1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 typedef struct DisasCompare64 { 311 TCGCond cond; 312 TCGv_i64 value; 313 } DisasCompare64; 314 315 static void a64_test_cc(DisasCompare64 *c64, int cc) 316 { 317 DisasCompare c32; 318 319 arm_test_cc(&c32, cc); 320 321 /* 322 * Sign-extend the 32-bit value so that the GE/LT comparisons work 323 * properly. The NE/EQ comparisons are also fine with this choice. 324 */ 325 c64->cond = c32.cond; 326 c64->value = tcg_temp_new_i64(); 327 tcg_gen_ext_i32_i64(c64->value, c32.value); 328 } 329 330 static void gen_rebuild_hflags(DisasContext *s) 331 { 332 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 333 } 334 335 static void gen_exception_internal(int excp) 336 { 337 assert(excp_is_internal(excp)); 338 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 339 } 340 341 static void gen_exception_internal_insn(DisasContext *s, int excp) 342 { 343 gen_a64_update_pc(s, 0); 344 gen_exception_internal(excp); 345 s->base.is_jmp = DISAS_NORETURN; 346 } 347 348 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 349 { 350 gen_a64_update_pc(s, 0); 351 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 352 s->base.is_jmp = DISAS_NORETURN; 353 } 354 355 static void gen_step_complete_exception(DisasContext *s) 356 { 357 /* We just completed step of an insn. Move from Active-not-pending 358 * to Active-pending, and then also take the swstep exception. 359 * This corresponds to making the (IMPDEF) choice to prioritize 360 * swstep exceptions over asynchronous exceptions taken to an exception 361 * level where debug is disabled. This choice has the advantage that 362 * we do not need to maintain internal state corresponding to the 363 * ISV/EX syndrome bits between completion of the step and generation 364 * of the exception, and our syndrome information is always correct. 365 */ 366 gen_ss_advance(s); 367 gen_swstep_exception(s, 1, s->is_ldex); 368 s->base.is_jmp = DISAS_NORETURN; 369 } 370 371 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 372 { 373 if (s->ss_active) { 374 return false; 375 } 376 return translator_use_goto_tb(&s->base, dest); 377 } 378 379 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 380 { 381 if (use_goto_tb(s, s->pc_curr + diff)) { 382 /* 383 * For pcrel, the pc must always be up-to-date on entry to 384 * the linked TB, so that it can use simple additions for all 385 * further adjustments. For !pcrel, the linked TB is compiled 386 * to know its full virtual address, so we can delay the 387 * update to pc to the unlinked path. A long chain of links 388 * can thus avoid many updates to the PC. 389 */ 390 if (tb_cflags(s->base.tb) & CF_PCREL) { 391 gen_a64_update_pc(s, diff); 392 tcg_gen_goto_tb(n); 393 } else { 394 tcg_gen_goto_tb(n); 395 gen_a64_update_pc(s, diff); 396 } 397 tcg_gen_exit_tb(s->base.tb, n); 398 s->base.is_jmp = DISAS_NORETURN; 399 } else { 400 gen_a64_update_pc(s, diff); 401 if (s->ss_active) { 402 gen_step_complete_exception(s); 403 } else { 404 tcg_gen_lookup_and_goto_ptr(); 405 s->base.is_jmp = DISAS_NORETURN; 406 } 407 } 408 } 409 410 /* 411 * Register access functions 412 * 413 * These functions are used for directly accessing a register in where 414 * changes to the final register value are likely to be made. If you 415 * need to use a register for temporary calculation (e.g. index type 416 * operations) use the read_* form. 417 * 418 * B1.2.1 Register mappings 419 * 420 * In instruction register encoding 31 can refer to ZR (zero register) or 421 * the SP (stack pointer) depending on context. In QEMU's case we map SP 422 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 423 * This is the point of the _sp forms. 424 */ 425 TCGv_i64 cpu_reg(DisasContext *s, int reg) 426 { 427 if (reg == 31) { 428 TCGv_i64 t = tcg_temp_new_i64(); 429 tcg_gen_movi_i64(t, 0); 430 return t; 431 } else { 432 return cpu_X[reg]; 433 } 434 } 435 436 /* register access for when 31 == SP */ 437 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 438 { 439 return cpu_X[reg]; 440 } 441 442 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 443 * representing the register contents. This TCGv is an auto-freed 444 * temporary so it need not be explicitly freed, and may be modified. 445 */ 446 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 447 { 448 TCGv_i64 v = tcg_temp_new_i64(); 449 if (reg != 31) { 450 if (sf) { 451 tcg_gen_mov_i64(v, cpu_X[reg]); 452 } else { 453 tcg_gen_ext32u_i64(v, cpu_X[reg]); 454 } 455 } else { 456 tcg_gen_movi_i64(v, 0); 457 } 458 return v; 459 } 460 461 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 462 { 463 TCGv_i64 v = tcg_temp_new_i64(); 464 if (sf) { 465 tcg_gen_mov_i64(v, cpu_X[reg]); 466 } else { 467 tcg_gen_ext32u_i64(v, cpu_X[reg]); 468 } 469 return v; 470 } 471 472 /* Return the offset into CPUARMState of a slice (from 473 * the least significant end) of FP register Qn (ie 474 * Dn, Sn, Hn or Bn). 475 * (Note that this is not the same mapping as for A32; see cpu.h) 476 */ 477 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 478 { 479 return vec_reg_offset(s, regno, 0, size); 480 } 481 482 /* Offset of the high half of the 128 bit vector Qn */ 483 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 484 { 485 return vec_reg_offset(s, regno, 1, MO_64); 486 } 487 488 /* Convenience accessors for reading and writing single and double 489 * FP registers. Writing clears the upper parts of the associated 490 * 128 bit vector register, as required by the architecture. 491 * Note that unlike the GP register accessors, the values returned 492 * by the read functions must be manually freed. 493 */ 494 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 495 { 496 TCGv_i64 v = tcg_temp_new_i64(); 497 498 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 499 return v; 500 } 501 502 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 503 { 504 TCGv_i32 v = tcg_temp_new_i32(); 505 506 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 507 return v; 508 } 509 510 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 511 { 512 TCGv_i32 v = tcg_temp_new_i32(); 513 514 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 515 return v; 516 } 517 518 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 519 * If SVE is not enabled, then there are only 128 bits in the vector. 520 */ 521 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 522 { 523 unsigned ofs = fp_reg_offset(s, rd, MO_64); 524 unsigned vsz = vec_full_reg_size(s); 525 526 /* Nop move, with side effect of clearing the tail. */ 527 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 528 } 529 530 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 531 { 532 unsigned ofs = fp_reg_offset(s, reg, MO_64); 533 534 tcg_gen_st_i64(v, cpu_env, ofs); 535 clear_vec_high(s, false, reg); 536 } 537 538 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 539 { 540 TCGv_i64 tmp = tcg_temp_new_i64(); 541 542 tcg_gen_extu_i32_i64(tmp, v); 543 write_fp_dreg(s, reg, tmp); 544 } 545 546 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 547 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 548 GVecGen2Fn *gvec_fn, int vece) 549 { 550 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 551 is_q ? 16 : 8, vec_full_reg_size(s)); 552 } 553 554 /* Expand a 2-operand + immediate AdvSIMD vector operation using 555 * an expander function. 556 */ 557 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 558 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 559 { 560 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 561 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 562 } 563 564 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 565 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 566 GVecGen3Fn *gvec_fn, int vece) 567 { 568 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 569 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 570 } 571 572 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 573 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 574 int rx, GVecGen4Fn *gvec_fn, int vece) 575 { 576 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 577 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 578 is_q ? 16 : 8, vec_full_reg_size(s)); 579 } 580 581 /* Expand a 2-operand operation using an out-of-line helper. */ 582 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 583 int rn, int data, gen_helper_gvec_2 *fn) 584 { 585 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 586 vec_full_reg_offset(s, rn), 587 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 588 } 589 590 /* Expand a 3-operand operation using an out-of-line helper. */ 591 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 592 int rn, int rm, int data, gen_helper_gvec_3 *fn) 593 { 594 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 595 vec_full_reg_offset(s, rn), 596 vec_full_reg_offset(s, rm), 597 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 598 } 599 600 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 601 * an out-of-line helper. 602 */ 603 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 604 int rm, bool is_fp16, int data, 605 gen_helper_gvec_3_ptr *fn) 606 { 607 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 608 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 609 vec_full_reg_offset(s, rn), 610 vec_full_reg_offset(s, rm), fpst, 611 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 612 } 613 614 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 615 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 616 int rm, gen_helper_gvec_3_ptr *fn) 617 { 618 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 619 620 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 621 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 622 vec_full_reg_offset(s, rn), 623 vec_full_reg_offset(s, rm), qc_ptr, 624 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 625 } 626 627 /* Expand a 4-operand operation using an out-of-line helper. */ 628 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 629 int rm, int ra, int data, gen_helper_gvec_4 *fn) 630 { 631 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 632 vec_full_reg_offset(s, rn), 633 vec_full_reg_offset(s, rm), 634 vec_full_reg_offset(s, ra), 635 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 636 } 637 638 /* 639 * Expand a 4-operand + fpstatus pointer + simd data value operation using 640 * an out-of-line helper. 641 */ 642 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 643 int rm, int ra, bool is_fp16, int data, 644 gen_helper_gvec_4_ptr *fn) 645 { 646 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 647 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 648 vec_full_reg_offset(s, rn), 649 vec_full_reg_offset(s, rm), 650 vec_full_reg_offset(s, ra), fpst, 651 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 652 } 653 654 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 655 * than the 32 bit equivalent. 656 */ 657 static inline void gen_set_NZ64(TCGv_i64 result) 658 { 659 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 660 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 661 } 662 663 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 664 static inline void gen_logic_CC(int sf, TCGv_i64 result) 665 { 666 if (sf) { 667 gen_set_NZ64(result); 668 } else { 669 tcg_gen_extrl_i64_i32(cpu_ZF, result); 670 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 671 } 672 tcg_gen_movi_i32(cpu_CF, 0); 673 tcg_gen_movi_i32(cpu_VF, 0); 674 } 675 676 /* dest = T0 + T1; compute C, N, V and Z flags */ 677 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 678 { 679 TCGv_i64 result, flag, tmp; 680 result = tcg_temp_new_i64(); 681 flag = tcg_temp_new_i64(); 682 tmp = tcg_temp_new_i64(); 683 684 tcg_gen_movi_i64(tmp, 0); 685 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 686 687 tcg_gen_extrl_i64_i32(cpu_CF, flag); 688 689 gen_set_NZ64(result); 690 691 tcg_gen_xor_i64(flag, result, t0); 692 tcg_gen_xor_i64(tmp, t0, t1); 693 tcg_gen_andc_i64(flag, flag, tmp); 694 tcg_gen_extrh_i64_i32(cpu_VF, flag); 695 696 tcg_gen_mov_i64(dest, result); 697 } 698 699 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 700 { 701 TCGv_i32 t0_32 = tcg_temp_new_i32(); 702 TCGv_i32 t1_32 = tcg_temp_new_i32(); 703 TCGv_i32 tmp = tcg_temp_new_i32(); 704 705 tcg_gen_movi_i32(tmp, 0); 706 tcg_gen_extrl_i64_i32(t0_32, t0); 707 tcg_gen_extrl_i64_i32(t1_32, t1); 708 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 709 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 710 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 711 tcg_gen_xor_i32(tmp, t0_32, t1_32); 712 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 713 tcg_gen_extu_i32_i64(dest, cpu_NF); 714 } 715 716 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 717 { 718 if (sf) { 719 gen_add64_CC(dest, t0, t1); 720 } else { 721 gen_add32_CC(dest, t0, t1); 722 } 723 } 724 725 /* dest = T0 - T1; compute C, N, V and Z flags */ 726 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 727 { 728 /* 64 bit arithmetic */ 729 TCGv_i64 result, flag, tmp; 730 731 result = tcg_temp_new_i64(); 732 flag = tcg_temp_new_i64(); 733 tcg_gen_sub_i64(result, t0, t1); 734 735 gen_set_NZ64(result); 736 737 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 738 tcg_gen_extrl_i64_i32(cpu_CF, flag); 739 740 tcg_gen_xor_i64(flag, result, t0); 741 tmp = tcg_temp_new_i64(); 742 tcg_gen_xor_i64(tmp, t0, t1); 743 tcg_gen_and_i64(flag, flag, tmp); 744 tcg_gen_extrh_i64_i32(cpu_VF, flag); 745 tcg_gen_mov_i64(dest, result); 746 } 747 748 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 749 { 750 /* 32 bit arithmetic */ 751 TCGv_i32 t0_32 = tcg_temp_new_i32(); 752 TCGv_i32 t1_32 = tcg_temp_new_i32(); 753 TCGv_i32 tmp; 754 755 tcg_gen_extrl_i64_i32(t0_32, t0); 756 tcg_gen_extrl_i64_i32(t1_32, t1); 757 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 758 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 759 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 760 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 761 tmp = tcg_temp_new_i32(); 762 tcg_gen_xor_i32(tmp, t0_32, t1_32); 763 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 764 tcg_gen_extu_i32_i64(dest, cpu_NF); 765 } 766 767 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 768 { 769 if (sf) { 770 gen_sub64_CC(dest, t0, t1); 771 } else { 772 gen_sub32_CC(dest, t0, t1); 773 } 774 } 775 776 /* dest = T0 + T1 + CF; do not compute flags. */ 777 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 778 { 779 TCGv_i64 flag = tcg_temp_new_i64(); 780 tcg_gen_extu_i32_i64(flag, cpu_CF); 781 tcg_gen_add_i64(dest, t0, t1); 782 tcg_gen_add_i64(dest, dest, flag); 783 784 if (!sf) { 785 tcg_gen_ext32u_i64(dest, dest); 786 } 787 } 788 789 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 790 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 if (sf) { 793 TCGv_i64 result = tcg_temp_new_i64(); 794 TCGv_i64 cf_64 = tcg_temp_new_i64(); 795 TCGv_i64 vf_64 = tcg_temp_new_i64(); 796 TCGv_i64 tmp = tcg_temp_new_i64(); 797 TCGv_i64 zero = tcg_constant_i64(0); 798 799 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 800 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 801 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 802 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 803 gen_set_NZ64(result); 804 805 tcg_gen_xor_i64(vf_64, result, t0); 806 tcg_gen_xor_i64(tmp, t0, t1); 807 tcg_gen_andc_i64(vf_64, vf_64, tmp); 808 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 809 810 tcg_gen_mov_i64(dest, result); 811 } else { 812 TCGv_i32 t0_32 = tcg_temp_new_i32(); 813 TCGv_i32 t1_32 = tcg_temp_new_i32(); 814 TCGv_i32 tmp = tcg_temp_new_i32(); 815 TCGv_i32 zero = tcg_constant_i32(0); 816 817 tcg_gen_extrl_i64_i32(t0_32, t0); 818 tcg_gen_extrl_i64_i32(t1_32, t1); 819 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 820 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 821 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 } 829 830 /* 831 * Load/Store generators 832 */ 833 834 /* 835 * Store from GPR register to memory. 836 */ 837 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 838 TCGv_i64 tcg_addr, MemOp memop, int memidx, 839 bool iss_valid, 840 unsigned int iss_srt, 841 bool iss_sf, bool iss_ar) 842 { 843 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 844 845 if (iss_valid) { 846 uint32_t syn; 847 848 syn = syn_data_abort_with_iss(0, 849 (memop & MO_SIZE), 850 false, 851 iss_srt, 852 iss_sf, 853 iss_ar, 854 0, 0, 0, 0, 0, false); 855 disas_set_insn_syndrome(s, syn); 856 } 857 } 858 859 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 860 TCGv_i64 tcg_addr, MemOp memop, 861 bool iss_valid, 862 unsigned int iss_srt, 863 bool iss_sf, bool iss_ar) 864 { 865 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 866 iss_valid, iss_srt, iss_sf, iss_ar); 867 } 868 869 /* 870 * Load from memory to GPR register 871 */ 872 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 873 MemOp memop, bool extend, int memidx, 874 bool iss_valid, unsigned int iss_srt, 875 bool iss_sf, bool iss_ar) 876 { 877 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 878 879 if (extend && (memop & MO_SIGN)) { 880 g_assert((memop & MO_SIZE) <= MO_32); 881 tcg_gen_ext32u_i64(dest, dest); 882 } 883 884 if (iss_valid) { 885 uint32_t syn; 886 887 syn = syn_data_abort_with_iss(0, 888 (memop & MO_SIZE), 889 (memop & MO_SIGN) != 0, 890 iss_srt, 891 iss_sf, 892 iss_ar, 893 0, 0, 0, 0, 0, false); 894 disas_set_insn_syndrome(s, syn); 895 } 896 } 897 898 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 899 MemOp memop, bool extend, 900 bool iss_valid, unsigned int iss_srt, 901 bool iss_sf, bool iss_ar) 902 { 903 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 904 iss_valid, iss_srt, iss_sf, iss_ar); 905 } 906 907 /* 908 * Store from FP register to memory 909 */ 910 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 911 { 912 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 913 TCGv_i64 tmplo = tcg_temp_new_i64(); 914 915 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 916 917 if ((mop & MO_SIZE) < MO_128) { 918 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 919 } else { 920 TCGv_i64 tmphi = tcg_temp_new_i64(); 921 TCGv_i128 t16 = tcg_temp_new_i128(); 922 923 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 924 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 925 926 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 927 } 928 } 929 930 /* 931 * Load from memory to FP register 932 */ 933 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 934 { 935 /* This always zero-extends and writes to a full 128 bit wide vector */ 936 TCGv_i64 tmplo = tcg_temp_new_i64(); 937 TCGv_i64 tmphi = NULL; 938 939 if ((mop & MO_SIZE) < MO_128) { 940 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 941 } else { 942 TCGv_i128 t16 = tcg_temp_new_i128(); 943 944 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 945 946 tmphi = tcg_temp_new_i64(); 947 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 948 } 949 950 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 951 952 if (tmphi) { 953 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 954 } 955 clear_vec_high(s, tmphi != NULL, destidx); 956 } 957 958 /* 959 * Vector load/store helpers. 960 * 961 * The principal difference between this and a FP load is that we don't 962 * zero extend as we are filling a partial chunk of the vector register. 963 * These functions don't support 128 bit loads/stores, which would be 964 * normal load/store operations. 965 * 966 * The _i32 versions are useful when operating on 32 bit quantities 967 * (eg for floating point single or using Neon helper functions). 968 */ 969 970 /* Get value of an element within a vector register */ 971 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 972 int element, MemOp memop) 973 { 974 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 975 switch ((unsigned)memop) { 976 case MO_8: 977 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 978 break; 979 case MO_16: 980 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 981 break; 982 case MO_32: 983 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 984 break; 985 case MO_8|MO_SIGN: 986 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 987 break; 988 case MO_16|MO_SIGN: 989 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 990 break; 991 case MO_32|MO_SIGN: 992 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 993 break; 994 case MO_64: 995 case MO_64|MO_SIGN: 996 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 997 break; 998 default: 999 g_assert_not_reached(); 1000 } 1001 } 1002 1003 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1004 int element, MemOp memop) 1005 { 1006 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1007 switch (memop) { 1008 case MO_8: 1009 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1010 break; 1011 case MO_16: 1012 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1013 break; 1014 case MO_8|MO_SIGN: 1015 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1016 break; 1017 case MO_16|MO_SIGN: 1018 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1019 break; 1020 case MO_32: 1021 case MO_32|MO_SIGN: 1022 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1023 break; 1024 default: 1025 g_assert_not_reached(); 1026 } 1027 } 1028 1029 /* Set value of an element within a vector register */ 1030 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1031 int element, MemOp memop) 1032 { 1033 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1034 switch (memop) { 1035 case MO_8: 1036 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1037 break; 1038 case MO_16: 1039 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1040 break; 1041 case MO_32: 1042 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1043 break; 1044 case MO_64: 1045 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1046 break; 1047 default: 1048 g_assert_not_reached(); 1049 } 1050 } 1051 1052 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1053 int destidx, int element, MemOp memop) 1054 { 1055 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1056 switch (memop) { 1057 case MO_8: 1058 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1059 break; 1060 case MO_16: 1061 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1062 break; 1063 case MO_32: 1064 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1065 break; 1066 default: 1067 g_assert_not_reached(); 1068 } 1069 } 1070 1071 /* Store from vector register to memory */ 1072 static void do_vec_st(DisasContext *s, int srcidx, int element, 1073 TCGv_i64 tcg_addr, MemOp mop) 1074 { 1075 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1076 1077 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1078 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1079 } 1080 1081 /* Load from memory to vector register */ 1082 static void do_vec_ld(DisasContext *s, int destidx, int element, 1083 TCGv_i64 tcg_addr, MemOp mop) 1084 { 1085 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1086 1087 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1088 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1089 } 1090 1091 /* Check that FP/Neon access is enabled. If it is, return 1092 * true. If not, emit code to generate an appropriate exception, 1093 * and return false; the caller should not emit any code for 1094 * the instruction. Note that this check must happen after all 1095 * unallocated-encoding checks (otherwise the syndrome information 1096 * for the resulting exception will be incorrect). 1097 */ 1098 static bool fp_access_check_only(DisasContext *s) 1099 { 1100 if (s->fp_excp_el) { 1101 assert(!s->fp_access_checked); 1102 s->fp_access_checked = true; 1103 1104 gen_exception_insn_el(s, 0, EXCP_UDEF, 1105 syn_fp_access_trap(1, 0xe, false, 0), 1106 s->fp_excp_el); 1107 return false; 1108 } 1109 s->fp_access_checked = true; 1110 return true; 1111 } 1112 1113 static bool fp_access_check(DisasContext *s) 1114 { 1115 if (!fp_access_check_only(s)) { 1116 return false; 1117 } 1118 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1119 gen_exception_insn(s, 0, EXCP_UDEF, 1120 syn_smetrap(SME_ET_Streaming, false)); 1121 return false; 1122 } 1123 return true; 1124 } 1125 1126 /* 1127 * Check that SVE access is enabled. If it is, return true. 1128 * If not, emit code to generate an appropriate exception and return false. 1129 * This function corresponds to CheckSVEEnabled(). 1130 */ 1131 bool sve_access_check(DisasContext *s) 1132 { 1133 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1134 assert(dc_isar_feature(aa64_sme, s)); 1135 if (!sme_sm_enabled_check(s)) { 1136 goto fail_exit; 1137 } 1138 } else if (s->sve_excp_el) { 1139 gen_exception_insn_el(s, 0, EXCP_UDEF, 1140 syn_sve_access_trap(), s->sve_excp_el); 1141 goto fail_exit; 1142 } 1143 s->sve_access_checked = true; 1144 return fp_access_check(s); 1145 1146 fail_exit: 1147 /* Assert that we only raise one exception per instruction. */ 1148 assert(!s->sve_access_checked); 1149 s->sve_access_checked = true; 1150 return false; 1151 } 1152 1153 /* 1154 * Check that SME access is enabled, raise an exception if not. 1155 * Note that this function corresponds to CheckSMEAccess and is 1156 * only used directly for cpregs. 1157 */ 1158 static bool sme_access_check(DisasContext *s) 1159 { 1160 if (s->sme_excp_el) { 1161 gen_exception_insn_el(s, 0, EXCP_UDEF, 1162 syn_smetrap(SME_ET_AccessTrap, false), 1163 s->sme_excp_el); 1164 return false; 1165 } 1166 return true; 1167 } 1168 1169 /* This function corresponds to CheckSMEEnabled. */ 1170 bool sme_enabled_check(DisasContext *s) 1171 { 1172 /* 1173 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1174 * to be zero when fp_excp_el has priority. This is because we need 1175 * sme_excp_el by itself for cpregs access checks. 1176 */ 1177 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1178 s->fp_access_checked = true; 1179 return sme_access_check(s); 1180 } 1181 return fp_access_check_only(s); 1182 } 1183 1184 /* Common subroutine for CheckSMEAnd*Enabled. */ 1185 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1186 { 1187 if (!sme_enabled_check(s)) { 1188 return false; 1189 } 1190 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1191 gen_exception_insn(s, 0, EXCP_UDEF, 1192 syn_smetrap(SME_ET_NotStreaming, false)); 1193 return false; 1194 } 1195 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1196 gen_exception_insn(s, 0, EXCP_UDEF, 1197 syn_smetrap(SME_ET_InactiveZA, false)); 1198 return false; 1199 } 1200 return true; 1201 } 1202 1203 /* 1204 * This utility function is for doing register extension with an 1205 * optional shift. You will likely want to pass a temporary for the 1206 * destination register. See DecodeRegExtend() in the ARM ARM. 1207 */ 1208 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1209 int option, unsigned int shift) 1210 { 1211 int extsize = extract32(option, 0, 2); 1212 bool is_signed = extract32(option, 2, 1); 1213 1214 if (is_signed) { 1215 switch (extsize) { 1216 case 0: 1217 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1218 break; 1219 case 1: 1220 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1221 break; 1222 case 2: 1223 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1224 break; 1225 case 3: 1226 tcg_gen_mov_i64(tcg_out, tcg_in); 1227 break; 1228 } 1229 } else { 1230 switch (extsize) { 1231 case 0: 1232 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1233 break; 1234 case 1: 1235 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1236 break; 1237 case 2: 1238 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1239 break; 1240 case 3: 1241 tcg_gen_mov_i64(tcg_out, tcg_in); 1242 break; 1243 } 1244 } 1245 1246 if (shift) { 1247 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1248 } 1249 } 1250 1251 static inline void gen_check_sp_alignment(DisasContext *s) 1252 { 1253 /* The AArch64 architecture mandates that (if enabled via PSTATE 1254 * or SCTLR bits) there is a check that SP is 16-aligned on every 1255 * SP-relative load or store (with an exception generated if it is not). 1256 * In line with general QEMU practice regarding misaligned accesses, 1257 * we omit these checks for the sake of guest program performance. 1258 * This function is provided as a hook so we can more easily add these 1259 * checks in future (possibly as a "favour catching guest program bugs 1260 * over speed" user selectable option). 1261 */ 1262 } 1263 1264 /* 1265 * This provides a simple table based table lookup decoder. It is 1266 * intended to be used when the relevant bits for decode are too 1267 * awkwardly placed and switch/if based logic would be confusing and 1268 * deeply nested. Since it's a linear search through the table, tables 1269 * should be kept small. 1270 * 1271 * It returns the first handler where insn & mask == pattern, or 1272 * NULL if there is no match. 1273 * The table is terminated by an empty mask (i.e. 0) 1274 */ 1275 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1276 uint32_t insn) 1277 { 1278 const AArch64DecodeTable *tptr = table; 1279 1280 while (tptr->mask) { 1281 if ((insn & tptr->mask) == tptr->pattern) { 1282 return tptr->disas_fn; 1283 } 1284 tptr++; 1285 } 1286 return NULL; 1287 } 1288 1289 /* 1290 * The instruction disassembly implemented here matches 1291 * the instruction encoding classifications in chapter C4 1292 * of the ARM Architecture Reference Manual (DDI0487B_a); 1293 * classification names and decode diagrams here should generally 1294 * match up with those in the manual. 1295 */ 1296 1297 static bool trans_B(DisasContext *s, arg_i *a) 1298 { 1299 reset_btype(s); 1300 gen_goto_tb(s, 0, a->imm); 1301 return true; 1302 } 1303 1304 static bool trans_BL(DisasContext *s, arg_i *a) 1305 { 1306 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1307 reset_btype(s); 1308 gen_goto_tb(s, 0, a->imm); 1309 return true; 1310 } 1311 1312 1313 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1314 { 1315 DisasLabel match; 1316 TCGv_i64 tcg_cmp; 1317 1318 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1319 reset_btype(s); 1320 1321 match = gen_disas_label(s); 1322 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1323 tcg_cmp, 0, match.label); 1324 gen_goto_tb(s, 0, 4); 1325 set_disas_label(s, match); 1326 gen_goto_tb(s, 1, a->imm); 1327 return true; 1328 } 1329 1330 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1331 { 1332 DisasLabel match; 1333 TCGv_i64 tcg_cmp; 1334 1335 tcg_cmp = tcg_temp_new_i64(); 1336 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1337 1338 reset_btype(s); 1339 1340 match = gen_disas_label(s); 1341 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1342 tcg_cmp, 0, match.label); 1343 gen_goto_tb(s, 0, 4); 1344 set_disas_label(s, match); 1345 gen_goto_tb(s, 1, a->imm); 1346 return true; 1347 } 1348 1349 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1350 { 1351 reset_btype(s); 1352 if (a->cond < 0x0e) { 1353 /* genuinely conditional branches */ 1354 DisasLabel match = gen_disas_label(s); 1355 arm_gen_test_cc(a->cond, match.label); 1356 gen_goto_tb(s, 0, 4); 1357 set_disas_label(s, match); 1358 gen_goto_tb(s, 1, a->imm); 1359 } else { 1360 /* 0xe and 0xf are both "always" conditions */ 1361 gen_goto_tb(s, 0, a->imm); 1362 } 1363 return true; 1364 } 1365 1366 static void set_btype_for_br(DisasContext *s, int rn) 1367 { 1368 if (dc_isar_feature(aa64_bti, s)) { 1369 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1370 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1371 } 1372 } 1373 1374 static void set_btype_for_blr(DisasContext *s) 1375 { 1376 if (dc_isar_feature(aa64_bti, s)) { 1377 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1378 set_btype(s, 2); 1379 } 1380 } 1381 1382 static bool trans_BR(DisasContext *s, arg_r *a) 1383 { 1384 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1385 set_btype_for_br(s, a->rn); 1386 s->base.is_jmp = DISAS_JUMP; 1387 return true; 1388 } 1389 1390 static bool trans_BLR(DisasContext *s, arg_r *a) 1391 { 1392 TCGv_i64 dst = cpu_reg(s, a->rn); 1393 TCGv_i64 lr = cpu_reg(s, 30); 1394 if (dst == lr) { 1395 TCGv_i64 tmp = tcg_temp_new_i64(); 1396 tcg_gen_mov_i64(tmp, dst); 1397 dst = tmp; 1398 } 1399 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1400 gen_a64_set_pc(s, dst); 1401 set_btype_for_blr(s); 1402 s->base.is_jmp = DISAS_JUMP; 1403 return true; 1404 } 1405 1406 static bool trans_RET(DisasContext *s, arg_r *a) 1407 { 1408 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1409 s->base.is_jmp = DISAS_JUMP; 1410 return true; 1411 } 1412 1413 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1414 TCGv_i64 modifier, bool use_key_a) 1415 { 1416 TCGv_i64 truedst; 1417 /* 1418 * Return the branch target for a BRAA/RETA/etc, which is either 1419 * just the destination dst, or that value with the pauth check 1420 * done and the code removed from the high bits. 1421 */ 1422 if (!s->pauth_active) { 1423 return dst; 1424 } 1425 1426 truedst = tcg_temp_new_i64(); 1427 if (use_key_a) { 1428 gen_helper_autia(truedst, cpu_env, dst, modifier); 1429 } else { 1430 gen_helper_autib(truedst, cpu_env, dst, modifier); 1431 } 1432 return truedst; 1433 } 1434 1435 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1436 { 1437 TCGv_i64 dst; 1438 1439 if (!dc_isar_feature(aa64_pauth, s)) { 1440 return false; 1441 } 1442 1443 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1444 gen_a64_set_pc(s, dst); 1445 set_btype_for_br(s, a->rn); 1446 s->base.is_jmp = DISAS_JUMP; 1447 return true; 1448 } 1449 1450 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1451 { 1452 TCGv_i64 dst, lr; 1453 1454 if (!dc_isar_feature(aa64_pauth, s)) { 1455 return false; 1456 } 1457 1458 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1459 lr = cpu_reg(s, 30); 1460 if (dst == lr) { 1461 TCGv_i64 tmp = tcg_temp_new_i64(); 1462 tcg_gen_mov_i64(tmp, dst); 1463 dst = tmp; 1464 } 1465 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1466 gen_a64_set_pc(s, dst); 1467 set_btype_for_blr(s); 1468 s->base.is_jmp = DISAS_JUMP; 1469 return true; 1470 } 1471 1472 static bool trans_RETA(DisasContext *s, arg_reta *a) 1473 { 1474 TCGv_i64 dst; 1475 1476 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1477 gen_a64_set_pc(s, dst); 1478 s->base.is_jmp = DISAS_JUMP; 1479 return true; 1480 } 1481 1482 static bool trans_BRA(DisasContext *s, arg_bra *a) 1483 { 1484 TCGv_i64 dst; 1485 1486 if (!dc_isar_feature(aa64_pauth, s)) { 1487 return false; 1488 } 1489 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1490 gen_a64_set_pc(s, dst); 1491 set_btype_for_br(s, a->rn); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1497 { 1498 TCGv_i64 dst, lr; 1499 1500 if (!dc_isar_feature(aa64_pauth, s)) { 1501 return false; 1502 } 1503 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1504 lr = cpu_reg(s, 30); 1505 if (dst == lr) { 1506 TCGv_i64 tmp = tcg_temp_new_i64(); 1507 tcg_gen_mov_i64(tmp, dst); 1508 dst = tmp; 1509 } 1510 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1511 gen_a64_set_pc(s, dst); 1512 set_btype_for_blr(s); 1513 s->base.is_jmp = DISAS_JUMP; 1514 return true; 1515 } 1516 1517 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1518 { 1519 TCGv_i64 dst; 1520 1521 if (s->current_el == 0) { 1522 return false; 1523 } 1524 if (s->fgt_eret) { 1525 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1526 return true; 1527 } 1528 dst = tcg_temp_new_i64(); 1529 tcg_gen_ld_i64(dst, cpu_env, 1530 offsetof(CPUARMState, elr_el[s->current_el])); 1531 1532 translator_io_start(&s->base); 1533 1534 gen_helper_exception_return(cpu_env, dst); 1535 /* Must exit loop to check un-masked IRQs */ 1536 s->base.is_jmp = DISAS_EXIT; 1537 return true; 1538 } 1539 1540 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1541 { 1542 TCGv_i64 dst; 1543 1544 if (!dc_isar_feature(aa64_pauth, s)) { 1545 return false; 1546 } 1547 if (s->current_el == 0) { 1548 return false; 1549 } 1550 /* The FGT trap takes precedence over an auth trap. */ 1551 if (s->fgt_eret) { 1552 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1553 return true; 1554 } 1555 dst = tcg_temp_new_i64(); 1556 tcg_gen_ld_i64(dst, cpu_env, 1557 offsetof(CPUARMState, elr_el[s->current_el])); 1558 1559 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1560 1561 translator_io_start(&s->base); 1562 1563 gen_helper_exception_return(cpu_env, dst); 1564 /* Must exit loop to check un-masked IRQs */ 1565 s->base.is_jmp = DISAS_EXIT; 1566 return true; 1567 } 1568 1569 /* HINT instruction group, including various allocated HINTs */ 1570 static void handle_hint(DisasContext *s, uint32_t insn, 1571 unsigned int op1, unsigned int op2, unsigned int crm) 1572 { 1573 unsigned int selector = crm << 3 | op2; 1574 1575 if (op1 != 3) { 1576 unallocated_encoding(s); 1577 return; 1578 } 1579 1580 switch (selector) { 1581 case 0b00000: /* NOP */ 1582 break; 1583 case 0b00011: /* WFI */ 1584 s->base.is_jmp = DISAS_WFI; 1585 break; 1586 case 0b00001: /* YIELD */ 1587 /* When running in MTTCG we don't generate jumps to the yield and 1588 * WFE helpers as it won't affect the scheduling of other vCPUs. 1589 * If we wanted to more completely model WFE/SEV so we don't busy 1590 * spin unnecessarily we would need to do something more involved. 1591 */ 1592 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1593 s->base.is_jmp = DISAS_YIELD; 1594 } 1595 break; 1596 case 0b00010: /* WFE */ 1597 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1598 s->base.is_jmp = DISAS_WFE; 1599 } 1600 break; 1601 case 0b00100: /* SEV */ 1602 case 0b00101: /* SEVL */ 1603 case 0b00110: /* DGH */ 1604 /* we treat all as NOP at least for now */ 1605 break; 1606 case 0b00111: /* XPACLRI */ 1607 if (s->pauth_active) { 1608 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1609 } 1610 break; 1611 case 0b01000: /* PACIA1716 */ 1612 if (s->pauth_active) { 1613 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1614 } 1615 break; 1616 case 0b01010: /* PACIB1716 */ 1617 if (s->pauth_active) { 1618 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1619 } 1620 break; 1621 case 0b01100: /* AUTIA1716 */ 1622 if (s->pauth_active) { 1623 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1624 } 1625 break; 1626 case 0b01110: /* AUTIB1716 */ 1627 if (s->pauth_active) { 1628 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1629 } 1630 break; 1631 case 0b10000: /* ESB */ 1632 /* Without RAS, we must implement this as NOP. */ 1633 if (dc_isar_feature(aa64_ras, s)) { 1634 /* 1635 * QEMU does not have a source of physical SErrors, 1636 * so we are only concerned with virtual SErrors. 1637 * The pseudocode in the ARM for this case is 1638 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1639 * AArch64.vESBOperation(); 1640 * Most of the condition can be evaluated at translation time. 1641 * Test for EL2 present, and defer test for SEL2 to runtime. 1642 */ 1643 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1644 gen_helper_vesb(cpu_env); 1645 } 1646 } 1647 break; 1648 case 0b11000: /* PACIAZ */ 1649 if (s->pauth_active) { 1650 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1651 tcg_constant_i64(0)); 1652 } 1653 break; 1654 case 0b11001: /* PACIASP */ 1655 if (s->pauth_active) { 1656 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1657 } 1658 break; 1659 case 0b11010: /* PACIBZ */ 1660 if (s->pauth_active) { 1661 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1662 tcg_constant_i64(0)); 1663 } 1664 break; 1665 case 0b11011: /* PACIBSP */ 1666 if (s->pauth_active) { 1667 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1668 } 1669 break; 1670 case 0b11100: /* AUTIAZ */ 1671 if (s->pauth_active) { 1672 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1673 tcg_constant_i64(0)); 1674 } 1675 break; 1676 case 0b11101: /* AUTIASP */ 1677 if (s->pauth_active) { 1678 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1679 } 1680 break; 1681 case 0b11110: /* AUTIBZ */ 1682 if (s->pauth_active) { 1683 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1684 tcg_constant_i64(0)); 1685 } 1686 break; 1687 case 0b11111: /* AUTIBSP */ 1688 if (s->pauth_active) { 1689 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1690 } 1691 break; 1692 default: 1693 /* default specified as NOP equivalent */ 1694 break; 1695 } 1696 } 1697 1698 static void gen_clrex(DisasContext *s, uint32_t insn) 1699 { 1700 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1701 } 1702 1703 /* CLREX, DSB, DMB, ISB */ 1704 static void handle_sync(DisasContext *s, uint32_t insn, 1705 unsigned int op1, unsigned int op2, unsigned int crm) 1706 { 1707 TCGBar bar; 1708 1709 if (op1 != 3) { 1710 unallocated_encoding(s); 1711 return; 1712 } 1713 1714 switch (op2) { 1715 case 2: /* CLREX */ 1716 gen_clrex(s, insn); 1717 return; 1718 case 4: /* DSB */ 1719 case 5: /* DMB */ 1720 switch (crm & 3) { 1721 case 1: /* MBReqTypes_Reads */ 1722 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1723 break; 1724 case 2: /* MBReqTypes_Writes */ 1725 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1726 break; 1727 default: /* MBReqTypes_All */ 1728 bar = TCG_BAR_SC | TCG_MO_ALL; 1729 break; 1730 } 1731 tcg_gen_mb(bar); 1732 return; 1733 case 6: /* ISB */ 1734 /* We need to break the TB after this insn to execute 1735 * a self-modified code correctly and also to take 1736 * any pending interrupts immediately. 1737 */ 1738 reset_btype(s); 1739 gen_goto_tb(s, 0, 4); 1740 return; 1741 1742 case 7: /* SB */ 1743 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1744 goto do_unallocated; 1745 } 1746 /* 1747 * TODO: There is no speculation barrier opcode for TCG; 1748 * MB and end the TB instead. 1749 */ 1750 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1751 gen_goto_tb(s, 0, 4); 1752 return; 1753 1754 default: 1755 do_unallocated: 1756 unallocated_encoding(s); 1757 return; 1758 } 1759 } 1760 1761 static void gen_xaflag(void) 1762 { 1763 TCGv_i32 z = tcg_temp_new_i32(); 1764 1765 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1766 1767 /* 1768 * (!C & !Z) << 31 1769 * (!(C | Z)) << 31 1770 * ~((C | Z) << 31) 1771 * ~-(C | Z) 1772 * (C | Z) - 1 1773 */ 1774 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1775 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1776 1777 /* !(Z & C) */ 1778 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1779 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1780 1781 /* (!C & Z) << 31 -> -(Z & ~C) */ 1782 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1783 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1784 1785 /* C | Z */ 1786 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1787 } 1788 1789 static void gen_axflag(void) 1790 { 1791 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1792 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1793 1794 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1795 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1796 1797 tcg_gen_movi_i32(cpu_NF, 0); 1798 tcg_gen_movi_i32(cpu_VF, 0); 1799 } 1800 1801 /* MSR (immediate) - move immediate to processor state field */ 1802 static void handle_msr_i(DisasContext *s, uint32_t insn, 1803 unsigned int op1, unsigned int op2, unsigned int crm) 1804 { 1805 int op = op1 << 3 | op2; 1806 1807 /* End the TB by default, chaining is ok. */ 1808 s->base.is_jmp = DISAS_TOO_MANY; 1809 1810 switch (op) { 1811 case 0x00: /* CFINV */ 1812 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1813 goto do_unallocated; 1814 } 1815 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1816 s->base.is_jmp = DISAS_NEXT; 1817 break; 1818 1819 case 0x01: /* XAFlag */ 1820 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1821 goto do_unallocated; 1822 } 1823 gen_xaflag(); 1824 s->base.is_jmp = DISAS_NEXT; 1825 break; 1826 1827 case 0x02: /* AXFlag */ 1828 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1829 goto do_unallocated; 1830 } 1831 gen_axflag(); 1832 s->base.is_jmp = DISAS_NEXT; 1833 break; 1834 1835 case 0x03: /* UAO */ 1836 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1837 goto do_unallocated; 1838 } 1839 if (crm & 1) { 1840 set_pstate_bits(PSTATE_UAO); 1841 } else { 1842 clear_pstate_bits(PSTATE_UAO); 1843 } 1844 gen_rebuild_hflags(s); 1845 break; 1846 1847 case 0x04: /* PAN */ 1848 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1849 goto do_unallocated; 1850 } 1851 if (crm & 1) { 1852 set_pstate_bits(PSTATE_PAN); 1853 } else { 1854 clear_pstate_bits(PSTATE_PAN); 1855 } 1856 gen_rebuild_hflags(s); 1857 break; 1858 1859 case 0x05: /* SPSel */ 1860 if (s->current_el == 0) { 1861 goto do_unallocated; 1862 } 1863 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1864 break; 1865 1866 case 0x19: /* SSBS */ 1867 if (!dc_isar_feature(aa64_ssbs, s)) { 1868 goto do_unallocated; 1869 } 1870 if (crm & 1) { 1871 set_pstate_bits(PSTATE_SSBS); 1872 } else { 1873 clear_pstate_bits(PSTATE_SSBS); 1874 } 1875 /* Don't need to rebuild hflags since SSBS is a nop */ 1876 break; 1877 1878 case 0x1a: /* DIT */ 1879 if (!dc_isar_feature(aa64_dit, s)) { 1880 goto do_unallocated; 1881 } 1882 if (crm & 1) { 1883 set_pstate_bits(PSTATE_DIT); 1884 } else { 1885 clear_pstate_bits(PSTATE_DIT); 1886 } 1887 /* There's no need to rebuild hflags because DIT is a nop */ 1888 break; 1889 1890 case 0x1e: /* DAIFSet */ 1891 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1892 break; 1893 1894 case 0x1f: /* DAIFClear */ 1895 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1896 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1897 s->base.is_jmp = DISAS_UPDATE_EXIT; 1898 break; 1899 1900 case 0x1c: /* TCO */ 1901 if (dc_isar_feature(aa64_mte, s)) { 1902 /* Full MTE is enabled -- set the TCO bit as directed. */ 1903 if (crm & 1) { 1904 set_pstate_bits(PSTATE_TCO); 1905 } else { 1906 clear_pstate_bits(PSTATE_TCO); 1907 } 1908 gen_rebuild_hflags(s); 1909 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1910 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1911 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1912 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1913 s->base.is_jmp = DISAS_NEXT; 1914 } else { 1915 goto do_unallocated; 1916 } 1917 break; 1918 1919 case 0x1b: /* SVCR* */ 1920 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1921 goto do_unallocated; 1922 } 1923 if (sme_access_check(s)) { 1924 int old = s->pstate_sm | (s->pstate_za << 1); 1925 int new = (crm & 1) * 3; 1926 int msk = (crm >> 1) & 3; 1927 1928 if ((old ^ new) & msk) { 1929 /* At least one bit changes. */ 1930 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1931 tcg_constant_i32(msk)); 1932 } else { 1933 s->base.is_jmp = DISAS_NEXT; 1934 } 1935 } 1936 break; 1937 1938 default: 1939 do_unallocated: 1940 unallocated_encoding(s); 1941 return; 1942 } 1943 } 1944 1945 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1946 { 1947 TCGv_i32 tmp = tcg_temp_new_i32(); 1948 TCGv_i32 nzcv = tcg_temp_new_i32(); 1949 1950 /* build bit 31, N */ 1951 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1952 /* build bit 30, Z */ 1953 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1954 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1955 /* build bit 29, C */ 1956 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1957 /* build bit 28, V */ 1958 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1959 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1960 /* generate result */ 1961 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1962 } 1963 1964 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1965 { 1966 TCGv_i32 nzcv = tcg_temp_new_i32(); 1967 1968 /* take NZCV from R[t] */ 1969 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1970 1971 /* bit 31, N */ 1972 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1973 /* bit 30, Z */ 1974 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1975 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1976 /* bit 29, C */ 1977 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1978 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1979 /* bit 28, V */ 1980 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1981 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1982 } 1983 1984 static void gen_sysreg_undef(DisasContext *s, bool isread, 1985 uint8_t op0, uint8_t op1, uint8_t op2, 1986 uint8_t crn, uint8_t crm, uint8_t rt) 1987 { 1988 /* 1989 * Generate code to emit an UNDEF with correct syndrome 1990 * information for a failed system register access. 1991 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1992 * but if FEAT_IDST is implemented then read accesses to registers 1993 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1994 * syndrome. 1995 */ 1996 uint32_t syndrome; 1997 1998 if (isread && dc_isar_feature(aa64_ids, s) && 1999 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2000 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2001 } else { 2002 syndrome = syn_uncategorized(); 2003 } 2004 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2005 } 2006 2007 /* MRS - move from system register 2008 * MSR (register) - move to system register 2009 * SYS 2010 * SYSL 2011 * These are all essentially the same insn in 'read' and 'write' 2012 * versions, with varying op0 fields. 2013 */ 2014 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2015 unsigned int op0, unsigned int op1, unsigned int op2, 2016 unsigned int crn, unsigned int crm, unsigned int rt) 2017 { 2018 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2019 crn, crm, op0, op1, op2); 2020 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2021 bool need_exit_tb = false; 2022 TCGv_ptr tcg_ri = NULL; 2023 TCGv_i64 tcg_rt; 2024 2025 if (!ri) { 2026 /* Unknown register; this might be a guest error or a QEMU 2027 * unimplemented feature. 2028 */ 2029 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2030 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2031 isread ? "read" : "write", op0, op1, crn, crm, op2); 2032 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2033 return; 2034 } 2035 2036 /* Check access permissions */ 2037 if (!cp_access_ok(s->current_el, ri, isread)) { 2038 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2039 return; 2040 } 2041 2042 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2043 /* Emit code to perform further access permissions checks at 2044 * runtime; this may result in an exception. 2045 */ 2046 uint32_t syndrome; 2047 2048 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2049 gen_a64_update_pc(s, 0); 2050 tcg_ri = tcg_temp_new_ptr(); 2051 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2052 tcg_constant_i32(key), 2053 tcg_constant_i32(syndrome), 2054 tcg_constant_i32(isread)); 2055 } else if (ri->type & ARM_CP_RAISES_EXC) { 2056 /* 2057 * The readfn or writefn might raise an exception; 2058 * synchronize the CPU state in case it does. 2059 */ 2060 gen_a64_update_pc(s, 0); 2061 } 2062 2063 /* Handle special cases first */ 2064 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2065 case 0: 2066 break; 2067 case ARM_CP_NOP: 2068 return; 2069 case ARM_CP_NZCV: 2070 tcg_rt = cpu_reg(s, rt); 2071 if (isread) { 2072 gen_get_nzcv(tcg_rt); 2073 } else { 2074 gen_set_nzcv(tcg_rt); 2075 } 2076 return; 2077 case ARM_CP_CURRENTEL: 2078 /* Reads as current EL value from pstate, which is 2079 * guaranteed to be constant by the tb flags. 