------+------+---+------------+-------+------+------+ 8366 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 8367 * +---+---+---+-----------+------+---+------------+-------+------+------+ 8368 */ 8369 static void disas_fp_imm(DisasContext *s, uint32_t insn) 8370 { 8371 int rd = extract32(insn, 0, 5); 8372 int imm5 = extract32(insn, 5, 5); 8373 int imm8 = extract32(insn, 13, 8); 8374 int type = extract32(insn, 22, 2); 8375 int mos = extract32(insn, 29, 3); 8376 uint64_t imm; 8377 MemOp sz; 8378 8379 if (mos || imm5) { 8380 unallocated_encoding(s); 8381 return; 8382 } 8383 8384 switch (type) { 8385 case 0: 8386 sz = MO_32; 8387 break; 8388 case 1: 8389 sz = MO_64; 8390 break; 8391 case 3: 8392 sz = MO_16; 8393 if (dc_isar_feature(aa64_fp16, s)) { 8394 break; 8395 } 8396 /* fallthru */ 8397 default: 8398 unallocated_encoding(s); 8399 return; 8400 } 8401 8402 if (!fp_access_check(s)) { 8403 return; 8404 } 8405 8406 imm = vfp_expand_imm(sz, imm8); 8407 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 8408 } 8409 8410 /* Handle floating point <=> fixed point conversions. Note that we can 8411 * also deal with fp <=> integer conversions as a special case (scale == 64) 8412 * OPTME: consider handling that special case specially or at least skipping 8413 * the call to scalbn in the helpers for zero shifts. 8414 */ 8415 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 8416 bool itof, int rmode, int scale, int sf, int type) 8417 { 8418 bool is_signed = !(opcode & 1); 8419 TCGv_ptr tcg_fpstatus; 8420 TCGv_i32 tcg_shift, tcg_single; 8421 TCGv_i64 tcg_double; 8422 8423 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 8424 8425 tcg_shift = tcg_constant_i32(64 - scale); 8426 8427 if (itof) { 8428 TCGv_i64 tcg_int = cpu_reg(s, rn); 8429 if (!sf) { 8430 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 8431 8432 if (is_signed) { 8433 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 8434 } else { 8435 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 8436 } 8437 8438 tcg_int = tcg_extend; 8439 } 8440 8441 switch (type) { 8442 case 1: /* float64 */ 8443 tcg_double = tcg_temp_new_i64(); 8444 if (is_signed) { 8445 gen_helper_vfp_sqtod(tcg_double, tcg_int, 8446 tcg_shift, tcg_fpstatus); 8447 } else { 8448 gen_helper_vfp_uqtod(tcg_double, tcg_int, 8449 tcg_shift, tcg_fpstatus); 8450 } 8451 write_fp_dreg(s, rd, tcg_double); 8452 break; 8453 8454 case 0: /* float32 */ 8455 tcg_single = tcg_temp_new_i32(); 8456 if (is_signed) { 8457 gen_helper_vfp_sqtos(tcg_single, tcg_int, 8458 tcg_shift, tcg_fpstatus); 8459 } else { 8460 gen_helper_vfp_uqtos(tcg_single, tcg_int, 8461 tcg_shift, tcg_fpstatus); 8462 } 8463 write_fp_sreg(s, rd, tcg_single); 8464 break; 8465 8466 case 3: /* float16 */ 8467 tcg_single = tcg_temp_new_i32(); 8468 if (is_signed) { 8469 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 8470 tcg_shift, tcg_fpstatus); 8471 } else { 8472 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 8473 tcg_shift, tcg_fpstatus); 8474 } 8475 write_fp_sreg(s, rd, tcg_single); 8476 break; 8477 8478 default: 8479 g_assert_not_reached(); 8480 } 8481 } else { 8482 TCGv_i64 tcg_int = cpu_reg(s, rd); 8483 TCGv_i32 tcg_rmode; 8484 8485 if (extract32(opcode, 2, 1)) { 8486 /* There are too many rounding modes to all fit into rmode, 8487 * so FCVTA[US] is a special case. 8488 */ 8489 rmode = FPROUNDING_TIEAWAY; 8490 } 8491 8492 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 8493 8494 switch (type) { 8495 case 1: /* float64 */ 8496 tcg_double = read_fp_dreg(s, rn); 8497 if (is_signed) { 8498 if (!sf) { 8499 gen_helper_vfp_tosld(tcg_int, tcg_double, 8500 tcg_shift, tcg_fpstatus); 8501 } else { 8502 gen_helper_vfp_tosqd(tcg_int, tcg_double, 8503 tcg_shift, tcg_fpstatus); 8504 } 8505 } else { 8506 if (!sf) { 8507 gen_helper_vfp_tould(tcg_int, tcg_double, 8508 tcg_shift, tcg_fpstatus); 8509 } else { 8510 gen_helper_vfp_touqd(tcg_int, tcg_double, 8511 tcg_shift, tcg_fpstatus); 8512 } 8513 } 8514 if (!sf) { 8515 tcg_gen_ext32u_i64(tcg_int, tcg_int); 8516 } 8517 break; 8518 8519 case 0: /* float32 */ 8520 tcg_single = read_fp_sreg(s, rn); 8521 if (sf) { 8522 if (is_signed) { 8523 gen_helper_vfp_tosqs(tcg_int, tcg_single, 8524 tcg_shift, tcg_fpstatus); 8525 } else { 8526 gen_helper_vfp_touqs(tcg_int, tcg_single, 8527 tcg_shift, tcg_fpstatus); 8528 } 8529 } else { 8530 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 8531 if (is_signed) { 8532 gen_helper_vfp_tosls(tcg_dest, tcg_single, 8533 tcg_shift, tcg_fpstatus); 8534 } else { 8535 gen_helper_vfp_touls(tcg_dest, tcg_single, 8536 tcg_shift, tcg_fpstatus); 8537 } 8538 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 8539 } 8540 break; 8541 8542 case 3: /* float16 */ 8543 tcg_single = read_fp_sreg(s, rn); 8544 if (sf) { 8545 if (is_signed) { 8546 gen_helper_vfp_tosqh(tcg_int, tcg_single, 8547 tcg_shift, tcg_fpstatus); 8548 } else { 8549 gen_helper_vfp_touqh(tcg_int, tcg_single, 8550 tcg_shift, tcg_fpstatus); 8551 } 8552 } else { 8553 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 8554 if (is_signed) { 8555 gen_helper_vfp_toslh(tcg_dest, tcg_single, 8556 tcg_shift, tcg_fpstatus); 8557 } else { 8558 gen_helper_vfp_toulh(tcg_dest, tcg_single, 8559 tcg_shift, tcg_fpstatus); 8560 } 8561 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 8562 } 8563 break; 8564 8565 default: 8566 g_assert_not_reached(); 8567 } 8568 8569 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8570 } 8571 } 8572 8573 /* Floating point <-> fixed point conversions 8574 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 8575 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 8576 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 8577 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 8578 */ 8579 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 8580 { 8581 int rd = extract32(insn, 0, 5); 8582 int rn = extract32(insn, 5, 5); 8583 int scale = extract32(insn, 10, 6); 8584 int opcode = extract32(insn, 16, 3); 8585 int rmode = extract32(insn, 19, 2); 8586 int type = extract32(insn, 22, 2); 8587 bool sbit = extract32(insn, 29, 1); 8588 bool sf = extract32(insn, 31, 1); 8589 bool itof; 8590 8591 if (sbit || (!sf && scale < 32)) { 8592 unallocated_encoding(s); 8593 return; 8594 } 8595 8596 switch (type) { 8597 case 0: /* float32 */ 8598 case 1: /* float64 */ 8599 break; 8600 case 3: /* float16 */ 8601 if (dc_isar_feature(aa64_fp16, s)) { 8602 break; 8603 } 8604 /* fallthru */ 8605 default: 8606 unallocated_encoding(s); 8607 return; 8608 } 8609 8610 switch ((rmode << 3) | opcode) { 8611 case 0x2: /* SCVTF */ 8612 case 0x3: /* UCVTF */ 8613 itof = true; 8614 break; 8615 case 0x18: /* FCVTZS */ 8616 case 0x19: /* FCVTZU */ 8617 itof = false; 8618 break; 8619 default: 8620 unallocated_encoding(s); 8621 return; 8622 } 8623 8624 if (!fp_access_check(s)) { 8625 return; 8626 } 8627 8628 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 8629 } 8630 8631 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 8632 { 8633 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 8634 * without conversion. 8635 */ 8636 8637 if (itof) { 8638 TCGv_i64 tcg_rn = cpu_reg(s, rn); 8639 TCGv_i64 tmp; 8640 8641 switch (type) { 8642 case 0: 8643 /* 32 bit */ 8644 tmp = tcg_temp_new_i64(); 8645 tcg_gen_ext32u_i64(tmp, tcg_rn); 8646 write_fp_dreg(s, rd, tmp); 8647 break; 8648 case 1: 8649 /* 64 bit */ 8650 write_fp_dreg(s, rd, tcg_rn); 8651 break; 8652 case 2: 8653 /* 64 bit to top half. */ 8654 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 8655 clear_vec_high(s, true, rd); 8656 break; 8657 case 3: 8658 /* 16 bit */ 8659 tmp = tcg_temp_new_i64(); 8660 tcg_gen_ext16u_i64(tmp, tcg_rn); 8661 write_fp_dreg(s, rd, tmp); 8662 break; 8663 default: 8664 g_assert_not_reached(); 8665 } 8666 } else { 8667 TCGv_i64 tcg_rd = cpu_reg(s, rd); 8668 8669 switch (type) { 8670 case 0: 8671 /* 32 bit */ 8672 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 8673 break; 8674 case 1: 8675 /* 64 bit */ 8676 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 8677 break; 8678 case 2: 8679 /* 64 bits from top half */ 8680 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 8681 break; 8682 case 3: 8683 /* 16 bit */ 8684 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 8685 break; 8686 default: 8687 g_assert_not_reached(); 8688 } 8689 } 8690 } 8691 8692 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 8693 { 8694 TCGv_i64 t = read_fp_dreg(s, rn); 8695 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 8696 8697 gen_helper_fjcvtzs(t, t, fpstatus); 8698 8699 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 8700 tcg_gen_extrh_i64_i32(cpu_ZF, t); 8701 tcg_gen_movi_i32(cpu_CF, 0); 8702 tcg_gen_movi_i32(cpu_NF, 0); 8703 tcg_gen_movi_i32(cpu_VF, 0); 8704 } 8705 8706 /* Floating point <-> integer conversions 8707 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 8708 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8709 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 8710 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8711 */ 8712 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 8713 { 8714 int rd = extract32(insn, 0, 5); 8715 int rn = extract32(insn, 5, 5); 8716 int opcode = extract32(insn, 16, 3); 8717 int rmode = extract32(insn, 19, 2); 8718 int type = extract32(insn, 22, 2); 8719 bool sbit = extract32(insn, 29, 1); 8720 bool sf = extract32(insn, 31, 1); 8721 bool itof = false; 8722 8723 if (sbit) { 8724 goto do_unallocated; 8725 } 8726 8727 switch (opcode) { 8728 case 2: /* SCVTF */ 8729 case 3: /* UCVTF */ 8730 itof = true; 8731 /* fallthru */ 8732 case 4: /* FCVTAS */ 8733 case 5: /* FCVTAU */ 8734 if (rmode != 0) { 8735 goto do_unallocated; 8736 } 8737 /* fallthru */ 8738 case 0: /* FCVT[NPMZ]S */ 8739 case 1: /* FCVT[NPMZ]U */ 8740 switch (type) { 8741 case 0: /* float32 */ 8742 case 1: /* float64 */ 8743 break; 8744 case 3: /* float16 */ 8745 if (!dc_isar_feature(aa64_fp16, s)) { 8746 goto do_unallocated; 8747 } 8748 break; 8749 default: 8750 goto do_unallocated; 8751 } 8752 if (!fp_access_check(s)) { 8753 return; 8754 } 8755 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 8756 break; 8757 8758 default: 8759 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 8760 case 0b01100110: /* FMOV half <-> 32-bit int */ 8761 case 0b01100111: 8762 case 0b11100110: /* FMOV half <-> 64-bit int */ 8763 case 0b11100111: 8764 if (!dc_isar_feature(aa64_fp16, s)) { 8765 goto do_unallocated; 8766 } 8767 /* fallthru */ 8768 case 0b00000110: /* FMOV 32-bit */ 8769 case 0b00000111: 8770 case 0b10100110: /* FMOV 64-bit */ 8771 case 0b10100111: 8772 case 0b11001110: /* FMOV top half of 128-bit */ 8773 case 0b11001111: 8774 if (!fp_access_check(s)) { 8775 return; 8776 } 8777 itof = opcode & 1; 8778 handle_fmov(s, rd, rn, type, itof); 8779 break; 8780 8781 case 0b00111110: /* FJCVTZS */ 8782 if (!dc_isar_feature(aa64_jscvt, s)) { 8783 goto do_unallocated; 8784 } else if (fp_access_check(s)) { 8785 handle_fjcvtzs(s, rd, rn); 8786 } 8787 break; 8788 8789 default: 8790 do_unallocated: 8791 unallocated_encoding(s); 8792 return; 8793 } 8794 break; 8795 } 8796 } 8797 8798 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 8799 * 31 30 29 28 25 24 0 8800 * +---+---+---+---------+-----------------------------+ 8801 * | | 0 | | 1 1 1 1 | | 8802 * +---+---+---+---------+-----------------------------+ 8803 */ 8804 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 8805 { 8806 if (extract32(insn, 24, 1)) { 8807 unallocated_encoding(s); /* in decodetree */ 8808 } else if (extract32(insn, 21, 1) == 0) { 8809 /* Floating point to fixed point conversions */ 8810 disas_fp_fixed_conv(s, insn); 8811 } else { 8812 switch (extract32(insn, 10, 2)) { 8813 case 1: 8814 /* Floating point conditional compare */ 8815 disas_fp_ccomp(s, insn); 8816 break; 8817 case 2: 8818 /* Floating point data-processing (2 source) */ 8819 unallocated_encoding(s); /* in decodetree */ 8820 break; 8821 case 3: 8822 /* Floating point conditional select */ 8823 unallocated_encoding(s); /* in decodetree */ 8824 break; 8825 case 0: 8826 switch (ctz32(extract32(insn, 12, 4))) { 8827 case 0: /* [15:12] == xxx1 */ 8828 /* Floating point immediate */ 8829 disas_fp_imm(s, insn); 8830 break; 8831 case 1: /* [15:12] == xx10 */ 8832 /* Floating point compare */ 8833 disas_fp_compare(s, insn); 8834 break; 8835 case 2: /* [15:12] == x100 */ 8836 /* Floating point data-processing (1 source) */ 8837 disas_fp_1src(s, insn); 8838 break; 8839 case 3: /* [15:12] == 1000 */ 8840 unallocated_encoding(s); 8841 break; 8842 default: /* [15:12] == 0000 */ 8843 /* Floating point <-> integer conversions */ 8844 disas_fp_int_conv(s, insn); 8845 break; 8846 } 8847 break; 8848 } 8849 } 8850 } 8851 8852 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 8853 int pos) 8854 { 8855 /* Extract 64 bits from the middle of two concatenated 64 bit 8856 * vector register slices left:right. The extracted bits start 8857 * at 'pos' bits into the right (least significant) side. 8858 * We return the result in tcg_right, and guarantee not to 8859 * trash tcg_left. 8860 */ 8861 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8862 assert(pos > 0 && pos < 64); 8863 8864 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 8865 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 8866 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 8867 } 8868 8869 /* EXT 8870 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 8871 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8872 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 8873 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8874 */ 8875 static void disas_simd_ext(DisasContext *s, uint32_t insn) 8876 { 8877 int is_q = extract32(insn, 30, 1); 8878 int op2 = extract32(insn, 22, 2); 8879 int imm4 = extract32(insn, 11, 4); 8880 int rm = extract32(insn, 16, 5); 8881 int rn = extract32(insn, 5, 5); 8882 int rd = extract32(insn, 0, 5); 8883 int pos = imm4 << 3; 8884 TCGv_i64 tcg_resl, tcg_resh; 8885 8886 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 8887 unallocated_encoding(s); 8888 return; 8889 } 8890 8891 if (!fp_access_check(s)) { 8892 return; 8893 } 8894 8895 tcg_resh = tcg_temp_new_i64(); 8896 tcg_resl = tcg_temp_new_i64(); 8897 8898 /* Vd gets bits starting at pos bits into Vm:Vn. This is 8899 * either extracting 128 bits from a 128:128 concatenation, or 8900 * extracting 64 bits from a 64:64 concatenation. 