1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 4-operand operation using an out-of-line helper. */ 728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, int ra, int data, gen_helper_gvec_4 *fn) 730 { 731 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 732 vec_full_reg_offset(s, rn), 733 vec_full_reg_offset(s, rm), 734 vec_full_reg_offset(s, ra), 735 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 736 } 737 738 /* 739 * Expand a 4-operand + fpstatus pointer + simd data value operation using 740 * an out-of-line helper. 741 */ 742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, bool is_fp16, int data, 744 gen_helper_gvec_4_ptr *fn) 745 { 746 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 747 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 748 vec_full_reg_offset(s, rn), 749 vec_full_reg_offset(s, rm), 750 vec_full_reg_offset(s, ra), fpst, 751 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 752 } 753 754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 755 * than the 32 bit equivalent. 756 */ 757 static inline void gen_set_NZ64(TCGv_i64 result) 758 { 759 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 760 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 761 } 762 763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 764 static inline void gen_logic_CC(int sf, TCGv_i64 result) 765 { 766 if (sf) { 767 gen_set_NZ64(result); 768 } else { 769 tcg_gen_extrl_i64_i32(cpu_ZF, result); 770 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 771 } 772 tcg_gen_movi_i32(cpu_CF, 0); 773 tcg_gen_movi_i32(cpu_VF, 0); 774 } 775 776 /* dest = T0 + T1; compute C, N, V and Z flags */ 777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 778 { 779 TCGv_i64 result, flag, tmp; 780 result = tcg_temp_new_i64(); 781 flag = tcg_temp_new_i64(); 782 tmp = tcg_temp_new_i64(); 783 784 tcg_gen_movi_i64(tmp, 0); 785 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 786 787 tcg_gen_extrl_i64_i32(cpu_CF, flag); 788 789 gen_set_NZ64(result); 790 791 tcg_gen_xor_i64(flag, result, t0); 792 tcg_gen_xor_i64(tmp, t0, t1); 793 tcg_gen_andc_i64(flag, flag, tmp); 794 tcg_gen_extrh_i64_i32(cpu_VF, flag); 795 796 tcg_gen_mov_i64(dest, result); 797 } 798 799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 TCGv_i32 t0_32 = tcg_temp_new_i32(); 802 TCGv_i32 t1_32 = tcg_temp_new_i32(); 803 TCGv_i32 tmp = tcg_temp_new_i32(); 804 805 tcg_gen_movi_i32(tmp, 0); 806 tcg_gen_extrl_i64_i32(t0_32, t0); 807 tcg_gen_extrl_i64_i32(t1_32, t1); 808 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 809 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 810 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 811 tcg_gen_xor_i32(tmp, t0_32, t1_32); 812 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 813 tcg_gen_extu_i32_i64(dest, cpu_NF); 814 } 815 816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 817 { 818 if (sf) { 819 gen_add64_CC(dest, t0, t1); 820 } else { 821 gen_add32_CC(dest, t0, t1); 822 } 823 } 824 825 /* dest = T0 - T1; compute C, N, V and Z flags */ 826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 827 { 828 /* 64 bit arithmetic */ 829 TCGv_i64 result, flag, tmp; 830 831 result = tcg_temp_new_i64(); 832 flag = tcg_temp_new_i64(); 833 tcg_gen_sub_i64(result, t0, t1); 834 835 gen_set_NZ64(result); 836 837 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 838 tcg_gen_extrl_i64_i32(cpu_CF, flag); 839 840 tcg_gen_xor_i64(flag, result, t0); 841 tmp = tcg_temp_new_i64(); 842 tcg_gen_xor_i64(tmp, t0, t1); 843 tcg_gen_and_i64(flag, flag, tmp); 844 tcg_gen_extrh_i64_i32(cpu_VF, flag); 845 tcg_gen_mov_i64(dest, result); 846 } 847 848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 849 { 850 /* 32 bit arithmetic */ 851 TCGv_i32 t0_32 = tcg_temp_new_i32(); 852 TCGv_i32 t1_32 = tcg_temp_new_i32(); 853 TCGv_i32 tmp; 854 855 tcg_gen_extrl_i64_i32(t0_32, t0); 856 tcg_gen_extrl_i64_i32(t1_32, t1); 857 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 858 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 859 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 860 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 861 tmp = tcg_temp_new_i32(); 862 tcg_gen_xor_i32(tmp, t0_32, t1_32); 863 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 864 tcg_gen_extu_i32_i64(dest, cpu_NF); 865 } 866 867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 868 { 869 if (sf) { 870 gen_sub64_CC(dest, t0, t1); 871 } else { 872 gen_sub32_CC(dest, t0, t1); 873 } 874 } 875 876 /* dest = T0 + T1 + CF; do not compute flags. */ 877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 878 { 879 TCGv_i64 flag = tcg_temp_new_i64(); 880 tcg_gen_extu_i32_i64(flag, cpu_CF); 881 tcg_gen_add_i64(dest, t0, t1); 882 tcg_gen_add_i64(dest, dest, flag); 883 884 if (!sf) { 885 tcg_gen_ext32u_i64(dest, dest); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 if (sf) { 893 TCGv_i64 result = tcg_temp_new_i64(); 894 TCGv_i64 cf_64 = tcg_temp_new_i64(); 895 TCGv_i64 vf_64 = tcg_temp_new_i64(); 896 TCGv_i64 tmp = tcg_temp_new_i64(); 897 TCGv_i64 zero = tcg_constant_i64(0); 898 899 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 900 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 901 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 902 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 903 gen_set_NZ64(result); 904 905 tcg_gen_xor_i64(vf_64, result, t0); 906 tcg_gen_xor_i64(tmp, t0, t1); 907 tcg_gen_andc_i64(vf_64, vf_64, tmp); 908 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 909 910 tcg_gen_mov_i64(dest, result); 911 } else { 912 TCGv_i32 t0_32 = tcg_temp_new_i32(); 913 TCGv_i32 t1_32 = tcg_temp_new_i32(); 914 TCGv_i32 tmp = tcg_temp_new_i32(); 915 TCGv_i32 zero = tcg_constant_i32(0); 916 917 tcg_gen_extrl_i64_i32(t0_32, t0); 918 tcg_gen_extrl_i64_i32(t1_32, t1); 919 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 920 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 921 922 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 923 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 924 tcg_gen_xor_i32(tmp, t0_32, t1_32); 925 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 926 tcg_gen_extu_i32_i64(dest, cpu_NF); 927 } 928 } 929 930 /* 931 * Load/Store generators 932 */ 933 934 /* 935 * Store from GPR register to memory. 936 */ 937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 938 TCGv_i64 tcg_addr, MemOp memop, int memidx, 939 bool iss_valid, 940 unsigned int iss_srt, 941 bool iss_sf, bool iss_ar) 942 { 943 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 944 945 if (iss_valid) { 946 uint32_t syn; 947 948 syn = syn_data_abort_with_iss(0, 949 (memop & MO_SIZE), 950 false, 951 iss_srt, 952 iss_sf, 953 iss_ar, 954 0, 0, 0, 0, 0, false); 955 disas_set_insn_syndrome(s, syn); 956 } 957 } 958 959 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 960 TCGv_i64 tcg_addr, MemOp memop, 961 bool iss_valid, 962 unsigned int iss_srt, 963 bool iss_sf, bool iss_ar) 964 { 965 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 966 iss_valid, iss_srt, iss_sf, iss_ar); 967 } 968 969 /* 970 * Load from memory to GPR register 971 */ 972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 973 MemOp memop, bool extend, int memidx, 974 bool iss_valid, unsigned int iss_srt, 975 bool iss_sf, bool iss_ar) 976 { 977 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 978 979 if (extend && (memop & MO_SIGN)) { 980 g_assert((memop & MO_SIZE) <= MO_32); 981 tcg_gen_ext32u_i64(dest, dest); 982 } 983 984 if (iss_valid) { 985 uint32_t syn; 986 987 syn = syn_data_abort_with_iss(0, 988 (memop & MO_SIZE), 989 (memop & MO_SIGN) != 0, 990 iss_srt, 991 iss_sf, 992 iss_ar, 993 0, 0, 0, 0, 0, false); 994 disas_set_insn_syndrome(s, syn); 995 } 996 } 997 998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 999 MemOp memop, bool extend, 1000 bool iss_valid, unsigned int iss_srt, 1001 bool iss_sf, bool iss_ar) 1002 { 1003 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1004 iss_valid, iss_srt, iss_sf, iss_ar); 1005 } 1006 1007 /* 1008 * Store from FP register to memory 1009 */ 1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1011 { 1012 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1013 TCGv_i64 tmplo = tcg_temp_new_i64(); 1014 1015 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1016 1017 if ((mop & MO_SIZE) < MO_128) { 1018 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1019 } else { 1020 TCGv_i64 tmphi = tcg_temp_new_i64(); 1021 TCGv_i128 t16 = tcg_temp_new_i128(); 1022 1023 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1024 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1025 1026 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1027 } 1028 } 1029 1030 /* 1031 * Load from memory to FP register 1032 */ 1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1034 { 1035 /* This always zero-extends and writes to a full 128 bit wide vector */ 1036 TCGv_i64 tmplo = tcg_temp_new_i64(); 1037 TCGv_i64 tmphi = NULL; 1038 1039 if ((mop & MO_SIZE) < MO_128) { 1040 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1041 } else { 1042 TCGv_i128 t16 = tcg_temp_new_i128(); 1043 1044 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1045 1046 tmphi = tcg_temp_new_i64(); 1047 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1048 } 1049 1050 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1051 1052 if (tmphi) { 1053 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1054 } 1055 clear_vec_high(s, tmphi != NULL, destidx); 1056 } 1057 1058 /* 1059 * Vector load/store helpers. 1060 * 1061 * The principal difference between this and a FP load is that we don't 1062 * zero extend as we are filling a partial chunk of the vector register. 1063 * These functions don't support 128 bit loads/stores, which would be 1064 * normal load/store operations. 1065 * 1066 * The _i32 versions are useful when operating on 32 bit quantities 1067 * (eg for floating point single or using Neon helper functions). 1068 */ 1069 1070 /* Get value of an element within a vector register */ 1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1072 int element, MemOp memop) 1073 { 1074 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1075 switch ((unsigned)memop) { 1076 case MO_8: 1077 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1078 break; 1079 case MO_16: 1080 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1081 break; 1082 case MO_32: 1083 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1084 break; 1085 case MO_8|MO_SIGN: 1086 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1087 break; 1088 case MO_16|MO_SIGN: 1089 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1090 break; 1091 case MO_32|MO_SIGN: 1092 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1093 break; 1094 case MO_64: 1095 case MO_64|MO_SIGN: 1096 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 default: 1099 g_assert_not_reached(); 1100 } 1101 } 1102 1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1104 int element, MemOp memop) 1105 { 1106 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1107 switch (memop) { 1108 case MO_8: 1109 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1110 break; 1111 case MO_16: 1112 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1113 break; 1114 case MO_8|MO_SIGN: 1115 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1116 break; 1117 case MO_16|MO_SIGN: 1118 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1119 break; 1120 case MO_32: 1121 case MO_32|MO_SIGN: 1122 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 default: 1125 g_assert_not_reached(); 1126 } 1127 } 1128 1129 /* Set value of an element within a vector register */ 1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1131 int element, MemOp memop) 1132 { 1133 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1134 switch (memop) { 1135 case MO_8: 1136 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1137 break; 1138 case MO_16: 1139 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1140 break; 1141 case MO_32: 1142 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1143 break; 1144 case MO_64: 1145 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1146 break; 1147 default: 1148 g_assert_not_reached(); 1149 } 1150 } 1151 1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1153 int destidx, int element, MemOp memop) 1154 { 1155 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1156 switch (memop) { 1157 case MO_8: 1158 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1159 break; 1160 case MO_16: 1161 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1162 break; 1163 case MO_32: 1164 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1165 break; 1166 default: 1167 g_assert_not_reached(); 1168 } 1169 } 1170 1171 /* Store from vector register to memory */ 1172 static void do_vec_st(DisasContext *s, int srcidx, int element, 1173 TCGv_i64 tcg_addr, MemOp mop) 1174 { 1175 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1176 1177 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1178 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1179 } 1180 1181 /* Load from memory to vector register */ 1182 static void do_vec_ld(DisasContext *s, int destidx, int element, 1183 TCGv_i64 tcg_addr, MemOp mop) 1184 { 1185 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1186 1187 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1188 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1189 } 1190 1191 /* Check that FP/Neon access is enabled. If it is, return 1192 * true. If not, emit code to generate an appropriate exception, 1193 * and return false; the caller should not emit any code for 1194 * the instruction. Note that this check must happen after all 1195 * unallocated-encoding checks (otherwise the syndrome information 1196 * for the resulting exception will be incorrect). 1197 */ 1198 static bool fp_access_check_only(DisasContext *s) 1199 { 1200 if (s->fp_excp_el) { 1201 assert(!s->fp_access_checked); 1202 s->fp_access_checked = true; 1203 1204 gen_exception_insn_el(s, 0, EXCP_UDEF, 1205 syn_fp_access_trap(1, 0xe, false, 0), 1206 s->fp_excp_el); 1207 return false; 1208 } 1209 s->fp_access_checked = true; 1210 return true; 1211 } 1212 1213 static bool fp_access_check(DisasContext *s) 1214 { 1215 if (!fp_access_check_only(s)) { 1216 return false; 1217 } 1218 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1219 gen_exception_insn(s, 0, EXCP_UDEF, 1220 syn_smetrap(SME_ET_Streaming, false)); 1221 return false; 1222 } 1223 return true; 1224 } 1225 1226 /* 1227 * Check that SVE access is enabled. If it is, return true. 1228 * If not, emit code to generate an appropriate exception and return false. 1229 * This function corresponds to CheckSVEEnabled(). 1230 */ 1231 bool sve_access_check(DisasContext *s) 1232 { 1233 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1234 assert(dc_isar_feature(aa64_sme, s)); 1235 if (!sme_sm_enabled_check(s)) { 1236 goto fail_exit; 1237 } 1238 } else if (s->sve_excp_el) { 1239 gen_exception_insn_el(s, 0, EXCP_UDEF, 1240 syn_sve_access_trap(), s->sve_excp_el); 1241 goto fail_exit; 1242 } 1243 s->sve_access_checked = true; 1244 return fp_access_check(s); 1245 1246 fail_exit: 1247 /* Assert that we only raise one exception per instruction. */ 1248 assert(!s->sve_access_checked); 1249 s->sve_access_checked = true; 1250 return false; 1251 } 1252 1253 /* 1254 * Check that SME access is enabled, raise an exception if not. 1255 * Note that this function corresponds to CheckSMEAccess and is 1256 * only used directly for cpregs. 1257 */ 1258 static bool sme_access_check(DisasContext *s) 1259 { 1260 if (s->sme_excp_el) { 1261 gen_exception_insn_el(s, 0, EXCP_UDEF, 1262 syn_smetrap(SME_ET_AccessTrap, false), 1263 s->sme_excp_el); 1264 return false; 1265 } 1266 return true; 1267 } 1268 1269 /* This function corresponds to CheckSMEEnabled. */ 1270 bool sme_enabled_check(DisasContext *s) 1271 { 1272 /* 1273 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1274 * to be zero when fp_excp_el has priority. This is because we need 1275 * sme_excp_el by itself for cpregs access checks. 1276 */ 1277 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1278 s->fp_access_checked = true; 1279 return sme_access_check(s); 1280 } 1281 return fp_access_check_only(s); 1282 } 1283 1284 /* Common subroutine for CheckSMEAnd*Enabled. */ 1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1286 { 1287 if (!sme_enabled_check(s)) { 1288 return false; 1289 } 1290 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1291 gen_exception_insn(s, 0, EXCP_UDEF, 1292 syn_smetrap(SME_ET_NotStreaming, false)); 1293 return false; 1294 } 1295 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1296 gen_exception_insn(s, 0, EXCP_UDEF, 1297 syn_smetrap(SME_ET_InactiveZA, false)); 1298 return false; 1299 } 1300 return true; 1301 } 1302 1303 /* 1304 * Expanders for AdvSIMD translation functions. 1305 */ 1306 1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1308 gen_helper_gvec_2 *fn) 1309 { 1310 if (!a->q && a->esz == MO_64) { 1311 return false; 1312 } 1313 if (fp_access_check(s)) { 1314 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1315 } 1316 return true; 1317 } 1318 1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1320 gen_helper_gvec_3 *fn) 1321 { 1322 if (!a->q && a->esz == MO_64) { 1323 return false; 1324 } 1325 if (fp_access_check(s)) { 1326 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1327 } 1328 return true; 1329 } 1330 1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1332 { 1333 if (!a->q && a->esz == MO_64) { 1334 return false; 1335 } 1336 if (fp_access_check(s)) { 1337 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1338 } 1339 return true; 1340 } 1341 1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1343 { 1344 if (a->esz == MO_64) { 1345 return false; 1346 } 1347 if (fp_access_check(s)) { 1348 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1349 } 1350 return true; 1351 } 1352 1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1354 { 1355 if (a->esz == MO_8) { 1356 return false; 1357 } 1358 return do_gvec_fn3_no64(s, a, fn); 1359 } 1360 1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1362 { 1363 if (!a->q && a->esz == MO_64) { 1364 return false; 1365 } 1366 if (fp_access_check(s)) { 1367 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1368 } 1369 return true; 1370 } 1371 1372 /* 1373 * This utility function is for doing register extension with an 1374 * optional shift. You will likely want to pass a temporary for the 1375 * destination register. See DecodeRegExtend() in the ARM ARM. 1376 */ 1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1378 int option, unsigned int shift) 1379 { 1380 int extsize = extract32(option, 0, 2); 1381 bool is_signed = extract32(option, 2, 1); 1382 1383 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1384 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1385 } 1386 1387 static inline void gen_check_sp_alignment(DisasContext *s) 1388 { 1389 /* The AArch64 architecture mandates that (if enabled via PSTATE 1390 * or SCTLR bits) there is a check that SP is 16-aligned on every 1391 * SP-relative load or store (with an exception generated if it is not). 1392 * In line with general QEMU practice regarding misaligned accesses, 1393 * we omit these checks for the sake of guest program performance. 1394 * This function is provided as a hook so we can more easily add these 1395 * checks in future (possibly as a "favour catching guest program bugs 1396 * over speed" user selectable option). 1397 */ 1398 } 1399 1400 /* 1401 * This provides a simple table based table lookup decoder. It is 1402 * intended to be used when the relevant bits for decode are too 1403 * awkwardly placed and switch/if based logic would be confusing and 1404 * deeply nested. Since it's a linear search through the table, tables 1405 * should be kept small. 1406 * 1407 * It returns the first handler where insn & mask == pattern, or 1408 * NULL if there is no match. 1409 * The table is terminated by an empty mask (i.e. 0) 1410 */ 1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1412 uint32_t insn) 1413 { 1414 const AArch64DecodeTable *tptr = table; 1415 1416 while (tptr->mask) { 1417 if ((insn & tptr->mask) == tptr->pattern) { 1418 return tptr->disas_fn; 1419 } 1420 tptr++; 1421 } 1422 return NULL; 1423 } 1424 1425 /* 1426 * The instruction disassembly implemented here matches 1427 * the instruction encoding classifications in chapter C4 1428 * of the ARM Architecture Reference Manual (DDI0487B_a); 1429 * classification names and decode diagrams here should generally 1430 * match up with those in the manual. 1431 */ 1432 1433 static bool trans_B(DisasContext *s, arg_i *a) 1434 { 1435 reset_btype(s); 1436 gen_goto_tb(s, 0, a->imm); 1437 return true; 1438 } 1439 1440 static bool trans_BL(DisasContext *s, arg_i *a) 1441 { 1442 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1443 reset_btype(s); 1444 gen_goto_tb(s, 0, a->imm); 1445 return true; 1446 } 1447 1448 1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1450 { 1451 DisasLabel match; 1452 TCGv_i64 tcg_cmp; 1453 1454 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1455 reset_btype(s); 1456 1457 match = gen_disas_label(s); 1458 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1459 tcg_cmp, 0, match.label); 1460 gen_goto_tb(s, 0, 4); 1461 set_disas_label(s, match); 1462 gen_goto_tb(s, 1, a->imm); 1463 return true; 1464 } 1465 1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1467 { 1468 DisasLabel match; 1469 TCGv_i64 tcg_cmp; 1470 1471 tcg_cmp = tcg_temp_new_i64(); 1472 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1473 1474 reset_btype(s); 1475 1476 match = gen_disas_label(s); 1477 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1478 tcg_cmp, 0, match.label); 1479 gen_goto_tb(s, 0, 4); 1480 set_disas_label(s, match); 1481 gen_goto_tb(s, 1, a->imm); 1482 return true; 1483 } 1484 1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1486 { 1487 /* BC.cond is only present with FEAT_HBC */ 1488 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1489 return false; 1490 } 1491 reset_btype(s); 1492 if (a->cond < 0x0e) { 1493 /* genuinely conditional branches */ 1494 DisasLabel match = gen_disas_label(s); 1495 arm_gen_test_cc(a->cond, match.label); 1496 gen_goto_tb(s, 0, 4); 1497 set_disas_label(s, match); 1498 gen_goto_tb(s, 1, a->imm); 1499 } else { 1500 /* 0xe and 0xf are both "always" conditions */ 1501 gen_goto_tb(s, 0, a->imm); 1502 } 1503 return true; 1504 } 1505 1506 static void set_btype_for_br(DisasContext *s, int rn) 1507 { 1508 if (dc_isar_feature(aa64_bti, s)) { 1509 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1510 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1511 } 1512 } 1513 1514 static void set_btype_for_blr(DisasContext *s) 1515 { 1516 if (dc_isar_feature(aa64_bti, s)) { 1517 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1518 set_btype(s, 2); 1519 } 1520 } 1521 1522 static bool trans_BR(DisasContext *s, arg_r *a) 1523 { 1524 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1525 set_btype_for_br(s, a->rn); 1526 s->base.is_jmp = DISAS_JUMP; 1527 return true; 1528 } 1529 1530 static bool trans_BLR(DisasContext *s, arg_r *a) 1531 { 1532 TCGv_i64 dst = cpu_reg(s, a->rn); 1533 TCGv_i64 lr = cpu_reg(s, 30); 1534 if (dst == lr) { 1535 TCGv_i64 tmp = tcg_temp_new_i64(); 1536 tcg_gen_mov_i64(tmp, dst); 1537 dst = tmp; 1538 } 1539 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1540 gen_a64_set_pc(s, dst); 1541 set_btype_for_blr(s); 1542 s->base.is_jmp = DISAS_JUMP; 1543 return true; 1544 } 1545 1546 static bool trans_RET(DisasContext *s, arg_r *a) 1547 { 1548 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1549 s->base.is_jmp = DISAS_JUMP; 1550 return true; 1551 } 1552 1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1554 TCGv_i64 modifier, bool use_key_a) 1555 { 1556 TCGv_i64 truedst; 1557 /* 1558 * Return the branch target for a BRAA/RETA/etc, which is either 1559 * just the destination dst, or that value with the pauth check 1560 * done and the code removed from the high bits. 1561 */ 1562 if (!s->pauth_active) { 1563 return dst; 1564 } 1565 1566 truedst = tcg_temp_new_i64(); 1567 if (use_key_a) { 1568 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1569 } else { 1570 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1571 } 1572 return truedst; 1573 } 1574 1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1576 { 1577 TCGv_i64 dst; 1578 1579 if (!dc_isar_feature(aa64_pauth, s)) { 1580 return false; 1581 } 1582 1583 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1584 gen_a64_set_pc(s, dst); 1585 set_btype_for_br(s, a->rn); 1586 s->base.is_jmp = DISAS_JUMP; 1587 return true; 1588 } 1589 1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1591 { 1592 TCGv_i64 dst, lr; 1593 1594 if (!dc_isar_feature(aa64_pauth, s)) { 1595 return false; 1596 } 1597 1598 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1599 lr = cpu_reg(s, 30); 1600 if (dst == lr) { 1601 TCGv_i64 tmp = tcg_temp_new_i64(); 1602 tcg_gen_mov_i64(tmp, dst); 1603 dst = tmp; 1604 } 1605 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1606 gen_a64_set_pc(s, dst); 1607 set_btype_for_blr(s); 1608 s->base.is_jmp = DISAS_JUMP; 1609 return true; 1610 } 1611 1612 static bool trans_RETA(DisasContext *s, arg_reta *a) 1613 { 1614 TCGv_i64 dst; 1615 1616 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1617 gen_a64_set_pc(s, dst); 1618 s->base.is_jmp = DISAS_JUMP; 1619 return true; 1620 } 1621 1622 static bool trans_BRA(DisasContext *s, arg_bra *a) 1623 { 1624 TCGv_i64 dst; 1625 1626 if (!dc_isar_feature(aa64_pauth, s)) { 1627 return false; 1628 } 1629 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1630 gen_a64_set_pc(s, dst); 1631 set_btype_for_br(s, a->rn); 1632 s->base.is_jmp = DISAS_JUMP; 1633 return true; 1634 } 1635 1636 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1637 { 1638 TCGv_i64 dst, lr; 1639 1640 if (!dc_isar_feature(aa64_pauth, s)) { 1641 return false; 1642 } 1643 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1644 lr = cpu_reg(s, 30); 1645 if (dst == lr) { 1646 TCGv_i64 tmp = tcg_temp_new_i64(); 1647 tcg_gen_mov_i64(tmp, dst); 1648 dst = tmp; 1649 } 1650 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1651 gen_a64_set_pc(s, dst); 1652 set_btype_for_blr(s); 1653 s->base.is_jmp = DISAS_JUMP; 1654 return true; 1655 } 1656 1657 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1658 { 1659 TCGv_i64 dst; 1660 1661 if (s->current_el == 0) { 1662 return false; 1663 } 1664 if (s->trap_eret) { 1665 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1666 return true; 1667 } 1668 dst = tcg_temp_new_i64(); 1669 tcg_gen_ld_i64(dst, tcg_env, 1670 offsetof(CPUARMState, elr_el[s->current_el])); 1671 1672 translator_io_start(&s->base); 1673 1674 gen_helper_exception_return(tcg_env, dst); 1675 /* Must exit loop to check un-masked IRQs */ 1676 s->base.is_jmp = DISAS_EXIT; 1677 return true; 1678 } 1679 1680 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1681 { 1682 TCGv_i64 dst; 1683 1684 if (!dc_isar_feature(aa64_pauth, s)) { 1685 return false; 1686 } 1687 if (s->current_el == 0) { 1688 return false; 1689 } 1690 /* The FGT trap takes precedence over an auth trap. */ 1691 if (s->trap_eret) { 1692 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1693 return true; 1694 } 1695 dst = tcg_temp_new_i64(); 1696 tcg_gen_ld_i64(dst, tcg_env, 1697 offsetof(CPUARMState, elr_el[s->current_el])); 1698 1699 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1700 1701 translator_io_start(&s->base); 1702 1703 gen_helper_exception_return(tcg_env, dst); 1704 /* Must exit loop to check un-masked IRQs */ 1705 s->base.is_jmp = DISAS_EXIT; 1706 return true; 1707 } 1708 1709 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1710 { 1711 return true; 1712 } 1713 1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1715 { 1716 /* 1717 * When running in MTTCG we don't generate jumps to the yield and 1718 * WFE helpers as it won't affect the scheduling of other vCPUs. 