2080 */ 2081 tcg_rt = cpu_reg(s, rt); 2082 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2083 return; 2084 case ARM_CP_DC_ZVA: 2085 /* Writes clear the aligned block of memory which rt points into. */ 2086 if (s->mte_active[0]) { 2087 int desc = 0; 2088 2089 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2090 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2091 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2092 2093 tcg_rt = tcg_temp_new_i64(); 2094 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2095 tcg_constant_i32(desc), cpu_reg(s, rt)); 2096 } else { 2097 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2098 } 2099 gen_helper_dc_zva(cpu_env, tcg_rt); 2100 return; 2101 case ARM_CP_DC_GVA: 2102 { 2103 TCGv_i64 clean_addr, tag; 2104 2105 /* 2106 * DC_GVA, like DC_ZVA, requires that we supply the original 2107 * pointer for an invalid page. Probe that address first. 2108 */ 2109 tcg_rt = cpu_reg(s, rt); 2110 clean_addr = clean_data_tbi(s, tcg_rt); 2111 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2112 2113 if (s->ata) { 2114 /* Extract the tag from the register to match STZGM. */ 2115 tag = tcg_temp_new_i64(); 2116 tcg_gen_shri_i64(tag, tcg_rt, 56); 2117 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2118 } 2119 } 2120 return; 2121 case ARM_CP_DC_GZVA: 2122 { 2123 TCGv_i64 clean_addr, tag; 2124 2125 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2126 tcg_rt = cpu_reg(s, rt); 2127 clean_addr = clean_data_tbi(s, tcg_rt); 2128 gen_helper_dc_zva(cpu_env, clean_addr); 2129 2130 if (s->ata) { 2131 /* Extract the tag from the register to match STZGM. */ 2132 tag = tcg_temp_new_i64(); 2133 tcg_gen_shri_i64(tag, tcg_rt, 56); 2134 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2135 } 2136 } 2137 return; 2138 default: 2139 g_assert_not_reached(); 2140 } 2141 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2142 return; 2143 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2144 return; 2145 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2146 return; 2147 } 2148 2149 if (ri->type & ARM_CP_IO) { 2150 /* I/O operations must end the TB here (whether read or write) */ 2151 need_exit_tb = translator_io_start(&s->base); 2152 } 2153 2154 tcg_rt = cpu_reg(s, rt); 2155 2156 if (isread) { 2157 if (ri->type & ARM_CP_CONST) { 2158 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2159 } else if (ri->readfn) { 2160 if (!tcg_ri) { 2161 tcg_ri = gen_lookup_cp_reg(key); 2162 } 2163 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2164 } else { 2165 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2166 } 2167 } else { 2168 if (ri->type & ARM_CP_CONST) { 2169 /* If not forbidden by access permissions, treat as WI */ 2170 return; 2171 } else if (ri->writefn) { 2172 if (!tcg_ri) { 2173 tcg_ri = gen_lookup_cp_reg(key); 2174 } 2175 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2176 } else { 2177 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2178 } 2179 } 2180 2181 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2182 /* 2183 * A write to any coprocessor regiser that ends a TB 2184 * must rebuild the hflags for the next TB. 2185 */ 2186 gen_rebuild_hflags(s); 2187 /* 2188 * We default to ending the TB on a coprocessor register write, 2189 * but allow this to be suppressed by the register definition 2190 * (usually only necessary to work around guest bugs). 2191 */ 2192 need_exit_tb = true; 2193 } 2194 if (need_exit_tb) { 2195 s->base.is_jmp = DISAS_UPDATE_EXIT; 2196 } 2197 } 2198 2199 /* System 2200 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2201 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2202 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2203 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2204 */ 2205 static void disas_system(DisasContext *s, uint32_t insn) 2206 { 2207 unsigned int l, op0, op1, crn, crm, op2, rt; 2208 l = extract32(insn, 21, 1); 2209 op0 = extract32(insn, 19, 2); 2210 op1 = extract32(insn, 16, 3); 2211 crn = extract32(insn, 12, 4); 2212 crm = extract32(insn, 8, 4); 2213 op2 = extract32(insn, 5, 3); 2214 rt = extract32(insn, 0, 5); 2215 2216 if (op0 == 0) { 2217 if (l || rt != 31) { 2218 unallocated_encoding(s); 2219 return; 2220 } 2221 switch (crn) { 2222 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2223 handle_hint(s, insn, op1, op2, crm); 2224 break; 2225 case 3: /* CLREX, DSB, DMB, ISB */ 2226 handle_sync(s, insn, op1, op2, crm); 2227 break; 2228 case 4: /* MSR (immediate) */ 2229 handle_msr_i(s, insn, op1, op2, crm); 2230 break; 2231 default: 2232 unallocated_encoding(s); 2233 break; 2234 } 2235 return; 2236 } 2237 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2238 } 2239 2240 /* Exception generation 2241 * 2242 * 31 24 23 21 20 5 4 2 1 0 2243 * +-----------------+-----+------------------------+-----+----+ 2244 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2245 * +-----------------------+------------------------+----------+ 2246 */ 2247 static void disas_exc(DisasContext *s, uint32_t insn) 2248 { 2249 int opc = extract32(insn, 21, 3); 2250 int op2_ll = extract32(insn, 0, 5); 2251 int imm16 = extract32(insn, 5, 16); 2252 uint32_t syndrome; 2253 2254 switch (opc) { 2255 case 0: 2256 /* For SVC, HVC and SMC we advance the single-step state 2257 * machine before taking the exception. This is architecturally 2258 * mandated, to ensure that single-stepping a system call 2259 * instruction works properly. 2260 */ 2261 switch (op2_ll) { 2262 case 1: /* SVC */ 2263 syndrome = syn_aa64_svc(imm16); 2264 if (s->fgt_svc) { 2265 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2266 break; 2267 } 2268 gen_ss_advance(s); 2269 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2270 break; 2271 case 2: /* HVC */ 2272 if (s->current_el == 0) { 2273 unallocated_encoding(s); 2274 break; 2275 } 2276 /* The pre HVC helper handles cases when HVC gets trapped 2277 * as an undefined insn by runtime configuration. 2278 */ 2279 gen_a64_update_pc(s, 0); 2280 gen_helper_pre_hvc(cpu_env); 2281 gen_ss_advance(s); 2282 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2283 break; 2284 case 3: /* SMC */ 2285 if (s->current_el == 0) { 2286 unallocated_encoding(s); 2287 break; 2288 } 2289 gen_a64_update_pc(s, 0); 2290 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2291 gen_ss_advance(s); 2292 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2293 break; 2294 default: 2295 unallocated_encoding(s); 2296 break; 2297 } 2298 break; 2299 case 1: 2300 if (op2_ll != 0) { 2301 unallocated_encoding(s); 2302 break; 2303 } 2304 /* BRK */ 2305 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2306 break; 2307 case 2: 2308 if (op2_ll != 0) { 2309 unallocated_encoding(s); 2310 break; 2311 } 2312 /* HLT. This has two purposes. 2313 * Architecturally, it is an external halting debug instruction. 2314 * Since QEMU doesn't implement external debug, we treat this as 2315 * it is required for halting debug disabled: it will UNDEF. 2316 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2317 */ 2318 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2319 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2320 } else { 2321 unallocated_encoding(s); 2322 } 2323 break; 2324 case 5: 2325 if (op2_ll < 1 || op2_ll > 3) { 2326 unallocated_encoding(s); 2327 break; 2328 } 2329 /* DCPS1, DCPS2, DCPS3 */ 2330 unallocated_encoding(s); 2331 break; 2332 default: 2333 unallocated_encoding(s); 2334 break; 2335 } 2336 } 2337 2338 /* Branches, exception generating and system instructions */ 2339 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2340 { 2341 switch (extract32(insn, 25, 7)) { 2342 case 0x6a: /* Exception generation / System */ 2343 if (insn & (1 << 24)) { 2344 if (extract32(insn, 22, 2) == 0) { 2345 disas_system(s, insn); 2346 } else { 2347 unallocated_encoding(s); 2348 } 2349 } else { 2350 disas_exc(s, insn); 2351 } 2352 break; 2353 default: 2354 unallocated_encoding(s); 2355 break; 2356 } 2357 } 2358 2359 /* 2360 * Load/Store exclusive instructions are implemented by remembering 2361 * the value/address loaded, and seeing if these are the same 2362 * when the store is performed. This is not actually the architecturally 2363 * mandated semantics, but it works for typical guest code sequences 2364 * and avoids having to monitor regular stores. 2365 * 2366 * The store exclusive uses the atomic cmpxchg primitives to avoid 2367 * races in multi-threaded linux-user and when MTTCG softmmu is 2368 * enabled. 2369 */ 2370 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2371 int size, bool is_pair) 2372 { 2373 int idx = get_mem_index(s); 2374 TCGv_i64 dirty_addr, clean_addr; 2375 MemOp memop; 2376 2377 /* 2378 * For pairs: 2379 * if size == 2, the operation is single-copy atomic for the doubleword. 2380 * if size == 3, the operation is single-copy atomic for *each* doubleword, 2381 * not the entire quadword, however it must be quadword aligned. 2382 */ 2383 memop = size + is_pair; 2384 if (memop == MO_128) { 2385 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN, 2386 MO_ATOM_IFALIGN_PAIR); 2387 } else { 2388 memop = finalize_memop(s, memop | MO_ALIGN); 2389 } 2390 2391 s->is_ldex = true; 2392 dirty_addr = cpu_reg_sp(s, rn); 2393 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2394 2395 g_assert(size <= 3); 2396 if (is_pair) { 2397 g_assert(size >= 2); 2398 if (size == 2) { 2399 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2400 if (s->be_data == MO_LE) { 2401 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2402 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2403 } else { 2404 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2405 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2406 } 2407 } else { 2408 TCGv_i128 t16 = tcg_temp_new_i128(); 2409 2410 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2411 2412 if (s->be_data == MO_LE) { 2413 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2414 cpu_exclusive_high, t16); 2415 } else { 2416 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2417 cpu_exclusive_val, t16); 2418 } 2419 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2420 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2421 } 2422 } else { 2423 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2424 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2425 } 2426 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2427 } 2428 2429 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2430 int rn, int size, int is_pair) 2431 { 2432 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2433 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2434 * [addr] = {Rt}; 2435 * if (is_pair) { 2436 * [addr + datasize] = {Rt2}; 2437 * } 2438 * {Rd} = 0; 2439 * } else { 2440 * {Rd} = 1; 2441 * } 2442 * env->exclusive_addr = -1; 2443 */ 2444 TCGLabel *fail_label = gen_new_label(); 2445 TCGLabel *done_label = gen_new_label(); 2446 TCGv_i64 tmp, dirty_addr, clean_addr; 2447 MemOp memop; 2448 2449 memop = (size + is_pair) | MO_ALIGN; 2450 memop = finalize_memop(s, memop); 2451 2452 dirty_addr = cpu_reg_sp(s, rn); 2453 clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, memop); 2454 2455 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2456 2457 tmp = tcg_temp_new_i64(); 2458 if (is_pair) { 2459 if (size == 2) { 2460 if (s->be_data == MO_LE) { 2461 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2462 } else { 2463 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2464 } 2465 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2466 cpu_exclusive_val, tmp, 2467 get_mem_index(s), memop); 2468 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2469 } else { 2470 TCGv_i128 t16 = tcg_temp_new_i128(); 2471 TCGv_i128 c16 = tcg_temp_new_i128(); 2472 TCGv_i64 a, b; 2473 2474 if (s->be_data == MO_LE) { 2475 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2476 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2477 cpu_exclusive_high); 2478 } else { 2479 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2480 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2481 cpu_exclusive_val); 2482 } 2483 2484 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2485 get_mem_index(s), memop); 2486 2487 a = tcg_temp_new_i64(); 2488 b = tcg_temp_new_i64(); 2489 if (s->be_data == MO_LE) { 2490 tcg_gen_extr_i128_i64(a, b, t16); 2491 } else { 2492 tcg_gen_extr_i128_i64(b, a, t16); 2493 } 2494 2495 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2496 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2497 tcg_gen_or_i64(tmp, a, b); 2498 2499 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2500 } 2501 } else { 2502 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2503 cpu_reg(s, rt), get_mem_index(s), memop); 2504 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2505 } 2506 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2507 tcg_gen_br(done_label); 2508 2509 gen_set_label(fail_label); 2510 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2511 gen_set_label(done_label); 2512 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2513 } 2514 2515 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2516 int rn, int size) 2517 { 2518 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2519 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2520 int memidx = get_mem_index(s); 2521 TCGv_i64 clean_addr; 2522 MemOp memop; 2523 2524 if (rn == 31) { 2525 gen_check_sp_alignment(s); 2526 } 2527 memop = finalize_memop(s, size | MO_ALIGN); 2528 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2529 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2530 memidx, memop); 2531 } 2532 2533 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2534 int rn, int size) 2535 { 2536 TCGv_i64 s1 = cpu_reg(s, rs); 2537 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2538 TCGv_i64 t1 = cpu_reg(s, rt); 2539 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2540 TCGv_i64 clean_addr; 2541 int memidx = get_mem_index(s); 2542 MemOp memop; 2543 2544 if (rn == 31) { 2545 gen_check_sp_alignment(s); 2546 } 2547 2548 /* This is a single atomic access, despite the "pair". */ 2549 memop = finalize_memop(s, (size + 1) | MO_ALIGN); 2550 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2551 2552 if (size == 2) { 2553 TCGv_i64 cmp = tcg_temp_new_i64(); 2554 TCGv_i64 val = tcg_temp_new_i64(); 2555 2556 if (s->be_data == MO_LE) { 2557 tcg_gen_concat32_i64(val, t1, t2); 2558 tcg_gen_concat32_i64(cmp, s1, s2); 2559 } else { 2560 tcg_gen_concat32_i64(val, t2, t1); 2561 tcg_gen_concat32_i64(cmp, s2, s1); 2562 } 2563 2564 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2565 2566 if (s->be_data == MO_LE) { 2567 tcg_gen_extr32_i64(s1, s2, cmp); 2568 } else { 2569 tcg_gen_extr32_i64(s2, s1, cmp); 2570 } 2571 } else { 2572 TCGv_i128 cmp = tcg_temp_new_i128(); 2573 TCGv_i128 val = tcg_temp_new_i128(); 2574 2575 if (s->be_data == MO_LE) { 2576 tcg_gen_concat_i64_i128(val, t1, t2); 2577 tcg_gen_concat_i64_i128(cmp, s1, s2); 2578 } else { 2579 tcg_gen_concat_i64_i128(val, t2, t1); 2580 tcg_gen_concat_i64_i128(cmp, s2, s1); 2581 } 2582 2583 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2584 2585 if (s->be_data == MO_LE) { 2586 tcg_gen_extr_i128_i64(s1, s2, cmp); 2587 } else { 2588 tcg_gen_extr_i128_i64(s2, s1, cmp); 2589 } 2590 } 2591 } 2592 2593 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2594 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2595 */ 2596 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2597 { 2598 int opc0 = extract32(opc, 0, 1); 2599 int regsize; 2600 2601 if (is_signed) { 2602 regsize = opc0 ? 32 : 64; 2603 } else { 2604 regsize = size == 3 ? 64 : 32; 2605 } 2606 return regsize == 64; 2607 } 2608 2609 /* Load/store exclusive 2610 * 2611 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2612 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2613 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2614 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2615 * 2616 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2617 * L: 0 -> store, 1 -> load 2618 * o2: 0 -> exclusive, 1 -> not 2619 * o1: 0 -> single register, 1 -> register pair 2620 * o0: 1 -> load-acquire/store-release, 0 -> not 2621 */ 2622 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2623 { 2624 int rt = extract32(insn, 0, 5); 2625 int rn = extract32(insn, 5, 5); 2626 int rt2 = extract32(insn, 10, 5); 2627 int rs = extract32(insn, 16, 5); 2628 int is_lasr = extract32(insn, 15, 1); 2629 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2630 int size = extract32(insn, 30, 2); 2631 TCGv_i64 clean_addr; 2632 MemOp memop; 2633 2634 switch (o2_L_o1_o0) { 2635 case 0x0: /* STXR */ 2636 case 0x1: /* STLXR */ 2637 if (rn == 31) { 2638 gen_check_sp_alignment(s); 2639 } 2640 if (is_lasr) { 2641 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2642 } 2643 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2644 return; 2645 2646 case 0x4: /* LDXR */ 2647 case 0x5: /* LDAXR */ 2648 if (rn == 31) { 2649 gen_check_sp_alignment(s); 2650 } 2651 gen_load_exclusive(s, rt, rt2, rn, size, false); 2652 if (is_lasr) { 2653 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2654 } 2655 return; 2656 2657 case 0x8: /* STLLR */ 2658 if (!dc_isar_feature(aa64_lor, s)) { 2659 break; 2660 } 2661 /* StoreLORelease is the same as Store-Release for QEMU. */ 2662 /* fall through */ 2663 case 0x9: /* STLR */ 2664 /* Generate ISS for non-exclusive accesses including LASR. */ 2665 if (rn == 31) { 2666 gen_check_sp_alignment(s); 2667 } 2668 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2669 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2670 memop = finalize_memop(s, size | MO_ALIGN); 2671 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2672 true, rn != 31, memop); 2673 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2674 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2675 return; 2676 2677 case 0xc: /* LDLAR */ 2678 if (!dc_isar_feature(aa64_lor, s)) { 2679 break; 2680 } 2681 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2682 /* fall through */ 2683 case 0xd: /* LDAR */ 2684 /* Generate ISS for non-exclusive accesses including LASR. */ 2685 if (rn == 31) { 2686 gen_check_sp_alignment(s); 2687 } 2688 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2689 memop = finalize_memop(s, size | MO_ALIGN); 2690 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2691 false, rn != 31, memop); 2692 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2693 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2694 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2695 return; 2696 2697 case 0x2: case 0x3: /* CASP / STXP */ 2698 if (size & 2) { /* STXP / STLXP */ 2699 if (rn == 31) { 2700 gen_check_sp_alignment(s); 2701 } 2702 if (is_lasr) { 2703 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2704 } 2705 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2706 return; 2707 } 2708 if (rt2 == 31 2709 && ((rt | rs) & 1) == 0 2710 && dc_isar_feature(aa64_atomics, s)) { 2711 /* CASP / CASPL */ 2712 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2713 return; 2714 } 2715 break; 2716 2717 case 0x6: case 0x7: /* CASPA / LDXP */ 2718 if (size & 2) { /* LDXP / LDAXP */ 2719 if (rn == 31) { 2720 gen_check_sp_alignment(s); 2721 } 2722 gen_load_exclusive(s, rt, rt2, rn, size, true); 2723 if (is_lasr) { 2724 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2725 } 2726 return; 2727 } 2728 if (rt2 == 31 2729 && ((rt | rs) & 1) == 0 2730 && dc_isar_feature(aa64_atomics, s)) { 2731 /* CASPA / CASPAL */ 2732 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2733 return; 2734 } 2735 break; 2736 2737 case 0xa: /* CAS */ 2738 case 0xb: /* CASL */ 2739 case 0xe: /* CASA */ 2740 case 0xf: /* CASAL */ 2741 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2742 gen_compare_and_swap(s, rs, rt, rn, size); 2743 return; 2744 } 2745 break; 2746 } 2747 unallocated_encoding(s); 2748 } 2749 2750 /* 2751 * Load register (literal) 2752 * 2753 * 31 30 29 27 26 25 24 23 5 4 0 2754 * +-----+-------+---+-----+-------------------+-------+ 2755 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2756 * +-----+-------+---+-----+-------------------+-------+ 2757 * 2758 * V: 1 -> vector (simd/fp) 2759 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2760 * 10-> 32 bit signed, 11 -> prefetch 2761 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2762 */ 2763 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2764 { 2765 int rt = extract32(insn, 0, 5); 2766 int64_t imm = sextract32(insn, 5, 19) << 2; 2767 bool is_vector = extract32(insn, 26, 1); 2768 int opc = extract32(insn, 30, 2); 2769 bool is_signed = false; 2770 int size = 2; 2771 TCGv_i64 tcg_rt, clean_addr; 2772 MemOp memop; 2773 2774 if (is_vector) { 2775 if (opc == 3) { 2776 unallocated_encoding(s); 2777 return; 2778 } 2779 size = 2 + opc; 2780 if (!fp_access_check(s)) { 2781 return; 2782 } 2783 memop = finalize_memop_asimd(s, size); 2784 } else { 2785 if (opc == 3) { 2786 /* PRFM (literal) : prefetch */ 2787 return; 2788 } 2789 size = 2 + extract32(opc, 0, 1); 2790 is_signed = extract32(opc, 1, 1); 2791 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2792 } 2793 2794 tcg_rt = cpu_reg(s, rt); 2795 2796 clean_addr = tcg_temp_new_i64(); 2797 gen_pc_plus_diff(s, clean_addr, imm); 2798 2799 if (is_vector) { 2800 do_fp_ld(s, rt, clean_addr, memop); 2801 } else { 2802 /* Only unsigned 32bit loads target 32bit registers. */ 2803 bool iss_sf = opc != 0; 2804 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2805 } 2806 } 2807 2808 /* 2809 * LDNP (Load Pair - non-temporal hint) 2810 * LDP (Load Pair - non vector) 2811 * LDPSW (Load Pair Signed Word - non vector) 2812 * STNP (Store Pair - non-temporal hint) 2813 * STP (Store Pair - non vector) 2814 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2815 * LDP (Load Pair of SIMD&FP) 2816 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2817 * STP (Store Pair of SIMD&FP) 2818 * 2819 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2820 * +-----+-------+---+---+-------+---+-----------------------------+ 2821 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2822 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2823 * 2824 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2825 * LDPSW/STGP 01 2826 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2827 * V: 0 -> GPR, 1 -> Vector 2828 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2829 * 10 -> signed offset, 11 -> pre-index 2830 * L: 0 -> Store 1 -> Load 2831 * 2832 * Rt, Rt2 = GPR or SIMD registers to be stored 2833 * Rn = general purpose register containing address 2834 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2835 */ 2836 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2837 { 2838 int rt = extract32(insn, 0, 5); 2839 int rn = extract32(insn, 5, 5); 2840 int rt2 = extract32(insn, 10, 5); 2841 uint64_t offset = sextract64(insn, 15, 7); 2842 int index = extract32(insn, 23, 2); 2843 bool is_vector = extract32(insn, 26, 1); 2844 bool is_load = extract32(insn, 22, 1); 2845 int opc = extract32(insn, 30, 2); 2846 bool is_signed = false; 2847 bool postindex = false; 2848 bool wback = false; 2849 bool set_tag = false; 2850 TCGv_i64 clean_addr, dirty_addr; 2851 MemOp mop; 2852 int size; 2853 2854 if (opc == 3) { 2855 unallocated_encoding(s); 2856 return; 2857 } 2858 2859 if (is_vector) { 2860 size = 2 + opc; 2861 } else if (opc == 1 && !is_load) { 2862 /* STGP */ 2863 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2864 unallocated_encoding(s); 2865 return; 2866 } 2867 size = 3; 2868 set_tag = true; 2869 } else { 2870 size = 2 + extract32(opc, 1, 1); 2871 is_signed = extract32(opc, 0, 1); 2872 if (!is_load && is_signed) { 2873 unallocated_encoding(s); 2874 return; 2875 } 2876 } 2877 2878 switch (index) { 2879 case 1: /* post-index */ 2880 postindex = true; 2881 wback = true; 2882 break; 2883 case 0: 2884 /* signed offset with "non-temporal" hint. Since we don't emulate 2885 * caches we don't care about hints to the cache system about 2886 * data access patterns, and handle this identically to plain 2887 * signed offset. 2888 */ 2889 if (is_signed) { 2890 /* There is no non-temporal-hint version of LDPSW */ 2891 unallocated_encoding(s); 2892 return; 2893 } 2894 postindex = false; 2895 break; 2896 case 2: /* signed offset, rn not updated */ 2897 postindex = false; 2898 break; 2899 case 3: /* pre-index */ 2900 postindex = false; 2901 wback = true; 2902 break; 2903 } 2904 2905 if (is_vector && !fp_access_check(s)) { 2906 return; 2907 } 2908 2909 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2910 2911 if (rn == 31) { 2912 gen_check_sp_alignment(s); 2913 } 2914 2915 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2916 if (!postindex) { 2917 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2918 } 2919 2920 if (set_tag) { 2921 if (!s->ata) { 2922 /* 2923 * TODO: We could rely on the stores below, at least for 2924 * system mode, if we arrange to add MO_ALIGN_16. 2925 */ 2926 gen_helper_stg_stub(cpu_env, dirty_addr); 2927 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2928 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2929 } else { 2930 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2931 } 2932 } 2933 2934 if (is_vector) { 2935 mop = finalize_memop_asimd(s, size); 2936 } else { 2937 mop = finalize_memop(s, size); 2938 } 2939 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2940 (wback || rn != 31) && !set_tag, 2941 2 << size, mop); 2942 2943 if (is_vector) { 2944 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2945 if (is_load) { 2946 do_fp_ld(s, rt, clean_addr, mop); 2947 } else { 2948 do_fp_st(s, rt, clean_addr, mop); 2949 } 2950 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2951 if (is_load) { 2952 do_fp_ld(s, rt2, clean_addr, mop); 2953 } else { 2954 do_fp_st(s, rt2, clean_addr, mop); 2955 } 2956 } else { 2957 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2958 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2959 2960 /* 2961 * We built mop above for the single logical access -- rebuild it 2962 * now for the paired operation. 2963 * 2964 * With LSE2, non-sign-extending pairs are treated atomically if 2965 * aligned, and if unaligned one of the pair will be completely 2966 * within a 16-byte block and that element will be atomic. 2967 * Otherwise each element is separately atomic. 2968 * In all cases, issue one operation with the correct atomicity. 2969 * 2970 * This treats sign-extending loads like zero-extending loads, 2971 * since that reuses the most code below. 2972 */ 2973 mop = size + 1; 2974 if (s->align_mem) { 2975 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2976 } 2977 mop = finalize_memop_pair(s, mop); 2978 2979 if (is_load) { 2980 if (size == 2) { 2981 int o2 = s->be_data == MO_LE ? 32 : 0; 2982 int o1 = o2 ^ 32; 2983 2984 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2985 if (is_signed) { 2986 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2987 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2988 } else { 2989 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2990 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2991 } 2992 } else { 2993 TCGv_i128 tmp = tcg_temp_new_i128(); 2994 2995 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2996 if (s->be_data == MO_LE) { 2997 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2998 } else { 2999 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3000 } 3001 } 3002 } else { 3003 if (size == 2) { 3004 TCGv_i64 tmp = tcg_temp_new_i64(); 3005 3006 if (s->be_data == MO_LE) { 3007 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3008 } else { 3009 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3010 } 3011 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3012 } else { 3013 TCGv_i128 tmp = tcg_temp_new_i128(); 3014 3015 if (s->be_data == MO_LE) { 3016 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3017 } else { 3018 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3019 } 3020 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3021 } 3022 } 3023 } 3024 3025 if (wback) { 3026 if (postindex) { 3027 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3028 } 3029 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3030 } 3031 } 3032 3033 /* 3034 * Load/store (immediate post-indexed) 3035 * Load/store (immediate pre-indexed) 3036 * Load/store (unscaled immediate) 3037 * 3038 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3039 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3040 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3041 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3042 * 3043 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3044 10 -> unprivileged 3045 * V = 0 -> non-vector 3046 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3047 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3048 */ 3049 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3050 int opc, 3051 int size, 3052 int rt, 3053 bool is_vector) 3054 { 3055 int rn = extract32(insn, 5, 5); 3056 int imm9 = sextract32(insn, 12, 9); 3057 int idx = extract32(insn, 10, 2); 3058 bool is_signed = false; 3059 bool is_store = false; 3060 bool is_extended = false; 3061 bool is_unpriv = (idx == 2); 3062 bool iss_valid; 3063 bool post_index; 3064 bool writeback; 3065 int memidx; 3066 MemOp memop; 3067 TCGv_i64 clean_addr, dirty_addr; 3068 3069 if (is_vector) { 3070 size |= (opc & 2) << 1; 3071 if (size > 4 || is_unpriv) { 3072 unallocated_encoding(s); 3073 return; 3074 } 3075 is_store = ((opc & 1) == 0); 3076 if (!fp_access_check(s)) { 3077 return; 3078 } 3079 memop = finalize_memop_asimd(s, size); 3080 } else { 3081 if (size == 3 && opc == 2) { 3082 /* PRFM - prefetch */ 3083 if (idx != 0) { 3084 unallocated_encoding(s); 3085 return; 3086 } 3087 return; 3088 } 3089 if (opc == 3 && size > 1) { 3090 unallocated_encoding(s); 3091 return; 3092 } 3093 is_store = (opc == 0); 3094 is_signed = !is_store && extract32(opc, 1, 1); 3095 is_extended = (size < 3) && extract32(opc, 0, 1); 3096 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3097 } 3098 3099 switch (idx) { 3100 case 0: 3101 case 2: 3102 post_index = false; 3103 writeback = false; 3104 break; 3105 case 1: 3106 post_index = true; 3107 writeback = true; 3108 break; 3109 case 3: 3110 post_index = false; 3111 writeback = true; 3112 break; 3113 default: 3114 g_assert_not_reached(); 3115 } 3116 3117 iss_valid = !is_vector && !writeback; 3118 3119 if (rn == 31) { 3120 gen_check_sp_alignment(s); 3121 } 3122 3123 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3124 if (!post_index) { 3125 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3126 } 3127 3128 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3129 3130 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3131 writeback || rn != 31, 3132 size, is_unpriv, memidx); 3133 3134 if (is_vector) { 3135 if (is_store) { 3136 do_fp_st(s, rt, clean_addr, memop); 3137 } else { 3138 do_fp_ld(s, rt, clean_addr, memop); 3139 } 3140 } else { 3141 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3142 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3143 3144 if (is_store) { 3145 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3146 iss_valid, rt, iss_sf, false); 3147 } else { 3148 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3149 is_extended, memidx, 3150 iss_valid, rt, iss_sf, false); 3151 } 3152 } 3153 3154 if (writeback) { 3155 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3156 if (post_index) { 3157 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3158 } 3159 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3160 } 3161 } 3162 3163 /* 3164 * Load/store (register offset) 3165 * 3166 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3167 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3168 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3169 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3170 * 3171 * For non-vector: 3172 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3173 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3174 * For vector: 3175 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3176 * opc<0>: 0 -> store, 1 -> load 3177 * V: 1 -> vector/simd 3178 * opt: extend encoding (see DecodeRegExtend) 3179 * S: if S=1 then scale (essentially index by sizeof(size)) 3180 * Rt: register to transfer into/out of 3181 * Rn: address register or SP for base 3182 * Rm: offset register or ZR for offset 3183 */ 3184 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3185 int opc, 3186 int size, 3187 int rt, 3188 bool is_vector) 3189 { 3190 int rn = extract32(insn, 5, 5); 3191 int shift = extract32(insn, 12, 1); 3192 int rm = extract32(insn, 16, 5); 3193 int opt = extract32(insn, 13, 3); 3194 bool is_signed = false; 3195 bool is_store = false; 3196 bool is_extended = false; 3197 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3198 MemOp memop; 3199 3200 if (extract32(opt, 1, 1) == 0) { 3201 unallocated_encoding(s); 3202 return; 3203 } 3204 3205 if (is_vector) { 3206 size |= (opc & 2) << 1; 3207 if (size > 4) { 3208 unallocated_encoding(s); 3209 return; 3210 } 3211 is_store = !extract32(opc, 0, 1); 3212 if (!fp_access_check(s)) { 3213 return; 3214 } 3215 } else { 3216 if (size == 3 && opc == 2) { 3217 /* PRFM - prefetch */ 3218 return; 3219 } 3220 if (opc == 3 && size > 1) { 3221 unallocated_encoding(s); 3222 return; 3223 } 3224 is_store = (opc == 0); 3225 is_signed = !is_store && extract32(opc, 1, 1); 3226 is_extended = (size < 3) && extract32(opc, 0, 1); 3227 } 3228 3229 if (rn == 31) { 3230 gen_check_sp_alignment(s); 3231 } 3232 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3233 3234 tcg_rm = read_cpu_reg(s, rm, 1); 3235 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3236 3237 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3238 3239 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3240 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3241 3242 if (is_vector) { 3243 if (is_store) { 3244 do_fp_st(s, rt, clean_addr, memop); 3245 } else { 3246 do_fp_ld(s, rt, clean_addr, memop); 3247 } 3248 } else { 3249 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3250 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3251 3252 if (is_store) { 3253 do_gpr_st(s, tcg_rt, clean_addr, memop, 3254 true, rt, iss_sf, false); 3255 } else { 3256 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3257 is_extended, true, rt, iss_sf, false); 3258 } 3259 } 3260 } 3261 3262 /* 3263 * Load/store (unsigned immediate) 3264 * 3265 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3266 * +----+-------+---+-----+-----+------------+-------+------+ 3267 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3268 * +----+-------+---+-----+-----+------------+-------+------+ 3269 * 3270 * For non-vector: 3271 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3272 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3273 * For vector: 3274 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3275 * opc<0>: 0 -> store, 1 -> load 3276 * Rn: base address register (inc SP) 3277 * Rt: target register 3278 */ 3279 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3280 int opc, 3281 int size, 3282 int rt, 3283 bool is_vector) 3284 { 3285 int rn = extract32(insn, 5, 5); 3286 unsigned int imm12 = extract32(insn, 10, 12); 3287 unsigned int offset; 3288 TCGv_i64 clean_addr, dirty_addr; 3289 bool is_store; 3290 bool is_signed = false; 3291 bool is_extended = false; 3292 MemOp memop; 3293 3294 if (is_vector) { 3295 size |= (opc & 2) << 1; 3296 if (size > 4) { 3297 unallocated_encoding(s); 3298 return; 3299 } 3300 is_store = !extract32(opc, 0, 1); 3301 if (!fp_access_check(s)) { 3302 return; 3303 } 3304 } else { 3305 if (size == 3 && opc == 2) { 3306 /* PRFM - prefetch */ 3307 return; 3308 } 3309 if (opc == 3 && size > 1) { 3310 unallocated_encoding(s); 3311 return; 3312 } 3313 is_store = (opc == 0); 3314 is_signed = !is_store && extract32(opc, 1, 1); 3315 is_extended = (size < 3) && extract32(opc, 0, 1); 3316 } 3317 3318 if (rn == 31) { 3319 gen_check_sp_alignment(s); 3320 } 3321 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3322 offset = imm12 << size; 3323 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3324 3325 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3326 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3327 3328 if (is_vector) { 3329 if (is_store) { 3330 do_fp_st(s, rt, clean_addr, memop); 3331 } else { 3332 do_fp_ld(s, rt, clean_addr, memop); 3333 } 3334 } else { 3335 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3336 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3337 if (is_store) { 3338 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3339 } else { 3340 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3341 is_extended, true, rt, iss_sf, false); 3342 } 3343 } 3344 } 3345 3346 /* Atomic memory operations 3347 * 3348 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3349 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3350 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3351 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3352 * 3353 * Rt: the result register 3354 * Rn: base address or SP 3355 * Rs: the source register for the operation 3356 * V: vector flag (always 0 as of v8.3) 3357 * A: acquire flag 3358 * R: release flag 3359 */ 3360 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3361 int size, int rt, bool is_vector) 3362 { 3363 int rs = extract32(insn, 16, 5); 3364 int rn = extract32(insn, 5, 5); 3365 int o3_opc = extract32(insn, 12, 4); 3366 bool r = extract32(insn, 22, 1); 3367 bool a = extract32(insn, 23, 1); 3368 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3369 AtomicThreeOpFn *fn = NULL; 3370 MemOp mop = finalize_memop(s, size | MO_ALIGN); 3371 3372 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3373 unallocated_encoding(s); 3374 return; 3375 } 3376 switch (o3_opc) { 3377 case 000: /* LDADD */ 3378 fn = tcg_gen_atomic_fetch_add_i64; 3379 break; 3380 case 001: /* LDCLR */ 3381 fn = tcg_gen_atomic_fetch_and_i64; 3382 break; 3383 case 002: /* LDEOR */ 3384 fn = tcg_gen_atomic_fetch_xor_i64; 3385 break; 3386 case 003: /* LDSET */ 3387 fn = tcg_gen_atomic_fetch_or_i64; 3388 break; 3389 case 004: /* LDSMAX */ 3390 fn = tcg_gen_atomic_fetch_smax_i64; 3391 mop |= MO_SIGN; 3392 break; 3393 case 005: /* LDSMIN */ 3394 fn = tcg_gen_atomic_fetch_smin_i64; 3395 mop |= MO_SIGN; 3396 break; 3397 case 006: /* LDUMAX */ 3398 fn = tcg_gen_atomic_fetch_umax_i64; 3399 break; 3400 case 007: /* LDUMIN */ 3401 fn = tcg_gen_atomic_fetch_umin_i64; 3402 break; 3403 case 010: /* SWP */ 3404 fn = tcg_gen_atomic_xchg_i64; 3405 break; 3406 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3407 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3408 rs != 31 || a != 1 || r != 0) { 3409 unallocated_encoding(s); 3410 return; 3411 } 3412 break; 3413 default: 3414 unallocated_encoding(s); 3415 return; 3416 } 3417 3418 if (rn == 31) { 3419 gen_check_sp_alignment(s); 3420 } 3421 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3422 3423 if (o3_opc == 014) { 3424 /* 3425 * LDAPR* are a special case because they are a simple load, not a 3426 * fetch-and-do-something op. 3427 * The architectural consistency requirements here are weaker than 3428 * full load-acquire (we only need "load-acquire processor consistent"), 3429 * but we choose to implement them as full LDAQ. 3430 */ 3431 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3432 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3433 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3434 return; 3435 } 3436 3437 tcg_rs = read_cpu_reg(s, rs, true); 3438 tcg_rt = cpu_reg(s, rt); 3439 3440 if (o3_opc == 1) { /* LDCLR */ 3441 tcg_gen_not_i64(tcg_rs, tcg_rs); 3442 } 3443 3444 /* The tcg atomic primitives are all full barriers. Therefore we 3445 * can ignore the Acquire and Release bits of this instruction. 3446 */ 3447 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3448 3449 if ((mop & MO_SIGN) && size != MO_64) { 3450 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3451 } 3452 } 3453 3454 /* 3455 * PAC memory operations 3456 * 3457 * 31 30 27 26 24 22 21 12 11 10 5 0 3458 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3459 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3460 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3461 * 3462 * Rt: the result register 3463 * Rn: base address or SP 3464 * V: vector flag (always 0 as of v8.3) 3465 * M: clear for key DA, set for key DB 3466 * W: pre-indexing flag 3467 * S: sign for imm9. 3468 */ 3469 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3470 int size, int rt, bool is_vector) 3471 { 3472 int rn = extract32(insn, 5, 5); 3473 bool is_wback = extract32(insn, 11, 1); 3474 bool use_key_a = !extract32(insn, 23, 1); 3475 int offset; 3476 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3477 MemOp memop; 3478 3479 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3480 unallocated_encoding(s); 3481 return; 3482 } 3483 3484 if (rn == 31) { 3485 gen_check_sp_alignment(s); 3486 } 3487 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3488 3489 if (s->pauth_active) { 3490 if (use_key_a) { 3491 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3492 tcg_constant_i64(0)); 3493 } else { 3494 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3495 tcg_constant_i64(0)); 3496 } 3497 } 3498 3499 /* Form the 10-bit signed, scaled offset. */ 3500 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3501 offset = sextract32(offset << size, 0, 10 + size); 3502 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3503 3504 memop = finalize_memop(s, size); 3505 3506 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3507 clean_addr = gen_mte_check1(s, dirty_addr, false, 3508 is_wback || rn != 31, memop); 3509 3510 tcg_rt = cpu_reg(s, rt); 3511 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3512 /* extend */ false, /* iss_valid */ !is_wback, 3513 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3514 3515 if (is_wback) { 3516 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3517 } 3518 } 3519 3520 /* 3521 * LDAPR/STLR (unscaled immediate) 3522 * 3523 * 31 30 24 22 21 12 10 5 0 3524 * +------+-------------+-----+---+--------+-----+----+-----+ 3525 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3526 * +------+-------------+-----+---+--------+-----+----+-----+ 3527 * 3528 * Rt: source or destination register 3529 * Rn: base register 3530 * imm9: unscaled immediate offset 3531 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3532 * size: size of load/store 3533 */ 3534 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3535 { 3536 int rt = extract32(insn, 0, 5); 3537 int rn = extract32(insn, 5, 5); 3538 int offset = sextract32(insn, 12, 9); 3539 int opc = extract32(insn, 22, 2); 3540 int size = extract32(insn, 30, 2); 3541 TCGv_i64 clean_addr, dirty_addr; 3542 bool is_store = false; 3543 bool extend = false; 3544 bool iss_sf; 3545 MemOp mop; 3546 3547 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3548 unallocated_encoding(s); 3549 return; 3550 } 3551 3552 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3553 mop = finalize_memop(s, size | MO_ALIGN); 3554 3555 switch (opc) { 3556 case 0: /* STLURB */ 3557 is_store = true; 3558 break; 3559 case 1: /* LDAPUR* */ 3560 break; 3561 case 2: /* LDAPURS* 64-bit variant */ 3562 if (size == 3) { 3563 unallocated_encoding(s); 3564 return; 3565 } 3566 mop |= MO_SIGN; 3567 break; 3568 case 3: /* LDAPURS* 32-bit variant */ 3569 if (size > 1) { 3570 unallocated_encoding(s); 3571 return; 3572 } 3573 mop |= MO_SIGN; 3574 extend = true; /* zero-extend 32->64 after signed load */ 3575 break; 3576 default: 3577 g_assert_not_reached(); 3578 } 3579 3580 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3581 3582 if (rn == 31) { 3583 gen_check_sp_alignment(s); 3584 } 3585 3586 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3587 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3588 clean_addr = clean_data_tbi(s, dirty_addr); 3589 3590 if (is_store) { 3591 /* Store-Release semantics */ 3592 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3593 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3594 } else { 3595 /* 3596 * Load-AcquirePC semantics; we implement as the slightly more 3597 * restrictive Load-Acquire. 3598 */ 3599 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3600 extend, true, rt, iss_sf, true); 3601 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3602 } 3603 } 3604 3605 /* Load/store register (all forms) */ 3606 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3607 { 3608 int rt = extract32(insn, 0, 5); 3609 int opc = extract32(insn, 22, 2); 3610 bool is_vector = extract32(insn, 26, 1); 3611 int size = extract32(insn, 30, 2); 3612 3613 switch (extract32(insn, 24, 2)) { 3614 case 0: 3615 if (extract32(insn, 21, 1) == 0) { 3616 /* Load/store register (unscaled immediate) 3617 * Load/store immediate pre/post-indexed 3618 * Load/store register unprivileged 3619 */ 3620 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3621 return; 3622 } 3623 switch (extract32(insn, 10, 2)) { 3624 case 0: 3625 disas_ldst_atomic(s, insn, size, rt, is_vector); 3626 return; 3627 case 2: 3628 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3629 return; 3630 default: 3631 disas_ldst_pac(s, insn, size, rt, is_vector); 3632 return; 3633 } 3634 break; 3635 case 1: 3636 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3637 return; 3638 } 3639 unallocated_encoding(s); 3640 } 3641 3642 /* AdvSIMD load/store multiple structures 3643 * 3644 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3645 * +---+---+---------------+---+-------------+--------+------+------+------+ 3646 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3647 * +---+---+---------------+---+-------------+--------+------+------+------+ 3648 * 3649 * AdvSIMD load/store multiple structures (post-indexed) 3650 * 3651 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3652 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3653 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3654 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3655 * 3656 * Rt: first (or only) SIMD&FP register to be transferred 3657 * Rn: base address or SP 3658 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3659 */ 3660 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3661 { 3662 int rt = extract32(insn, 0, 5); 3663 int rn = extract32(insn, 5, 5); 3664 int rm = extract32(insn, 16, 5); 3665 int size = extract32(insn, 10, 2); 3666 int opcode = extract32(insn, 12, 4); 3667 bool is_store = !extract32(insn, 22, 1); 3668 bool is_postidx = extract32(insn, 23, 1); 3669 bool is_q = extract32(insn, 30, 1); 3670 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3671 MemOp endian, align, mop; 3672 3673 int total; /* total bytes */ 3674 int elements; /* elements per vector */ 3675 int rpt; /* num iterations */ 3676 int selem; /* structure elements */ 3677 int r; 3678 3679 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3680 unallocated_encoding(s); 3681 return; 3682 } 3683 3684 if (!is_postidx && rm != 0) { 3685 unallocated_encoding(s); 3686 return; 3687 } 3688 3689 /* From the shared decode logic */ 3690 switch (opcode) { 3691 case 0x0: 3692 rpt = 1; 3693 selem = 4; 3694 break; 3695 case 0x2: 3696 rpt = 4; 3697 selem = 1; 3698 break; 3699 case 0x4: 3700 rpt = 1; 3701 selem = 3; 3702 break; 3703 case 0x6: 3704 rpt = 3; 3705 selem = 1; 3706 break; 3707 case 0x7: 3708 rpt = 1; 3709 selem = 1; 3710 break; 3711 case 0x8: 3712 rpt = 1; 3713 selem = 2; 3714 break; 3715 case 0xa: 3716 rpt = 2; 3717 selem = 1; 3718 break; 3719 default: 3720 unallocated_encoding(s); 3721 return; 3722 } 3723 3724 if (size == 3 && !is_q && selem != 1) { 3725 /* reserved */ 3726 unallocated_encoding(s); 3727 return; 3728 } 3729 3730 if (!fp_access_check(s)) { 3731 return; 3732 } 3733 3734 if (rn == 31) { 3735 gen_check_sp_alignment(s); 3736 } 3737 3738 /* For our purposes, bytes are always little-endian. */ 3739 endian = s->be_data; 3740 if (size == 0) { 3741 endian = MO_LE; 3742 } 3743 3744 total = rpt * selem * (is_q ? 16 : 8); 3745 tcg_rn = cpu_reg_sp(s, rn); 3746 3747 /* 3748 * Issue the MTE check vs the logical repeat count, before we 3749 * promote consecutive little-endian elements below. 3750 */ 3751 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3752 total, finalize_memop(s, size)); 3753 3754 /* 3755 * Consecutive little-endian elements from a single register 3756 * can be promoted to a larger little-endian operation. 3757 */ 3758 align = MO_ALIGN; 3759 if (selem == 1 && endian == MO_LE) { 3760 align = pow2_align(size); 3761 size = 3; 3762 } 3763 if (!s->align_mem) { 3764 align = 0; 3765 } 3766 mop = endian | size | align; 3767 3768 elements = (is_q ? 16 : 8) >> size; 3769 tcg_ebytes = tcg_constant_i64(1 << size); 3770 for (r = 0; r < rpt; r++) { 3771 int e; 3772 for (e = 0; e < elements; e++) { 3773 int xs; 3774 for (xs = 0; xs < selem; xs++) { 3775 int tt = (rt + r + xs) % 32; 3776 if (is_store) { 3777 do_vec_st(s, tt, e, clean_addr, mop); 3778 } else { 3779 do_vec_ld(s, tt, e, clean_addr, mop); 3780 } 3781 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3782 } 3783 } 3784 } 3785 3786 if (!is_store) { 3787 /* For non-quad operations, setting a slice of the low 3788 * 64 bits of the register clears the high 64 bits (in 3789 * the ARM ARM pseudocode this is implicit in the fact 3790 * that 'rval' is a 64 bit wide variable). 