8901 */ 8902 if (!is_q) { 8903 read_vec_element(s, tcg_resl, rn, 0, MO_64); 8904 if (pos != 0) { 8905 read_vec_element(s, tcg_resh, rm, 0, MO_64); 8906 do_ext64(s, tcg_resh, tcg_resl, pos); 8907 } 8908 } else { 8909 TCGv_i64 tcg_hh; 8910 typedef struct { 8911 int reg; 8912 int elt; 8913 } EltPosns; 8914 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 8915 EltPosns *elt = eltposns; 8916 8917 if (pos >= 64) { 8918 elt++; 8919 pos -= 64; 8920 } 8921 8922 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 8923 elt++; 8924 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 8925 elt++; 8926 if (pos != 0) { 8927 do_ext64(s, tcg_resh, tcg_resl, pos); 8928 tcg_hh = tcg_temp_new_i64(); 8929 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8930 do_ext64(s, tcg_hh, tcg_resh, pos); 8931 } 8932 } 8933 8934 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8935 if (is_q) { 8936 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8937 } 8938 clear_vec_high(s, is_q, rd); 8939 } 8940 8941 /* TBL/TBX 8942 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8943 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8944 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8945 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8946 */ 8947 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8948 { 8949 int op2 = extract32(insn, 22, 2); 8950 int is_q = extract32(insn, 30, 1); 8951 int rm = extract32(insn, 16, 5); 8952 int rn = extract32(insn, 5, 5); 8953 int rd = extract32(insn, 0, 5); 8954 int is_tbx = extract32(insn, 12, 1); 8955 int len = (extract32(insn, 13, 2) + 1) * 16; 8956 8957 if (op2 != 0) { 8958 unallocated_encoding(s); 8959 return; 8960 } 8961 8962 if (!fp_access_check(s)) { 8963 return; 8964 } 8965 8966 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8967 vec_full_reg_offset(s, rm), tcg_env, 8968 is_q ? 16 : 8, vec_full_reg_size(s), 8969 (len << 6) | (is_tbx << 5) | rn, 8970 gen_helper_simd_tblx); 8971 } 8972 8973 /* ZIP/UZP/TRN 8974 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8975 * +---+---+-------------+------+---+------+---+------------------+------+ 8976 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8977 * +---+---+-------------+------+---+------+---+------------------+------+ 8978 */ 8979 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8980 { 8981 int rd = extract32(insn, 0, 5); 8982 int rn = extract32(insn, 5, 5); 8983 int rm = extract32(insn, 16, 5); 8984 int size = extract32(insn, 22, 2); 8985 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8986 * bit 2 indicates 1 vs 2 variant of the insn. 8987 */ 8988 int opcode = extract32(insn, 12, 2); 8989 bool part = extract32(insn, 14, 1); 8990 bool is_q = extract32(insn, 30, 1); 8991 int esize = 8 << size; 8992 int i; 8993 int datasize = is_q ? 128 : 64; 8994 int elements = datasize / esize; 8995 TCGv_i64 tcg_res[2], tcg_ele; 8996 8997 if (opcode == 0 || (size == 3 && !is_q)) { 8998 unallocated_encoding(s); 8999 return; 9000 } 9001 9002 if (!fp_access_check(s)) { 9003 return; 9004 } 9005 9006 tcg_res[0] = tcg_temp_new_i64(); 9007 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 9008 tcg_ele = tcg_temp_new_i64(); 9009 9010 for (i = 0; i < elements; i++) { 9011 int o, w; 9012 9013 switch (opcode) { 9014 case 1: /* UZP1/2 */ 9015 { 9016 int midpoint = elements / 2; 9017 if (i < midpoint) { 9018 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 9019 } else { 9020 read_vec_element(s, tcg_ele, rm, 9021 2 * (i - midpoint) + part, size); 9022 } 9023 break; 9024 } 9025 case 2: /* TRN1/2 */ 9026 if (i & 1) { 9027 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 9028 } else { 9029 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 9030 } 9031 break; 9032 case 3: /* ZIP1/2 */ 9033 { 9034 int base = part * elements / 2; 9035 if (i & 1) { 9036 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 9037 } else { 9038 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 9039 } 9040 break; 9041 } 9042 default: 9043 g_assert_not_reached(); 9044 } 9045 9046 w = (i * esize) / 64; 9047 o = (i * esize) % 64; 9048 if (o == 0) { 9049 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 9050 } else { 9051 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 9052 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 9053 } 9054 } 9055 9056 for (i = 0; i <= is_q; ++i) { 9057 write_vec_element(s, tcg_res[i], rd, i, MO_64); 9058 } 9059 clear_vec_high(s, is_q, rd); 9060 } 9061 9062 /* 9063 * do_reduction_op helper 9064 * 9065 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 9066 * important for correct NaN propagation that we do these 9067 * operations in exactly the order specified by the pseudocode. 9068 * 9069 * This is a recursive function, TCG temps should be freed by the 9070 * calling function once it is done with the values. 9071 */ 9072 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 9073 int esize, int size, int vmap, TCGv_ptr fpst) 9074 { 9075 if (esize == size) { 9076 int element; 9077 MemOp msize = esize == 16 ? MO_16 : MO_32; 9078 TCGv_i32 tcg_elem; 9079 9080 /* We should have one register left here */ 9081 assert(ctpop8(vmap) == 1); 9082 element = ctz32(vmap); 9083 assert(element < 8); 9084 9085 tcg_elem = tcg_temp_new_i32(); 9086 read_vec_element_i32(s, tcg_elem, rn, element, msize); 9087 return tcg_elem; 9088 } else { 9089 int bits = size / 2; 9090 int shift = ctpop8(vmap) / 2; 9091 int vmap_lo = (vmap >> shift) & vmap; 9092 int vmap_hi = (vmap & ~vmap_lo); 9093 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 9094 9095 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 9096 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 9097 tcg_res = tcg_temp_new_i32(); 9098 9099 switch (fpopcode) { 9100 case 0x0c: /* fmaxnmv half-precision */ 9101 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 9102 break; 9103 case 0x0f: /* fmaxv half-precision */ 9104 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 9105 break; 9106 case 0x1c: /* fminnmv half-precision */ 9107 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 9108 break; 9109 case 0x1f: /* fminv half-precision */ 9110 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 9111 break; 9112 case 0x2c: /* fmaxnmv */ 9113 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 9114 break; 9115 case 0x2f: /* fmaxv */ 9116 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 9117 break; 9118 case 0x3c: /* fminnmv */ 9119 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 9120 break; 9121 case 0x3f: /* fminv */ 9122 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 9123 break; 9124 default: 9125 g_assert_not_reached(); 9126 } 9127 return tcg_res; 9128 } 9129 } 9130 9131 /* AdvSIMD across lanes 9132 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9133 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 9134 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 9135 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 9136 */ 9137 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 9138 { 9139 int rd = extract32(insn, 0, 5); 9140 int rn = extract32(insn, 5, 5); 9141 int size = extract32(insn, 22, 2); 9142 int opcode = extract32(insn, 12, 5); 9143 bool is_q = extract32(insn, 30, 1); 9144 bool is_u = extract32(insn, 29, 1); 9145 bool is_fp = false; 9146 bool is_min = false; 9147 int esize; 9148 int elements; 9149 int i; 9150 TCGv_i64 tcg_res, tcg_elt; 9151 9152 switch (opcode) { 9153 case 0x1b: /* ADDV */ 9154 if (is_u) { 9155 unallocated_encoding(s); 9156 return; 9157 } 9158 /* fall through */ 9159 case 0x3: /* SADDLV, UADDLV */ 9160 case 0xa: /* SMAXV, UMAXV */ 9161 case 0x1a: /* SMINV, UMINV */ 9162 if (size == 3 || (size == 2 && !is_q)) { 9163 unallocated_encoding(s); 9164 return; 9165 } 9166 break; 9167 case 0xc: /* FMAXNMV, FMINNMV */ 9168 case 0xf: /* FMAXV, FMINV */ 9169 /* Bit 1 of size field encodes min vs max and the actual size 9170 * depends on the encoding of the U bit. If not set (and FP16 9171 * enabled) then we do half-precision float instead of single 9172 * precision. 9173 */ 9174 is_min = extract32(size, 1, 1); 9175 is_fp = true; 9176 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 9177 size = 1; 9178 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 9179 unallocated_encoding(s); 9180 return; 9181 } else { 9182 size = 2; 9183 } 9184 break; 9185 default: 9186 unallocated_encoding(s); 9187 return; 9188 } 9189 9190 if (!fp_access_check(s)) { 9191 return; 9192 } 9193 9194 esize = 8 << size; 9195 elements = (is_q ? 128 : 64) / esize; 9196 9197 tcg_res = tcg_temp_new_i64(); 9198 tcg_elt = tcg_temp_new_i64(); 9199 9200 /* These instructions operate across all lanes of a vector 9201 * to produce a single result. We can guarantee that a 64 9202 * bit intermediate is sufficient: 9203 * + for [US]ADDLV the maximum element size is 32 bits, and 9204 * the result type is 64 bits 9205 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 9206 * same as the element size, which is 32 bits at most 9207 * For the integer operations we can choose to work at 64 9208 * or 32 bits and truncate at the end; for simplicity 9209 * we use 64 bits always. The floating point 9210 * ops do require 32 bit intermediates, though. 9211 */ 9212 if (!is_fp) { 9213 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 9214 9215 for (i = 1; i < elements; i++) { 9216 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 9217 9218 switch (opcode) { 9219 case 0x03: /* SADDLV / UADDLV */ 9220 case 0x1b: /* ADDV */ 9221 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 9222 break; 9223 case 0x0a: /* SMAXV / UMAXV */ 9224 if (is_u) { 9225 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 9226 } else { 9227 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 9228 } 9229 break; 9230 case 0x1a: /* SMINV / UMINV */ 9231 if (is_u) { 9232 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 9233 } else { 9234 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 9235 } 9236 break; 9237 default: 9238 g_assert_not_reached(); 9239 } 9240 9241 } 9242 } else { 9243 /* Floating point vector reduction ops which work across 32 9244 * bit (single) or 16 bit (half-precision) intermediates. 9245 * Note that correct NaN propagation requires that we do these 9246 * operations in exactly the order specified by the pseudocode. 9247 */ 9248 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9249 int fpopcode = opcode | is_min << 4 | is_u << 5; 9250 int vmap = (1 << elements) - 1; 9251 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 9252 (is_q ? 128 : 64), vmap, fpst); 9253 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 9254 } 9255 9256 /* Now truncate the result to the width required for the final output */ 9257 if (opcode == 0x03) { 9258 /* SADDLV, UADDLV: result is 2*esize */ 9259 size++; 9260 } 9261 9262 switch (size) { 9263 case 0: 9264 tcg_gen_ext8u_i64(tcg_res, tcg_res); 9265 break; 9266 case 1: 9267 tcg_gen_ext16u_i64(tcg_res, tcg_res); 9268 break; 9269 case 2: 9270 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9271 break; 9272 case 3: 9273 break; 9274 default: 9275 g_assert_not_reached(); 9276 } 9277 9278 write_fp_dreg(s, rd, tcg_res); 9279 } 9280 9281 /* AdvSIMD modified immediate 9282 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 9283 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 9284 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 9285 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 9286 * 9287 * There are a number of operations that can be carried out here: 9288 * MOVI - move (shifted) imm into register 9289 * MVNI - move inverted (shifted) imm into register 9290 * ORR - bitwise OR of (shifted) imm with register 9291 * BIC - bitwise clear of (shifted) imm with register 9292 * With ARMv8.2 we also have: 9293 * FMOV half-precision 9294 */ 9295 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 9296 { 9297 int rd = extract32(insn, 0, 5); 9298 int cmode = extract32(insn, 12, 4); 9299 int o2 = extract32(insn, 11, 1); 9300 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 9301 bool is_neg = extract32(insn, 29, 1); 9302 bool is_q = extract32(insn, 30, 1); 9303 uint64_t imm = 0; 9304 9305 if (o2) { 9306 if (cmode != 0xf || is_neg) { 9307 unallocated_encoding(s); 9308 return; 9309 } 9310 /* FMOV (vector, immediate) - half-precision */ 9311 if (!dc_isar_feature(aa64_fp16, s)) { 9312 unallocated_encoding(s); 9313 return; 9314 } 9315 imm = vfp_expand_imm(MO_16, abcdefgh); 9316 /* now duplicate across the lanes */ 9317 imm = dup_const(MO_16, imm); 9318 } else { 9319 if (cmode == 0xf && is_neg && !is_q) { 9320 unallocated_encoding(s); 9321 return; 9322 } 9323 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 9324 } 9325 9326 if (!fp_access_check(s)) { 9327 return; 9328 } 9329 9330 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 9331 /* MOVI or MVNI, with MVNI negation handled above. */ 9332 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 9333 vec_full_reg_size(s), imm); 9334 } else { 9335 /* ORR or BIC, with BIC negation to AND handled above. */ 9336 if (is_neg) { 9337 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 9338 } else { 9339 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 9340 } 9341 } 9342 } 9343 9344 /* 9345 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 9346 * 9347 * This code is handles the common shifting code and is used by both 9348 * the vector and scalar code. 9349 */ 9350 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 9351 TCGv_i64 tcg_rnd, bool accumulate, 9352 bool is_u, int size, int shift) 9353 { 9354 bool extended_result = false; 9355 bool round = tcg_rnd != NULL; 9356 int ext_lshift = 0; 9357 TCGv_i64 tcg_src_hi; 9358 9359 if (round && size == 3) { 9360 extended_result = true; 9361 ext_lshift = 64 - shift; 9362 tcg_src_hi = tcg_temp_new_i64(); 9363 } else if (shift == 64) { 9364 if (!accumulate && is_u) { 9365 /* result is zero */ 9366 tcg_gen_movi_i64(tcg_res, 