1719 * If we wanted to more completely model WFE/SEV so we don't busy 1720 * spin unnecessarily we would need to do something more involved. 1721 */ 1722 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1723 s->base.is_jmp = DISAS_YIELD; 1724 } 1725 return true; 1726 } 1727 1728 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1729 { 1730 s->base.is_jmp = DISAS_WFI; 1731 return true; 1732 } 1733 1734 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1735 { 1736 /* 1737 * When running in MTTCG we don't generate jumps to the yield and 1738 * WFE helpers as it won't affect the scheduling of other vCPUs. 1739 * If we wanted to more completely model WFE/SEV so we don't busy 1740 * spin unnecessarily we would need to do something more involved. 1741 */ 1742 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1743 s->base.is_jmp = DISAS_WFE; 1744 } 1745 return true; 1746 } 1747 1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a) 1749 { 1750 if (!dc_isar_feature(aa64_wfxt, s)) { 1751 return false; 1752 } 1753 1754 /* 1755 * Because we need to pass the register value to the helper, 1756 * it's easier to emit the code now, unlike trans_WFI which 1757 * defers it to aarch64_tr_tb_stop(). That means we need to 1758 * check ss_active so that single-stepping a WFIT doesn't halt. 1759 */ 1760 if (s->ss_active) { 1761 /* Act like a NOP under architectural singlestep */ 1762 return true; 1763 } 1764 1765 gen_a64_update_pc(s, 4); 1766 gen_helper_wfit(tcg_env, cpu_reg(s, a->rd)); 1767 /* Go back to the main loop to check for interrupts */ 1768 s->base.is_jmp = DISAS_EXIT; 1769 return true; 1770 } 1771 1772 static bool trans_WFET(DisasContext *s, arg_WFET *a) 1773 { 1774 if (!dc_isar_feature(aa64_wfxt, s)) { 1775 return false; 1776 } 1777 1778 /* 1779 * We rely here on our WFE implementation being a NOP, so we 1780 * don't need to do anything different to handle the WFET timeout 1781 * from what trans_WFE does. 1782 */ 1783 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1784 s->base.is_jmp = DISAS_WFE; 1785 } 1786 return true; 1787 } 1788 1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1790 { 1791 if (s->pauth_active) { 1792 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1793 } 1794 return true; 1795 } 1796 1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1798 { 1799 if (s->pauth_active) { 1800 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1801 } 1802 return true; 1803 } 1804 1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1806 { 1807 if (s->pauth_active) { 1808 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1809 } 1810 return true; 1811 } 1812 1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1814 { 1815 if (s->pauth_active) { 1816 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1817 } 1818 return true; 1819 } 1820 1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1822 { 1823 if (s->pauth_active) { 1824 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1825 } 1826 return true; 1827 } 1828 1829 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1830 { 1831 /* Without RAS, we must implement this as NOP. */ 1832 if (dc_isar_feature(aa64_ras, s)) { 1833 /* 1834 * QEMU does not have a source of physical SErrors, 1835 * so we are only concerned with virtual SErrors. 1836 * The pseudocode in the ARM for this case is 1837 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1838 * AArch64.vESBOperation(); 1839 * Most of the condition can be evaluated at translation time. 1840 * Test for EL2 present, and defer test for SEL2 to runtime. 1841 */ 1842 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1843 gen_helper_vesb(tcg_env); 1844 } 1845 } 1846 return true; 1847 } 1848 1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1850 { 1851 if (s->pauth_active) { 1852 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1853 } 1854 return true; 1855 } 1856 1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1858 { 1859 if (s->pauth_active) { 1860 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1861 } 1862 return true; 1863 } 1864 1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1866 { 1867 if (s->pauth_active) { 1868 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1869 } 1870 return true; 1871 } 1872 1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1874 { 1875 if (s->pauth_active) { 1876 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1877 } 1878 return true; 1879 } 1880 1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1882 { 1883 if (s->pauth_active) { 1884 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1885 } 1886 return true; 1887 } 1888 1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1890 { 1891 if (s->pauth_active) { 1892 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1893 } 1894 return true; 1895 } 1896 1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1898 { 1899 if (s->pauth_active) { 1900 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1901 } 1902 return true; 1903 } 1904 1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1906 { 1907 if (s->pauth_active) { 1908 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1909 } 1910 return true; 1911 } 1912 1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1914 { 1915 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1916 return true; 1917 } 1918 1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1920 { 1921 /* We handle DSB and DMB the same way */ 1922 TCGBar bar; 1923 1924 switch (a->types) { 1925 case 1: /* MBReqTypes_Reads */ 1926 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1927 break; 1928 case 2: /* MBReqTypes_Writes */ 1929 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1930 break; 1931 default: /* MBReqTypes_All */ 1932 bar = TCG_BAR_SC | TCG_MO_ALL; 1933 break; 1934 } 1935 tcg_gen_mb(bar); 1936 return true; 1937 } 1938 1939 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1940 { 1941 /* 1942 * We need to break the TB after this insn to execute 1943 * self-modifying code correctly and also to take 1944 * any pending interrupts immediately. 1945 */ 1946 reset_btype(s); 1947 gen_goto_tb(s, 0, 4); 1948 return true; 1949 } 1950 1951 static bool trans_SB(DisasContext *s, arg_SB *a) 1952 { 1953 if (!dc_isar_feature(aa64_sb, s)) { 1954 return false; 1955 } 1956 /* 1957 * TODO: There is no speculation barrier opcode for TCG; 1958 * MB and end the TB instead. 1959 */ 1960 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1961 gen_goto_tb(s, 0, 4); 1962 return true; 1963 } 1964 1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1966 { 1967 if (!dc_isar_feature(aa64_condm_4, s)) { 1968 return false; 1969 } 1970 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1971 return true; 1972 } 1973 1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1975 { 1976 TCGv_i32 z; 1977 1978 if (!dc_isar_feature(aa64_condm_5, s)) { 1979 return false; 1980 } 1981 1982 z = tcg_temp_new_i32(); 1983 1984 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1985 1986 /* 1987 * (!C & !Z) << 31 1988 * (!(C | Z)) << 31 1989 * ~((C | Z) << 31) 1990 * ~-(C | Z) 1991 * (C | Z) - 1 1992 */ 1993 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1994 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1995 1996 /* !(Z & C) */ 1997 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1998 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1999 2000 /* (!C & Z) << 31 -> -(Z & ~C) */ 2001 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 2002 tcg_gen_neg_i32(cpu_VF, cpu_VF); 2003 2004 /* C | Z */ 2005 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 2006 2007 return true; 2008 } 2009 2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 2011 { 2012 if (!dc_isar_feature(aa64_condm_5, s)) { 2013 return false; 2014 } 2015 2016 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 2017 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 2018 2019 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 2020 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 2021 2022 tcg_gen_movi_i32(cpu_NF, 0); 2023 tcg_gen_movi_i32(cpu_VF, 0); 2024 2025 return true; 2026 } 2027 2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 2029 { 2030 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 2031 return false; 2032 } 2033 if (a->imm & 1) { 2034 set_pstate_bits(PSTATE_UAO); 2035 } else { 2036 clear_pstate_bits(PSTATE_UAO); 2037 } 2038 gen_rebuild_hflags(s); 2039 s->base.is_jmp = DISAS_TOO_MANY; 2040 return true; 2041 } 2042 2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 2044 { 2045 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 2046 return false; 2047 } 2048 if (a->imm & 1) { 2049 set_pstate_bits(PSTATE_PAN); 2050 } else { 2051 clear_pstate_bits(PSTATE_PAN); 2052 } 2053 gen_rebuild_hflags(s); 2054 s->base.is_jmp = DISAS_TOO_MANY; 2055 return true; 2056 } 2057 2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2059 { 2060 if (s->current_el == 0) { 2061 return false; 2062 } 2063 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2064 s->base.is_jmp = DISAS_TOO_MANY; 2065 return true; 2066 } 2067 2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2069 { 2070 if (!dc_isar_feature(aa64_ssbs, s)) { 2071 return false; 2072 } 2073 if (a->imm & 1) { 2074 set_pstate_bits(PSTATE_SSBS); 2075 } else { 2076 clear_pstate_bits(PSTATE_SSBS); 2077 } 2078 /* Don't need to rebuild hflags since SSBS is a nop */ 2079 s->base.is_jmp = DISAS_TOO_MANY; 2080 return true; 2081 } 2082 2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2084 { 2085 if (!dc_isar_feature(aa64_dit, s)) { 2086 return false; 2087 } 2088 if (a->imm & 1) { 2089 set_pstate_bits(PSTATE_DIT); 2090 } else { 2091 clear_pstate_bits(PSTATE_DIT); 2092 } 2093 /* There's no need to rebuild hflags because DIT is a nop */ 2094 s->base.is_jmp = DISAS_TOO_MANY; 2095 return true; 2096 } 2097 2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2099 { 2100 if (dc_isar_feature(aa64_mte, s)) { 2101 /* Full MTE is enabled -- set the TCO bit as directed. */ 2102 if (a->imm & 1) { 2103 set_pstate_bits(PSTATE_TCO); 2104 } else { 2105 clear_pstate_bits(PSTATE_TCO); 2106 } 2107 gen_rebuild_hflags(s); 2108 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2109 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2110 return true; 2111 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2112 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2113 return true; 2114 } else { 2115 /* Insn not present */ 2116 return false; 2117 } 2118 } 2119 2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2121 { 2122 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2123 s->base.is_jmp = DISAS_TOO_MANY; 2124 return true; 2125 } 2126 2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2128 { 2129 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2130 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2131 s->base.is_jmp = DISAS_UPDATE_EXIT; 2132 return true; 2133 } 2134 2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2136 { 2137 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2138 return false; 2139 } 2140 2141 if (a->imm == 0) { 2142 clear_pstate_bits(PSTATE_ALLINT); 2143 } else if (s->current_el > 1) { 2144 set_pstate_bits(PSTATE_ALLINT); 2145 } else { 2146 gen_helper_msr_set_allint_el1(tcg_env); 2147 } 2148 2149 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2150 s->base.is_jmp = DISAS_UPDATE_EXIT; 2151 return true; 2152 } 2153 2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2155 { 2156 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2157 return false; 2158 } 2159 if (sme_access_check(s)) { 2160 int old = s->pstate_sm | (s->pstate_za << 1); 2161 int new = a->imm * 3; 2162 2163 if ((old ^ new) & a->mask) { 2164 /* At least one bit changes. */ 2165 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2166 tcg_constant_i32(a->mask)); 2167 s->base.is_jmp = DISAS_TOO_MANY; 2168 } 2169 } 2170 return true; 2171 } 2172 2173 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2174 { 2175 TCGv_i32 tmp = tcg_temp_new_i32(); 2176 TCGv_i32 nzcv = tcg_temp_new_i32(); 2177 2178 /* build bit 31, N */ 2179 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2180 /* build bit 30, Z */ 2181 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2182 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2183 /* build bit 29, C */ 2184 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2185 /* build bit 28, V */ 2186 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2187 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2188 /* generate result */ 2189 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2190 } 2191 2192 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2193 { 2194 TCGv_i32 nzcv = tcg_temp_new_i32(); 2195 2196 /* take NZCV from R[t] */ 2197 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2198 2199 /* bit 31, N */ 2200 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2201 /* bit 30, Z */ 2202 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2203 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2204 /* bit 29, C */ 2205 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2206 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2207 /* bit 28, V */ 2208 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2209 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2210 } 2211 2212 static void gen_sysreg_undef(DisasContext *s, bool isread, 2213 uint8_t op0, uint8_t op1, uint8_t op2, 2214 uint8_t crn, uint8_t crm, uint8_t rt) 2215 { 2216 /* 2217 * Generate code to emit an UNDEF with correct syndrome 2218 * information for a failed system register access. 2219 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2220 * but if FEAT_IDST is implemented then read accesses to registers 2221 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2222 * syndrome. 2223 */ 2224 uint32_t syndrome; 2225 2226 if (isread && dc_isar_feature(aa64_ids, s) && 2227 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2228 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2229 } else { 2230 syndrome = syn_uncategorized(); 2231 } 2232 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2233 } 2234 2235 /* MRS - move from system register 2236 * MSR (register) - move to system register 2237 * SYS 2238 * SYSL 2239 * These are all essentially the same insn in 'read' and 'write' 2240 * versions, with varying op0 fields. 2241 */ 2242 static void handle_sys(DisasContext *s, bool isread, 2243 unsigned int op0, unsigned int op1, unsigned int op2, 2244 unsigned int crn, unsigned int crm, unsigned int rt) 2245 { 2246 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2247 crn, crm, op0, op1, op2); 2248 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2249 bool need_exit_tb = false; 2250 bool nv_trap_to_el2 = false; 2251 bool nv_redirect_reg = false; 2252 bool skip_fp_access_checks = false; 2253 bool nv2_mem_redirect = false; 2254 TCGv_ptr tcg_ri = NULL; 2255 TCGv_i64 tcg_rt; 2256 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2257 2258 if (crn == 11 || crn == 15) { 2259 /* 2260 * Check for TIDCP trap, which must take precedence over 2261 * the UNDEF for "no such register" etc. 2262 */ 2263 switch (s->current_el) { 2264 case 0: 2265 if (dc_isar_feature(aa64_tidcp1, s)) { 2266 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2267 } 2268 break; 2269 case 1: 2270 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2271 break; 2272 } 2273 } 2274 2275 if (!ri) { 2276 /* Unknown register; this might be a guest error or a QEMU 2277 * unimplemented feature. 2278 */ 2279 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2280 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2281 isread ? "read" : "write", op0, op1, crn, crm, op2); 2282 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2283 return; 2284 } 2285 2286 if (s->nv2 && ri->nv2_redirect_offset) { 2287 /* 2288 * Some registers always redirect to memory; some only do so if 2289 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2290 * pairs which share an offset; see the table in R_CSRPQ). 2291 */ 2292 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2293 nv2_mem_redirect = s->nv1; 2294 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2295 nv2_mem_redirect = !s->nv1; 2296 } else { 2297 nv2_mem_redirect = true; 2298 } 2299 } 2300 2301 /* Check access permissions */ 2302 if (!cp_access_ok(s->current_el, ri, isread)) { 2303 /* 2304 * FEAT_NV/NV2 handling does not do the usual FP access checks 2305 * for registers only accessible at EL2 (though it *does* do them 2306 * for registers accessible at EL1). 2307 */ 2308 skip_fp_access_checks = true; 2309 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2310 /* 2311 * This is one of the few EL2 registers which should redirect 2312 * to the equivalent EL1 register. We do that after running 2313 * the EL2 register's accessfn. 2314 */ 2315 nv_redirect_reg = true; 2316 assert(!nv2_mem_redirect); 2317 } else if (nv2_mem_redirect) { 2318 /* 2319 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2320 * UNDEF to EL1. 2321 */ 2322 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2323 /* 2324 * This register / instruction exists and is an EL2 register, so 2325 * we must trap to EL2 if accessed in nested virtualization EL1 2326 * instead of UNDEFing. We'll do that after the usual access checks. 2327 * (This makes a difference only for a couple of registers like 2328 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2329 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2330 * an accessfn which does nothing when called from EL1, because 2331 * the trap-to-EL3 controls which would apply to that register 2332 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2333 */ 2334 nv_trap_to_el2 = true; 2335 } else { 2336 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2337 return; 2338 } 2339 } 2340 2341 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2342 /* Emit code to perform further access permissions checks at 2343 * runtime; this may result in an exception. 2344 */ 2345 gen_a64_update_pc(s, 0); 2346 tcg_ri = tcg_temp_new_ptr(); 2347 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2348 tcg_constant_i32(key), 2349 tcg_constant_i32(syndrome), 2350 tcg_constant_i32(isread)); 2351 } else if (ri->type & ARM_CP_RAISES_EXC) { 2352 /* 2353 * The readfn or writefn might raise an exception; 2354 * synchronize the CPU state in case it does. 2355 */ 2356 gen_a64_update_pc(s, 0); 2357 } 2358 2359 if (!skip_fp_access_checks) { 2360 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2361 return; 2362 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2363 return; 2364 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2365 return; 2366 } 2367 } 2368 2369 if (nv_trap_to_el2) { 2370 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2371 return; 2372 } 2373 2374 if (nv_redirect_reg) { 2375 /* 2376 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2377 * Conveniently in all cases the encoding of the EL1 register is 2378 * identical to the EL2 register except that opc1 is 0. 2379 * Get the reginfo for the EL1 register to use for the actual access. 2380 * We don't use the EL1 register's access function, and 2381 * fine-grained-traps on EL1 also do not apply here. 2382 */ 2383 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2384 crn, crm, op0, 0, op2); 2385 ri = get_arm_cp_reginfo(s->cp_regs, key); 2386 assert(ri); 2387 assert(cp_access_ok(s->current_el, ri, isread)); 2388 /* 2389 * We might not have done an update_pc earlier, so check we don't 2390 * need it. We could support this in future if necessary. 2391 */ 2392 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2393 } 2394 2395 if (nv2_mem_redirect) { 2396 /* 2397 * This system register is being redirected into an EL2 memory access. 2398 * This means it is not an IO operation, doesn't change hflags, 2399 * and need not end the TB, because it has no side effects. 2400 * 2401 * The access is 64-bit single copy atomic, guaranteed aligned because 2402 * of the definition of VCNR_EL2. Its endianness depends on 2403 * SCTLR_EL2.EE, not on the data endianness of EL1. 2404 * It is done under either the EL2 translation regime or the EL2&0 2405 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2406 * PSTATE.PAN is 0. 2407 */ 2408 TCGv_i64 ptr = tcg_temp_new_i64(); 2409 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2410 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2411 int memidx = arm_to_core_mmu_idx(armmemidx); 2412 uint32_t syn; 2413 2414 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2415 2416 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2417 tcg_gen_addi_i64(ptr, ptr, 2418 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2419 tcg_rt = cpu_reg(s, rt); 2420 2421 syn = syn_data_abort_vncr(0, !isread, 0); 2422 disas_set_insn_syndrome(s, syn); 2423 if (isread) { 2424 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2425 } else { 2426 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2427 } 2428 return; 2429 } 2430 2431 /* Handle special cases first */ 2432 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2433 case 0: 2434 break; 2435 case ARM_CP_NOP: 2436 return; 2437 case ARM_CP_NZCV: 2438 tcg_rt = cpu_reg(s, rt); 2439 if (isread) { 2440 gen_get_nzcv(tcg_rt); 2441 } else { 2442 gen_set_nzcv(tcg_rt); 2443 } 2444 return; 2445 case ARM_CP_CURRENTEL: 2446 { 2447 /* 2448 * Reads as current EL value from pstate, which is 2449 * guaranteed to be constant by the tb flags. 2450 * For nested virt we should report EL2. 2451 */ 2452 int el = s->nv ? 2 : s->current_el; 2453 tcg_rt = cpu_reg(s, rt); 2454 tcg_gen_movi_i64(tcg_rt, el << 2); 2455 return; 2456 } 2457 case ARM_CP_DC_ZVA: 2458 /* Writes clear the aligned block of memory which rt points into. */ 2459 if (s->mte_active[0]) { 2460 int desc = 0; 2461 2462 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2463 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2464 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2465 2466 tcg_rt = tcg_temp_new_i64(); 2467 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2468 tcg_constant_i32(desc), cpu_reg(s, rt)); 2469 } else { 2470 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2471 } 2472 gen_helper_dc_zva(tcg_env, tcg_rt); 2473 return; 2474 case ARM_CP_DC_GVA: 2475 { 2476 TCGv_i64 clean_addr, tag; 2477 2478 /* 2479 * DC_GVA, like DC_ZVA, requires that we supply the original 2480 * pointer for an invalid page. Probe that address first. 2481 */ 2482 tcg_rt = cpu_reg(s, rt); 2483 clean_addr = clean_data_tbi(s, tcg_rt); 2484 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2485 2486 if (s->ata[0]) { 2487 /* Extract the tag from the register to match STZGM. */ 2488 tag = tcg_temp_new_i64(); 2489 tcg_gen_shri_i64(tag, tcg_rt, 56); 2490 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2491 } 2492 } 2493 return; 2494 case ARM_CP_DC_GZVA: 2495 { 2496 TCGv_i64 clean_addr, tag; 2497 2498 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2499 tcg_rt = cpu_reg(s, rt); 2500 clean_addr = clean_data_tbi(s, tcg_rt); 2501 gen_helper_dc_zva(tcg_env, clean_addr); 2502 2503 if (s->ata[0]) { 2504 /* Extract the tag from the register to match STZGM. */ 2505 tag = tcg_temp_new_i64(); 2506 tcg_gen_shri_i64(tag, tcg_rt, 56); 2507 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2508 } 2509 } 2510 return; 2511 default: 2512 g_assert_not_reached(); 2513 } 2514 2515 if (ri->type & ARM_CP_IO) { 2516 /* I/O operations must end the TB here (whether read or write) */ 2517 need_exit_tb = translator_io_start(&s->base); 2518 } 2519 2520 tcg_rt = cpu_reg(s, rt); 2521 2522 if (isread) { 2523 if (ri->type & ARM_CP_CONST) { 2524 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2525 } else if (ri->readfn) { 2526 if (!tcg_ri) { 2527 tcg_ri = gen_lookup_cp_reg(key); 2528 } 2529 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2530 } else { 2531 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2532 } 2533 } else { 2534 if (ri->type & ARM_CP_CONST) { 2535 /* If not forbidden by access permissions, treat as WI */ 2536 return; 2537 } else if (ri->writefn) { 2538 if (!tcg_ri) { 2539 tcg_ri = gen_lookup_cp_reg(key); 2540 } 2541 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2542 } else { 2543 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2544 } 2545 } 2546 2547 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2548 /* 2549 * A write to any coprocessor register that ends a TB 2550 * must rebuild the hflags for the next TB. 2551 */ 2552 gen_rebuild_hflags(s); 2553 /* 2554 * We default to ending the TB on a coprocessor register write, 2555 * but allow this to be suppressed by the register definition 2556 * (usually only necessary to work around guest bugs). 2557 */ 2558 need_exit_tb = true; 2559 } 2560 if (need_exit_tb) { 2561 s->base.is_jmp = DISAS_UPDATE_EXIT; 2562 } 2563 } 2564 2565 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2566 { 2567 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2568 return true; 2569 } 2570 2571 static bool trans_SVC(DisasContext *s, arg_i *a) 2572 { 2573 /* 2574 * For SVC, HVC and SMC we advance the single-step state 2575 * machine before taking the exception. This is architecturally 2576 * mandated, to ensure that single-stepping a system call 2577 * instruction works properly. 