3791 * For quad operations, we might still need to zero the 3792 * high bits of SVE. 3793 */ 3794 for (r = 0; r < rpt * selem; r++) { 3795 int tt = (rt + r) % 32; 3796 clear_vec_high(s, is_q, tt); 3797 } 3798 } 3799 3800 if (is_postidx) { 3801 if (rm == 31) { 3802 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3803 } else { 3804 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3805 } 3806 } 3807 } 3808 3809 /* AdvSIMD load/store single structure 3810 * 3811 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3812 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3813 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3814 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3815 * 3816 * AdvSIMD load/store single structure (post-indexed) 3817 * 3818 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3819 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3820 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3821 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3822 * 3823 * Rt: first (or only) SIMD&FP register to be transferred 3824 * Rn: base address or SP 3825 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3826 * index = encoded in Q:S:size dependent on size 3827 * 3828 * lane_size = encoded in R, opc 3829 * transfer width = encoded in opc, S, size 3830 */ 3831 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3832 { 3833 int rt = extract32(insn, 0, 5); 3834 int rn = extract32(insn, 5, 5); 3835 int rm = extract32(insn, 16, 5); 3836 int size = extract32(insn, 10, 2); 3837 int S = extract32(insn, 12, 1); 3838 int opc = extract32(insn, 13, 3); 3839 int R = extract32(insn, 21, 1); 3840 int is_load = extract32(insn, 22, 1); 3841 int is_postidx = extract32(insn, 23, 1); 3842 int is_q = extract32(insn, 30, 1); 3843 3844 int scale = extract32(opc, 1, 2); 3845 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3846 bool replicate = false; 3847 int index = is_q << 3 | S << 2 | size; 3848 int xs, total; 3849 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3850 MemOp mop; 3851 3852 if (extract32(insn, 31, 1)) { 3853 unallocated_encoding(s); 3854 return; 3855 } 3856 if (!is_postidx && rm != 0) { 3857 unallocated_encoding(s); 3858 return; 3859 } 3860 3861 switch (scale) { 3862 case 3: 3863 if (!is_load || S) { 3864 unallocated_encoding(s); 3865 return; 3866 } 3867 scale = size; 3868 replicate = true; 3869 break; 3870 case 0: 3871 break; 3872 case 1: 3873 if (extract32(size, 0, 1)) { 3874 unallocated_encoding(s); 3875 return; 3876 } 3877 index >>= 1; 3878 break; 3879 case 2: 3880 if (extract32(size, 1, 1)) { 3881 unallocated_encoding(s); 3882 return; 3883 } 3884 if (!extract32(size, 0, 1)) { 3885 index >>= 2; 3886 } else { 3887 if (S) { 3888 unallocated_encoding(s); 3889 return; 3890 } 3891 index >>= 3; 3892 scale = 3; 3893 } 3894 break; 3895 default: 3896 g_assert_not_reached(); 3897 } 3898 3899 if (!fp_access_check(s)) { 3900 return; 3901 } 3902 3903 if (rn == 31) { 3904 gen_check_sp_alignment(s); 3905 } 3906 3907 total = selem << scale; 3908 tcg_rn = cpu_reg_sp(s, rn); 3909 3910 mop = finalize_memop(s, scale); 3911 3912 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3913 total, mop); 3914 3915 tcg_ebytes = tcg_constant_i64(1 << scale); 3916 for (xs = 0; xs < selem; xs++) { 3917 if (replicate) { 3918 /* Load and replicate to all elements */ 3919 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3920 3921 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3922 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3923 (is_q + 1) * 8, vec_full_reg_size(s), 3924 tcg_tmp); 3925 } else { 3926 /* Load/store one element per register */ 3927 if (is_load) { 3928 do_vec_ld(s, rt, index, clean_addr, mop); 3929 } else { 3930 do_vec_st(s, rt, index, clean_addr, mop); 3931 } 3932 } 3933 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3934 rt = (rt + 1) % 32; 3935 } 3936 3937 if (is_postidx) { 3938 if (rm == 31) { 3939 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3940 } else { 3941 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3942 } 3943 } 3944 } 3945 3946 /* 3947 * Load/Store memory tags 3948 * 3949 * 31 30 29 24 22 21 12 10 5 0 3950 * +-----+-------------+-----+---+------+-----+------+------+ 3951 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3952 * +-----+-------------+-----+---+------+-----+------+------+ 3953 */ 3954 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3955 { 3956 int rt = extract32(insn, 0, 5); 3957 int rn = extract32(insn, 5, 5); 3958 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3959 int op2 = extract32(insn, 10, 2); 3960 int op1 = extract32(insn, 22, 2); 3961 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3962 int index = 0; 3963 TCGv_i64 addr, clean_addr, tcg_rt; 3964 3965 /* We checked insn bits [29:24,21] in the caller. */ 3966 if (extract32(insn, 30, 2) != 3) { 3967 goto do_unallocated; 3968 } 3969 3970 /* 3971 * @index is a tri-state variable which has 3 states: 3972 * < 0 : post-index, writeback 3973 * = 0 : signed offset 3974 * > 0 : pre-index, writeback 3975 */ 3976 switch (op1) { 3977 case 0: 3978 if (op2 != 0) { 3979 /* STG */ 3980 index = op2 - 2; 3981 } else { 3982 /* STZGM */ 3983 if (s->current_el == 0 || offset != 0) { 3984 goto do_unallocated; 3985 } 3986 is_mult = is_zero = true; 3987 } 3988 break; 3989 case 1: 3990 if (op2 != 0) { 3991 /* STZG */ 3992 is_zero = true; 3993 index = op2 - 2; 3994 } else { 3995 /* LDG */ 3996 is_load = true; 3997 } 3998 break; 3999 case 2: 4000 if (op2 != 0) { 4001 /* ST2G */ 4002 is_pair = true; 4003 index = op2 - 2; 4004 } else { 4005 /* STGM */ 4006 if (s->current_el == 0 || offset != 0) { 4007 goto do_unallocated; 4008 } 4009 is_mult = true; 4010 } 4011 break; 4012 case 3: 4013 if (op2 != 0) { 4014 /* STZ2G */ 4015 is_pair = is_zero = true; 4016 index = op2 - 2; 4017 } else { 4018 /* LDGM */ 4019 if (s->current_el == 0 || offset != 0) { 4020 goto do_unallocated; 4021 } 4022 is_mult = is_load = true; 4023 } 4024 break; 4025 4026 default: 4027 do_unallocated: 4028 unallocated_encoding(s); 4029 return; 4030 } 4031 4032 if (is_mult 4033 ? !dc_isar_feature(aa64_mte, s) 4034 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4035 goto do_unallocated; 4036 } 4037 4038 if (rn == 31) { 4039 gen_check_sp_alignment(s); 4040 } 4041 4042 addr = read_cpu_reg_sp(s, rn, true); 4043 if (index >= 0) { 4044 /* pre-index or signed offset */ 4045 tcg_gen_addi_i64(addr, addr, offset); 4046 } 4047 4048 if (is_mult) { 4049 tcg_rt = cpu_reg(s, rt); 4050 4051 if (is_zero) { 4052 int size = 4 << s->dcz_blocksize; 4053 4054 if (s->ata) { 4055 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4056 } 4057 /* 4058 * The non-tags portion of STZGM is mostly like DC_ZVA, 4059 * except the alignment happens before the access. 4060 */ 4061 clean_addr = clean_data_tbi(s, addr); 4062 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4063 gen_helper_dc_zva(cpu_env, clean_addr); 4064 } else if (s->ata) { 4065 if (is_load) { 4066 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4067 } else { 4068 gen_helper_stgm(cpu_env, addr, tcg_rt); 4069 } 4070 } else { 4071 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4072 int size = 4 << GMID_EL1_BS; 4073 4074 clean_addr = clean_data_tbi(s, addr); 4075 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4076 gen_probe_access(s, clean_addr, acc, size); 4077 4078 if (is_load) { 4079 /* The result tags are zeros. */ 4080 tcg_gen_movi_i64(tcg_rt, 0); 4081 } 4082 } 4083 return; 4084 } 4085 4086 if (is_load) { 4087 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4088 tcg_rt = cpu_reg(s, rt); 4089 if (s->ata) { 4090 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4091 } else { 4092 clean_addr = clean_data_tbi(s, addr); 4093 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4094 gen_address_with_allocation_tag0(tcg_rt, addr); 4095 } 4096 } else { 4097 tcg_rt = cpu_reg_sp(s, rt); 4098 if (!s->ata) { 4099 /* 4100 * For STG and ST2G, we need to check alignment and probe memory. 4101 * TODO: For STZG and STZ2G, we could rely on the stores below, 4102 * at least for system mode; user-only won't enforce alignment. 4103 */ 4104 if (is_pair) { 4105 gen_helper_st2g_stub(cpu_env, addr); 4106 } else { 4107 gen_helper_stg_stub(cpu_env, addr); 4108 } 4109 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4110 if (is_pair) { 4111 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4112 } else { 4113 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4114 } 4115 } else { 4116 if (is_pair) { 4117 gen_helper_st2g(cpu_env, addr, tcg_rt); 4118 } else { 4119 gen_helper_stg(cpu_env, addr, tcg_rt); 4120 } 4121 } 4122 } 4123 4124 if (is_zero) { 4125 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4126 TCGv_i64 zero64 = tcg_constant_i64(0); 4127 TCGv_i128 zero128 = tcg_temp_new_i128(); 4128 int mem_index = get_mem_index(s); 4129 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4130 4131 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4132 4133 /* This is 1 or 2 atomic 16-byte operations. */ 4134 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4135 if (is_pair) { 4136 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4137 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4138 } 4139 } 4140 4141 if (index != 0) { 4142 /* pre-index or post-index */ 4143 if (index < 0) { 4144 /* post-index */ 4145 tcg_gen_addi_i64(addr, addr, offset); 4146 } 4147 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4148 } 4149 } 4150 4151 /* Loads and stores */ 4152 static void disas_ldst(DisasContext *s, uint32_t insn) 4153 { 4154 switch (extract32(insn, 24, 6)) { 4155 case 0x08: /* Load/store exclusive */ 4156 disas_ldst_excl(s, insn); 4157 break; 4158 case 0x18: case 0x1c: /* Load register (literal) */ 4159 disas_ld_lit(s, insn); 4160 break; 4161 case 0x28: case 0x29: 4162 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4163 disas_ldst_pair(s, insn); 4164 break; 4165 case 0x38: case 0x39: 4166 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4167 disas_ldst_reg(s, insn); 4168 break; 4169 case 0x0c: /* AdvSIMD load/store multiple structures */ 4170 disas_ldst_multiple_struct(s, insn); 4171 break; 4172 case 0x0d: /* AdvSIMD load/store single structure */ 4173 disas_ldst_single_struct(s, insn); 4174 break; 4175 case 0x19: 4176 if (extract32(insn, 21, 1) != 0) { 4177 disas_ldst_tag(s, insn); 4178 } else if (extract32(insn, 10, 2) == 0) { 4179 disas_ldst_ldapr_stlr(s, insn); 4180 } else { 4181 unallocated_encoding(s); 4182 } 4183 break; 4184 default: 4185 unallocated_encoding(s); 4186 break; 4187 } 4188 } 4189 4190 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4191 4192 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4193 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4194 { 4195 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4196 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4197 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4198 4199 fn(tcg_rd, tcg_rn, tcg_imm); 4200 if (!a->sf) { 4201 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4202 } 4203 return true; 4204 } 4205 4206 /* 4207 * PC-rel. addressing 4208 */ 4209 4210 static bool trans_ADR(DisasContext *s, arg_ri *a) 4211 { 4212 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4213 return true; 4214 } 4215 4216 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4217 { 4218 int64_t offset = (int64_t)a->imm << 12; 4219 4220 /* The page offset is ok for CF_PCREL. */ 4221 offset -= s->pc_curr & 0xfff; 4222 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4223 return true; 4224 } 4225 4226 /* 4227 * Add/subtract (immediate) 4228 */ 4229 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4230 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4231 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4232 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4233 4234 /* 4235 * Add/subtract (immediate, with tags) 4236 */ 4237 4238 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4239 bool sub_op) 4240 { 4241 TCGv_i64 tcg_rn, tcg_rd; 4242 int imm; 4243 4244 imm = a->uimm6 << LOG2_TAG_GRANULE; 4245 if (sub_op) { 4246 imm = -imm; 4247 } 4248 4249 tcg_rn = cpu_reg_sp(s, a->rn); 4250 tcg_rd = cpu_reg_sp(s, a->rd); 4251 4252 if (s->ata) { 4253 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4254 tcg_constant_i32(imm), 4255 tcg_constant_i32(a->uimm4)); 4256 } else { 4257 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4258 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4259 } 4260 return true; 4261 } 4262 4263 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4264 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4265 4266 /* The input should be a value in the bottom e bits (with higher 4267 * bits zero); returns that value replicated into every element 4268 * of size e in a 64 bit integer. 4269 */ 4270 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4271 { 4272 assert(e != 0); 4273 while (e < 64) { 4274 mask |= mask << e; 4275 e *= 2; 4276 } 4277 return mask; 4278 } 4279 4280 /* 4281 * Logical (immediate) 4282 */ 4283 4284 /* 4285 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4286 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4287 * value (ie should cause a guest UNDEF exception), and true if they are 4288 * valid, in which case the decoded bit pattern is written to result. 4289 */ 4290 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4291 unsigned int imms, unsigned int immr) 4292 { 4293 uint64_t mask; 4294 unsigned e, levels, s, r; 4295 int len; 4296 4297 assert(immn < 2 && imms < 64 && immr < 64); 4298 4299 /* The bit patterns we create here are 64 bit patterns which 4300 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4301 * 64 bits each. Each element contains the same value: a run 4302 * of between 1 and e-1 non-zero bits, rotated within the 4303 * element by between 0 and e-1 bits. 4304 * 4305 * The element size and run length are encoded into immn (1 bit) 4306 * and imms (6 bits) as follows: 4307 * 64 bit elements: immn = 1, imms = <length of run - 1> 4308 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4309 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4310 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4311 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4312 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4313 * Notice that immn = 0, imms = 11111x is the only combination 4314 * not covered by one of the above options; this is reserved. 4315 * Further, <length of run - 1> all-ones is a reserved pattern. 4316 * 4317 * In all cases the rotation is by immr % e (and immr is 6 bits). 4318 */ 4319 4320 /* First determine the element size */ 4321 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4322 if (len < 1) { 4323 /* This is the immn == 0, imms == 0x11111x case */ 4324 return false; 4325 } 4326 e = 1 << len; 4327 4328 levels = e - 1; 4329 s = imms & levels; 4330 r = immr & levels; 4331 4332 if (s == levels) { 4333 /* <length of run - 1> mustn't be all-ones. */ 4334 return false; 4335 } 4336 4337 /* Create the value of one element: s+1 set bits rotated 4338 * by r within the element (which is e bits wide)... 4339 */ 4340 mask = MAKE_64BIT_MASK(0, s + 1); 4341 if (r) { 4342 mask = (mask >> r) | (mask << (e - r)); 4343 mask &= MAKE_64BIT_MASK(0, e); 4344 } 4345 /* ...then replicate the element over the whole 64 bit value */ 4346 mask = bitfield_replicate(mask, e); 4347 *result = mask; 4348 return true; 4349 } 4350 4351 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4352 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4353 { 4354 TCGv_i64 tcg_rd, tcg_rn; 4355 uint64_t imm; 4356 4357 /* Some immediate field values are reserved. */ 4358 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4359 extract32(a->dbm, 0, 6), 4360 extract32(a->dbm, 6, 6))) { 4361 return false; 4362 } 4363 if (!a->sf) { 4364 imm &= 0xffffffffull; 4365 } 4366 4367 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4368 tcg_rn = cpu_reg(s, a->rn); 4369 4370 fn(tcg_rd, tcg_rn, imm); 4371 if (set_cc) { 4372 gen_logic_CC(a->sf, tcg_rd); 4373 } 4374 if (!a->sf) { 4375 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4376 } 4377 return true; 4378 } 4379 4380 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4381 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4382 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4383 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4384 4385 /* 4386 * Move wide (immediate) 4387 */ 4388 4389 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4390 { 4391 int pos = a->hw << 4; 4392 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4393 return true; 4394 } 4395 4396 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4397 { 4398 int pos = a->hw << 4; 4399 uint64_t imm = a->imm; 4400 4401 imm = ~(imm << pos); 4402 if (!a->sf) { 4403 imm = (uint32_t)imm; 4404 } 4405 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4406 return true; 4407 } 4408 4409 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4410 { 4411 int pos = a->hw << 4; 4412 TCGv_i64 tcg_rd, tcg_im; 4413 4414 tcg_rd = cpu_reg(s, a->rd); 4415 tcg_im = tcg_constant_i64(a->imm); 4416 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4417 if (!a->sf) { 4418 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4419 } 4420 return true; 4421 } 4422 4423 /* 4424 * Bitfield 4425 */ 4426 4427 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4428 { 4429 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4430 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4431 unsigned int bitsize = a->sf ? 64 : 32; 4432 unsigned int ri = a->immr; 4433 unsigned int si = a->imms; 4434 unsigned int pos, len; 4435 4436 if (si >= ri) { 4437 /* Wd<s-r:0> = Wn<s:r> */ 4438 len = (si - ri) + 1; 4439 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4440 if (!a->sf) { 4441 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4442 } 4443 } else { 4444 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4445 len = si + 1; 4446 pos = (bitsize - ri) & (bitsize - 1); 4447 4448 if (len < ri) { 4449 /* 4450 * Sign extend the destination field from len to fill the 4451 * balance of the word. Let the deposit below insert all 4452 * of those sign bits. 4453 */ 4454 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4455 len = ri; 4456 } 4457 4458 /* 4459 * We start with zero, and we haven't modified any bits outside 4460 * bitsize, therefore no final zero-extension is unneeded for !sf. 4461 */ 4462 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4463 } 4464 return true; 4465 } 4466 4467 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4468 { 4469 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4470 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4471 unsigned int bitsize = a->sf ? 64 : 32; 4472 unsigned int ri = a->immr; 4473 unsigned int si = a->imms; 4474 unsigned int pos, len; 4475 4476 tcg_rd = cpu_reg(s, a->rd); 4477 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4478 4479 if (si >= ri) { 4480 /* Wd<s-r:0> = Wn<s:r> */ 4481 len = (si - ri) + 1; 4482 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4483 } else { 4484 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4485 len = si + 1; 4486 pos = (bitsize - ri) & (bitsize - 1); 4487 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4488 } 4489 return true; 4490 } 4491 4492 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4493 { 4494 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4495 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4496 unsigned int bitsize = a->sf ? 64 : 32; 4497 unsigned int ri = a->immr; 4498 unsigned int si = a->imms; 4499 unsigned int pos, len; 4500 4501 tcg_rd = cpu_reg(s, a->rd); 4502 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4503 4504 if (si >= ri) { 4505 /* Wd<s-r:0> = Wn<s:r> */ 4506 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4507 len = (si - ri) + 1; 4508 pos = 0; 4509 } else { 4510 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4511 len = si + 1; 4512 pos = (bitsize - ri) & (bitsize - 1); 4513 } 4514 4515 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4516 if (!a->sf) { 4517 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4518 } 4519 return true; 4520 } 4521 4522 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4523 { 4524 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4525 4526 tcg_rd = cpu_reg(s, a->rd); 4527 4528 if (unlikely(a->imm == 0)) { 4529 /* 4530 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4531 * so an extract from bit 0 is a special case. 4532 */ 4533 if (a->sf) { 4534 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4535 } else { 4536 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4537 } 4538 } else { 4539 tcg_rm = cpu_reg(s, a->rm); 4540 tcg_rn = cpu_reg(s, a->rn); 4541 4542 if (a->sf) { 4543 /* Specialization to ROR happens in EXTRACT2. */ 4544 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4545 } else { 4546 TCGv_i32 t0 = tcg_temp_new_i32(); 4547 4548 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4549 if (a->rm == a->rn) { 4550 tcg_gen_rotri_i32(t0, t0, a->imm); 4551 } else { 4552 TCGv_i32 t1 = tcg_temp_new_i32(); 4553 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4554 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4555 } 4556 tcg_gen_extu_i32_i64(tcg_rd, t0); 4557 } 4558 } 4559 return true; 4560 } 4561 4562 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4563 * Note that it is the caller's responsibility to ensure that the 4564 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4565 * mandated semantics for out of range shifts. 4566 */ 4567 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4568 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4569 { 4570 switch (shift_type) { 4571 case A64_SHIFT_TYPE_LSL: 4572 tcg_gen_shl_i64(dst, src, shift_amount); 4573 break; 4574 case A64_SHIFT_TYPE_LSR: 4575 tcg_gen_shr_i64(dst, src, shift_amount); 4576 break; 4577 case A64_SHIFT_TYPE_ASR: 4578 if (!sf) { 4579 tcg_gen_ext32s_i64(dst, src); 4580 } 4581 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4582 break; 4583 case A64_SHIFT_TYPE_ROR: 4584 if (sf) { 4585 tcg_gen_rotr_i64(dst, src, shift_amount); 4586 } else { 4587 TCGv_i32 t0, t1; 4588 t0 = tcg_temp_new_i32(); 4589 t1 = tcg_temp_new_i32(); 4590 tcg_gen_extrl_i64_i32(t0, src); 4591 tcg_gen_extrl_i64_i32(t1, shift_amount); 4592 tcg_gen_rotr_i32(t0, t0, t1); 4593 tcg_gen_extu_i32_i64(dst, t0); 4594 } 4595 break; 4596 default: 4597 assert(FALSE); /* all shift types should be handled */ 4598 break; 4599 } 4600 4601 if (!sf) { /* zero extend final result */ 4602 tcg_gen_ext32u_i64(dst, dst); 4603 } 4604 } 4605 4606 /* Shift a TCGv src by immediate, put result in dst. 4607 * The shift amount must be in range (this should always be true as the 4608 * relevant instructions will UNDEF on bad shift immediates). 4609 */ 4610 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4611 enum a64_shift_type shift_type, unsigned int shift_i) 4612 { 4613 assert(shift_i < (sf ? 64 : 32)); 4614 4615 if (shift_i == 0) { 4616 tcg_gen_mov_i64(dst, src); 4617 } else { 4618 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4619 } 4620 } 4621 4622 /* Logical (shifted register) 4623 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4624 * +----+-----+-----------+-------+---+------+--------+------+------+ 4625 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4626 * +----+-----+-----------+-------+---+------+--------+------+------+ 4627 */ 4628 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4629 { 4630 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4631 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4632 4633 sf = extract32(insn, 31, 1); 4634 opc = extract32(insn, 29, 2); 4635 shift_type = extract32(insn, 22, 2); 4636 invert = extract32(insn, 21, 1); 4637 rm = extract32(insn, 16, 5); 4638 shift_amount = extract32(insn, 10, 6); 4639 rn = extract32(insn, 5, 5); 4640 rd = extract32(insn, 0, 5); 4641 4642 if (!sf && (shift_amount & (1 << 5))) { 4643 unallocated_encoding(s); 4644 return; 4645 } 4646 4647 tcg_rd = cpu_reg(s, rd); 4648 4649 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4650 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4651 * register-register MOV and MVN, so it is worth special casing. 4652 */ 4653 tcg_rm = cpu_reg(s, rm); 4654 if (invert) { 4655 tcg_gen_not_i64(tcg_rd, tcg_rm); 4656 if (!sf) { 4657 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4658 } 4659 } else { 4660 if (sf) { 4661 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4662 } else { 4663 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4664 } 4665 } 4666 return; 4667 } 4668 4669 tcg_rm = read_cpu_reg(s, rm, sf); 4670 4671 if (shift_amount) { 4672 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4673 } 4674 4675 tcg_rn = cpu_reg(s, rn); 4676 4677 switch (opc | (invert << 2)) { 4678 case 0: /* AND */ 4679 case 3: /* ANDS */ 4680 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4681 break; 4682 case 1: /* ORR */ 4683 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4684 break; 4685 case 2: /* EOR */ 4686 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4687 break; 4688 case 4: /* BIC */ 4689 case 7: /* BICS */ 4690 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4691 break; 4692 case 5: /* ORN */ 4693 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4694 break; 4695 case 6: /* EON */ 4696 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4697 break; 4698 default: 4699 assert(FALSE); 4700 break; 4701 } 4702 4703 if (!sf) { 4704 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4705 } 4706 4707 if (opc == 3) { 4708 gen_logic_CC(sf, tcg_rd); 4709 } 4710 } 4711 4712 /* 4713 * Add/subtract (extended register) 4714 * 4715 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4716 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4717 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4718 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4719 * 4720 * sf: 0 -> 32bit, 1 -> 64bit 4721 * op: 0 -> add , 1 -> sub 4722 * S: 1 -> set flags 4723 * opt: 00 4724 * option: extension type (see DecodeRegExtend) 4725 * imm3: optional shift to Rm 4726 * 4727 * Rd = Rn + LSL(extend(Rm), amount) 4728 */ 4729 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4730 { 4731 int rd = extract32(insn, 0, 5); 4732 int rn = extract32(insn, 5, 5); 4733 int imm3 = extract32(insn, 10, 3); 4734 int option = extract32(insn, 13, 3); 4735 int rm = extract32(insn, 16, 5); 4736 int opt = extract32(insn, 22, 2); 4737 bool setflags = extract32(insn, 29, 1); 4738 bool sub_op = extract32(insn, 30, 1); 4739 bool sf = extract32(insn, 31, 1); 4740 4741 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4742 TCGv_i64 tcg_rd; 4743 TCGv_i64 tcg_result; 4744 4745 if (imm3 > 4 || opt != 0) { 4746 unallocated_encoding(s); 4747 return; 4748 } 4749 4750 /* non-flag setting ops may use SP */ 4751 if (!setflags) { 4752 tcg_rd = cpu_reg_sp(s, rd); 4753 } else { 4754 tcg_rd = cpu_reg(s, rd); 4755 } 4756 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4757 4758 tcg_rm = read_cpu_reg(s, rm, sf); 4759 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4760 4761 tcg_result = tcg_temp_new_i64(); 4762 4763 if (!setflags) { 4764 if (sub_op) { 4765 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4766 } else { 4767 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4768 } 4769 } else { 4770 if (sub_op) { 4771 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4772 } else { 4773 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4774 } 4775 } 4776 4777 if (sf) { 4778 tcg_gen_mov_i64(tcg_rd, tcg_result); 4779 } else { 4780 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4781 } 4782 } 4783 4784 /* 4785 * Add/subtract (shifted register) 4786 * 4787 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4788 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4789 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4790 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4791 * 4792 * sf: 0 -> 32bit, 1 -> 64bit 4793 * op: 0 -> add , 1 -> sub 4794 * S: 1 -> set flags 4795 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4796 * imm6: Shift amount to apply to Rm before the add/sub 4797 */ 4798 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4799 { 4800 int rd = extract32(insn, 0, 5); 4801 int rn = extract32(insn, 5, 5); 4802 int imm6 = extract32(insn, 10, 6); 4803 int rm = extract32(insn, 16, 5); 4804 int shift_type = extract32(insn, 22, 2); 4805 bool setflags = extract32(insn, 29, 1); 4806 bool sub_op = extract32(insn, 30, 1); 4807 bool sf = extract32(insn, 31, 1); 4808 4809 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4810 TCGv_i64 tcg_rn, tcg_rm; 4811 TCGv_i64 tcg_result; 4812 4813 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4814 unallocated_encoding(s); 4815 return; 4816 } 4817 4818 tcg_rn = read_cpu_reg(s, rn, sf); 4819 tcg_rm = read_cpu_reg(s, rm, sf); 4820 4821 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4822 4823 tcg_result = tcg_temp_new_i64(); 4824 4825 if (!setflags) { 4826 if (sub_op) { 4827 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4828 } else { 4829 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4830 } 4831 } else { 4832 if (sub_op) { 4833 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4834 } else { 4835 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4836 } 4837 } 4838 4839 if (sf) { 4840 tcg_gen_mov_i64(tcg_rd, tcg_result); 4841 } else { 4842 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4843 } 4844 } 4845 4846 /* Data-processing (3 source) 4847 * 4848 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4849 * +--+------+-----------+------+------+----+------+------+------+ 4850 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4851 * +--+------+-----------+------+------+----+------+------+------+ 4852 */ 4853 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4854 { 4855 int rd = extract32(insn, 0, 5); 4856 int rn = extract32(insn, 5, 5); 4857 int ra = extract32(insn, 10, 5); 4858 int rm = extract32(insn, 16, 5); 4859 int op_id = (extract32(insn, 29, 3) << 4) | 4860 (extract32(insn, 21, 3) << 1) | 4861 extract32(insn, 15, 1); 4862 bool sf = extract32(insn, 31, 1); 4863 bool is_sub = extract32(op_id, 0, 1); 4864 bool is_high = extract32(op_id, 2, 1); 4865 bool is_signed = false; 4866 TCGv_i64 tcg_op1; 4867 TCGv_i64 tcg_op2; 4868 TCGv_i64 tcg_tmp; 4869 4870 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4871 switch (op_id) { 4872 case 0x42: /* SMADDL */ 4873 case 0x43: /* SMSUBL */ 4874 case 0x44: /* SMULH */ 4875 is_signed = true; 4876 break; 4877 case 0x0: /* MADD (32bit) */ 4878 case 0x1: /* MSUB (32bit) */ 4879 case 0x40: /* MADD (64bit) */ 4880 case 0x41: /* MSUB (64bit) */ 4881 case 0x4a: /* UMADDL */ 4882 case 0x4b: /* UMSUBL */ 4883 case 0x4c: /* UMULH */ 4884 break; 4885 default: 4886 unallocated_encoding(s); 4887 return; 4888 } 4889 4890 if (is_high) { 4891 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4892 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4893 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4894 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4895 4896 if (is_signed) { 4897 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4898 } else { 4899 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4900 } 4901 return; 4902 } 4903 4904 tcg_op1 = tcg_temp_new_i64(); 4905 tcg_op2 = tcg_temp_new_i64(); 4906 tcg_tmp = tcg_temp_new_i64(); 4907 4908 if (op_id < 0x42) { 4909 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4910 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4911 } else { 4912 if (is_signed) { 4913 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4914 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4915 } else { 4916 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4917 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4918 } 4919 } 4920 4921 if (ra == 31 && !is_sub) { 4922 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4923 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4924 } else { 4925 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4926 if (is_sub) { 4927 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4928 } else { 4929 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4930 } 4931 } 4932 4933 if (!sf) { 4934 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4935 } 4936 } 4937 4938 /* Add/subtract (with carry) 4939 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4940 * +--+--+--+------------------------+------+-------------+------+-----+ 4941 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4942 * +--+--+--+------------------------+------+-------------+------+-----+ 4943 */ 4944 4945 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4946 { 4947 unsigned int sf, op, setflags, rm, rn, rd; 4948 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4949 4950 sf = extract32(insn, 31, 1); 4951 op = extract32(insn, 30, 1); 4952 setflags = extract32(insn, 29, 1); 4953 rm = extract32(insn, 16, 5); 4954 rn = extract32(insn, 5, 5); 4955 rd = extract32(insn, 0, 5); 4956 4957 tcg_rd = cpu_reg(s, rd); 4958 tcg_rn = cpu_reg(s, rn); 4959 4960 if (op) { 4961 tcg_y = tcg_temp_new_i64(); 4962 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4963 } else { 4964 tcg_y = cpu_reg(s, rm); 4965 } 4966 4967 if (setflags) { 4968 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4969 } else { 4970 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4971 } 4972 } 4973 4974 /* 4975 * Rotate right into flags 4976 * 31 30 29 21 15 10 5 4 0 4977 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4978 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4979 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4980 */ 4981 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4982 { 4983 int mask = extract32(insn, 0, 4); 4984 int o2 = extract32(insn, 4, 1); 4985 int rn = extract32(insn, 5, 5); 4986 int imm6 = extract32(insn, 15, 6); 4987 int sf_op_s = extract32(insn, 29, 3); 4988 TCGv_i64 tcg_rn; 4989 TCGv_i32 nzcv; 4990 4991 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4992 unallocated_encoding(s); 4993 return; 4994 } 4995 4996 tcg_rn = read_cpu_reg(s, rn, 1); 4997 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4998 4999 nzcv = tcg_temp_new_i32(); 5000 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5001 5002 if (mask & 8) { /* N */ 5003 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5004 } 5005 if (mask & 4) { /* Z */ 5006 tcg_gen_not_i32(cpu_ZF, nzcv); 5007 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5008 } 5009 if (mask & 2) { /* C */ 5010 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5011 } 5012 if (mask & 1) { /* V */ 5013 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5014 } 5015 } 5016 5017 /* 5018 * Evaluate into flags 5019 * 31 30 29 21 15 14 10 5 4 0 5020 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5021 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5022 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5023 */ 5024 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5025 { 5026 int o3_mask = extract32(insn, 0, 5); 5027 int rn = extract32(insn, 5, 5); 5028 int o2 = extract32(insn, 15, 6); 5029 int sz = extract32(insn, 14, 1); 5030 int sf_op_s = extract32(insn, 29, 3); 5031 TCGv_i32 tmp; 5032 int shift; 5033 5034 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5035 !dc_isar_feature(aa64_condm_4, s)) { 5036 unallocated_encoding(s); 5037 return; 5038 } 5039 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5040 5041 tmp = tcg_temp_new_i32(); 5042 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5043 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5044 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5045 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5046 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5047 } 5048 5049 /* Conditional compare (immediate / register) 5050 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5051 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5052 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5053 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5054 * [1] y [0] [0] 5055 */ 5056 static void disas_cc(DisasContext *s, uint32_t insn) 5057 { 5058 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5059 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5060 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5061 DisasCompare c; 5062 5063 if (!extract32(insn, 29, 1)) { 5064 unallocated_encoding(s); 5065 return; 5066 } 5067 if (insn & (1 << 10 | 1 << 4)) { 5068 unallocated_encoding(s); 5069 return; 5070 } 5071 sf = extract32(insn, 31, 1); 5072 op = extract32(insn, 30, 1); 5073 is_imm = extract32(insn, 11, 1); 5074 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5075 cond = extract32(insn, 12, 4); 5076 rn = extract32(insn, 5, 5); 5077 nzcv = extract32(insn, 0, 4); 5078 5079 /* Set T0 = !COND. */ 5080 tcg_t0 = tcg_temp_new_i32(); 5081 arm_test_cc(&c, cond); 5082 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5083 5084 /* Load the arguments for the new comparison. */ 5085 if (is_imm) { 5086 tcg_y = tcg_temp_new_i64(); 5087 tcg_gen_movi_i64(tcg_y, y); 5088 } else { 5089 tcg_y = cpu_reg(s, y); 5090 } 5091 tcg_rn = cpu_reg(s, rn); 5092 5093 /* Set the flags for the new comparison. */ 5094 tcg_tmp = tcg_temp_new_i64(); 5095 if (op) { 5096 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5097 } else { 5098 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5099 } 5100 5101 /* If COND was false, force the flags to #nzcv. Compute two masks 5102 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5103 * For tcg hosts that support ANDC, we can make do with just T1. 5104 * In either case, allow the tcg optimizer to delete any unused mask. 5105 */ 5106 tcg_t1 = tcg_temp_new_i32(); 5107 tcg_t2 = tcg_temp_new_i32(); 5108 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5109 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5110 5111 if (nzcv & 8) { /* N */ 5112 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5113 } else { 5114 if (TCG_TARGET_HAS_andc_i32) { 5115 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5116 } else { 5117 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5118 } 5119 } 5120 if (nzcv & 4) { /* Z */ 5121 if (TCG_TARGET_HAS_andc_i32) { 5122 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5123 } else { 5124 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5125 } 5126 } else { 5127 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5128 } 5129 if (nzcv & 2) { /* C */ 5130 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5131 } else { 5132 if (TCG_TARGET_HAS_andc_i32) { 5133 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5134 } else { 5135 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5136 } 5137 } 5138 if (nzcv & 1) { /* V */ 5139 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5140 } else { 5141 if (TCG_TARGET_HAS_andc_i32) { 5142 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5143 } else { 5144 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5145 } 5146 } 5147 } 5148 5149 /* Conditional select 5150 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5151 * +----+----+---+-----------------+------+------+-----+------+------+ 5152 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5153 * +----+----+---+-----------------+------+------+-----+------+------+ 5154 */ 5155 static void disas_cond_select(DisasContext *s, uint32_t insn) 5156 { 5157 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5158 TCGv_i64 tcg_rd, zero; 5159 DisasCompare64 c; 5160 5161 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5162 /* S == 1 or op2<1> == 1 */ 5163 unallocated_encoding(s); 5164 return; 5165 } 5166 sf = extract32(insn, 31, 1); 5167 else_inv = extract32(insn, 30, 1); 5168 rm = extract32(insn, 16, 5); 5169 cond = extract32(insn, 12, 4); 5170 else_inc = extract32(insn, 10, 1); 5171 rn = extract32(insn, 5, 5); 5172 rd = extract32(insn, 0, 5); 5173 5174 tcg_rd = cpu_reg(s, rd); 5175 5176 a64_test_cc(&c, cond); 5177 zero = tcg_constant_i64(0); 5178 5179 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5180 /* CSET & CSETM. */ 5181 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5182 if (else_inv) { 5183 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5184 } 5185 } else { 5186 TCGv_i64 t_true = cpu_reg(s, rn); 5187 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5188 if (else_inv && else_inc) { 5189 tcg_gen_neg_i64(t_false, t_false); 5190 } else if (else_inv) { 5191 tcg_gen_not_i64(t_false, t_false); 5192 } else if (else_inc) { 5193 tcg_gen_addi_i64(t_false, t_false, 1); 5194 } 5195 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5196 } 5197 5198 if (!sf) { 5199 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5200 } 5201 } 5202 5203 static void handle_clz(DisasContext *s, unsigned int sf, 5204 unsigned int rn, unsigned int rd) 5205 { 5206 TCGv_i64 tcg_rd, tcg_rn; 5207 tcg_rd = cpu_reg(s, rd); 5208 tcg_rn = cpu_reg(s, rn); 5209 5210 if (sf) { 5211 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5212 } else { 5213 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5214 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5215 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5216 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5217 } 5218 } 5219 5220 static void handle_cls(DisasContext *s, unsigned int sf, 5221 unsigned int rn, unsigned int rd) 5222 { 5223 TCGv_i64 tcg_rd, tcg_rn; 5224 tcg_rd = cpu_reg(s, rd); 5225 tcg_rn = cpu_reg(s, rn); 5226 5227 if (sf) { 5228 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5229 } else { 5230 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5231 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5232 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5233 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5234 } 5235 } 5236 5237 static void handle_rbit(DisasContext *s, unsigned int sf, 5238 unsigned int rn, unsigned int rd) 5239 { 5240 TCGv_i64 tcg_rd, tcg_rn; 5241 tcg_rd = cpu_reg(s, rd); 5242 tcg_rn = cpu_reg(s, rn); 5243 5244 if (sf) { 5245 gen_helper_rbit64(tcg_rd, tcg_rn); 5246 } else { 5247 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5248 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5249 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5250 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5251 } 5252 } 5253 5254 /* REV with sf==1, opcode==3 ("REV64") */ 5255 static void handle_rev64(DisasContext *s, unsigned int sf, 5256 unsigned int rn, unsigned int rd) 5257 { 5258 if (!sf) { 5259 unallocated_encoding(s); 5260 return; 5261 } 5262 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5263 } 5264 5265 /* REV with sf==0, opcode==2 5266 * REV32 (sf==1, opcode==2) 5267 */ 5268 static void handle_rev32(DisasContext *s, unsigned int sf, 5269 unsigned int rn, unsigned int rd) 5270 { 5271 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5272 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5273 5274 if (sf) { 5275 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5276 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5277 } else { 5278 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5279 } 5280 } 5281 5282 /* REV16 (opcode==1) */ 5283 static void handle_rev16(DisasContext *s, unsigned int sf, 5284 unsigned int rn, unsigned int rd) 5285 { 5286 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5287 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5288 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5289 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5290 5291 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5292 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5293 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5294 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5295 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5296 } 5297 5298 /* Data-processing (1 source) 5299 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5300 * +----+---+---+-----------------+---------+--------+------+------+ 5301 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5302 * +----+---+---+-----------------+---------+--------+------+------+ 5303 */ 5304 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5305 { 5306 unsigned int sf, opcode, opcode2, rn, rd; 5307 TCGv_i64 tcg_rd; 5308 5309 if (extract32(insn, 29, 1)) { 5310 unallocated_encoding(s); 5311 return; 5312 } 5313 5314 sf = extract32(insn, 31, 1); 5315 opcode = extract32(insn, 10, 6); 5316 opcode2 = extract32(insn, 16, 5); 5317 rn = extract32(insn, 5, 5); 5318 rd = extract32(insn, 0, 5); 5319 5320 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5321 5322 switch (MAP(sf, opcode2, opcode)) { 5323 case MAP(0, 0x00, 0x00): /* RBIT */ 5324 case MAP(1, 0x00, 0x00): 5325 handle_rbit(s, sf, rn, rd); 5326 break; 5327 case MAP(0, 0x00, 0x01): /* REV16 */ 5328 case MAP(1, 0x00, 0x01): 5329 handle_rev16(s, sf, rn, rd); 5330 break; 5331 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5332 case MAP(1, 0x00, 0x02): 5333 handle_rev32(s, sf, rn, rd); 5334 break; 5335 case MAP(1, 0x00, 0x03): /* REV64 */ 5336 handle_rev64(s, sf, rn, rd); 5337 break; 5338 case MAP(0, 0x00, 0x04): /* CLZ */ 5339 case MAP(1, 0x00, 0x04): 5340 handle_clz(s, sf, rn, rd); 5341 break; 5342 case MAP(0, 0x00, 0x05): /* CLS */ 5343 case MAP(1, 0x00, 0x05): 5344 handle_cls(s, sf, rn, rd); 5345 break; 5346 case MAP(1, 0x01, 0x00): /* PACIA */ 5347 if (s->pauth_active) { 5348 tcg_rd = cpu_reg(s, rd); 5349 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5350 } else if (!dc_isar_feature(aa64_pauth, s)) { 5351 goto do_unallocated; 5352 } 5353 break; 5354 case MAP(1, 0x01, 0x01): /* PACIB */ 5355 if (s->pauth_active) { 5356 tcg_rd = cpu_reg(s, rd); 5357 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5358 } else if (!dc_isar_feature(aa64_pauth, s)) { 5359 goto do_unallocated; 5360 } 5361 break; 5362 case MAP(1, 0x01, 0x02): /* PACDA */ 5363 if (s->pauth_active) { 5364 tcg_rd = cpu_reg(s, rd); 5365 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5366 } else if (!dc_isar_feature(aa64_pauth, s)) { 5367 goto do_unallocated; 5368 } 5369 break; 5370 case MAP(1, 0x01, 0x03): /* PACDB */ 5371 if (s->pauth_active) { 5372 tcg_rd = cpu_reg(s, rd); 5373 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5374 } else if (!dc_isar_feature(aa64_pauth, s)) { 5375 goto do_unallocated; 5376 } 5377 break; 5378 case MAP(1, 0x01, 0x04): /* AUTIA */ 5379 if (s->pauth_active) { 5380 tcg_rd = cpu_reg(s, rd); 5381 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5382 } else if (!dc_isar_feature(aa64_pauth, s)) { 5383 goto do_unallocated; 5384 } 5385 break; 5386 case MAP(1, 0x01, 0x05): /* AUTIB */ 5387 if (s->pauth_active) { 5388 tcg_rd = cpu_reg(s, rd); 5389 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5390 } else if (!dc_isar_feature(aa64_pauth, s)) { 5391 goto do_unallocated; 5392 } 5393 break; 5394 case MAP(1, 0x01, 0x06): /* AUTDA */ 5395 if (s->pauth_active) { 5396 tcg_rd = cpu_reg(s, rd); 5397 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5398 } else if (!dc_isar_feature(aa64_pauth, s)) { 5399 goto do_unallocated; 5400 } 5401 break; 5402 case MAP(1, 0x01, 0x07): /* AUTDB */ 5403 if (s->pauth_active) { 5404 tcg_rd = cpu_reg(s, rd); 5405 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5406 } else if (!dc_isar_feature(aa64_pauth, s)) { 5407 goto do_unallocated; 5408 } 5409 break; 5410 case MAP(1, 0x01, 0x08): /* PACIZA */ 5411 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5412 goto do_unallocated; 5413 } else if (s->pauth_active) { 5414 tcg_rd = cpu_reg(s, rd); 5415 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5416 } 5417 break; 5418 case MAP(1, 0x01, 0x09): /* PACIZB */ 5419 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5420 goto do_unallocated; 5421 } else if (s->pauth_active) { 5422 tcg_rd = cpu_reg(s, rd); 5423 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5424 } 5425 break; 5426 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5427 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5428 goto do_unallocated; 5429 } else if (s->pauth_active) { 5430 tcg_rd = cpu_reg(s, rd); 5431 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5432 } 5433 break; 5434 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5435 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5436 goto do_unallocated; 5437 } else if (s->pauth_active) { 5438 tcg_rd = cpu_reg(s, rd); 5439 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5440 } 5441 break; 5442 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5443 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5444 goto do_unallocated; 5445 } else if (s->pauth_active) { 5446 tcg_rd = cpu_reg(s, rd); 5447 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5448 } 5449 break; 5450 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5451 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5452 goto do_unallocated; 5453 } else if (s->pauth_active) { 5454 tcg_rd = cpu_reg(s, rd); 5455 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5456 } 5457 break; 5458 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5459 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5460 goto do_unallocated; 5461 } else if (s->pauth_active) { 5462 tcg_rd = cpu_reg(s, rd); 5463 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5464 } 5465 break; 5466 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5467 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5468 goto do_unallocated; 5469 } else if (s->pauth_active) { 5470 tcg_rd = cpu_reg(s, rd); 5471 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5472 } 5473 break; 5474 case MAP(1, 0x01, 0x10): /* XPACI */ 5475 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5476 goto do_unallocated; 5477 } else if (s->pauth_active) { 5478 tcg_rd = cpu_reg(s, rd); 5479 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5480 } 5481 break; 5482 case MAP(1, 0x01, 0x11): /* XPACD */ 5483 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5484 goto do_unallocated; 5485 } else if (s->pauth_active) { 5486 tcg_rd = cpu_reg(s, rd); 5487 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5488 } 5489 break; 5490 default: 5491 do_unallocated: 5492 unallocated_encoding(s); 5493 break; 5494 } 5495 5496 #undef MAP 5497 } 5498 5499 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5500 unsigned int rm, unsigned int rn, unsigned int rd) 5501 { 5502 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5503 tcg_rd = cpu_reg(s, rd); 5504 5505 if (!sf && is_signed) { 5506 tcg_n = tcg_temp_new_i64(); 5507 tcg_m = tcg_temp_new_i64(); 5508 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5509 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5510 } else { 5511 tcg_n = read_cpu_reg(s, rn, sf); 5512 tcg_m = read_cpu_reg(s, rm, sf); 5513 } 5514 5515 if (is_signed) { 5516 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5517 } else { 5518 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5519 } 5520 5521 if (!sf) { /* zero extend final result */ 5522 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5523 } 5524 } 5525 5526 /* LSLV, LSRV, ASRV, RORV */ 5527 static void handle_shift_reg(DisasContext *s, 5528 enum a64_shift_type shift_type, unsigned int sf, 5529 unsigned int rm, unsigned int rn, unsigned int rd) 5530 { 5531 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5532 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5533 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5534 5535 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5536 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5537 } 5538 5539 /* CRC32[BHWX], CRC32C[BHWX] */ 5540 static void handle_crc32(DisasContext *s, 5541 unsigned int sf, unsigned int sz, bool crc32c, 5542 unsigned int rm, unsigned int rn, unsigned int rd) 5543 { 5544 TCGv_i64 tcg_acc, tcg_val; 5545 TCGv_i32 tcg_bytes; 5546 5547 if (!dc_isar_feature(aa64_crc32, s) 5548 || (sf == 1 && sz != 3) 5549 || (sf == 0 && sz == 3)) { 5550 unallocated_encoding(s); 5551 return; 5552 } 5553 5554 if (sz == 3) { 5555 tcg_val = cpu_reg(s, rm); 5556 } else { 5557 uint64_t mask; 5558 switch (sz) { 5559 case 0: 5560 mask = 0xFF; 5561 break; 5562 case 1: 5563 mask = 0xFFFF; 5564 break; 5565 case 2: 5566 mask = 0xFFFFFFFF; 5567 break; 5568 default: 5569 g_assert_not_reached(); 5570 } 5571 tcg_val = tcg_temp_new_i64(); 5572 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5573 } 5574 5575 tcg_acc = cpu_reg(s, rn); 5576 tcg_bytes = tcg_constant_i32(1 << sz); 5577 5578 if (crc32c) { 5579 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5580 } else { 5581 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5582 } 5583 } 5584 5585 /* Data-processing (2 source) 5586 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5587 * +----+---+---+-----------------+------+--------+------+------+ 5588 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5589 * +----+---+---+-----------------+------+--------+------+------+ 5590 */ 5591 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5592 { 5593 unsigned int sf, rm, opcode, rn, rd, setflag; 5594 sf = extract32(insn, 31, 1); 5595 setflag = extract32(insn, 29, 1); 5596 rm = extract32(insn, 16, 5); 5597 opcode = extract32(insn, 10, 6); 5598 rn = extract32(insn, 5, 5); 5599 rd = extract32(insn, 0, 5); 5600 5601 if (setflag && opcode != 0) { 5602 unallocated_encoding(s); 5603 return; 5604 } 5605 5606 switch (opcode) { 5607 case 0: /* SUBP(S) */ 5608 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5609 goto do_unallocated; 5610 } else { 5611 TCGv_i64 tcg_n, tcg_m, tcg_d; 5612 5613 tcg_n = read_cpu_reg_sp(s, rn, true); 5614 tcg_m = read_cpu_reg_sp(s, rm, true); 5615 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5616 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5617 tcg_d = cpu_reg(s, rd); 5618 5619 if (setflag) { 5620 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5621 } else { 5622 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5623 } 5624 } 5625 break; 5626 case 2: /* UDIV */ 5627 handle_div(s, false, sf, rm, rn, rd); 5628 break; 5629 case 3: /* SDIV */ 5630 handle_div(s, true, sf, rm, rn, rd); 5631 break; 5632 case 4: /* IRG */ 5633 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5634 goto do_unallocated; 5635 } 5636 if (s->ata) { 5637 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5638 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5639 } else { 5640 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5641 cpu_reg_sp(s, rn)); 5642 } 5643 break; 5644 case 5: /* GMI */ 5645 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5646 goto do_unallocated; 5647 } else { 5648 TCGv_i64 t = tcg_temp_new_i64(); 5649 5650 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5651 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5652 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5653 } 5654 break; 5655 case 8: /* LSLV */ 5656 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5657 break; 5658 case 9: /* LSRV */ 5659 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5660 break; 5661 case 10: /* ASRV */ 5662 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5663 break; 5664 case 11: /* RORV */ 5665 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5666 break; 5667 case 12: /* PACGA */ 5668 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5669 goto do_unallocated; 5670 } 5671 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5672 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5673 break; 5674 case 16: 5675 case 17: 5676 case 18: 5677 case 19: 5678 case 20: 5679 case 21: 5680 case 22: 5681 case 23: /* CRC32 */ 5682 { 5683 int sz = extract32(opcode, 0, 2); 5684 bool crc32c = extract32(opcode, 2, 1); 5685 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5686 break; 5687 } 5688 default: 5689 do_unallocated: 5690 unallocated_encoding(s); 5691 break; 5692 } 5693 } 5694 5695 /* 5696 * Data processing - register 5697 * 31 30 29 28 25 21 20 16 10 0 5698 * +--+---+--+---+-------+-----+-------+-------+---------+ 5699 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5700 * +--+---+--+---+-------+-----+-------+-------+---------+ 5701 */ 5702 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5703 { 5704 int op0 = extract32(insn, 30, 1); 5705 int op1 = extract32(insn, 28, 1); 5706 int op2 = extract32(insn, 21, 4); 5707 int op3 = extract32(insn, 10, 6); 5708 5709 if (!op1) { 5710 if (op2 & 8) { 5711 if (op2 & 1) { 5712 /* Add/sub (extended register) */ 5713 disas_add_sub_ext_reg(s, insn); 5714 } else { 5715 /* Add/sub (shifted register) */ 5716 disas_add_sub_reg(s, insn); 5717 } 5718 } else { 5719 /* Logical (shifted register) */ 5720 disas_logic_reg(s, insn); 5721 } 5722 return; 5723 } 5724 5725 switch (op2) { 5726 case 0x0: 5727 switch (op3) { 5728 case 0x00: /* Add/subtract (with carry) */ 5729 disas_adc_sbc(s, insn); 5730 break; 5731 5732 case 0x01: /* Rotate right into flags */ 5733 case 0x21: 5734 disas_rotate_right_into_flags(s, insn); 5735 break; 5736 5737 case 0x02: /* Evaluate into flags */ 5738 case 0x12: 5739 case 0x22: 5740 case 0x32: 5741 disas_evaluate_into_flags(s, insn); 5742 break; 5743 5744 default: 5745 goto do_unallocated; 5746 } 5747 break; 5748 5749 case 0x2: /* Conditional compare */ 5750 disas_cc(s, insn); /* both imm and reg forms */ 5751 break; 5752 5753 case 0x4: /* Conditional select */ 5754 disas_cond_select(s, insn); 5755 break; 5756 5757 case 0x6: /* Data-processing */ 5758 if (op0) { /* (1 source) */ 5759 disas_data_proc_1src(s, insn); 5760 } else { /* (2 source) */ 5761 disas_data_proc_2src(s, insn); 5762 } 5763 break; 5764 case 0x8 ... 