0); 9367 return; 9368 } 9369 } 9370 9371 /* Deal with the rounding step */ 9372 if (round) { 9373 if (extended_result) { 9374 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9375 if (!is_u) { 9376 /* take care of sign extending tcg_res */ 9377 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 9378 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 9379 tcg_src, tcg_src_hi, 9380 tcg_rnd, tcg_zero); 9381 } else { 9382 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 9383 tcg_src, tcg_zero, 9384 tcg_rnd, tcg_zero); 9385 } 9386 } else { 9387 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 9388 } 9389 } 9390 9391 /* Now do the shift right */ 9392 if (round && extended_result) { 9393 /* extended case, >64 bit precision required */ 9394 if (ext_lshift == 0) { 9395 /* special case, only high bits matter */ 9396 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 9397 } else { 9398 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 9399 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 9400 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 9401 } 9402 } else { 9403 if (is_u) { 9404 if (shift == 64) { 9405 /* essentially shifting in 64 zeros */ 9406 tcg_gen_movi_i64(tcg_src, 0); 9407 } else { 9408 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 9409 } 9410 } else { 9411 if (shift == 64) { 9412 /* effectively extending the sign-bit */ 9413 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 9414 } else { 9415 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 9416 } 9417 } 9418 } 9419 9420 if (accumulate) { 9421 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 9422 } else { 9423 tcg_gen_mov_i64(tcg_res, tcg_src); 9424 } 9425 } 9426 9427 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 9428 static void handle_scalar_simd_shri(DisasContext *s, 9429 bool is_u, int immh, int immb, 9430 int opcode, int rn, int rd) 9431 { 9432 const int size = 3; 9433 int immhb = immh << 3 | immb; 9434 int shift = 2 * (8 << size) - immhb; 9435 bool accumulate = false; 9436 bool round = false; 9437 bool insert = false; 9438 TCGv_i64 tcg_rn; 9439 TCGv_i64 tcg_rd; 9440 TCGv_i64 tcg_round; 9441 9442 if (!extract32(immh, 3, 1)) { 9443 unallocated_encoding(s); 9444 return; 9445 } 9446 9447 if (!fp_access_check(s)) { 9448 return; 9449 } 9450 9451 switch (opcode) { 9452 case 0x02: /* SSRA / USRA (accumulate) */ 9453 accumulate = true; 9454 break; 9455 case 0x04: /* SRSHR / URSHR (rounding) */ 9456 round = true; 9457 break; 9458 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 9459 accumulate = round = true; 9460 break; 9461 case 0x08: /* SRI */ 9462 insert = true; 9463 break; 9464 } 9465 9466 if (round) { 9467 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 9468 } else { 9469 tcg_round = NULL; 9470 } 9471 9472 tcg_rn = read_fp_dreg(s, rn); 9473 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 9474 9475 if (insert) { 9476 /* shift count same as element size is valid but does nothing; 9477 * special case to avoid potential shift by 64. 9478 */ 9479 int esize = 8 << size; 9480 if (shift != esize) { 9481 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 9482 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 9483 } 9484 } else { 9485 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 9486 accumulate, is_u, size, shift); 9487 } 9488 9489 write_fp_dreg(s, rd, tcg_rd); 9490 } 9491 9492 /* SHL/SLI - Scalar shift left */ 9493 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 9494 int immh, int immb, int opcode, 9495 int rn, int rd) 9496 { 9497 int size = 32 - clz32(immh) - 1; 9498 int immhb = immh << 3 | immb; 9499 int shift = immhb - (8 << size); 9500 TCGv_i64 tcg_rn; 9501 TCGv_i64 tcg_rd; 9502 9503 if (!extract32(immh, 3, 1)) { 9504 unallocated_encoding(s); 9505 return; 9506 } 9507 9508 if (!fp_access_check(s)) { 9509 return; 9510 } 9511 9512 tcg_rn = read_fp_dreg(s, rn); 9513 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 9514 9515 if (insert) { 9516 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 9517 } else { 9518 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 9519 } 9520 9521 write_fp_dreg(s, rd, tcg_rd); 9522 } 9523 9524 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 9525 * (signed/unsigned) narrowing */ 9526 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 9527 bool is_u_shift, bool is_u_narrow, 9528 int immh, int immb, int opcode, 9529 int rn, int rd) 9530 { 9531 int immhb = immh << 3 | immb; 9532 int size = 32 - clz32(immh) - 1; 9533 int esize = 8 << size; 9534 int shift = (2 * esize) - immhb; 9535 int elements = is_scalar ? 1 : (64 / esize); 9536 bool round = extract32(opcode, 0, 1); 9537 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 9538 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 9539 TCGv_i32 tcg_rd_narrowed; 9540 TCGv_i64 tcg_final; 9541 9542 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 9543 { gen_helper_neon_narrow_sat_s8, 9544 gen_helper_neon_unarrow_sat8 }, 9545 { gen_helper_neon_narrow_sat_s16, 9546 gen_helper_neon_unarrow_sat16 }, 9547 { gen_helper_neon_narrow_sat_s32, 9548 gen_helper_neon_unarrow_sat32 }, 9549 { NULL, NULL }, 9550 }; 9551 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 9552 gen_helper_neon_narrow_sat_u8, 9553 gen_helper_neon_narrow_sat_u16, 9554 gen_helper_neon_narrow_sat_u32, 9555 NULL 9556 }; 9557 NeonGenNarrowEnvFn *narrowfn; 9558 9559 int i; 9560 9561 assert(size < 4); 9562 9563 if (extract32(immh, 3, 1)) { 9564 unallocated_encoding(s); 9565 return; 9566 } 9567 9568 if (!fp_access_check(s)) { 9569 return; 9570 } 9571 9572 if (is_u_shift) { 9573 narrowfn = unsigned_narrow_fns[size]; 9574 } else { 9575 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 9576 } 9577 9578 tcg_rn = tcg_temp_new_i64(); 9579 tcg_rd = tcg_temp_new_i64(); 9580 tcg_rd_narrowed = tcg_temp_new_i32(); 9581 tcg_final = tcg_temp_new_i64(); 9582 9583 if (round) { 9584 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 9585 } else { 9586 tcg_round = NULL; 9587 } 9588 9589 for (i = 0; i < elements; i++) { 9590 read_vec_element(s, tcg_rn, rn, i, ldop); 9591 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 9592 false, is_u_shift, size+1, shift); 9593 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 9594 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 9595 if (i == 0) { 9596 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 9597 } else { 9598 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 9599 } 9600 } 9601 9602 if (!is_q) { 9603 write_vec_element(s, tcg_final, rd, 0, MO_64); 9604 } else { 9605 write_vec_element(s, tcg_final, rd, 1, MO_64); 9606 } 9607 clear_vec_high(s, is_q, rd); 9608 } 9609 9610 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 9611 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 9612 bool src_unsigned, bool dst_unsigned, 9613 int immh, int immb, int rn, int rd) 9614 { 9615 int immhb = immh << 3 | immb; 9616 int size = 32 - clz32(immh) - 1; 9617 int shift = immhb - (8 << size); 9618 int pass; 9619 9620 assert(immh != 0); 9621 assert(!(scalar && is_q)); 9622 9623 if (!scalar) { 9624 if (!is_q && extract32(immh, 3, 1)) { 9625 unallocated_encoding(s); 9626 return; 9627 } 9628 9629 /* Since we use the variable-shift helpers we must 9630 * replicate the shift count into each element of 9631 * the tcg_shift value. 9632 */ 9633 switch (size) { 9634 case 0: 9635 shift |= shift << 8; 9636 /* fall through */ 9637 case 1: 9638 shift |= shift << 16; 9639 break; 9640 case 2: 9641 case 3: 9642 break; 9643 default: 9644 g_assert_not_reached(); 9645 } 9646 } 9647 9648 if (!fp_access_check(s)) { 9649 return; 9650 } 9651 9652 if (size == 3) { 9653 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 9654 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 9655 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 9656 { NULL, gen_helper_neon_qshl_u64 }, 9657 }; 9658 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 9659 int maxpass = is_q ? 2 : 1; 9660 9661 for (pass = 0; pass < maxpass; pass++) { 9662 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9663 9664 read_vec_element(s, tcg_op, rn, pass, MO_64); 9665 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9666 write_vec_element(s, tcg_op, rd, pass, MO_64); 9667 } 9668 clear_vec_high(s, is_q, rd); 9669 } else { 9670 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 9671 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 9672 { 9673 { gen_helper_neon_qshl_s8, 9674 gen_helper_neon_qshl_s16, 9675 gen_helper_neon_qshl_s32 }, 9676 { gen_helper_neon_qshlu_s8, 9677 gen_helper_neon_qshlu_s16, 9678 gen_helper_neon_qshlu_s32 } 9679 }, { 9680 { NULL, NULL, NULL }, 9681 { gen_helper_neon_qshl_u8, 9682 gen_helper_neon_qshl_u16, 9683 gen_helper_neon_qshl_u32 } 9684 } 9685 }; 9686 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 9687 MemOp memop = scalar ? size : MO_32; 9688 int maxpass = scalar ? 1 : is_q ? 4 : 2; 9689 9690 for (pass = 0; pass < maxpass; pass++) { 9691 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9692 9693 read_vec_element_i32(s, tcg_op, rn, pass, memop); 9694 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9695 if (scalar) { 9696 switch (size) { 9697 case 0: 9698 tcg_gen_ext8u_i32(tcg_op, tcg_op); 9699 break; 9700 case 1: 9701 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9702 break; 9703 case 2: 9704 break; 9705 default: 9706 g_assert_not_reached(); 9707 } 9708 write_fp_sreg(s, rd, tcg_op); 9709 } else { 9710 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 9711 } 9712 } 9713 9714 if (!scalar) { 9715 clear_vec_high(s, is_q, rd); 9716 } 9717 } 9718 } 9719 9720 /* Common vector code for handling integer to FP conversion */ 9721 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 9722 int elements, int is_signed, 9723 int fracbits, int size) 9724 { 9725 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9726 TCGv_i32 tcg_shift = NULL; 9727 9728 MemOp mop = size | (is_signed ? MO_SIGN : 0); 9729 int pass; 9730 9731 if (fracbits || size == MO_64) { 9732 tcg_shift = tcg_constant_i32(fracbits); 9733 } 9734 9735 if (size == MO_64) { 9736 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 9737 TCGv_i64 tcg_double = tcg_temp_new_i64(); 9738 9739 for (pass = 0; pass < elements; pass++) { 9740 read_vec_element(s, tcg_int64, rn, pass, mop); 9741 9742 if (is_signed) { 9743 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 9744 tcg_shift, tcg_fpst); 9745 } else { 9746 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 9747 tcg_shift, tcg_fpst); 9748 } 9749 if (elements == 1) { 9750 write_fp_dreg(s, rd, tcg_double); 9751 } else { 9752 write_vec_element(s, tcg_double, rd, pass, MO_64); 9753 } 9754 } 9755 } else { 9756 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 9757 TCGv_i32 tcg_float = tcg_temp_new_i32(); 9758 9759 for (pass = 0; pass < elements; pass++) { 9760 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 9761 9762 switch (size) { 9763 case MO_32: 9764 if (fracbits) { 9765 if (is_signed) { 9766 gen_helper_vfp_sltos(tcg_float, tcg_int32, 9767 tcg_shift, tcg_fpst); 9768 } else { 9769 gen_helper_vfp_ultos(tcg_float, tcg_int32, 9770 tcg_shift, tcg_fpst); 9771 } 9772 } else { 9773 if (is_signed) { 9774 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 9775 } else { 9776 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 9777 } 9778 } 9779 break; 9780 case MO_16: 9781 if (fracbits) { 9782 if (is_signed) { 9783 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 9784 tcg_shift, tcg_fpst); 9785 } else { 9786 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 9787 tcg_shift, tcg_fpst); 9788 } 9789 } else { 9790 if (is_signed) { 9791 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 9792 } else { 9793 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 9794 } 9795 } 9796 break; 9797 default: 9798 g_assert_not_reached(); 9799 } 9800 9801 if (elements == 1) { 9802 write_fp_sreg(s, rd, tcg_float); 9803 } else { 9804 write_vec_element_i32(s, tcg_float, rd, pass, size); 9805 } 9806 } 9807 } 9808 9809 clear_vec_high(s, elements << size == 16, rd); 9810 } 9811 9812 /* UCVTF/SCVTF - Integer to FP conversion */ 9813 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 9814 bool is_q, bool is_u, 9815 int immh, int immb, int opcode, 9816 int rn, int rd) 9817 { 9818 int size, elements, fracbits; 9819 int immhb = immh << 3 | immb; 9820 9821 if (immh & 8) { 9822 size = MO_64; 9823 if (!is_scalar && !is_q) { 9824 unallocated_encoding(s); 9825 return; 9826 } 9827 } else if (immh & 4) { 9828 size = MO_32; 9829 } else if (immh & 2) { 9830 size = MO_16; 9831 if (!dc_isar_feature(aa64_fp16, s)) { 9832 unallocated_encoding(s); 9833 return; 9834 } 9835 } else { 9836 /* immh == 0 would be a failure of the decode logic */ 9837 g_assert(immh == 1); 9838 unallocated_encoding(s); 9839 return; 9840 } 9841 9842 if (is_scalar) { 9843 elements = 1; 9844 } else { 9845 elements = (8 << is_q) >> size; 9846 } 9847 fracbits = (16 << size) - immhb; 9848 9849 if (!fp_access_check(s)) { 9850 return; 9851 } 9852 9853 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 9854 } 9855 9856 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 9857 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 9858 bool is_q, bool is_u, 9859 int immh, int immb, int rn, int rd) 9860 { 9861 int immhb = immh << 3 | immb; 9862 int pass, size, fracbits; 9863 TCGv_ptr tcg_fpstatus; 9864 TCGv_i32 tcg_rmode, tcg_shift; 9865 9866 if (immh & 0x8) { 9867 size = MO_64; 9868 if (!is_scalar && !is_q) { 9869 unallocated_encoding(s); 9870 return; 9871 } 9872 } else if (immh & 0x4) { 9873 size = MO_32; 9874 } else if (immh & 0x2) { 9875 size = MO_16; 9876 if (!dc_isar_feature(aa64_fp16, s)) { 9877 unallocated_encoding(s); 9878 return; 9879 } 9880 } else { 9881 /* Should have split out AdvSIMD modified immediate earlier. */ 9882 assert(immh == 1); 9883 unallocated_encoding(s); 9884 return; 9885 } 9886 9887 if (!fp_access_check(s)) { 9888 return; 9889 } 9890 9891 assert(!(is_scalar && is_q)); 9892 9893 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9894 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9895 fracbits = (16 << size) - immhb; 9896 tcg_shift = tcg_constant_i32(fracbits); 9897 9898 if (size == MO_64) { 9899 int maxpass = is_scalar ? 