2578 */ 2579 uint32_t syndrome = syn_aa64_svc(a->imm); 2580 if (s->fgt_svc) { 2581 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2582 return true; 2583 } 2584 gen_ss_advance(s); 2585 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2586 return true; 2587 } 2588 2589 static bool trans_HVC(DisasContext *s, arg_i *a) 2590 { 2591 int target_el = s->current_el == 3 ? 3 : 2; 2592 2593 if (s->current_el == 0) { 2594 unallocated_encoding(s); 2595 return true; 2596 } 2597 /* 2598 * The pre HVC helper handles cases when HVC gets trapped 2599 * as an undefined insn by runtime configuration. 2600 */ 2601 gen_a64_update_pc(s, 0); 2602 gen_helper_pre_hvc(tcg_env); 2603 /* Architecture requires ss advance before we do the actual work */ 2604 gen_ss_advance(s); 2605 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2606 return true; 2607 } 2608 2609 static bool trans_SMC(DisasContext *s, arg_i *a) 2610 { 2611 if (s->current_el == 0) { 2612 unallocated_encoding(s); 2613 return true; 2614 } 2615 gen_a64_update_pc(s, 0); 2616 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2617 /* Architecture requires ss advance before we do the actual work */ 2618 gen_ss_advance(s); 2619 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2620 return true; 2621 } 2622 2623 static bool trans_BRK(DisasContext *s, arg_i *a) 2624 { 2625 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2626 return true; 2627 } 2628 2629 static bool trans_HLT(DisasContext *s, arg_i *a) 2630 { 2631 /* 2632 * HLT. This has two purposes. 2633 * Architecturally, it is an external halting debug instruction. 2634 * Since QEMU doesn't implement external debug, we treat this as 2635 * it is required for halting debug disabled: it will UNDEF. 2636 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2637 */ 2638 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2639 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2640 } else { 2641 unallocated_encoding(s); 2642 } 2643 return true; 2644 } 2645 2646 /* 2647 * Load/Store exclusive instructions are implemented by remembering 2648 * the value/address loaded, and seeing if these are the same 2649 * when the store is performed. This is not actually the architecturally 2650 * mandated semantics, but it works for typical guest code sequences 2651 * and avoids having to monitor regular stores. 2652 * 2653 * The store exclusive uses the atomic cmpxchg primitives to avoid 2654 * races in multi-threaded linux-user and when MTTCG softmmu is 2655 * enabled. 2656 */ 2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2658 int size, bool is_pair) 2659 { 2660 int idx = get_mem_index(s); 2661 TCGv_i64 dirty_addr, clean_addr; 2662 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2663 2664 s->is_ldex = true; 2665 dirty_addr = cpu_reg_sp(s, rn); 2666 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2667 2668 g_assert(size <= 3); 2669 if (is_pair) { 2670 g_assert(size >= 2); 2671 if (size == 2) { 2672 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2673 if (s->be_data == MO_LE) { 2674 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2675 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2676 } else { 2677 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2678 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2679 } 2680 } else { 2681 TCGv_i128 t16 = tcg_temp_new_i128(); 2682 2683 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2684 2685 if (s->be_data == MO_LE) { 2686 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2687 cpu_exclusive_high, t16); 2688 } else { 2689 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2690 cpu_exclusive_val, t16); 2691 } 2692 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2693 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2694 } 2695 } else { 2696 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2697 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2698 } 2699 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2700 } 2701 2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2703 int rn, int size, int is_pair) 2704 { 2705 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2706 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2707 * [addr] = {Rt}; 2708 * if (is_pair) { 2709 * [addr + datasize] = {Rt2}; 2710 * } 2711 * {Rd} = 0; 2712 * } else { 2713 * {Rd} = 1; 2714 * } 2715 * env->exclusive_addr = -1; 2716 */ 2717 TCGLabel *fail_label = gen_new_label(); 2718 TCGLabel *done_label = gen_new_label(); 2719 TCGv_i64 tmp, clean_addr; 2720 MemOp memop; 2721 2722 /* 2723 * FIXME: We are out of spec here. We have recorded only the address 2724 * from load_exclusive, not the entire range, and we assume that the 2725 * size of the access on both sides match. The architecture allows the 2726 * store to be smaller than the load, so long as the stored bytes are 2727 * within the range recorded by the load. 2728 */ 2729 2730 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2731 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2732 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2733 2734 /* 2735 * The write, and any associated faults, only happen if the virtual 2736 * and physical addresses pass the exclusive monitor check. These 2737 * faults are exceedingly unlikely, because normally the guest uses 2738 * the exact same address register for the load_exclusive, and we 2739 * would have recognized these faults there. 2740 * 2741 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2742 * unaligned 4-byte write within the range of an aligned 8-byte load. 2743 * With LSE2, the store would need to cross a 16-byte boundary when the 2744 * load did not, which would mean the store is outside the range 2745 * recorded for the monitor, which would have failed a corrected monitor 2746 * check above. For now, we assume no size change and retain the 2747 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2748 * 2749 * It is possible to trigger an MTE fault, by performing the load with 2750 * a virtual address with a valid tag and performing the store with the 2751 * same virtual address and a different invalid tag. 2752 */ 2753 memop = size + is_pair; 2754 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2755 memop |= MO_ALIGN; 2756 } 2757 memop = finalize_memop(s, memop); 2758 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2759 2760 tmp = tcg_temp_new_i64(); 2761 if (is_pair) { 2762 if (size == 2) { 2763 if (s->be_data == MO_LE) { 2764 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2765 } else { 2766 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2767 } 2768 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2769 cpu_exclusive_val, tmp, 2770 get_mem_index(s), memop); 2771 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2772 } else { 2773 TCGv_i128 t16 = tcg_temp_new_i128(); 2774 TCGv_i128 c16 = tcg_temp_new_i128(); 2775 TCGv_i64 a, b; 2776 2777 if (s->be_data == MO_LE) { 2778 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2779 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2780 cpu_exclusive_high); 2781 } else { 2782 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2783 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2784 cpu_exclusive_val); 2785 } 2786 2787 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2788 get_mem_index(s), memop); 2789 2790 a = tcg_temp_new_i64(); 2791 b = tcg_temp_new_i64(); 2792 if (s->be_data == MO_LE) { 2793 tcg_gen_extr_i128_i64(a, b, t16); 2794 } else { 2795 tcg_gen_extr_i128_i64(b, a, t16); 2796 } 2797 2798 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2799 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2800 tcg_gen_or_i64(tmp, a, b); 2801 2802 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2803 } 2804 } else { 2805 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2806 cpu_reg(s, rt), get_mem_index(s), memop); 2807 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2808 } 2809 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2810 tcg_gen_br(done_label); 2811 2812 gen_set_label(fail_label); 2813 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2814 gen_set_label(done_label); 2815 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2816 } 2817 2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2819 int rn, int size) 2820 { 2821 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2822 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2823 int memidx = get_mem_index(s); 2824 TCGv_i64 clean_addr; 2825 MemOp memop; 2826 2827 if (rn == 31) { 2828 gen_check_sp_alignment(s); 2829 } 2830 memop = check_atomic_align(s, rn, size); 2831 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2832 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2833 memidx, memop); 2834 } 2835 2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2837 int rn, int size) 2838 { 2839 TCGv_i64 s1 = cpu_reg(s, rs); 2840 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2841 TCGv_i64 t1 = cpu_reg(s, rt); 2842 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2843 TCGv_i64 clean_addr; 2844 int memidx = get_mem_index(s); 2845 MemOp memop; 2846 2847 if (rn == 31) { 2848 gen_check_sp_alignment(s); 2849 } 2850 2851 /* This is a single atomic access, despite the "pair". */ 2852 memop = check_atomic_align(s, rn, size + 1); 2853 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2854 2855 if (size == 2) { 2856 TCGv_i64 cmp = tcg_temp_new_i64(); 2857 TCGv_i64 val = tcg_temp_new_i64(); 2858 2859 if (s->be_data == MO_LE) { 2860 tcg_gen_concat32_i64(val, t1, t2); 2861 tcg_gen_concat32_i64(cmp, s1, s2); 2862 } else { 2863 tcg_gen_concat32_i64(val, t2, t1); 2864 tcg_gen_concat32_i64(cmp, s2, s1); 2865 } 2866 2867 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2868 2869 if (s->be_data == MO_LE) { 2870 tcg_gen_extr32_i64(s1, s2, cmp); 2871 } else { 2872 tcg_gen_extr32_i64(s2, s1, cmp); 2873 } 2874 } else { 2875 TCGv_i128 cmp = tcg_temp_new_i128(); 2876 TCGv_i128 val = tcg_temp_new_i128(); 2877 2878 if (s->be_data == MO_LE) { 2879 tcg_gen_concat_i64_i128(val, t1, t2); 2880 tcg_gen_concat_i64_i128(cmp, s1, s2); 2881 } else { 2882 tcg_gen_concat_i64_i128(val, t2, t1); 2883 tcg_gen_concat_i64_i128(cmp, s2, s1); 2884 } 2885 2886 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2887 2888 if (s->be_data == MO_LE) { 2889 tcg_gen_extr_i128_i64(s1, s2, cmp); 2890 } else { 2891 tcg_gen_extr_i128_i64(s2, s1, cmp); 2892 } 2893 } 2894 } 2895 2896 /* 2897 * Compute the ISS.SF bit for syndrome information if an exception 2898 * is taken on a load or store. This indicates whether the instruction 2899 * is accessing a 32-bit or 64-bit register. This logic is derived 2900 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2901 */ 2902 static bool ldst_iss_sf(int size, bool sign, bool ext) 2903 { 2904 2905 if (sign) { 2906 /* 2907 * Signed loads are 64 bit results if we are not going to 2908 * do a zero-extend from 32 to 64 after the load. 2909 * (For a store, sign and ext are always false.) 2910 */ 2911 return !ext; 2912 } else { 2913 /* Unsigned loads/stores work at the specified size */ 2914 return size == MO_64; 2915 } 2916 } 2917 2918 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2919 { 2920 if (a->rn == 31) { 2921 gen_check_sp_alignment(s); 2922 } 2923 if (a->lasr) { 2924 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2925 } 2926 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2927 return true; 2928 } 2929 2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2931 { 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2936 if (a->lasr) { 2937 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2938 } 2939 return true; 2940 } 2941 2942 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2943 { 2944 TCGv_i64 clean_addr; 2945 MemOp memop; 2946 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2947 2948 /* 2949 * StoreLORelease is the same as Store-Release for QEMU, but 2950 * needs the feature-test. 2951 */ 2952 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2953 return false; 2954 } 2955 /* Generate ISS for non-exclusive accesses including LASR. */ 2956 if (a->rn == 31) { 2957 gen_check_sp_alignment(s); 2958 } 2959 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2960 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2961 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2962 true, a->rn != 31, memop); 2963 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2964 iss_sf, a->lasr); 2965 return true; 2966 } 2967 2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2969 { 2970 TCGv_i64 clean_addr; 2971 MemOp memop; 2972 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2973 2974 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2975 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2976 return false; 2977 } 2978 /* Generate ISS for non-exclusive accesses including LASR. */ 2979 if (a->rn == 31) { 2980 gen_check_sp_alignment(s); 2981 } 2982 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2983 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2984 false, a->rn != 31, memop); 2985 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2986 a->rt, iss_sf, a->lasr); 2987 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2988 return true; 2989 } 2990 2991 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2992 { 2993 if (a->rn == 31) { 2994 gen_check_sp_alignment(s); 2995 } 2996 if (a->lasr) { 2997 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2998 } 2999 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 3000 return true; 3001 } 3002 3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 3004 { 3005 if (a->rn == 31) { 3006 gen_check_sp_alignment(s); 3007 } 3008 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 3009 if (a->lasr) { 3010 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3011 } 3012 return true; 3013 } 3014 3015 static bool trans_CASP(DisasContext *s, arg_CASP *a) 3016 { 3017 if (!dc_isar_feature(aa64_atomics, s)) { 3018 return false; 3019 } 3020 if (((a->rt | a->rs) & 1) != 0) { 3021 return false; 3022 } 3023 3024 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 3025 return true; 3026 } 3027 3028 static bool trans_CAS(DisasContext *s, arg_CAS *a) 3029 { 3030 if (!dc_isar_feature(aa64_atomics, s)) { 3031 return false; 3032 } 3033 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 3034 return true; 3035 } 3036 3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 3038 { 3039 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 3040 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 3041 TCGv_i64 clean_addr = tcg_temp_new_i64(); 3042 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3043 3044 gen_pc_plus_diff(s, clean_addr, a->imm); 3045 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3046 false, true, a->rt, iss_sf, false); 3047 return true; 3048 } 3049 3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3051 { 3052 /* Load register (literal), vector version */ 3053 TCGv_i64 clean_addr; 3054 MemOp memop; 3055 3056 if (!fp_access_check(s)) { 3057 return true; 3058 } 3059 memop = finalize_memop_asimd(s, a->sz); 3060 clean_addr = tcg_temp_new_i64(); 3061 gen_pc_plus_diff(s, clean_addr, a->imm); 3062 do_fp_ld(s, a->rt, clean_addr, memop); 3063 return true; 3064 } 3065 3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3067 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3068 uint64_t offset, bool is_store, MemOp mop) 3069 { 3070 if (a->rn == 31) { 3071 gen_check_sp_alignment(s); 3072 } 3073 3074 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3075 if (!a->p) { 3076 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3077 } 3078 3079 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3080 (a->w || a->rn != 31), 2 << a->sz, mop); 3081 } 3082 3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3084 TCGv_i64 dirty_addr, uint64_t offset) 3085 { 3086 if (a->w) { 3087 if (a->p) { 3088 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3089 } 3090 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3091 } 3092 } 3093 3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 /* 3104 * We built mop above for the single logical access -- rebuild it 3105 * now for the paired operation. 3106 * 3107 * With LSE2, non-sign-extending pairs are treated atomically if 3108 * aligned, and if unaligned one of the pair will be completely 3109 * within a 16-byte block and that element will be atomic. 3110 * Otherwise each element is separately atomic. 3111 * In all cases, issue one operation with the correct atomicity. 3112 */ 3113 mop = a->sz + 1; 3114 if (s->align_mem) { 3115 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3116 } 3117 mop = finalize_memop_pair(s, mop); 3118 if (a->sz == 2) { 3119 TCGv_i64 tmp = tcg_temp_new_i64(); 3120 3121 if (s->be_data == MO_LE) { 3122 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3123 } else { 3124 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3125 } 3126 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3127 } else { 3128 TCGv_i128 tmp = tcg_temp_new_i128(); 3129 3130 if (s->be_data == MO_LE) { 3131 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3132 } else { 3133 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3134 } 3135 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3136 } 3137 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3138 return true; 3139 } 3140 3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3142 { 3143 uint64_t offset = a->imm << a->sz; 3144 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3145 MemOp mop = finalize_memop(s, a->sz); 3146 3147 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3148 tcg_rt = cpu_reg(s, a->rt); 3149 tcg_rt2 = cpu_reg(s, a->rt2); 3150 3151 /* 3152 * We built mop above for the single logical access -- rebuild it 3153 * now for the paired operation. 3154 * 3155 * With LSE2, non-sign-extending pairs are treated atomically if 3156 * aligned, and if unaligned one of the pair will be completely 3157 * within a 16-byte block and that element will be atomic. 3158 * Otherwise each element is separately atomic. 3159 * In all cases, issue one operation with the correct atomicity. 3160 * 3161 * This treats sign-extending loads like zero-extending loads, 3162 * since that reuses the most code below. 3163 */ 3164 mop = a->sz + 1; 3165 if (s->align_mem) { 3166 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3167 } 3168 mop = finalize_memop_pair(s, mop); 3169 if (a->sz == 2) { 3170 int o2 = s->be_data == MO_LE ? 32 : 0; 3171 int o1 = o2 ^ 32; 3172 3173 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3174 if (a->sign) { 3175 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3176 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3177 } else { 3178 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3179 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3180 } 3181 } else { 3182 TCGv_i128 tmp = tcg_temp_new_i128(); 3183 3184 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3185 if (s->be_data == MO_LE) { 3186 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3187 } else { 3188 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3189 } 3190 } 3191 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3192 return true; 3193 } 3194 3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3196 { 3197 uint64_t offset = a->imm << a->sz; 3198 TCGv_i64 clean_addr, dirty_addr; 3199 MemOp mop; 3200 3201 if (!fp_access_check(s)) { 3202 return true; 3203 } 3204 3205 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3206 mop = finalize_memop_asimd(s, a->sz); 3207 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3208 do_fp_st(s, a->rt, clean_addr, mop); 3209 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3210 do_fp_st(s, a->rt2, clean_addr, mop); 3211 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3212 return true; 3213 } 3214 3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3216 { 3217 uint64_t offset = a->imm << a->sz; 3218 TCGv_i64 clean_addr, dirty_addr; 3219 MemOp mop; 3220 3221 if (!fp_access_check(s)) { 3222 return true; 3223 } 3224 3225 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3226 mop = finalize_memop_asimd(s, a->sz); 3227 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3228 do_fp_ld(s, a->rt, clean_addr, mop); 3229 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3230 do_fp_ld(s, a->rt2, clean_addr, mop); 3231 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3232 return true; 3233 } 3234 3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3236 { 3237 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3238 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3239 MemOp mop; 3240 TCGv_i128 tmp; 3241 3242 /* STGP only comes in one size. */ 3243 tcg_debug_assert(a->sz == MO_64); 3244 3245 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3246 return false; 3247 } 3248 3249 if (a->rn == 31) { 3250 gen_check_sp_alignment(s); 3251 } 3252 3253 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3254 if (!a->p) { 3255 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3256 } 3257 3258 clean_addr = clean_data_tbi(s, dirty_addr); 3259 tcg_rt = cpu_reg(s, a->rt); 3260 tcg_rt2 = cpu_reg(s, a->rt2); 3261 3262 /* 3263 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3264 * and one tag operation. We implement it as one single aligned 16-byte 3265 * memory operation for convenience. Note that the alignment ensures 3266 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3267 */ 3268 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3269 3270 tmp = tcg_temp_new_i128(); 3271 if (s->be_data == MO_LE) { 3272 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3273 } else { 3274 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3275 } 3276 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3277 3278 /* Perform the tag store, if tag access enabled. */ 3279 if (s->ata[0]) { 3280 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3281 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3282 } else { 3283 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3284 } 3285 } 3286 3287 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3288 return true; 3289 } 3290 3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3292 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3293 uint64_t offset, bool is_store, MemOp mop) 3294 { 3295 int memidx; 3296 3297 if (a->rn == 31) { 3298 gen_check_sp_alignment(s); 3299 } 3300 3301 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3302 if (!a->p) { 3303 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3304 } 3305 memidx = get_a64_user_mem_index(s, a->unpriv); 3306 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3307 a->w || a->rn != 31, 3308 mop, a->unpriv, memidx); 3309 } 3310 3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3312 TCGv_i64 dirty_addr, uint64_t offset) 3313 { 3314 if (a->w) { 3315 if (a->p) { 3316 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3317 } 3318 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3319 } 3320 } 3321 3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3323 { 3324 bool iss_sf, iss_valid = !a->w; 3325 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3326 int memidx = get_a64_user_mem_index(s, a->unpriv); 3327 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3328 3329 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3330 3331 tcg_rt = cpu_reg(s, a->rt); 3332 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3333 3334 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3335 iss_valid, a->rt, iss_sf, false); 3336 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3337 return true; 3338 } 3339 3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3341 { 3342 bool iss_sf, iss_valid = !a->w; 3343 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3344 int memidx = get_a64_user_mem_index(s, a->unpriv); 3345 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3346 3347 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3348 3349 tcg_rt = cpu_reg(s, a->rt); 3350 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3351 3352 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3353 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3354 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3355 return true; 3356 } 3357 3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3359 { 3360 TCGv_i64 clean_addr, dirty_addr; 3361 MemOp mop; 3362 3363 if (!fp_access_check(s)) { 3364 return true; 3365 } 3366 mop = finalize_memop_asimd(s, a->sz); 3367 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3368 do_fp_st(s, a->rt, clean_addr, mop); 3369 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3370 return true; 3371 } 3372 3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3374 { 3375 TCGv_i64 clean_addr, dirty_addr; 3376 MemOp mop; 3377 3378 if (!fp_access_check(s)) { 3379 return true; 3380 } 3381 mop = finalize_memop_asimd(s, a->sz); 3382 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3383 do_fp_ld(s, a->rt, clean_addr, mop); 3384 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3385 return true; 3386 } 3387 3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3389 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3390 bool is_store, MemOp memop) 3391 { 3392 TCGv_i64 tcg_rm; 3393 3394 if (a->rn == 31) { 3395 gen_check_sp_alignment(s); 3396 } 3397 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3398 3399 tcg_rm = read_cpu_reg(s, a->rm, 1); 3400 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3401 3402 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3403 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3404 } 3405 3406 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3407 { 3408 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3409 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3410 MemOp memop; 3411 3412 if (extract32(a->opt, 1, 1) == 0) { 3413 return false; 3414 } 3415 3416 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3417 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3418 tcg_rt = cpu_reg(s, a->rt); 3419 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3420 a->ext, true, a->rt, iss_sf, false); 3421 return true; 3422 } 3423 3424 static bool trans_STR(DisasContext *s, arg_ldst *a) 3425 { 3426 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3427 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3428 MemOp memop; 3429 3430 if (extract32(a->opt, 1, 1) == 0) { 3431 return false; 3432 } 3433 3434 memop = finalize_memop(s, a->sz); 3435 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3436 tcg_rt = cpu_reg(s, a->rt); 3437 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3438 return true; 3439 } 3440 3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3442 { 3443 TCGv_i64 clean_addr, dirty_addr; 3444 MemOp memop; 3445 3446 if (extract32(a->opt, 1, 1) == 0) { 3447 return false; 3448 } 3449 3450 if (!fp_access_check(s)) { 3451 return true; 3452 } 3453 3454 memop = finalize_memop_asimd(s, a->sz); 3455 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3456 do_fp_ld(s, a->rt, clean_addr, memop); 3457 return true; 3458 } 3459 3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3461 { 3462 TCGv_i64 clean_addr, dirty_addr; 3463 MemOp memop; 3464 3465 if (extract32(a->opt, 1, 1) == 0) { 3466 return false; 3467 } 3468 3469 if (!fp_access_check(s)) { 3470 return true; 3471 } 3472 3473 memop = finalize_memop_asimd(s, a->sz); 3474 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3475 do_fp_st(s, a->rt, clean_addr, memop); 3476 return true; 3477 } 3478 3479 3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3481 int sign, bool invert) 3482 { 3483 MemOp mop = a->sz | sign; 3484 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3485 3486 if (a->rn == 31) { 3487 gen_check_sp_alignment(s); 3488 } 3489 mop = check_atomic_align(s, a->rn, mop); 3490 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3491 a->rn != 31, mop); 3492 tcg_rs = read_cpu_reg(s, a->rs, true); 3493 tcg_rt = cpu_reg(s, a->rt); 3494 if (invert) { 3495 tcg_gen_not_i64(tcg_rs, tcg_rs); 3496 } 3497 /* 3498 * The tcg atomic primitives are all full barriers. Therefore we 3499 * can ignore the Acquire and Release bits of this instruction. 