0xf: /* (3 source) */ 5765 disas_data_proc_3src(s, insn); 5766 break; 5767 5768 default: 5769 do_unallocated: 5770 unallocated_encoding(s); 5771 break; 5772 } 5773 } 5774 5775 static void handle_fp_compare(DisasContext *s, int size, 5776 unsigned int rn, unsigned int rm, 5777 bool cmp_with_zero, bool signal_all_nans) 5778 { 5779 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5780 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5781 5782 if (size == MO_64) { 5783 TCGv_i64 tcg_vn, tcg_vm; 5784 5785 tcg_vn = read_fp_dreg(s, rn); 5786 if (cmp_with_zero) { 5787 tcg_vm = tcg_constant_i64(0); 5788 } else { 5789 tcg_vm = read_fp_dreg(s, rm); 5790 } 5791 if (signal_all_nans) { 5792 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5793 } else { 5794 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5795 } 5796 } else { 5797 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5798 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5799 5800 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5801 if (cmp_with_zero) { 5802 tcg_gen_movi_i32(tcg_vm, 0); 5803 } else { 5804 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5805 } 5806 5807 switch (size) { 5808 case MO_32: 5809 if (signal_all_nans) { 5810 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5811 } else { 5812 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5813 } 5814 break; 5815 case MO_16: 5816 if (signal_all_nans) { 5817 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5818 } else { 5819 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5820 } 5821 break; 5822 default: 5823 g_assert_not_reached(); 5824 } 5825 } 5826 5827 gen_set_nzcv(tcg_flags); 5828 } 5829 5830 /* Floating point compare 5831 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5832 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5833 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5834 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5835 */ 5836 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5837 { 5838 unsigned int mos, type, rm, op, rn, opc, op2r; 5839 int size; 5840 5841 mos = extract32(insn, 29, 3); 5842 type = extract32(insn, 22, 2); 5843 rm = extract32(insn, 16, 5); 5844 op = extract32(insn, 14, 2); 5845 rn = extract32(insn, 5, 5); 5846 opc = extract32(insn, 3, 2); 5847 op2r = extract32(insn, 0, 3); 5848 5849 if (mos || op || op2r) { 5850 unallocated_encoding(s); 5851 return; 5852 } 5853 5854 switch (type) { 5855 case 0: 5856 size = MO_32; 5857 break; 5858 case 1: 5859 size = MO_64; 5860 break; 5861 case 3: 5862 size = MO_16; 5863 if (dc_isar_feature(aa64_fp16, s)) { 5864 break; 5865 } 5866 /* fallthru */ 5867 default: 5868 unallocated_encoding(s); 5869 return; 5870 } 5871 5872 if (!fp_access_check(s)) { 5873 return; 5874 } 5875 5876 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5877 } 5878 5879 /* Floating point conditional compare 5880 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5881 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5882 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5883 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5884 */ 5885 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5886 { 5887 unsigned int mos, type, rm, cond, rn, op, nzcv; 5888 TCGLabel *label_continue = NULL; 5889 int size; 5890 5891 mos = extract32(insn, 29, 3); 5892 type = extract32(insn, 22, 2); 5893 rm = extract32(insn, 16, 5); 5894 cond = extract32(insn, 12, 4); 5895 rn = extract32(insn, 5, 5); 5896 op = extract32(insn, 4, 1); 5897 nzcv = extract32(insn, 0, 4); 5898 5899 if (mos) { 5900 unallocated_encoding(s); 5901 return; 5902 } 5903 5904 switch (type) { 5905 case 0: 5906 size = MO_32; 5907 break; 5908 case 1: 5909 size = MO_64; 5910 break; 5911 case 3: 5912 size = MO_16; 5913 if (dc_isar_feature(aa64_fp16, s)) { 5914 break; 5915 } 5916 /* fallthru */ 5917 default: 5918 unallocated_encoding(s); 5919 return; 5920 } 5921 5922 if (!fp_access_check(s)) { 5923 return; 5924 } 5925 5926 if (cond < 0x0e) { /* not always */ 5927 TCGLabel *label_match = gen_new_label(); 5928 label_continue = gen_new_label(); 5929 arm_gen_test_cc(cond, label_match); 5930 /* nomatch: */ 5931 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5932 tcg_gen_br(label_continue); 5933 gen_set_label(label_match); 5934 } 5935 5936 handle_fp_compare(s, size, rn, rm, false, op); 5937 5938 if (cond < 0x0e) { 5939 gen_set_label(label_continue); 5940 } 5941 } 5942 5943 /* Floating point conditional select 5944 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5945 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5946 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5947 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5948 */ 5949 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5950 { 5951 unsigned int mos, type, rm, cond, rn, rd; 5952 TCGv_i64 t_true, t_false; 5953 DisasCompare64 c; 5954 MemOp sz; 5955 5956 mos = extract32(insn, 29, 3); 5957 type = extract32(insn, 22, 2); 5958 rm = extract32(insn, 16, 5); 5959 cond = extract32(insn, 12, 4); 5960 rn = extract32(insn, 5, 5); 5961 rd = extract32(insn, 0, 5); 5962 5963 if (mos) { 5964 unallocated_encoding(s); 5965 return; 5966 } 5967 5968 switch (type) { 5969 case 0: 5970 sz = MO_32; 5971 break; 5972 case 1: 5973 sz = MO_64; 5974 break; 5975 case 3: 5976 sz = MO_16; 5977 if (dc_isar_feature(aa64_fp16, s)) { 5978 break; 5979 } 5980 /* fallthru */ 5981 default: 5982 unallocated_encoding(s); 5983 return; 5984 } 5985 5986 if (!fp_access_check(s)) { 5987 return; 5988 } 5989 5990 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5991 t_true = tcg_temp_new_i64(); 5992 t_false = tcg_temp_new_i64(); 5993 read_vec_element(s, t_true, rn, 0, sz); 5994 read_vec_element(s, t_false, rm, 0, sz); 5995 5996 a64_test_cc(&c, cond); 5997 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5998 t_true, t_false); 5999 6000 /* Note that sregs & hregs write back zeros to the high bits, 6001 and we've already done the zero-extension. */ 6002 write_fp_dreg(s, rd, t_true); 6003 } 6004 6005 /* Floating-point data-processing (1 source) - half precision */ 6006 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6007 { 6008 TCGv_ptr fpst = NULL; 6009 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6010 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6011 6012 switch (opcode) { 6013 case 0x0: /* FMOV */ 6014 tcg_gen_mov_i32(tcg_res, tcg_op); 6015 break; 6016 case 0x1: /* FABS */ 6017 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6018 break; 6019 case 0x2: /* FNEG */ 6020 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6021 break; 6022 case 0x3: /* FSQRT */ 6023 fpst = fpstatus_ptr(FPST_FPCR_F16); 6024 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6025 break; 6026 case 0x8: /* FRINTN */ 6027 case 0x9: /* FRINTP */ 6028 case 0xa: /* FRINTM */ 6029 case 0xb: /* FRINTZ */ 6030 case 0xc: /* FRINTA */ 6031 { 6032 TCGv_i32 tcg_rmode; 6033 6034 fpst = fpstatus_ptr(FPST_FPCR_F16); 6035 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6036 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6037 gen_restore_rmode(tcg_rmode, fpst); 6038 break; 6039 } 6040 case 0xe: /* FRINTX */ 6041 fpst = fpstatus_ptr(FPST_FPCR_F16); 6042 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6043 break; 6044 case 0xf: /* FRINTI */ 6045 fpst = fpstatus_ptr(FPST_FPCR_F16); 6046 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6047 break; 6048 default: 6049 g_assert_not_reached(); 6050 } 6051 6052 write_fp_sreg(s, rd, tcg_res); 6053 } 6054 6055 /* Floating-point data-processing (1 source) - single precision */ 6056 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6057 { 6058 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6059 TCGv_i32 tcg_op, tcg_res; 6060 TCGv_ptr fpst; 6061 int rmode = -1; 6062 6063 tcg_op = read_fp_sreg(s, rn); 6064 tcg_res = tcg_temp_new_i32(); 6065 6066 switch (opcode) { 6067 case 0x0: /* FMOV */ 6068 tcg_gen_mov_i32(tcg_res, tcg_op); 6069 goto done; 6070 case 0x1: /* FABS */ 6071 gen_helper_vfp_abss(tcg_res, tcg_op); 6072 goto done; 6073 case 0x2: /* FNEG */ 6074 gen_helper_vfp_negs(tcg_res, tcg_op); 6075 goto done; 6076 case 0x3: /* FSQRT */ 6077 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6078 goto done; 6079 case 0x6: /* BFCVT */ 6080 gen_fpst = gen_helper_bfcvt; 6081 break; 6082 case 0x8: /* FRINTN */ 6083 case 0x9: /* FRINTP */ 6084 case 0xa: /* FRINTM */ 6085 case 0xb: /* FRINTZ */ 6086 case 0xc: /* FRINTA */ 6087 rmode = opcode & 7; 6088 gen_fpst = gen_helper_rints; 6089 break; 6090 case 0xe: /* FRINTX */ 6091 gen_fpst = gen_helper_rints_exact; 6092 break; 6093 case 0xf: /* FRINTI */ 6094 gen_fpst = gen_helper_rints; 6095 break; 6096 case 0x10: /* FRINT32Z */ 6097 rmode = FPROUNDING_ZERO; 6098 gen_fpst = gen_helper_frint32_s; 6099 break; 6100 case 0x11: /* FRINT32X */ 6101 gen_fpst = gen_helper_frint32_s; 6102 break; 6103 case 0x12: /* FRINT64Z */ 6104 rmode = FPROUNDING_ZERO; 6105 gen_fpst = gen_helper_frint64_s; 6106 break; 6107 case 0x13: /* FRINT64X */ 6108 gen_fpst = gen_helper_frint64_s; 6109 break; 6110 default: 6111 g_assert_not_reached(); 6112 } 6113 6114 fpst = fpstatus_ptr(FPST_FPCR); 6115 if (rmode >= 0) { 6116 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6117 gen_fpst(tcg_res, tcg_op, fpst); 6118 gen_restore_rmode(tcg_rmode, fpst); 6119 } else { 6120 gen_fpst(tcg_res, tcg_op, fpst); 6121 } 6122 6123 done: 6124 write_fp_sreg(s, rd, tcg_res); 6125 } 6126 6127 /* Floating-point data-processing (1 source) - double precision */ 6128 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6129 { 6130 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6131 TCGv_i64 tcg_op, tcg_res; 6132 TCGv_ptr fpst; 6133 int rmode = -1; 6134 6135 switch (opcode) { 6136 case 0x0: /* FMOV */ 6137 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6138 return; 6139 } 6140 6141 tcg_op = read_fp_dreg(s, rn); 6142 tcg_res = tcg_temp_new_i64(); 6143 6144 switch (opcode) { 6145 case 0x1: /* FABS */ 6146 gen_helper_vfp_absd(tcg_res, tcg_op); 6147 goto done; 6148 case 0x2: /* FNEG */ 6149 gen_helper_vfp_negd(tcg_res, tcg_op); 6150 goto done; 6151 case 0x3: /* FSQRT */ 6152 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6153 goto done; 6154 case 0x8: /* FRINTN */ 6155 case 0x9: /* FRINTP */ 6156 case 0xa: /* FRINTM */ 6157 case 0xb: /* FRINTZ */ 6158 case 0xc: /* FRINTA */ 6159 rmode = opcode & 7; 6160 gen_fpst = gen_helper_rintd; 6161 break; 6162 case 0xe: /* FRINTX */ 6163 gen_fpst = gen_helper_rintd_exact; 6164 break; 6165 case 0xf: /* FRINTI */ 6166 gen_fpst = gen_helper_rintd; 6167 break; 6168 case 0x10: /* FRINT32Z */ 6169 rmode = FPROUNDING_ZERO; 6170 gen_fpst = gen_helper_frint32_d; 6171 break; 6172 case 0x11: /* FRINT32X */ 6173 gen_fpst = gen_helper_frint32_d; 6174 break; 6175 case 0x12: /* FRINT64Z */ 6176 rmode = FPROUNDING_ZERO; 6177 gen_fpst = gen_helper_frint64_d; 6178 break; 6179 case 0x13: /* FRINT64X */ 6180 gen_fpst = gen_helper_frint64_d; 6181 break; 6182 default: 6183 g_assert_not_reached(); 6184 } 6185 6186 fpst = fpstatus_ptr(FPST_FPCR); 6187 if (rmode >= 0) { 6188 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6189 gen_fpst(tcg_res, tcg_op, fpst); 6190 gen_restore_rmode(tcg_rmode, fpst); 6191 } else { 6192 gen_fpst(tcg_res, tcg_op, fpst); 6193 } 6194 6195 done: 6196 write_fp_dreg(s, rd, tcg_res); 6197 } 6198 6199 static void handle_fp_fcvt(DisasContext *s, int opcode, 6200 int rd, int rn, int dtype, int ntype) 6201 { 6202 switch (ntype) { 6203 case 0x0: 6204 { 6205 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6206 if (dtype == 1) { 6207 /* Single to double */ 6208 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6209 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6210 write_fp_dreg(s, rd, tcg_rd); 6211 } else { 6212 /* Single to half */ 6213 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6214 TCGv_i32 ahp = get_ahp_flag(); 6215 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6216 6217 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6218 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6219 write_fp_sreg(s, rd, tcg_rd); 6220 } 6221 break; 6222 } 6223 case 0x1: 6224 { 6225 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6226 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6227 if (dtype == 0) { 6228 /* Double to single */ 6229 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6230 } else { 6231 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6232 TCGv_i32 ahp = get_ahp_flag(); 6233 /* Double to half */ 6234 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6235 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6236 } 6237 write_fp_sreg(s, rd, tcg_rd); 6238 break; 6239 } 6240 case 0x3: 6241 { 6242 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6243 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6244 TCGv_i32 tcg_ahp = get_ahp_flag(); 6245 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6246 if (dtype == 0) { 6247 /* Half to single */ 6248 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6249 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6250 write_fp_sreg(s, rd, tcg_rd); 6251 } else { 6252 /* Half to double */ 6253 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6254 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6255 write_fp_dreg(s, rd, tcg_rd); 6256 } 6257 break; 6258 } 6259 default: 6260 g_assert_not_reached(); 6261 } 6262 } 6263 6264 /* Floating point data-processing (1 source) 6265 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6266 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6267 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6268 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6269 */ 6270 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6271 { 6272 int mos = extract32(insn, 29, 3); 6273 int type = extract32(insn, 22, 2); 6274 int opcode = extract32(insn, 15, 6); 6275 int rn = extract32(insn, 5, 5); 6276 int rd = extract32(insn, 0, 5); 6277 6278 if (mos) { 6279 goto do_unallocated; 6280 } 6281 6282 switch (opcode) { 6283 case 0x4: case 0x5: case 0x7: 6284 { 6285 /* FCVT between half, single and double precision */ 6286 int dtype = extract32(opcode, 0, 2); 6287 if (type == 2 || dtype == type) { 6288 goto do_unallocated; 6289 } 6290 if (!fp_access_check(s)) { 6291 return; 6292 } 6293 6294 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6295 break; 6296 } 6297 6298 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6299 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6300 goto do_unallocated; 6301 } 6302 /* fall through */ 6303 case 0x0 ... 0x3: 6304 case 0x8 ... 0xc: 6305 case 0xe ... 0xf: 6306 /* 32-to-32 and 64-to-64 ops */ 6307 switch (type) { 6308 case 0: 6309 if (!fp_access_check(s)) { 6310 return; 6311 } 6312 handle_fp_1src_single(s, opcode, rd, rn); 6313 break; 6314 case 1: 6315 if (!fp_access_check(s)) { 6316 return; 6317 } 6318 handle_fp_1src_double(s, opcode, rd, rn); 6319 break; 6320 case 3: 6321 if (!dc_isar_feature(aa64_fp16, s)) { 6322 goto do_unallocated; 6323 } 6324 6325 if (!fp_access_check(s)) { 6326 return; 6327 } 6328 handle_fp_1src_half(s, opcode, rd, rn); 6329 break; 6330 default: 6331 goto do_unallocated; 6332 } 6333 break; 6334 6335 case 0x6: 6336 switch (type) { 6337 case 1: /* BFCVT */ 6338 if (!dc_isar_feature(aa64_bf16, s)) { 6339 goto do_unallocated; 6340 } 6341 if (!fp_access_check(s)) { 6342 return; 6343 } 6344 handle_fp_1src_single(s, opcode, rd, rn); 6345 break; 6346 default: 6347 goto do_unallocated; 6348 } 6349 break; 6350 6351 default: 6352 do_unallocated: 6353 unallocated_encoding(s); 6354 break; 6355 } 6356 } 6357 6358 /* Floating-point data-processing (2 source) - single precision */ 6359 static void handle_fp_2src_single(DisasContext *s, int opcode, 6360 int rd, int rn, int rm) 6361 { 6362 TCGv_i32 tcg_op1; 6363 TCGv_i32 tcg_op2; 6364 TCGv_i32 tcg_res; 6365 TCGv_ptr fpst; 6366 6367 tcg_res = tcg_temp_new_i32(); 6368 fpst = fpstatus_ptr(FPST_FPCR); 6369 tcg_op1 = read_fp_sreg(s, rn); 6370 tcg_op2 = read_fp_sreg(s, rm); 6371 6372 switch (opcode) { 6373 case 0x0: /* FMUL */ 6374 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6375 break; 6376 case 0x1: /* FDIV */ 6377 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6378 break; 6379 case 0x2: /* FADD */ 6380 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6381 break; 6382 case 0x3: /* FSUB */ 6383 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6384 break; 6385 case 0x4: /* FMAX */ 6386 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6387 break; 6388 case 0x5: /* FMIN */ 6389 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6390 break; 6391 case 0x6: /* FMAXNM */ 6392 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6393 break; 6394 case 0x7: /* FMINNM */ 6395 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6396 break; 6397 case 0x8: /* FNMUL */ 6398 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6399 gen_helper_vfp_negs(tcg_res, tcg_res); 6400 break; 6401 } 6402 6403 write_fp_sreg(s, rd, tcg_res); 6404 } 6405 6406 /* Floating-point data-processing (2 source) - double precision */ 6407 static void handle_fp_2src_double(DisasContext *s, int opcode, 6408 int rd, int rn, int rm) 6409 { 6410 TCGv_i64 tcg_op1; 6411 TCGv_i64 tcg_op2; 6412 TCGv_i64 tcg_res; 6413 TCGv_ptr fpst; 6414 6415 tcg_res = tcg_temp_new_i64(); 6416 fpst = fpstatus_ptr(FPST_FPCR); 6417 tcg_op1 = read_fp_dreg(s, rn); 6418 tcg_op2 = read_fp_dreg(s, rm); 6419 6420 switch (opcode) { 6421 case 0x0: /* FMUL */ 6422 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6423 break; 6424 case 0x1: /* FDIV */ 6425 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6426 break; 6427 case 0x2: /* FADD */ 6428 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6429 break; 6430 case 0x3: /* FSUB */ 6431 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6432 break; 6433 case 0x4: /* FMAX */ 6434 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6435 break; 6436 case 0x5: /* FMIN */ 6437 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6438 break; 6439 case 0x6: /* FMAXNM */ 6440 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6441 break; 6442 case 0x7: /* FMINNM */ 6443 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6444 break; 6445 case 0x8: /* FNMUL */ 6446 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6447 gen_helper_vfp_negd(tcg_res, tcg_res); 6448 break; 6449 } 6450 6451 write_fp_dreg(s, rd, tcg_res); 6452 } 6453 6454 /* Floating-point data-processing (2 source) - half precision */ 6455 static void handle_fp_2src_half(DisasContext *s, int opcode, 6456 int rd, int rn, int rm) 6457 { 6458 TCGv_i32 tcg_op1; 6459 TCGv_i32 tcg_op2; 6460 TCGv_i32 tcg_res; 6461 TCGv_ptr fpst; 6462 6463 tcg_res = tcg_temp_new_i32(); 6464 fpst = fpstatus_ptr(FPST_FPCR_F16); 6465 tcg_op1 = read_fp_hreg(s, rn); 6466 tcg_op2 = read_fp_hreg(s, rm); 6467 6468 switch (opcode) { 6469 case 0x0: /* FMUL */ 6470 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6471 break; 6472 case 0x1: /* FDIV */ 6473 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6474 break; 6475 case 0x2: /* FADD */ 6476 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6477 break; 6478 case 0x3: /* FSUB */ 6479 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6480 break; 6481 case 0x4: /* FMAX */ 6482 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6483 break; 6484 case 0x5: /* FMIN */ 6485 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6486 break; 6487 case 0x6: /* FMAXNM */ 6488 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6489 break; 6490 case 0x7: /* FMINNM */ 6491 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6492 break; 6493 case 0x8: /* FNMUL */ 6494 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6495 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6496 break; 6497 default: 6498 g_assert_not_reached(); 6499 } 6500 6501 write_fp_sreg(s, rd, tcg_res); 6502 } 6503 6504 /* Floating point data-processing (2 source) 6505 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6506 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6507 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6508 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6509 */ 6510 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6511 { 6512 int mos = extract32(insn, 29, 3); 6513 int type = extract32(insn, 22, 2); 6514 int rd = extract32(insn, 0, 5); 6515 int rn = extract32(insn, 5, 5); 6516 int rm = extract32(insn, 16, 5); 6517 int opcode = extract32(insn, 12, 4); 6518 6519 if (opcode > 8 || mos) { 6520 unallocated_encoding(s); 6521 return; 6522 } 6523 6524 switch (type) { 6525 case 0: 6526 if (!fp_access_check(s)) { 6527 return; 6528 } 6529 handle_fp_2src_single(s, opcode, rd, rn, rm); 6530 break; 6531 case 1: 6532 if (!fp_access_check(s)) { 6533 return; 6534 } 6535 handle_fp_2src_double(s, opcode, rd, rn, rm); 6536 break; 6537 case 3: 6538 if (!dc_isar_feature(aa64_fp16, s)) { 6539 unallocated_encoding(s); 6540 return; 6541 } 6542 if (!fp_access_check(s)) { 6543 return; 6544 } 6545 handle_fp_2src_half(s, opcode, rd, rn, rm); 6546 break; 6547 default: 6548 unallocated_encoding(s); 6549 } 6550 } 6551 6552 /* Floating-point data-processing (3 source) - single precision */ 6553 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6554 int rd, int rn, int rm, int ra) 6555 { 6556 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6557 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6558 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6559 6560 tcg_op1 = read_fp_sreg(s, rn); 6561 tcg_op2 = read_fp_sreg(s, rm); 6562 tcg_op3 = read_fp_sreg(s, ra); 6563 6564 /* These are fused multiply-add, and must be done as one 6565 * floating point operation with no rounding between the 6566 * multiplication and addition steps. 6567 * NB that doing the negations here as separate steps is 6568 * correct : an input NaN should come out with its sign bit 6569 * flipped if it is a negated-input. 6570 */ 6571 if (o1 == true) { 6572 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6573 } 6574 6575 if (o0 != o1) { 6576 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6577 } 6578 6579 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6580 6581 write_fp_sreg(s, rd, tcg_res); 6582 } 6583 6584 /* Floating-point data-processing (3 source) - double precision */ 6585 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6586 int rd, int rn, int rm, int ra) 6587 { 6588 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6589 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6590 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6591 6592 tcg_op1 = read_fp_dreg(s, rn); 6593 tcg_op2 = read_fp_dreg(s, rm); 6594 tcg_op3 = read_fp_dreg(s, ra); 6595 6596 /* These are fused multiply-add, and must be done as one 6597 * floating point operation with no rounding between the 6598 * multiplication and addition steps. 6599 * NB that doing the negations here as separate steps is 6600 * correct : an input NaN should come out with its sign bit 6601 * flipped if it is a negated-input. 6602 */ 6603 if (o1 == true) { 6604 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6605 } 6606 6607 if (o0 != o1) { 6608 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6609 } 6610 6611 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6612 6613 write_fp_dreg(s, rd, tcg_res); 6614 } 6615 6616 /* Floating-point data-processing (3 source) - half precision */ 6617 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6618 int rd, int rn, int rm, int ra) 6619 { 6620 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6621 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6622 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6623 6624 tcg_op1 = read_fp_hreg(s, rn); 6625 tcg_op2 = read_fp_hreg(s, rm); 6626 tcg_op3 = read_fp_hreg(s, ra); 6627 6628 /* These are fused multiply-add, and must be done as one 6629 * floating point operation with no rounding between the 6630 * multiplication and addition steps. 6631 * NB that doing the negations here as separate steps is 6632 * correct : an input NaN should come out with its sign bit 6633 * flipped if it is a negated-input. 6634 */ 6635 if (o1 == true) { 6636 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6637 } 6638 6639 if (o0 != o1) { 6640 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6641 } 6642 6643 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6644 6645 write_fp_sreg(s, rd, tcg_res); 6646 } 6647 6648 /* Floating point data-processing (3 source) 6649 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6650 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6651 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6652 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6653 */ 6654 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6655 { 6656 int mos = extract32(insn, 29, 3); 6657 int type = extract32(insn, 22, 2); 6658 int rd = extract32(insn, 0, 5); 6659 int rn = extract32(insn, 5, 5); 6660 int ra = extract32(insn, 10, 5); 6661 int rm = extract32(insn, 16, 5); 6662 bool o0 = extract32(insn, 15, 1); 6663 bool o1 = extract32(insn, 21, 1); 6664 6665 if (mos) { 6666 unallocated_encoding(s); 6667 return; 6668 } 6669 6670 switch (type) { 6671 case 0: 6672 if (!fp_access_check(s)) { 6673 return; 6674 } 6675 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6676 break; 6677 case 1: 6678 if (!fp_access_check(s)) { 6679 return; 6680 } 6681 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6682 break; 6683 case 3: 6684 if (!dc_isar_feature(aa64_fp16, s)) { 6685 unallocated_encoding(s); 6686 return; 6687 } 6688 if (!fp_access_check(s)) { 6689 return; 6690 } 6691 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6692 break; 6693 default: 6694 unallocated_encoding(s); 6695 } 6696 } 6697 6698 /* Floating point immediate 6699 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6700 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6701 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6702 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6703 */ 6704 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6705 { 6706 int rd = extract32(insn, 0, 5); 6707 int imm5 = extract32(insn, 5, 5); 6708 int imm8 = extract32(insn, 13, 8); 6709 int type = extract32(insn, 22, 2); 6710 int mos = extract32(insn, 29, 3); 6711 uint64_t imm; 6712 MemOp sz; 6713 6714 if (mos || imm5) { 6715 unallocated_encoding(s); 6716 return; 6717 } 6718 6719 switch (type) { 6720 case 0: 6721 sz = MO_32; 6722 break; 6723 case 1: 6724 sz = MO_64; 6725 break; 6726 case 3: 6727 sz = MO_16; 6728 if (dc_isar_feature(aa64_fp16, s)) { 6729 break; 6730 } 6731 /* fallthru */ 6732 default: 6733 unallocated_encoding(s); 6734 return; 6735 } 6736 6737 if (!fp_access_check(s)) { 6738 return; 6739 } 6740 6741 imm = vfp_expand_imm(sz, imm8); 6742 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6743 } 6744 6745 /* Handle floating point <=> fixed point conversions. Note that we can 6746 * also deal with fp <=> integer conversions as a special case (scale == 64) 6747 * OPTME: consider handling that special case specially or at least skipping 6748 * the call to scalbn in the helpers for zero shifts. 6749 */ 6750 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6751 bool itof, int rmode, int scale, int sf, int type) 6752 { 6753 bool is_signed = !(opcode & 1); 6754 TCGv_ptr tcg_fpstatus; 6755 TCGv_i32 tcg_shift, tcg_single; 6756 TCGv_i64 tcg_double; 6757 6758 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6759 6760 tcg_shift = tcg_constant_i32(64 - scale); 6761 6762 if (itof) { 6763 TCGv_i64 tcg_int = cpu_reg(s, rn); 6764 if (!sf) { 6765 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6766 6767 if (is_signed) { 6768 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6769 } else { 6770 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6771 } 6772 6773 tcg_int = tcg_extend; 6774 } 6775 6776 switch (type) { 6777 case 1: /* float64 */ 6778 tcg_double = tcg_temp_new_i64(); 6779 if (is_signed) { 6780 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6781 tcg_shift, tcg_fpstatus); 6782 } else { 6783 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6784 tcg_shift, tcg_fpstatus); 6785 } 6786 write_fp_dreg(s, rd, tcg_double); 6787 break; 6788 6789 case 0: /* float32 */ 6790 tcg_single = tcg_temp_new_i32(); 6791 if (is_signed) { 6792 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6793 tcg_shift, tcg_fpstatus); 6794 } else { 6795 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6796 tcg_shift, tcg_fpstatus); 6797 } 6798 write_fp_sreg(s, rd, tcg_single); 6799 break; 6800 6801 case 3: /* float16 */ 6802 tcg_single = tcg_temp_new_i32(); 6803 if (is_signed) { 6804 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6805 tcg_shift, tcg_fpstatus); 6806 } else { 6807 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6808 tcg_shift, tcg_fpstatus); 6809 } 6810 write_fp_sreg(s, rd, tcg_single); 6811 break; 6812 6813 default: 6814 g_assert_not_reached(); 6815 } 6816 } else { 6817 TCGv_i64 tcg_int = cpu_reg(s, rd); 6818 TCGv_i32 tcg_rmode; 6819 6820 if (extract32(opcode, 2, 1)) { 6821 /* There are too many rounding modes to all fit into rmode, 6822 * so FCVTA[US] is a special case. 6823 */ 6824 rmode = FPROUNDING_TIEAWAY; 6825 } 6826 6827 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6828 6829 switch (type) { 6830 case 1: /* float64 */ 6831 tcg_double = read_fp_dreg(s, rn); 6832 if (is_signed) { 6833 if (!sf) { 6834 gen_helper_vfp_tosld(tcg_int, tcg_double, 6835 tcg_shift, tcg_fpstatus); 6836 } else { 6837 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6838 tcg_shift, tcg_fpstatus); 6839 } 6840 } else { 6841 if (!sf) { 6842 gen_helper_vfp_tould(tcg_int, tcg_double, 6843 tcg_shift, tcg_fpstatus); 6844 } else { 6845 gen_helper_vfp_touqd(tcg_int, tcg_double, 6846 tcg_shift, tcg_fpstatus); 6847 } 6848 } 6849 if (!sf) { 6850 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6851 } 6852 break; 6853 6854 case 0: /* float32 */ 6855 tcg_single = read_fp_sreg(s, rn); 6856 if (sf) { 6857 if (is_signed) { 6858 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6859 tcg_shift, tcg_fpstatus); 6860 } else { 6861 gen_helper_vfp_touqs(tcg_int, tcg_single, 6862 tcg_shift, tcg_fpstatus); 6863 } 6864 } else { 6865 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6866 if (is_signed) { 6867 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6868 tcg_shift, tcg_fpstatus); 6869 } else { 6870 gen_helper_vfp_touls(tcg_dest, tcg_single, 6871 tcg_shift, tcg_fpstatus); 6872 } 6873 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6874 } 6875 break; 6876 6877 case 3: /* float16 */ 6878 tcg_single = read_fp_sreg(s, rn); 6879 if (sf) { 6880 if (is_signed) { 6881 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6882 tcg_shift, tcg_fpstatus); 6883 } else { 6884 gen_helper_vfp_touqh(tcg_int, tcg_single, 6885 tcg_shift, tcg_fpstatus); 6886 } 6887 } else { 6888 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6889 if (is_signed) { 6890 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6891 tcg_shift, tcg_fpstatus); 6892 } else { 6893 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6894 tcg_shift, tcg_fpstatus); 6895 } 6896 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6897 } 6898 break; 6899 6900 default: 6901 g_assert_not_reached(); 6902 } 6903 6904 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6905 } 6906 } 6907 6908 /* Floating point <-> fixed point conversions 6909 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6910 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6911 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6912 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6913 */ 6914 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6915 { 6916 int rd = extract32(insn, 0, 5); 6917 int rn = extract32(insn, 5, 5); 6918 int scale = extract32(insn, 10, 6); 6919 int opcode = extract32(insn, 16, 3); 6920 int rmode = extract32(insn, 19, 2); 6921 int type = extract32(insn, 22, 2); 6922 bool sbit = extract32(insn, 29, 1); 6923 bool sf = extract32(insn, 31, 1); 6924 bool itof; 6925 6926 if (sbit || (!sf && scale < 32)) { 6927 unallocated_encoding(s); 6928 return; 6929 } 6930 6931 switch (type) { 6932 case 0: /* float32 */ 6933 case 1: /* float64 */ 6934 break; 6935 case 3: /* float16 */ 6936 if (dc_isar_feature(aa64_fp16, s)) { 6937 break; 6938 } 6939 /* fallthru */ 6940 default: 6941 unallocated_encoding(s); 6942 return; 6943 } 6944 6945 switch ((rmode << 3) | opcode) { 6946 case 0x2: /* SCVTF */ 6947 case 0x3: /* UCVTF */ 6948 itof = true; 6949 break; 6950 case 0x18: /* FCVTZS */ 6951 case 0x19: /* FCVTZU */ 6952 itof = false; 6953 break; 6954 default: 6955 unallocated_encoding(s); 6956 return; 6957 } 6958 6959 if (!fp_access_check(s)) { 6960 return; 6961 } 6962 6963 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6964 } 6965 6966 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6967 { 6968 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6969 * without conversion. 6970 */ 6971 6972 if (itof) { 6973 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6974 TCGv_i64 tmp; 6975 6976 switch (type) { 6977 case 0: 6978 /* 32 bit */ 6979 tmp = tcg_temp_new_i64(); 6980 tcg_gen_ext32u_i64(tmp, tcg_rn); 6981 write_fp_dreg(s, rd, tmp); 6982 break; 6983 case 1: 6984 /* 64 bit */ 6985 write_fp_dreg(s, rd, tcg_rn); 6986 break; 6987 case 2: 6988 /* 64 bit to top half. */ 6989 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6990 clear_vec_high(s, true, rd); 6991 break; 6992 case 3: 6993 /* 16 bit */ 6994 tmp = tcg_temp_new_i64(); 6995 tcg_gen_ext16u_i64(tmp, tcg_rn); 6996 write_fp_dreg(s, rd, tmp); 6997 break; 6998 default: 6999 g_assert_not_reached(); 7000 } 7001 } else { 7002 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7003 7004 switch (type) { 7005 case 0: 7006 /* 32 bit */ 7007 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7008 break; 7009 case 1: 7010 /* 64 bit */ 7011 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7012 break; 7013 case 2: 7014 /* 64 bits from top half */ 7015 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7016 break; 7017 case 3: 7018 /* 16 bit */ 7019 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7020 break; 7021 default: 7022 g_assert_not_reached(); 7023 } 7024 } 7025 } 7026 7027 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7028 { 7029 TCGv_i64 t = read_fp_dreg(s, rn); 7030 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7031 7032 gen_helper_fjcvtzs(t, t, fpstatus); 7033 7034 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7035 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7036 tcg_gen_movi_i32(cpu_CF, 0); 7037 tcg_gen_movi_i32(cpu_NF, 0); 7038 tcg_gen_movi_i32(cpu_VF, 0); 7039 } 7040 7041 /* Floating point <-> integer conversions 7042 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7043 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7044 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7045 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7046 */ 7047 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7048 { 7049 int rd = extract32(insn, 0, 5); 7050 int rn = extract32(insn, 5, 5); 7051 int opcode = extract32(insn, 16, 3); 7052 int rmode = extract32(insn, 19, 2); 7053 int type = extract32(insn, 22, 2); 7054 bool sbit = extract32(insn, 29, 1); 7055 bool sf = extract32(insn, 31, 1); 7056 bool itof = false; 7057 7058 if (sbit) { 7059 goto do_unallocated; 7060 } 7061 7062 switch (opcode) { 7063 case 2: /* SCVTF */ 7064 case 3: /* UCVTF */ 7065 itof = true; 7066 /* fallthru */ 7067 case 4: /* FCVTAS */ 7068 case 5: /* FCVTAU */ 7069 if (rmode != 0) { 7070 goto do_unallocated; 7071 } 7072 /* fallthru */ 7073 case 0: /* FCVT[NPMZ]S */ 7074 case 1: /* FCVT[NPMZ]U */ 7075 switch (type) { 7076 case 0: /* float32 */ 7077 case 1: /* float64 */ 7078 break; 7079 case 3: /* float16 */ 7080 if (!dc_isar_feature(aa64_fp16, s)) { 7081 goto do_unallocated; 7082 } 7083 break; 7084 default: 7085 goto do_unallocated; 7086 } 7087 if (!fp_access_check(s)) { 7088 return; 7089 } 7090 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7091 break; 7092 7093 default: 7094 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7095 case 0b01100110: /* FMOV half <-> 32-bit int */ 7096 case 0b01100111: 7097 case 0b11100110: /* FMOV half <-> 64-bit int */ 7098 case 0b11100111: 7099 if (!dc_isar_feature(aa64_fp16, s)) { 7100 goto do_unallocated; 7101 } 7102 /* fallthru */ 7103 case 0b00000110: /* FMOV 32-bit */ 7104 case 0b00000111: 7105 case 0b10100110: /* FMOV 64-bit */ 7106 case 0b10100111: 7107 case 0b11001110: /* FMOV top half of 128-bit */ 7108 case 0b11001111: 7109 if (!fp_access_check(s)) { 7110 return; 7111 } 7112 itof = opcode & 1; 7113 handle_fmov(s, rd, rn, type, itof); 7114 break; 7115 7116 case 0b00111110: /* FJCVTZS */ 7117 if (!dc_isar_feature(aa64_jscvt, s)) { 7118 goto do_unallocated; 7119 } else if (fp_access_check(s)) { 7120 handle_fjcvtzs(s, rd, rn); 7121 } 7122 break; 7123 7124 default: 7125 do_unallocated: 7126 unallocated_encoding(s); 7127 return; 7128 } 7129 break; 7130 } 7131 } 7132 7133 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7134 * 31 30 29 28 25 24 0 7135 * +---+---+---+---------+-----------------------------+ 7136 * | | 0 | | 1 1 1 1 | | 7137 * +---+---+---+---------+-----------------------------+ 7138 */ 7139 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7140 { 7141 if (extract32(insn, 24, 1)) { 7142 /* Floating point data-processing (3 source) */ 7143 disas_fp_3src(s, insn); 7144 } else if (extract32(insn, 21, 1) == 0) { 7145 /* Floating point to fixed point conversions */ 7146 disas_fp_fixed_conv(s, insn); 7147 } else { 7148 switch (extract32(insn, 10, 2)) { 7149 case 1: 7150 /* Floating point conditional compare */ 7151 disas_fp_ccomp(s, insn); 7152 break; 7153 case 2: 7154 /* Floating point data-processing (2 source) */ 7155 disas_fp_2src(s, insn); 7156 break; 7157 case 3: 7158 /* Floating point conditional select */ 7159 disas_fp_csel(s, insn); 7160 break; 7161 case 0: 7162 switch (ctz32(extract32(insn, 12, 4))) { 7163 case 0: /* [15:12] == xxx1 */ 7164 /* Floating point immediate */ 7165 disas_fp_imm(s, insn); 7166 break; 7167 case 1: /* [15:12] == xx10 */ 7168 /* Floating point compare */ 7169 disas_fp_compare(s, insn); 7170 break; 7171 case 2: /* [15:12] == x100 */ 7172 /* Floating point data-processing (1 source) */ 7173 disas_fp_1src(s, insn); 7174 break; 7175 case 3: /* [15:12] == 1000 */ 7176 unallocated_encoding(s); 7177 break; 7178 default: /* [15:12] == 0000 */ 7179 /* Floating point <-> integer conversions */ 7180 disas_fp_int_conv(s, insn); 7181 break; 7182 } 7183 break; 7184 } 7185 } 7186 } 7187 7188 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7189 int pos) 7190 { 7191 /* Extract 64 bits from the middle of two concatenated 64 bit 7192 * vector register slices left:right. The extracted bits start 7193 * at 'pos' bits into the right (least significant) side. 7194 * We return the result in tcg_right, and guarantee not to 7195 * trash tcg_left. 7196 */ 7197 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7198 assert(pos > 0 && pos < 64); 7199 7200 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7201 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7202 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7203 } 7204 7205 /* EXT 7206 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7207 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7208 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7209 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7210 */ 7211 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7212 { 7213 int is_q = extract32(insn, 30, 1); 7214 int op2 = extract32(insn, 22, 2); 7215 int imm4 = extract32(insn, 11, 4); 7216 int rm = extract32(insn, 16, 5); 7217 int rn = extract32(insn, 5, 5); 7218 int rd = extract32(insn, 0, 5); 7219 int pos = imm4 << 3; 7220 TCGv_i64 tcg_resl, tcg_resh; 7221 7222 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7223 unallocated_encoding(s); 7224 return; 7225 } 7226 7227 if (!fp_access_check(s)) { 7228 return; 7229 } 7230 7231 tcg_resh = tcg_temp_new_i64(); 7232 tcg_resl = tcg_temp_new_i64(); 7233 7234 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7235 * either extracting 128 bits from a 128:128 concatenation, or 7236 * extracting 64 bits from a 64:64 concatenation. 7237 */ 7238 if (!is_q) { 7239 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7240 if (pos != 0) { 7241 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7242 do_ext64(s, tcg_resh, tcg_resl, pos); 7243 } 7244 } else { 7245 TCGv_i64 tcg_hh; 7246 typedef struct { 7247 int reg; 7248 int elt; 7249 } EltPosns; 7250 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7251 EltPosns *elt = eltposns; 7252 7253 if (pos >= 64) { 7254 elt++; 7255 pos -= 64; 7256 } 7257 7258 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7259 elt++; 7260 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7261 elt++; 7262 if (pos != 0) { 7263 do_ext64(s, tcg_resh, tcg_resl, pos); 7264 tcg_hh = tcg_temp_new_i64(); 7265 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7266 do_ext64(s, tcg_hh, tcg_resh, pos); 7267 } 7268 } 7269 7270 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7271 if (is_q) { 7272 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7273 } 7274 clear_vec_high(s, is_q, rd); 7275 } 7276 7277 /* TBL/TBX 7278 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7279 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7280 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7281 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7282 */ 7283 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7284 { 7285 int op2 = extract32(insn, 22, 2); 7286 int is_q = extract32(insn, 30, 1); 7287 int rm = extract32(insn, 16, 5); 7288 int rn = extract32(insn, 5, 5); 7289 int rd = extract32(insn, 0, 5); 7290 int is_tbx = extract32(insn, 12, 1); 7291 int len = (extract32(insn, 13, 2) + 1) * 16; 7292 7293 if (op2 != 0) { 7294 unallocated_encoding(s); 7295 return; 7296 } 7297 7298 if (!fp_access_check(s)) { 7299 return; 7300 } 7301 7302 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7303 vec_full_reg_offset(s, rm), cpu_env, 7304 is_q ? 16 : 8, vec_full_reg_size(s), 7305 (len << 6) | (is_tbx << 5) | rn, 7306 gen_helper_simd_tblx); 7307 } 7308 7309 /* ZIP/UZP/TRN 7310 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7311 * +---+---+-------------+------+---+------+---+------------------+------+ 7312 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7313 * +---+---+-------------+------+---+------+---+------------------+------+ 7314 */ 7315 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7316 { 7317 int rd = extract32(insn, 0, 5); 7318 int rn = extract32(insn, 5, 5); 7319 int rm = extract32(insn, 16, 5); 7320 int size = extract32(insn, 22, 2); 7321 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7322 * bit 2 indicates 1 vs 2 variant of the insn. 7323 */ 7324 int opcode = extract32(insn, 12, 2); 7325 bool part = extract32(insn, 14, 1); 7326 bool is_q = extract32(insn, 30, 1); 7327 int esize = 8 << size; 7328 int i; 7329 int datasize = is_q ? 128 : 64; 7330 int elements = datasize / esize; 7331 TCGv_i64 tcg_res[2], tcg_ele; 7332 7333 if (opcode == 0 || (size == 3 && !is_q)) { 7334 unallocated_encoding(s); 7335 return; 7336 } 7337 7338 if (!fp_access_check(s)) { 7339 return; 7340 } 7341 7342 tcg_res[0] = tcg_temp_new_i64(); 7343 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7344 tcg_ele = tcg_temp_new_i64(); 7345 7346 for (i = 0; i < elements; i++) { 7347 int o, w; 7348 7349 switch (opcode) { 7350 case 1: /* UZP1/2 */ 7351 { 7352 int midpoint = elements / 2; 7353 if (i < midpoint) { 7354 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7355 } else { 7356 read_vec_element(s, tcg_ele, rm, 7357 2 * (i - midpoint) + part, size); 7358 } 7359 break; 7360 } 7361 case 2: /* TRN1/2 */ 7362 if (i & 1) { 7363 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7364 } else { 7365 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7366 } 7367 break; 7368 case 3: /* ZIP1/2 */ 7369 { 7370 int base = part * elements / 2; 7371 if (i & 1) { 7372 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7373 } else { 7374 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7375 } 7376 break; 7377 } 7378 default: 7379 g_assert_not_reached(); 7380 } 7381 7382 w = (i * esize) / 64; 7383 o = (i * esize) % 64; 7384 if (o == 0) { 7385 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7386 } else { 7387 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7388 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7389 } 7390 } 7391 7392 for (i = 0; i <= is_q; ++i) { 7393 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7394 } 7395 clear_vec_high(s, is_q, rd); 7396 } 7397 7398 /* 7399 * do_reduction_op helper 7400 * 7401 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7402 * important for correct NaN propagation that we do these 7403 * operations in exactly the order specified by the pseudocode. 7404 * 7405 * This is a recursive function, TCG temps should be freed by the 7406 * calling function once it is done with the values. 