1 : 2; 9900 9901 for (pass = 0; pass < maxpass; pass++) { 9902 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9903 9904 read_vec_element(s, tcg_op, rn, pass, MO_64); 9905 if (is_u) { 9906 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9907 } else { 9908 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9909 } 9910 write_vec_element(s, tcg_op, rd, pass, MO_64); 9911 } 9912 clear_vec_high(s, is_q, rd); 9913 } else { 9914 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9915 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9916 9917 switch (size) { 9918 case MO_16: 9919 if (is_u) { 9920 fn = gen_helper_vfp_touhh; 9921 } else { 9922 fn = gen_helper_vfp_toshh; 9923 } 9924 break; 9925 case MO_32: 9926 if (is_u) { 9927 fn = gen_helper_vfp_touls; 9928 } else { 9929 fn = gen_helper_vfp_tosls; 9930 } 9931 break; 9932 default: 9933 g_assert_not_reached(); 9934 } 9935 9936 for (pass = 0; pass < maxpass; pass++) { 9937 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9938 9939 read_vec_element_i32(s, tcg_op, rn, pass, size); 9940 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9941 if (is_scalar) { 9942 if (size == MO_16 && !is_u) { 9943 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9944 } 9945 write_fp_sreg(s, rd, tcg_op); 9946 } else { 9947 write_vec_element_i32(s, tcg_op, rd, pass, size); 9948 } 9949 } 9950 if (!is_scalar) { 9951 clear_vec_high(s, is_q, rd); 9952 } 9953 } 9954 9955 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9956 } 9957 9958 /* AdvSIMD scalar shift by immediate 9959 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9960 * +-----+---+-------------+------+------+--------+---+------+------+ 9961 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9962 * +-----+---+-------------+------+------+--------+---+------+------+ 9963 * 9964 * This is the scalar version so it works on a fixed sized registers 9965 */ 9966 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9967 { 9968 int rd = extract32(insn, 0, 5); 9969 int rn = extract32(insn, 5, 5); 9970 int opcode = extract32(insn, 11, 5); 9971 int immb = extract32(insn, 16, 3); 9972 int immh = extract32(insn, 19, 4); 9973 bool is_u = extract32(insn, 29, 1); 9974 9975 if (immh == 0) { 9976 unallocated_encoding(s); 9977 return; 9978 } 9979 9980 switch (opcode) { 9981 case 0x08: /* SRI */ 9982 if (!is_u) { 9983 unallocated_encoding(s); 9984 return; 9985 } 9986 /* fall through */ 9987 case 0x00: /* SSHR / USHR */ 9988 case 0x02: /* SSRA / USRA */ 9989 case 0x04: /* SRSHR / URSHR */ 9990 case 0x06: /* SRSRA / URSRA */ 9991 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9992 break; 9993 case 0x0a: /* SHL / SLI */ 9994 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9995 break; 9996 case 0x1c: /* SCVTF, UCVTF */ 9997 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9998 opcode, rn, rd); 9999 break; 10000 case 0x10: /* SQSHRUN, SQSHRUN2 */ 10001 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 10002 if (!is_u) { 10003 unallocated_encoding(s); 10004 return; 10005 } 10006 handle_vec_simd_sqshrn(s, true, false, false, true, 10007 immh, immb, opcode, rn, rd); 10008 break; 10009 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 10010 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 10011 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 10012 immh, immb, opcode, rn, rd); 10013 break; 10014 case 0xc: /* SQSHLU */ 10015 if (!is_u) { 10016 unallocated_encoding(s); 10017 return; 10018 } 10019 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 10020 break; 10021 case 0xe: /* SQSHL, UQSHL */ 10022 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 10023 break; 10024 case 0x1f: /* FCVTZS, FCVTZU */ 10025 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 10026 break; 10027 default: 10028 unallocated_encoding(s); 10029 break; 10030 } 10031 } 10032 10033 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 10034 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 10035 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 10036 { 10037 /* Handle 64->64 opcodes which are shared between the scalar and 10038 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 10039 * is valid in either group and also the double-precision fp ops. 10040 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 10041 * requires them. 10042 */ 10043 TCGCond cond; 10044 10045 switch (opcode) { 10046 case 0x4: /* CLS, CLZ */ 10047 if (u) { 10048 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 10049 } else { 10050 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 10051 } 10052 break; 10053 case 0x5: /* NOT */ 10054 /* This opcode is shared with CNT and RBIT but we have earlier 10055 * enforced that size == 3 if and only if this is the NOT insn. 10056 */ 10057 tcg_gen_not_i64(tcg_rd, tcg_rn); 10058 break; 10059 case 0x7: /* SQABS, SQNEG */ 10060 if (u) { 10061 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 10062 } else { 10063 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 10064 } 10065 break; 10066 case 0xa: /* CMLT */ 10067 cond = TCG_COND_LT; 10068 do_cmop: 10069 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 10070 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 10071 break; 10072 case 0x8: /* CMGT, CMGE */ 10073 cond = u ? TCG_COND_GE : TCG_COND_GT; 10074 goto do_cmop; 10075 case 0x9: /* CMEQ, CMLE */ 10076 cond = u ? TCG_COND_LE : TCG_COND_EQ; 10077 goto do_cmop; 10078 case 0xb: /* ABS, NEG */ 10079 if (u) { 10080 tcg_gen_neg_i64(tcg_rd, tcg_rn); 10081 } else { 10082 tcg_gen_abs_i64(tcg_rd, tcg_rn); 10083 } 10084 break; 10085 case 0x2f: /* FABS */ 10086 gen_vfp_absd(tcg_rd, tcg_rn); 10087 break; 10088 case 0x6f: /* FNEG */ 10089 gen_vfp_negd(tcg_rd, tcg_rn); 10090 break; 10091 case 0x7f: /* FSQRT */ 10092 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 10093 break; 10094 case 0x1a: /* FCVTNS */ 10095 case 0x1b: /* FCVTMS */ 10096 case 0x1c: /* FCVTAS */ 10097 case 0x3a: /* FCVTPS */ 10098 case 0x3b: /* FCVTZS */ 10099 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 10100 break; 10101 case 0x5a: /* FCVTNU */ 10102 case 0x5b: /* FCVTMU */ 10103 case 0x5c: /* FCVTAU */ 10104 case 0x7a: /* FCVTPU */ 10105 case 0x7b: /* FCVTZU */ 10106 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 10107 break; 10108 case 0x18: /* FRINTN */ 10109 case 0x19: /* FRINTM */ 10110 case 0x38: /* FRINTP */ 10111 case 0x39: /* FRINTZ */ 10112 case 0x58: /* FRINTA */ 10113 case 0x79: /* FRINTI */ 10114 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 10115 break; 10116 case 0x59: /* FRINTX */ 10117 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 10118 break; 10119 case 0x1e: /* FRINT32Z */ 10120 case 0x5e: /* FRINT32X */ 10121 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 10122 break; 10123 case 0x1f: /* FRINT64Z */ 10124 case 0x5f: /* FRINT64X */ 10125 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 10126 break; 10127 default: 10128 g_assert_not_reached(); 10129 } 10130 } 10131 10132 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 10133 bool is_scalar, bool is_u, bool is_q, 10134 int size, int rn, int rd) 10135 { 10136 bool is_double = (size == MO_64); 10137 TCGv_ptr fpst; 10138 10139 if (!fp_access_check(s)) { 10140 return; 10141 } 10142 10143 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 10144 10145 if (is_double) { 10146 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10147 TCGv_i64 tcg_zero = tcg_constant_i64(0); 10148 TCGv_i64 tcg_res = tcg_temp_new_i64(); 10149 NeonGenTwoDoubleOpFn *genfn; 10150 bool swap = false; 10151 int pass; 10152 10153 switch (opcode) { 10154 case 0x2e: /* FCMLT (zero) */ 10155 swap = true; 10156 /* fallthrough */ 10157 case 0x2c: /* FCMGT (zero) */ 10158 genfn = gen_helper_neon_cgt_f64; 10159 break; 10160 case 0x2d: /* FCMEQ (zero) */ 10161 genfn = gen_helper_neon_ceq_f64; 10162 break; 10163 case 0x6d: /* FCMLE (zero) */ 10164 swap = true; 10165 /* fall through */ 10166 case 0x6c: /* FCMGE (zero) */ 10167 genfn = gen_helper_neon_cge_f64; 10168 break; 10169 default: 10170 g_assert_not_reached(); 10171 } 10172 10173 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10174 read_vec_element(s, tcg_op, rn, pass, MO_64); 10175 if (swap) { 10176 genfn(tcg_res, tcg_zero, tcg_op, fpst); 10177 } else { 10178 genfn(tcg_res, tcg_op, tcg_zero, fpst); 10179 } 10180 write_vec_element(s, tcg_res, rd, pass, MO_64); 10181 } 10182 10183 clear_vec_high(s, !is_scalar, rd); 10184 } else { 10185 TCGv_i32 tcg_op = tcg_temp_new_i32(); 10186 TCGv_i32 tcg_zero = tcg_constant_i32(0); 10187 TCGv_i32 tcg_res = tcg_temp_new_i32(); 10188 NeonGenTwoSingleOpFn *genfn; 10189 bool swap = false; 10190 int pass, maxpasses; 10191 10192 if (size == MO_16) { 10193 switch (opcode) { 10194 case 0x2e: /* FCMLT (zero) */ 10195 swap = true; 10196 /* fall through */ 10197 case 0x2c: /* FCMGT (zero) */ 10198 genfn = gen_helper_advsimd_cgt_f16; 10199 break; 10200 case 0x2d: /* FCMEQ (zero) */ 10201 genfn = gen_helper_advsimd_ceq_f16; 10202 break; 10203 case 0x6d: /* FCMLE (zero) */ 10204 swap = true; 10205 /* fall through */ 10206 case 0x6c: /* FCMGE (zero) */ 10207 genfn = gen_helper_advsimd_cge_f16; 10208 break; 10209 default: 10210 g_assert_not_reached(); 10211 } 10212 } else { 10213 switch (opcode) { 10214 case 0x2e: /* FCMLT (zero) */ 10215 swap = true; 10216 /* fall through */ 10217 case 0x2c: /* FCMGT (zero) */ 10218 genfn = gen_helper_neon_cgt_f32; 10219 break; 10220 case 0x2d: /* FCMEQ (zero) */ 10221 genfn = gen_helper_neon_ceq_f32; 10222 break; 10223 case 0x6d: /* FCMLE (zero) */ 10224 swap = true; 10225 /* fall through */ 10226 case 0x6c: /* FCMGE (zero) */ 10227 genfn = gen_helper_neon_cge_f32; 10228 break; 10229 default: 10230 g_assert_not_reached(); 10231 } 10232 } 10233 10234 if (is_scalar) { 10235 maxpasses = 1; 10236 } else { 10237 int vector_size = 8 << is_q; 10238 maxpasses = vector_size >> size; 10239 } 10240 10241 for (pass = 0; pass < maxpasses; pass++) { 10242 read_vec_element_i32(s, tcg_op, rn, pass, size); 10243 if (swap) { 10244 genfn(tcg_res, tcg_zero, tcg_op, fpst); 10245 } else { 10246 genfn(tcg_res, tcg_op, tcg_zero, fpst); 10247 } 10248 if (is_scalar) { 10249 write_fp_sreg(s, rd, tcg_res); 10250 } else { 10251 write_vec_element_i32(s, tcg_res, rd, pass, size); 10252 } 10253 } 10254 10255 if (!is_scalar) { 10256 clear_vec_high(s, is_q, rd); 10257 } 10258 } 10259 } 10260 10261 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 10262 bool is_scalar, bool is_u, bool is_q, 10263 int size, int rn, int rd) 10264 { 10265 bool is_double = (size == 3); 10266 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10267 10268 if (is_double) { 10269 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10270 TCGv_i64 tcg_res = tcg_temp_new_i64(); 10271 int pass; 10272 10273 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10274 read_vec_element(s, tcg_op, rn, pass, MO_64); 10275 switch (opcode) { 10276 case 0x3d: /* FRECPE */ 10277 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 10278 break; 10279 case 0x3f: /* FRECPX */ 10280 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 10281 break; 10282 case 0x7d: /* FRSQRTE */ 10283 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 10284 break; 10285 default: 10286 g_assert_not_reached(); 10287 } 10288 write_vec_element(s, tcg_res, rd, pass, MO_64); 10289 } 10290 clear_vec_high(s, !is_scalar, rd); 10291 } else { 10292 TCGv_i32 tcg_op = tcg_temp_new_i32(); 10293 TCGv_i32 tcg_res = tcg_temp_new_i32(); 10294 int pass, maxpasses; 10295 10296 if (is_scalar) { 10297 maxpasses = 1; 10298 } else { 10299 maxpasses = is_q ? 4 : 2; 10300 } 10301 10302 for (pass = 0; pass < maxpasses; pass++) { 10303 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 10304 10305 switch (opcode) { 10306 case 0x3c: /* URECPE */ 10307 gen_helper_recpe_u32(tcg_res, tcg_op); 10308 break; 10309 case 0x3d: /* FRECPE */ 10310 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 10311 break; 10312 case 0x3f: /* FRECPX */ 10313 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 10314 break; 10315 case 0x7d: /* FRSQRTE */ 10316 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 10317 break; 10318 default: 10319 g_assert_not_reached(); 10320 } 10321 10322 if (is_scalar) { 10323 write_fp_sreg(s, rd, tcg_res); 10324 } else { 10325 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 10326 } 10327 } 10328 if (!is_scalar) { 10329 clear_vec_high(s, is_q, rd); 10330 } 10331 } 10332 } 10333 10334 static void handle_2misc_narrow(DisasContext *s, bool scalar, 10335 int opcode, bool u, bool is_q, 10336 int size, int rn, int rd) 10337 { 10338 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 10339 * in the source becomes a size element in the destination). 10340 */ 10341 int pass; 10342 TCGv_i32 tcg_res[2]; 10343 int destelt = is_q ? 2 : 0; 10344 int passes = scalar ? 