3500 */ 3501 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3502 3503 if (mop & MO_SIGN) { 3504 switch (a->sz) { 3505 case MO_8: 3506 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3507 break; 3508 case MO_16: 3509 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3510 break; 3511 case MO_32: 3512 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3513 break; 3514 case MO_64: 3515 break; 3516 default: 3517 g_assert_not_reached(); 3518 } 3519 } 3520 return true; 3521 } 3522 3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3532 3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3534 { 3535 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3536 TCGv_i64 clean_addr; 3537 MemOp mop; 3538 3539 if (!dc_isar_feature(aa64_atomics, s) || 3540 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3541 return false; 3542 } 3543 if (a->rn == 31) { 3544 gen_check_sp_alignment(s); 3545 } 3546 mop = check_atomic_align(s, a->rn, a->sz); 3547 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3548 a->rn != 31, mop); 3549 /* 3550 * LDAPR* are a special case because they are a simple load, not a 3551 * fetch-and-do-something op. 3552 * The architectural consistency requirements here are weaker than 3553 * full load-acquire (we only need "load-acquire processor consistent"), 3554 * but we choose to implement them as full LDAQ. 3555 */ 3556 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3557 true, a->rt, iss_sf, true); 3558 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3559 return true; 3560 } 3561 3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3563 { 3564 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3565 MemOp memop; 3566 3567 /* Load with pointer authentication */ 3568 if (!dc_isar_feature(aa64_pauth, s)) { 3569 return false; 3570 } 3571 3572 if (a->rn == 31) { 3573 gen_check_sp_alignment(s); 3574 } 3575 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3576 3577 if (s->pauth_active) { 3578 if (!a->m) { 3579 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3580 tcg_constant_i64(0)); 3581 } else { 3582 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3583 tcg_constant_i64(0)); 3584 } 3585 } 3586 3587 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3588 3589 memop = finalize_memop(s, MO_64); 3590 3591 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3592 clean_addr = gen_mte_check1(s, dirty_addr, false, 3593 a->w || a->rn != 31, memop); 3594 3595 tcg_rt = cpu_reg(s, a->rt); 3596 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3597 /* extend */ false, /* iss_valid */ !a->w, 3598 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3599 3600 if (a->w) { 3601 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3602 } 3603 return true; 3604 } 3605 3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3607 { 3608 TCGv_i64 clean_addr, dirty_addr; 3609 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3610 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3611 3612 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3613 return false; 3614 } 3615 3616 if (a->rn == 31) { 3617 gen_check_sp_alignment(s); 3618 } 3619 3620 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3621 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3622 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3623 clean_addr = clean_data_tbi(s, dirty_addr); 3624 3625 /* 3626 * Load-AcquirePC semantics; we implement as the slightly more 3627 * restrictive Load-Acquire. 3628 */ 3629 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3630 a->rt, iss_sf, true); 3631 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3632 return true; 3633 } 3634 3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3636 { 3637 TCGv_i64 clean_addr, dirty_addr; 3638 MemOp mop = a->sz; 3639 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3640 3641 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3642 return false; 3643 } 3644 3645 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3646 3647 if (a->rn == 31) { 3648 gen_check_sp_alignment(s); 3649 } 3650 3651 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3652 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3653 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3654 clean_addr = clean_data_tbi(s, dirty_addr); 3655 3656 /* Store-Release semantics */ 3657 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3658 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3659 return true; 3660 } 3661 3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3663 { 3664 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3665 MemOp endian, align, mop; 3666 3667 int total; /* total bytes */ 3668 int elements; /* elements per vector */ 3669 int r; 3670 int size = a->sz; 3671 3672 if (!a->p && a->rm != 0) { 3673 /* For non-postindexed accesses the Rm field must be 0 */ 3674 return false; 3675 } 3676 if (size == 3 && !a->q && a->selem != 1) { 3677 return false; 3678 } 3679 if (!fp_access_check(s)) { 3680 return true; 3681 } 3682 3683 if (a->rn == 31) { 3684 gen_check_sp_alignment(s); 3685 } 3686 3687 /* For our purposes, bytes are always little-endian. */ 3688 endian = s->be_data; 3689 if (size == 0) { 3690 endian = MO_LE; 3691 } 3692 3693 total = a->rpt * a->selem * (a->q ? 16 : 8); 3694 tcg_rn = cpu_reg_sp(s, a->rn); 3695 3696 /* 3697 * Issue the MTE check vs the logical repeat count, before we 3698 * promote consecutive little-endian elements below. 3699 */ 3700 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3701 finalize_memop_asimd(s, size)); 3702 3703 /* 3704 * Consecutive little-endian elements from a single register 3705 * can be promoted to a larger little-endian operation. 3706 */ 3707 align = MO_ALIGN; 3708 if (a->selem == 1 && endian == MO_LE) { 3709 align = pow2_align(size); 3710 size = 3; 3711 } 3712 if (!s->align_mem) { 3713 align = 0; 3714 } 3715 mop = endian | size | align; 3716 3717 elements = (a->q ? 16 : 8) >> size; 3718 tcg_ebytes = tcg_constant_i64(1 << size); 3719 for (r = 0; r < a->rpt; r++) { 3720 int e; 3721 for (e = 0; e < elements; e++) { 3722 int xs; 3723 for (xs = 0; xs < a->selem; xs++) { 3724 int tt = (a->rt + r + xs) % 32; 3725 do_vec_ld(s, tt, e, clean_addr, mop); 3726 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3727 } 3728 } 3729 } 3730 3731 /* 3732 * For non-quad operations, setting a slice of the low 64 bits of 3733 * the register clears the high 64 bits (in the ARM ARM pseudocode 3734 * this is implicit in the fact that 'rval' is a 64 bit wide 3735 * variable). For quad operations, we might still need to zero 3736 * the high bits of SVE. 3737 */ 3738 for (r = 0; r < a->rpt * a->selem; r++) { 3739 int tt = (a->rt + r) % 32; 3740 clear_vec_high(s, a->q, tt); 3741 } 3742 3743 if (a->p) { 3744 if (a->rm == 31) { 3745 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3746 } else { 3747 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3748 } 3749 } 3750 return true; 3751 } 3752 3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3754 { 3755 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3756 MemOp endian, align, mop; 3757 3758 int total; /* total bytes */ 3759 int elements; /* elements per vector */ 3760 int r; 3761 int size = a->sz; 3762 3763 if (!a->p && a->rm != 0) { 3764 /* For non-postindexed accesses the Rm field must be 0 */ 3765 return false; 3766 } 3767 if (size == 3 && !a->q && a->selem != 1) { 3768 return false; 3769 } 3770 if (!fp_access_check(s)) { 3771 return true; 3772 } 3773 3774 if (a->rn == 31) { 3775 gen_check_sp_alignment(s); 3776 } 3777 3778 /* For our purposes, bytes are always little-endian. */ 3779 endian = s->be_data; 3780 if (size == 0) { 3781 endian = MO_LE; 3782 } 3783 3784 total = a->rpt * a->selem * (a->q ? 16 : 8); 3785 tcg_rn = cpu_reg_sp(s, a->rn); 3786 3787 /* 3788 * Issue the MTE check vs the logical repeat count, before we 3789 * promote consecutive little-endian elements below. 3790 */ 3791 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3792 finalize_memop_asimd(s, size)); 3793 3794 /* 3795 * Consecutive little-endian elements from a single register 3796 * can be promoted to a larger little-endian operation. 3797 */ 3798 align = MO_ALIGN; 3799 if (a->selem == 1 && endian == MO_LE) { 3800 align = pow2_align(size); 3801 size = 3; 3802 } 3803 if (!s->align_mem) { 3804 align = 0; 3805 } 3806 mop = endian | size | align; 3807 3808 elements = (a->q ? 16 : 8) >> size; 3809 tcg_ebytes = tcg_constant_i64(1 << size); 3810 for (r = 0; r < a->rpt; r++) { 3811 int e; 3812 for (e = 0; e < elements; e++) { 3813 int xs; 3814 for (xs = 0; xs < a->selem; xs++) { 3815 int tt = (a->rt + r + xs) % 32; 3816 do_vec_st(s, tt, e, clean_addr, mop); 3817 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3818 } 3819 } 3820 } 3821 3822 if (a->p) { 3823 if (a->rm == 31) { 3824 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3825 } else { 3826 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3827 } 3828 } 3829 return true; 3830 } 3831 3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3833 { 3834 int xs, total, rt; 3835 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3836 MemOp mop; 3837 3838 if (!a->p && a->rm != 0) { 3839 return false; 3840 } 3841 if (!fp_access_check(s)) { 3842 return true; 3843 } 3844 3845 if (a->rn == 31) { 3846 gen_check_sp_alignment(s); 3847 } 3848 3849 total = a->selem << a->scale; 3850 tcg_rn = cpu_reg_sp(s, a->rn); 3851 3852 mop = finalize_memop_asimd(s, a->scale); 3853 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3854 total, mop); 3855 3856 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3857 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3858 do_vec_st(s, rt, a->index, clean_addr, mop); 3859 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3860 } 3861 3862 if (a->p) { 3863 if (a->rm == 31) { 3864 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3865 } else { 3866 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3867 } 3868 } 3869 return true; 3870 } 3871 3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3873 { 3874 int xs, total, rt; 3875 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3876 MemOp mop; 3877 3878 if (!a->p && a->rm != 0) { 3879 return false; 3880 } 3881 if (!fp_access_check(s)) { 3882 return true; 3883 } 3884 3885 if (a->rn == 31) { 3886 gen_check_sp_alignment(s); 3887 } 3888 3889 total = a->selem << a->scale; 3890 tcg_rn = cpu_reg_sp(s, a->rn); 3891 3892 mop = finalize_memop_asimd(s, a->scale); 3893 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3894 total, mop); 3895 3896 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3897 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3898 do_vec_ld(s, rt, a->index, clean_addr, mop); 3899 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3900 } 3901 3902 if (a->p) { 3903 if (a->rm == 31) { 3904 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3905 } else { 3906 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3907 } 3908 } 3909 return true; 3910 } 3911 3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3913 { 3914 int xs, total, rt; 3915 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3916 MemOp mop; 3917 3918 if (!a->p && a->rm != 0) { 3919 return false; 3920 } 3921 if (!fp_access_check(s)) { 3922 return true; 3923 } 3924 3925 if (a->rn == 31) { 3926 gen_check_sp_alignment(s); 3927 } 3928 3929 total = a->selem << a->scale; 3930 tcg_rn = cpu_reg_sp(s, a->rn); 3931 3932 mop = finalize_memop_asimd(s, a->scale); 3933 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3934 total, mop); 3935 3936 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3937 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3938 /* Load and replicate to all elements */ 3939 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3940 3941 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3942 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3943 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3944 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3945 } 3946 3947 if (a->p) { 3948 if (a->rm == 31) { 3949 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3950 } else { 3951 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3952 } 3953 } 3954 return true; 3955 } 3956 3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3958 { 3959 TCGv_i64 addr, clean_addr, tcg_rt; 3960 int size = 4 << s->dcz_blocksize; 3961 3962 if (!dc_isar_feature(aa64_mte, s)) { 3963 return false; 3964 } 3965 if (s->current_el == 0) { 3966 return false; 3967 } 3968 3969 if (a->rn == 31) { 3970 gen_check_sp_alignment(s); 3971 } 3972 3973 addr = read_cpu_reg_sp(s, a->rn, true); 3974 tcg_gen_addi_i64(addr, addr, a->imm); 3975 tcg_rt = cpu_reg(s, a->rt); 3976 3977 if (s->ata[0]) { 3978 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3979 } 3980 /* 3981 * The non-tags portion of STZGM is mostly like DC_ZVA, 3982 * except the alignment happens before the access. 3983 */ 3984 clean_addr = clean_data_tbi(s, addr); 3985 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3986 gen_helper_dc_zva(tcg_env, clean_addr); 3987 return true; 3988 } 3989 3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3991 { 3992 TCGv_i64 addr, clean_addr, tcg_rt; 3993 3994 if (!dc_isar_feature(aa64_mte, s)) { 3995 return false; 3996 } 3997 if (s->current_el == 0) { 3998 return false; 3999 } 4000 4001 if (a->rn == 31) { 4002 gen_check_sp_alignment(s); 4003 } 4004 4005 addr = read_cpu_reg_sp(s, a->rn, true); 4006 tcg_gen_addi_i64(addr, addr, a->imm); 4007 tcg_rt = cpu_reg(s, a->rt); 4008 4009 if (s->ata[0]) { 4010 gen_helper_stgm(tcg_env, addr, tcg_rt); 4011 } else { 4012 MMUAccessType acc = MMU_DATA_STORE; 4013 int size = 4 << s->gm_blocksize; 4014 4015 clean_addr = clean_data_tbi(s, addr); 4016 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4017 gen_probe_access(s, clean_addr, acc, size); 4018 } 4019 return true; 4020 } 4021 4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 4023 { 4024 TCGv_i64 addr, clean_addr, tcg_rt; 4025 4026 if (!dc_isar_feature(aa64_mte, s)) { 4027 return false; 4028 } 4029 if (s->current_el == 0) { 4030 return false; 4031 } 4032 4033 if (a->rn == 31) { 4034 gen_check_sp_alignment(s); 4035 } 4036 4037 addr = read_cpu_reg_sp(s, a->rn, true); 4038 tcg_gen_addi_i64(addr, addr, a->imm); 4039 tcg_rt = cpu_reg(s, a->rt); 4040 4041 if (s->ata[0]) { 4042 gen_helper_ldgm(tcg_rt, tcg_env, addr); 4043 } else { 4044 MMUAccessType acc = MMU_DATA_LOAD; 4045 int size = 4 << s->gm_blocksize; 4046 4047 clean_addr = clean_data_tbi(s, addr); 4048 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4049 gen_probe_access(s, clean_addr, acc, size); 4050 /* The result tags are zeros. */ 4051 tcg_gen_movi_i64(tcg_rt, 0); 4052 } 4053 return true; 4054 } 4055 4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4057 { 4058 TCGv_i64 addr, clean_addr, tcg_rt; 4059 4060 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4061 return false; 4062 } 4063 4064 if (a->rn == 31) { 4065 gen_check_sp_alignment(s); 4066 } 4067 4068 addr = read_cpu_reg_sp(s, a->rn, true); 4069 if (!a->p) { 4070 /* pre-index or signed offset */ 4071 tcg_gen_addi_i64(addr, addr, a->imm); 4072 } 4073 4074 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4075 tcg_rt = cpu_reg(s, a->rt); 4076 if (s->ata[0]) { 4077 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4078 } else { 4079 /* 4080 * Tag access disabled: we must check for aborts on the load 4081 * load from [rn+offset], and then insert a 0 tag into rt. 4082 */ 4083 clean_addr = clean_data_tbi(s, addr); 4084 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4085 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4086 } 4087 4088 if (a->w) { 4089 /* pre-index or post-index */ 4090 if (a->p) { 4091 /* post-index */ 4092 tcg_gen_addi_i64(addr, addr, a->imm); 4093 } 4094 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4095 } 4096 return true; 4097 } 4098 4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4100 { 4101 TCGv_i64 addr, tcg_rt; 4102 4103 if (a->rn == 31) { 4104 gen_check_sp_alignment(s); 4105 } 4106 4107 addr = read_cpu_reg_sp(s, a->rn, true); 4108 if (!a->p) { 4109 /* pre-index or signed offset */ 4110 tcg_gen_addi_i64(addr, addr, a->imm); 4111 } 4112 tcg_rt = cpu_reg_sp(s, a->rt); 4113 if (!s->ata[0]) { 4114 /* 4115 * For STG and ST2G, we need to check alignment and probe memory. 4116 * TODO: For STZG and STZ2G, we could rely on the stores below, 4117 * at least for system mode; user-only won't enforce alignment. 4118 */ 4119 if (is_pair) { 4120 gen_helper_st2g_stub(tcg_env, addr); 4121 } else { 4122 gen_helper_stg_stub(tcg_env, addr); 4123 } 4124 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4125 if (is_pair) { 4126 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4127 } else { 4128 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4129 } 4130 } else { 4131 if (is_pair) { 4132 gen_helper_st2g(tcg_env, addr, tcg_rt); 4133 } else { 4134 gen_helper_stg(tcg_env, addr, tcg_rt); 4135 } 4136 } 4137 4138 if (is_zero) { 4139 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4140 TCGv_i64 zero64 = tcg_constant_i64(0); 4141 TCGv_i128 zero128 = tcg_temp_new_i128(); 4142 int mem_index = get_mem_index(s); 4143 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4144 4145 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4146 4147 /* This is 1 or 2 atomic 16-byte operations. */ 4148 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4149 if (is_pair) { 4150 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4151 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4152 } 4153 } 4154 4155 if (a->w) { 4156 /* pre-index or post-index */ 4157 if (a->p) { 4158 /* post-index */ 4159 tcg_gen_addi_i64(addr, addr, a->imm); 4160 } 4161 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4162 } 4163 return true; 4164 } 4165 4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4170 4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4172 4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4174 bool is_setg, SetFn fn) 4175 { 4176 int memidx; 4177 uint32_t syndrome, desc = 0; 4178 4179 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4180 return false; 4181 } 4182 4183 /* 4184 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4185 * us to pull this check before the CheckMOPSEnabled() test 4186 * (which we do in the helper function) 4187 */ 4188 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4189 a->rd == 31 || a->rn == 31) { 4190 return false; 4191 } 4192 4193 memidx = get_a64_user_mem_index(s, a->unpriv); 4194 4195 /* 4196 * We pass option_a == true, matching our implementation; 4197 * we pass wrong_option == false: helper function may set that bit. 4198 */ 4199 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4200 is_epilogue, false, true, a->rd, a->rs, a->rn); 4201 4202 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4203 /* We may need to do MTE tag checking, so assemble the descriptor */ 4204 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4205 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4206 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4207 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4208 } 4209 /* The helper function always needs the memidx even with MTE disabled */ 4210 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4211 4212 /* 4213 * The helper needs the register numbers, but since they're in 4214 * the syndrome anyway, we let it extract them from there rather 4215 * than passing in an extra three integer arguments. 4216 */ 4217 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4218 return true; 4219 } 4220 4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4227 4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4229 4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4231 { 4232 int rmemidx, wmemidx; 4233 uint32_t syndrome, rdesc = 0, wdesc = 0; 4234 bool wunpriv = extract32(a->options, 0, 1); 4235 bool runpriv = extract32(a->options, 1, 1); 4236 4237 /* 4238 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4239 * us to pull this check before the CheckMOPSEnabled() test 4240 * (which we do in the helper function) 4241 */ 4242 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4243 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4244 return false; 4245 } 4246 4247 rmemidx = get_a64_user_mem_index(s, runpriv); 4248 wmemidx = get_a64_user_mem_index(s, wunpriv); 4249 4250 /* 4251 * We pass option_a == true, matching our implementation; 4252 * we pass wrong_option == false: helper function may set that bit. 4253 */ 4254 syndrome = syn_mop(false, false, a->options, is_epilogue, 4255 false, true, a->rd, a->rs, a->rn); 4256 4257 /* If we need to do MTE tag checking, assemble the descriptors */ 4258 if (s->mte_active[runpriv]) { 4259 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4260 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4261 } 4262 if (s->mte_active[wunpriv]) { 4263 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4264 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4265 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4266 } 4267 /* The helper function needs these parts of the descriptor regardless */ 4268 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4269 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4270 4271 /* 4272 * The helper needs the register numbers, but since they're in 4273 * the syndrome anyway, we let it extract them from there rather 4274 * than passing in an extra three integer arguments. 4275 */ 4276 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4277 tcg_constant_i32(rdesc)); 4278 return true; 4279 } 4280 4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4287 4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4289 4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4291 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4292 { 4293 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4294 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4295 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4296 4297 fn(tcg_rd, tcg_rn, tcg_imm); 4298 if (!a->sf) { 4299 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4300 } 4301 return true; 4302 } 4303 4304 /* 4305 * PC-rel. addressing 4306 */ 4307 4308 static bool trans_ADR(DisasContext *s, arg_ri *a) 4309 { 4310 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4311 return true; 4312 } 4313 4314 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4315 { 4316 int64_t offset = (int64_t)a->imm << 12; 4317 4318 /* The page offset is ok for CF_PCREL. */ 4319 offset -= s->pc_curr & 0xfff; 4320 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4321 return true; 4322 } 4323 4324 /* 4325 * Add/subtract (immediate) 4326 */ 4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4331 4332 /* 4333 * Add/subtract (immediate, with tags) 4334 */ 4335 4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4337 bool sub_op) 4338 { 4339 TCGv_i64 tcg_rn, tcg_rd; 4340 int imm; 4341 4342 imm = a->uimm6 << LOG2_TAG_GRANULE; 4343 if (sub_op) { 4344 imm = -imm; 4345 } 4346 4347 tcg_rn = cpu_reg_sp(s, a->rn); 4348 tcg_rd = cpu_reg_sp(s, a->rd); 4349 4350 if (s->ata[0]) { 4351 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4352 tcg_constant_i32(imm), 4353 tcg_constant_i32(a->uimm4)); 4354 } else { 4355 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4356 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4357 } 4358 return true; 4359 } 4360 4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4363 4364 /* The input should be a value in the bottom e bits (with higher 4365 * bits zero); returns that value replicated into every element 4366 * of size e in a 64 bit integer. 4367 */ 4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4369 { 4370 assert(e != 0); 4371 while (e < 64) { 4372 mask |= mask << e; 4373 e *= 2; 4374 } 4375 return mask; 4376 } 4377 4378 /* 4379 * Logical (immediate) 4380 */ 4381 4382 /* 4383 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4384 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4385 * value (ie should cause a guest UNDEF exception), and true if they are 4386 * valid, in which case the decoded bit pattern is written to result. 4387 */ 4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4389 unsigned int imms, unsigned int immr) 4390 { 4391 uint64_t mask; 4392 unsigned e, levels, s, r; 4393 int len; 4394 4395 assert(immn < 2 && imms < 64 && immr < 64); 4396 4397 /* The bit patterns we create here are 64 bit patterns which 4398 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4399 * 64 bits each. Each element contains the same value: a run 4400 * of between 1 and e-1 non-zero bits, rotated within the 4401 * element by between 0 and e-1 bits. 4402 * 4403 * The element size and run length are encoded into immn (1 bit) 4404 * and imms (6 bits) as follows: 4405 * 64 bit elements: immn = 1, imms = <length of run - 1> 4406 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4407 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4408 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4409 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4410 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4411 * Notice that immn = 0, imms = 11111x is the only combination 4412 * not covered by one of the above options; this is reserved. 4413 * Further, <length of run - 1> all-ones is a reserved pattern. 4414 * 4415 * In all cases the rotation is by immr % e (and immr is 6 bits). 