7407 */ 7408 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7409 int esize, int size, int vmap, TCGv_ptr fpst) 7410 { 7411 if (esize == size) { 7412 int element; 7413 MemOp msize = esize == 16 ? MO_16 : MO_32; 7414 TCGv_i32 tcg_elem; 7415 7416 /* We should have one register left here */ 7417 assert(ctpop8(vmap) == 1); 7418 element = ctz32(vmap); 7419 assert(element < 8); 7420 7421 tcg_elem = tcg_temp_new_i32(); 7422 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7423 return tcg_elem; 7424 } else { 7425 int bits = size / 2; 7426 int shift = ctpop8(vmap) / 2; 7427 int vmap_lo = (vmap >> shift) & vmap; 7428 int vmap_hi = (vmap & ~vmap_lo); 7429 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7430 7431 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7432 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7433 tcg_res = tcg_temp_new_i32(); 7434 7435 switch (fpopcode) { 7436 case 0x0c: /* fmaxnmv half-precision */ 7437 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7438 break; 7439 case 0x0f: /* fmaxv half-precision */ 7440 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7441 break; 7442 case 0x1c: /* fminnmv half-precision */ 7443 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7444 break; 7445 case 0x1f: /* fminv half-precision */ 7446 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7447 break; 7448 case 0x2c: /* fmaxnmv */ 7449 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7450 break; 7451 case 0x2f: /* fmaxv */ 7452 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7453 break; 7454 case 0x3c: /* fminnmv */ 7455 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7456 break; 7457 case 0x3f: /* fminv */ 7458 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7459 break; 7460 default: 7461 g_assert_not_reached(); 7462 } 7463 return tcg_res; 7464 } 7465 } 7466 7467 /* AdvSIMD across lanes 7468 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7469 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7470 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7471 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7472 */ 7473 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7474 { 7475 int rd = extract32(insn, 0, 5); 7476 int rn = extract32(insn, 5, 5); 7477 int size = extract32(insn, 22, 2); 7478 int opcode = extract32(insn, 12, 5); 7479 bool is_q = extract32(insn, 30, 1); 7480 bool is_u = extract32(insn, 29, 1); 7481 bool is_fp = false; 7482 bool is_min = false; 7483 int esize; 7484 int elements; 7485 int i; 7486 TCGv_i64 tcg_res, tcg_elt; 7487 7488 switch (opcode) { 7489 case 0x1b: /* ADDV */ 7490 if (is_u) { 7491 unallocated_encoding(s); 7492 return; 7493 } 7494 /* fall through */ 7495 case 0x3: /* SADDLV, UADDLV */ 7496 case 0xa: /* SMAXV, UMAXV */ 7497 case 0x1a: /* SMINV, UMINV */ 7498 if (size == 3 || (size == 2 && !is_q)) { 7499 unallocated_encoding(s); 7500 return; 7501 } 7502 break; 7503 case 0xc: /* FMAXNMV, FMINNMV */ 7504 case 0xf: /* FMAXV, FMINV */ 7505 /* Bit 1 of size field encodes min vs max and the actual size 7506 * depends on the encoding of the U bit. If not set (and FP16 7507 * enabled) then we do half-precision float instead of single 7508 * precision. 7509 */ 7510 is_min = extract32(size, 1, 1); 7511 is_fp = true; 7512 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7513 size = 1; 7514 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7515 unallocated_encoding(s); 7516 return; 7517 } else { 7518 size = 2; 7519 } 7520 break; 7521 default: 7522 unallocated_encoding(s); 7523 return; 7524 } 7525 7526 if (!fp_access_check(s)) { 7527 return; 7528 } 7529 7530 esize = 8 << size; 7531 elements = (is_q ? 128 : 64) / esize; 7532 7533 tcg_res = tcg_temp_new_i64(); 7534 tcg_elt = tcg_temp_new_i64(); 7535 7536 /* These instructions operate across all lanes of a vector 7537 * to produce a single result. We can guarantee that a 64 7538 * bit intermediate is sufficient: 7539 * + for [US]ADDLV the maximum element size is 32 bits, and 7540 * the result type is 64 bits 7541 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7542 * same as the element size, which is 32 bits at most 7543 * For the integer operations we can choose to work at 64 7544 * or 32 bits and truncate at the end; for simplicity 7545 * we use 64 bits always. The floating point 7546 * ops do require 32 bit intermediates, though. 7547 */ 7548 if (!is_fp) { 7549 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7550 7551 for (i = 1; i < elements; i++) { 7552 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7553 7554 switch (opcode) { 7555 case 0x03: /* SADDLV / UADDLV */ 7556 case 0x1b: /* ADDV */ 7557 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7558 break; 7559 case 0x0a: /* SMAXV / UMAXV */ 7560 if (is_u) { 7561 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7562 } else { 7563 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7564 } 7565 break; 7566 case 0x1a: /* SMINV / UMINV */ 7567 if (is_u) { 7568 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7569 } else { 7570 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7571 } 7572 break; 7573 default: 7574 g_assert_not_reached(); 7575 } 7576 7577 } 7578 } else { 7579 /* Floating point vector reduction ops which work across 32 7580 * bit (single) or 16 bit (half-precision) intermediates. 7581 * Note that correct NaN propagation requires that we do these 7582 * operations in exactly the order specified by the pseudocode. 7583 */ 7584 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7585 int fpopcode = opcode | is_min << 4 | is_u << 5; 7586 int vmap = (1 << elements) - 1; 7587 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7588 (is_q ? 128 : 64), vmap, fpst); 7589 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7590 } 7591 7592 /* Now truncate the result to the width required for the final output */ 7593 if (opcode == 0x03) { 7594 /* SADDLV, UADDLV: result is 2*esize */ 7595 size++; 7596 } 7597 7598 switch (size) { 7599 case 0: 7600 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7601 break; 7602 case 1: 7603 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7604 break; 7605 case 2: 7606 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7607 break; 7608 case 3: 7609 break; 7610 default: 7611 g_assert_not_reached(); 7612 } 7613 7614 write_fp_dreg(s, rd, tcg_res); 7615 } 7616 7617 /* DUP (Element, Vector) 7618 * 7619 * 31 30 29 21 20 16 15 10 9 5 4 0 7620 * +---+---+-------------------+--------+-------------+------+------+ 7621 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7622 * +---+---+-------------------+--------+-------------+------+------+ 7623 * 7624 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7625 */ 7626 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7627 int imm5) 7628 { 7629 int size = ctz32(imm5); 7630 int index; 7631 7632 if (size > 3 || (size == 3 && !is_q)) { 7633 unallocated_encoding(s); 7634 return; 7635 } 7636 7637 if (!fp_access_check(s)) { 7638 return; 7639 } 7640 7641 index = imm5 >> (size + 1); 7642 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7643 vec_reg_offset(s, rn, index, size), 7644 is_q ? 16 : 8, vec_full_reg_size(s)); 7645 } 7646 7647 /* DUP (element, scalar) 7648 * 31 21 20 16 15 10 9 5 4 0 7649 * +-----------------------+--------+-------------+------+------+ 7650 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7651 * +-----------------------+--------+-------------+------+------+ 7652 */ 7653 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7654 int imm5) 7655 { 7656 int size = ctz32(imm5); 7657 int index; 7658 TCGv_i64 tmp; 7659 7660 if (size > 3) { 7661 unallocated_encoding(s); 7662 return; 7663 } 7664 7665 if (!fp_access_check(s)) { 7666 return; 7667 } 7668 7669 index = imm5 >> (size + 1); 7670 7671 /* This instruction just extracts the specified element and 7672 * zero-extends it into the bottom of the destination register. 7673 */ 7674 tmp = tcg_temp_new_i64(); 7675 read_vec_element(s, tmp, rn, index, size); 7676 write_fp_dreg(s, rd, tmp); 7677 } 7678 7679 /* DUP (General) 7680 * 7681 * 31 30 29 21 20 16 15 10 9 5 4 0 7682 * +---+---+-------------------+--------+-------------+------+------+ 7683 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7684 * +---+---+-------------------+--------+-------------+------+------+ 7685 * 7686 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7687 */ 7688 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7689 int imm5) 7690 { 7691 int size = ctz32(imm5); 7692 uint32_t dofs, oprsz, maxsz; 7693 7694 if (size > 3 || ((size == 3) && !is_q)) { 7695 unallocated_encoding(s); 7696 return; 7697 } 7698 7699 if (!fp_access_check(s)) { 7700 return; 7701 } 7702 7703 dofs = vec_full_reg_offset(s, rd); 7704 oprsz = is_q ? 16 : 8; 7705 maxsz = vec_full_reg_size(s); 7706 7707 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7708 } 7709 7710 /* INS (Element) 7711 * 7712 * 31 21 20 16 15 14 11 10 9 5 4 0 7713 * +-----------------------+--------+------------+---+------+------+ 7714 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7715 * +-----------------------+--------+------------+---+------+------+ 7716 * 7717 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7718 * index: encoded in imm5<4:size+1> 7719 */ 7720 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7721 int imm4, int imm5) 7722 { 7723 int size = ctz32(imm5); 7724 int src_index, dst_index; 7725 TCGv_i64 tmp; 7726 7727 if (size > 3) { 7728 unallocated_encoding(s); 7729 return; 7730 } 7731 7732 if (!fp_access_check(s)) { 7733 return; 7734 } 7735 7736 dst_index = extract32(imm5, 1+size, 5); 7737 src_index = extract32(imm4, size, 4); 7738 7739 tmp = tcg_temp_new_i64(); 7740 7741 read_vec_element(s, tmp, rn, src_index, size); 7742 write_vec_element(s, tmp, rd, dst_index, size); 7743 7744 /* INS is considered a 128-bit write for SVE. */ 7745 clear_vec_high(s, true, rd); 7746 } 7747 7748 7749 /* INS (General) 7750 * 7751 * 31 21 20 16 15 10 9 5 4 0 7752 * +-----------------------+--------+-------------+------+------+ 7753 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7754 * +-----------------------+--------+-------------+------+------+ 7755 * 7756 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7757 * index: encoded in imm5<4:size+1> 7758 */ 7759 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7760 { 7761 int size = ctz32(imm5); 7762 int idx; 7763 7764 if (size > 3) { 7765 unallocated_encoding(s); 7766 return; 7767 } 7768 7769 if (!fp_access_check(s)) { 7770 return; 7771 } 7772 7773 idx = extract32(imm5, 1 + size, 4 - size); 7774 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7775 7776 /* INS is considered a 128-bit write for SVE. */ 7777 clear_vec_high(s, true, rd); 7778 } 7779 7780 /* 7781 * UMOV (General) 7782 * SMOV (General) 7783 * 7784 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7785 * +---+---+-------------------+--------+-------------+------+------+ 7786 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7787 * +---+---+-------------------+--------+-------------+------+------+ 7788 * 7789 * U: unsigned when set 7790 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7791 */ 7792 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7793 int rn, int rd, int imm5) 7794 { 7795 int size = ctz32(imm5); 7796 int element; 7797 TCGv_i64 tcg_rd; 7798 7799 /* Check for UnallocatedEncodings */ 7800 if (is_signed) { 7801 if (size > 2 || (size == 2 && !is_q)) { 7802 unallocated_encoding(s); 7803 return; 7804 } 7805 } else { 7806 if (size > 3 7807 || (size < 3 && is_q) 7808 || (size == 3 && !is_q)) { 7809 unallocated_encoding(s); 7810 return; 7811 } 7812 } 7813 7814 if (!fp_access_check(s)) { 7815 return; 7816 } 7817 7818 element = extract32(imm5, 1+size, 4); 7819 7820 tcg_rd = cpu_reg(s, rd); 7821 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7822 if (is_signed && !is_q) { 7823 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7824 } 7825 } 7826 7827 /* AdvSIMD copy 7828 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7829 * +---+---+----+-----------------+------+---+------+---+------+------+ 7830 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7831 * +---+---+----+-----------------+------+---+------+---+------+------+ 7832 */ 7833 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7834 { 7835 int rd = extract32(insn, 0, 5); 7836 int rn = extract32(insn, 5, 5); 7837 int imm4 = extract32(insn, 11, 4); 7838 int op = extract32(insn, 29, 1); 7839 int is_q = extract32(insn, 30, 1); 7840 int imm5 = extract32(insn, 16, 5); 7841 7842 if (op) { 7843 if (is_q) { 7844 /* INS (element) */ 7845 handle_simd_inse(s, rd, rn, imm4, imm5); 7846 } else { 7847 unallocated_encoding(s); 7848 } 7849 } else { 7850 switch (imm4) { 7851 case 0: 7852 /* DUP (element - vector) */ 7853 handle_simd_dupe(s, is_q, rd, rn, imm5); 7854 break; 7855 case 1: 7856 /* DUP (general) */ 7857 handle_simd_dupg(s, is_q, rd, rn, imm5); 7858 break; 7859 case 3: 7860 if (is_q) { 7861 /* INS (general) */ 7862 handle_simd_insg(s, rd, rn, imm5); 7863 } else { 7864 unallocated_encoding(s); 7865 } 7866 break; 7867 case 5: 7868 case 7: 7869 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7870 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7871 break; 7872 default: 7873 unallocated_encoding(s); 7874 break; 7875 } 7876 } 7877 } 7878 7879 /* AdvSIMD modified immediate 7880 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7881 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7882 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7883 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7884 * 7885 * There are a number of operations that can be carried out here: 7886 * MOVI - move (shifted) imm into register 7887 * MVNI - move inverted (shifted) imm into register 7888 * ORR - bitwise OR of (shifted) imm with register 7889 * BIC - bitwise clear of (shifted) imm with register 7890 * With ARMv8.2 we also have: 7891 * FMOV half-precision 7892 */ 7893 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7894 { 7895 int rd = extract32(insn, 0, 5); 7896 int cmode = extract32(insn, 12, 4); 7897 int o2 = extract32(insn, 11, 1); 7898 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7899 bool is_neg = extract32(insn, 29, 1); 7900 bool is_q = extract32(insn, 30, 1); 7901 uint64_t imm = 0; 7902 7903 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7904 /* Check for FMOV (vector, immediate) - half-precision */ 7905 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7906 unallocated_encoding(s); 7907 return; 7908 } 7909 } 7910 7911 if (!fp_access_check(s)) { 7912 return; 7913 } 7914 7915 if (cmode == 15 && o2 && !is_neg) { 7916 /* FMOV (vector, immediate) - half-precision */ 7917 imm = vfp_expand_imm(MO_16, abcdefgh); 7918 /* now duplicate across the lanes */ 7919 imm = dup_const(MO_16, imm); 7920 } else { 7921 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7922 } 7923 7924 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7925 /* MOVI or MVNI, with MVNI negation handled above. */ 7926 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7927 vec_full_reg_size(s), imm); 7928 } else { 7929 /* ORR or BIC, with BIC negation to AND handled above. */ 7930 if (is_neg) { 7931 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7932 } else { 7933 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7934 } 7935 } 7936 } 7937 7938 /* AdvSIMD scalar copy 7939 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7940 * +-----+----+-----------------+------+---+------+---+------+------+ 7941 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7942 * +-----+----+-----------------+------+---+------+---+------+------+ 7943 */ 7944 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7945 { 7946 int rd = extract32(insn, 0, 5); 7947 int rn = extract32(insn, 5, 5); 7948 int imm4 = extract32(insn, 11, 4); 7949 int imm5 = extract32(insn, 16, 5); 7950 int op = extract32(insn, 29, 1); 7951 7952 if (op != 0 || imm4 != 0) { 7953 unallocated_encoding(s); 7954 return; 7955 } 7956 7957 /* DUP (element, scalar) */ 7958 handle_simd_dupes(s, rd, rn, imm5); 7959 } 7960 7961 /* AdvSIMD scalar pairwise 7962 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7963 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7964 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7965 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7966 */ 7967 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7968 { 7969 int u = extract32(insn, 29, 1); 7970 int size = extract32(insn, 22, 2); 7971 int opcode = extract32(insn, 12, 5); 7972 int rn = extract32(insn, 5, 5); 7973 int rd = extract32(insn, 0, 5); 7974 TCGv_ptr fpst; 7975 7976 /* For some ops (the FP ones), size[1] is part of the encoding. 7977 * For ADDP strictly it is not but size[1] is always 1 for valid 7978 * encodings. 7979 */ 7980 opcode |= (extract32(size, 1, 1) << 5); 7981 7982 switch (opcode) { 7983 case 0x3b: /* ADDP */ 7984 if (u || size != 3) { 7985 unallocated_encoding(s); 7986 return; 7987 } 7988 if (!fp_access_check(s)) { 7989 return; 7990 } 7991 7992 fpst = NULL; 7993 break; 7994 case 0xc: /* FMAXNMP */ 7995 case 0xd: /* FADDP */ 7996 case 0xf: /* FMAXP */ 7997 case 0x2c: /* FMINNMP */ 7998 case 0x2f: /* FMINP */ 7999 /* FP op, size[0] is 32 or 64 bit*/ 8000 if (!u) { 8001 if (!dc_isar_feature(aa64_fp16, s)) { 8002 unallocated_encoding(s); 8003 return; 8004 } else { 8005 size = MO_16; 8006 } 8007 } else { 8008 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8009 } 8010 8011 if (!fp_access_check(s)) { 8012 return; 8013 } 8014 8015 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8016 break; 8017 default: 8018 unallocated_encoding(s); 8019 return; 8020 } 8021 8022 if (size == MO_64) { 8023 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8024 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8025 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8026 8027 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8028 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8029 8030 switch (opcode) { 8031 case 0x3b: /* ADDP */ 8032 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8033 break; 8034 case 0xc: /* FMAXNMP */ 8035 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8036 break; 8037 case 0xd: /* FADDP */ 8038 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8039 break; 8040 case 0xf: /* FMAXP */ 8041 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8042 break; 8043 case 0x2c: /* FMINNMP */ 8044 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8045 break; 8046 case 0x2f: /* FMINP */ 8047 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8048 break; 8049 default: 8050 g_assert_not_reached(); 8051 } 8052 8053 write_fp_dreg(s, rd, tcg_res); 8054 } else { 8055 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8056 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8057 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8058 8059 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8060 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8061 8062 if (size == MO_16) { 8063 switch (opcode) { 8064 case 0xc: /* FMAXNMP */ 8065 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8066 break; 8067 case 0xd: /* FADDP */ 8068 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8069 break; 8070 case 0xf: /* FMAXP */ 8071 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8072 break; 8073 case 0x2c: /* FMINNMP */ 8074 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8075 break; 8076 case 0x2f: /* FMINP */ 8077 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8078 break; 8079 default: 8080 g_assert_not_reached(); 8081 } 8082 } else { 8083 switch (opcode) { 8084 case 0xc: /* FMAXNMP */ 8085 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8086 break; 8087 case 0xd: /* FADDP */ 8088 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8089 break; 8090 case 0xf: /* FMAXP */ 8091 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8092 break; 8093 case 0x2c: /* FMINNMP */ 8094 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8095 break; 8096 case 0x2f: /* FMINP */ 8097 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8098 break; 8099 default: 8100 g_assert_not_reached(); 8101 } 8102 } 8103 8104 write_fp_sreg(s, rd, tcg_res); 8105 } 8106 } 8107 8108 /* 8109 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8110 * 8111 * This code is handles the common shifting code and is used by both 8112 * the vector and scalar code. 8113 */ 8114 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8115 TCGv_i64 tcg_rnd, bool accumulate, 8116 bool is_u, int size, int shift) 8117 { 8118 bool extended_result = false; 8119 bool round = tcg_rnd != NULL; 8120 int ext_lshift = 0; 8121 TCGv_i64 tcg_src_hi; 8122 8123 if (round && size == 3) { 8124 extended_result = true; 8125 ext_lshift = 64 - shift; 8126 tcg_src_hi = tcg_temp_new_i64(); 8127 } else if (shift == 64) { 8128 if (!accumulate && is_u) { 8129 /* result is zero */ 8130 tcg_gen_movi_i64(tcg_res, 0); 8131 return; 8132 } 8133 } 8134 8135 /* Deal with the rounding step */ 8136 if (round) { 8137 if (extended_result) { 8138 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8139 if (!is_u) { 8140 /* take care of sign extending tcg_res */ 8141 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8142 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8143 tcg_src, tcg_src_hi, 8144 tcg_rnd, tcg_zero); 8145 } else { 8146 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8147 tcg_src, tcg_zero, 8148 tcg_rnd, tcg_zero); 8149 } 8150 } else { 8151 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8152 } 8153 } 8154 8155 /* Now do the shift right */ 8156 if (round && extended_result) { 8157 /* extended case, >64 bit precision required */ 8158 if (ext_lshift == 0) { 8159 /* special case, only high bits matter */ 8160 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8161 } else { 8162 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8163 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8164 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8165 } 8166 } else { 8167 if (is_u) { 8168 if (shift == 64) { 8169 /* essentially shifting in 64 zeros */ 8170 tcg_gen_movi_i64(tcg_src, 0); 8171 } else { 8172 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8173 } 8174 } else { 8175 if (shift == 64) { 8176 /* effectively extending the sign-bit */ 8177 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8178 } else { 8179 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8180 } 8181 } 8182 } 8183 8184 if (accumulate) { 8185 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8186 } else { 8187 tcg_gen_mov_i64(tcg_res, tcg_src); 8188 } 8189 } 8190 8191 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8192 static void handle_scalar_simd_shri(DisasContext *s, 8193 bool is_u, int immh, int immb, 8194 int opcode, int rn, int rd) 8195 { 8196 const int size = 3; 8197 int immhb = immh << 3 | immb; 8198 int shift = 2 * (8 << size) - immhb; 8199 bool accumulate = false; 8200 bool round = false; 8201 bool insert = false; 8202 TCGv_i64 tcg_rn; 8203 TCGv_i64 tcg_rd; 8204 TCGv_i64 tcg_round; 8205 8206 if (!extract32(immh, 3, 1)) { 8207 unallocated_encoding(s); 8208 return; 8209 } 8210 8211 if (!fp_access_check(s)) { 8212 return; 8213 } 8214 8215 switch (opcode) { 8216 case 0x02: /* SSRA / USRA (accumulate) */ 8217 accumulate = true; 8218 break; 8219 case 0x04: /* SRSHR / URSHR (rounding) */ 8220 round = true; 8221 break; 8222 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8223 accumulate = round = true; 8224 break; 8225 case 0x08: /* SRI */ 8226 insert = true; 8227 break; 8228 } 8229 8230 if (round) { 8231 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8232 } else { 8233 tcg_round = NULL; 8234 } 8235 8236 tcg_rn = read_fp_dreg(s, rn); 8237 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8238 8239 if (insert) { 8240 /* shift count same as element size is valid but does nothing; 8241 * special case to avoid potential shift by 64. 8242 */ 8243 int esize = 8 << size; 8244 if (shift != esize) { 8245 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8246 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8247 } 8248 } else { 8249 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8250 accumulate, is_u, size, shift); 8251 } 8252 8253 write_fp_dreg(s, rd, tcg_rd); 8254 } 8255 8256 /* SHL/SLI - Scalar shift left */ 8257 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8258 int immh, int immb, int opcode, 8259 int rn, int rd) 8260 { 8261 int size = 32 - clz32(immh) - 1; 8262 int immhb = immh << 3 | immb; 8263 int shift = immhb - (8 << size); 8264 TCGv_i64 tcg_rn; 8265 TCGv_i64 tcg_rd; 8266 8267 if (!extract32(immh, 3, 1)) { 8268 unallocated_encoding(s); 8269 return; 8270 } 8271 8272 if (!fp_access_check(s)) { 8273 return; 8274 } 8275 8276 tcg_rn = read_fp_dreg(s, rn); 8277 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8278 8279 if (insert) { 8280 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8281 } else { 8282 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8283 } 8284 8285 write_fp_dreg(s, rd, tcg_rd); 8286 } 8287 8288 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8289 * (signed/unsigned) narrowing */ 8290 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8291 bool is_u_shift, bool is_u_narrow, 8292 int immh, int immb, int opcode, 8293 int rn, int rd) 8294 { 8295 int immhb = immh << 3 | immb; 8296 int size = 32 - clz32(immh) - 1; 8297 int esize = 8 << size; 8298 int shift = (2 * esize) - immhb; 8299 int elements = is_scalar ? 1 : (64 / esize); 8300 bool round = extract32(opcode, 0, 1); 8301 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8302 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8303 TCGv_i32 tcg_rd_narrowed; 8304 TCGv_i64 tcg_final; 8305 8306 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8307 { gen_helper_neon_narrow_sat_s8, 8308 gen_helper_neon_unarrow_sat8 }, 8309 { gen_helper_neon_narrow_sat_s16, 8310 gen_helper_neon_unarrow_sat16 }, 8311 { gen_helper_neon_narrow_sat_s32, 8312 gen_helper_neon_unarrow_sat32 }, 8313 { NULL, NULL }, 8314 }; 8315 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8316 gen_helper_neon_narrow_sat_u8, 8317 gen_helper_neon_narrow_sat_u16, 8318 gen_helper_neon_narrow_sat_u32, 8319 NULL 8320 }; 8321 NeonGenNarrowEnvFn *narrowfn; 8322 8323 int i; 8324 8325 assert(size < 4); 8326 8327 if (extract32(immh, 3, 1)) { 8328 unallocated_encoding(s); 8329 return; 8330 } 8331 8332 if (!fp_access_check(s)) { 8333 return; 8334 } 8335 8336 if (is_u_shift) { 8337 narrowfn = unsigned_narrow_fns[size]; 8338 } else { 8339 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8340 } 8341 8342 tcg_rn = tcg_temp_new_i64(); 8343 tcg_rd = tcg_temp_new_i64(); 8344 tcg_rd_narrowed = tcg_temp_new_i32(); 8345 tcg_final = tcg_temp_new_i64(); 8346 8347 if (round) { 8348 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8349 } else { 8350 tcg_round = NULL; 8351 } 8352 8353 for (i = 0; i < elements; i++) { 8354 read_vec_element(s, tcg_rn, rn, i, ldop); 8355 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8356 false, is_u_shift, size+1, shift); 8357 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8358 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8359 if (i == 0) { 8360 tcg_gen_mov_i64(tcg_final, tcg_rd); 8361 } else { 8362 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8363 } 8364 } 8365 8366 if (!is_q) { 8367 write_vec_element(s, tcg_final, rd, 0, MO_64); 8368 } else { 8369 write_vec_element(s, tcg_final, rd, 1, MO_64); 8370 } 8371 clear_vec_high(s, is_q, rd); 8372 } 8373 8374 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8375 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8376 bool src_unsigned, bool dst_unsigned, 8377 int immh, int immb, int rn, int rd) 8378 { 8379 int immhb = immh << 3 | immb; 8380 int size = 32 - clz32(immh) - 1; 8381 int shift = immhb - (8 << size); 8382 int pass; 8383 8384 assert(immh != 0); 8385 assert(!(scalar && is_q)); 8386 8387 if (!scalar) { 8388 if (!is_q && extract32(immh, 3, 1)) { 8389 unallocated_encoding(s); 8390 return; 8391 } 8392 8393 /* Since we use the variable-shift helpers we must 8394 * replicate the shift count into each element of 8395 * the tcg_shift value. 8396 */ 8397 switch (size) { 8398 case 0: 8399 shift |= shift << 8; 8400 /* fall through */ 8401 case 1: 8402 shift |= shift << 16; 8403 break; 8404 case 2: 8405 case 3: 8406 break; 8407 default: 8408 g_assert_not_reached(); 8409 } 8410 } 8411 8412 if (!fp_access_check(s)) { 8413 return; 8414 } 8415 8416 if (size == 3) { 8417 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8418 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8419 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8420 { NULL, gen_helper_neon_qshl_u64 }, 8421 }; 8422 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8423 int maxpass = is_q ? 2 : 1; 8424 8425 for (pass = 0; pass < maxpass; pass++) { 8426 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8427 8428 read_vec_element(s, tcg_op, rn, pass, MO_64); 8429 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8430 write_vec_element(s, tcg_op, rd, pass, MO_64); 8431 } 8432 clear_vec_high(s, is_q, rd); 8433 } else { 8434 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8435 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8436 { 8437 { gen_helper_neon_qshl_s8, 8438 gen_helper_neon_qshl_s16, 8439 gen_helper_neon_qshl_s32 }, 8440 { gen_helper_neon_qshlu_s8, 8441 gen_helper_neon_qshlu_s16, 8442 gen_helper_neon_qshlu_s32 } 8443 }, { 8444 { NULL, NULL, NULL }, 8445 { gen_helper_neon_qshl_u8, 8446 gen_helper_neon_qshl_u16, 8447 gen_helper_neon_qshl_u32 } 8448 } 8449 }; 8450 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8451 MemOp memop = scalar ? size : MO_32; 8452 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8453 8454 for (pass = 0; pass < maxpass; pass++) { 8455 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8456 8457 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8458 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8459 if (scalar) { 8460 switch (size) { 8461 case 0: 8462 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8463 break; 8464 case 1: 8465 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8466 break; 8467 case 2: 8468 break; 8469 default: 8470 g_assert_not_reached(); 8471 } 8472 write_fp_sreg(s, rd, tcg_op); 8473 } else { 8474 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8475 } 8476 } 8477 8478 if (!scalar) { 8479 clear_vec_high(s, is_q, rd); 8480 } 8481 } 8482 } 8483 8484 /* Common vector code for handling integer to FP conversion */ 8485 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8486 int elements, int is_signed, 8487 int fracbits, int size) 8488 { 8489 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8490 TCGv_i32 tcg_shift = NULL; 8491 8492 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8493 int pass; 8494 8495 if (fracbits || size == MO_64) { 8496 tcg_shift = tcg_constant_i32(fracbits); 8497 } 8498 8499 if (size == MO_64) { 8500 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8501 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8502 8503 for (pass = 0; pass < elements; pass++) { 8504 read_vec_element(s, tcg_int64, rn, pass, mop); 8505 8506 if (is_signed) { 8507 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8508 tcg_shift, tcg_fpst); 8509 } else { 8510 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8511 tcg_shift, tcg_fpst); 8512 } 8513 if (elements == 1) { 8514 write_fp_dreg(s, rd, tcg_double); 8515 } else { 8516 write_vec_element(s, tcg_double, rd, pass, MO_64); 8517 } 8518 } 8519 } else { 8520 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8521 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8522 8523 for (pass = 0; pass < elements; pass++) { 8524 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8525 8526 switch (size) { 8527 case MO_32: 8528 if (fracbits) { 8529 if (is_signed) { 8530 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8531 tcg_shift, tcg_fpst); 8532 } else { 8533 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8534 tcg_shift, tcg_fpst); 8535 } 8536 } else { 8537 if (is_signed) { 8538 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8539 } else { 8540 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8541 } 8542 } 8543 break; 8544 case MO_16: 8545 if (fracbits) { 8546 if (is_signed) { 8547 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8548 tcg_shift, tcg_fpst); 8549 } else { 8550 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8551 tcg_shift, tcg_fpst); 8552 } 8553 } else { 8554 if (is_signed) { 8555 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8556 } else { 8557 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8558 } 8559 } 8560 break; 8561 default: 8562 g_assert_not_reached(); 8563 } 8564 8565 if (elements == 1) { 8566 write_fp_sreg(s, rd, tcg_float); 8567 } else { 8568 write_vec_element_i32(s, tcg_float, rd, pass, size); 8569 } 8570 } 8571 } 8572 8573 clear_vec_high(s, elements << size == 16, rd); 8574 } 8575 8576 /* UCVTF/SCVTF - Integer to FP conversion */ 8577 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8578 bool is_q, bool is_u, 8579 int immh, int immb, int opcode, 8580 int rn, int rd) 8581 { 8582 int size, elements, fracbits; 8583 int immhb = immh << 3 | immb; 8584 8585 if (immh & 8) { 8586 size = MO_64; 8587 if (!is_scalar && !is_q) { 8588 unallocated_encoding(s); 8589 return; 8590 } 8591 } else if (immh & 4) { 8592 size = MO_32; 8593 } else if (immh & 2) { 8594 size = MO_16; 8595 if (!dc_isar_feature(aa64_fp16, s)) { 8596 unallocated_encoding(s); 8597 return; 8598 } 8599 } else { 8600 /* immh == 0 would be a failure of the decode logic */ 8601 g_assert(immh == 1); 8602 unallocated_encoding(s); 8603 return; 8604 } 8605 8606 if (is_scalar) { 8607 elements = 1; 8608 } else { 8609 elements = (8 << is_q) >> size; 8610 } 8611 fracbits = (16 << size) - immhb; 8612 8613 if (!fp_access_check(s)) { 8614 return; 8615 } 8616 8617 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8618 } 8619 8620 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8621 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8622 bool is_q, bool is_u, 8623 int immh, int immb, int rn, int rd) 8624 { 8625 int immhb = immh << 3 | immb; 8626 int pass, size, fracbits; 8627 TCGv_ptr tcg_fpstatus; 8628 TCGv_i32 tcg_rmode, tcg_shift; 8629 8630 if (immh & 0x8) { 8631 size = MO_64; 8632 if (!is_scalar && !is_q) { 8633 unallocated_encoding(s); 8634 return; 8635 } 8636 } else if (immh & 0x4) { 8637 size = MO_32; 8638 } else if (immh & 0x2) { 8639 size = MO_16; 8640 if (!dc_isar_feature(aa64_fp16, s)) { 8641 unallocated_encoding(s); 8642 return; 8643 } 8644 } else { 8645 /* Should have split out AdvSIMD modified immediate earlier. */ 8646 assert(immh == 1); 8647 unallocated_encoding(s); 8648 return; 8649 } 8650 8651 if (!fp_access_check(s)) { 8652 return; 8653 } 8654 8655 assert(!(is_scalar && is_q)); 8656 8657 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8658 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8659 fracbits = (16 << size) - immhb; 8660 tcg_shift = tcg_constant_i32(fracbits); 8661 8662 if (size == MO_64) { 8663 int maxpass = is_scalar ? 1 : 2; 8664 8665 for (pass = 0; pass < maxpass; pass++) { 8666 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8667 8668 read_vec_element(s, tcg_op, rn, pass, MO_64); 8669 if (is_u) { 8670 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8671 } else { 8672 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8673 } 8674 write_vec_element(s, tcg_op, rd, pass, MO_64); 8675 } 8676 clear_vec_high(s, is_q, rd); 8677 } else { 8678 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8679 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8680 8681 switch (size) { 8682 case MO_16: 8683 if (is_u) { 8684 fn = gen_helper_vfp_touhh; 8685 } else { 8686 fn = gen_helper_vfp_toshh; 8687 } 8688 break; 8689 case MO_32: 8690 if (is_u) { 8691 fn = gen_helper_vfp_touls; 8692 } else { 8693 fn = gen_helper_vfp_tosls; 8694 } 8695 break; 8696 default: 8697 g_assert_not_reached(); 8698 } 8699 8700 for (pass = 0; pass < maxpass; pass++) { 8701 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8702 8703 read_vec_element_i32(s, tcg_op, rn, pass, size); 8704 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8705 if (is_scalar) { 8706 write_fp_sreg(s, rd, tcg_op); 8707 } else { 8708 write_vec_element_i32(s, tcg_op, rd, pass, size); 8709 } 8710 } 8711 if (!is_scalar) { 8712 clear_vec_high(s, is_q, rd); 8713 } 8714 } 8715 8716 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8717 } 8718 8719 /* AdvSIMD scalar shift by immediate 8720 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8721 * +-----+---+-------------+------+------+--------+---+------+------+ 8722 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8723 * +-----+---+-------------+------+------+--------+---+------+------+ 8724 * 8725 * This is the scalar version so it works on a fixed sized registers 8726 */ 8727 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8728 { 8729 int rd = extract32(insn, 0, 5); 8730 int rn = extract32(insn, 5, 5); 8731 int opcode = extract32(insn, 11, 5); 8732 int immb = extract32(insn, 16, 3); 8733 int immh = extract32(insn, 19, 4); 8734 bool is_u = extract32(insn, 29, 1); 8735 8736 if (immh == 0) { 8737 unallocated_encoding(s); 8738 return; 8739 } 8740 8741 switch (opcode) { 8742 case 0x08: /* SRI */ 8743 if (!is_u) { 8744 unallocated_encoding(s); 8745 return; 8746 } 8747 /* fall through */ 8748 case 0x00: /* SSHR / USHR */ 8749 case 0x02: /* SSRA / USRA */ 8750 case 0x04: /* SRSHR / URSHR */ 8751 case 0x06: /* SRSRA / URSRA */ 8752 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8753 break; 8754 case 0x0a: /* SHL / SLI */ 8755 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8756 break; 8757 case 0x1c: /* SCVTF, UCVTF */ 8758 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8759 opcode, rn, rd); 8760 break; 8761 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8762 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8763 if (!is_u) { 8764 unallocated_encoding(s); 8765 return; 8766 } 8767 handle_vec_simd_sqshrn(s, true, false, false, true, 8768 immh, immb, opcode, rn, rd); 8769 break; 8770 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8771 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8772 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8773 immh, immb, opcode, rn, rd); 8774 break; 8775 case 0xc: /* SQSHLU */ 8776 if (!is_u) { 8777 unallocated_encoding(s); 8778 return; 8779 } 8780 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8781 break; 8782 case 0xe: /* SQSHL, UQSHL */ 8783 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8784 break; 8785 case 0x1f: /* FCVTZS, FCVTZU */ 8786 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8787 break; 8788 default: 8789 unallocated_encoding(s); 8790 break; 8791 } 8792 } 8793 8794 /* AdvSIMD scalar three different 8795 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8796 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8797 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8798 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8799 */ 8800 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8801 { 8802 bool is_u = extract32(insn, 29, 1); 8803 int size = extract32(insn, 22, 2); 8804 int opcode = extract32(insn, 12, 4); 8805 int rm = extract32(insn, 16, 5); 8806 int rn = extract32(insn, 5, 5); 8807 int rd = extract32(insn, 0, 5); 8808 8809 if (is_u) { 8810 unallocated_encoding(s); 8811 return; 8812 } 8813 8814 switch (opcode) { 8815 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8816 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8817 case 0xd: /* SQDMULL, SQDMULL2 */ 8818 if (size == 0 || size == 3) { 8819 unallocated_encoding(s); 8820 return; 8821 } 8822 break; 8823 default: 8824 unallocated_encoding(s); 8825 return; 8826 } 8827 8828 if (!fp_access_check(s)) { 8829 return; 8830 } 8831 8832 if (size == 2) { 8833 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8834 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8835 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8836 8837 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8838 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8839 8840 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8841 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8842 8843 switch (opcode) { 8844 case 0xd: /* SQDMULL, SQDMULL2 */ 8845 break; 8846 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8847 tcg_gen_neg_i64(tcg_res, tcg_res); 8848 /* fall through */ 8849 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8850 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8851 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8852 tcg_res, tcg_op1); 8853 break; 8854 default: 8855 g_assert_not_reached(); 8856 } 8857 8858 write_fp_dreg(s, rd, tcg_res); 8859 } else { 8860 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8861 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8862 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8863 8864 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8865 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8866 8867 switch (opcode) { 8868 case 0xd: /* SQDMULL, SQDMULL2 */ 8869 break; 8870 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8871 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8872 /* fall through */ 8873 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8874 { 8875 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8876 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8877 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8878 tcg_res, tcg_op3); 8879 break; 8880 } 8881 default: 8882 g_assert_not_reached(); 8883 } 8884 8885 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8886 write_fp_dreg(s, rd, tcg_res); 8887 } 8888 } 8889 8890 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8891 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8892 { 8893 /* Handle 64x64->64 opcodes which are shared between the scalar 8894 * and vector 3-same groups. We cover every opcode where size == 3 8895 * is valid in either the three-reg-same (integer, not pairwise) 8896 * or scalar-three-reg-same groups. 8897 */ 8898 TCGCond cond; 8899 8900 switch (opcode) { 8901 case 0x1: /* SQADD */ 8902 if (u) { 8903 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8904 } else { 8905 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8906 } 8907 break; 8908 case 0x5: /* SQSUB */ 8909 if (u) { 8910 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8911 } else { 8912 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8913 } 8914 break; 8915 case 0x6: /* CMGT, CMHI */ 8916 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8917 * We implement this using setcond (test) and then negating. 8918 */ 8919 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8920 do_cmop: 8921 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8922 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8923 break; 8924 case 0x7: /* CMGE, CMHS */ 8925 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8926 goto do_cmop; 8927 case 0x11: /* CMTST, CMEQ */ 8928 if (u) { 8929 cond = TCG_COND_EQ; 8930 goto do_cmop; 8931 } 8932 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8933 break; 8934 case 0x8: /* SSHL, USHL */ 8935 if (u) { 8936 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8937 } else { 8938 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8939 } 8940 break; 8941 case 0x9: /* SQSHL, UQSHL */ 8942 if (u) { 8943 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8944 } else { 8945 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8946 } 8947 break; 8948 case 0xa: /* SRSHL, URSHL */ 8949 if (u) { 8950 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8951 } else { 8952 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8953 } 8954 break; 8955 case 0xb: /* SQRSHL, UQRSHL */ 8956 if (u) { 8957 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8958 } else { 8959 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8960 } 8961 break; 8962 case 0x10: /* ADD, SUB */ 8963 if (u) { 8964 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8965 } else { 8966 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8967 } 8968 break; 8969 default: 8970 g_assert_not_reached(); 8971 } 8972 } 8973 8974 /* Handle the 3-same-operands float operations; shared by the scalar 8975 * and vector encodings. The caller must filter out any encodings 8976 * not allocated for the encoding it is dealing with. 8977 */ 8978 static void handle_3same_float(DisasContext *s, int size, int elements, 8979 int fpopcode, int rd, int rn, int rm) 8980 { 8981 int pass; 8982 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8983 8984 for (pass = 0; pass < elements; pass++) { 8985 if (size) { 8986 /* Double */ 8987 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8988 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8989 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8990 8991 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8992 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8993 8994 switch (fpopcode) { 8995 case 0x39: /* FMLS */ 8996 /* As usual for ARM, separate negation for fused multiply-add */ 8997 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8998 /* fall through */ 8999 case 0x19: /* FMLA */ 9000 read_vec_element(s, tcg_res, rd, pass, MO_64); 9001 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9002 tcg_res, fpst); 9003 break; 9004 case 0x18: /* FMAXNM */ 9005 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9006 break; 9007 case 0x1a: /* FADD */ 9008 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9009 break; 9010 case 0x1b: /* FMULX */ 9011 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9012 break; 9013 case 0x1c: /* FCMEQ */ 9014 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9015 break; 9016 case 0x1e: /* FMAX */ 9017 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9018 break; 9019 case 0x1f: /* FRECPS */ 9020 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9021 break; 9022 case 0x38: /* FMINNM */ 9023 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9024 break; 9025 case 0x3a: /* FSUB */ 9026 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9027 break; 9028 case 0x3e: /* FMIN */ 9029 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9030 break; 9031 case 0x3f: /* FRSQRTS */ 9032 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9033 break; 9034 case 0x5b: /* FMUL */ 9035 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9036 break; 9037 case 0x5c: /* FCMGE */ 9038 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9039 break; 9040 case 0x5d: /* FACGE */ 9041 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9042 break; 9043 case 0x5f: /* FDIV */ 9044 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9045 break; 9046 case 0x7a: /* FABD */ 9047 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9048 gen_helper_vfp_absd(tcg_res, tcg_res); 9049 break; 9050 case 0x7c: /* FCMGT */ 9051 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9052 break; 9053 case 0x7d: /* FACGT */ 9054 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9055 break; 9056 default: 9057 g_assert_not_reached(); 9058 } 9059 9060 write_vec_element(s, tcg_res, rd, pass, MO_64); 9061 } else { 9062 /* Single */ 9063 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9064 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9065 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9066 9067 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9068 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9069 9070 switch (fpopcode) { 9071 case 0x39: /* FMLS */ 9072 /* As usual for ARM, separate negation for fused multiply-add */ 9073 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9074 /* fall through */ 9075 case 0x19: /* FMLA */ 9076 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9077 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9078 tcg_res, fpst); 9079 break; 9080 case 0x1a: /* FADD */ 9081 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9082 break; 9083 case 0x1b: /* FMULX */ 9084 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9085 break; 9086 case 0x1c: /* FCMEQ */ 9087 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9088 break; 9089 case 0x1e: /* FMAX */ 9090 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9091 break; 9092 case 0x1f: /* FRECPS */ 9093 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9094 break; 9095 case 0x18: /* FMAXNM */ 9096 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9097 break; 9098 case 0x38: /* FMINNM */ 9099 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9100 break; 9101 case 0x3a: /* FSUB */ 9102 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9103 break; 9104 case 0x3e: /* FMIN */ 9105 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9106 break; 9107 case 0x3f: /* FRSQRTS */ 9108 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9109 break; 9110 case 0x5b: /* FMUL */ 9111 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9112 break; 9113 case 0x5c: /* FCMGE */ 9114 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9115 break; 9116 case 0x5d: /* FACGE */ 9117 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9118 break; 9119 case 0x5f: /* FDIV */ 9120 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9121 break; 9122 case 0x7a: /* FABD */ 9123 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9124 gen_helper_vfp_abss(tcg_res, tcg_res); 9125 break; 9126 case 0x7c: /* FCMGT */ 9127 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9128 break; 9129 case 0x7d: /* FACGT */ 9130 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9131 break; 9132 default: 9133 g_assert_not_reached(); 9134 } 9135 9136 if (elements == 1) { 9137 /* scalar single so clear high part */ 9138 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9139 9140 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9141 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9142 } else { 9143 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9144 } 9145 } 9146 } 9147 9148 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9149 } 9150 9151 /* AdvSIMD scalar three same 9152 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9153 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9154 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9155 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9156 */ 9157 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9158 { 9159 int rd = extract32(insn, 0, 5); 9160 int rn = extract32(insn, 5, 5); 9161 int opcode = extract32(insn, 11, 5); 9162 int rm = extract32(insn, 16, 5); 9163 int size = extract32(insn, 22, 2); 9164 bool u = extract32(insn, 29, 1); 9165 TCGv_i64 tcg_rd; 9166 9167 if (opcode >= 0x18) { 9168 /* Floating point: U, size[1] and opcode indicate operation */ 9169 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9170 switch (fpopcode) { 9171 case 0x1b: /* FMULX */ 9172 case 0x1f: /* FRECPS */ 9173 case 0x3f: /* FRSQRTS */ 9174 case 0x5d: /* FACGE */ 9175 case 0x7d: /* FACGT */ 9176 case 0x1c: /* FCMEQ */ 9177 case 0x5c: /* FCMGE */ 9178 case 0x7c: /* FCMGT */ 9179 case 0x7a: /* FABD */ 9180 break; 9181 default: 9182 unallocated_encoding(s); 9183 return; 9184 } 9185 9186 if (!fp_access_check(s)) { 9187 return; 9188 } 9189 9190 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9191 return; 9192 } 9193 9194 switch (opcode) { 9195 case 0x1: /* SQADD, UQADD */ 9196 case 0x5: /* SQSUB, UQSUB */ 9197 case 0x9: /* SQSHL, UQSHL */ 9198 case 0xb: /* SQRSHL, UQRSHL */ 9199 break; 9200 case 0x8: /* SSHL, USHL */ 9201 case 0xa: /* SRSHL, URSHL */ 9202 case 0x6: /* CMGT, CMHI */ 9203 case 0x7: /* CMGE, CMHS */ 9204 case 0x11: /* CMTST, CMEQ */ 9205 case 0x10: /* ADD, SUB (vector) */ 9206 if (size != 3) { 9207 unallocated_encoding(s); 9208 return; 9209 } 9210 break; 9211 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9212 if (size != 1 && size != 2) { 9213 unallocated_encoding(s); 9214 return; 9215 } 9216 break; 9217 default: 9218 unallocated_encoding(s); 9219 return; 9220 } 9221 9222 if (!fp_access_check(s)) { 9223 return; 9224 } 9225 9226 tcg_rd = tcg_temp_new_i64(); 9227 9228 if (size == 3) { 9229 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9230 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9231 9232 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9233 } else { 9234 /* Do a single operation on the lowest element in the vector. 9235 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9236 * no side effects for all these operations. 