1 : 2; 10345 10346 if (scalar) { 10347 tcg_res[1] = tcg_constant_i32(0); 10348 } 10349 10350 for (pass = 0; pass < passes; pass++) { 10351 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10352 NeonGenNarrowFn *genfn = NULL; 10353 NeonGenNarrowEnvFn *genenvfn = NULL; 10354 10355 if (scalar) { 10356 read_vec_element(s, tcg_op, rn, pass, size + 1); 10357 } else { 10358 read_vec_element(s, tcg_op, rn, pass, MO_64); 10359 } 10360 tcg_res[pass] = tcg_temp_new_i32(); 10361 10362 switch (opcode) { 10363 case 0x12: /* XTN, SQXTUN */ 10364 { 10365 static NeonGenNarrowFn * const xtnfns[3] = { 10366 gen_helper_neon_narrow_u8, 10367 gen_helper_neon_narrow_u16, 10368 tcg_gen_extrl_i64_i32, 10369 }; 10370 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 10371 gen_helper_neon_unarrow_sat8, 10372 gen_helper_neon_unarrow_sat16, 10373 gen_helper_neon_unarrow_sat32, 10374 }; 10375 if (u) { 10376 genenvfn = sqxtunfns[size]; 10377 } else { 10378 genfn = xtnfns[size]; 10379 } 10380 break; 10381 } 10382 case 0x14: /* SQXTN, UQXTN */ 10383 { 10384 static NeonGenNarrowEnvFn * const fns[3][2] = { 10385 { gen_helper_neon_narrow_sat_s8, 10386 gen_helper_neon_narrow_sat_u8 }, 10387 { gen_helper_neon_narrow_sat_s16, 10388 gen_helper_neon_narrow_sat_u16 }, 10389 { gen_helper_neon_narrow_sat_s32, 10390 gen_helper_neon_narrow_sat_u32 }, 10391 }; 10392 genenvfn = fns[size][u]; 10393 break; 10394 } 10395 case 0x16: /* FCVTN, FCVTN2 */ 10396 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10397 if (size == 2) { 10398 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 10399 } else { 10400 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10401 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10402 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10403 TCGv_i32 ahp = get_ahp_flag(); 10404 10405 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10406 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10407 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10408 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10409 } 10410 break; 10411 case 0x36: /* BFCVTN, BFCVTN2 */ 10412 { 10413 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10414 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10415 } 10416 break; 10417 case 0x56: /* FCVTXN, FCVTXN2 */ 10418 /* 64 bit to 32 bit float conversion 10419 * with von Neumann rounding (round to odd) 10420 */ 10421 assert(size == 2); 10422 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10423 break; 10424 default: 10425 g_assert_not_reached(); 10426 } 10427 10428 if (genfn) { 10429 genfn(tcg_res[pass], tcg_op); 10430 } else if (genenvfn) { 10431 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10432 } 10433 } 10434 10435 for (pass = 0; pass < 2; pass++) { 10436 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10437 } 10438 clear_vec_high(s, is_q, rd); 10439 } 10440 10441 /* AdvSIMD scalar two reg misc 10442 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10443 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10444 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10445 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10446 */ 10447 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10448 { 10449 int rd = extract32(insn, 0, 5); 10450 int rn = extract32(insn, 5, 5); 10451 int opcode = extract32(insn, 12, 5); 10452 int size = extract32(insn, 22, 2); 10453 bool u = extract32(insn, 29, 1); 10454 bool is_fcvt = false; 10455 int rmode; 10456 TCGv_i32 tcg_rmode; 10457 TCGv_ptr tcg_fpstatus; 10458 10459 switch (opcode) { 10460 case 0x7: /* SQABS / SQNEG */ 10461 break; 10462 case 0xa: /* CMLT */ 10463 if (u) { 10464 unallocated_encoding(s); 10465 return; 10466 } 10467 /* fall through */ 10468 case 0x8: /* CMGT, CMGE */ 10469 case 0x9: /* CMEQ, CMLE */ 10470 case 0xb: /* ABS, NEG */ 10471 if (size != 3) { 10472 unallocated_encoding(s); 10473 return; 10474 } 10475 break; 10476 case 0x12: /* SQXTUN */ 10477 if (!u) { 10478 unallocated_encoding(s); 10479 return; 10480 } 10481 /* fall through */ 10482 case 0x14: /* SQXTN, UQXTN */ 10483 if (size == 3) { 10484 unallocated_encoding(s); 10485 return; 10486 } 10487 if (!fp_access_check(s)) { 10488 return; 10489 } 10490 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10491 return; 10492 case 0xc ... 0xf: 10493 case 0x16 ... 0x1d: 10494 case 0x1f: 10495 /* Floating point: U, size[1] and opcode indicate operation; 10496 * size[0] indicates single or double precision. 10497 */ 10498 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10499 size = extract32(size, 0, 1) ? 3 : 2; 10500 switch (opcode) { 10501 case 0x2c: /* FCMGT (zero) */ 10502 case 0x2d: /* FCMEQ (zero) */ 10503 case 0x2e: /* FCMLT (zero) */ 10504 case 0x6c: /* FCMGE (zero) */ 10505 case 0x6d: /* FCMLE (zero) */ 10506 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10507 return; 10508 case 0x1d: /* SCVTF */ 10509 case 0x5d: /* UCVTF */ 10510 { 10511 bool is_signed = (opcode == 0x1d); 10512 if (!fp_access_check(s)) { 10513 return; 10514 } 10515 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10516 return; 10517 } 10518 case 0x3d: /* FRECPE */ 10519 case 0x3f: /* FRECPX */ 10520 case 0x7d: /* FRSQRTE */ 10521 if (!fp_access_check(s)) { 10522 return; 10523 } 10524 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10525 return; 10526 case 0x1a: /* FCVTNS */ 10527 case 0x1b: /* FCVTMS */ 10528 case 0x3a: /* FCVTPS */ 10529 case 0x3b: /* FCVTZS */ 10530 case 0x5a: /* FCVTNU */ 10531 case 0x5b: /* FCVTMU */ 10532 case 0x7a: /* FCVTPU */ 10533 case 0x7b: /* FCVTZU */ 10534 is_fcvt = true; 10535 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10536 break; 10537 case 0x1c: /* FCVTAS */ 10538 case 0x5c: /* FCVTAU */ 10539 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10540 is_fcvt = true; 10541 rmode = FPROUNDING_TIEAWAY; 10542 break; 10543 case 0x56: /* FCVTXN, FCVTXN2 */ 10544 if (size == 2) { 10545 unallocated_encoding(s); 10546 return; 10547 } 10548 if (!fp_access_check(s)) { 10549 return; 10550 } 10551 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10552 return; 10553 default: 10554 unallocated_encoding(s); 10555 return; 10556 } 10557 break; 10558 default: 10559 case 0x3: /* USQADD / SUQADD */ 10560 unallocated_encoding(s); 10561 return; 10562 } 10563 10564 if (!fp_access_check(s)) { 10565 return; 10566 } 10567 10568 if (is_fcvt) { 10569 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10570 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10571 } else { 10572 tcg_fpstatus = NULL; 10573 tcg_rmode = NULL; 10574 } 10575 10576 if (size == 3) { 10577 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10578 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10579 10580 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10581 write_fp_dreg(s, rd, tcg_rd); 10582 } else { 10583 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10584 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10585 10586 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10587 10588 switch (opcode) { 10589 case 0x7: /* SQABS, SQNEG */ 10590 { 10591 NeonGenOneOpEnvFn *genfn; 10592 static NeonGenOneOpEnvFn * const fns[3][2] = { 10593 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10594 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10595 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10596 }; 10597 genfn = fns[size][u]; 10598 genfn(tcg_rd, tcg_env, tcg_rn); 10599 break; 10600 } 10601 case 0x1a: /* FCVTNS */ 10602 case 0x1b: /* FCVTMS */ 10603 case 0x1c: /* FCVTAS */ 10604 case 0x3a: /* FCVTPS */ 10605 case 0x3b: /* FCVTZS */ 10606 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10607 tcg_fpstatus); 10608 break; 10609 case 0x5a: /* FCVTNU */ 10610 case 0x5b: /* FCVTMU */ 10611 case 0x5c: /* FCVTAU */ 10612 case 0x7a: /* FCVTPU */ 10613 case 0x7b: /* FCVTZU */ 10614 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10615 tcg_fpstatus); 10616 break; 10617 default: 10618 g_assert_not_reached(); 10619 } 10620 10621 write_fp_sreg(s, rd, tcg_rd); 10622 } 10623 10624 if (is_fcvt) { 10625 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10626 } 10627 } 10628 10629 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10630 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10631 int immh, int immb, int opcode, int rn, int rd) 10632 { 10633 int size = 32 - clz32(immh) - 1; 10634 int immhb = immh << 3 | immb; 10635 int shift = 2 * (8 << size) - immhb; 10636 GVecGen2iFn *gvec_fn; 10637 10638 if (extract32(immh, 3, 1) && !is_q) { 10639 unallocated_encoding(s); 10640 return; 10641 } 10642 tcg_debug_assert(size <= 3); 10643 10644 if (!fp_access_check(s)) { 10645 return; 10646 } 10647 10648 switch (opcode) { 10649 case 0x02: /* SSRA / USRA (accumulate) */ 10650 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10651 break; 10652 10653 case 0x08: /* SRI */ 10654 gvec_fn = gen_gvec_sri; 10655 break; 10656 10657 case 0x00: /* SSHR / USHR */ 10658 if (is_u) { 10659 if (shift == 8 << size) { 10660 /* Shift count the same size as element size produces zero. */ 10661 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10662 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10663 return; 10664 } 10665 gvec_fn = tcg_gen_gvec_shri; 10666 } else { 10667 /* Shift count the same size as element size produces all sign. */ 10668 if (shift == 8 << size) { 10669 shift -= 1; 10670 } 10671 gvec_fn = tcg_gen_gvec_sari; 10672 } 10673 break; 10674 10675 case 0x04: /* SRSHR / URSHR (rounding) */ 10676 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10677 break; 10678 10679 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10680 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10681 break; 10682 10683 default: 10684 g_assert_not_reached(); 10685 } 10686 10687 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10688 } 10689 10690 /* SHL/SLI - Vector shift left */ 10691 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10692 int immh, int immb, int opcode, int rn, int rd) 10693 { 10694 int size = 32 - clz32(immh) - 1; 10695 int immhb = immh << 3 | immb; 10696 int shift = immhb - (8 << size); 10697 10698 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10699 assert(size >= 0 && size <= 3); 10700 10701 if (extract32(immh, 3, 1) && !is_q) { 10702 unallocated_encoding(s); 10703 return; 10704 } 10705 10706 if (!fp_access_check(s)) { 10707 return; 10708 } 10709 10710 if (insert) { 10711 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10712 } else { 10713 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10714 } 10715 } 10716 10717 /* USHLL/SHLL - Vector shift left with widening */ 10718 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10719 int immh, int immb, int opcode, int rn, int rd) 10720 { 10721 int size = 32 - clz32(immh) - 1; 10722 int immhb = immh << 3 | immb; 10723 int shift = immhb - (8 << size); 10724 int dsize = 64; 10725 int esize = 8 << size; 10726 int elements = dsize/esize; 10727 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10728 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10729 int i; 10730 10731 if (size >= 3) { 10732 unallocated_encoding(s); 10733 return; 10734 } 10735 10736 if (!fp_access_check(s)) { 10737 return; 10738 } 10739 10740 /* For the LL variants the store is larger than the load, 10741 * so if rd == rn we would overwrite parts of our input. 10742 * So load everything right now and use shifts in the main loop. 10743 */ 10744 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10745 10746 for (i = 0; i < elements; i++) { 10747 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10748 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10749 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10750 write_vec_element(s, tcg_rd, rd, i, size + 1); 10751 } 10752 } 10753 10754 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10755 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10756 int immh, int immb, int opcode, int rn, int rd) 10757 { 10758 int immhb = immh << 3 | immb; 10759 int size = 32 - clz32(immh) - 1; 10760 int dsize = 64; 10761 int esize = 8 << size; 10762 int elements = dsize/esize; 10763 int shift = (2 * esize) - immhb; 10764 bool round = extract32(opcode, 0, 1); 10765 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10766 TCGv_i64 tcg_round; 10767 int i; 10768 10769 if (extract32(immh, 3, 1)) { 10770 unallocated_encoding(s); 10771 return; 10772 } 10773 10774 if (!fp_access_check(s)) { 10775 return; 10776 } 10777 10778 tcg_rn = tcg_temp_new_i64(); 10779 tcg_rd = tcg_temp_new_i64(); 10780 tcg_final = tcg_temp_new_i64(); 10781 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10782 10783 if (round) { 10784 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10785 } else { 10786 tcg_round = NULL; 10787 } 10788 10789 for (i = 0; i < elements; i++) { 10790 read_vec_element(s, tcg_rn, rn, i, size+1); 10791 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10792 false, true, size+1, shift); 10793 10794 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10795 } 10796 10797 if (!is_q) { 10798 write_vec_element(s, tcg_final, rd, 0, MO_64); 10799 } else { 10800 write_vec_element(s, tcg_final, rd, 1, MO_64); 10801 } 10802 10803 clear_vec_high(s, is_q, rd); 10804 } 10805 10806 10807 /* AdvSIMD shift by immediate 10808 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10809 * +---+---+---+-------------+------+------+--------+---+------+------+ 10810 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10811 * +---+---+---+-------------+------+------+--------+---+------+------+ 10812 */ 10813 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10814 { 10815 int rd = extract32(insn, 0, 5); 10816 int rn = extract32(insn, 5, 5); 10817 int opcode = extract32(insn, 11, 5); 10818 int immb = extract32(insn, 16, 3); 10819 int immh = extract32(insn, 19, 4); 10820 bool is_u = extract32(insn, 29, 1); 10821 bool is_q = extract32(insn, 30, 1); 10822 10823 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10824 assert(immh != 0); 10825 10826 switch (opcode) { 10827 case 0x08: /* SRI */ 10828 if (!is_u) { 10829 unallocated_encoding(s); 10830 return; 10831 } 10832 /* fall through */ 10833 case 0x00: /* SSHR / USHR */ 10834 case 0x02: /* SSRA / USRA (accumulate) */ 10835 case 0x04: /* SRSHR / URSHR (rounding) */ 10836 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10837 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10838 break; 10839 case 0x0a: /* SHL / SLI */ 10840 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10841 break; 10842 case 0x10: /* SHRN */ 10843 case 0x11: /* RSHRN / SQRSHRUN */ 10844 if (is_u) { 10845 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10846 opcode, rn, rd); 10847 } else { 10848 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10849 } 10850 break; 10851 case 0x12: /* SQSHRN / UQSHRN */ 10852 case 0x13: /* SQRSHRN / UQRSHRN */ 10853 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10854 opcode, rn, rd); 10855 break; 10856 case 0x14: /* SSHLL / USHLL */ 10857 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10858 break; 10859 case 0x1c: /* SCVTF / UCVTF */ 10860 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10861 opcode, rn, rd); 10862 break; 10863 case 0xc: /* SQSHLU */ 10864 if (!is_u) { 10865 unallocated_encoding(s); 10866 return; 10867 } 10868 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10869 break; 10870 case 0xe: /* SQSHL, UQSHL */ 10871 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10872 break; 10873 case 0x1f: /* FCVTZS/ FCVTZU */ 10874 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10875 return; 10876 default: 10877 unallocated_encoding(s); 10878 return; 10879 } 10880 } 10881 10882 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 10883 int size, int rn, int rd) 10884 { 10885 /* Handle 2-reg-misc ops which are widening (so each size element 10886 * in the source becomes a 2*size element in the destination. 