4416 */ 4417 4418 /* First determine the element size */ 4419 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4420 if (len < 1) { 4421 /* This is the immn == 0, imms == 0x11111x case */ 4422 return false; 4423 } 4424 e = 1 << len; 4425 4426 levels = e - 1; 4427 s = imms & levels; 4428 r = immr & levels; 4429 4430 if (s == levels) { 4431 /* <length of run - 1> mustn't be all-ones. */ 4432 return false; 4433 } 4434 4435 /* Create the value of one element: s+1 set bits rotated 4436 * by r within the element (which is e bits wide)... 4437 */ 4438 mask = MAKE_64BIT_MASK(0, s + 1); 4439 if (r) { 4440 mask = (mask >> r) | (mask << (e - r)); 4441 mask &= MAKE_64BIT_MASK(0, e); 4442 } 4443 /* ...then replicate the element over the whole 64 bit value */ 4444 mask = bitfield_replicate(mask, e); 4445 *result = mask; 4446 return true; 4447 } 4448 4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4450 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4451 { 4452 TCGv_i64 tcg_rd, tcg_rn; 4453 uint64_t imm; 4454 4455 /* Some immediate field values are reserved. */ 4456 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4457 extract32(a->dbm, 0, 6), 4458 extract32(a->dbm, 6, 6))) { 4459 return false; 4460 } 4461 if (!a->sf) { 4462 imm &= 0xffffffffull; 4463 } 4464 4465 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4466 tcg_rn = cpu_reg(s, a->rn); 4467 4468 fn(tcg_rd, tcg_rn, imm); 4469 if (set_cc) { 4470 gen_logic_CC(a->sf, tcg_rd); 4471 } 4472 if (!a->sf) { 4473 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4474 } 4475 return true; 4476 } 4477 4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4482 4483 /* 4484 * Move wide (immediate) 4485 */ 4486 4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4488 { 4489 int pos = a->hw << 4; 4490 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4491 return true; 4492 } 4493 4494 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4495 { 4496 int pos = a->hw << 4; 4497 uint64_t imm = a->imm; 4498 4499 imm = ~(imm << pos); 4500 if (!a->sf) { 4501 imm = (uint32_t)imm; 4502 } 4503 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4504 return true; 4505 } 4506 4507 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4508 { 4509 int pos = a->hw << 4; 4510 TCGv_i64 tcg_rd, tcg_im; 4511 4512 tcg_rd = cpu_reg(s, a->rd); 4513 tcg_im = tcg_constant_i64(a->imm); 4514 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4515 if (!a->sf) { 4516 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4517 } 4518 return true; 4519 } 4520 4521 /* 4522 * Bitfield 4523 */ 4524 4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4526 { 4527 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4528 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 unsigned int bitsize = a->sf ? 64 : 32; 4530 unsigned int ri = a->immr; 4531 unsigned int si = a->imms; 4532 unsigned int pos, len; 4533 4534 if (si >= ri) { 4535 /* Wd<s-r:0> = Wn<s:r> */ 4536 len = (si - ri) + 1; 4537 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4538 if (!a->sf) { 4539 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4540 } 4541 } else { 4542 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4543 len = si + 1; 4544 pos = (bitsize - ri) & (bitsize - 1); 4545 4546 if (len < ri) { 4547 /* 4548 * Sign extend the destination field from len to fill the 4549 * balance of the word. Let the deposit below insert all 4550 * of those sign bits. 4551 */ 4552 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4553 len = ri; 4554 } 4555 4556 /* 4557 * We start with zero, and we haven't modified any bits outside 4558 * bitsize, therefore no final zero-extension is unneeded for !sf. 4559 */ 4560 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4561 } 4562 return true; 4563 } 4564 4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4566 { 4567 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4568 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4569 unsigned int bitsize = a->sf ? 64 : 32; 4570 unsigned int ri = a->immr; 4571 unsigned int si = a->imms; 4572 unsigned int pos, len; 4573 4574 tcg_rd = cpu_reg(s, a->rd); 4575 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4576 4577 if (si >= ri) { 4578 /* Wd<s-r:0> = Wn<s:r> */ 4579 len = (si - ri) + 1; 4580 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4581 } else { 4582 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4583 len = si + 1; 4584 pos = (bitsize - ri) & (bitsize - 1); 4585 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4586 } 4587 return true; 4588 } 4589 4590 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4591 { 4592 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4593 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4594 unsigned int bitsize = a->sf ? 64 : 32; 4595 unsigned int ri = a->immr; 4596 unsigned int si = a->imms; 4597 unsigned int pos, len; 4598 4599 tcg_rd = cpu_reg(s, a->rd); 4600 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4601 4602 if (si >= ri) { 4603 /* Wd<s-r:0> = Wn<s:r> */ 4604 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4605 len = (si - ri) + 1; 4606 pos = 0; 4607 } else { 4608 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4609 len = si + 1; 4610 pos = (bitsize - ri) & (bitsize - 1); 4611 } 4612 4613 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4614 if (!a->sf) { 4615 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4616 } 4617 return true; 4618 } 4619 4620 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4621 { 4622 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4623 4624 tcg_rd = cpu_reg(s, a->rd); 4625 4626 if (unlikely(a->imm == 0)) { 4627 /* 4628 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4629 * so an extract from bit 0 is a special case. 4630 */ 4631 if (a->sf) { 4632 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4633 } else { 4634 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4635 } 4636 } else { 4637 tcg_rm = cpu_reg(s, a->rm); 4638 tcg_rn = cpu_reg(s, a->rn); 4639 4640 if (a->sf) { 4641 /* Specialization to ROR happens in EXTRACT2. */ 4642 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4643 } else { 4644 TCGv_i32 t0 = tcg_temp_new_i32(); 4645 4646 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4647 if (a->rm == a->rn) { 4648 tcg_gen_rotri_i32(t0, t0, a->imm); 4649 } else { 4650 TCGv_i32 t1 = tcg_temp_new_i32(); 4651 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4652 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4653 } 4654 tcg_gen_extu_i32_i64(tcg_rd, t0); 4655 } 4656 } 4657 return true; 4658 } 4659 4660 /* 4661 * Cryptographic AES, SHA, SHA512 4662 */ 4663 4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4668 4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4673 4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4677 4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4681 4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4689 4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4692 4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4695 4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4697 { 4698 if (!dc_isar_feature(aa64_sm3, s)) { 4699 return false; 4700 } 4701 if (fp_access_check(s)) { 4702 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4703 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4704 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4705 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4706 unsigned vsz, dofs; 4707 4708 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4709 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4710 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4711 4712 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4713 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4714 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4715 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4716 4717 /* Clear the whole register first, then store bits [127:96]. */ 4718 vsz = vec_full_reg_size(s); 4719 dofs = vec_full_reg_offset(s, a->rd); 4720 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4721 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4722 } 4723 return true; 4724 } 4725 4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4727 { 4728 if (fp_access_check(s)) { 4729 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4730 } 4731 return true; 4732 } 4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4737 4738 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4739 { 4740 if (!dc_isar_feature(aa64_sha3, s)) { 4741 return false; 4742 } 4743 if (fp_access_check(s)) { 4744 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4745 vec_full_reg_offset(s, a->rn), 4746 vec_full_reg_offset(s, a->rm), a->imm, 16, 4747 vec_full_reg_size(s)); 4748 } 4749 return true; 4750 } 4751 4752 /* 4753 * Advanced SIMD copy 4754 */ 4755 4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4757 { 4758 unsigned esz = ctz32(imm); 4759 if (esz <= MO_64) { 4760 *pesz = esz; 4761 *pidx = imm >> (esz + 1); 4762 return true; 4763 } 4764 return false; 4765 } 4766 4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4768 { 4769 MemOp esz; 4770 unsigned idx; 4771 4772 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4773 return false; 4774 } 4775 if (fp_access_check(s)) { 4776 /* 4777 * This instruction just extracts the specified element and 4778 * zero-extends it into the bottom of the destination register. 4779 */ 4780 TCGv_i64 tmp = tcg_temp_new_i64(); 4781 read_vec_element(s, tmp, a->rn, idx, esz); 4782 write_fp_dreg(s, a->rd, tmp); 4783 } 4784 return true; 4785 } 4786 4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4788 { 4789 MemOp esz; 4790 unsigned idx; 4791 4792 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4793 return false; 4794 } 4795 if (esz == MO_64 && !a->q) { 4796 return false; 4797 } 4798 if (fp_access_check(s)) { 4799 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4800 vec_reg_offset(s, a->rn, idx, esz), 4801 a->q ? 16 : 8, vec_full_reg_size(s)); 4802 } 4803 return true; 4804 } 4805 4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4807 { 4808 MemOp esz; 4809 unsigned idx; 4810 4811 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4812 return false; 4813 } 4814 if (esz == MO_64 && !a->q) { 4815 return false; 4816 } 4817 if (fp_access_check(s)) { 4818 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4819 a->q ? 16 : 8, vec_full_reg_size(s), 4820 cpu_reg(s, a->rn)); 4821 } 4822 return true; 4823 } 4824 4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4826 { 4827 MemOp esz; 4828 unsigned idx; 4829 4830 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4831 return false; 4832 } 4833 if (is_signed) { 4834 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4835 return false; 4836 } 4837 } else { 4838 if (esz == MO_64 ? !a->q : a->q) { 4839 return false; 4840 } 4841 } 4842 if (fp_access_check(s)) { 4843 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4844 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4845 if (is_signed && !a->q) { 4846 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4847 } 4848 } 4849 return true; 4850 } 4851 4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4853 TRANS(UMOV, do_smov_umov, a, 0) 4854 4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4856 { 4857 MemOp esz; 4858 unsigned idx; 4859 4860 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4861 return false; 4862 } 4863 if (fp_access_check(s)) { 4864 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4865 clear_vec_high(s, true, a->rd); 4866 } 4867 return true; 4868 } 4869 4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4871 { 4872 MemOp esz; 4873 unsigned didx, sidx; 4874 4875 if (!decode_esz_idx(a->di, &esz, &didx)) { 4876 return false; 4877 } 4878 sidx = a->si >> esz; 4879 if (fp_access_check(s)) { 4880 TCGv_i64 tmp = tcg_temp_new_i64(); 4881 4882 read_vec_element(s, tmp, a->rn, sidx, esz); 4883 write_vec_element(s, tmp, a->rd, didx, esz); 4884 4885 /* INS is considered a 128-bit write for SVE. */ 4886 clear_vec_high(s, true, a->rd); 4887 } 4888 return true; 4889 } 4890 4891 /* 4892 * Advanced SIMD three same 4893 */ 4894 4895 typedef struct FPScalar { 4896 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4897 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4898 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4899 } FPScalar; 4900 4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4902 { 4903 switch (a->esz) { 4904 case MO_64: 4905 if (fp_access_check(s)) { 4906 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4907 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4908 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4909 write_fp_dreg(s, a->rd, t0); 4910 } 4911 break; 4912 case MO_32: 4913 if (fp_access_check(s)) { 4914 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4915 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4916 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4917 write_fp_sreg(s, a->rd, t0); 4918 } 4919 break; 4920 case MO_16: 4921 if (!dc_isar_feature(aa64_fp16, s)) { 4922 return false; 4923 } 4924 if (fp_access_check(s)) { 4925 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4926 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4927 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4928 write_fp_sreg(s, a->rd, t0); 4929 } 4930 break; 4931 default: 4932 return false; 4933 } 4934 return true; 4935 } 4936 4937 static const FPScalar f_scalar_fadd = { 4938 gen_helper_vfp_addh, 4939 gen_helper_vfp_adds, 4940 gen_helper_vfp_addd, 4941 }; 4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4943 4944 static const FPScalar f_scalar_fsub = { 4945 gen_helper_vfp_subh, 4946 gen_helper_vfp_subs, 4947 gen_helper_vfp_subd, 4948 }; 4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4950 4951 static const FPScalar f_scalar_fdiv = { 4952 gen_helper_vfp_divh, 4953 gen_helper_vfp_divs, 4954 gen_helper_vfp_divd, 4955 }; 4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4957 4958 static const FPScalar f_scalar_fmul = { 4959 gen_helper_vfp_mulh, 4960 gen_helper_vfp_muls, 4961 gen_helper_vfp_muld, 4962 }; 4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4964 4965 static const FPScalar f_scalar_fmax = { 4966 gen_helper_advsimd_maxh, 4967 gen_helper_vfp_maxs, 4968 gen_helper_vfp_maxd, 4969 }; 4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4971 4972 static const FPScalar f_scalar_fmin = { 4973 gen_helper_advsimd_minh, 4974 gen_helper_vfp_mins, 4975 gen_helper_vfp_mind, 4976 }; 4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4978 4979 static const FPScalar f_scalar_fmaxnm = { 4980 gen_helper_advsimd_maxnumh, 4981 gen_helper_vfp_maxnums, 4982 gen_helper_vfp_maxnumd, 4983 }; 4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4985 4986 static const FPScalar f_scalar_fminnm = { 4987 gen_helper_advsimd_minnumh, 4988 gen_helper_vfp_minnums, 4989 gen_helper_vfp_minnumd, 4990 }; 4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4992 4993 static const FPScalar f_scalar_fmulx = { 4994 gen_helper_advsimd_mulxh, 4995 gen_helper_vfp_mulxs, 4996 gen_helper_vfp_mulxd, 4997 }; 4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4999 5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5001 { 5002 gen_helper_vfp_mulh(d, n, m, s); 5003 gen_vfp_negh(d, d); 5004 } 5005 5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5007 { 5008 gen_helper_vfp_muls(d, n, m, s); 5009 gen_vfp_negs(d, d); 5010 } 5011 5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5013 { 5014 gen_helper_vfp_muld(d, n, m, s); 5015 gen_vfp_negd(d, d); 5016 } 5017 5018 static const FPScalar f_scalar_fnmul = { 5019 gen_fnmul_h, 5020 gen_fnmul_s, 5021 gen_fnmul_d, 5022 }; 5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 5024 5025 static const FPScalar f_scalar_fcmeq = { 5026 gen_helper_advsimd_ceq_f16, 5027 gen_helper_neon_ceq_f32, 5028 gen_helper_neon_ceq_f64, 5029 }; 5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 5031 5032 static const FPScalar f_scalar_fcmge = { 5033 gen_helper_advsimd_cge_f16, 5034 gen_helper_neon_cge_f32, 5035 gen_helper_neon_cge_f64, 5036 }; 5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 5038 5039 static const FPScalar f_scalar_fcmgt = { 5040 gen_helper_advsimd_cgt_f16, 5041 gen_helper_neon_cgt_f32, 5042 gen_helper_neon_cgt_f64, 5043 }; 5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 5045 5046 static const FPScalar f_scalar_facge = { 5047 gen_helper_advsimd_acge_f16, 5048 gen_helper_neon_acge_f32, 5049 gen_helper_neon_acge_f64, 5050 }; 5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5052 5053 static const FPScalar f_scalar_facgt = { 5054 gen_helper_advsimd_acgt_f16, 5055 gen_helper_neon_acgt_f32, 5056 gen_helper_neon_acgt_f64, 5057 }; 5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5059 5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5061 { 5062 gen_helper_vfp_subh(d, n, m, s); 5063 gen_vfp_absh(d, d); 5064 } 5065 5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5067 { 5068 gen_helper_vfp_subs(d, n, m, s); 5069 gen_vfp_abss(d, d); 5070 } 5071 5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5073 { 5074 gen_helper_vfp_subd(d, n, m, s); 5075 gen_vfp_absd(d, d); 5076 } 5077 5078 static const FPScalar f_scalar_fabd = { 5079 gen_fabd_h, 5080 gen_fabd_s, 5081 gen_fabd_d, 5082 }; 5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5084 5085 static const FPScalar f_scalar_frecps = { 5086 gen_helper_recpsf_f16, 5087 gen_helper_recpsf_f32, 5088 gen_helper_recpsf_f64, 5089 }; 5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5091 5092 static const FPScalar f_scalar_frsqrts = { 5093 gen_helper_rsqrtsf_f16, 5094 gen_helper_rsqrtsf_f32, 5095 gen_helper_rsqrtsf_f64, 5096 }; 5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5098 5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a, 5100 MemOp sgn_n, MemOp sgn_m, 5101 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp), 5102 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) 5103 { 5104 TCGv_i64 t0, t1, t2, qc; 5105 MemOp esz = a->esz; 5106 5107 if (!fp_access_check(s)) { 5108 return true; 5109 } 5110 5111 t0 = tcg_temp_new_i64(); 5112 t1 = tcg_temp_new_i64(); 5113 t2 = tcg_temp_new_i64(); 5114 qc = tcg_temp_new_i64(); 5115 read_vec_element(s, t1, a->rn, 0, esz | sgn_n); 5116 read_vec_element(s, t2, a->rm, 0, esz | sgn_m); 5117 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5118 5119 if (esz == MO_64) { 5120 gen_d(t0, qc, t1, t2); 5121 } else { 5122 gen_bhs(t0, qc, t1, t2, esz); 5123 tcg_gen_ext_i64(t0, t0, esz); 5124 } 5125 5126 write_fp_dreg(s, a->rd, t0); 5127 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5128 return true; 5129 } 5130 5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d) 5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d) 5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d) 5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d) 5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d) 5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d) 5137 5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a, 5139 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64)) 5140 { 5141 if (fp_access_check(s)) { 5142 TCGv_i64 t0 = tcg_temp_new_i64(); 5143 TCGv_i64 t1 = tcg_temp_new_i64(); 5144 5145 read_vec_element(s, t0, a->rn, 0, MO_64); 5146 read_vec_element(s, t1, a->rm, 0, MO_64); 5147 fn(t0, t0, t1); 5148 write_fp_dreg(s, a->rd, t0); 5149 } 5150 return true; 5151 } 5152 5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64) 5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64) 5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64) 5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64) 5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64) 5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64) 5159 5160 typedef struct ENVScalar2 { 5161 NeonGenTwoOpEnvFn *gen_bhs[3]; 5162 NeonGenTwo64OpEnvFn *gen_d; 5163 } ENVScalar2; 5164 5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f) 5166 { 5167 if (!fp_access_check(s)) { 5168 return true; 5169 } 5170 if (a->esz == MO_64) { 5171 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5172 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5173 f->gen_d(t0, tcg_env, t0, t1); 5174 write_fp_dreg(s, a->rd, t0); 5175 } else { 5176 TCGv_i32 t0 = tcg_temp_new_i32(); 5177 TCGv_i32 t1 = tcg_temp_new_i32(); 5178 5179 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5180 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5181 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 5182 write_fp_sreg(s, a->rd, t0); 5183 } 5184 return true; 5185 } 5186 5187 static const ENVScalar2 f_scalar_sqshl = { 5188 { gen_helper_neon_qshl_s8, 5189 gen_helper_neon_qshl_s16, 5190 gen_helper_neon_qshl_s32 }, 5191 gen_helper_neon_qshl_s64, 5192 }; 5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl) 5194 5195 static const ENVScalar2 f_scalar_uqshl = { 5196 { gen_helper_neon_qshl_u8, 5197 gen_helper_neon_qshl_u16, 5198 gen_helper_neon_qshl_u32 }, 5199 gen_helper_neon_qshl_u64, 5200 }; 5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl) 5202 5203 static const ENVScalar2 f_scalar_sqrshl = { 5204 { gen_helper_neon_qrshl_s8, 5205 gen_helper_neon_qrshl_s16, 5206 gen_helper_neon_qrshl_s32 }, 5207 gen_helper_neon_qrshl_s64, 5208 }; 5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl) 5210 5211 static const ENVScalar2 f_scalar_uqrshl = { 5212 { gen_helper_neon_qrshl_u8, 5213 gen_helper_neon_qrshl_u16, 5214 gen_helper_neon_qrshl_u32 }, 5215 gen_helper_neon_qrshl_u64, 5216 }; 5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl) 5218 5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a, 5220 const ENVScalar2 *f) 5221 { 5222 if (a->esz == MO_16 || a->esz == MO_32) { 5223 return do_env_scalar2(s, a, f); 5224 } 5225 return false; 5226 } 5227 5228 static const ENVScalar2 f_scalar_sqdmulh = { 5229 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 } 5230 }; 5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh) 5232 5233 static const ENVScalar2 f_scalar_sqrdmulh = { 5234 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 } 5235 }; 5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh) 5237 5238 typedef struct ENVScalar3 { 5239 NeonGenThreeOpEnvFn *gen_hs[2]; 5240 } ENVScalar3; 5241 5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a, 5243 const ENVScalar3 *f) 5244 { 5245 TCGv_i32 t0, t1, t2; 5246 5247 if (a->esz != MO_16 && a->esz != MO_32) { 5248 return false; 5249 } 5250 if (!fp_access_check(s)) { 5251 return true; 5252 } 5253 5254 t0 = tcg_temp_new_i32(); 5255 t1 = tcg_temp_new_i32(); 5256 t2 = tcg_temp_new_i32(); 5257 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5258 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5259 read_vec_element_i32(s, t2, a->rd, 0, a->esz); 5260 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2); 5261 write_fp_sreg(s, a->rd, t0); 5262 return true; 5263 } 5264 5265 static const ENVScalar3 f_scalar_sqrdmlah = { 5266 { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 } 5267 }; 5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah) 5269 5270 static const ENVScalar3 f_scalar_sqrdmlsh = { 5271 { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 } 5272 }; 5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh) 5274 5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond) 5276 { 5277 if (fp_access_check(s)) { 5278 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5279 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5280 tcg_gen_negsetcond_i64(cond, t0, t0, t1); 5281 write_fp_dreg(s, a->rd, t0); 5282 } 5283 return true; 5284 } 5285 5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT) 5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU) 5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE) 5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU) 5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ) 5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE) 5292 5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data, 5294 gen_helper_gvec_3_ptr * const fns[3]) 5295 { 5296 MemOp esz = a->esz; 5297 5298 switch (esz) { 5299 case MO_64: 5300 if (!a->q) { 5301 return false; 5302 } 5303 break; 5304 case MO_32: 5305 break; 5306 case MO_16: 5307 if (!dc_isar_feature(aa64_fp16, s)) { 5308 return false; 5309 } 5310 break; 5311 default: 5312 return false; 5313 } 5314 if (fp_access_check(s)) { 5315 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5316 esz == MO_16, data, fns[esz - 1]); 5317 } 5318 return true; 5319 } 5320 5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5322 gen_helper_gvec_fadd_h, 5323 gen_helper_gvec_fadd_s, 5324 gen_helper_gvec_fadd_d, 5325 }; 5326 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd) 5327 5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5329 gen_helper_gvec_fsub_h, 5330 gen_helper_gvec_fsub_s, 5331 gen_helper_gvec_fsub_d, 5332 }; 5333 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub) 5334 5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5336 gen_helper_gvec_fdiv_h, 5337 gen_helper_gvec_fdiv_s, 5338 gen_helper_gvec_fdiv_d, 5339 }; 5340 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv) 5341 5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5343 gen_helper_gvec_fmul_h, 5344 gen_helper_gvec_fmul_s, 5345 gen_helper_gvec_fmul_d, 5346 }; 5347 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul) 5348 5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5350 gen_helper_gvec_fmax_h, 5351 gen_helper_gvec_fmax_s, 5352 gen_helper_gvec_fmax_d, 5353 }; 5354 TRANS(FMAX_v, do_fp3_vector, a, 0, f_vector_fmax) 5355 5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5357 gen_helper_gvec_fmin_h, 5358 gen_helper_gvec_fmin_s, 5359 gen_helper_gvec_fmin_d, 5360 }; 5361 TRANS(FMIN_v, do_fp3_vector, a, 0, f_vector_fmin) 5362 5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5364 gen_helper_gvec_fmaxnum_h, 5365 gen_helper_gvec_fmaxnum_s, 5366 gen_helper_gvec_fmaxnum_d, 5367 }; 5368 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm) 5369 5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5371 gen_helper_gvec_fminnum_h, 5372 gen_helper_gvec_fminnum_s, 5373 gen_helper_gvec_fminnum_d, 5374 }; 5375 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm) 5376 5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5378 gen_helper_gvec_fmulx_h, 5379 gen_helper_gvec_fmulx_s, 5380 gen_helper_gvec_fmulx_d, 5381 }; 5382 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx) 5383 5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5385 gen_helper_gvec_vfma_h, 5386 gen_helper_gvec_vfma_s, 5387 gen_helper_gvec_vfma_d, 5388 }; 5389 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla) 5390 5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5392 gen_helper_gvec_vfms_h, 5393 gen_helper_gvec_vfms_s, 5394 gen_helper_gvec_vfms_d, 5395 }; 5396 TRANS(FMLS_v, do_fp3_vector, a, 0, f_vector_fmls) 5397 5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5399 gen_helper_gvec_fceq_h, 5400 gen_helper_gvec_fceq_s, 5401 gen_helper_gvec_fceq_d, 5402 }; 5403 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq) 5404 5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5406 gen_helper_gvec_fcge_h, 5407 gen_helper_gvec_fcge_s, 5408 gen_helper_gvec_fcge_d, 5409 }; 5410 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge) 5411 5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5413 gen_helper_gvec_fcgt_h, 5414 gen_helper_gvec_fcgt_s, 5415 gen_helper_gvec_fcgt_d, 5416 }; 5417 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt) 5418 5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5420 gen_helper_gvec_facge_h, 5421 gen_helper_gvec_facge_s, 5422 gen_helper_gvec_facge_d, 5423 }; 5424 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge) 5425 5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5427 gen_helper_gvec_facgt_h, 5428 gen_helper_gvec_facgt_s, 5429 gen_helper_gvec_facgt_d, 5430 }; 5431 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt) 5432 5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5434 gen_helper_gvec_fabd_h, 5435 gen_helper_gvec_fabd_s, 5436 gen_helper_gvec_fabd_d, 5437 }; 5438 TRANS(FABD_v, do_fp3_vector, a, 0, f_vector_fabd) 5439 5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5441 gen_helper_gvec_recps_h, 5442 gen_helper_gvec_recps_s, 5443 gen_helper_gvec_recps_d, 5444 }; 5445 TRANS(FRECPS_v, do_fp3_vector, a, 0, f_vector_frecps) 5446 5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5448 gen_helper_gvec_rsqrts_h, 5449 gen_helper_gvec_rsqrts_s, 5450 gen_helper_gvec_rsqrts_d, 5451 }; 5452 TRANS(FRSQRTS_v, do_fp3_vector, a, 0, f_vector_frsqrts) 5453 5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5455 gen_helper_gvec_faddp_h, 5456 gen_helper_gvec_faddp_s, 5457 gen_helper_gvec_faddp_d, 5458 }; 5459 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp) 5460 5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5462 gen_helper_gvec_fmaxp_h, 5463 gen_helper_gvec_fmaxp_s, 5464 gen_helper_gvec_fmaxp_d, 5465 }; 5466 TRANS(FMAXP_v, do_fp3_vector, a, 0, f_vector_fmaxp) 5467 5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5469 gen_helper_gvec_fminp_h, 5470 gen_helper_gvec_fminp_s, 5471 gen_helper_gvec_fminp_d, 5472 }; 5473 TRANS(FMINP_v, do_fp3_vector, a, 0, f_vector_fminp) 5474 5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5476 gen_helper_gvec_fmaxnump_h, 5477 gen_helper_gvec_fmaxnump_s, 5478 gen_helper_gvec_fmaxnump_d, 5479 }; 5480 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp) 5481 5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5483 gen_helper_gvec_fminnump_h, 5484 gen_helper_gvec_fminnump_s, 5485 gen_helper_gvec_fminnump_d, 5486 }; 5487 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp) 5488 5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2) 5490 { 5491 if (fp_access_check(s)) { 5492 int data = (is_2 << 1) | is_s; 5493 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5494 vec_full_reg_offset(s, a->rn), 5495 vec_full_reg_offset(s, a->rm), tcg_env, 5496 a->q ? 