9237 * OPTME: special-purpose helpers would avoid doing some 9238 * unnecessary work in the helper for the 8 and 16 bit cases. 9239 */ 9240 NeonGenTwoOpEnvFn *genenvfn; 9241 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9242 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9243 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9244 9245 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9246 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9247 9248 switch (opcode) { 9249 case 0x1: /* SQADD, UQADD */ 9250 { 9251 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9252 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9253 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9254 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9255 }; 9256 genenvfn = fns[size][u]; 9257 break; 9258 } 9259 case 0x5: /* SQSUB, UQSUB */ 9260 { 9261 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9262 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9263 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9264 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9265 }; 9266 genenvfn = fns[size][u]; 9267 break; 9268 } 9269 case 0x9: /* SQSHL, UQSHL */ 9270 { 9271 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9272 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9273 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9274 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9275 }; 9276 genenvfn = fns[size][u]; 9277 break; 9278 } 9279 case 0xb: /* SQRSHL, UQRSHL */ 9280 { 9281 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9282 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9283 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9284 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9285 }; 9286 genenvfn = fns[size][u]; 9287 break; 9288 } 9289 case 0x16: /* SQDMULH, SQRDMULH */ 9290 { 9291 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9292 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9293 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9294 }; 9295 assert(size == 1 || size == 2); 9296 genenvfn = fns[size - 1][u]; 9297 break; 9298 } 9299 default: 9300 g_assert_not_reached(); 9301 } 9302 9303 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9304 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9305 } 9306 9307 write_fp_dreg(s, rd, tcg_rd); 9308 } 9309 9310 /* AdvSIMD scalar three same FP16 9311 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9312 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9313 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9314 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9315 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9316 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9317 */ 9318 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9319 uint32_t insn) 9320 { 9321 int rd = extract32(insn, 0, 5); 9322 int rn = extract32(insn, 5, 5); 9323 int opcode = extract32(insn, 11, 3); 9324 int rm = extract32(insn, 16, 5); 9325 bool u = extract32(insn, 29, 1); 9326 bool a = extract32(insn, 23, 1); 9327 int fpopcode = opcode | (a << 3) | (u << 4); 9328 TCGv_ptr fpst; 9329 TCGv_i32 tcg_op1; 9330 TCGv_i32 tcg_op2; 9331 TCGv_i32 tcg_res; 9332 9333 switch (fpopcode) { 9334 case 0x03: /* FMULX */ 9335 case 0x04: /* FCMEQ (reg) */ 9336 case 0x07: /* FRECPS */ 9337 case 0x0f: /* FRSQRTS */ 9338 case 0x14: /* FCMGE (reg) */ 9339 case 0x15: /* FACGE */ 9340 case 0x1a: /* FABD */ 9341 case 0x1c: /* FCMGT (reg) */ 9342 case 0x1d: /* FACGT */ 9343 break; 9344 default: 9345 unallocated_encoding(s); 9346 return; 9347 } 9348 9349 if (!dc_isar_feature(aa64_fp16, s)) { 9350 unallocated_encoding(s); 9351 } 9352 9353 if (!fp_access_check(s)) { 9354 return; 9355 } 9356 9357 fpst = fpstatus_ptr(FPST_FPCR_F16); 9358 9359 tcg_op1 = read_fp_hreg(s, rn); 9360 tcg_op2 = read_fp_hreg(s, rm); 9361 tcg_res = tcg_temp_new_i32(); 9362 9363 switch (fpopcode) { 9364 case 0x03: /* FMULX */ 9365 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9366 break; 9367 case 0x04: /* FCMEQ (reg) */ 9368 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9369 break; 9370 case 0x07: /* FRECPS */ 9371 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9372 break; 9373 case 0x0f: /* FRSQRTS */ 9374 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9375 break; 9376 case 0x14: /* FCMGE (reg) */ 9377 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9378 break; 9379 case 0x15: /* FACGE */ 9380 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9381 break; 9382 case 0x1a: /* FABD */ 9383 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9384 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9385 break; 9386 case 0x1c: /* FCMGT (reg) */ 9387 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9388 break; 9389 case 0x1d: /* FACGT */ 9390 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9391 break; 9392 default: 9393 g_assert_not_reached(); 9394 } 9395 9396 write_fp_sreg(s, rd, tcg_res); 9397 } 9398 9399 /* AdvSIMD scalar three same extra 9400 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9401 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9402 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9403 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9404 */ 9405 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9406 uint32_t insn) 9407 { 9408 int rd = extract32(insn, 0, 5); 9409 int rn = extract32(insn, 5, 5); 9410 int opcode = extract32(insn, 11, 4); 9411 int rm = extract32(insn, 16, 5); 9412 int size = extract32(insn, 22, 2); 9413 bool u = extract32(insn, 29, 1); 9414 TCGv_i32 ele1, ele2, ele3; 9415 TCGv_i64 res; 9416 bool feature; 9417 9418 switch (u * 16 + opcode) { 9419 case 0x10: /* SQRDMLAH (vector) */ 9420 case 0x11: /* SQRDMLSH (vector) */ 9421 if (size != 1 && size != 2) { 9422 unallocated_encoding(s); 9423 return; 9424 } 9425 feature = dc_isar_feature(aa64_rdm, s); 9426 break; 9427 default: 9428 unallocated_encoding(s); 9429 return; 9430 } 9431 if (!feature) { 9432 unallocated_encoding(s); 9433 return; 9434 } 9435 if (!fp_access_check(s)) { 9436 return; 9437 } 9438 9439 /* Do a single operation on the lowest element in the vector. 9440 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9441 * with no side effects for all these operations. 9442 * OPTME: special-purpose helpers would avoid doing some 9443 * unnecessary work in the helper for the 16 bit cases. 9444 */ 9445 ele1 = tcg_temp_new_i32(); 9446 ele2 = tcg_temp_new_i32(); 9447 ele3 = tcg_temp_new_i32(); 9448 9449 read_vec_element_i32(s, ele1, rn, 0, size); 9450 read_vec_element_i32(s, ele2, rm, 0, size); 9451 read_vec_element_i32(s, ele3, rd, 0, size); 9452 9453 switch (opcode) { 9454 case 0x0: /* SQRDMLAH */ 9455 if (size == 1) { 9456 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9457 } else { 9458 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9459 } 9460 break; 9461 case 0x1: /* SQRDMLSH */ 9462 if (size == 1) { 9463 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9464 } else { 9465 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9466 } 9467 break; 9468 default: 9469 g_assert_not_reached(); 9470 } 9471 9472 res = tcg_temp_new_i64(); 9473 tcg_gen_extu_i32_i64(res, ele3); 9474 write_fp_dreg(s, rd, res); 9475 } 9476 9477 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9478 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9479 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9480 { 9481 /* Handle 64->64 opcodes which are shared between the scalar and 9482 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9483 * is valid in either group and also the double-precision fp ops. 9484 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9485 * requires them. 9486 */ 9487 TCGCond cond; 9488 9489 switch (opcode) { 9490 case 0x4: /* CLS, CLZ */ 9491 if (u) { 9492 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9493 } else { 9494 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9495 } 9496 break; 9497 case 0x5: /* NOT */ 9498 /* This opcode is shared with CNT and RBIT but we have earlier 9499 * enforced that size == 3 if and only if this is the NOT insn. 9500 */ 9501 tcg_gen_not_i64(tcg_rd, tcg_rn); 9502 break; 9503 case 0x7: /* SQABS, SQNEG */ 9504 if (u) { 9505 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9506 } else { 9507 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9508 } 9509 break; 9510 case 0xa: /* CMLT */ 9511 /* 64 bit integer comparison against zero, result is 9512 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9513 * subtracting 1. 9514 */ 9515 cond = TCG_COND_LT; 9516 do_cmop: 9517 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9518 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9519 break; 9520 case 0x8: /* CMGT, CMGE */ 9521 cond = u ? TCG_COND_GE : TCG_COND_GT; 9522 goto do_cmop; 9523 case 0x9: /* CMEQ, CMLE */ 9524 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9525 goto do_cmop; 9526 case 0xb: /* ABS, NEG */ 9527 if (u) { 9528 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9529 } else { 9530 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9531 } 9532 break; 9533 case 0x2f: /* FABS */ 9534 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9535 break; 9536 case 0x6f: /* FNEG */ 9537 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9538 break; 9539 case 0x7f: /* FSQRT */ 9540 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9541 break; 9542 case 0x1a: /* FCVTNS */ 9543 case 0x1b: /* FCVTMS */ 9544 case 0x1c: /* FCVTAS */ 9545 case 0x3a: /* FCVTPS */ 9546 case 0x3b: /* FCVTZS */ 9547 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9548 break; 9549 case 0x5a: /* FCVTNU */ 9550 case 0x5b: /* FCVTMU */ 9551 case 0x5c: /* FCVTAU */ 9552 case 0x7a: /* FCVTPU */ 9553 case 0x7b: /* FCVTZU */ 9554 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9555 break; 9556 case 0x18: /* FRINTN */ 9557 case 0x19: /* FRINTM */ 9558 case 0x38: /* FRINTP */ 9559 case 0x39: /* FRINTZ */ 9560 case 0x58: /* FRINTA */ 9561 case 0x79: /* FRINTI */ 9562 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9563 break; 9564 case 0x59: /* FRINTX */ 9565 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9566 break; 9567 case 0x1e: /* FRINT32Z */ 9568 case 0x5e: /* FRINT32X */ 9569 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9570 break; 9571 case 0x1f: /* FRINT64Z */ 9572 case 0x5f: /* FRINT64X */ 9573 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9574 break; 9575 default: 9576 g_assert_not_reached(); 9577 } 9578 } 9579 9580 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9581 bool is_scalar, bool is_u, bool is_q, 9582 int size, int rn, int rd) 9583 { 9584 bool is_double = (size == MO_64); 9585 TCGv_ptr fpst; 9586 9587 if (!fp_access_check(s)) { 9588 return; 9589 } 9590 9591 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9592 9593 if (is_double) { 9594 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9595 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9596 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9597 NeonGenTwoDoubleOpFn *genfn; 9598 bool swap = false; 9599 int pass; 9600 9601 switch (opcode) { 9602 case 0x2e: /* FCMLT (zero) */ 9603 swap = true; 9604 /* fallthrough */ 9605 case 0x2c: /* FCMGT (zero) */ 9606 genfn = gen_helper_neon_cgt_f64; 9607 break; 9608 case 0x2d: /* FCMEQ (zero) */ 9609 genfn = gen_helper_neon_ceq_f64; 9610 break; 9611 case 0x6d: /* FCMLE (zero) */ 9612 swap = true; 9613 /* fall through */ 9614 case 0x6c: /* FCMGE (zero) */ 9615 genfn = gen_helper_neon_cge_f64; 9616 break; 9617 default: 9618 g_assert_not_reached(); 9619 } 9620 9621 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9622 read_vec_element(s, tcg_op, rn, pass, MO_64); 9623 if (swap) { 9624 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9625 } else { 9626 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9627 } 9628 write_vec_element(s, tcg_res, rd, pass, MO_64); 9629 } 9630 9631 clear_vec_high(s, !is_scalar, rd); 9632 } else { 9633 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9634 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9635 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9636 NeonGenTwoSingleOpFn *genfn; 9637 bool swap = false; 9638 int pass, maxpasses; 9639 9640 if (size == MO_16) { 9641 switch (opcode) { 9642 case 0x2e: /* FCMLT (zero) */ 9643 swap = true; 9644 /* fall through */ 9645 case 0x2c: /* FCMGT (zero) */ 9646 genfn = gen_helper_advsimd_cgt_f16; 9647 break; 9648 case 0x2d: /* FCMEQ (zero) */ 9649 genfn = gen_helper_advsimd_ceq_f16; 9650 break; 9651 case 0x6d: /* FCMLE (zero) */ 9652 swap = true; 9653 /* fall through */ 9654 case 0x6c: /* FCMGE (zero) */ 9655 genfn = gen_helper_advsimd_cge_f16; 9656 break; 9657 default: 9658 g_assert_not_reached(); 9659 } 9660 } else { 9661 switch (opcode) { 9662 case 0x2e: /* FCMLT (zero) */ 9663 swap = true; 9664 /* fall through */ 9665 case 0x2c: /* FCMGT (zero) */ 9666 genfn = gen_helper_neon_cgt_f32; 9667 break; 9668 case 0x2d: /* FCMEQ (zero) */ 9669 genfn = gen_helper_neon_ceq_f32; 9670 break; 9671 case 0x6d: /* FCMLE (zero) */ 9672 swap = true; 9673 /* fall through */ 9674 case 0x6c: /* FCMGE (zero) */ 9675 genfn = gen_helper_neon_cge_f32; 9676 break; 9677 default: 9678 g_assert_not_reached(); 9679 } 9680 } 9681 9682 if (is_scalar) { 9683 maxpasses = 1; 9684 } else { 9685 int vector_size = 8 << is_q; 9686 maxpasses = vector_size >> size; 9687 } 9688 9689 for (pass = 0; pass < maxpasses; pass++) { 9690 read_vec_element_i32(s, tcg_op, rn, pass, size); 9691 if (swap) { 9692 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9693 } else { 9694 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9695 } 9696 if (is_scalar) { 9697 write_fp_sreg(s, rd, tcg_res); 9698 } else { 9699 write_vec_element_i32(s, tcg_res, rd, pass, size); 9700 } 9701 } 9702 9703 if (!is_scalar) { 9704 clear_vec_high(s, is_q, rd); 9705 } 9706 } 9707 } 9708 9709 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9710 bool is_scalar, bool is_u, bool is_q, 9711 int size, int rn, int rd) 9712 { 9713 bool is_double = (size == 3); 9714 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9715 9716 if (is_double) { 9717 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9718 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9719 int pass; 9720 9721 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9722 read_vec_element(s, tcg_op, rn, pass, MO_64); 9723 switch (opcode) { 9724 case 0x3d: /* FRECPE */ 9725 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9726 break; 9727 case 0x3f: /* FRECPX */ 9728 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9729 break; 9730 case 0x7d: /* FRSQRTE */ 9731 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9732 break; 9733 default: 9734 g_assert_not_reached(); 9735 } 9736 write_vec_element(s, tcg_res, rd, pass, MO_64); 9737 } 9738 clear_vec_high(s, !is_scalar, rd); 9739 } else { 9740 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9741 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9742 int pass, maxpasses; 9743 9744 if (is_scalar) { 9745 maxpasses = 1; 9746 } else { 9747 maxpasses = is_q ? 4 : 2; 9748 } 9749 9750 for (pass = 0; pass < maxpasses; pass++) { 9751 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9752 9753 switch (opcode) { 9754 case 0x3c: /* URECPE */ 9755 gen_helper_recpe_u32(tcg_res, tcg_op); 9756 break; 9757 case 0x3d: /* FRECPE */ 9758 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9759 break; 9760 case 0x3f: /* FRECPX */ 9761 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9762 break; 9763 case 0x7d: /* FRSQRTE */ 9764 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9765 break; 9766 default: 9767 g_assert_not_reached(); 9768 } 9769 9770 if (is_scalar) { 9771 write_fp_sreg(s, rd, tcg_res); 9772 } else { 9773 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9774 } 9775 } 9776 if (!is_scalar) { 9777 clear_vec_high(s, is_q, rd); 9778 } 9779 } 9780 } 9781 9782 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9783 int opcode, bool u, bool is_q, 9784 int size, int rn, int rd) 9785 { 9786 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9787 * in the source becomes a size element in the destination). 9788 */ 9789 int pass; 9790 TCGv_i32 tcg_res[2]; 9791 int destelt = is_q ? 2 : 0; 9792 int passes = scalar ? 1 : 2; 9793 9794 if (scalar) { 9795 tcg_res[1] = tcg_constant_i32(0); 9796 } 9797 9798 for (pass = 0; pass < passes; pass++) { 9799 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9800 NeonGenNarrowFn *genfn = NULL; 9801 NeonGenNarrowEnvFn *genenvfn = NULL; 9802 9803 if (scalar) { 9804 read_vec_element(s, tcg_op, rn, pass, size + 1); 9805 } else { 9806 read_vec_element(s, tcg_op, rn, pass, MO_64); 9807 } 9808 tcg_res[pass] = tcg_temp_new_i32(); 9809 9810 switch (opcode) { 9811 case 0x12: /* XTN, SQXTUN */ 9812 { 9813 static NeonGenNarrowFn * const xtnfns[3] = { 9814 gen_helper_neon_narrow_u8, 9815 gen_helper_neon_narrow_u16, 9816 tcg_gen_extrl_i64_i32, 9817 }; 9818 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9819 gen_helper_neon_unarrow_sat8, 9820 gen_helper_neon_unarrow_sat16, 9821 gen_helper_neon_unarrow_sat32, 9822 }; 9823 if (u) { 9824 genenvfn = sqxtunfns[size]; 9825 } else { 9826 genfn = xtnfns[size]; 9827 } 9828 break; 9829 } 9830 case 0x14: /* SQXTN, UQXTN */ 9831 { 9832 static NeonGenNarrowEnvFn * const fns[3][2] = { 9833 { gen_helper_neon_narrow_sat_s8, 9834 gen_helper_neon_narrow_sat_u8 }, 9835 { gen_helper_neon_narrow_sat_s16, 9836 gen_helper_neon_narrow_sat_u16 }, 9837 { gen_helper_neon_narrow_sat_s32, 9838 gen_helper_neon_narrow_sat_u32 }, 9839 }; 9840 genenvfn = fns[size][u]; 9841 break; 9842 } 9843 case 0x16: /* FCVTN, FCVTN2 */ 9844 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9845 if (size == 2) { 9846 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9847 } else { 9848 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9849 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9850 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9851 TCGv_i32 ahp = get_ahp_flag(); 9852 9853 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9854 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9855 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9856 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9857 } 9858 break; 9859 case 0x36: /* BFCVTN, BFCVTN2 */ 9860 { 9861 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9862 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9863 } 9864 break; 9865 case 0x56: /* FCVTXN, FCVTXN2 */ 9866 /* 64 bit to 32 bit float conversion 9867 * with von Neumann rounding (round to odd) 9868 */ 9869 assert(size == 2); 9870 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9871 break; 9872 default: 9873 g_assert_not_reached(); 9874 } 9875 9876 if (genfn) { 9877 genfn(tcg_res[pass], tcg_op); 9878 } else if (genenvfn) { 9879 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9880 } 9881 } 9882 9883 for (pass = 0; pass < 2; pass++) { 9884 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9885 } 9886 clear_vec_high(s, is_q, rd); 9887 } 9888 9889 /* Remaining saturating accumulating ops */ 9890 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9891 bool is_q, int size, int rn, int rd) 9892 { 9893 bool is_double = (size == 3); 9894 9895 if (is_double) { 9896 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9897 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9898 int pass; 9899 9900 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9901 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9902 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9903 9904 if (is_u) { /* USQADD */ 9905 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9906 } else { /* SUQADD */ 9907 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9908 } 9909 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9910 } 9911 clear_vec_high(s, !is_scalar, rd); 9912 } else { 9913 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9914 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9915 int pass, maxpasses; 9916 9917 if (is_scalar) { 9918 maxpasses = 1; 9919 } else { 9920 maxpasses = is_q ? 4 : 2; 9921 } 9922 9923 for (pass = 0; pass < maxpasses; pass++) { 9924 if (is_scalar) { 9925 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9926 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9927 } else { 9928 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9929 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9930 } 9931 9932 if (is_u) { /* USQADD */ 9933 switch (size) { 9934 case 0: 9935 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9936 break; 9937 case 1: 9938 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9939 break; 9940 case 2: 9941 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9942 break; 9943 default: 9944 g_assert_not_reached(); 9945 } 9946 } else { /* SUQADD */ 9947 switch (size) { 9948 case 0: 9949 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9950 break; 9951 case 1: 9952 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9953 break; 9954 case 2: 9955 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9956 break; 9957 default: 9958 g_assert_not_reached(); 9959 } 9960 } 9961 9962 if (is_scalar) { 9963 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9964 } 9965 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9966 } 9967 clear_vec_high(s, is_q, rd); 9968 } 9969 } 9970 9971 /* AdvSIMD scalar two reg misc 9972 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9973 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9974 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9975 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9976 */ 9977 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9978 { 9979 int rd = extract32(insn, 0, 5); 9980 int rn = extract32(insn, 5, 5); 9981 int opcode = extract32(insn, 12, 5); 9982 int size = extract32(insn, 22, 2); 9983 bool u = extract32(insn, 29, 1); 9984 bool is_fcvt = false; 9985 int rmode; 9986 TCGv_i32 tcg_rmode; 9987 TCGv_ptr tcg_fpstatus; 9988 9989 switch (opcode) { 9990 case 0x3: /* USQADD / SUQADD*/ 9991 if (!fp_access_check(s)) { 9992 return; 9993 } 9994 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9995 return; 9996 case 0x7: /* SQABS / SQNEG */ 9997 break; 9998 case 0xa: /* CMLT */ 9999 if (u) { 10000 unallocated_encoding(s); 10001 return; 10002 } 10003 /* fall through */ 10004 case 0x8: /* CMGT, CMGE */ 10005 case 0x9: /* CMEQ, CMLE */ 10006 case 0xb: /* ABS, NEG */ 10007 if (size != 3) { 10008 unallocated_encoding(s); 10009 return; 10010 } 10011 break; 10012 case 0x12: /* SQXTUN */ 10013 if (!u) { 10014 unallocated_encoding(s); 10015 return; 10016 } 10017 /* fall through */ 10018 case 0x14: /* SQXTN, UQXTN */ 10019 if (size == 3) { 10020 unallocated_encoding(s); 10021 return; 10022 } 10023 if (!fp_access_check(s)) { 10024 return; 10025 } 10026 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10027 return; 10028 case 0xc ... 0xf: 10029 case 0x16 ... 0x1d: 10030 case 0x1f: 10031 /* Floating point: U, size[1] and opcode indicate operation; 10032 * size[0] indicates single or double precision. 10033 */ 10034 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10035 size = extract32(size, 0, 1) ? 3 : 2; 10036 switch (opcode) { 10037 case 0x2c: /* FCMGT (zero) */ 10038 case 0x2d: /* FCMEQ (zero) */ 10039 case 0x2e: /* FCMLT (zero) */ 10040 case 0x6c: /* FCMGE (zero) */ 10041 case 0x6d: /* FCMLE (zero) */ 10042 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10043 return; 10044 case 0x1d: /* SCVTF */ 10045 case 0x5d: /* UCVTF */ 10046 { 10047 bool is_signed = (opcode == 0x1d); 10048 if (!fp_access_check(s)) { 10049 return; 10050 } 10051 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10052 return; 10053 } 10054 case 0x3d: /* FRECPE */ 10055 case 0x3f: /* FRECPX */ 10056 case 0x7d: /* FRSQRTE */ 10057 if (!fp_access_check(s)) { 10058 return; 10059 } 10060 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10061 return; 10062 case 0x1a: /* FCVTNS */ 10063 case 0x1b: /* FCVTMS */ 10064 case 0x3a: /* FCVTPS */ 10065 case 0x3b: /* FCVTZS */ 10066 case 0x5a: /* FCVTNU */ 10067 case 0x5b: /* FCVTMU */ 10068 case 0x7a: /* FCVTPU */ 10069 case 0x7b: /* FCVTZU */ 10070 is_fcvt = true; 10071 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10072 break; 10073 case 0x1c: /* FCVTAS */ 10074 case 0x5c: /* FCVTAU */ 10075 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10076 is_fcvt = true; 10077 rmode = FPROUNDING_TIEAWAY; 10078 break; 10079 case 0x56: /* FCVTXN, FCVTXN2 */ 10080 if (size == 2) { 10081 unallocated_encoding(s); 10082 return; 10083 } 10084 if (!fp_access_check(s)) { 10085 return; 10086 } 10087 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10088 return; 10089 default: 10090 unallocated_encoding(s); 10091 return; 10092 } 10093 break; 10094 default: 10095 unallocated_encoding(s); 10096 return; 10097 } 10098 10099 if (!fp_access_check(s)) { 10100 return; 10101 } 10102 10103 if (is_fcvt) { 10104 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10105 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10106 } else { 10107 tcg_fpstatus = NULL; 10108 tcg_rmode = NULL; 10109 } 10110 10111 if (size == 3) { 10112 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10113 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10114 10115 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10116 write_fp_dreg(s, rd, tcg_rd); 10117 } else { 10118 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10119 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10120 10121 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10122 10123 switch (opcode) { 10124 case 0x7: /* SQABS, SQNEG */ 10125 { 10126 NeonGenOneOpEnvFn *genfn; 10127 static NeonGenOneOpEnvFn * const fns[3][2] = { 10128 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10129 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10130 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10131 }; 10132 genfn = fns[size][u]; 10133 genfn(tcg_rd, cpu_env, tcg_rn); 10134 break; 10135 } 10136 case 0x1a: /* FCVTNS */ 10137 case 0x1b: /* FCVTMS */ 10138 case 0x1c: /* FCVTAS */ 10139 case 0x3a: /* FCVTPS */ 10140 case 0x3b: /* FCVTZS */ 10141 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10142 tcg_fpstatus); 10143 break; 10144 case 0x5a: /* FCVTNU */ 10145 case 0x5b: /* FCVTMU */ 10146 case 0x5c: /* FCVTAU */ 10147 case 0x7a: /* FCVTPU */ 10148 case 0x7b: /* FCVTZU */ 10149 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10150 tcg_fpstatus); 10151 break; 10152 default: 10153 g_assert_not_reached(); 10154 } 10155 10156 write_fp_sreg(s, rd, tcg_rd); 10157 } 10158 10159 if (is_fcvt) { 10160 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10161 } 10162 } 10163 10164 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10165 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10166 int immh, int immb, int opcode, int rn, int rd) 10167 { 10168 int size = 32 - clz32(immh) - 1; 10169 int immhb = immh << 3 | immb; 10170 int shift = 2 * (8 << size) - immhb; 10171 GVecGen2iFn *gvec_fn; 10172 10173 if (extract32(immh, 3, 1) && !is_q) { 10174 unallocated_encoding(s); 10175 return; 10176 } 10177 tcg_debug_assert(size <= 3); 10178 10179 if (!fp_access_check(s)) { 10180 return; 10181 } 10182 10183 switch (opcode) { 10184 case 0x02: /* SSRA / USRA (accumulate) */ 10185 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10186 break; 10187 10188 case 0x08: /* SRI */ 10189 gvec_fn = gen_gvec_sri; 10190 break; 10191 10192 case 0x00: /* SSHR / USHR */ 10193 if (is_u) { 10194 if (shift == 8 << size) { 10195 /* Shift count the same size as element size produces zero. */ 10196 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10197 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10198 return; 10199 } 10200 gvec_fn = tcg_gen_gvec_shri; 10201 } else { 10202 /* Shift count the same size as element size produces all sign. */ 10203 if (shift == 8 << size) { 10204 shift -= 1; 10205 } 10206 gvec_fn = tcg_gen_gvec_sari; 10207 } 10208 break; 10209 10210 case 0x04: /* SRSHR / URSHR (rounding) */ 10211 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10212 break; 10213 10214 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10215 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10216 break; 10217 10218 default: 10219 g_assert_not_reached(); 10220 } 10221 10222 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10223 } 10224 10225 /* SHL/SLI - Vector shift left */ 10226 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10227 int immh, int immb, int opcode, int rn, int rd) 10228 { 10229 int size = 32 - clz32(immh) - 1; 10230 int immhb = immh << 3 | immb; 10231 int shift = immhb - (8 << size); 10232 10233 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10234 assert(size >= 0 && size <= 3); 10235 10236 if (extract32(immh, 3, 1) && !is_q) { 10237 unallocated_encoding(s); 10238 return; 10239 } 10240 10241 if (!fp_access_check(s)) { 10242 return; 10243 } 10244 10245 if (insert) { 10246 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10247 } else { 10248 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10249 } 10250 } 10251 10252 /* USHLL/SHLL - Vector shift left with widening */ 10253 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10254 int immh, int immb, int opcode, int rn, int rd) 10255 { 10256 int size = 32 - clz32(immh) - 1; 10257 int immhb = immh << 3 | immb; 10258 int shift = immhb - (8 << size); 10259 int dsize = 64; 10260 int esize = 8 << size; 10261 int elements = dsize/esize; 10262 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10263 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10264 int i; 10265 10266 if (size >= 3) { 10267 unallocated_encoding(s); 10268 return; 10269 } 10270 10271 if (!fp_access_check(s)) { 10272 return; 10273 } 10274 10275 /* For the LL variants the store is larger than the load, 10276 * so if rd == rn we would overwrite parts of our input. 10277 * So load everything right now and use shifts in the main loop. 10278 */ 10279 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10280 10281 for (i = 0; i < elements; i++) { 10282 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10283 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10284 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10285 write_vec_element(s, tcg_rd, rd, i, size + 1); 10286 } 10287 } 10288 10289 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10290 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10291 int immh, int immb, int opcode, int rn, int rd) 10292 { 10293 int immhb = immh << 3 | immb; 10294 int size = 32 - clz32(immh) - 1; 10295 int dsize = 64; 10296 int esize = 8 << size; 10297 int elements = dsize/esize; 10298 int shift = (2 * esize) - immhb; 10299 bool round = extract32(opcode, 0, 1); 10300 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10301 TCGv_i64 tcg_round; 10302 int i; 10303 10304 if (extract32(immh, 3, 1)) { 10305 unallocated_encoding(s); 10306 return; 10307 } 10308 10309 if (!fp_access_check(s)) { 10310 return; 10311 } 10312 10313 tcg_rn = tcg_temp_new_i64(); 10314 tcg_rd = tcg_temp_new_i64(); 10315 tcg_final = tcg_temp_new_i64(); 10316 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10317 10318 if (round) { 10319 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10320 } else { 10321 tcg_round = NULL; 10322 } 10323 10324 for (i = 0; i < elements; i++) { 10325 read_vec_element(s, tcg_rn, rn, i, size+1); 10326 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10327 false, true, size+1, shift); 10328 10329 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10330 } 10331 10332 if (!is_q) { 10333 write_vec_element(s, tcg_final, rd, 0, MO_64); 10334 } else { 10335 write_vec_element(s, tcg_final, rd, 1, MO_64); 10336 } 10337 10338 clear_vec_high(s, is_q, rd); 10339 } 10340 10341 10342 /* AdvSIMD shift by immediate 10343 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10344 * +---+---+---+-------------+------+------+--------+---+------+------+ 10345 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10346 * +---+---+---+-------------+------+------+--------+---+------+------+ 10347 */ 10348 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10349 { 10350 int rd = extract32(insn, 0, 5); 10351 int rn = extract32(insn, 5, 5); 10352 int opcode = extract32(insn, 11, 5); 10353 int immb = extract32(insn, 16, 3); 10354 int immh = extract32(insn, 19, 4); 10355 bool is_u = extract32(insn, 29, 1); 10356 bool is_q = extract32(insn, 30, 1); 10357 10358 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10359 assert(immh != 0); 10360 10361 switch (opcode) { 10362 case 0x08: /* SRI */ 10363 if (!is_u) { 10364 unallocated_encoding(s); 10365 return; 10366 } 10367 /* fall through */ 10368 case 0x00: /* SSHR / USHR */ 10369 case 0x02: /* SSRA / USRA (accumulate) */ 10370 case 0x04: /* SRSHR / URSHR (rounding) */ 10371 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10372 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10373 break; 10374 case 0x0a: /* SHL / SLI */ 10375 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10376 break; 10377 case 0x10: /* SHRN */ 10378 case 0x11: /* RSHRN / SQRSHRUN */ 10379 if (is_u) { 10380 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10381 opcode, rn, rd); 10382 } else { 10383 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10384 } 10385 break; 10386 case 0x12: /* SQSHRN / UQSHRN */ 10387 case 0x13: /* SQRSHRN / UQRSHRN */ 10388 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10389 opcode, rn, rd); 10390 break; 10391 case 0x14: /* SSHLL / USHLL */ 10392 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10393 break; 10394 case 0x1c: /* SCVTF / UCVTF */ 10395 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10396 opcode, rn, rd); 10397 break; 10398 case 0xc: /* SQSHLU */ 10399 if (!is_u) { 10400 unallocated_encoding(s); 10401 return; 10402 } 10403 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10404 break; 10405 case 0xe: /* SQSHL, UQSHL */ 10406 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10407 break; 10408 case 0x1f: /* FCVTZS/ FCVTZU */ 10409 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10410 return; 10411 default: 10412 unallocated_encoding(s); 10413 return; 10414 } 10415 } 10416 10417 /* Generate code to do a "long" addition or subtraction, ie one done in 10418 * TCGv_i64 on vector lanes twice the width specified by size. 10419 */ 10420 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10421 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10422 { 10423 static NeonGenTwo64OpFn * const fns[3][2] = { 10424 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10425 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10426 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10427 }; 10428 NeonGenTwo64OpFn *genfn; 10429 assert(size < 3); 10430 10431 genfn = fns[size][is_sub]; 10432 genfn(tcg_res, tcg_op1, tcg_op2); 10433 } 10434 10435 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10436 int opcode, int rd, int rn, int rm) 10437 { 10438 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10439 TCGv_i64 tcg_res[2]; 10440 int pass, accop; 10441 10442 tcg_res[0] = tcg_temp_new_i64(); 10443 tcg_res[1] = tcg_temp_new_i64(); 10444 10445 /* Does this op do an adding accumulate, a subtracting accumulate, 10446 * or no accumulate at all? 10447 */ 10448 switch (opcode) { 10449 case 5: 10450 case 8: 10451 case 9: 10452 accop = 1; 10453 break; 10454 case 10: 10455 case 11: 10456 accop = -1; 10457 break; 10458 default: 10459 accop = 0; 10460 break; 10461 } 10462 10463 if (accop != 0) { 10464 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10465 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10466 } 10467 10468 /* size == 2 means two 32x32->64 operations; this is worth special 10469 * casing because we can generally handle it inline. 10470 */ 10471 if (size == 2) { 10472 for (pass = 0; pass < 2; pass++) { 10473 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10474 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10475 TCGv_i64 tcg_passres; 10476 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10477 10478 int elt = pass + is_q * 2; 10479 10480 read_vec_element(s, tcg_op1, rn, elt, memop); 10481 read_vec_element(s, tcg_op2, rm, elt, memop); 10482 10483 if (accop == 0) { 10484 tcg_passres = tcg_res[pass]; 10485 } else { 10486 tcg_passres = tcg_temp_new_i64(); 10487 } 10488 10489 switch (opcode) { 10490 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10491 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10492 break; 10493 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10494 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10495 break; 10496 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10497 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10498 { 10499 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10500 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10501 10502 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10503 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10504 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10505 tcg_passres, 10506 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10507 break; 10508 } 10509 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10510 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10511 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10512 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10513 break; 10514 case 9: /* SQDMLAL, SQDMLAL2 */ 10515 case 11: /* SQDMLSL, SQDMLSL2 */ 10516 case 13: /* SQDMULL, SQDMULL2 */ 10517 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10518 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10519 tcg_passres, tcg_passres); 10520 break; 10521 default: 10522 g_assert_not_reached(); 10523 } 10524 10525 if (opcode == 9 || opcode == 11) { 10526 /* saturating accumulate ops */ 10527 if (accop < 0) { 10528 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10529 } 10530 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10531 tcg_res[pass], tcg_passres); 10532 } else if (accop > 0) { 10533 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10534 } else if (accop < 0) { 10535 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10536 } 10537 } 10538 } else { 10539 /* size 0 or 1, generally helper functions */ 10540 for (pass = 0; pass < 2; pass++) { 10541 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10542 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10543 TCGv_i64 tcg_passres; 10544 int elt = pass + is_q * 2; 10545 10546 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10547 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10548 10549 if (accop == 0) { 10550 tcg_passres = tcg_res[pass]; 10551 } else { 10552 tcg_passres = tcg_temp_new_i64(); 10553 } 10554 10555 switch (opcode) { 10556 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10557 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10558 { 10559 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10560 static NeonGenWidenFn * const widenfns[2][2] = { 10561 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10562 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10563 }; 10564 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10565 10566 widenfn(tcg_op2_64, tcg_op2); 10567 widenfn(tcg_passres, tcg_op1); 10568 gen_neon_addl(size, (opcode == 2), tcg_passres, 10569 tcg_passres, tcg_op2_64); 10570 break; 10571 } 10572 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10573 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10574 if (size == 0) { 10575 if (is_u) { 10576 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10577 } else { 10578 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10579 } 10580 } else { 10581 if (is_u) { 10582 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10583 } else { 10584 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10585 } 10586 } 10587 break; 10588 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10589 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10590 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10591 if (size == 0) { 10592 if (is_u) { 10593 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10594 } else { 10595 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10596 } 10597 } else { 10598 if (is_u) { 10599 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10600 } else { 10601 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10602 } 10603 } 10604 break; 10605 case 9: /* SQDMLAL, SQDMLAL2 */ 10606 case 11: /* SQDMLSL, SQDMLSL2 */ 10607 case 13: /* SQDMULL, SQDMULL2 */ 10608 assert(size == 1); 10609 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10610 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10611 tcg_passres, tcg_passres); 10612 break; 10613 default: 10614 g_assert_not_reached(); 10615 } 10616 10617 if (accop != 0) { 10618 if (opcode == 9 || opcode == 11) { 10619 /* saturating accumulate ops */ 10620 if (accop < 0) { 10621 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10622 } 10623 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10624 tcg_res[pass], 10625 tcg_passres); 10626 } else { 10627 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10628 tcg_res[pass], tcg_passres); 10629 } 10630 } 10631 } 10632 } 10633 10634 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10635 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10636 } 10637 10638 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10639 int opcode, int rd, int rn, int rm) 10640 { 10641 TCGv_i64 tcg_res[2]; 10642 int part = is_q ? 2 : 0; 10643 int pass; 10644 10645 for (pass = 0; pass < 2; pass++) { 10646 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10647 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10648 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10649 static NeonGenWidenFn * const widenfns[3][2] = { 10650 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10651 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10652 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10653 }; 10654 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10655 10656 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10657 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10658 widenfn(tcg_op2_wide, tcg_op2); 10659 tcg_res[pass] = tcg_temp_new_i64(); 10660 gen_neon_addl(size, (opcode == 3), 10661 tcg_res[pass], tcg_op1, tcg_op2_wide); 10662 } 10663 10664 for (pass = 0; pass < 2; pass++) { 10665 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10666 } 10667 } 10668 10669 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10670 { 10671 tcg_gen_addi_i64(in, in, 1U << 31); 10672 tcg_gen_extrh_i64_i32(res, in); 10673 } 10674 10675 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10676 int opcode, int rd, int rn, int rm) 10677 { 10678 TCGv_i32 tcg_res[2]; 10679 int part = is_q ? 2 : 0; 10680 int pass; 10681 10682 for (pass = 0; pass < 2; pass++) { 10683 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10684 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10685 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10686 static NeonGenNarrowFn * const narrowfns[3][2] = { 10687 { gen_helper_neon_narrow_high_u8, 10688 gen_helper_neon_narrow_round_high_u8 }, 10689 { gen_helper_neon_narrow_high_u16, 10690 gen_helper_neon_narrow_round_high_u16 }, 10691 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10692 }; 10693 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10694 10695 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10696 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10697 10698 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10699 10700 tcg_res[pass] = tcg_temp_new_i32(); 10701 gennarrow(tcg_res[pass], tcg_wideres); 10702 } 10703 10704 for (pass = 0; pass < 2; pass++) { 10705 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10706 } 10707 clear_vec_high(s, is_q, rd); 10708 } 10709 10710 /* AdvSIMD three different 10711 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10712 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10713 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10714 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10715 */ 10716 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10717 { 10718 /* Instructions in this group fall into three basic classes 10719 * (in each case with the operation working on each element in 10720 * the input vectors): 10721 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10722 * 128 bit input) 10723 * (2) wide 64 x 128 -> 128 10724 * (3) narrowing 128 x 128 -> 64 10725 * Here we do initial decode, catch unallocated cases and 10726 * dispatch to separate functions for each class. 10727 */ 10728 int is_q = extract32(insn, 30, 1); 10729 int is_u = extract32(insn, 29, 1); 10730 int size = extract32(insn, 22, 2); 10731 int opcode = extract32(insn, 12, 4); 10732 int rm = extract32(insn, 16, 5); 10733 int rn = extract32(insn, 5, 5); 10734 int rd = extract32(insn, 0, 5); 10735 10736 switch (opcode) { 10737 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10738 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10739 /* 64 x 128 -> 128 */ 10740 if (size == 3) { 10741 unallocated_encoding(s); 10742 return; 10743 } 10744 if (!fp_access_check(s)) { 10745 return; 10746 } 10747 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10748 break; 10749 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10750 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10751 /* 128 x 128 -> 64 */ 10752 if (size == 3) { 10753 unallocated_encoding(s); 10754 return; 10755 } 10756 if (!fp_access_check(s)) { 10757 return; 10758 } 10759 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10760 break; 10761 case 14: /* PMULL, PMULL2 */ 10762 if (is_u) { 10763 unallocated_encoding(s); 10764 return; 10765 } 10766 switch (size) { 10767 case 0: /* PMULL.P8 */ 10768 if (!fp_access_check(s)) { 10769 return; 10770 } 10771 /* The Q field specifies lo/hi half input for this insn. */ 10772 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10773 gen_helper_neon_pmull_h); 10774 break; 10775 10776 case 3: /* PMULL.P64 */ 10777 if (!dc_isar_feature(aa64_pmull, s)) { 10778 unallocated_encoding(s); 10779 return; 10780 } 10781 if (!fp_access_check(s)) { 10782 return; 10783 } 10784 /* The Q field specifies lo/hi half input for this insn. */ 10785 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10786 gen_helper_gvec_pmull_q); 10787 break; 10788 10789 default: 10790 unallocated_encoding(s); 10791 break; 10792 } 10793 return; 10794 case 9: /* SQDMLAL, SQDMLAL2 */ 10795 case 11: /* SQDMLSL, SQDMLSL2 */ 10796 case 13: /* SQDMULL, SQDMULL2 */ 10797 if (is_u || size == 0) { 10798 unallocated_encoding(s); 10799 return; 10800 } 10801 /* fall through */ 10802 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10803 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10804 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10805 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10806 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10807 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10808 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10809 /* 64 x 64 -> 128 */ 10810 if (size == 3) { 10811 unallocated_encoding(s); 10812 return; 10813 } 10814 if (!fp_access_check(s)) { 10815 return; 10816 } 10817 10818 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10819 break; 10820 default: 10821 /* opcode 15 not allocated */ 10822 unallocated_encoding(s); 10823 break; 10824 } 10825 } 10826 10827 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10828 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10829 { 10830 int rd = extract32(insn, 0, 5); 10831 int rn = extract32(insn, 5, 5); 10832 int rm = extract32(insn, 16, 5); 10833 int size = extract32(insn, 22, 2); 10834 bool is_u = extract32(insn, 29, 1); 10835 bool is_q = extract32(insn, 30, 1); 10836 10837 if (!fp_access_check(s)) { 10838 return; 10839 } 10840 10841 switch (size + 4 * is_u) { 10842 case 0: /* AND */ 10843 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10844 return; 10845 case 1: /* BIC */ 10846 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10847 return; 10848 case 2: /* ORR */ 10849 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10850 return; 10851 case 3: /* ORN */ 10852 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10853 return; 10854 case 4: /* EOR */ 10855 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10856 return; 10857 10858 case 5: /* BSL bitwise select */ 10859 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10860 return; 10861 case 6: /* BIT, bitwise insert if true */ 10862 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10863 return; 10864 case 7: /* BIF, bitwise insert if false */ 10865 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10866 return; 10867 10868 default: 10869 g_assert_not_reached(); 10870 } 10871 } 10872 10873 /* Pairwise op subgroup of C3.6.16. 10874 * 10875 * This is called directly or via the handle_3same_float for float pairwise 10876 * operations where the opcode and size are calculated differently. 10877 */ 10878 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10879 int size, int rn, int rm, int rd) 10880 { 10881 TCGv_ptr fpst; 10882 int pass; 10883 10884 /* Floating point operations need fpst */ 10885 if (opcode >= 0x58) { 10886 fpst = fpstatus_ptr(FPST_FPCR); 10887 } else { 10888 fpst = NULL; 10889 } 10890 10891 if (!fp_access_check(s)) { 10892 return; 10893 } 10894 10895 /* These operations work on the concatenated rm:rn, with each pair of 10896 * adjacent elements being operated on to produce an element in the result. 10897 */ 10898 if (size == 3) { 10899 TCGv_i64 tcg_res[2]; 10900 10901 for (pass = 0; pass < 2; pass++) { 10902 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10903 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10904 int passreg = (pass == 0) ? rn : rm; 10905 10906 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10907 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10908 tcg_res[pass] = tcg_temp_new_i64(); 10909 10910 switch (opcode) { 10911 case 0x17: /* ADDP */ 10912 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10913 break; 10914 case 0x58: /* FMAXNMP */ 10915 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10916 break; 10917 case 0x5a: /* FADDP */ 10918 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10919 break; 10920 case 0x5e: /* FMAXP */ 10921 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10922 break; 10923 case 0x78: /* FMINNMP */ 10924 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10925 break; 10926 case 0x7e: /* FMINP */ 10927 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10928 break; 10929 default: 10930 g_assert_not_reached(); 10931 } 10932 } 10933 10934 for (pass = 0; pass < 2; pass++) { 10935 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10936 } 10937 } else { 10938 int maxpass = is_q ? 