10887 * The only instruction like this is FCVTL. 10888 */ 10889 int pass; 10890 10891 if (size == 3) { 10892 /* 32 -> 64 bit fp conversion */ 10893 TCGv_i64 tcg_res[2]; 10894 int srcelt = is_q ? 2 : 0; 10895 10896 for (pass = 0; pass < 2; pass++) { 10897 TCGv_i32 tcg_op = tcg_temp_new_i32(); 10898 tcg_res[pass] = tcg_temp_new_i64(); 10899 10900 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 10901 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 10902 } 10903 for (pass = 0; pass < 2; pass++) { 10904 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10905 } 10906 } else { 10907 /* 16 -> 32 bit fp conversion */ 10908 int srcelt = is_q ? 4 : 0; 10909 TCGv_i32 tcg_res[4]; 10910 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10911 TCGv_i32 ahp = get_ahp_flag(); 10912 10913 for (pass = 0; pass < 4; pass++) { 10914 tcg_res[pass] = tcg_temp_new_i32(); 10915 10916 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 10917 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 10918 fpst, ahp); 10919 } 10920 for (pass = 0; pass < 4; pass++) { 10921 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10922 } 10923 } 10924 } 10925 10926 static void handle_rev(DisasContext *s, int opcode, bool u, 10927 bool is_q, int size, int rn, int rd) 10928 { 10929 int op = (opcode << 1) | u; 10930 int opsz = op + size; 10931 int grp_size = 3 - opsz; 10932 int dsize = is_q ? 128 : 64; 10933 int i; 10934 10935 if (opsz >= 3) { 10936 unallocated_encoding(s); 10937 return; 10938 } 10939 10940 if (!fp_access_check(s)) { 10941 return; 10942 } 10943 10944 if (size == 0) { 10945 /* Special case bytes, use bswap op on each group of elements */ 10946 int groups = dsize / (8 << grp_size); 10947 10948 for (i = 0; i < groups; i++) { 10949 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 10950 10951 read_vec_element(s, tcg_tmp, rn, i, grp_size); 10952 switch (grp_size) { 10953 case MO_16: 10954 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 10955 break; 10956 case MO_32: 10957 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 10958 break; 10959 case MO_64: 10960 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 10961 break; 10962 default: 10963 g_assert_not_reached(); 10964 } 10965 write_vec_element(s, tcg_tmp, rd, i, grp_size); 10966 } 10967 clear_vec_high(s, is_q, rd); 10968 } else { 10969 int revmask = (1 << grp_size) - 1; 10970 int esize = 8 << size; 10971 int elements = dsize / esize; 10972 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10973 TCGv_i64 tcg_rd[2]; 10974 10975 for (i = 0; i < 2; i++) { 10976 tcg_rd[i] = tcg_temp_new_i64(); 10977 tcg_gen_movi_i64(tcg_rd[i], 0); 10978 } 10979 10980 for (i = 0; i < elements; i++) { 10981 int e_rev = (i & 0xf) ^ revmask; 10982 int w = (e_rev * esize) / 64; 10983 int o = (e_rev * esize) % 64; 10984 10985 read_vec_element(s, tcg_rn, rn, i, size); 10986 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 10987 } 10988 10989 for (i = 0; i < 2; i++) { 10990 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 10991 } 10992 clear_vec_high(s, true, rd); 10993 } 10994 } 10995 10996 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 10997 bool is_q, int size, int rn, int rd) 10998 { 10999 /* Implement the pairwise operations from 2-misc: 11000 * SADDLP, UADDLP, SADALP, UADALP. 11001 * These all add pairs of elements in the input to produce a 11002 * double-width result element in the output (possibly accumulating). 11003 */ 11004 bool accum = (opcode == 0x6); 11005 int maxpass = is_q ? 2 : 1; 11006 int pass; 11007 TCGv_i64 tcg_res[2]; 11008 11009 if (size == 2) { 11010 /* 32 + 32 -> 64 op */ 11011 MemOp memop = size + (u ? 0 : MO_SIGN); 11012 11013 for (pass = 0; pass < maxpass; pass++) { 11014 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11015 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11016 11017 tcg_res[pass] = tcg_temp_new_i64(); 11018 11019 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11020 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11021 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11022 if (accum) { 11023 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11024 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11025 } 11026 } 11027 } else { 11028 for (pass = 0; pass < maxpass; pass++) { 11029 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11030 NeonGenOne64OpFn *genfn; 11031 static NeonGenOne64OpFn * const fns[2][2] = { 11032 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11033 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11034 }; 11035 11036 genfn = fns[size][u]; 11037 11038 tcg_res[pass] = tcg_temp_new_i64(); 11039 11040 read_vec_element(s, tcg_op, rn, pass, MO_64); 11041 genfn(tcg_res[pass], tcg_op); 11042 11043 if (accum) { 11044 read_vec_element(s, tcg_op, rd, pass, MO_64); 11045 if (size == 0) { 11046 gen_helper_neon_addl_u16(tcg_res[pass], 11047 tcg_res[pass], tcg_op); 11048 } else { 11049 gen_helper_neon_addl_u32(tcg_res[pass], 11050 tcg_res[pass], tcg_op); 11051 } 11052 } 11053 } 11054 } 11055 if (!is_q) { 11056 tcg_res[1] = tcg_constant_i64(0); 11057 } 11058 for (pass = 0; pass < 2; pass++) { 11059 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11060 } 11061 } 11062 11063 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11064 { 11065 /* Implement SHLL and SHLL2 */ 11066 int pass; 11067 int part = is_q ? 2 : 0; 11068 TCGv_i64 tcg_res[2]; 11069 11070 for (pass = 0; pass < 2; pass++) { 11071 static NeonGenWidenFn * const widenfns[3] = { 11072 gen_helper_neon_widen_u8, 11073 gen_helper_neon_widen_u16, 11074 tcg_gen_extu_i32_i64, 11075 }; 11076 NeonGenWidenFn *widenfn = widenfns[size]; 11077 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11078 11079 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11080 tcg_res[pass] = tcg_temp_new_i64(); 11081 widenfn(tcg_res[pass], tcg_op); 11082 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11083 } 11084 11085 for (pass = 0; pass < 2; pass++) { 11086 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11087 } 11088 } 11089 11090 /* AdvSIMD two reg misc 11091 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11092 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11093 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11094 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11095 */ 11096 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11097 { 11098 int size = extract32(insn, 22, 2); 11099 int opcode = extract32(insn, 12, 5); 11100 bool u = extract32(insn, 29, 1); 11101 bool is_q = extract32(insn, 30, 1); 11102 int rn = extract32(insn, 5, 5); 11103 int rd = extract32(insn, 0, 5); 11104 bool need_fpstatus = false; 11105 int rmode = -1; 11106 TCGv_i32 tcg_rmode; 11107 TCGv_ptr tcg_fpstatus; 11108 11109 switch (opcode) { 11110 case 0x0: /* REV64, REV32 */ 11111 case 0x1: /* REV16 */ 11112 handle_rev(s, opcode, u, is_q, size, rn, rd); 11113 return; 11114 case 0x5: /* CNT, NOT, RBIT */ 11115 if (u && size == 0) { 11116 /* NOT */ 11117 break; 11118 } else if (u && size == 1) { 11119 /* RBIT */ 11120 break; 11121 } else if (!u && size == 0) { 11122 /* CNT */ 11123 break; 11124 } 11125 unallocated_encoding(s); 11126 return; 11127 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11128 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11129 if (size == 3) { 11130 unallocated_encoding(s); 11131 return; 11132 } 11133 if (!fp_access_check(s)) { 11134 return; 11135 } 11136 11137 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11138 return; 11139 case 0x4: /* CLS, CLZ */ 11140 if (size == 3) { 11141 unallocated_encoding(s); 11142 return; 11143 } 11144 break; 11145 case 0x2: /* SADDLP, UADDLP */ 11146 case 0x6: /* SADALP, UADALP */ 11147 if (size == 3) { 11148 unallocated_encoding(s); 11149 return; 11150 } 11151 if (!fp_access_check(s)) { 11152 return; 11153 } 11154 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11155 return; 11156 case 0x13: /* SHLL, SHLL2 */ 11157 if (u == 0 || size == 3) { 11158 unallocated_encoding(s); 11159 return; 11160 } 11161 if (!fp_access_check(s)) { 11162 return; 11163 } 11164 handle_shll(s, is_q, size, rn, rd); 11165 return; 11166 case 0xa: /* CMLT */ 11167 if (u == 1) { 11168 unallocated_encoding(s); 11169 return; 11170 } 11171 /* fall through */ 11172 case 0x8: /* CMGT, CMGE */ 11173 case 0x9: /* CMEQ, CMLE */ 11174 case 0xb: /* ABS, NEG */ 11175 if (size == 3 && !is_q) { 11176 unallocated_encoding(s); 11177 return; 11178 } 11179 break; 11180 case 0x7: /* SQABS, SQNEG */ 11181 if (size == 3 && !is_q) { 11182 unallocated_encoding(s); 11183 return; 11184 } 11185 break; 11186 case 0xc ... 0xf: 11187 case 0x16 ... 0x1f: 11188 { 11189 /* Floating point: U, size[1] and opcode indicate operation; 11190 * size[0] indicates single or double precision. 11191 */ 11192 int is_double = extract32(size, 0, 1); 11193 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11194 size = is_double ? 3 : 2; 11195 switch (opcode) { 11196 case 0x2f: /* FABS */ 11197 case 0x6f: /* FNEG */ 11198 if (size == 3 && !is_q) { 11199 unallocated_encoding(s); 11200 return; 11201 } 11202 break; 11203 case 0x1d: /* SCVTF */ 11204 case 0x5d: /* UCVTF */ 11205 { 11206 bool is_signed = (opcode == 0x1d) ? true : false; 11207 int elements = is_double ? 2 : is_q ? 4 : 2; 11208 if (is_double && !is_q) { 11209 unallocated_encoding(s); 11210 return; 11211 } 11212 if (!fp_access_check(s)) { 11213 return; 11214 } 11215 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11216 return; 11217 } 11218 case 0x2c: /* FCMGT (zero) */ 11219 case 0x2d: /* FCMEQ (zero) */ 11220 case 0x2e: /* FCMLT (zero) */ 11221 case 0x6c: /* FCMGE (zero) */ 11222 case 0x6d: /* FCMLE (zero) */ 11223 if (size == 3 && !is_q) { 11224 unallocated_encoding(s); 11225 return; 11226 } 11227 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11228 return; 11229 case 0x7f: /* FSQRT */ 11230 if (size == 3 && !is_q) { 11231 unallocated_encoding(s); 11232 return; 11233 } 11234 break; 11235 case 0x1a: /* FCVTNS */ 11236 case 0x1b: /* FCVTMS */ 11237 case 0x3a: /* FCVTPS */ 11238 case 0x3b: /* FCVTZS */ 11239 case 0x5a: /* FCVTNU */ 11240 case 0x5b: /* FCVTMU */ 11241 case 0x7a: /* FCVTPU */ 11242 case 0x7b: /* FCVTZU */ 11243 need_fpstatus = true; 11244 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11245 if (size == 3 && !is_q) { 11246 unallocated_encoding(s); 11247 return; 11248 } 11249 break; 11250 case 0x5c: /* FCVTAU */ 11251 case 0x1c: /* FCVTAS */ 11252 need_fpstatus = true; 11253 rmode = FPROUNDING_TIEAWAY; 11254 if (size == 3 && !is_q) { 11255 unallocated_encoding(s); 11256 return; 11257 } 11258 break; 11259 case 0x3c: /* URECPE */ 11260 if (size == 3) { 11261 unallocated_encoding(s); 11262 return; 11263 } 11264 /* fall through */ 11265 case 0x3d: /* FRECPE */ 11266 case 0x7d: /* FRSQRTE */ 11267 if (size == 3 && !is_q) { 11268 unallocated_encoding(s); 11269 return; 11270 } 11271 if (!fp_access_check(s)) { 11272 return; 11273 } 11274 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11275 return; 11276 case 0x56: /* FCVTXN, FCVTXN2 */ 11277 if (size == 2) { 11278 unallocated_encoding(s); 11279 return; 11280 } 11281 /* fall through */ 11282 case 0x16: /* FCVTN, FCVTN2 */ 11283 /* handle_2misc_narrow does a 2*size -> size operation, but these 11284 * instructions encode the source size rather than dest size. 11285 */ 11286 if (!fp_access_check(s)) { 11287 return; 11288 } 11289 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11290 return; 11291 case 0x36: /* BFCVTN, BFCVTN2 */ 11292 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11293 unallocated_encoding(s); 11294 return; 11295 } 11296 if (!fp_access_check(s)) { 11297 return; 11298 } 11299 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11300 return; 11301 case 0x17: /* FCVTL, FCVTL2 */ 11302 if (!fp_access_check(s)) { 11303 return; 11304 } 11305 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11306 return; 11307 case 0x18: /* FRINTN */ 11308 case 0x19: /* FRINTM */ 11309 case 0x38: /* FRINTP */ 11310 case 0x39: /* FRINTZ */ 11311 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11312 /* fall through */ 11313 case 0x59: /* FRINTX */ 11314 case 0x79: /* FRINTI */ 11315 need_fpstatus = true; 11316 if (size == 3 && !is_q) { 11317 unallocated_encoding(s); 11318 return; 11319 } 11320 break; 11321 case 0x58: /* FRINTA */ 11322 rmode = FPROUNDING_TIEAWAY; 11323 need_fpstatus = true; 11324 if (size == 3 && !is_q) { 11325 unallocated_encoding(s); 11326 return; 11327 } 11328 break; 11329 case 0x7c: /* URSQRTE */ 11330 if (size == 3) { 11331 unallocated_encoding(s); 11332 return; 11333 } 11334 break; 11335 case 0x1e: /* FRINT32Z */ 11336 case 0x1f: /* FRINT64Z */ 11337 rmode = FPROUNDING_ZERO; 11338 /* fall through */ 11339 case 0x5e: /* FRINT32X */ 11340 case 0x5f: /* FRINT64X */ 11341 need_fpstatus = true; 11342 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 11343 unallocated_encoding(s); 11344 return; 11345 } 11346 break; 11347 default: 11348 unallocated_encoding(s); 11349 return; 11350 } 11351 break; 11352 } 11353 default: 11354 case 0x3: /* SUQADD, USQADD */ 11355 unallocated_encoding(s); 11356 return; 11357 } 11358 11359 if (!fp_access_check(s)) { 11360 return; 11361 } 11362 11363 if (need_fpstatus || rmode >= 0) { 11364 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 11365 } else { 11366 tcg_fpstatus = NULL; 11367 } 11368 if (rmode >= 0) { 11369 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11370 } else { 11371 tcg_rmode = NULL; 11372 } 11373 11374 switch (opcode) { 11375 case 0x5: 11376 if (u && size == 0) { /* NOT */ 11377 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 11378 return; 11379 } 11380 break; 11381 case 0x8: /* CMGT, CMGE */ 11382 if (u) { 11383 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 