16 : 8, vec_full_reg_size(s), 5497 data, gen_helper_gvec_fmlal_a64); 5498 } 5499 return true; 5500 } 5501 5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false) 5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false) 5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true) 5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true) 5506 5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) 5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) 5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) 5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) 5512 5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and) 5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc) 5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or) 5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc) 5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor) 5518 5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c) 5520 { 5521 if (fp_access_check(s)) { 5522 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0); 5523 } 5524 return true; 5525 } 5526 5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm) 5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd) 5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn) 5530 5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc) 5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc) 5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc) 5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc) 5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc) 5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc) 5537 5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl) 5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl) 5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl) 5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl) 5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl) 5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl) 5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl) 5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl) 5546 5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add) 5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub) 5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd) 5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd) 5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub) 5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub) 5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd) 5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd) 5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax) 5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax) 5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin) 5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin) 5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba) 5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba) 5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd) 5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd) 5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul) 5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b) 5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla) 5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls) 5567 5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond) 5569 { 5570 if (a->esz == MO_64 && !a->q) { 5571 return false; 5572 } 5573 if (fp_access_check(s)) { 5574 tcg_gen_gvec_cmp(cond, a->esz, 5575 vec_full_reg_offset(s, a->rd), 5576 vec_full_reg_offset(s, a->rn), 5577 vec_full_reg_offset(s, a->rm), 5578 a->q ? 16 : 8, vec_full_reg_size(s)); 5579 } 5580 return true; 5581 } 5582 5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT) 5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU) 5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE) 5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU) 5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ) 5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst) 5589 5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc) 5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc) 5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc) 5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc) 5594 5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a, 5596 gen_helper_gvec_4 *fn) 5597 { 5598 if (fp_access_check(s)) { 5599 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn); 5600 } 5601 return true; 5602 } 5603 5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b) 5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b) 5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b) 5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot) 5608 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfmmla) 5609 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b) 5610 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b) 5611 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b) 5612 5613 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a) 5614 { 5615 if (!dc_isar_feature(aa64_bf16, s)) { 5616 return false; 5617 } 5618 if (fp_access_check(s)) { 5619 /* Q bit selects BFMLALB vs BFMLALT. */ 5620 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q, 5621 gen_helper_gvec_bfmlal); 5622 } 5623 return true; 5624 } 5625 5626 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = { 5627 gen_helper_gvec_fcaddh, 5628 gen_helper_gvec_fcadds, 5629 gen_helper_gvec_fcaddd, 5630 }; 5631 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0, f_vector_fcadd) 5632 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1, f_vector_fcadd) 5633 5634 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a) 5635 { 5636 gen_helper_gvec_4_ptr *fn; 5637 5638 if (!dc_isar_feature(aa64_fcma, s)) { 5639 return false; 5640 } 5641 switch (a->esz) { 5642 case MO_64: 5643 if (!a->q) { 5644 return false; 5645 } 5646 fn = gen_helper_gvec_fcmlad; 5647 break; 5648 case MO_32: 5649 fn = gen_helper_gvec_fcmlas; 5650 break; 5651 case MO_16: 5652 if (!dc_isar_feature(aa64_fp16, s)) { 5653 return false; 5654 } 5655 fn = gen_helper_gvec_fcmlah; 5656 break; 5657 default: 5658 return false; 5659 } 5660 if (fp_access_check(s)) { 5661 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5662 a->esz == MO_16, a->rot, fn); 5663 } 5664 return true; 5665 } 5666 5667 /* 5668 * Advanced SIMD scalar/vector x indexed element 5669 */ 5670 5671 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5672 { 5673 switch (a->esz) { 5674 case MO_64: 5675 if (fp_access_check(s)) { 5676 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5677 TCGv_i64 t1 = tcg_temp_new_i64(); 5678 5679 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5680 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5681 write_fp_dreg(s, a->rd, t0); 5682 } 5683 break; 5684 case MO_32: 5685 if (fp_access_check(s)) { 5686 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5687 TCGv_i32 t1 = tcg_temp_new_i32(); 5688 5689 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5690 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5691 write_fp_sreg(s, a->rd, t0); 5692 } 5693 break; 5694 case MO_16: 5695 if (!dc_isar_feature(aa64_fp16, s)) { 5696 return false; 5697 } 5698 if (fp_access_check(s)) { 5699 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5700 TCGv_i32 t1 = tcg_temp_new_i32(); 5701 5702 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5703 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5704 write_fp_sreg(s, a->rd, t0); 5705 } 5706 break; 5707 default: 5708 g_assert_not_reached(); 5709 } 5710 return true; 5711 } 5712 5713 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5714 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5715 5716 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5717 { 5718 switch (a->esz) { 5719 case MO_64: 5720 if (fp_access_check(s)) { 5721 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5722 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5723 TCGv_i64 t2 = tcg_temp_new_i64(); 5724 5725 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5726 if (neg) { 5727 gen_vfp_negd(t1, t1); 5728 } 5729 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5730 write_fp_dreg(s, a->rd, t0); 5731 } 5732 break; 5733 case MO_32: 5734 if (fp_access_check(s)) { 5735 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5736 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5737 TCGv_i32 t2 = tcg_temp_new_i32(); 5738 5739 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5740 if (neg) { 5741 gen_vfp_negs(t1, t1); 5742 } 5743 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5744 write_fp_sreg(s, a->rd, t0); 5745 } 5746 break; 5747 case MO_16: 5748 if (!dc_isar_feature(aa64_fp16, s)) { 5749 return false; 5750 } 5751 if (fp_access_check(s)) { 5752 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5753 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5754 TCGv_i32 t2 = tcg_temp_new_i32(); 5755 5756 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5757 if (neg) { 5758 gen_vfp_negh(t1, t1); 5759 } 5760 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5761 fpstatus_ptr(FPST_FPCR_F16)); 5762 write_fp_sreg(s, a->rd, t0); 5763 } 5764 break; 5765 default: 5766 g_assert_not_reached(); 5767 } 5768 return true; 5769 } 5770 5771 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5772 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5773 5774 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a, 5775 const ENVScalar2 *f) 5776 { 5777 if (a->esz < MO_16 || a->esz > MO_32) { 5778 return false; 5779 } 5780 if (fp_access_check(s)) { 5781 TCGv_i32 t0 = tcg_temp_new_i32(); 5782 TCGv_i32 t1 = tcg_temp_new_i32(); 5783 5784 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5785 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 5786 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 5787 write_fp_sreg(s, a->rd, t0); 5788 } 5789 return true; 5790 } 5791 5792 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh) 5793 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh) 5794 5795 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a, 5796 const ENVScalar3 *f) 5797 { 5798 if (a->esz < MO_16 || a->esz > MO_32) { 5799 return false; 5800 } 5801 if (fp_access_check(s)) { 5802 TCGv_i32 t0 = tcg_temp_new_i32(); 5803 TCGv_i32 t1 = tcg_temp_new_i32(); 5804 TCGv_i32 t2 = tcg_temp_new_i32(); 5805 5806 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5807 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 5808 read_vec_element_i32(s, t2, a->rd, 0, a->esz); 5809 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2); 5810 write_fp_sreg(s, a->rd, t0); 5811 } 5812 return true; 5813 } 5814 5815 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah) 5816 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh) 5817 5818 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5819 gen_helper_gvec_3_ptr * const fns[3]) 5820 { 5821 MemOp esz = a->esz; 5822 5823 switch (esz) { 5824 case MO_64: 5825 if (!a->q) { 5826 return false; 5827 } 5828 break; 5829 case MO_32: 5830 break; 5831 case MO_16: 5832 if (!dc_isar_feature(aa64_fp16, s)) { 5833 return false; 5834 } 5835 break; 5836 default: 5837 g_assert_not_reached(); 5838 } 5839 if (fp_access_check(s)) { 5840 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5841 esz == MO_16, a->idx, fns[esz - 1]); 5842 } 5843 return true; 5844 } 5845 5846 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5847 gen_helper_gvec_fmul_idx_h, 5848 gen_helper_gvec_fmul_idx_s, 5849 gen_helper_gvec_fmul_idx_d, 5850 }; 5851 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5852 5853 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5854 gen_helper_gvec_fmulx_idx_h, 5855 gen_helper_gvec_fmulx_idx_s, 5856 gen_helper_gvec_fmulx_idx_d, 5857 }; 5858 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5859 5860 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5861 { 5862 static gen_helper_gvec_4_ptr * const fns[3] = { 5863 gen_helper_gvec_fmla_idx_h, 5864 gen_helper_gvec_fmla_idx_s, 5865 gen_helper_gvec_fmla_idx_d, 5866 }; 5867 MemOp esz = a->esz; 5868 5869 switch (esz) { 5870 case MO_64: 5871 if (!a->q) { 5872 return false; 5873 } 5874 break; 5875 case MO_32: 5876 break; 5877 case MO_16: 5878 if (!dc_isar_feature(aa64_fp16, s)) { 5879 return false; 5880 } 5881 break; 5882 default: 5883 g_assert_not_reached(); 5884 } 5885 if (fp_access_check(s)) { 5886 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5887 esz == MO_16, (a->idx << 1) | neg, 5888 fns[esz - 1]); 5889 } 5890 return true; 5891 } 5892 5893 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5894 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5895 5896 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2) 5897 { 5898 if (fp_access_check(s)) { 5899 int data = (a->idx << 2) | (is_2 << 1) | is_s; 5900 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5901 vec_full_reg_offset(s, a->rn), 5902 vec_full_reg_offset(s, a->rm), tcg_env, 5903 a->q ? 16 : 8, vec_full_reg_size(s), 5904 data, gen_helper_gvec_fmlal_idx_a64); 5905 } 5906 return true; 5907 } 5908 5909 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false) 5910 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false) 5911 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true) 5912 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true) 5913 5914 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5915 gen_helper_gvec_3 * const fns[2]) 5916 { 5917 assert(a->esz == MO_16 || a->esz == MO_32); 5918 if (fp_access_check(s)) { 5919 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]); 5920 } 5921 return true; 5922 } 5923 5924 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = { 5925 gen_helper_gvec_mul_idx_h, 5926 gen_helper_gvec_mul_idx_s, 5927 }; 5928 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul) 5929 5930 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub) 5931 { 5932 static gen_helper_gvec_4 * const fns[2][2] = { 5933 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h }, 5934 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s }, 5935 }; 5936 5937 assert(a->esz == MO_16 || a->esz == MO_32); 5938 if (fp_access_check(s)) { 5939 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 5940 a->idx, fns[a->esz - 1][sub]); 5941 } 5942 return true; 5943 } 5944 5945 TRANS(MLA_vi, do_mla_vector_idx, a, false) 5946 TRANS(MLS_vi, do_mla_vector_idx, a, true) 5947 5948 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a, 5949 gen_helper_gvec_4 * const fns[2]) 5950 { 5951 assert(a->esz == MO_16 || a->esz == MO_32); 5952 if (fp_access_check(s)) { 5953 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd), 5954 vec_full_reg_offset(s, a->rn), 5955 vec_full_reg_offset(s, a->rm), 5956 offsetof(CPUARMState, vfp.qc), 5957 a->q ? 16 : 8, vec_full_reg_size(s), 5958 a->idx, fns[a->esz - 1]); 5959 } 5960 return true; 5961 } 5962 5963 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = { 5964 gen_helper_neon_sqdmulh_idx_h, 5965 gen_helper_neon_sqdmulh_idx_s, 5966 }; 5967 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh) 5968 5969 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = { 5970 gen_helper_neon_sqrdmulh_idx_h, 5971 gen_helper_neon_sqrdmulh_idx_s, 5972 }; 5973 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh) 5974 5975 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = { 5976 gen_helper_neon_sqrdmlah_idx_h, 5977 gen_helper_neon_sqrdmlah_idx_s, 5978 }; 5979 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a, 5980 f_vector_idx_sqrdmlah) 5981 5982 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = { 5983 gen_helper_neon_sqrdmlsh_idx_h, 5984 gen_helper_neon_sqrdmlsh_idx_s, 5985 }; 5986 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a, 5987 f_vector_idx_sqrdmlsh) 5988 5989 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a, 5990 gen_helper_gvec_4 *fn) 5991 { 5992 if (fp_access_check(s)) { 5993 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn); 5994 } 5995 return true; 5996 } 5997 5998 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b) 5999 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b) 6000 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a, 6001 gen_helper_gvec_sudot_idx_b) 6002 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a, 6003 gen_helper_gvec_usdot_idx_b) 6004 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a, 6005 gen_helper_gvec_bfdot_idx) 6006 6007 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a) 6008 { 6009 if (!dc_isar_feature(aa64_bf16, s)) { 6010 return false; 6011 } 6012 if (fp_access_check(s)) { 6013 /* Q bit selects BFMLALB vs BFMLALT. */ 6014 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0, 6015 (a->idx << 1) | a->q, 6016 gen_helper_gvec_bfmlal_idx); 6017 } 6018 return true; 6019 } 6020 6021 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a) 6022 { 6023 gen_helper_gvec_4_ptr *fn; 6024 6025 if (!dc_isar_feature(aa64_fcma, s)) { 6026 return false; 6027 } 6028 switch (a->esz) { 6029 case MO_16: 6030 if (!dc_isar_feature(aa64_fp16, s)) { 6031 return false; 6032 } 6033 fn = gen_helper_gvec_fcmlah_idx; 6034 break; 6035 case MO_32: 6036 fn = gen_helper_gvec_fcmlas_idx; 6037 break; 6038 default: 6039 g_assert_not_reached(); 6040 } 6041 if (fp_access_check(s)) { 6042 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 6043 a->esz == MO_16, (a->idx << 2) | a->rot, fn); 6044 } 6045 return true; 6046 } 6047 6048 /* 6049 * Advanced SIMD scalar pairwise 6050 */ 6051 6052 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 6053 { 6054 switch (a->esz) { 6055 case MO_64: 6056 if (fp_access_check(s)) { 6057 TCGv_i64 t0 = tcg_temp_new_i64(); 6058 TCGv_i64 t1 = tcg_temp_new_i64(); 6059 6060 read_vec_element(s, t0, a->rn, 0, MO_64); 6061 read_vec_element(s, t1, a->rn, 1, MO_64); 6062 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6063 write_fp_dreg(s, a->rd, t0); 6064 } 6065 break; 6066 case MO_32: 6067 if (fp_access_check(s)) { 6068 TCGv_i32 t0 = tcg_temp_new_i32(); 6069 TCGv_i32 t1 = tcg_temp_new_i32(); 6070 6071 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 6072 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 6073 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 6074 write_fp_sreg(s, a->rd, t0); 6075 } 6076 break; 6077 case MO_16: 6078 if (!dc_isar_feature(aa64_fp16, s)) { 6079 return false; 6080 } 6081 if (fp_access_check(s)) { 6082 TCGv_i32 t0 = tcg_temp_new_i32(); 6083 TCGv_i32 t1 = tcg_temp_new_i32(); 6084 6085 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 6086 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 6087 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 6088 write_fp_sreg(s, a->rd, t0); 6089 } 6090 break; 6091 default: 6092 g_assert_not_reached(); 6093 } 6094 return true; 6095 } 6096 6097 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 6098 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 6099 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 6100 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 6101 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 6102 6103 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 6104 { 6105 if (fp_access_check(s)) { 6106 TCGv_i64 t0 = tcg_temp_new_i64(); 6107 TCGv_i64 t1 = tcg_temp_new_i64(); 6108 6109 read_vec_element(s, t0, a->rn, 0, MO_64); 6110 read_vec_element(s, t1, a->rn, 1, MO_64); 6111 tcg_gen_add_i64(t0, t0, t1); 6112 write_fp_dreg(s, a->rd, t0); 6113 } 6114 return true; 6115 } 6116 6117 /* 6118 * Floating-point conditional select 6119 */ 6120 6121 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a) 6122 { 6123 TCGv_i64 t_true, t_false; 6124 DisasCompare64 c; 6125 6126 switch (a->esz) { 6127 case MO_32: 6128 case MO_64: 6129 break; 6130 case MO_16: 6131 if (!dc_isar_feature(aa64_fp16, s)) { 6132 return false; 6133 } 6134 break; 6135 default: 6136 return false; 6137 } 6138 6139 if (!fp_access_check(s)) { 6140 return true; 6141 } 6142 6143 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6144 t_true = tcg_temp_new_i64(); 6145 t_false = tcg_temp_new_i64(); 6146 read_vec_element(s, t_true, a->rn, 0, a->esz); 6147 read_vec_element(s, t_false, a->rm, 0, a->esz); 6148 6149 a64_test_cc(&c, a->cond); 6150 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6151 t_true, t_false); 6152 6153 /* 6154 * Note that sregs & hregs write back zeros to the high bits, 6155 * and we've already done the zero-extension. 6156 */ 6157 write_fp_dreg(s, a->rd, t_true); 6158 return true; 6159 } 6160 6161 /* 6162 * Floating-point data-processing (3 source) 6163 */ 6164 6165 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n) 6166 { 6167 TCGv_ptr fpst; 6168 6169 /* 6170 * These are fused multiply-add. Note that doing the negations here 6171 * as separate steps is correct: an input NaN should come out with 6172 * its sign bit flipped if it is a negated-input. 6173 */ 6174 switch (a->esz) { 6175 case MO_64: 6176 if (fp_access_check(s)) { 6177 TCGv_i64 tn = read_fp_dreg(s, a->rn); 6178 TCGv_i64 tm = read_fp_dreg(s, a->rm); 6179 TCGv_i64 ta = read_fp_dreg(s, a->ra); 6180 6181 if (neg_a) { 6182 gen_vfp_negd(ta, ta); 6183 } 6184 if (neg_n) { 6185 gen_vfp_negd(tn, tn); 6186 } 6187 fpst = fpstatus_ptr(FPST_FPCR); 6188 gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst); 6189 write_fp_dreg(s, a->rd, ta); 6190 } 6191 break; 6192 6193 case MO_32: 6194 if (fp_access_check(s)) { 6195 TCGv_i32 tn = read_fp_sreg(s, a->rn); 6196 TCGv_i32 tm = read_fp_sreg(s, a->rm); 6197 TCGv_i32 ta = read_fp_sreg(s, a->ra); 6198 6199 if (neg_a) { 6200 gen_vfp_negs(ta, ta); 6201 } 6202 if (neg_n) { 6203 gen_vfp_negs(tn, tn); 6204 } 6205 fpst = fpstatus_ptr(FPST_FPCR); 6206 gen_helper_vfp_muladds(ta, tn, tm, ta, fpst); 6207 write_fp_sreg(s, a->rd, ta); 6208 } 6209 break; 6210 6211 case MO_16: 6212 if (!dc_isar_feature(aa64_fp16, s)) { 6213 return false; 6214 } 6215 if (fp_access_check(s)) { 6216 TCGv_i32 tn = read_fp_hreg(s, a->rn); 6217 TCGv_i32 tm = read_fp_hreg(s, a->rm); 6218 TCGv_i32 ta = read_fp_hreg(s, a->ra); 6219 6220 if (neg_a) { 6221 gen_vfp_negh(ta, ta); 6222 } 6223 if (neg_n) { 6224 gen_vfp_negh(tn, tn); 6225 } 6226 fpst = fpstatus_ptr(FPST_FPCR_F16); 6227 gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst); 6228 write_fp_sreg(s, a->rd, ta); 6229 } 6230 break; 6231 6232 default: 6233 return false; 6234 } 6235 return true; 6236 } 6237 6238 TRANS(FMADD, do_fmadd, a, false, false) 6239 TRANS(FNMADD, do_fmadd, a, true, true) 6240 TRANS(FMSUB, do_fmadd, a, false, true) 6241 TRANS(FNMSUB, do_fmadd, a, true, false) 6242 6243 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 6244 * Note that it is the caller's responsibility to ensure that the 6245 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 6246 * mandated semantics for out of range shifts. 6247 */ 6248 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 6249 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 6250 { 6251 switch (shift_type) { 6252 case A64_SHIFT_TYPE_LSL: 6253 tcg_gen_shl_i64(dst, src, shift_amount); 6254 break; 6255 case A64_SHIFT_TYPE_LSR: 6256 tcg_gen_shr_i64(dst, src, shift_amount); 6257 break; 6258 case A64_SHIFT_TYPE_ASR: 6259 if (!sf) { 6260 tcg_gen_ext32s_i64(dst, src); 6261 } 6262 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 6263 break; 6264 case A64_SHIFT_TYPE_ROR: 6265 if (sf) { 6266 tcg_gen_rotr_i64(dst, src, shift_amount); 6267 } else { 6268 TCGv_i32 t0, t1; 6269 t0 = tcg_temp_new_i32(); 6270 t1 = tcg_temp_new_i32(); 6271 tcg_gen_extrl_i64_i32(t0, src); 6272 tcg_gen_extrl_i64_i32(t1, shift_amount); 6273 tcg_gen_rotr_i32(t0, t0, t1); 6274 tcg_gen_extu_i32_i64(dst, t0); 6275 } 6276 break; 6277 default: 6278 assert(FALSE); /* all shift types should be handled */ 6279 break; 6280 } 6281 6282 if (!sf) { /* zero extend final result */ 6283 tcg_gen_ext32u_i64(dst, dst); 6284 } 6285 } 6286 6287 /* Shift a TCGv src by immediate, put result in dst. 6288 * The shift amount must be in range (this should always be true as the 6289 * relevant instructions will UNDEF on bad shift immediates). 