4 : 2; 10939 TCGv_i32 tcg_res[4]; 10940 10941 for (pass = 0; pass < maxpass; pass++) { 10942 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10943 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10944 NeonGenTwoOpFn *genfn = NULL; 10945 int passreg = pass < (maxpass / 2) ? rn : rm; 10946 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10947 10948 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10949 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10950 tcg_res[pass] = tcg_temp_new_i32(); 10951 10952 switch (opcode) { 10953 case 0x17: /* ADDP */ 10954 { 10955 static NeonGenTwoOpFn * const fns[3] = { 10956 gen_helper_neon_padd_u8, 10957 gen_helper_neon_padd_u16, 10958 tcg_gen_add_i32, 10959 }; 10960 genfn = fns[size]; 10961 break; 10962 } 10963 case 0x14: /* SMAXP, UMAXP */ 10964 { 10965 static NeonGenTwoOpFn * const fns[3][2] = { 10966 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10967 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10968 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10969 }; 10970 genfn = fns[size][u]; 10971 break; 10972 } 10973 case 0x15: /* SMINP, UMINP */ 10974 { 10975 static NeonGenTwoOpFn * const fns[3][2] = { 10976 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10977 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10978 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10979 }; 10980 genfn = fns[size][u]; 10981 break; 10982 } 10983 /* The FP operations are all on single floats (32 bit) */ 10984 case 0x58: /* FMAXNMP */ 10985 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10986 break; 10987 case 0x5a: /* FADDP */ 10988 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10989 break; 10990 case 0x5e: /* FMAXP */ 10991 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10992 break; 10993 case 0x78: /* FMINNMP */ 10994 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10995 break; 10996 case 0x7e: /* FMINP */ 10997 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10998 break; 10999 default: 11000 g_assert_not_reached(); 11001 } 11002 11003 /* FP ops called directly, otherwise call now */ 11004 if (genfn) { 11005 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11006 } 11007 } 11008 11009 for (pass = 0; pass < maxpass; pass++) { 11010 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11011 } 11012 clear_vec_high(s, is_q, rd); 11013 } 11014 } 11015 11016 /* Floating point op subgroup of C3.6.16. */ 11017 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11018 { 11019 /* For floating point ops, the U, size[1] and opcode bits 11020 * together indicate the operation. size[0] indicates single 11021 * or double. 11022 */ 11023 int fpopcode = extract32(insn, 11, 5) 11024 | (extract32(insn, 23, 1) << 5) 11025 | (extract32(insn, 29, 1) << 6); 11026 int is_q = extract32(insn, 30, 1); 11027 int size = extract32(insn, 22, 1); 11028 int rm = extract32(insn, 16, 5); 11029 int rn = extract32(insn, 5, 5); 11030 int rd = extract32(insn, 0, 5); 11031 11032 int datasize = is_q ? 128 : 64; 11033 int esize = 32 << size; 11034 int elements = datasize / esize; 11035 11036 if (size == 1 && !is_q) { 11037 unallocated_encoding(s); 11038 return; 11039 } 11040 11041 switch (fpopcode) { 11042 case 0x58: /* FMAXNMP */ 11043 case 0x5a: /* FADDP */ 11044 case 0x5e: /* FMAXP */ 11045 case 0x78: /* FMINNMP */ 11046 case 0x7e: /* FMINP */ 11047 if (size && !is_q) { 11048 unallocated_encoding(s); 11049 return; 11050 } 11051 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11052 rn, rm, rd); 11053 return; 11054 case 0x1b: /* FMULX */ 11055 case 0x1f: /* FRECPS */ 11056 case 0x3f: /* FRSQRTS */ 11057 case 0x5d: /* FACGE */ 11058 case 0x7d: /* FACGT */ 11059 case 0x19: /* FMLA */ 11060 case 0x39: /* FMLS */ 11061 case 0x18: /* FMAXNM */ 11062 case 0x1a: /* FADD */ 11063 case 0x1c: /* FCMEQ */ 11064 case 0x1e: /* FMAX */ 11065 case 0x38: /* FMINNM */ 11066 case 0x3a: /* FSUB */ 11067 case 0x3e: /* FMIN */ 11068 case 0x5b: /* FMUL */ 11069 case 0x5c: /* FCMGE */ 11070 case 0x5f: /* FDIV */ 11071 case 0x7a: /* FABD */ 11072 case 0x7c: /* FCMGT */ 11073 if (!fp_access_check(s)) { 11074 return; 11075 } 11076 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11077 return; 11078 11079 case 0x1d: /* FMLAL */ 11080 case 0x3d: /* FMLSL */ 11081 case 0x59: /* FMLAL2 */ 11082 case 0x79: /* FMLSL2 */ 11083 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11084 unallocated_encoding(s); 11085 return; 11086 } 11087 if (fp_access_check(s)) { 11088 int is_s = extract32(insn, 23, 1); 11089 int is_2 = extract32(insn, 29, 1); 11090 int data = (is_2 << 1) | is_s; 11091 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11092 vec_full_reg_offset(s, rn), 11093 vec_full_reg_offset(s, rm), cpu_env, 11094 is_q ? 16 : 8, vec_full_reg_size(s), 11095 data, gen_helper_gvec_fmlal_a64); 11096 } 11097 return; 11098 11099 default: 11100 unallocated_encoding(s); 11101 return; 11102 } 11103 } 11104 11105 /* Integer op subgroup of C3.6.16. */ 11106 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11107 { 11108 int is_q = extract32(insn, 30, 1); 11109 int u = extract32(insn, 29, 1); 11110 int size = extract32(insn, 22, 2); 11111 int opcode = extract32(insn, 11, 5); 11112 int rm = extract32(insn, 16, 5); 11113 int rn = extract32(insn, 5, 5); 11114 int rd = extract32(insn, 0, 5); 11115 int pass; 11116 TCGCond cond; 11117 11118 switch (opcode) { 11119 case 0x13: /* MUL, PMUL */ 11120 if (u && size != 0) { 11121 unallocated_encoding(s); 11122 return; 11123 } 11124 /* fall through */ 11125 case 0x0: /* SHADD, UHADD */ 11126 case 0x2: /* SRHADD, URHADD */ 11127 case 0x4: /* SHSUB, UHSUB */ 11128 case 0xc: /* SMAX, UMAX */ 11129 case 0xd: /* SMIN, UMIN */ 11130 case 0xe: /* SABD, UABD */ 11131 case 0xf: /* SABA, UABA */ 11132 case 0x12: /* MLA, MLS */ 11133 if (size == 3) { 11134 unallocated_encoding(s); 11135 return; 11136 } 11137 break; 11138 case 0x16: /* SQDMULH, SQRDMULH */ 11139 if (size == 0 || size == 3) { 11140 unallocated_encoding(s); 11141 return; 11142 } 11143 break; 11144 default: 11145 if (size == 3 && !is_q) { 11146 unallocated_encoding(s); 11147 return; 11148 } 11149 break; 11150 } 11151 11152 if (!fp_access_check(s)) { 11153 return; 11154 } 11155 11156 switch (opcode) { 11157 case 0x01: /* SQADD, UQADD */ 11158 if (u) { 11159 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11160 } else { 11161 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11162 } 11163 return; 11164 case 0x05: /* SQSUB, UQSUB */ 11165 if (u) { 11166 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11167 } else { 11168 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11169 } 11170 return; 11171 case 0x08: /* SSHL, USHL */ 11172 if (u) { 11173 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11174 } else { 11175 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11176 } 11177 return; 11178 case 0x0c: /* SMAX, UMAX */ 11179 if (u) { 11180 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11181 } else { 11182 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11183 } 11184 return; 11185 case 0x0d: /* SMIN, UMIN */ 11186 if (u) { 11187 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11188 } else { 11189 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11190 } 11191 return; 11192 case 0xe: /* SABD, UABD */ 11193 if (u) { 11194 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11195 } else { 11196 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11197 } 11198 return; 11199 case 0xf: /* SABA, UABA */ 11200 if (u) { 11201 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11202 } else { 11203 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11204 } 11205 return; 11206 case 0x10: /* ADD, SUB */ 11207 if (u) { 11208 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11209 } else { 11210 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11211 } 11212 return; 11213 case 0x13: /* MUL, PMUL */ 11214 if (!u) { /* MUL */ 11215 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11216 } else { /* PMUL */ 11217 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11218 } 11219 return; 11220 case 0x12: /* MLA, MLS */ 11221 if (u) { 11222 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11223 } else { 11224 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11225 } 11226 return; 11227 case 0x16: /* SQDMULH, SQRDMULH */ 11228 { 11229 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11230 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11231 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11232 }; 11233 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11234 } 11235 return; 11236 case 0x11: 11237 if (!u) { /* CMTST */ 11238 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11239 return; 11240 } 11241 /* else CMEQ */ 11242 cond = TCG_COND_EQ; 11243 goto do_gvec_cmp; 11244 case 0x06: /* CMGT, CMHI */ 11245 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11246 goto do_gvec_cmp; 11247 case 0x07: /* CMGE, CMHS */ 11248 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11249 do_gvec_cmp: 11250 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11251 vec_full_reg_offset(s, rn), 11252 vec_full_reg_offset(s, rm), 11253 is_q ? 16 : 8, vec_full_reg_size(s)); 11254 return; 11255 } 11256 11257 if (size == 3) { 11258 assert(is_q); 11259 for (pass = 0; pass < 2; pass++) { 11260 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11261 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11262 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11263 11264 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11265 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11266 11267 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11268 11269 write_vec_element(s, tcg_res, rd, pass, MO_64); 11270 } 11271 } else { 11272 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11273 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11274 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11275 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11276 NeonGenTwoOpFn *genfn = NULL; 11277 NeonGenTwoOpEnvFn *genenvfn = NULL; 11278 11279 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11280 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11281 11282 switch (opcode) { 11283 case 0x0: /* SHADD, UHADD */ 11284 { 11285 static NeonGenTwoOpFn * const fns[3][2] = { 11286 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11287 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11288 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11289 }; 11290 genfn = fns[size][u]; 11291 break; 11292 } 11293 case 0x2: /* SRHADD, URHADD */ 11294 { 11295 static NeonGenTwoOpFn * const fns[3][2] = { 11296 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11297 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11298 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11299 }; 11300 genfn = fns[size][u]; 11301 break; 11302 } 11303 case 0x4: /* SHSUB, UHSUB */ 11304 { 11305 static NeonGenTwoOpFn * const fns[3][2] = { 11306 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11307 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11308 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11309 }; 11310 genfn = fns[size][u]; 11311 break; 11312 } 11313 case 0x9: /* SQSHL, UQSHL */ 11314 { 11315 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11316 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11317 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11318 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11319 }; 11320 genenvfn = fns[size][u]; 11321 break; 11322 } 11323 case 0xa: /* SRSHL, URSHL */ 11324 { 11325 static NeonGenTwoOpFn * const fns[3][2] = { 11326 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11327 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11328 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11329 }; 11330 genfn = fns[size][u]; 11331 break; 11332 } 11333 case 0xb: /* SQRSHL, UQRSHL */ 11334 { 11335 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11336 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11337 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11338 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11339 }; 11340 genenvfn = fns[size][u]; 11341 break; 11342 } 11343 default: 11344 g_assert_not_reached(); 11345 } 11346 11347 if (genenvfn) { 11348 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11349 } else { 11350 genfn(tcg_res, tcg_op1, tcg_op2); 11351 } 11352 11353 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11354 } 11355 } 11356 clear_vec_high(s, is_q, rd); 11357 } 11358 11359 /* AdvSIMD three same 11360 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11361 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11362 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11363 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11364 */ 11365 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11366 { 11367 int opcode = extract32(insn, 11, 5); 11368 11369 switch (opcode) { 11370 case 0x3: /* logic ops */ 11371 disas_simd_3same_logic(s, insn); 11372 break; 11373 case 0x17: /* ADDP */ 11374 case 0x14: /* SMAXP, UMAXP */ 11375 case 0x15: /* SMINP, UMINP */ 11376 { 11377 /* Pairwise operations */ 11378 int is_q = extract32(insn, 30, 1); 11379 int u = extract32(insn, 29, 1); 11380 int size = extract32(insn, 22, 2); 11381 int rm = extract32(insn, 16, 5); 11382 int rn = extract32(insn, 5, 5); 11383 int rd = extract32(insn, 0, 5); 11384 if (opcode == 0x17) { 11385 if (u || (size == 3 && !is_q)) { 11386 unallocated_encoding(s); 11387 return; 11388 } 11389 } else { 11390 if (size == 3) { 11391 unallocated_encoding(s); 11392 return; 11393 } 11394 } 11395 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11396 break; 11397 } 11398 case 0x18 ... 0x31: 11399 /* floating point ops, sz[1] and U are part of opcode */ 11400 disas_simd_3same_float(s, insn); 11401 break; 11402 default: 11403 disas_simd_3same_int(s, insn); 11404 break; 11405 } 11406 } 11407 11408 /* 11409 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11410 * 11411 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11412 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11413 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11414 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11415 * 11416 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11417 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11418 * 11419 */ 11420 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11421 { 11422 int opcode = extract32(insn, 11, 3); 11423 int u = extract32(insn, 29, 1); 11424 int a = extract32(insn, 23, 1); 11425 int is_q = extract32(insn, 30, 1); 11426 int rm = extract32(insn, 16, 5); 11427 int rn = extract32(insn, 5, 5); 11428 int rd = extract32(insn, 0, 5); 11429 /* 11430 * For these floating point ops, the U, a and opcode bits 11431 * together indicate the operation. 11432 */ 11433 int fpopcode = opcode | (a << 3) | (u << 4); 11434 int datasize = is_q ? 128 : 64; 11435 int elements = datasize / 16; 11436 bool pairwise; 11437 TCGv_ptr fpst; 11438 int pass; 11439 11440 switch (fpopcode) { 11441 case 0x0: /* FMAXNM */ 11442 case 0x1: /* FMLA */ 11443 case 0x2: /* FADD */ 11444 case 0x3: /* FMULX */ 11445 case 0x4: /* FCMEQ */ 11446 case 0x6: /* FMAX */ 11447 case 0x7: /* FRECPS */ 11448 case 0x8: /* FMINNM */ 11449 case 0x9: /* FMLS */ 11450 case 0xa: /* FSUB */ 11451 case 0xe: /* FMIN */ 11452 case 0xf: /* FRSQRTS */ 11453 case 0x13: /* FMUL */ 11454 case 0x14: /* FCMGE */ 11455 case 0x15: /* FACGE */ 11456 case 0x17: /* FDIV */ 11457 case 0x1a: /* FABD */ 11458 case 0x1c: /* FCMGT */ 11459 case 0x1d: /* FACGT */ 11460 pairwise = false; 11461 break; 11462 case 0x10: /* FMAXNMP */ 11463 case 0x12: /* FADDP */ 11464 case 0x16: /* FMAXP */ 11465 case 0x18: /* FMINNMP */ 11466 case 0x1e: /* FMINP */ 11467 pairwise = true; 11468 break; 11469 default: 11470 unallocated_encoding(s); 11471 return; 11472 } 11473 11474 if (!dc_isar_feature(aa64_fp16, s)) { 11475 unallocated_encoding(s); 11476 return; 11477 } 11478 11479 if (!fp_access_check(s)) { 11480 return; 11481 } 11482 11483 fpst = fpstatus_ptr(FPST_FPCR_F16); 11484 11485 if (pairwise) { 11486 int maxpass = is_q ? 8 : 4; 11487 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11488 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11489 TCGv_i32 tcg_res[8]; 11490 11491 for (pass = 0; pass < maxpass; pass++) { 11492 int passreg = pass < (maxpass / 2) ? rn : rm; 11493 int passelt = (pass << 1) & (maxpass - 1); 11494 11495 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11496 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11497 tcg_res[pass] = tcg_temp_new_i32(); 11498 11499 switch (fpopcode) { 11500 case 0x10: /* FMAXNMP */ 11501 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11502 fpst); 11503 break; 11504 case 0x12: /* FADDP */ 11505 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11506 break; 11507 case 0x16: /* FMAXP */ 11508 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11509 break; 11510 case 0x18: /* FMINNMP */ 11511 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11512 fpst); 11513 break; 11514 case 0x1e: /* FMINP */ 11515 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11516 break; 11517 default: 11518 g_assert_not_reached(); 11519 } 11520 } 11521 11522 for (pass = 0; pass < maxpass; pass++) { 11523 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11524 } 11525 } else { 11526 for (pass = 0; pass < elements; pass++) { 11527 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11528 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11529 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11530 11531 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11532 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11533 11534 switch (fpopcode) { 11535 case 0x0: /* FMAXNM */ 11536 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11537 break; 11538 case 0x1: /* FMLA */ 11539 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11540 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11541 fpst); 11542 break; 11543 case 0x2: /* FADD */ 11544 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11545 break; 11546 case 0x3: /* FMULX */ 11547 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11548 break; 11549 case 0x4: /* FCMEQ */ 11550 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11551 break; 11552 case 0x6: /* FMAX */ 11553 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11554 break; 11555 case 0x7: /* FRECPS */ 11556 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11557 break; 11558 case 0x8: /* FMINNM */ 11559 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11560 break; 11561 case 0x9: /* FMLS */ 11562 /* As usual for ARM, separate negation for fused multiply-add */ 11563 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11564 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11565 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11566 fpst); 11567 break; 11568 case 0xa: /* FSUB */ 11569 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11570 break; 11571 case 0xe: /* FMIN */ 11572 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11573 break; 11574 case 0xf: /* FRSQRTS */ 11575 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11576 break; 11577 case 0x13: /* FMUL */ 11578 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11579 break; 11580 case 0x14: /* FCMGE */ 11581 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11582 break; 11583 case 0x15: /* FACGE */ 11584 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11585 break; 11586 case 0x17: /* FDIV */ 11587 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11588 break; 11589 case 0x1a: /* FABD */ 11590 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11591 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11592 break; 11593 case 0x1c: /* FCMGT */ 11594 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11595 break; 11596 case 0x1d: /* FACGT */ 11597 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11598 break; 11599 default: 11600 g_assert_not_reached(); 11601 } 11602 11603 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11604 } 11605 } 11606 11607 clear_vec_high(s, is_q, rd); 11608 } 11609 11610 /* AdvSIMD three same extra 11611 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11612 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11613 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11614 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11615 */ 11616 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11617 { 11618 int rd = extract32(insn, 0, 5); 11619 int rn = extract32(insn, 5, 5); 11620 int opcode = extract32(insn, 11, 4); 11621 int rm = extract32(insn, 16, 5); 11622 int size = extract32(insn, 22, 2); 11623 bool u = extract32(insn, 29, 1); 11624 bool is_q = extract32(insn, 30, 1); 11625 bool feature; 11626 int rot; 11627 11628 switch (u * 16 + opcode) { 11629 case 0x10: /* SQRDMLAH (vector) */ 11630 case 0x11: /* SQRDMLSH (vector) */ 11631 if (size != 1 && size != 2) { 11632 unallocated_encoding(s); 11633 return; 11634 } 11635 feature = dc_isar_feature(aa64_rdm, s); 11636 break; 11637 case 0x02: /* SDOT (vector) */ 11638 case 0x12: /* UDOT (vector) */ 11639 if (size != MO_32) { 11640 unallocated_encoding(s); 11641 return; 11642 } 11643 feature = dc_isar_feature(aa64_dp, s); 11644 break; 11645 case 0x03: /* USDOT */ 11646 if (size != MO_32) { 11647 unallocated_encoding(s); 11648 return; 11649 } 11650 feature = dc_isar_feature(aa64_i8mm, s); 11651 break; 11652 case 0x04: /* SMMLA */ 11653 case 0x14: /* UMMLA */ 11654 case 0x05: /* USMMLA */ 11655 if (!is_q || size != MO_32) { 11656 unallocated_encoding(s); 11657 return; 11658 } 11659 feature = dc_isar_feature(aa64_i8mm, s); 11660 break; 11661 case 0x18: /* FCMLA, #0 */ 11662 case 0x19: /* FCMLA, #90 */ 11663 case 0x1a: /* FCMLA, #180 */ 11664 case 0x1b: /* FCMLA, #270 */ 11665 case 0x1c: /* FCADD, #90 */ 11666 case 0x1e: /* FCADD, #270 */ 11667 if (size == 0 11668 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11669 || (size == 3 && !is_q)) { 11670 unallocated_encoding(s); 11671 return; 11672 } 11673 feature = dc_isar_feature(aa64_fcma, s); 11674 break; 11675 case 0x1d: /* BFMMLA */ 11676 if (size != MO_16 || !is_q) { 11677 unallocated_encoding(s); 11678 return; 11679 } 11680 feature = dc_isar_feature(aa64_bf16, s); 11681 break; 11682 case 0x1f: 11683 switch (size) { 11684 case 1: /* BFDOT */ 11685 case 3: /* BFMLAL{B,T} */ 11686 feature = dc_isar_feature(aa64_bf16, s); 11687 break; 11688 default: 11689 unallocated_encoding(s); 11690 return; 11691 } 11692 break; 11693 default: 11694 unallocated_encoding(s); 11695 return; 11696 } 11697 if (!feature) { 11698 unallocated_encoding(s); 11699 return; 11700 } 11701 if (!fp_access_check(s)) { 11702 return; 11703 } 11704 11705 switch (opcode) { 11706 case 0x0: /* SQRDMLAH (vector) */ 11707 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11708 return; 11709 11710 case 0x1: /* SQRDMLSH (vector) */ 11711 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11712 return; 11713 11714 case 0x2: /* SDOT / UDOT */ 11715 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11716 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11717 return; 11718 11719 case 0x3: /* USDOT */ 11720 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11721 return; 11722 11723 case 0x04: /* SMMLA, UMMLA */ 11724 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11725 u ? gen_helper_gvec_ummla_b 11726 : gen_helper_gvec_smmla_b); 11727 return; 11728 case 0x05: /* USMMLA */ 11729 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11730 return; 11731 11732 case 0x8: /* FCMLA, #0 */ 11733 case 0x9: /* FCMLA, #90 */ 11734 case 0xa: /* FCMLA, #180 */ 11735 case 0xb: /* FCMLA, #270 */ 11736 rot = extract32(opcode, 0, 2); 11737 switch (size) { 11738 case 1: 11739 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11740 gen_helper_gvec_fcmlah); 11741 break; 11742 case 2: 11743 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11744 gen_helper_gvec_fcmlas); 11745 break; 11746 case 3: 11747 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11748 gen_helper_gvec_fcmlad); 11749 break; 11750 default: 11751 g_assert_not_reached(); 11752 } 11753 return; 11754 11755 case 0xc: /* FCADD, #90 */ 11756 case 0xe: /* FCADD, #270 */ 11757 rot = extract32(opcode, 1, 1); 11758 switch (size) { 11759 case 1: 11760 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11761 gen_helper_gvec_fcaddh); 11762 break; 11763 case 2: 11764 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11765 gen_helper_gvec_fcadds); 11766 break; 11767 case 3: 11768 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11769 gen_helper_gvec_fcaddd); 11770 break; 11771 default: 11772 g_assert_not_reached(); 11773 } 11774 return; 11775 11776 case 0xd: /* BFMMLA */ 11777 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11778 return; 11779 case 0xf: 11780 switch (size) { 11781 case 1: /* BFDOT */ 11782 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11783 break; 11784 case 3: /* BFMLAL{B,T} */ 11785 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11786 gen_helper_gvec_bfmlal); 11787 break; 11788 default: 11789 g_assert_not_reached(); 11790 } 11791 return; 11792 11793 default: 11794 g_assert_not_reached(); 11795 } 11796 } 11797 11798 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11799 int size, int rn, int rd) 11800 { 11801 /* Handle 2-reg-misc ops which are widening (so each size element 11802 * in the source becomes a 2*size element in the destination. 11803 * The only instruction like this is FCVTL. 11804 */ 11805 int pass; 11806 11807 if (size == 3) { 11808 /* 32 -> 64 bit fp conversion */ 11809 TCGv_i64 tcg_res[2]; 11810 int srcelt = is_q ? 2 : 0; 11811 11812 for (pass = 0; pass < 2; pass++) { 11813 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11814 tcg_res[pass] = tcg_temp_new_i64(); 11815 11816 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11817 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11818 } 11819 for (pass = 0; pass < 2; pass++) { 11820 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11821 } 11822 } else { 11823 /* 16 -> 32 bit fp conversion */ 11824 int srcelt = is_q ? 4 : 0; 11825 TCGv_i32 tcg_res[4]; 11826 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11827 TCGv_i32 ahp = get_ahp_flag(); 11828 11829 for (pass = 0; pass < 4; pass++) { 11830 tcg_res[pass] = tcg_temp_new_i32(); 11831 11832 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11833 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11834 fpst, ahp); 11835 } 11836 for (pass = 0; pass < 4; pass++) { 11837 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11838 } 11839 } 11840 } 11841 11842 static void handle_rev(DisasContext *s, int opcode, bool u, 11843 bool is_q, int size, int rn, int rd) 11844 { 11845 int op = (opcode << 1) | u; 11846 int opsz = op + size; 11847 int grp_size = 3 - opsz; 11848 int dsize = is_q ? 128 : 64; 11849 int i; 11850 11851 if (opsz >= 3) { 11852 unallocated_encoding(s); 11853 return; 11854 } 11855 11856 if (!fp_access_check(s)) { 11857 return; 11858 } 11859 11860 if (size == 0) { 11861 /* Special case bytes, use bswap op on each group of elements */ 11862 int groups = dsize / (8 << grp_size); 11863 11864 for (i = 0; i < groups; i++) { 11865 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11866 11867 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11868 switch (grp_size) { 11869 case MO_16: 11870 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11871 break; 11872 case MO_32: 11873 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11874 break; 11875 case MO_64: 11876 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11877 break; 11878 default: 11879 g_assert_not_reached(); 11880 } 11881 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11882 } 11883 clear_vec_high(s, is_q, rd); 11884 } else { 11885 int revmask = (1 << grp_size) - 1; 11886 int esize = 8 << size; 11887 int elements = dsize / esize; 11888 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11889 TCGv_i64 tcg_rd[2]; 11890 11891 for (i = 0; i < 2; i++) { 11892 tcg_rd[i] = tcg_temp_new_i64(); 11893 tcg_gen_movi_i64(tcg_rd[i], 0); 11894 } 11895 11896 for (i = 0; i < elements; i++) { 11897 int e_rev = (i & 0xf) ^ revmask; 11898 int w = (e_rev * esize) / 64; 11899 int o = (e_rev * esize) % 64; 11900 11901 read_vec_element(s, tcg_rn, rn, i, size); 11902 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11903 } 11904 11905 for (i = 0; i < 2; i++) { 11906 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11907 } 11908 clear_vec_high(s, true, rd); 11909 } 11910 } 11911 11912 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11913 bool is_q, int size, int rn, int rd) 11914 { 11915 /* Implement the pairwise operations from 2-misc: 11916 * SADDLP, UADDLP, SADALP, UADALP. 11917 * These all add pairs of elements in the input to produce a 11918 * double-width result element in the output (possibly accumulating). 11919 */ 11920 bool accum = (opcode == 0x6); 11921 int maxpass = is_q ? 2 : 1; 11922 int pass; 11923 TCGv_i64 tcg_res[2]; 11924 11925 if (size == 2) { 11926 /* 32 + 32 -> 64 op */ 11927 MemOp memop = size + (u ? 0 : MO_SIGN); 11928 11929 for (pass = 0; pass < maxpass; pass++) { 11930 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11931 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11932 11933 tcg_res[pass] = tcg_temp_new_i64(); 11934 11935 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11936 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11937 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11938 if (accum) { 11939 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11940 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11941 } 11942 } 11943 } else { 11944 for (pass = 0; pass < maxpass; pass++) { 11945 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11946 NeonGenOne64OpFn *genfn; 11947 static NeonGenOne64OpFn * const fns[2][2] = { 11948 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11949 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11950 }; 11951 11952 genfn = fns[size][u]; 11953 11954 tcg_res[pass] = tcg_temp_new_i64(); 11955 11956 read_vec_element(s, tcg_op, rn, pass, MO_64); 11957 genfn(tcg_res[pass], tcg_op); 11958 11959 if (accum) { 11960 read_vec_element(s, tcg_op, rd, pass, MO_64); 11961 if (size == 0) { 11962 gen_helper_neon_addl_u16(tcg_res[pass], 11963 tcg_res[pass], tcg_op); 11964 } else { 11965 gen_helper_neon_addl_u32(tcg_res[pass], 11966 tcg_res[pass], tcg_op); 11967 } 11968 } 11969 } 11970 } 11971 if (!is_q) { 11972 tcg_res[1] = tcg_constant_i64(0); 11973 } 11974 for (pass = 0; pass < 2; pass++) { 11975 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11976 } 11977 } 11978 11979 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11980 { 11981 /* Implement SHLL and SHLL2 */ 11982 int pass; 11983 int part = is_q ? 2 : 0; 11984 TCGv_i64 tcg_res[2]; 11985 11986 for (pass = 0; pass < 2; pass++) { 11987 static NeonGenWidenFn * const widenfns[3] = { 11988 gen_helper_neon_widen_u8, 11989 gen_helper_neon_widen_u16, 11990 tcg_gen_extu_i32_i64, 11991 }; 11992 NeonGenWidenFn *widenfn = widenfns[size]; 11993 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11994 11995 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11996 tcg_res[pass] = tcg_temp_new_i64(); 11997 widenfn(tcg_res[pass], tcg_op); 11998 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11999 } 12000 12001 for (pass = 0; pass < 2; pass++) { 12002 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12003 } 12004 } 12005 12006 /* AdvSIMD two reg misc 12007 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12008 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12009 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12010 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12011 */ 12012 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12013 { 12014 int size = extract32(insn, 22, 2); 12015 int opcode = extract32(insn, 12, 5); 12016 bool u = extract32(insn, 29, 1); 12017 bool is_q = extract32(insn, 30, 1); 12018 int rn = extract32(insn, 5, 5); 12019 int rd = extract32(insn, 0, 5); 12020 bool need_fpstatus = false; 12021 int rmode = -1; 12022 TCGv_i32 tcg_rmode; 12023 TCGv_ptr tcg_fpstatus; 12024 12025 switch (opcode) { 12026 case 0x0: /* REV64, REV32 */ 12027 case 0x1: /* REV16 */ 12028 handle_rev(s, opcode, u, is_q, size, rn, rd); 12029 return; 12030 case 0x5: /* CNT, NOT, RBIT */ 12031 if (u && size == 0) { 12032 /* NOT */ 12033 break; 12034 } else if (u && size == 1) { 12035 /* RBIT */ 12036 break; 12037 } else if (!u && size == 0) { 12038 /* CNT */ 12039 break; 12040 } 12041 unallocated_encoding(s); 12042 return; 12043 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12044 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12045 if (size == 3) { 12046 unallocated_encoding(s); 12047 return; 12048 } 12049 if (!fp_access_check(s)) { 12050 return; 12051 } 12052 12053 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12054 return; 12055 case 0x4: /* CLS, CLZ */ 12056 if (size == 3) { 12057 unallocated_encoding(s); 12058 return; 12059 } 12060 break; 12061 case 0x2: /* SADDLP, UADDLP */ 12062 case 0x6: /* SADALP, UADALP */ 12063 if (size == 3) { 12064 unallocated_encoding(s); 12065 return; 12066 } 12067 if (!fp_access_check(s)) { 12068 return; 12069 } 12070 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12071 return; 12072 case 0x13: /* SHLL, SHLL2 */ 12073 if (u == 0 || size == 3) { 12074 unallocated_encoding(s); 12075 return; 12076 } 12077 if (!fp_access_check(s)) { 12078 return; 12079 } 12080 handle_shll(s, is_q, size, rn, rd); 12081 return; 12082 case 0xa: /* CMLT */ 12083 if (u == 1) { 12084 unallocated_encoding(s); 12085 return; 12086 } 12087 /* fall through */ 12088 case 0x8: /* CMGT, CMGE */ 12089 case 0x9: /* CMEQ, CMLE */ 12090 case 0xb: /* ABS, NEG */ 12091 if (size == 3 && !is_q) { 12092 unallocated_encoding(s); 12093 return; 12094 } 12095 break; 12096 case 0x3: /* SUQADD, USQADD */ 12097 if (size == 3 && !is_q) { 12098 unallocated_encoding(s); 12099 return; 12100 } 12101 if (!fp_access_check(s)) { 12102 return; 12103 } 12104 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12105 return; 12106 case 0x7: /* SQABS, SQNEG */ 12107 if (size == 3 && !is_q) { 12108 unallocated_encoding(s); 12109 return; 12110 } 12111 break; 12112 case 0xc ... 0xf: 12113 case 0x16 ... 0x1f: 12114 { 12115 /* Floating point: U, size[1] and opcode indicate operation; 12116 * size[0] indicates single or double precision. 12117 */ 12118 int is_double = extract32(size, 0, 1); 12119 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12120 size = is_double ? 3 : 2; 12121 switch (opcode) { 12122 case 0x2f: /* FABS */ 12123 case 0x6f: /* FNEG */ 12124 if (size == 3 && !is_q) { 12125 unallocated_encoding(s); 12126 return; 12127 } 12128 break; 12129 case 0x1d: /* SCVTF */ 12130 case 0x5d: /* UCVTF */ 12131 { 12132 bool is_signed = (opcode == 0x1d) ? true : false; 12133 int elements = is_double ? 2 : is_q ? 4 : 2; 12134 if (is_double && !is_q) { 12135 unallocated_encoding(s); 12136 return; 12137 } 12138 if (!fp_access_check(s)) { 12139 return; 12140 } 12141 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12142 return; 12143 } 12144 case 0x2c: /* FCMGT (zero) */ 12145 case 0x2d: /* FCMEQ (zero) */ 12146 case 0x2e: /* FCMLT (zero) */ 12147 case 0x6c: /* FCMGE (zero) */ 12148 case 0x6d: /* FCMLE (zero) */ 12149 if (size == 3 && !is_q) { 12150 unallocated_encoding(s); 12151 return; 12152 } 12153 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12154 return; 12155 case 0x7f: /* FSQRT */ 12156 if (size == 3 && !is_q) { 12157 unallocated_encoding(s); 12158 return; 12159 } 12160 break; 12161 case 0x1a: /* FCVTNS */ 12162 case 0x1b: /* FCVTMS */ 12163 case 0x3a: /* FCVTPS */ 12164 case 0x3b: /* FCVTZS */ 12165 case 0x5a: /* FCVTNU */ 12166 case 0x5b: /* FCVTMU */ 12167 case 0x7a: /* FCVTPU */ 12168 case 0x7b: /* FCVTZU */ 12169 need_fpstatus = true; 12170 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12171 if (size == 3 && !is_q) { 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 break; 12176 case 0x5c: /* FCVTAU */ 12177 case 0x1c: /* FCVTAS */ 12178 need_fpstatus = true; 12179 rmode = FPROUNDING_TIEAWAY; 12180 if (size == 3 && !is_q) { 12181 unallocated_encoding(s); 12182 return; 12183 } 12184 break; 12185 case 0x3c: /* URECPE */ 12186 if (size == 3) { 12187 unallocated_encoding(s); 12188 return; 12189 } 12190 /* fall through */ 12191 case 0x3d: /* FRECPE */ 12192 case 0x7d: /* FRSQRTE */ 12193 if (size == 3 && !is_q) { 12194 unallocated_encoding(s); 12195 return; 12196 } 12197 if (!fp_access_check(s)) { 12198 return; 12199 } 12200 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12201 return; 12202 case 0x56: /* FCVTXN, FCVTXN2 */ 12203 if (size == 2) { 12204 unallocated_encoding(s); 12205 return; 12206 } 12207 /* fall through */ 12208 case 0x16: /* FCVTN, FCVTN2 */ 12209 /* handle_2misc_narrow does a 2*size -> size operation, but these 12210 * instructions encode the source size rather than dest size. 12211 */ 12212 if (!fp_access_check(s)) { 12213 return; 12214 } 12215 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12216 return; 12217 case 0x36: /* BFCVTN, BFCVTN2 */ 12218 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12219 unallocated_encoding(s); 12220 return; 12221 } 12222 if (!fp_access_check(s)) { 12223 return; 12224 } 12225 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12226 return; 12227 case 0x17: /* FCVTL, FCVTL2 */ 12228 if (!fp_access_check(s)) { 12229 return; 12230 } 12231 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12232 return; 12233 case 0x18: /* FRINTN */ 12234 case 0x19: /* FRINTM */ 12235 case 0x38: /* FRINTP */ 12236 case 0x39: /* FRINTZ */ 12237 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12238 /* fall through */ 12239 case 0x59: /* FRINTX */ 12240 case 0x79: /* FRINTI */ 12241 need_fpstatus = true; 12242 if (size == 3 && !is_q) { 12243 unallocated_encoding(s); 12244 return; 12245 } 12246 break; 12247 case 0x58: /* FRINTA */ 12248 rmode = FPROUNDING_TIEAWAY; 12249 need_fpstatus = true; 12250 if (size == 3 && !is_q) { 12251 unallocated_encoding(s); 12252 return; 12253 } 12254 break; 12255 case 0x7c: /* URSQRTE */ 12256 if (size == 3) { 12257 unallocated_encoding(s); 12258 return; 12259 } 12260 break; 12261 case 0x1e: /* FRINT32Z */ 12262 case 0x1f: /* FRINT64Z */ 12263 rmode = FPROUNDING_ZERO; 12264 /* fall through */ 12265 case 0x5e: /* FRINT32X */ 12266 case 0x5f: /* FRINT64X */ 12267 need_fpstatus = true; 12268 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12269 unallocated_encoding(s); 12270 return; 12271 } 12272 break; 12273 default: 12274 unallocated_encoding(s); 12275 return; 12276 } 12277 break; 12278 } 12279 default: 12280 unallocated_encoding(s); 12281 return; 12282 } 12283 12284 if (!fp_access_check(s)) { 12285 return; 12286 } 12287 12288 if (need_fpstatus || rmode >= 0) { 12289 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12290 } else { 12291 tcg_fpstatus = NULL; 12292 } 12293 if (rmode >= 0) { 12294 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12295 } else { 12296 tcg_rmode = NULL; 12297 } 12298 12299 switch (opcode) { 12300 case 0x5: 12301 if (u && size == 0) { /* NOT */ 12302 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12303 return; 12304 } 12305 break; 12306 case 0x8: /* CMGT, CMGE */ 12307 if (u) { 12308 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12309 } else { 12310 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12311 } 12312 return; 12313 case 0x9: /* CMEQ, CMLE */ 12314 if (u) { 12315 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12316 } else { 12317 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12318 } 12319 return; 12320 case 0xa: /* CMLT */ 12321 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12322 return; 12323 case 0xb: 12324 if (u) { /* ABS, NEG */ 12325 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12326 } else { 12327 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12328 } 12329 return; 12330 } 12331 12332 if (size == 3) { 12333 /* All 64-bit element operations can be shared with scalar 2misc */ 12334 int pass; 12335 12336 /* Coverity claims (size == 3 && !is_q) has been eliminated 12337 * from all paths leading to here. 12338 */ 12339 tcg_debug_assert(is_q); 12340 for (pass = 0; pass < 2; pass++) { 12341 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12342 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12343 12344 read_vec_element(s, tcg_op, rn, pass, MO_64); 12345 12346 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12347 tcg_rmode, tcg_fpstatus); 12348 12349 write_vec_element(s, tcg_res, rd, pass, MO_64); 12350 } 12351 } else { 12352 int pass; 12353 12354 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12355 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12356 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12357 12358 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12359 12360 if (size == 2) { 12361 /* Special cases for 32 bit elements */ 12362 switch (opcode) { 12363 case 0x4: /* CLS */ 12364 if (u) { 12365 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12366 } else { 12367 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12368 } 12369 break; 12370 case 0x7: /* SQABS, SQNEG */ 12371 if (u) { 12372 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12373 } else { 12374 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12375 } 12376 break; 12377 case 0x2f: /* FABS */ 12378 gen_helper_vfp_abss(tcg_res, tcg_op); 12379 break; 12380 case 0x6f: /* FNEG */ 12381 gen_helper_vfp_negs(tcg_res, tcg_op); 12382 break; 12383 case 0x7f: /* FSQRT */ 12384 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12385 break; 12386 case 0x1a: /* FCVTNS */ 12387 case 0x1b: /* FCVTMS */ 12388 case 0x1c: /* FCVTAS */ 12389 case 0x3a: /* FCVTPS */ 12390 case 0x3b: /* FCVTZS */ 12391 gen_helper_vfp_tosls(tcg_res, tcg_op, 12392 tcg_constant_i32(0), tcg_fpstatus); 12393 break; 12394 case 0x5a: /* FCVTNU */ 12395 case 0x5b: /* FCVTMU */ 12396 case 0x5c: /* FCVTAU */ 12397 case 0x7a: /* FCVTPU */ 12398 case 0x7b: /* FCVTZU */ 12399 gen_helper_vfp_touls(tcg_res, tcg_op, 12400 tcg_constant_i32(0), tcg_fpstatus); 12401 break; 12402 case 0x18: /* FRINTN */ 12403 case 0x19: /* FRINTM */ 12404 case 0x38: /* FRINTP */ 12405 case 0x39: /* FRINTZ */ 12406 case 0x58: /* FRINTA */ 12407 case 0x79: /* FRINTI */ 12408 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12409 break; 12410 case 0x59: /* FRINTX */ 12411 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12412 break; 12413 case 0x7c: /* URSQRTE */ 12414 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12415 break; 12416 case 0x1e: /* FRINT32Z */ 12417 case 0x5e: /* FRINT32X */ 12418 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12419 break; 12420 case 0x1f: /* FRINT64Z */ 12421 case 0x5f: /* FRINT64X */ 12422 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12423 break; 12424 default: 12425 g_assert_not_reached(); 12426 } 12427 } else { 12428 /* Use helpers for 8 and 16 bit elements */ 12429 switch (opcode) { 12430 case 0x5: /* CNT, RBIT */ 12431 /* For these two insns size is part of the opcode specifier 12432 * (handled earlier); they always operate on byte elements. 12433 */ 12434 if (u) { 12435 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12436 } else { 12437 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12438 } 12439 break; 12440 case 0x7: /* SQABS, SQNEG */ 12441 { 12442 NeonGenOneOpEnvFn *genfn; 12443 static NeonGenOneOpEnvFn * const fns[2][2] = { 12444 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12445 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12446 }; 12447 genfn = fns[size][u]; 12448 genfn(tcg_res, cpu_env, tcg_op); 12449 break; 12450 } 12451 case 0x4: /* CLS, CLZ */ 12452 if (u) { 12453 if (size == 0) { 12454 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12455 } else { 12456 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12457 } 12458 } else { 12459 if (size == 0) { 12460 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12461 } else { 12462 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12463 } 12464 } 12465 break; 12466 default: 12467 g_assert_not_reached(); 12468 } 12469 } 12470 12471 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12472 } 12473 } 12474 clear_vec_high(s, is_q, rd); 12475 12476 if (tcg_rmode) { 12477 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12478 } 12479 } 12480 12481 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12482 * 12483 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12484 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12485 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12486 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12487 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12488 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12489 * 12490 * This actually covers two groups where scalar access is governed by 12491 * bit 28. A bunch of the instructions (float to integral) only exist 12492 * in the vector form and are un-allocated for the scalar decode. Also 12493 * in the scalar decode Q is always 1. 12494 */ 12495 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12496 { 12497 int fpop, opcode, a, u; 12498 int rn, rd; 12499 bool is_q; 12500 bool is_scalar; 12501 bool only_in_vector = false; 12502 12503 int pass; 12504 TCGv_i32 tcg_rmode = NULL; 12505 TCGv_ptr tcg_fpstatus = NULL; 12506 bool need_fpst = true; 12507 int rmode = -1; 12508 12509 if (!dc_isar_feature(aa64_fp16, s)) { 12510 unallocated_encoding(s); 12511 return; 12512 } 12513 12514 rd = extract32(insn, 0, 5); 12515 rn = extract32(insn, 5, 5); 12516 12517 a = extract32(insn, 23, 1); 12518 u = extract32(insn, 29, 1); 12519 is_scalar = extract32(insn, 28, 1); 12520 is_q = extract32(insn, 30, 1); 12521 12522 opcode = extract32(insn, 12, 5); 12523 fpop = deposit32(opcode, 5, 1, a); 12524 fpop = deposit32(fpop, 6, 1, u); 12525 12526 switch (fpop) { 12527 case 0x1d: /* SCVTF */ 12528 case 0x5d: /* UCVTF */ 12529 { 12530 int elements; 12531 12532 if (is_scalar) { 12533 elements = 1; 12534 } else { 12535 elements = (is_q ? 