11384 } else { 11385 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 11386 } 11387 return; 11388 case 0x9: /* CMEQ, CMLE */ 11389 if (u) { 11390 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 11391 } else { 11392 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 11393 } 11394 return; 11395 case 0xa: /* CMLT */ 11396 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 11397 return; 11398 case 0xb: 11399 if (u) { /* ABS, NEG */ 11400 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 11401 } else { 11402 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 11403 } 11404 return; 11405 } 11406 11407 if (size == 3) { 11408 /* All 64-bit element operations can be shared with scalar 2misc */ 11409 int pass; 11410 11411 /* Coverity claims (size == 3 && !is_q) has been eliminated 11412 * from all paths leading to here. 11413 */ 11414 tcg_debug_assert(is_q); 11415 for (pass = 0; pass < 2; pass++) { 11416 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11417 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11418 11419 read_vec_element(s, tcg_op, rn, pass, MO_64); 11420 11421 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 11422 tcg_rmode, tcg_fpstatus); 11423 11424 write_vec_element(s, tcg_res, rd, pass, MO_64); 11425 } 11426 } else { 11427 int pass; 11428 11429 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11430 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11431 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11432 11433 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 11434 11435 if (size == 2) { 11436 /* Special cases for 32 bit elements */ 11437 switch (opcode) { 11438 case 0x4: /* CLS */ 11439 if (u) { 11440 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 11441 } else { 11442 tcg_gen_clrsb_i32(tcg_res, tcg_op); 11443 } 11444 break; 11445 case 0x7: /* SQABS, SQNEG */ 11446 if (u) { 11447 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 11448 } else { 11449 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 11450 } 11451 break; 11452 case 0x2f: /* FABS */ 11453 gen_vfp_abss(tcg_res, tcg_op); 11454 break; 11455 case 0x6f: /* FNEG */ 11456 gen_vfp_negs(tcg_res, tcg_op); 11457 break; 11458 case 0x7f: /* FSQRT */ 11459 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 11460 break; 11461 case 0x1a: /* FCVTNS */ 11462 case 0x1b: /* FCVTMS */ 11463 case 0x1c: /* FCVTAS */ 11464 case 0x3a: /* FCVTPS */ 11465 case 0x3b: /* FCVTZS */ 11466 gen_helper_vfp_tosls(tcg_res, tcg_op, 11467 tcg_constant_i32(0), tcg_fpstatus); 11468 break; 11469 case 0x5a: /* FCVTNU */ 11470 case 0x5b: /* FCVTMU */ 11471 case 0x5c: /* FCVTAU */ 11472 case 0x7a: /* FCVTPU */ 11473 case 0x7b: /* FCVTZU */ 11474 gen_helper_vfp_touls(tcg_res, tcg_op, 11475 tcg_constant_i32(0), tcg_fpstatus); 11476 break; 11477 case 0x18: /* FRINTN */ 11478 case 0x19: /* FRINTM */ 11479 case 0x38: /* FRINTP */ 11480 case 0x39: /* FRINTZ */ 11481 case 0x58: /* FRINTA */ 11482 case 0x79: /* FRINTI */ 11483 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 11484 break; 11485 case 0x59: /* FRINTX */ 11486 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 11487 break; 11488 case 0x7c: /* URSQRTE */ 11489 gen_helper_rsqrte_u32(tcg_res, tcg_op); 11490 break; 11491 case 0x1e: /* FRINT32Z */ 11492 case 0x5e: /* FRINT32X */ 11493 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 11494 break; 11495 case 0x1f: /* FRINT64Z */ 11496 case 0x5f: /* FRINT64X */ 11497 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 11498 break; 11499 default: 11500 g_assert_not_reached(); 11501 } 11502 } else { 11503 /* Use helpers for 8 and 16 bit elements */ 11504 switch (opcode) { 11505 case 0x5: /* CNT, RBIT */ 11506 /* For these two insns size is part of the opcode specifier 11507 * (handled earlier); they always operate on byte elements. 11508 */ 11509 if (u) { 11510 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 11511 } else { 11512 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 11513 } 11514 break; 11515 case 0x7: /* SQABS, SQNEG */ 11516 { 11517 NeonGenOneOpEnvFn *genfn; 11518 static NeonGenOneOpEnvFn * const fns[2][2] = { 11519 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 11520 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 11521 }; 11522 genfn = fns[size][u]; 11523 genfn(tcg_res, tcg_env, tcg_op); 11524 break; 11525 } 11526 case 0x4: /* CLS, CLZ */ 11527 if (u) { 11528 if (size == 0) { 11529 gen_helper_neon_clz_u8(tcg_res, tcg_op); 11530 } else { 11531 gen_helper_neon_clz_u16(tcg_res, tcg_op); 11532 } 11533 } else { 11534 if (size == 0) { 11535 gen_helper_neon_cls_s8(tcg_res, tcg_op); 11536 } else { 11537 gen_helper_neon_cls_s16(tcg_res, tcg_op); 11538 } 11539 } 11540 break; 11541 default: 11542 g_assert_not_reached(); 11543 } 11544 } 11545 11546 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11547 } 11548 } 11549 clear_vec_high(s, is_q, rd); 11550 11551 if (tcg_rmode) { 11552 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 11553 } 11554 } 11555 11556 /* AdvSIMD [scalar] two register miscellaneous (FP16) 11557 * 11558 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 11559 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11560 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 11561 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11562 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 11563 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 11564 * 11565 * This actually covers two groups where scalar access is governed by 11566 * bit 28. A bunch of the instructions (float to integral) only exist 11567 * in the vector form and are un-allocated for the scalar decode. Also 11568 * in the scalar decode Q is always 1. 11569 */ 11570 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 11571 { 11572 int fpop, opcode, a, u; 11573 int rn, rd; 11574 bool is_q; 11575 bool is_scalar; 11576 bool only_in_vector = false; 11577 11578 int pass; 11579 TCGv_i32 tcg_rmode = NULL; 11580 TCGv_ptr tcg_fpstatus = NULL; 11581 bool need_fpst = true; 11582 int rmode = -1; 11583 11584 if (!dc_isar_feature(aa64_fp16, s)) { 11585 unallocated_encoding(s); 11586 return; 11587 } 11588 11589 rd = extract32(insn, 0, 5); 11590 rn = extract32(insn, 5, 5); 11591 11592 a = extract32(insn, 23, 1); 11593 u = extract32(insn, 29, 1); 11594 is_scalar = extract32(insn, 28, 1); 11595 is_q = extract32(insn, 30, 1); 11596 11597 opcode = extract32(insn, 12, 5); 11598 fpop = deposit32(opcode, 5, 1, a); 11599 fpop = deposit32(fpop, 6, 1, u); 11600 11601 switch (fpop) { 11602 case 0x1d: /* SCVTF */ 11603 case 0x5d: /* UCVTF */ 11604 { 11605 int elements; 11606 11607 if (is_scalar) { 11608 elements = 1; 11609 } else { 11610 elements = (is_q ? 8 : 4); 11611 } 11612 11613 if (!fp_access_check(s)) { 11614 return; 11615 } 11616 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 11617 return; 11618 } 11619 break; 11620 case 0x2c: /* FCMGT (zero) */ 11621 case 0x2d: /* FCMEQ (zero) */ 11622 case 0x2e: /* FCMLT (zero) */ 11623 case 0x6c: /* FCMGE (zero) */ 11624 case 0x6d: /* FCMLE (zero) */ 11625 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 11626 return; 11627 case 0x3d: /* FRECPE */ 11628 case 0x3f: /* FRECPX */ 11629 break; 11630 case 0x18: /* FRINTN */ 11631 only_in_vector = true; 11632 rmode = FPROUNDING_TIEEVEN; 11633 break; 11634 case 0x19: /* FRINTM */ 11635 only_in_vector = true; 11636 rmode = FPROUNDING_NEGINF; 11637 break; 11638 case 0x38: /* FRINTP */ 11639 only_in_vector = true; 11640 rmode = FPROUNDING_POSINF; 11641 break; 11642 case 0x39: /* FRINTZ */ 11643 only_in_vector = true; 11644 rmode = FPROUNDING_ZERO; 11645 break; 11646 case 0x58: /* FRINTA */ 11647 only_in_vector = true; 11648 rmode = FPROUNDING_TIEAWAY; 11649 break; 11650 case 0x59: /* FRINTX */ 11651 case 0x79: /* FRINTI */ 11652 only_in_vector = true; 11653 /* current rounding mode */ 11654 break; 11655 case 0x1a: /* FCVTNS */ 11656 rmode = FPROUNDING_TIEEVEN; 11657 break; 11658 case 0x1b: /* FCVTMS */ 11659 rmode = FPROUNDING_NEGINF; 11660 break; 11661 case 0x1c: /* FCVTAS */ 11662 rmode = FPROUNDING_TIEAWAY; 11663 break; 11664 case 0x3a: /* FCVTPS */ 11665 rmode = FPROUNDING_POSINF; 11666 break; 11667 case 0x3b: /* FCVTZS */ 11668 rmode = FPROUNDING_ZERO; 11669 break; 11670 case 0x5a: /* FCVTNU */ 11671 rmode = FPROUNDING_TIEEVEN; 11672 break; 11673 case 0x5b: /* FCVTMU */ 11674 rmode = FPROUNDING_NEGINF; 11675 break; 11676 case 0x5c: /* FCVTAU */ 11677 rmode = FPROUNDING_TIEAWAY; 11678 break; 11679 case 0x7a: /* FCVTPU */ 11680 rmode = FPROUNDING_POSINF; 11681 break; 11682 case 0x7b: /* FCVTZU */ 11683 rmode = FPROUNDING_ZERO; 11684 break; 11685 case 0x2f: /* FABS */ 11686 case 0x6f: /* FNEG */ 11687 need_fpst = false; 11688 break; 11689 case 0x7d: /* FRSQRTE */ 11690 case 0x7f: /* FSQRT (vector) */ 11691 break; 11692 default: 11693 unallocated_encoding(s); 11694 return; 11695 } 11696 11697 11698 /* Check additional constraints for the scalar encoding */ 11699 if (is_scalar) { 11700 if (!is_q) { 11701 unallocated_encoding(s); 11702 return; 11703 } 11704 /* FRINTxx is only in the vector form */ 11705 if (only_in_vector) { 11706 unallocated_encoding(s); 11707 return; 11708 } 11709 } 11710 11711 if (!fp_access_check(s)) { 11712 return; 11713 } 11714 11715 if (rmode >= 0 || need_fpst) { 11716 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 11717 } 11718 11719 if (rmode >= 0) { 11720 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11721 } 11722 11723 if (is_scalar) { 11724 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 11725 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11726 11727 switch (fpop) { 11728 case 0x1a: /* FCVTNS */ 11729 case 0x1b: /* FCVTMS */ 11730 case 0x1c: /* FCVTAS */ 11731 case 0x3a: /* FCVTPS */ 11732 case 0x3b: /* FCVTZS */ 11733 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11734 break; 11735 case 0x3d: /* FRECPE */ 11736 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 11737 break; 11738 case 0x3f: /* FRECPX */ 11739 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 11740 break; 11741 case 0x5a: /* FCVTNU */ 11742 case 0x5b: /* FCVTMU */ 11743 case 0x5c: /* FCVTAU */ 11744 case 0x7a: /* FCVTPU */ 11745 case 0x7b: /* FCVTZU */ 11746 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 11747 break; 11748 case 0x6f: /* FNEG */ 11749 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 11750 break; 11751 case 0x7d: /* FRSQRTE */ 11752 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 11753 break; 11754 default: 11755 g_assert_not_reached(); 11756 } 11757 11758 /* limit any sign extension going on */ 11759 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 11760 write_fp_sreg(s, rd, tcg_res); 11761 } else { 11762 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 11763 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11764 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11765 11766 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 11767 11768 switch (fpop) { 11769 case 0x1a: /* FCVTNS */ 11770 case 0x1b: /* FCVTMS */ 11771 case 0x1c: /* FCVTAS */ 11772 case 0x3a: /* FCVTPS */ 11773 case 0x3b: /* FCVTZS */ 11774 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11775 break; 11776 case 0x3d: /* FRECPE */ 11777 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 11778 break; 11779 case 0x5a: /* FCVTNU */ 11780 case 0x5b: /* FCVTMU */ 11781 case 0x5c: /* FCVTAU */ 11782 case 0x7a: /* FCVTPU */ 11783 case 0x7b: /* FCVTZU */ 11784 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 11785 break; 11786 case 0x18: /* FRINTN */ 11787 case 0x19: /* FRINTM */ 11788 case 0x38: /* FRINTP */ 11789 case 0x39: /* FRINTZ */ 11790 case 0x58: /* FRINTA */ 11791 case 0x79: /* FRINTI */ 11792 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 11793 break; 11794 case 0x59: /* FRINTX */ 11795 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 11796 break; 11797 case 0x2f: /* FABS */ 11798 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 11799 break; 11800 case 0x6f: /* FNEG */ 11801 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 11802 break; 11803 case 0x7d: /* FRSQRTE */ 11804 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 11805 break; 11806 case 0x7f: /* FSQRT */ 11807 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 11808 break; 11809 default: 11810 g_assert_not_reached(); 11811 } 11812 11813 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11814 } 11815 11816 clear_vec_high(s, is_q, rd); 11817 } 11818 11819 if (tcg_rmode) { 11820 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 11821 } 11822 } 11823 11824 /* C3.6 Data processing - SIMD, inc Crypto 11825 * 11826 * As the decode gets a little complex we are using a table based 11827 * approach for this part of the decode. 11828 */ 11829 static const AArch64DecodeTable data_proc_simd[] = { 11830 /* pattern , mask , fn */ 11831 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 11832 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 11833 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 11834 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 11835 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 11836 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 11837 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 11838 { 0x2e000000, 0xbf208400, disas_simd_ext }, 11839 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 11840 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 11841 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 11842 { 0x00000000, 0x00000000, NULL } 11843 }; 11844 11845 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 11846 { 11847 /* Note that this is called with all non-FP cases from 11848 * table C3-6 so it must UNDEF for entries not specifically 11849 * allocated to instructions in that table. 