6290 */ 6291 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 6292 enum a64_shift_type shift_type, unsigned int shift_i) 6293 { 6294 assert(shift_i < (sf ? 64 : 32)); 6295 6296 if (shift_i == 0) { 6297 tcg_gen_mov_i64(dst, src); 6298 } else { 6299 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 6300 } 6301 } 6302 6303 /* Logical (shifted register) 6304 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 6305 * +----+-----+-----------+-------+---+------+--------+------+------+ 6306 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 6307 * +----+-----+-----------+-------+---+------+--------+------+------+ 6308 */ 6309 static void disas_logic_reg(DisasContext *s, uint32_t insn) 6310 { 6311 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 6312 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 6313 6314 sf = extract32(insn, 31, 1); 6315 opc = extract32(insn, 29, 2); 6316 shift_type = extract32(insn, 22, 2); 6317 invert = extract32(insn, 21, 1); 6318 rm = extract32(insn, 16, 5); 6319 shift_amount = extract32(insn, 10, 6); 6320 rn = extract32(insn, 5, 5); 6321 rd = extract32(insn, 0, 5); 6322 6323 if (!sf && (shift_amount & (1 << 5))) { 6324 unallocated_encoding(s); 6325 return; 6326 } 6327 6328 tcg_rd = cpu_reg(s, rd); 6329 6330 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 6331 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 6332 * register-register MOV and MVN, so it is worth special casing. 6333 */ 6334 tcg_rm = cpu_reg(s, rm); 6335 if (invert) { 6336 tcg_gen_not_i64(tcg_rd, tcg_rm); 6337 if (!sf) { 6338 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6339 } 6340 } else { 6341 if (sf) { 6342 tcg_gen_mov_i64(tcg_rd, tcg_rm); 6343 } else { 6344 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 6345 } 6346 } 6347 return; 6348 } 6349 6350 tcg_rm = read_cpu_reg(s, rm, sf); 6351 6352 if (shift_amount) { 6353 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 6354 } 6355 6356 tcg_rn = cpu_reg(s, rn); 6357 6358 switch (opc | (invert << 2)) { 6359 case 0: /* AND */ 6360 case 3: /* ANDS */ 6361 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 6362 break; 6363 case 1: /* ORR */ 6364 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 6365 break; 6366 case 2: /* EOR */ 6367 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 6368 break; 6369 case 4: /* BIC */ 6370 case 7: /* BICS */ 6371 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 6372 break; 6373 case 5: /* ORN */ 6374 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 6375 break; 6376 case 6: /* EON */ 6377 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 6378 break; 6379 default: 6380 assert(FALSE); 6381 break; 6382 } 6383 6384 if (!sf) { 6385 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6386 } 6387 6388 if (opc == 3) { 6389 gen_logic_CC(sf, tcg_rd); 6390 } 6391 } 6392 6393 /* 6394 * Add/subtract (extended register) 6395 * 6396 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 6397 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6398 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 6399 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6400 * 6401 * sf: 0 -> 32bit, 1 -> 64bit 6402 * op: 0 -> add , 1 -> sub 6403 * S: 1 -> set flags 6404 * opt: 00 6405 * option: extension type (see DecodeRegExtend) 6406 * imm3: optional shift to Rm 6407 * 6408 * Rd = Rn + LSL(extend(Rm), amount) 6409 */ 6410 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 6411 { 6412 int rd = extract32(insn, 0, 5); 6413 int rn = extract32(insn, 5, 5); 6414 int imm3 = extract32(insn, 10, 3); 6415 int option = extract32(insn, 13, 3); 6416 int rm = extract32(insn, 16, 5); 6417 int opt = extract32(insn, 22, 2); 6418 bool setflags = extract32(insn, 29, 1); 6419 bool sub_op = extract32(insn, 30, 1); 6420 bool sf = extract32(insn, 31, 1); 6421 6422 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 6423 TCGv_i64 tcg_rd; 6424 TCGv_i64 tcg_result; 6425 6426 if (imm3 > 4 || opt != 0) { 6427 unallocated_encoding(s); 6428 return; 6429 } 6430 6431 /* non-flag setting ops may use SP */ 6432 if (!setflags) { 6433 tcg_rd = cpu_reg_sp(s, rd); 6434 } else { 6435 tcg_rd = cpu_reg(s, rd); 6436 } 6437 tcg_rn = read_cpu_reg_sp(s, rn, sf); 6438 6439 tcg_rm = read_cpu_reg(s, rm, sf); 6440 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 6441 6442 tcg_result = tcg_temp_new_i64(); 6443 6444 if (!setflags) { 6445 if (sub_op) { 6446 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6447 } else { 6448 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6449 } 6450 } else { 6451 if (sub_op) { 6452 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6453 } else { 6454 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6455 } 6456 } 6457 6458 if (sf) { 6459 tcg_gen_mov_i64(tcg_rd, tcg_result); 6460 } else { 6461 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6462 } 6463 } 6464 6465 /* 6466 * Add/subtract (shifted register) 6467 * 6468 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 6469 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6470 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 6471 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6472 * 6473 * sf: 0 -> 32bit, 1 -> 64bit 6474 * op: 0 -> add , 1 -> sub 6475 * S: 1 -> set flags 6476 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 6477 * imm6: Shift amount to apply to Rm before the add/sub 6478 */ 6479 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 6480 { 6481 int rd = extract32(insn, 0, 5); 6482 int rn = extract32(insn, 5, 5); 6483 int imm6 = extract32(insn, 10, 6); 6484 int rm = extract32(insn, 16, 5); 6485 int shift_type = extract32(insn, 22, 2); 6486 bool setflags = extract32(insn, 29, 1); 6487 bool sub_op = extract32(insn, 30, 1); 6488 bool sf = extract32(insn, 31, 1); 6489 6490 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6491 TCGv_i64 tcg_rn, tcg_rm; 6492 TCGv_i64 tcg_result; 6493 6494 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 6495 unallocated_encoding(s); 6496 return; 6497 } 6498 6499 tcg_rn = read_cpu_reg(s, rn, sf); 6500 tcg_rm = read_cpu_reg(s, rm, sf); 6501 6502 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 6503 6504 tcg_result = tcg_temp_new_i64(); 6505 6506 if (!setflags) { 6507 if (sub_op) { 6508 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6509 } else { 6510 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6511 } 6512 } else { 6513 if (sub_op) { 6514 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6515 } else { 6516 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6517 } 6518 } 6519 6520 if (sf) { 6521 tcg_gen_mov_i64(tcg_rd, tcg_result); 6522 } else { 6523 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6524 } 6525 } 6526 6527 /* Data-processing (3 source) 6528 * 6529 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 6530 * +--+------+-----------+------+------+----+------+------+------+ 6531 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 6532 * +--+------+-----------+------+------+----+------+------+------+ 6533 */ 6534 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 6535 { 6536 int rd = extract32(insn, 0, 5); 6537 int rn = extract32(insn, 5, 5); 6538 int ra = extract32(insn, 10, 5); 6539 int rm = extract32(insn, 16, 5); 6540 int op_id = (extract32(insn, 29, 3) << 4) | 6541 (extract32(insn, 21, 3) << 1) | 6542 extract32(insn, 15, 1); 6543 bool sf = extract32(insn, 31, 1); 6544 bool is_sub = extract32(op_id, 0, 1); 6545 bool is_high = extract32(op_id, 2, 1); 6546 bool is_signed = false; 6547 TCGv_i64 tcg_op1; 6548 TCGv_i64 tcg_op2; 6549 TCGv_i64 tcg_tmp; 6550 6551 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 6552 switch (op_id) { 6553 case 0x42: /* SMADDL */ 6554 case 0x43: /* SMSUBL */ 6555 case 0x44: /* SMULH */ 6556 is_signed = true; 6557 break; 6558 case 0x0: /* MADD (32bit) */ 6559 case 0x1: /* MSUB (32bit) */ 6560 case 0x40: /* MADD (64bit) */ 6561 case 0x41: /* MSUB (64bit) */ 6562 case 0x4a: /* UMADDL */ 6563 case 0x4b: /* UMSUBL */ 6564 case 0x4c: /* UMULH */ 6565 break; 6566 default: 6567 unallocated_encoding(s); 6568 return; 6569 } 6570 6571 if (is_high) { 6572 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 6573 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6574 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6575 TCGv_i64 tcg_rm = cpu_reg(s, rm); 6576 6577 if (is_signed) { 6578 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 6579 } else { 6580 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 6581 } 6582 return; 6583 } 6584 6585 tcg_op1 = tcg_temp_new_i64(); 6586 tcg_op2 = tcg_temp_new_i64(); 6587 tcg_tmp = tcg_temp_new_i64(); 6588 6589 if (op_id < 0x42) { 6590 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 6591 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 6592 } else { 6593 if (is_signed) { 6594 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 6595 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 6596 } else { 6597 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 6598 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 6599 } 6600 } 6601 6602 if (ra == 31 && !is_sub) { 6603 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 6604 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 6605 } else { 6606 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 6607 if (is_sub) { 6608 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 6609 } else { 6610 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 6611 } 6612 } 6613 6614 if (!sf) { 6615 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 6616 } 6617 } 6618 6619 /* Add/subtract (with carry) 6620 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 6621 * +--+--+--+------------------------+------+-------------+------+-----+ 6622 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 6623 * +--+--+--+------------------------+------+-------------+------+-----+ 6624 */ 6625 6626 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 6627 { 6628 unsigned int sf, op, setflags, rm, rn, rd; 6629 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 6630 6631 sf = extract32(insn, 31, 1); 6632 op = extract32(insn, 30, 1); 6633 setflags = extract32(insn, 29, 1); 6634 rm = extract32(insn, 16, 5); 6635 rn = extract32(insn, 5, 5); 6636 rd = extract32(insn, 0, 5); 6637 6638 tcg_rd = cpu_reg(s, rd); 6639 tcg_rn = cpu_reg(s, rn); 6640 6641 if (op) { 6642 tcg_y = tcg_temp_new_i64(); 6643 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 6644 } else { 6645 tcg_y = cpu_reg(s, rm); 6646 } 6647 6648 if (setflags) { 6649 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 6650 } else { 6651 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 6652 } 6653 } 6654 6655 /* 6656 * Rotate right into flags 6657 * 31 30 29 21 15 10 5 4 0 6658 * +--+--+--+-----------------+--------+-----------+------+--+------+ 6659 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 6660 * +--+--+--+-----------------+--------+-----------+------+--+------+ 6661 */ 6662 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 6663 { 6664 int mask = extract32(insn, 0, 4); 6665 int o2 = extract32(insn, 4, 1); 6666 int rn = extract32(insn, 5, 5); 6667 int imm6 = extract32(insn, 15, 6); 6668 int sf_op_s = extract32(insn, 29, 3); 6669 TCGv_i64 tcg_rn; 6670 TCGv_i32 nzcv; 6671 6672 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 6673 unallocated_encoding(s); 6674 return; 6675 } 6676 6677 tcg_rn = read_cpu_reg(s, rn, 1); 6678 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 6679 6680 nzcv = tcg_temp_new_i32(); 6681 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 6682 6683 if (mask & 8) { /* N */ 6684 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 6685 } 6686 if (mask & 4) { /* Z */ 6687 tcg_gen_not_i32(cpu_ZF, nzcv); 6688 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 6689 } 6690 if (mask & 2) { /* C */ 6691 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 6692 } 6693 if (mask & 1) { /* V */ 6694 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 6695 } 6696 } 6697 6698 /* 6699 * Evaluate into flags 6700 * 31 30 29 21 15 14 10 5 4 0 6701 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6702 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 6703 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6704 */ 6705 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 6706 { 6707 int o3_mask = extract32(insn, 0, 5); 6708 int rn = extract32(insn, 5, 5); 6709 int o2 = extract32(insn, 15, 6); 6710 int sz = extract32(insn, 14, 1); 6711 int sf_op_s = extract32(insn, 29, 3); 6712 TCGv_i32 tmp; 6713 int shift; 6714 6715 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 6716 !dc_isar_feature(aa64_condm_4, s)) { 6717 unallocated_encoding(s); 6718 return; 6719 } 6720 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 6721 6722 tmp = tcg_temp_new_i32(); 6723 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 6724 tcg_gen_shli_i32(cpu_NF, tmp, shift); 6725 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 6726 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 6727 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 6728 } 6729 6730 /* Conditional compare (immediate / register) 6731 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6732 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6733 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 6734 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6735 * [1] y [0] [0] 6736 */ 6737 static void disas_cc(DisasContext *s, uint32_t insn) 6738 { 6739 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 6740 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 6741 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 6742 DisasCompare c; 6743 6744 if (!extract32(insn, 29, 1)) { 6745 unallocated_encoding(s); 6746 return; 6747 } 6748 if (insn & (1 << 10 | 1 << 4)) { 6749 unallocated_encoding(s); 6750 return; 6751 } 6752 sf = extract32(insn, 31, 1); 6753 op = extract32(insn, 30, 1); 6754 is_imm = extract32(insn, 11, 1); 6755 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 6756 cond = extract32(insn, 12, 4); 6757 rn = extract32(insn, 5, 5); 6758 nzcv = extract32(insn, 0, 4); 6759 6760 /* Set T0 = !COND. */ 6761 tcg_t0 = tcg_temp_new_i32(); 6762 arm_test_cc(&c, cond); 6763 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 6764 6765 /* Load the arguments for the new comparison. */ 6766 if (is_imm) { 6767 tcg_y = tcg_temp_new_i64(); 6768 tcg_gen_movi_i64(tcg_y, y); 6769 } else { 6770 tcg_y = cpu_reg(s, y); 6771 } 6772 tcg_rn = cpu_reg(s, rn); 6773 6774 /* Set the flags for the new comparison. */ 6775 tcg_tmp = tcg_temp_new_i64(); 6776 if (op) { 6777 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6778 } else { 6779 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6780 } 6781 6782 /* If COND was false, force the flags to #nzcv. Compute two masks 6783 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 6784 * For tcg hosts that support ANDC, we can make do with just T1. 6785 * In either case, allow the tcg optimizer to delete any unused mask. 6786 */ 6787 tcg_t1 = tcg_temp_new_i32(); 6788 tcg_t2 = tcg_temp_new_i32(); 6789 tcg_gen_neg_i32(tcg_t1, tcg_t0); 6790 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 6791 6792 if (nzcv & 8) { /* N */ 6793 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 6794 } else { 6795 if (TCG_TARGET_HAS_andc_i32) { 6796 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 6797 } else { 6798 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 6799 } 6800 } 6801 if (nzcv & 4) { /* Z */ 6802 if (TCG_TARGET_HAS_andc_i32) { 6803 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 6804 } else { 6805 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 6806 } 6807 } else { 6808 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 6809 } 6810 if (nzcv & 2) { /* C */ 6811 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 6812 } else { 6813 if (TCG_TARGET_HAS_andc_i32) { 6814 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 6815 } else { 6816 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 6817 } 6818 } 6819 if (nzcv & 1) { /* V */ 6820 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 6821 } else { 6822 if (TCG_TARGET_HAS_andc_i32) { 6823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 6824 } else { 6825 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 6826 } 6827 } 6828 } 6829 6830 /* Conditional select 6831 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 6832 * +----+----+---+-----------------+------+------+-----+------+------+ 6833 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 6834 * +----+----+---+-----------------+------+------+-----+------+------+ 6835 */ 6836 static void disas_cond_select(DisasContext *s, uint32_t insn) 6837 { 6838 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 6839 TCGv_i64 tcg_rd, zero; 6840 DisasCompare64 c; 6841 6842 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 6843 /* S == 1 or op2<1> == 1 */ 6844 unallocated_encoding(s); 6845 return; 6846 } 6847 sf = extract32(insn, 31, 1); 6848 else_inv = extract32(insn, 30, 1); 6849 rm = extract32(insn, 16, 5); 6850 cond = extract32(insn, 12, 4); 6851 else_inc = extract32(insn, 10, 1); 6852 rn = extract32(insn, 5, 5); 6853 rd = extract32(insn, 0, 5); 6854 6855 tcg_rd = cpu_reg(s, rd); 6856 6857 a64_test_cc(&c, cond); 6858 zero = tcg_constant_i64(0); 6859 6860 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6861 /* CSET & CSETM. */ 6862 if (else_inv) { 6863 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6864 tcg_rd, c.value, zero); 6865 } else { 6866 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6867 tcg_rd, c.value, zero); 6868 } 6869 } else { 6870 TCGv_i64 t_true = cpu_reg(s, rn); 6871 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6872 if (else_inv && else_inc) { 6873 tcg_gen_neg_i64(t_false, t_false); 6874 } else if (else_inv) { 6875 tcg_gen_not_i64(t_false, t_false); 6876 } else if (else_inc) { 6877 tcg_gen_addi_i64(t_false, t_false, 1); 6878 } 6879 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6880 } 6881 6882 if (!sf) { 6883 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6884 } 6885 } 6886 6887 static void handle_clz(DisasContext *s, unsigned int sf, 6888 unsigned int rn, unsigned int rd) 6889 { 6890 TCGv_i64 tcg_rd, tcg_rn; 6891 tcg_rd = cpu_reg(s, rd); 6892 tcg_rn = cpu_reg(s, rn); 6893 6894 if (sf) { 6895 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6896 } else { 6897 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6898 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6899 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6900 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6901 } 6902 } 6903 6904 static void handle_cls(DisasContext *s, unsigned int sf, 6905 unsigned int rn, unsigned int rd) 6906 { 6907 TCGv_i64 tcg_rd, tcg_rn; 6908 tcg_rd = cpu_reg(s, rd); 6909 tcg_rn = cpu_reg(s, rn); 6910 6911 if (sf) { 6912 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6913 } else { 6914 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6915 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6916 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6917 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6918 } 6919 } 6920 6921 static void handle_rbit(DisasContext *s, unsigned int sf, 6922 unsigned int rn, unsigned int rd) 6923 { 6924 TCGv_i64 tcg_rd, tcg_rn; 6925 tcg_rd = cpu_reg(s, rd); 6926 tcg_rn = cpu_reg(s, rn); 6927 6928 if (sf) { 6929 gen_helper_rbit64(tcg_rd, tcg_rn); 6930 } else { 6931 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6932 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6933 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6934 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6935 } 6936 } 6937 6938 /* REV with sf==1, opcode==3 ("REV64") */ 6939 static void handle_rev64(DisasContext *s, unsigned int sf, 6940 unsigned int rn, unsigned int rd) 6941 { 6942 if (!sf) { 6943 unallocated_encoding(s); 6944 return; 6945 } 6946 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6947 } 6948 6949 /* REV with sf==0, opcode==2 6950 * REV32 (sf==1, opcode==2) 6951 */ 6952 static void handle_rev32(DisasContext *s, unsigned int sf, 6953 unsigned int rn, unsigned int rd) 6954 { 6955 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6956 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6957 6958 if (sf) { 6959 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6960 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6961 } else { 6962 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6963 } 6964 } 6965 6966 /* REV16 (opcode==1) */ 6967 static void handle_rev16(DisasContext *s, unsigned int sf, 6968 unsigned int rn, unsigned int rd) 6969 { 6970 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6971 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6972 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6973 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6974 6975 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6976 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6977 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6978 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6979 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6980 } 6981 6982 /* Data-processing (1 source) 6983 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6984 * +----+---+---+-----------------+---------+--------+------+------+ 6985 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6986 * +----+---+---+-----------------+---------+--------+------+------+ 6987 */ 6988 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6989 { 6990 unsigned int sf, opcode, opcode2, rn, rd; 6991 TCGv_i64 tcg_rd; 6992 6993 if (extract32(insn, 29, 1)) { 6994 unallocated_encoding(s); 6995 return; 6996 } 6997 6998 sf = extract32(insn, 31, 1); 6999 opcode = extract32(insn, 10, 6); 7000 opcode2 = extract32(insn, 16, 5); 7001 rn = extract32(insn, 5, 5); 7002 rd = extract32(insn, 0, 5); 7003 7004 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 7005 7006 switch (MAP(sf, opcode2, opcode)) { 7007 case MAP(0, 0x00, 0x00): /* RBIT */ 7008 case MAP(1, 0x00, 0x00): 7009 handle_rbit(s, sf, rn, rd); 7010 break; 7011 case MAP(0, 0x00, 0x01): /* REV16 */ 7012 case MAP(1, 0x00, 0x01): 7013 handle_rev16(s, sf, rn, rd); 7014 break; 7015 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 7016 case MAP(1, 0x00, 0x02): 7017 handle_rev32(s, sf, rn, rd); 7018 break; 7019 case MAP(1, 0x00, 0x03): /* REV64 */ 7020 handle_rev64(s, sf, rn, rd); 7021 break; 7022 case MAP(0, 0x00, 0x04): /* CLZ */ 7023 case MAP(1, 0x00, 0x04): 7024 handle_clz(s, sf, rn, rd); 7025 break; 7026 case MAP(0, 0x00, 0x05): /* CLS */ 7027 case MAP(1, 0x00, 0x05): 7028 handle_cls(s, sf, rn, rd); 7029 break; 7030 case MAP(1, 0x01, 0x00): /* PACIA */ 7031 if (s->pauth_active) { 7032 tcg_rd = cpu_reg(s, rd); 7033 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7034 } else if (!dc_isar_feature(aa64_pauth, s)) { 7035 goto do_unallocated; 7036 } 7037 break; 7038 case MAP(1, 0x01, 0x01): /* PACIB */ 7039 if (s->pauth_active) { 7040 tcg_rd = cpu_reg(s, rd); 7041 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7042 } else if (!dc_isar_feature(aa64_pauth, s)) { 7043 goto do_unallocated; 7044 } 7045 break; 7046 case MAP(1, 0x01, 0x02): /* PACDA */ 7047 if (s->pauth_active) { 7048 tcg_rd = cpu_reg(s, rd); 7049 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7050 } else if (!dc_isar_feature(aa64_pauth, s)) { 7051 goto do_unallocated; 7052 } 7053 break; 7054 case MAP(1, 0x01, 0x03): /* PACDB */ 7055 if (s->pauth_active) { 7056 tcg_rd = cpu_reg(s, rd); 7057 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7058 } else if (!dc_isar_feature(aa64_pauth, s)) { 7059 goto do_unallocated; 7060 } 7061 break; 7062 case MAP(1, 0x01, 0x04): /* AUTIA */ 7063 if (s->pauth_active) { 7064 tcg_rd = cpu_reg(s, rd); 7065 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7066 } else if (!dc_isar_feature(aa64_pauth, s)) { 7067 goto do_unallocated; 7068 } 7069 break; 7070 case MAP(1, 0x01, 0x05): /* AUTIB */ 7071 if (s->pauth_active) { 7072 tcg_rd = cpu_reg(s, rd); 7073 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7074 } else if (!dc_isar_feature(aa64_pauth, s)) { 7075 goto do_unallocated; 7076 } 7077 break; 7078 case MAP(1, 0x01, 0x06): /* AUTDA */ 7079 if (s->pauth_active) { 7080 tcg_rd = cpu_reg(s, rd); 7081 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7082 } else if (!dc_isar_feature(aa64_pauth, s)) { 7083 goto do_unallocated; 7084 } 7085 break; 7086 case MAP(1, 0x01, 0x07): /* AUTDB */ 7087 if (s->pauth_active) { 7088 tcg_rd = cpu_reg(s, rd); 7089 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 7090 } else if (!dc_isar_feature(aa64_pauth, s)) { 7091 goto do_unallocated; 7092 } 7093 break; 7094 case MAP(1, 0x01, 0x08): /* PACIZA */ 7095 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7096 goto do_unallocated; 7097 } else if (s->pauth_active) { 7098 tcg_rd = cpu_reg(s, rd); 7099 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7100 } 7101 break; 7102 case MAP(1, 0x01, 0x09): /* PACIZB */ 7103 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7104 goto do_unallocated; 7105 } else if (s->pauth_active) { 7106 tcg_rd = cpu_reg(s, rd); 7107 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7108 } 7109 break; 7110 case MAP(1, 0x01, 0x0a): /* PACDZA */ 7111 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7112 goto do_unallocated; 7113 } else if (s->pauth_active) { 7114 tcg_rd = cpu_reg(s, rd); 7115 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7116 } 7117 break; 7118 case MAP(1, 0x01, 0x0b): /* PACDZB */ 7119 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7120 goto do_unallocated; 7121 } else if (s->pauth_active) { 7122 tcg_rd = cpu_reg(s, rd); 7123 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7124 } 7125 break; 7126 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 7127 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7128 goto do_unallocated; 7129 } else if (s->pauth_active) { 7130 tcg_rd = cpu_reg(s, rd); 7131 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7132 } 7133 break; 7134 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 7135 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7136 goto do_unallocated; 7137 } else if (s->pauth_active) { 7138 tcg_rd = cpu_reg(s, rd); 7139 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7140 } 7141 break; 7142 