8 : 4); 12536 } 12537 12538 if (!fp_access_check(s)) { 12539 return; 12540 } 12541 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12542 return; 12543 } 12544 break; 12545 case 0x2c: /* FCMGT (zero) */ 12546 case 0x2d: /* FCMEQ (zero) */ 12547 case 0x2e: /* FCMLT (zero) */ 12548 case 0x6c: /* FCMGE (zero) */ 12549 case 0x6d: /* FCMLE (zero) */ 12550 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12551 return; 12552 case 0x3d: /* FRECPE */ 12553 case 0x3f: /* FRECPX */ 12554 break; 12555 case 0x18: /* FRINTN */ 12556 only_in_vector = true; 12557 rmode = FPROUNDING_TIEEVEN; 12558 break; 12559 case 0x19: /* FRINTM */ 12560 only_in_vector = true; 12561 rmode = FPROUNDING_NEGINF; 12562 break; 12563 case 0x38: /* FRINTP */ 12564 only_in_vector = true; 12565 rmode = FPROUNDING_POSINF; 12566 break; 12567 case 0x39: /* FRINTZ */ 12568 only_in_vector = true; 12569 rmode = FPROUNDING_ZERO; 12570 break; 12571 case 0x58: /* FRINTA */ 12572 only_in_vector = true; 12573 rmode = FPROUNDING_TIEAWAY; 12574 break; 12575 case 0x59: /* FRINTX */ 12576 case 0x79: /* FRINTI */ 12577 only_in_vector = true; 12578 /* current rounding mode */ 12579 break; 12580 case 0x1a: /* FCVTNS */ 12581 rmode = FPROUNDING_TIEEVEN; 12582 break; 12583 case 0x1b: /* FCVTMS */ 12584 rmode = FPROUNDING_NEGINF; 12585 break; 12586 case 0x1c: /* FCVTAS */ 12587 rmode = FPROUNDING_TIEAWAY; 12588 break; 12589 case 0x3a: /* FCVTPS */ 12590 rmode = FPROUNDING_POSINF; 12591 break; 12592 case 0x3b: /* FCVTZS */ 12593 rmode = FPROUNDING_ZERO; 12594 break; 12595 case 0x5a: /* FCVTNU */ 12596 rmode = FPROUNDING_TIEEVEN; 12597 break; 12598 case 0x5b: /* FCVTMU */ 12599 rmode = FPROUNDING_NEGINF; 12600 break; 12601 case 0x5c: /* FCVTAU */ 12602 rmode = FPROUNDING_TIEAWAY; 12603 break; 12604 case 0x7a: /* FCVTPU */ 12605 rmode = FPROUNDING_POSINF; 12606 break; 12607 case 0x7b: /* FCVTZU */ 12608 rmode = FPROUNDING_ZERO; 12609 break; 12610 case 0x2f: /* FABS */ 12611 case 0x6f: /* FNEG */ 12612 need_fpst = false; 12613 break; 12614 case 0x7d: /* FRSQRTE */ 12615 case 0x7f: /* FSQRT (vector) */ 12616 break; 12617 default: 12618 unallocated_encoding(s); 12619 return; 12620 } 12621 12622 12623 /* Check additional constraints for the scalar encoding */ 12624 if (is_scalar) { 12625 if (!is_q) { 12626 unallocated_encoding(s); 12627 return; 12628 } 12629 /* FRINTxx is only in the vector form */ 12630 if (only_in_vector) { 12631 unallocated_encoding(s); 12632 return; 12633 } 12634 } 12635 12636 if (!fp_access_check(s)) { 12637 return; 12638 } 12639 12640 if (rmode >= 0 || need_fpst) { 12641 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12642 } 12643 12644 if (rmode >= 0) { 12645 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12646 } 12647 12648 if (is_scalar) { 12649 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12650 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12651 12652 switch (fpop) { 12653 case 0x1a: /* FCVTNS */ 12654 case 0x1b: /* FCVTMS */ 12655 case 0x1c: /* FCVTAS */ 12656 case 0x3a: /* FCVTPS */ 12657 case 0x3b: /* FCVTZS */ 12658 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12659 break; 12660 case 0x3d: /* FRECPE */ 12661 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12662 break; 12663 case 0x3f: /* FRECPX */ 12664 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12665 break; 12666 case 0x5a: /* FCVTNU */ 12667 case 0x5b: /* FCVTMU */ 12668 case 0x5c: /* FCVTAU */ 12669 case 0x7a: /* FCVTPU */ 12670 case 0x7b: /* FCVTZU */ 12671 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12672 break; 12673 case 0x6f: /* FNEG */ 12674 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12675 break; 12676 case 0x7d: /* FRSQRTE */ 12677 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12678 break; 12679 default: 12680 g_assert_not_reached(); 12681 } 12682 12683 /* limit any sign extension going on */ 12684 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12685 write_fp_sreg(s, rd, tcg_res); 12686 } else { 12687 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12688 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12689 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12690 12691 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12692 12693 switch (fpop) { 12694 case 0x1a: /* FCVTNS */ 12695 case 0x1b: /* FCVTMS */ 12696 case 0x1c: /* FCVTAS */ 12697 case 0x3a: /* FCVTPS */ 12698 case 0x3b: /* FCVTZS */ 12699 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12700 break; 12701 case 0x3d: /* FRECPE */ 12702 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12703 break; 12704 case 0x5a: /* FCVTNU */ 12705 case 0x5b: /* FCVTMU */ 12706 case 0x5c: /* FCVTAU */ 12707 case 0x7a: /* FCVTPU */ 12708 case 0x7b: /* FCVTZU */ 12709 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12710 break; 12711 case 0x18: /* FRINTN */ 12712 case 0x19: /* FRINTM */ 12713 case 0x38: /* FRINTP */ 12714 case 0x39: /* FRINTZ */ 12715 case 0x58: /* FRINTA */ 12716 case 0x79: /* FRINTI */ 12717 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12718 break; 12719 case 0x59: /* FRINTX */ 12720 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12721 break; 12722 case 0x2f: /* FABS */ 12723 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12724 break; 12725 case 0x6f: /* FNEG */ 12726 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12727 break; 12728 case 0x7d: /* FRSQRTE */ 12729 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12730 break; 12731 case 0x7f: /* FSQRT */ 12732 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12733 break; 12734 default: 12735 g_assert_not_reached(); 12736 } 12737 12738 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12739 } 12740 12741 clear_vec_high(s, is_q, rd); 12742 } 12743 12744 if (tcg_rmode) { 12745 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12746 } 12747 } 12748 12749 /* AdvSIMD scalar x indexed element 12750 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12751 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12752 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12753 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12754 * AdvSIMD vector x indexed element 12755 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12756 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12757 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12758 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12759 */ 12760 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12761 { 12762 /* This encoding has two kinds of instruction: 12763 * normal, where we perform elt x idxelt => elt for each 12764 * element in the vector 12765 * long, where we perform elt x idxelt and generate a result of 12766 * double the width of the input element 12767 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12768 */ 12769 bool is_scalar = extract32(insn, 28, 1); 12770 bool is_q = extract32(insn, 30, 1); 12771 bool u = extract32(insn, 29, 1); 12772 int size = extract32(insn, 22, 2); 12773 int l = extract32(insn, 21, 1); 12774 int m = extract32(insn, 20, 1); 12775 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12776 int rm = extract32(insn, 16, 4); 12777 int opcode = extract32(insn, 12, 4); 12778 int h = extract32(insn, 11, 1); 12779 int rn = extract32(insn, 5, 5); 12780 int rd = extract32(insn, 0, 5); 12781 bool is_long = false; 12782 int is_fp = 0; 12783 bool is_fp16 = false; 12784 int index; 12785 TCGv_ptr fpst; 12786 12787 switch (16 * u + opcode) { 12788 case 0x08: /* MUL */ 12789 case 0x10: /* MLA */ 12790 case 0x14: /* MLS */ 12791 if (is_scalar) { 12792 unallocated_encoding(s); 12793 return; 12794 } 12795 break; 12796 case 0x02: /* SMLAL, SMLAL2 */ 12797 case 0x12: /* UMLAL, UMLAL2 */ 12798 case 0x06: /* SMLSL, SMLSL2 */ 12799 case 0x16: /* UMLSL, UMLSL2 */ 12800 case 0x0a: /* SMULL, SMULL2 */ 12801 case 0x1a: /* UMULL, UMULL2 */ 12802 if (is_scalar) { 12803 unallocated_encoding(s); 12804 return; 12805 } 12806 is_long = true; 12807 break; 12808 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12809 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12810 case 0x0b: /* SQDMULL, SQDMULL2 */ 12811 is_long = true; 12812 break; 12813 case 0x0c: /* SQDMULH */ 12814 case 0x0d: /* SQRDMULH */ 12815 break; 12816 case 0x01: /* FMLA */ 12817 case 0x05: /* FMLS */ 12818 case 0x09: /* FMUL */ 12819 case 0x19: /* FMULX */ 12820 is_fp = 1; 12821 break; 12822 case 0x1d: /* SQRDMLAH */ 12823 case 0x1f: /* SQRDMLSH */ 12824 if (!dc_isar_feature(aa64_rdm, s)) { 12825 unallocated_encoding(s); 12826 return; 12827 } 12828 break; 12829 case 0x0e: /* SDOT */ 12830 case 0x1e: /* UDOT */ 12831 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12832 unallocated_encoding(s); 12833 return; 12834 } 12835 break; 12836 case 0x0f: 12837 switch (size) { 12838 case 0: /* SUDOT */ 12839 case 2: /* USDOT */ 12840 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12841 unallocated_encoding(s); 12842 return; 12843 } 12844 size = MO_32; 12845 break; 12846 case 1: /* BFDOT */ 12847 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12848 unallocated_encoding(s); 12849 return; 12850 } 12851 size = MO_32; 12852 break; 12853 case 3: /* BFMLAL{B,T} */ 12854 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12855 unallocated_encoding(s); 12856 return; 12857 } 12858 /* can't set is_fp without other incorrect size checks */ 12859 size = MO_16; 12860 break; 12861 default: 12862 unallocated_encoding(s); 12863 return; 12864 } 12865 break; 12866 case 0x11: /* FCMLA #0 */ 12867 case 0x13: /* FCMLA #90 */ 12868 case 0x15: /* FCMLA #180 */ 12869 case 0x17: /* FCMLA #270 */ 12870 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12871 unallocated_encoding(s); 12872 return; 12873 } 12874 is_fp = 2; 12875 break; 12876 case 0x00: /* FMLAL */ 12877 case 0x04: /* FMLSL */ 12878 case 0x18: /* FMLAL2 */ 12879 case 0x1c: /* FMLSL2 */ 12880 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12881 unallocated_encoding(s); 12882 return; 12883 } 12884 size = MO_16; 12885 /* is_fp, but we pass cpu_env not fp_status. */ 12886 break; 12887 default: 12888 unallocated_encoding(s); 12889 return; 12890 } 12891 12892 switch (is_fp) { 12893 case 1: /* normal fp */ 12894 /* convert insn encoded size to MemOp size */ 12895 switch (size) { 12896 case 0: /* half-precision */ 12897 size = MO_16; 12898 is_fp16 = true; 12899 break; 12900 case MO_32: /* single precision */ 12901 case MO_64: /* double precision */ 12902 break; 12903 default: 12904 unallocated_encoding(s); 12905 return; 12906 } 12907 break; 12908 12909 case 2: /* complex fp */ 12910 /* Each indexable element is a complex pair. */ 12911 size += 1; 12912 switch (size) { 12913 case MO_32: 12914 if (h && !is_q) { 12915 unallocated_encoding(s); 12916 return; 12917 } 12918 is_fp16 = true; 12919 break; 12920 case MO_64: 12921 break; 12922 default: 12923 unallocated_encoding(s); 12924 return; 12925 } 12926 break; 12927 12928 default: /* integer */ 12929 switch (size) { 12930 case MO_8: 12931 case MO_64: 12932 unallocated_encoding(s); 12933 return; 12934 } 12935 break; 12936 } 12937 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12938 unallocated_encoding(s); 12939 return; 12940 } 12941 12942 /* Given MemOp size, adjust register and indexing. */ 12943 switch (size) { 12944 case MO_16: 12945 index = h << 2 | l << 1 | m; 12946 break; 12947 case MO_32: 12948 index = h << 1 | l; 12949 rm |= m << 4; 12950 break; 12951 case MO_64: 12952 if (l || !is_q) { 12953 unallocated_encoding(s); 12954 return; 12955 } 12956 index = h; 12957 rm |= m << 4; 12958 break; 12959 default: 12960 g_assert_not_reached(); 12961 } 12962 12963 if (!fp_access_check(s)) { 12964 return; 12965 } 12966 12967 if (is_fp) { 12968 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12969 } else { 12970 fpst = NULL; 12971 } 12972 12973 switch (16 * u + opcode) { 12974 case 0x0e: /* SDOT */ 12975 case 0x1e: /* UDOT */ 12976 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12977 u ? gen_helper_gvec_udot_idx_b 12978 : gen_helper_gvec_sdot_idx_b); 12979 return; 12980 case 0x0f: 12981 switch (extract32(insn, 22, 2)) { 12982 case 0: /* SUDOT */ 12983 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12984 gen_helper_gvec_sudot_idx_b); 12985 return; 12986 case 1: /* BFDOT */ 12987 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12988 gen_helper_gvec_bfdot_idx); 12989 return; 12990 case 2: /* USDOT */ 12991 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12992 gen_helper_gvec_usdot_idx_b); 12993 return; 12994 case 3: /* BFMLAL{B,T} */ 12995 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12996 gen_helper_gvec_bfmlal_idx); 12997 return; 12998 } 12999 g_assert_not_reached(); 13000 case 0x11: /* FCMLA #0 */ 13001 case 0x13: /* FCMLA #90 */ 13002 case 0x15: /* FCMLA #180 */ 13003 case 0x17: /* FCMLA #270 */ 13004 { 13005 int rot = extract32(insn, 13, 2); 13006 int data = (index << 2) | rot; 13007 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13008 vec_full_reg_offset(s, rn), 13009 vec_full_reg_offset(s, rm), 13010 vec_full_reg_offset(s, rd), fpst, 13011 is_q ? 16 : 8, vec_full_reg_size(s), data, 13012 size == MO_64 13013 ? gen_helper_gvec_fcmlas_idx 13014 : gen_helper_gvec_fcmlah_idx); 13015 } 13016 return; 13017 13018 case 0x00: /* FMLAL */ 13019 case 0x04: /* FMLSL */ 13020 case 0x18: /* FMLAL2 */ 13021 case 0x1c: /* FMLSL2 */ 13022 { 13023 int is_s = extract32(opcode, 2, 1); 13024 int is_2 = u; 13025 int data = (index << 2) | (is_2 << 1) | is_s; 13026 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13027 vec_full_reg_offset(s, rn), 13028 vec_full_reg_offset(s, rm), cpu_env, 13029 is_q ? 16 : 8, vec_full_reg_size(s), 13030 data, gen_helper_gvec_fmlal_idx_a64); 13031 } 13032 return; 13033 13034 case 0x08: /* MUL */ 13035 if (!is_long && !is_scalar) { 13036 static gen_helper_gvec_3 * const fns[3] = { 13037 gen_helper_gvec_mul_idx_h, 13038 gen_helper_gvec_mul_idx_s, 13039 gen_helper_gvec_mul_idx_d, 13040 }; 13041 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13042 vec_full_reg_offset(s, rn), 13043 vec_full_reg_offset(s, rm), 13044 is_q ? 16 : 8, vec_full_reg_size(s), 13045 index, fns[size - 1]); 13046 return; 13047 } 13048 break; 13049 13050 case 0x10: /* MLA */ 13051 if (!is_long && !is_scalar) { 13052 static gen_helper_gvec_4 * const fns[3] = { 13053 gen_helper_gvec_mla_idx_h, 13054 gen_helper_gvec_mla_idx_s, 13055 gen_helper_gvec_mla_idx_d, 13056 }; 13057 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13058 vec_full_reg_offset(s, rn), 13059 vec_full_reg_offset(s, rm), 13060 vec_full_reg_offset(s, rd), 13061 is_q ? 16 : 8, vec_full_reg_size(s), 13062 index, fns[size - 1]); 13063 return; 13064 } 13065 break; 13066 13067 case 0x14: /* MLS */ 13068 if (!is_long && !is_scalar) { 13069 static gen_helper_gvec_4 * const fns[3] = { 13070 gen_helper_gvec_mls_idx_h, 13071 gen_helper_gvec_mls_idx_s, 13072 gen_helper_gvec_mls_idx_d, 13073 }; 13074 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13075 vec_full_reg_offset(s, rn), 13076 vec_full_reg_offset(s, rm), 13077 vec_full_reg_offset(s, rd), 13078 is_q ? 16 : 8, vec_full_reg_size(s), 13079 index, fns[size - 1]); 13080 return; 13081 } 13082 break; 13083 } 13084 13085 if (size == 3) { 13086 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13087 int pass; 13088 13089 assert(is_fp && is_q && !is_long); 13090 13091 read_vec_element(s, tcg_idx, rm, index, MO_64); 13092 13093 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13094 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13095 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13096 13097 read_vec_element(s, tcg_op, rn, pass, MO_64); 13098 13099 switch (16 * u + opcode) { 13100 case 0x05: /* FMLS */ 13101 /* As usual for ARM, separate negation for fused multiply-add */ 13102 gen_helper_vfp_negd(tcg_op, tcg_op); 13103 /* fall through */ 13104 case 0x01: /* FMLA */ 13105 read_vec_element(s, tcg_res, rd, pass, MO_64); 13106 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13107 break; 13108 case 0x09: /* FMUL */ 13109 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13110 break; 13111 case 0x19: /* FMULX */ 13112 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13113 break; 13114 default: 13115 g_assert_not_reached(); 13116 } 13117 13118 write_vec_element(s, tcg_res, rd, pass, MO_64); 13119 } 13120 13121 clear_vec_high(s, !is_scalar, rd); 13122 } else if (!is_long) { 13123 /* 32 bit floating point, or 16 or 32 bit integer. 13124 * For the 16 bit scalar case we use the usual Neon helpers and 13125 * rely on the fact that 0 op 0 == 0 with no side effects. 13126 */ 13127 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13128 int pass, maxpasses; 13129 13130 if (is_scalar) { 13131 maxpasses = 1; 13132 } else { 13133 maxpasses = is_q ? 4 : 2; 13134 } 13135 13136 read_vec_element_i32(s, tcg_idx, rm, index, size); 13137 13138 if (size == 1 && !is_scalar) { 13139 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13140 * the index into both halves of the 32 bit tcg_idx and then use 13141 * the usual Neon helpers. 13142 */ 13143 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13144 } 13145 13146 for (pass = 0; pass < maxpasses; pass++) { 13147 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13148 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13149 13150 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13151 13152 switch (16 * u + opcode) { 13153 case 0x08: /* MUL */ 13154 case 0x10: /* MLA */ 13155 case 0x14: /* MLS */ 13156 { 13157 static NeonGenTwoOpFn * const fns[2][2] = { 13158 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13159 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13160 }; 13161 NeonGenTwoOpFn *genfn; 13162 bool is_sub = opcode == 0x4; 13163 13164 if (size == 1) { 13165 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13166 } else { 13167 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13168 } 13169 if (opcode == 0x8) { 13170 break; 13171 } 13172 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13173 genfn = fns[size - 1][is_sub]; 13174 genfn(tcg_res, tcg_op, tcg_res); 13175 break; 13176 } 13177 case 0x05: /* FMLS */ 13178 case 0x01: /* FMLA */ 13179 read_vec_element_i32(s, tcg_res, rd, pass, 13180 is_scalar ? size : MO_32); 13181 switch (size) { 13182 case 1: 13183 if (opcode == 0x5) { 13184 /* As usual for ARM, separate negation for fused 13185 * multiply-add */ 13186 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13187 } 13188 if (is_scalar) { 13189 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13190 tcg_res, fpst); 13191 } else { 13192 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13193 tcg_res, fpst); 13194 } 13195 break; 13196 case 2: 13197 if (opcode == 0x5) { 13198 /* As usual for ARM, separate negation for 13199 * fused multiply-add */ 13200 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13201 } 13202 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13203 tcg_res, fpst); 13204 break; 13205 default: 13206 g_assert_not_reached(); 13207 } 13208 break; 13209 case 0x09: /* FMUL */ 13210 switch (size) { 13211 case 1: 13212 if (is_scalar) { 13213 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13214 tcg_idx, fpst); 13215 } else { 13216 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13217 tcg_idx, fpst); 13218 } 13219 break; 13220 case 2: 13221 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13222 break; 13223 default: 13224 g_assert_not_reached(); 13225 } 13226 break; 13227 case 0x19: /* FMULX */ 13228 switch (size) { 13229 case 1: 13230 if (is_scalar) { 13231 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13232 tcg_idx, fpst); 13233 } else { 13234 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13235 tcg_idx, fpst); 13236 } 13237 break; 13238 case 2: 13239 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13240 break; 13241 default: 13242 g_assert_not_reached(); 13243 } 13244 break; 13245 case 0x0c: /* SQDMULH */ 13246 if (size == 1) { 13247 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13248 tcg_op, tcg_idx); 13249 } else { 13250 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13251 tcg_op, tcg_idx); 13252 } 13253 break; 13254 case 0x0d: /* SQRDMULH */ 13255 if (size == 1) { 13256 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13257 tcg_op, tcg_idx); 13258 } else { 13259 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13260 tcg_op, tcg_idx); 13261 } 13262 break; 13263 case 0x1d: /* SQRDMLAH */ 13264 read_vec_element_i32(s, tcg_res, rd, pass, 13265 is_scalar ? size : MO_32); 13266 if (size == 1) { 13267 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13268 tcg_op, tcg_idx, tcg_res); 13269 } else { 13270 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13271 tcg_op, tcg_idx, tcg_res); 13272 } 13273 break; 13274 case 0x1f: /* SQRDMLSH */ 13275 read_vec_element_i32(s, tcg_res, rd, pass, 13276 is_scalar ? size : MO_32); 13277 if (size == 1) { 13278 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13279 tcg_op, tcg_idx, tcg_res); 13280 } else { 13281 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13282 tcg_op, tcg_idx, tcg_res); 13283 } 13284 break; 13285 default: 13286 g_assert_not_reached(); 13287 } 13288 13289 if (is_scalar) { 13290 write_fp_sreg(s, rd, tcg_res); 13291 } else { 13292 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13293 } 13294 } 13295 13296 clear_vec_high(s, is_q, rd); 13297 } else { 13298 /* long ops: 16x16->32 or 32x32->64 */ 13299 TCGv_i64 tcg_res[2]; 13300 int pass; 13301 bool satop = extract32(opcode, 0, 1); 13302 MemOp memop = MO_32; 13303 13304 if (satop || !u) { 13305 memop |= MO_SIGN; 13306 } 13307 13308 if (size == 2) { 13309 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13310 13311 read_vec_element(s, tcg_idx, rm, index, memop); 13312 13313 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13314 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13315 TCGv_i64 tcg_passres; 13316 int passelt; 13317 13318 if (is_scalar) { 13319 passelt = 0; 13320 } else { 13321 passelt = pass + (is_q * 2); 13322 } 13323 13324 read_vec_element(s, tcg_op, rn, passelt, memop); 13325 13326 tcg_res[pass] = tcg_temp_new_i64(); 13327 13328 if (opcode == 0xa || opcode == 0xb) { 13329 /* Non-accumulating ops */ 13330 tcg_passres = tcg_res[pass]; 13331 } else { 13332 tcg_passres = tcg_temp_new_i64(); 13333 } 13334 13335 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13336 13337 if (satop) { 13338 /* saturating, doubling */ 13339 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13340 tcg_passres, tcg_passres); 13341 } 13342 13343 if (opcode == 0xa || opcode == 0xb) { 13344 continue; 13345 } 13346 13347 /* Accumulating op: handle accumulate step */ 13348 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13349 13350 switch (opcode) { 13351 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13352 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13353 break; 13354 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13355 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13356 break; 13357 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13358 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13359 /* fall through */ 13360 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13361 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13362 tcg_res[pass], 13363 tcg_passres); 13364 break; 13365 default: 13366 g_assert_not_reached(); 13367 } 13368 } 13369 13370 clear_vec_high(s, !is_scalar, rd); 13371 } else { 13372 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13373 13374 assert(size == 1); 13375 read_vec_element_i32(s, tcg_idx, rm, index, size); 13376 13377 if (!is_scalar) { 13378 /* The simplest way to handle the 16x16 indexed ops is to 13379 * duplicate the index into both halves of the 32 bit tcg_idx 13380 * and then use the usual Neon helpers. 13381 */ 13382 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13383 } 13384 13385 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13386 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13387 TCGv_i64 tcg_passres; 13388 13389 if (is_scalar) { 13390 read_vec_element_i32(s, tcg_op, rn, pass, size); 13391 } else { 13392 read_vec_element_i32(s, tcg_op, rn, 13393 pass + (is_q * 2), MO_32); 13394 } 13395 13396 tcg_res[pass] = tcg_temp_new_i64(); 13397 13398 if (opcode == 0xa || opcode == 0xb) { 13399 /* Non-accumulating ops */ 13400 tcg_passres = tcg_res[pass]; 13401 } else { 13402 tcg_passres = tcg_temp_new_i64(); 13403 } 13404 13405 if (memop & MO_SIGN) { 13406 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13407 } else { 13408 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13409 } 13410 if (satop) { 13411 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13412 tcg_passres, tcg_passres); 13413 } 13414 13415 if (opcode == 0xa || opcode == 0xb) { 13416 continue; 13417 } 13418 13419 /* Accumulating op: handle accumulate step */ 13420 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13421 13422 switch (opcode) { 13423 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13424 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13425 tcg_passres); 13426 break; 13427 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13428 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13429 tcg_passres); 13430 break; 13431 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13432 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13433 /* fall through */ 13434 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13435 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13436 tcg_res[pass], 13437 tcg_passres); 13438 break; 13439 default: 13440 g_assert_not_reached(); 13441 } 13442 } 13443 13444 if (is_scalar) { 13445 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13446 } 13447 } 13448 13449 if (is_scalar) { 13450 tcg_res[1] = tcg_constant_i64(0); 13451 } 13452 13453 for (pass = 0; pass < 2; pass++) { 13454 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13455 } 13456 } 13457 } 13458 13459 /* Crypto AES 13460 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13461 * +-----------------+------+-----------+--------+-----+------+------+ 13462 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13463 * +-----------------+------+-----------+--------+-----+------+------+ 13464 */ 13465 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13466 { 13467 int size = extract32(insn, 22, 2); 13468 int opcode = extract32(insn, 12, 5); 13469 int rn = extract32(insn, 5, 5); 13470 int rd = extract32(insn, 0, 5); 13471 int decrypt; 13472 gen_helper_gvec_2 *genfn2 = NULL; 13473 gen_helper_gvec_3 *genfn3 = NULL; 13474 13475 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13476 unallocated_encoding(s); 13477 return; 13478 } 13479 13480 switch (opcode) { 13481 case 0x4: /* AESE */ 13482 decrypt = 0; 13483 genfn3 = gen_helper_crypto_aese; 13484 break; 13485 case 0x6: /* AESMC */ 13486 decrypt = 0; 13487 genfn2 = gen_helper_crypto_aesmc; 13488 break; 13489 case 0x5: /* AESD */ 13490 decrypt = 1; 13491 genfn3 = gen_helper_crypto_aese; 13492 break; 13493 case 0x7: /* AESIMC */ 13494 decrypt = 1; 13495 genfn2 = gen_helper_crypto_aesmc; 13496 break; 13497 default: 13498 unallocated_encoding(s); 13499 return; 13500 } 13501 13502 if (!fp_access_check(s)) { 13503 return; 13504 } 13505 if (genfn2) { 13506 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13507 } else { 13508 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13509 } 13510 } 13511 13512 /* Crypto three-reg SHA 13513 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13514 * +-----------------+------+---+------+---+--------+-----+------+------+ 13515 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13516 * +-----------------+------+---+------+---+--------+-----+------+------+ 13517 */ 13518 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13519 { 13520 int size = extract32(insn, 22, 2); 13521 int opcode = extract32(insn, 12, 3); 13522 int rm = extract32(insn, 16, 5); 13523 int rn = extract32(insn, 5, 5); 13524 int rd = extract32(insn, 0, 5); 13525 gen_helper_gvec_3 *genfn; 13526 bool feature; 13527 13528 if (size != 0) { 13529 unallocated_encoding(s); 13530 return; 13531 } 13532 13533 switch (opcode) { 13534 case 0: /* SHA1C */ 13535 genfn = gen_helper_crypto_sha1c; 13536 feature = dc_isar_feature(aa64_sha1, s); 13537 break; 13538 case 1: /* SHA1P */ 13539 genfn = gen_helper_crypto_sha1p; 13540 feature = dc_isar_feature(aa64_sha1, s); 13541 break; 13542 case 2: /* SHA1M */ 13543 genfn = gen_helper_crypto_sha1m; 13544 feature = dc_isar_feature(aa64_sha1, s); 13545 break; 13546 case 3: /* SHA1SU0 */ 13547 genfn = gen_helper_crypto_sha1su0; 13548 feature = dc_isar_feature(aa64_sha1, s); 13549 break; 13550 case 4: /* SHA256H */ 13551 genfn = gen_helper_crypto_sha256h; 13552 feature = dc_isar_feature(aa64_sha256, s); 13553 break; 13554 case 5: /* SHA256H2 */ 13555 genfn = gen_helper_crypto_sha256h2; 13556 feature = dc_isar_feature(aa64_sha256, s); 13557 break; 13558 case 6: /* SHA256SU1 */ 13559 genfn = gen_helper_crypto_sha256su1; 13560 feature = dc_isar_feature(aa64_sha256, s); 13561 break; 13562 default: 13563 unallocated_encoding(s); 13564 return; 13565 } 13566 13567 if (!feature) { 13568 unallocated_encoding(s); 13569 return; 13570 } 13571 13572 if (!fp_access_check(s)) { 13573 return; 13574 } 13575 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13576 } 13577 13578 /* Crypto two-reg SHA 13579 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13580 * +-----------------+------+-----------+--------+-----+------+------+ 13581 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13582 * +-----------------+------+-----------+--------+-----+------+------+ 13583 */ 13584 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13585 { 13586 int size = extract32(insn, 22, 2); 13587 int opcode = extract32(insn, 12, 5); 13588 int rn = extract32(insn, 5, 5); 13589 int rd = extract32(insn, 0, 5); 13590 gen_helper_gvec_2 *genfn; 13591 bool feature; 13592 13593 if (size != 0) { 13594 unallocated_encoding(s); 13595 return; 13596 } 13597 13598 switch (opcode) { 13599 case 0: /* SHA1H */ 13600 feature = dc_isar_feature(aa64_sha1, s); 13601 genfn = gen_helper_crypto_sha1h; 13602 break; 13603 case 1: /* SHA1SU1 */ 13604 feature = dc_isar_feature(aa64_sha1, s); 13605 genfn = gen_helper_crypto_sha1su1; 13606 break; 13607 case 2: /* SHA256SU0 */ 13608 feature = dc_isar_feature(aa64_sha256, s); 13609 genfn = gen_helper_crypto_sha256su0; 13610 break; 13611 default: 13612 unallocated_encoding(s); 13613 return; 13614 } 13615 13616 if (!feature) { 13617 unallocated_encoding(s); 13618 return; 13619 } 13620 13621 if (!fp_access_check(s)) { 13622 return; 13623 } 13624 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13625 } 13626 13627 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13628 { 13629 tcg_gen_rotli_i64(d, m, 1); 13630 tcg_gen_xor_i64(d, d, n); 13631 } 13632 13633 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13634 { 13635 tcg_gen_rotli_vec(vece, d, m, 1); 13636 tcg_gen_xor_vec(vece, d, d, n); 13637 } 13638 13639 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13640 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13641 { 13642 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13643 static const GVecGen3 op = { 13644 .fni8 = gen_rax1_i64, 13645 .fniv = gen_rax1_vec, 13646 .opt_opc = vecop_list, 13647 .fno = gen_helper_crypto_rax1, 13648 .vece = MO_64, 13649 }; 13650 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13651 } 13652 13653 /* Crypto three-reg SHA512 13654 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13655 * +-----------------------+------+---+---+-----+--------+------+------+ 13656 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13657 * +-----------------------+------+---+---+-----+--------+------+------+ 13658 */ 13659 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13660 { 13661 int opcode = extract32(insn, 10, 2); 13662 int o = extract32(insn, 14, 1); 13663 int rm = extract32(insn, 16, 5); 13664 int rn = extract32(insn, 5, 5); 13665 int rd = extract32(insn, 0, 5); 13666 bool feature; 13667 gen_helper_gvec_3 *oolfn = NULL; 13668 GVecGen3Fn *gvecfn = NULL; 13669 13670 if (o == 0) { 13671 switch (opcode) { 13672 case 0: /* SHA512H */ 13673 feature = dc_isar_feature(aa64_sha512, s); 13674 oolfn = gen_helper_crypto_sha512h; 13675 break; 13676 case 1: /* SHA512H2 */ 13677 feature = dc_isar_feature(aa64_sha512, s); 13678 oolfn = gen_helper_crypto_sha512h2; 13679 break; 13680 case 2: /* SHA512SU1 */ 13681 feature = dc_isar_feature(aa64_sha512, s); 13682 oolfn = gen_helper_crypto_sha512su1; 13683 break; 13684 case 3: /* RAX1 */ 13685 feature = dc_isar_feature(aa64_sha3, s); 13686 gvecfn = gen_gvec_rax1; 13687 break; 13688 default: 13689 g_assert_not_reached(); 13690 } 13691 } else { 13692 switch (opcode) { 13693 case 0: /* SM3PARTW1 */ 13694 feature = dc_isar_feature(aa64_sm3, s); 13695 oolfn = gen_helper_crypto_sm3partw1; 13696 break; 13697 case 1: /* SM3PARTW2 */ 13698 feature = dc_isar_feature(aa64_sm3, s); 13699 oolfn = gen_helper_crypto_sm3partw2; 13700 break; 13701 case 2: /* SM4EKEY */ 13702 feature = dc_isar_feature(aa64_sm4, s); 13703 oolfn = gen_helper_crypto_sm4ekey; 13704 break; 13705 default: 13706 unallocated_encoding(s); 13707 return; 13708 } 13709 } 13710 13711 if (!feature) { 13712 unallocated_encoding(s); 13713 return; 13714 } 13715 13716 if (!fp_access_check(s)) { 13717 return; 13718 } 13719 13720 if (oolfn) { 13721 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13722 } else { 13723 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13724 } 13725 } 13726 13727 /* Crypto two-reg SHA512 13728 * 31 12 11 10 9 5 4 0 13729 * +-----------------------------------------+--------+------+------+ 13730 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13731 * +-----------------------------------------+--------+------+------+ 13732 */ 13733 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13734 { 13735 int opcode = extract32(insn, 10, 2); 13736 int rn = extract32(insn, 5, 5); 13737 int rd = extract32(insn, 0, 5); 13738 bool feature; 13739 13740 switch (opcode) { 13741 case 0: /* SHA512SU0 */ 13742 feature = dc_isar_feature(aa64_sha512, s); 13743 break; 13744 case 1: /* SM4E */ 13745 feature = dc_isar_feature(aa64_sm4, s); 13746 break; 13747 default: 13748 unallocated_encoding(s); 13749 return; 13750 } 13751 13752 if (!feature) { 13753 unallocated_encoding(s); 13754 return; 13755 } 13756 13757 if (!fp_access_check(s)) { 13758 return; 13759 } 13760 13761 switch (opcode) { 13762 case 0: /* SHA512SU0 */ 13763 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13764 break; 13765 case 1: /* SM4E */ 13766 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13767 break; 13768 default: 13769 g_assert_not_reached(); 13770 } 13771 } 13772 13773 /* Crypto four-register 13774 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13775 * +-------------------+-----+------+---+------+------+------+ 13776 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13777 * +-------------------+-----+------+---+------+------+------+ 13778 */ 13779 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13780 { 13781 int op0 = extract32(insn, 21, 2); 13782 int rm = extract32(insn, 16, 5); 13783 int ra = extract32(insn, 10, 5); 13784 int rn = extract32(insn, 5, 5); 13785 int rd = extract32(insn, 0, 5); 13786 bool feature; 13787 13788 switch (op0) { 13789 case 0: /* EOR3 */ 13790 case 1: /* BCAX */ 13791 feature = dc_isar_feature(aa64_sha3, s); 13792 break; 13793 case 2: /* SM3SS1 */ 13794 feature = dc_isar_feature(aa64_sm3, s); 13795 break; 13796 default: 13797 unallocated_encoding(s); 13798 return; 13799 } 13800 13801 if (!feature) { 13802 unallocated_encoding(s); 13803 return; 13804 } 13805 13806 if (!fp_access_check(s)) { 13807 return; 13808 } 13809 13810 if (op0 < 2) { 13811 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13812 int pass; 13813 13814 tcg_op1 = tcg_temp_new_i64(); 13815 tcg_op2 = tcg_temp_new_i64(); 13816 tcg_op3 = tcg_temp_new_i64(); 13817 tcg_res[0] = tcg_temp_new_i64(); 13818 tcg_res[1] = tcg_temp_new_i64(); 13819 13820 for (pass = 0; pass < 2; pass++) { 13821 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13822 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13823 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13824 13825 if (op0 == 0) { 13826 /* EOR3 */ 13827 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13828 } else { 13829 /* BCAX */ 13830 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13831 } 13832 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13833 } 13834 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13835 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13836 } else { 13837 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13838 13839 tcg_op1 = tcg_temp_new_i32(); 13840 tcg_op2 = tcg_temp_new_i32(); 13841 tcg_op3 = tcg_temp_new_i32(); 13842 tcg_res = tcg_temp_new_i32(); 13843 tcg_zero = tcg_constant_i32(0); 13844 13845 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13846 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13847 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13848 13849 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13850 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13851 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13852 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13853 13854 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13855 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13856 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13857 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13858 } 13859 } 13860 13861 /* Crypto XAR 13862 * 31 21 20 16 15 10 9 5 4 0 13863 * +-----------------------+------+--------+------+------+ 13864 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13865 * +-----------------------+------+--------+------+------+ 13866 */ 13867 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13868 { 13869 int rm = extract32(insn, 16, 5); 13870 int imm6 = extract32(insn, 10, 6); 13871 int rn = extract32(insn, 5, 5); 13872 int rd = extract32(insn, 0, 5); 13873 13874 if (!dc_isar_feature(aa64_sha3, s)) { 13875 unallocated_encoding(s); 13876 return; 13877 } 13878 13879 if (!fp_access_check(s)) { 13880 return; 13881 } 13882 13883 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13884 vec_full_reg_offset(s, rn), 13885 vec_full_reg_offset(s, rm), imm6, 16, 13886 vec_full_reg_size(s)); 13887 } 13888 13889 /* Crypto three-reg imm2 13890 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13891 * +-----------------------+------+-----+------+--------+------+------+ 13892 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13893 * +-----------------------+------+-----+------+--------+------+------+ 13894 */ 13895 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13896 { 13897 static gen_helper_gvec_3 * const fns[4] = { 13898 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13899 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13900 }; 13901 int opcode = extract32(insn, 10, 2); 13902 int imm2 = extract32(insn, 12, 2); 13903 int rm = extract32(insn, 16, 5); 13904 int rn = extract32(insn, 5, 5); 13905 int rd = extract32(insn, 0, 5); 13906 13907 if (!dc_isar_feature(aa64_sm3, s)) { 13908 unallocated_encoding(s); 13909 return; 13910 } 13911 13912 if (!fp_access_check(s)) { 13913 return; 13914 } 13915 13916 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13917 } 13918 13919 /* C3.6 Data processing - SIMD, inc Crypto 13920 * 13921 * As the decode gets a little complex we are using a table based 13922 * approach for this part of the decode. 13923 */ 13924 static const AArch64DecodeTable data_proc_simd[] = { 13925 /* pattern , mask , fn */ 13926 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13927 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13928 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13929 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13930 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13931 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13932 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13933 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13934 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13935 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13936 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13937 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13938 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13939 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13940 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13941 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13942 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13943 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13944 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13945 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13946 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13947 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13948 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13949 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13950 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13951 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13952 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13953 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13954 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13955 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13956 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13957 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13958 { 0x00000000, 0x00000000, NULL } 13959 }; 13960 13961 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13962 { 13963 /* Note that this is called with all non-FP cases from 13964 * table C3-6 so it must UNDEF for entries not specifically 13965 * allocated to instructions in that table. 13966 */ 13967 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13968 if (fn) { 13969 fn(s, insn); 13970 } else { 13971 unallocated_encoding(s); 13972 } 13973 } 13974 13975 /* C3.6 Data processing - SIMD and floating point */ 13976 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13977 { 13978 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13979 disas_data_proc_fp(s, insn); 13980 } else { 13981 /* SIMD, including crypto */ 13982 disas_data_proc_simd(s, insn); 13983 } 13984 } 13985 13986 static bool trans_OK(DisasContext *s, arg_OK *a) 13987 { 13988 return true; 13989 } 13990 13991 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13992 { 13993 s->is_nonstreaming = true; 13994 return true; 13995 } 13996 13997 /** 13998 * is_guarded_page: 13999 * @env: The cpu environment 14000 * @s: The DisasContext 14001 * 14002 * Return true if the page is guarded. 14003 */ 14004 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14005 { 14006 uint64_t addr = s->base.pc_first; 14007 #ifdef CONFIG_USER_ONLY 14008 return page_get_flags(addr) & PAGE_BTI; 14009 #else 14010 CPUTLBEntryFull *full; 14011 void *host; 14012 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14013 int flags; 14014 14015 /* 14016 * We test this immediately after reading an insn, which means 14017 * that the TLB entry must be present and valid, and thus this 14018 * access will never raise an exception. 14019 */ 14020 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14021 false, &host, &full, 0); 14022 assert(!(flags & TLB_INVALID_MASK)); 14023 14024 return full->guarded; 14025 #endif 14026 } 14027 14028 /** 14029 * btype_destination_ok: 14030 * @insn: The instruction at the branch destination 14031 * @bt: SCTLR_ELx.BT 14032 * @btype: PSTATE.BTYPE, and is non-zero 14033 * 14034 * On a guarded page, there are a limited number of insns 14035 * that may be present at the branch target: 14036 * - branch target identifiers, 14037 * - paciasp, pacibsp, 14038 * - BRK insn 14039 * - HLT insn 14040 * Anything else causes a Branch Target Exception. 14041 * 14042 * Return true if the branch is compatible, false to raise BTITRAP. 14043 */ 14044 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14045 { 14046 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14047 /* HINT space */ 14048 switch (extract32(insn, 5, 7)) { 14049 case 0b011001: /* PACIASP */ 14050 case 0b011011: /* PACIBSP */ 14051 /* 14052 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14053 * with btype == 3. Otherwise all btype are ok. 14054 */ 14055 return !bt || btype != 3; 14056 case 0b100000: /* BTI */ 14057 /* Not compatible with any btype. */ 14058 return false; 14059 case 0b100010: /* BTI c */ 14060 /* Not compatible with btype == 3 */ 14061 return btype != 3; 14062 case 0b100100: /* BTI j */ 14063 /* Not compatible with btype == 2 */ 14064 return btype != 2; 14065 case 0b100110: /* BTI jc */ 14066 /* Compatible with any btype. */ 14067 return true; 14068 } 14069 } else { 14070 switch (insn & 0xffe0001fu) { 14071 case 0xd4200000u: /* BRK */ 14072 case 0xd4400000u: /* HLT */ 14073 /* Give priority to the breakpoint exception. */ 14074 return true; 14075 } 14076 } 14077 return false; 14078 } 14079 14080 /* C3.1 A64 instruction index by encoding */ 14081 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14082 { 14083 switch (extract32(insn, 25, 4)) { 14084 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14085 disas_b_exc_sys(s, insn); 14086 break; 14087 case 0x4: 14088 case 0x6: 14089 case 0xc: 14090 case 0xe: /* Loads and stores */ 14091 disas_ldst(s, insn); 14092 break; 14093 case 0x5: 14094 case 0xd: /* Data processing - register */ 14095 disas_data_proc_reg(s, insn); 14096 break; 14097 case 0x7: 14098 case 0xf: /* Data processing - SIMD and floating point */ 14099 disas_data_proc_simd_fp(s, insn); 14100 break; 14101 default: 14102 unallocated_encoding(s); 14103 break; 14104 } 14105 } 14106 14107 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14108 CPUState *cpu) 14109 { 14110 DisasContext *dc = container_of(dcbase, DisasContext, base); 14111 CPUARMState *env = cpu->env_ptr; 14112 ARMCPU *arm_cpu = env_archcpu(env); 14113 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14114 int bound, core_mmu_idx; 14115 14116 dc->isar = &arm_cpu->isar; 14117 dc->condjmp = 0; 14118 dc->pc_save = dc->base.pc_first; 14119 dc->aarch64 = true; 14120 dc->thumb = false; 14121 dc->sctlr_b = 0; 14122 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14123 dc->condexec_mask = 0; 14124 dc->condexec_cond = 0; 14125 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14126 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14127 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14128 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14129 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14130 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14131 #if !defined(CONFIG_USER_ONLY) 14132 dc->user = (dc->current_el == 0); 14133 #endif 14134 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14135 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14136 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14137 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14138 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14139 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14140 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14141 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14142 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14143 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14144 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14145 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14146 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14147 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14148 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14149 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14150 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14151 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14152 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14153 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14154 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14155 dc->vec_len = 0; 14156 dc->vec_stride = 0; 14157 dc->cp_regs = arm_cpu->cp_regs; 14158 dc->features = env->features; 14159 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14160 14161 #ifdef CONFIG_USER_ONLY 14162 /* In sve_probe_page, we assume TBI is enabled. */ 14163 tcg_debug_assert(dc->tbid & 1); 14164 #endif 14165 14166 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14167 14168 /* Single step state. The code-generation logic here is: 14169 * SS_ACTIVE == 0: 14170 * generate code with no special handling for single-stepping (except 14171 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14172 * this happens anyway because those changes are all system register or 14173 * PSTATE writes). 14174 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14175 * emit code for one insn 14176 * emit code to clear PSTATE.SS 14177 * emit code to generate software step exception for completed step 14178 * end TB (as usual for having generated an exception) 14179 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14180 * emit code to generate a software step exception 14181 * end the TB 14182 */ 14183 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14184 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14185 dc->is_ldex = false; 14186 14187 /* Bound the number of insns to execute to those left on the page. */ 14188 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14189 14190 /* If architectural single step active, limit to 1. */ 14191 if (dc->ss_active) { 14192 bound = 1; 14193 } 14194 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14195 } 14196 14197 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14198 { 14199 } 14200 14201 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14202 { 14203 DisasContext *dc = container_of(dcbase, DisasContext, base); 14204 target_ulong pc_arg = dc->base.pc_next; 14205 14206 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14207 pc_arg &= ~TARGET_PAGE_MASK; 14208 } 14209 tcg_gen_insn_start(pc_arg, 0, 0); 14210 dc->insn_start = tcg_last_op(); 14211 } 14212 14213 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14214 { 14215 DisasContext *s = container_of(dcbase, DisasContext, base); 14216 CPUARMState *env = cpu->env_ptr; 14217 uint64_t pc = s->base.pc_next; 14218 uint32_t insn; 14219 14220 /* Singlestep exceptions have the highest priority. */ 14221 if (s->ss_active && !s->pstate_ss) { 14222 /* Singlestep state is Active-pending. 14223 * If we're in this state at the start of a TB then either 14224 * a) we just took an exception to an EL which is being debugged 14225 * and this is the first insn in the exception handler 14226 * b) debug exceptions were masked and we just unmasked them 14227 * without changing EL (eg by clearing PSTATE.D) 14228 * In either case we're going to take a swstep exception in the 14229 * "did not step an insn" case, and so the syndrome ISV and EX 14230 * bits should be zero. 14231 */ 14232 assert(s->base.num_insns == 1); 14233 gen_swstep_exception(s, 0, 0); 14234 s->base.is_jmp = DISAS_NORETURN; 14235 s->base.pc_next = pc + 4; 14236 return; 14237 } 14238 14239 if (pc & 3) { 14240 /* 14241 * PC alignment fault. This has priority over the instruction abort 14242 * that we would receive from a translation fault via arm_ldl_code. 14243 * This should only be possible after an indirect branch, at the 14244 * start of the TB. 14245 */ 14246 assert(s->base.num_insns == 1); 14247 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14248 s->base.is_jmp = DISAS_NORETURN; 14249 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14250 return; 14251 } 14252 14253 s->pc_curr = pc; 14254 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14255 s->insn = insn; 14256 s->base.pc_next = pc + 4; 14257 14258 s->fp_access_checked = false; 14259 s->sve_access_checked = false; 14260 14261 if (s->pstate_il) { 14262 /* 14263 * Illegal execution state. This has priority over BTI 14264 * exceptions, but comes after instruction abort exceptions. 14265 */ 14266 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14267 return; 14268 } 14269 14270 if (dc_isar_feature(aa64_bti, s)) { 14271 if (s->base.num_insns == 1) { 14272 /* 14273 * At the first insn of the TB, compute s->guarded_page. 14274 * We delayed computing this until successfully reading 14275 * the first insn of the TB, above. This (mostly) ensures 14276 * that the softmmu tlb entry has been populated, and the 14277 * page table GP bit is available. 14278 * 14279 * Note that we need to compute this even if btype == 0, 14280 * because this value is used for BR instructions later 14281 * where ENV is not available. 14282 */ 14283 s->guarded_page = is_guarded_page(env, s); 14284 14285 /* First insn can have btype set to non-zero. */ 14286 tcg_debug_assert(s->btype >= 0); 14287 14288 /* 14289 * Note that the Branch Target Exception has fairly high 14290 * priority -- below debugging exceptions but above most 14291 * everything else. This allows us to handle this now 14292 * instead of waiting until the insn is otherwise decoded. 14293 */ 14294 if (s->btype != 0 14295 && s->guarded_page 14296 && !btype_destination_ok(insn, s->bt, s->btype)) { 14297 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14298 return; 14299 } 14300 } else { 14301 /* Not the first insn: btype must be 0. */ 14302 tcg_debug_assert(s->btype == 0); 14303 } 14304 } 14305 14306 s->is_nonstreaming = false; 14307 if (s->sme_trap_nonstreaming) { 14308 disas_sme_fa64(s, insn); 14309 } 14310 14311 if (!disas_a64(s, insn) && 14312 !disas_sme(s, insn) && 14313 !disas_sve(s, insn)) { 14314 disas_a64_legacy(s, insn); 14315 } 14316 14317 /* 14318 * After execution of most insns, btype is reset to 0. 14319 * Note that we set btype == -1 when the insn sets btype. 14320 */ 14321 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14322 reset_btype(s); 14323 } 14324 } 14325 14326 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14327 { 14328 DisasContext *dc = container_of(dcbase, DisasContext, base); 14329 14330 if (unlikely(dc->ss_active)) { 14331 /* Note that this means single stepping WFI doesn't halt the CPU. 14332 * For conditional branch insns this is harmless unreachable code as 14333 * gen_goto_tb() has already handled emitting the debug exception 14334 * (and thus a tb-jump is not possible when singlestepping). 14335 */ 14336 switch (dc->base.is_jmp) { 14337 default: 14338 gen_a64_update_pc(dc, 4); 14339 /* fall through */ 14340 case DISAS_EXIT: 14341 case DISAS_JUMP: 14342 gen_step_complete_exception(dc); 14343 break; 14344 case DISAS_NORETURN: 14345 break; 14346 } 14347 } else { 14348 switch (dc->base.is_jmp) { 14349 case DISAS_NEXT: 14350 case DISAS_TOO_MANY: 14351 gen_goto_tb(dc, 1, 4); 14352 break; 14353 default: 14354 case DISAS_UPDATE_EXIT: 14355 gen_a64_update_pc(dc, 4); 14356 /* fall through */ 14357 case DISAS_EXIT: 14358 tcg_gen_exit_tb(NULL, 0); 14359 break; 14360 case DISAS_UPDATE_NOCHAIN: 14361 gen_a64_update_pc(dc, 4); 14362 /* fall through */ 14363 case DISAS_JUMP: 14364 tcg_gen_lookup_and_goto_ptr(); 14365 break; 14366 case DISAS_NORETURN: 14367 case DISAS_SWI: 14368 break; 14369 case DISAS_WFE: 14370 gen_a64_update_pc(dc, 4); 14371 gen_helper_wfe(cpu_env); 14372 break; 14373 case DISAS_YIELD: 14374 gen_a64_update_pc(dc, 4); 14375 gen_helper_yield(cpu_env); 14376 break; 14377 case DISAS_WFI: 14378 /* 14379 * This is a special case because we don't want to just halt 14380 * the CPU if trying to debug across a WFI. 14381 */ 14382 gen_a64_update_pc(dc, 4); 14383 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14384 /* 14385 * The helper doesn't necessarily throw an exception, but we 14386 * must go back to the main loop to check for interrupts anyway. 14387 */ 14388 tcg_gen_exit_tb(NULL, 0); 14389 break; 14390 } 14391 } 14392 } 14393 14394 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14395 CPUState *cpu, FILE *logfile) 14396 { 14397 DisasContext *dc = container_of(dcbase, DisasContext, base); 14398 14399 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14400 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14401 } 14402 14403 const TranslatorOps aarch64_translator_ops = { 14404 .init_disas_context = aarch64_tr_init_disas_context, 14405 .tb_start = aarch64_tr_tb_start, 14406 .insn_start = aarch64_tr_insn_start, 14407 .translate_insn = aarch64_tr_translate_insn, 14408 .tb_stop = aarch64_tr_tb_stop, 14409 .disas_log = aarch64_tr_disas_log, 14410 }; 14411