11850 */ 11851 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 11852 if (fn) { 11853 fn(s, insn); 11854 } else { 11855 unallocated_encoding(s); 11856 } 11857 } 11858 11859 /* C3.6 Data processing - SIMD and floating point */ 11860 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 11861 { 11862 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 11863 disas_data_proc_fp(s, insn); 11864 } else { 11865 /* SIMD, including crypto */ 11866 disas_data_proc_simd(s, insn); 11867 } 11868 } 11869 11870 static bool trans_OK(DisasContext *s, arg_OK *a) 11871 { 11872 return true; 11873 } 11874 11875 static bool trans_FAIL(DisasContext *s, arg_OK *a) 11876 { 11877 s->is_nonstreaming = true; 11878 return true; 11879 } 11880 11881 /** 11882 * is_guarded_page: 11883 * @env: The cpu environment 11884 * @s: The DisasContext 11885 * 11886 * Return true if the page is guarded. 11887 */ 11888 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 11889 { 11890 uint64_t addr = s->base.pc_first; 11891 #ifdef CONFIG_USER_ONLY 11892 return page_get_flags(addr) & PAGE_BTI; 11893 #else 11894 CPUTLBEntryFull *full; 11895 void *host; 11896 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 11897 int flags; 11898 11899 /* 11900 * We test this immediately after reading an insn, which means 11901 * that the TLB entry must be present and valid, and thus this 11902 * access will never raise an exception. 11903 */ 11904 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 11905 false, &host, &full, 0); 11906 assert(!(flags & TLB_INVALID_MASK)); 11907 11908 return full->extra.arm.guarded; 11909 #endif 11910 } 11911 11912 /** 11913 * btype_destination_ok: 11914 * @insn: The instruction at the branch destination 11915 * @bt: SCTLR_ELx.BT 11916 * @btype: PSTATE.BTYPE, and is non-zero 11917 * 11918 * On a guarded page, there are a limited number of insns 11919 * that may be present at the branch target: 11920 * - branch target identifiers, 11921 * - paciasp, pacibsp, 11922 * - BRK insn 11923 * - HLT insn 11924 * Anything else causes a Branch Target Exception. 11925 * 11926 * Return true if the branch is compatible, false to raise BTITRAP. 11927 */ 11928 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 11929 { 11930 if ((insn & 0xfffff01fu) == 0xd503201fu) { 11931 /* HINT space */ 11932 switch (extract32(insn, 5, 7)) { 11933 case 0b011001: /* PACIASP */ 11934 case 0b011011: /* PACIBSP */ 11935 /* 11936 * If SCTLR_ELx.BT, then PACI*SP are not compatible 11937 * with btype == 3. Otherwise all btype are ok. 11938 */ 11939 return !bt || btype != 3; 11940 case 0b100000: /* BTI */ 11941 /* Not compatible with any btype. */ 11942 return false; 11943 case 0b100010: /* BTI c */ 11944 /* Not compatible with btype == 3 */ 11945 return btype != 3; 11946 case 0b100100: /* BTI j */ 11947 /* Not compatible with btype == 2 */ 11948 return btype != 2; 11949 case 0b100110: /* BTI jc */ 11950 /* Compatible with any btype. */ 11951 return true; 11952 } 11953 } else { 11954 switch (insn & 0xffe0001fu) { 11955 case 0xd4200000u: /* BRK */ 11956 case 0xd4400000u: /* HLT */ 11957 /* Give priority to the breakpoint exception. */ 11958 return true; 11959 } 11960 } 11961 return false; 11962 } 11963 11964 /* C3.1 A64 instruction index by encoding */ 11965 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 11966 { 11967 switch (extract32(insn, 25, 4)) { 11968 case 0x5: 11969 case 0xd: /* Data processing - register */ 11970 disas_data_proc_reg(s, insn); 11971 break; 11972 case 0x7: 11973 case 0xf: /* Data processing - SIMD and floating point */ 11974 disas_data_proc_simd_fp(s, insn); 11975 break; 11976 default: 11977 unallocated_encoding(s); 11978 break; 11979 } 11980 } 11981 11982 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 11983 CPUState *cpu) 11984 { 11985 DisasContext *dc = container_of(dcbase, DisasContext, base); 11986 CPUARMState *env = cpu_env(cpu); 11987 ARMCPU *arm_cpu = env_archcpu(env); 11988 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 11989 int bound, core_mmu_idx; 11990 11991 dc->isar = &arm_cpu->isar; 11992 dc->condjmp = 0; 11993 dc->pc_save = dc->base.pc_first; 11994 dc->aarch64 = true; 11995 dc->thumb = false; 11996 dc->sctlr_b = 0; 11997 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 11998 dc->condexec_mask = 0; 11999 dc->condexec_cond = 0; 12000 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 12001 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 12002 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 12003 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 12004 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 12005 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 12006 #if !defined(CONFIG_USER_ONLY) 12007 dc->user = (dc->current_el == 0); 12008 #endif 12009 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 12010 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 12011 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 12012 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 12013 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 12014 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 12015 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 12016 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 12017 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 12018 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 12019 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 12020 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 12021 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 12022 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 12023 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 12024 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 12025 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 12026 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 12027 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 12028 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 12029 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 12030 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 12031 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 12032 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 12033 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 12034 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 12035 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 12036 dc->vec_len = 0; 12037 dc->vec_stride = 0; 12038 dc->cp_regs = arm_cpu->cp_regs; 12039 dc->features = env->features; 12040 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 12041 dc->gm_blocksize = arm_cpu->gm_blocksize; 12042 12043 #ifdef CONFIG_USER_ONLY 12044 /* In sve_probe_page, we assume TBI is enabled. */ 12045 tcg_debug_assert(dc->tbid & 1); 12046 #endif 12047 12048 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 12049 12050 /* Single step state. The code-generation logic here is: 12051 * SS_ACTIVE == 0: 12052 * generate code with no special handling for single-stepping (except 12053 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 12054 * this happens anyway because those changes are all system register or 12055 * PSTATE writes). 12056 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 12057 * emit code for one insn 12058 * emit code to clear PSTATE.SS 12059 * emit code to generate software step exception for completed step 12060 * end TB (as usual for having generated an exception) 12061 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 12062 * emit code to generate a software step exception 12063 * end the TB 12064 */ 12065 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 12066 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 12067 dc->is_ldex = false; 12068 12069 /* Bound the number of insns to execute to those left on the page. */ 12070 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 12071 12072 /* If architectural single step active, limit to 1. */ 12073 if (dc->ss_active) { 12074 bound = 1; 12075 } 12076 dc->base.max_insns = MIN(dc->base.max_insns, bound); 12077 } 12078 12079 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 12080 { 12081 } 12082 12083 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 12084 { 12085 DisasContext *dc = container_of(dcbase, DisasContext, base); 12086 target_ulong pc_arg = dc->base.pc_next; 12087 12088 if (tb_cflags(dcbase->tb) & CF_PCREL) { 12089 pc_arg &= ~TARGET_PAGE_MASK; 12090 } 12091 tcg_gen_insn_start(pc_arg, 0, 0); 12092 dc->insn_start_updated = false; 12093 } 12094 12095 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 12096 { 12097 DisasContext *s = container_of(dcbase, DisasContext, base); 12098 CPUARMState *env = cpu_env(cpu); 12099 uint64_t pc = s->base.pc_next; 12100 uint32_t insn; 12101 12102 /* Singlestep exceptions have the highest priority. */ 12103 if (s->ss_active && !s->pstate_ss) { 12104 /* Singlestep state is Active-pending. 12105 * If we're in this state at the start of a TB then either 12106 * a) we just took an exception to an EL which is being debugged 12107 * and this is the first insn in the exception handler 12108 * b) debug exceptions were masked and we just unmasked them 12109 * without changing EL (eg by clearing PSTATE.D) 12110 * In either case we're going to take a swstep exception in the 12111 * "did not step an insn" case, and so the syndrome ISV and EX 12112 * bits should be zero. 12113 */ 12114 assert(s->base.num_insns == 1); 12115 gen_swstep_exception(s, 0, 0); 12116 s->base.is_jmp = DISAS_NORETURN; 12117 s->base.pc_next = pc + 4; 12118 return; 12119 } 12120 12121 if (pc & 3) { 12122 /* 12123 * PC alignment fault. This has priority over the instruction abort 12124 * that we would receive from a translation fault via arm_ldl_code. 12125 * This should only be possible after an indirect branch, at the 12126 * start of the TB. 12127 */ 12128 assert(s->base.num_insns == 1); 12129 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 12130 s->base.is_jmp = DISAS_NORETURN; 12131 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 12132 return; 12133 } 12134 12135 s->pc_curr = pc; 12136 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 12137 s->insn = insn; 12138 s->base.pc_next = pc + 4; 12139 12140 s->fp_access_checked = false; 12141 s->sve_access_checked = false; 12142 12143 if (s->pstate_il) { 12144 /* 12145 * Illegal execution state. This has priority over BTI 12146 * exceptions, but comes after instruction abort exceptions. 12147 */ 12148 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 12149 return; 12150 } 12151 12152 if (dc_isar_feature(aa64_bti, s)) { 12153 if (s->base.num_insns == 1) { 12154 /* 12155 * At the first insn of the TB, compute s->guarded_page. 12156 * We delayed computing this until successfully reading 12157 * the first insn of the TB, above. This (mostly) ensures 12158 * that the softmmu tlb entry has been populated, and the 12159 * page table GP bit is available. 12160 * 12161 * Note that we need to compute this even if btype == 0, 12162 * because this value is used for BR instructions later 12163 * where ENV is not available. 12164 */ 12165 s->guarded_page = is_guarded_page(env, s); 12166 12167 /* First insn can have btype set to non-zero. */ 12168 tcg_debug_assert(s->btype >= 0); 12169 12170 /* 12171 * Note that the Branch Target Exception has fairly high 12172 * priority -- below debugging exceptions but above most 12173 * everything else. This allows us to handle this now 12174 * instead of waiting until the insn is otherwise decoded. 12175 */ 12176 if (s->btype != 0 12177 && s->guarded_page 12178 && !btype_destination_ok(insn, s->bt, s->btype)) { 12179 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 12180 return; 12181 } 12182 } else { 12183 /* Not the first insn: btype must be 0. */ 12184 tcg_debug_assert(s->btype == 0); 12185 } 12186 } 12187 12188 s->is_nonstreaming = false; 12189 if (s->sme_trap_nonstreaming) { 12190 disas_sme_fa64(s, insn); 12191 } 12192 12193 if (!disas_a64(s, insn) && 12194 !disas_sme(s, insn) && 12195 !disas_sve(s, insn)) { 12196 disas_a64_legacy(s, insn); 12197 } 12198 12199 /* 12200 * After execution of most insns, btype is reset to 0. 12201 * Note that we set btype == -1 when the insn sets btype. 12202 */ 12203 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 12204 reset_btype(s); 12205 } 12206 } 12207 12208 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 12209 { 12210 DisasContext *dc = container_of(dcbase, DisasContext, base); 12211 12212 if (unlikely(dc->ss_active)) { 12213 /* Note that this means single stepping WFI doesn't halt the CPU. 12214 * For conditional branch insns this is harmless unreachable code as 12215 * gen_goto_tb() has already handled emitting the debug exception 12216 * (and thus a tb-jump is not possible when singlestepping). 12217 */ 12218 switch (dc->base.is_jmp) { 12219 default: 12220 gen_a64_update_pc(dc, 4); 12221 /* fall through */ 12222 case DISAS_EXIT: 12223 case DISAS_JUMP: 12224 gen_step_complete_exception(dc); 12225 break; 12226 case DISAS_NORETURN: 12227 break; 12228 } 12229 } else { 12230 switch (dc->base.is_jmp) { 12231 case DISAS_NEXT: 12232 case DISAS_TOO_MANY: 12233 gen_goto_tb(dc, 1, 4); 12234 break; 12235 default: 12236 case DISAS_UPDATE_EXIT: 12237 gen_a64_update_pc(dc, 4); 12238 /* fall through */ 12239 case DISAS_EXIT: 12240 tcg_gen_exit_tb(NULL, 0); 12241 break; 12242 case DISAS_UPDATE_NOCHAIN: 12243 gen_a64_update_pc(dc, 4); 12244 /* fall through */ 12245 case DISAS_JUMP: 12246 tcg_gen_lookup_and_goto_ptr(); 12247 break; 12248 case DISAS_NORETURN: 12249 case DISAS_SWI: 12250 break; 12251 case DISAS_WFE: 12252 gen_a64_update_pc(dc, 4); 12253 gen_helper_wfe(tcg_env); 12254 break; 12255 case DISAS_YIELD: 12256 gen_a64_update_pc(dc, 4); 12257 gen_helper_yield(tcg_env); 12258 break; 12259 case DISAS_WFI: 12260 /* 12261 * This is a special case because we don't want to just halt 12262 * the CPU if trying to debug across a WFI. 12263 */ 12264 gen_a64_update_pc(dc, 4); 12265 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 12266 /* 12267 * The helper doesn't necessarily throw an exception, but we 12268 * must go back to the main loop to check for interrupts anyway. 12269 */ 12270 tcg_gen_exit_tb(NULL, 0); 12271 break; 12272 } 12273 } 12274 } 12275 12276 const TranslatorOps aarch64_translator_ops = { 12277 .init_disas_context = aarch64_tr_init_disas_context, 12278 .tb_start = aarch64_tr_tb_start, 12279 .insn_start = aarch64_tr_insn_start, 12280 .translate_insn = aarch64_tr_translate_insn, 12281 .tb_stop = aarch64_tr_tb_stop, 12282 }; 12283