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 7143 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7144 goto do_unallocated; 7145 } else if (s->pauth_active) { 7146 tcg_rd = cpu_reg(s, rd); 7147 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7148 } 7149 break; 7150 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 7151 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7152 goto do_unallocated; 7153 } else if (s->pauth_active) { 7154 tcg_rd = cpu_reg(s, rd); 7155 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 7156 } 7157 break; 7158 case MAP(1, 0x01, 0x10): /* XPACI */ 7159 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7160 goto do_unallocated; 7161 } else if (s->pauth_active) { 7162 tcg_rd = cpu_reg(s, rd); 7163 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 7164 } 7165 break; 7166 case MAP(1, 0x01, 0x11): /* XPACD */ 7167 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 7168 goto do_unallocated; 7169 } else if (s->pauth_active) { 7170 tcg_rd = cpu_reg(s, rd); 7171 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 7172 } 7173 break; 7174 default: 7175 do_unallocated: 7176 unallocated_encoding(s); 7177 break; 7178 } 7179 7180 #undef MAP 7181 } 7182 7183 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 7184 unsigned int rm, unsigned int rn, unsigned int rd) 7185 { 7186 TCGv_i64 tcg_n, tcg_m, tcg_rd; 7187 tcg_rd = cpu_reg(s, rd); 7188 7189 if (!sf && is_signed) { 7190 tcg_n = tcg_temp_new_i64(); 7191 tcg_m = tcg_temp_new_i64(); 7192 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 7193 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 7194 } else { 7195 tcg_n = read_cpu_reg(s, rn, sf); 7196 tcg_m = read_cpu_reg(s, rm, sf); 7197 } 7198 7199 if (is_signed) { 7200 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 7201 } else { 7202 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 7203 } 7204 7205 if (!sf) { /* zero extend final result */ 7206 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7207 } 7208 } 7209 7210 /* LSLV, LSRV, ASRV, RORV */ 7211 static void handle_shift_reg(DisasContext *s, 7212 enum a64_shift_type shift_type, unsigned int sf, 7213 unsigned int rm, unsigned int rn, unsigned int rd) 7214 { 7215 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 7216 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7217 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 7218 7219 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 7220 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 7221 } 7222 7223 /* CRC32[BHWX], CRC32C[BHWX] */ 7224 static void handle_crc32(DisasContext *s, 7225 unsigned int sf, unsigned int sz, bool crc32c, 7226 unsigned int rm, unsigned int rn, unsigned int rd) 7227 { 7228 TCGv_i64 tcg_acc, tcg_val; 7229 TCGv_i32 tcg_bytes; 7230 7231 if (!dc_isar_feature(aa64_crc32, s) 7232 || (sf == 1 && sz != 3) 7233 || (sf == 0 && sz == 3)) { 7234 unallocated_encoding(s); 7235 return; 7236 } 7237 7238 if (sz == 3) { 7239 tcg_val = cpu_reg(s, rm); 7240 } else { 7241 uint64_t mask; 7242 switch (sz) { 7243 case 0: 7244 mask = 0xFF; 7245 break; 7246 case 1: 7247 mask = 0xFFFF; 7248 break; 7249 case 2: 7250 mask = 0xFFFFFFFF; 7251 break; 7252 default: 7253 g_assert_not_reached(); 7254 } 7255 tcg_val = tcg_temp_new_i64(); 7256 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 7257 } 7258 7259 tcg_acc = cpu_reg(s, rn); 7260 tcg_bytes = tcg_constant_i32(1 << sz); 7261 7262 if (crc32c) { 7263 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 7264 } else { 7265 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 7266 } 7267 } 7268 7269 /* Data-processing (2 source) 7270 * 31 30 29 28 21 20 16 15 10 9 5 4 0 7271 * +----+---+---+-----------------+------+--------+------+------+ 7272 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 7273 * +----+---+---+-----------------+------+--------+------+------+ 7274 */ 7275 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 7276 { 7277 unsigned int sf, rm, opcode, rn, rd, setflag; 7278 sf = extract32(insn, 31, 1); 7279 setflag = extract32(insn, 29, 1); 7280 rm = extract32(insn, 16, 5); 7281 opcode = extract32(insn, 10, 6); 7282 rn = extract32(insn, 5, 5); 7283 rd = extract32(insn, 0, 5); 7284 7285 if (setflag && opcode != 0) { 7286 unallocated_encoding(s); 7287 return; 7288 } 7289 7290 switch (opcode) { 7291 case 0: /* SUBP(S) */ 7292 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7293 goto do_unallocated; 7294 } else { 7295 TCGv_i64 tcg_n, tcg_m, tcg_d; 7296 7297 tcg_n = read_cpu_reg_sp(s, rn, true); 7298 tcg_m = read_cpu_reg_sp(s, rm, true); 7299 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 7300 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 7301 tcg_d = cpu_reg(s, rd); 7302 7303 if (setflag) { 7304 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 7305 } else { 7306 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 7307 } 7308 } 7309 break; 7310 case 2: /* UDIV */ 7311 handle_div(s, false, sf, rm, rn, rd); 7312 break; 7313 case 3: /* SDIV */ 7314 handle_div(s, true, sf, rm, rn, rd); 7315 break; 7316 case 4: /* IRG */ 7317 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7318 goto do_unallocated; 7319 } 7320 if (s->ata[0]) { 7321 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 7322 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 7323 } else { 7324 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 7325 cpu_reg_sp(s, rn)); 7326 } 7327 break; 7328 case 5: /* GMI */ 7329 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7330 goto do_unallocated; 7331 } else { 7332 TCGv_i64 t = tcg_temp_new_i64(); 7333 7334 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 7335 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 7336 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 7337 } 7338 break; 7339 case 8: /* LSLV */ 7340 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 7341 break; 7342 case 9: /* LSRV */ 7343 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 7344 break; 7345 case 10: /* ASRV */ 7346 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 7347 break; 7348 case 11: /* RORV */ 7349 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 7350 break; 7351 case 12: /* PACGA */ 7352 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 7353 goto do_unallocated; 7354 } 7355 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 7356 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 7357 break; 7358 case 16: 7359 case 17: 7360 case 18: 7361 case 19: 7362 case 20: 7363 case 21: 7364 case 22: 7365 case 23: /* CRC32 */ 7366 { 7367 int sz = extract32(opcode, 0, 2); 7368 bool crc32c = extract32(opcode, 2, 1); 7369 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 7370 break; 7371 } 7372 default: 7373 do_unallocated: 7374 unallocated_encoding(s); 7375 break; 7376 } 7377 } 7378 7379 /* 7380 * Data processing - register 7381 * 31 30 29 28 25 21 20 16 10 0 7382 * +--+---+--+---+-------+-----+-------+-------+---------+ 7383 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 7384 * +--+---+--+---+-------+-----+-------+-------+---------+ 7385 */ 7386 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 7387 { 7388 int op0 = extract32(insn, 30, 1); 7389 int op1 = extract32(insn, 28, 1); 7390 int op2 = extract32(insn, 21, 4); 7391 int op3 = extract32(insn, 10, 6); 7392 7393 if (!op1) { 7394 if (op2 & 8) { 7395 if (op2 & 1) { 7396 /* Add/sub (extended register) */ 7397 disas_add_sub_ext_reg(s, insn); 7398 } else { 7399 /* Add/sub (shifted register) */ 7400 disas_add_sub_reg(s, insn); 7401 } 7402 } else { 7403 /* Logical (shifted register) */ 7404 disas_logic_reg(s, insn); 7405 } 7406 return; 7407 } 7408 7409 switch (op2) { 7410 case 0x0: 7411 switch (op3) { 7412 case 0x00: /* Add/subtract (with carry) */ 7413 disas_adc_sbc(s, insn); 7414 break; 7415 7416 case 0x01: /* Rotate right into flags */ 7417 case 0x21: 7418 disas_rotate_right_into_flags(s, insn); 7419 break; 7420 7421 case 0x02: /* Evaluate into flags */ 7422 case 0x12: 7423 case 0x22: 7424 case 0x32: 7425 disas_evaluate_into_flags(s, insn); 7426 break; 7427 7428 default: 7429 goto do_unallocated; 7430 } 7431 break; 7432 7433 case 0x2: /* Conditional compare */ 7434 disas_cc(s, insn); /* both imm and reg forms */ 7435 break; 7436 7437 case 0x4: /* Conditional select */ 7438 disas_cond_select(s, insn); 7439 break; 7440 7441 case 0x6: /* Data-processing */ 7442 if (op0) { /* (1 source) */ 7443 disas_data_proc_1src(s, insn); 7444 } else { /* (2 source) */ 7445 disas_data_proc_2src(s, insn); 7446 } 7447 break; 7448 case 0x8 ... 0xf: /* (3 source) */ 7449 disas_data_proc_3src(s, insn); 7450 break; 7451 7452 default: 7453 do_unallocated: 7454 unallocated_encoding(s); 7455 break; 7456 } 7457 } 7458 7459 static void handle_fp_compare(DisasContext *s, int size, 7460 unsigned int rn, unsigned int rm, 7461 bool cmp_with_zero, bool signal_all_nans) 7462 { 7463 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 7464 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7465 7466 if (size == MO_64) { 7467 TCGv_i64 tcg_vn, tcg_vm; 7468 7469 tcg_vn = read_fp_dreg(s, rn); 7470 if (cmp_with_zero) { 7471 tcg_vm = tcg_constant_i64(0); 7472 } else { 7473 tcg_vm = read_fp_dreg(s, rm); 7474 } 7475 if (signal_all_nans) { 7476 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7477 } else { 7478 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7479 } 7480 } else { 7481 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 7482 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 7483 7484 read_vec_element_i32(s, tcg_vn, rn, 0, size); 7485 if (cmp_with_zero) { 7486 tcg_gen_movi_i32(tcg_vm, 0); 7487 } else { 7488 read_vec_element_i32(s, tcg_vm, rm, 0, size); 7489 } 7490 7491 switch (size) { 7492 case MO_32: 7493 if (signal_all_nans) { 7494 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7495 } else { 7496 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7497 } 7498 break; 7499 case MO_16: 7500 if (signal_all_nans) { 7501 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7502 } else { 7503 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7504 } 7505 break; 7506 default: 7507 g_assert_not_reached(); 7508 } 7509 } 7510 7511 gen_set_nzcv(tcg_flags); 7512 } 7513 7514 /* Floating point compare 7515 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 7516 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7517 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 7518 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7519 */ 7520 static void disas_fp_compare(DisasContext *s, uint32_t insn) 7521 { 7522 unsigned int mos, type, rm, op, rn, opc, op2r; 7523 int size; 7524 7525 mos = extract32(insn, 29, 3); 7526 type = extract32(insn, 22, 2); 7527 rm = extract32(insn, 16, 5); 7528 op = extract32(insn, 14, 2); 7529 rn = extract32(insn, 5, 5); 7530 opc = extract32(insn, 3, 2); 7531 op2r = extract32(insn, 0, 3); 7532 7533 if (mos || op || op2r) { 7534 unallocated_encoding(s); 7535 return; 7536 } 7537 7538 switch (type) { 7539 case 0: 7540 size = MO_32; 7541 break; 7542 case 1: 7543 size = MO_64; 7544 break; 7545 case 3: 7546 size = MO_16; 7547 if (dc_isar_feature(aa64_fp16, s)) { 7548 break; 7549 } 7550 /* fallthru */ 7551 default: 7552 unallocated_encoding(s); 7553 return; 7554 } 7555 7556 if (!fp_access_check(s)) { 7557 return; 7558 } 7559 7560 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 7561 } 7562 7563 /* Floating point conditional compare 7564 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 7565 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7566 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 7567 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7568 */ 7569 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 7570 { 7571 unsigned int mos, type, rm, cond, rn, op, nzcv; 7572 TCGLabel *label_continue = NULL; 7573 int size; 7574 7575 mos = extract32(insn, 29, 3); 7576 type = extract32(insn, 22, 2); 7577 rm = extract32(insn, 16, 5); 7578 cond = extract32(insn, 12, 4); 7579 rn = extract32(insn, 5, 5); 7580 op = extract32(insn, 4, 1); 7581 nzcv = extract32(insn, 0, 4); 7582 7583 if (mos) { 7584 unallocated_encoding(s); 7585 return; 7586 } 7587 7588 switch (type) { 7589 case 0: 7590 size = MO_32; 7591 break; 7592 case 1: 7593 size = MO_64; 7594 break; 7595 case 3: 7596 size = MO_16; 7597 if (dc_isar_feature(aa64_fp16, s)) { 7598 break; 7599 } 7600 /* fallthru */ 7601 default: 7602 unallocated_encoding(s); 7603 return; 7604 } 7605 7606 if (!fp_access_check(s)) { 7607 return; 7608 } 7609 7610 if (cond < 0x0e) { /* not always */ 7611 TCGLabel *label_match = gen_new_label(); 7612 label_continue = gen_new_label(); 7613 arm_gen_test_cc(cond, label_match); 7614 /* nomatch: */ 7615 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 7616 tcg_gen_br(label_continue); 7617 gen_set_label(label_match); 7618 } 7619 7620 handle_fp_compare(s, size, rn, rm, false, op); 7621 7622 if (cond < 0x0e) { 7623 gen_set_label(label_continue); 7624 } 7625 } 7626 7627 /* Floating-point data-processing (1 source) - half precision */ 7628 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 7629 { 7630 TCGv_ptr fpst = NULL; 7631 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 7632 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7633 7634 switch (opcode) { 7635 case 0x0: /* FMOV */ 7636 tcg_gen_mov_i32(tcg_res, tcg_op); 7637 break; 7638 case 0x1: /* FABS */ 7639 gen_vfp_absh(tcg_res, tcg_op); 7640 break; 7641 case 0x2: /* FNEG */ 7642 gen_vfp_negh(tcg_res, tcg_op); 7643 break; 7644 case 0x3: /* FSQRT */ 7645 fpst = fpstatus_ptr(FPST_FPCR_F16); 7646 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 7647 break; 7648 case 0x8: /* FRINTN */ 7649 case 0x9: /* FRINTP */ 7650 case 0xa: /* FRINTM */ 7651 case 0xb: /* FRINTZ */ 7652 case 0xc: /* FRINTA */ 7653 { 7654 TCGv_i32 tcg_rmode; 7655 7656 fpst = fpstatus_ptr(FPST_FPCR_F16); 7657 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 7658 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7659 gen_restore_rmode(tcg_rmode, fpst); 7660 break; 7661 } 7662 case 0xe: /* FRINTX */ 7663 fpst = fpstatus_ptr(FPST_FPCR_F16); 7664 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 7665 break; 7666 case 0xf: /* FRINTI */ 7667 fpst = fpstatus_ptr(FPST_FPCR_F16); 7668 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7669 break; 7670 default: 7671 g_assert_not_reached(); 7672 } 7673 7674 write_fp_sreg(s, rd, tcg_res); 7675 } 7676 7677 /* Floating-point data-processing (1 source) - single precision */ 7678 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 7679 { 7680 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 7681 TCGv_i32 tcg_op, tcg_res; 7682 TCGv_ptr fpst; 7683 int rmode = -1; 7684 7685 tcg_op = read_fp_sreg(s, rn); 7686 tcg_res = tcg_temp_new_i32(); 7687 7688 switch (opcode) { 7689 case 0x0: /* FMOV */ 7690 tcg_gen_mov_i32(tcg_res, tcg_op); 7691 goto done; 7692 case 0x1: /* FABS */ 7693 gen_vfp_abss(tcg_res, tcg_op); 7694 goto done; 7695 case 0x2: /* FNEG */ 7696 gen_vfp_negs(tcg_res, tcg_op); 7697 goto done; 7698 case 0x3: /* FSQRT */ 7699 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 7700 goto done; 7701 case 0x6: /* BFCVT */ 7702 gen_fpst = gen_helper_bfcvt; 7703 break; 7704 case 0x8: /* FRINTN */ 7705 case 0x9: /* FRINTP */ 7706 case 0xa: /* FRINTM */ 7707 case 0xb: /* FRINTZ */ 7708 case 0xc: /* FRINTA */ 7709 rmode = opcode & 7; 7710 gen_fpst = gen_helper_rints; 7711 break; 7712 case 0xe: /* FRINTX */ 7713 gen_fpst = gen_helper_rints_exact; 7714 break; 7715 case 0xf: /* FRINTI */ 7716 gen_fpst = gen_helper_rints; 7717 break; 7718 case 0x10: /* FRINT32Z */ 7719 rmode = FPROUNDING_ZERO; 7720 gen_fpst = gen_helper_frint32_s; 7721 break; 7722 case 0x11: /* FRINT32X */ 7723 gen_fpst = gen_helper_frint32_s; 7724 break; 7725 case 0x12: /* FRINT64Z */ 7726 rmode = FPROUNDING_ZERO; 7727 gen_fpst = gen_helper_frint64_s; 7728 break; 7729 case 0x13: /* FRINT64X */ 7730 gen_fpst = gen_helper_frint64_s; 7731 break; 7732 default: 7733 g_assert_not_reached(); 7734 } 7735 7736 fpst = fpstatus_ptr(FPST_FPCR); 7737 if (rmode >= 0) { 7738 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7739 gen_fpst(tcg_res, tcg_op, fpst); 7740 gen_restore_rmode(tcg_rmode, fpst); 7741 } else { 7742 gen_fpst(tcg_res, tcg_op, fpst); 7743 } 7744 7745 done: 7746 write_fp_sreg(s, rd, tcg_res); 7747 } 7748 7749 /* Floating-point data-processing (1 source) - double precision */ 7750 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 7751 { 7752 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 7753 TCGv_i64 tcg_op, tcg_res; 7754 TCGv_ptr fpst; 7755 int rmode = -1; 7756 7757 switch (opcode) { 7758 case 0x0: /* FMOV */ 7759 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 7760 return; 7761 } 7762 7763 tcg_op = read_fp_dreg(s, rn); 7764 tcg_res = tcg_temp_new_i64(); 7765 7766 switch (opcode) { 7767 case 0x1: /* FABS */ 7768 gen_vfp_absd(tcg_res, tcg_op); 7769 goto done; 7770 case 0x2: /* FNEG */ 7771 gen_vfp_negd(tcg_res, tcg_op); 7772 goto done; 7773 case 0x3: /* FSQRT */ 7774 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 7775 goto done; 7776 case 0x8: /* FRINTN */ 7777 case 0x9: /* FRINTP */ 7778 case 0xa: /* FRINTM */ 7779 case 0xb: /* FRINTZ */ 7780 case 0xc: /* FRINTA */ 7781 rmode = opcode & 7; 7782 gen_fpst = gen_helper_rintd; 7783 break; 7784 case 0xe: /* FRINTX */ 7785 gen_fpst = gen_helper_rintd_exact; 7786 break; 7787 case 0xf: /* FRINTI */ 7788 gen_fpst = gen_helper_rintd; 7789 break; 7790 case 0x10: /* FRINT32Z */ 7791 rmode = FPROUNDING_ZERO; 7792 gen_fpst = gen_helper_frint32_d; 7793 break; 7794 case 0x11: /* FRINT32X */ 7795 gen_fpst = gen_helper_frint32_d; 7796 break; 7797 case 0x12: /* FRINT64Z */ 7798 rmode = FPROUNDING_ZERO; 7799 gen_fpst = gen_helper_frint64_d; 7800 break; 7801 case 0x13: /* FRINT64X */ 7802 gen_fpst = gen_helper_frint64_d; 7803 break; 7804 default: 7805 g_assert_not_reached(); 7806 } 7807 7808 fpst = fpstatus_ptr(FPST_FPCR); 7809 if (rmode >= 0) { 7810 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7811 gen_fpst(tcg_res, tcg_op, fpst); 7812 gen_restore_rmode(tcg_rmode, fpst); 7813 } else { 7814 gen_fpst(tcg_res, tcg_op, fpst); 7815 } 7816 7817 done: 7818 write_fp_dreg(s, rd, tcg_res); 7819 } 7820 7821 static void handle_fp_fcvt(DisasContext *s, int opcode, 7822 int rd, int rn, int dtype, int ntype) 7823 { 7824 switch (ntype) { 7825 case 0x0: 7826 { 7827 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7828 if (dtype == 1) { 7829 /* Single to double */ 7830 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7831 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7832 write_fp_dreg(s, rd, tcg_rd); 7833 } else { 7834 /* Single to half */ 7835 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7836 TCGv_i32 ahp = get_ahp_flag(); 7837 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7838 7839 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7840 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7841 write_fp_sreg(s, rd, tcg_rd); 7842 } 7843 break; 7844 } 7845 case 0x1: 7846 { 7847 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7848 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7849 if (dtype == 0) { 7850 /* Double to single */ 7851 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7852 } else { 7853 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7854 TCGv_i32 ahp = get_ahp_flag(); 7855 /* Double to half */ 7856 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7857 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7858 } 7859 write_fp_sreg(s, rd, tcg_rd); 7860 break; 7861 } 7862 case 0x3: 7863 { 7864 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7865 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7866 TCGv_i32 tcg_ahp = get_ahp_flag(); 7867 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7868 if (dtype == 0) { 7869 /* Half to single */ 7870 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7871 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7872 write_fp_sreg(s, rd, tcg_rd); 7873 } else { 7874 /* Half to double */ 7875 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7876 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7877 write_fp_dreg(s, rd, tcg_rd); 7878 } 7879 break; 7880 } 7881 default: 7882 g_assert_not_reached(); 7883 } 7884 } 7885 7886 /* Floating point data-processing (1 source) 7887 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7888 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7889 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7890 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7891 */ 7892 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7893 { 7894 int mos = extract32(insn, 29, 3); 7895 int type = extract32(insn, 22, 2); 7896 int opcode = extract32(insn, 15, 6); 7897 int rn = extract32(insn, 5, 5); 7898 int rd = extract32(insn, 0, 5); 7899 7900 if (mos) { 7901 goto do_unallocated; 7902 } 7903 7904 switch (opcode) { 7905 case 0x4: case 0x5: case 0x7: 7906 { 7907 /* FCVT between half, single and double precision */ 7908 int dtype = extract32(opcode, 0, 2); 7909 if (type == 2 || dtype == type) { 7910 goto do_unallocated; 7911 } 7912 if (!fp_access_check(s)) { 7913 return; 7914 } 7915 7916 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7917 break; 7918 } 7919 7920 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7921 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7922 goto do_unallocated; 7923 } 7924 /* fall through */ 7925 case 0x0 ... 0x3: 7926 case 0x8 ... 0xc: 7927 case 0xe ... 0xf: 7928 /* 32-to-32 and 64-to-64 ops */ 7929 switch (type) { 7930 case 0: 7931 if (!fp_access_check(s)) { 7932 return; 7933 } 7934 handle_fp_1src_single(s, opcode, rd, rn); 7935 break; 7936 case 1: 7937 if (!fp_access_check(s)) { 7938 return; 7939 } 7940 handle_fp_1src_double(s, opcode, rd, rn); 7941 break; 7942 case 3: 7943 if (!dc_isar_feature(aa64_fp16, s)) { 7944 goto do_unallocated; 7945 } 7946 7947 if (!fp_access_check(s)) { 7948 return; 7949 } 7950 handle_fp_1src_half(s, opcode, rd, rn); 7951 break; 7952 default: 7953 goto do_unallocated; 7954 } 7955 break; 7956 7957 case 0x6: 7958 switch (type) { 7959 case 1: /* BFCVT */ 7960 if (!dc_isar_feature(aa64_bf16, s)) { 7961 goto do_unallocated; 7962 } 7963 if (!fp_access_check(s)) { 7964 return; 7965 } 7966 handle_fp_1src_single(s, opcode, rd, rn); 7967 break; 7968 default: 7969 goto do_unallocated; 7970 } 7971 break; 7972 7973 default: 7974 do_unallocated: 7975 unallocated_encoding(s); 7976 break; 7977 } 7978 } 7979 7980 /* Floating point immediate 7981 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7982 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7983 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7984 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7985 */ 7986 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7987 { 7988 int rd = extract32(insn, 0, 5); 7989 int imm5 = extract32(insn, 5, 5); 7990 int imm8 = extract32(insn, 13, 8); 7991 int type = extract32(insn, 22, 2); 7992 int mos = extract32(insn, 29, 3); 7993 uint64_t imm; 7994 MemOp sz; 7995 7996 if (mos || imm5) { 7997 unallocated_encoding(s); 7998 return; 7999 } 8000 8001 switch (type) { 8002 case 0: 8003 sz = MO_32; 8004 break; 8005 case 1: 8006 sz = MO_64; 8007 break; 8008 case 3: 8009 sz = MO_16; 8010 if (dc_isar_feature(aa64_fp16, s)) { 8011 break; 8012 } 8013 /* fallthru */ 8014 default: 8015 unallocated_encoding(s); 8016 return; 8017 } 8018 8019 if (!fp_access_check(s)) { 8020 return; 8021 } 8022 8023 imm = vfp_expand_imm(sz, imm8); 8024 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 8025 } 8026 8027 /* Handle floating point <=> fixed point conversions. Note that we can 8028 * also deal with fp <=> integer conversions as a special case (scale == 64) 8029 * OPTME: consider handling that special case specially or at least skipping 8030 * the call to scalbn in the helpers for zero shifts. 8031 */ 8032 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 8033 bool itof, int rmode, int scale, int sf, int type) 8034 { 8035 bool is_signed = !(opcode & 1); 8036 TCGv_ptr tcg_fpstatus; 8037 TCGv_i32 tcg_shift, tcg_single; 8038 TCGv_i64 tcg_double; 8039 8040 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 8041 8042 tcg_shift = tcg_constant_i32(64 - scale); 8043 8044 if (itof) { 8045 TCGv_i64 tcg_int = cpu_reg(s, rn); 8046 if (!sf) { 8047 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 8048 8049 if (is_signed) { 8050 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 8051 } else { 8052 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 8053 } 8054 8055 tcg_int = tcg_extend; 8056 } 8057 8058 switch (type) { 8059 case 1: /* float64 */ 8060 tcg_double = tcg_temp_new_i64(); 8061 if (is_signed) { 8062 gen_helper_vfp_sqtod(tcg_double, tcg_int, 8063 tcg_shift, tcg_fpstatus); 8064 } else { 8065 gen_helper_vfp_uqtod(tcg_double, tcg_int, 8066 tcg_shift, tcg_fpstatus); 8067 } 8068 write_fp_dreg(s, rd, tcg_double); 8069 break; 8070 8071 case 0: /* float32 */ 8072 tcg_single = tcg_temp_new_i32(); 8073 if (is_signed) { 8074 gen_helper_vfp_sqtos(tcg_single, tcg_int, 8075 tcg_shift, tcg_fpstatus); 8076 } else { 8077 gen_helper_vfp_uqtos(tcg_single, tcg_int, 8078 tcg_shift, tcg_fpstatus); 8079 } 8080 write_fp_sreg(s, rd, tcg_single); 8081 break; 8082 8083 case 3: /* float16 */ 8084 tcg_single = tcg_temp_new_i32(); 8085 if (is_signed) { 8086 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 8087 tcg_shift, tcg_fpstatus); 8088 } else { 8089 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 8090 tcg_shift, tcg_fpstatus); 8091 } 8092 write_fp_sreg(s, rd, tcg_single); 8093 break; 8094 8095 default: 8096 g_assert_not_reached(); 8097 } 8098 } else { 8099 TCGv_i64 tcg_int = cpu_reg(s, rd); 8100 TCGv_i32 tcg_rmode; 8101 8102 if (extract32(opcode, 2, 1)) { 8103 /* There are too many rounding modes to all fit into rmode, 8104 * so FCVTA[US] is a special case. 8105 */ 8106 rmode = FPROUNDING_TIEAWAY; 8107 } 8108 8109 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 8110 8111 switch (type) { 8112 case 1: /* float64 */ 8113 tcg_double = read_fp_dreg(s, rn); 8114 if (is_signed) { 8115 if (!sf) { 8116 gen_helper_vfp_tosld(tcg_int, tcg_double, 8117 tcg_shift, tcg_fpstatus); 8118 } else { 8119 gen_helper_vfp_tosqd(tcg_int, tcg_double, 8120 tcg_shift, tcg_fpstatus); 8121 } 8122 } else { 8123 if (!sf) { 8124 gen_helper_vfp_tould(tcg_int, tcg_double, 8125 tcg_shift, tcg_fpstatus); 8126 } else { 8127 gen_helper_vfp_touqd(tcg_int, tcg_double, 8128 tcg_shift, tcg_fpstatus); 8129 } 8130 } 8131 if (!sf) { 8132 tcg_gen_ext32u_i64(tcg_int, tcg_int); 8133 } 8134 break; 8135 8136 case 0: /* float32 */ 8137 tcg_single = read_fp_sreg(s, rn); 8138 if (sf) { 8139 if (is_signed) { 8140 gen_helper_vfp_tosqs(tcg_int, tcg_single, 8141 tcg_shift, tcg_fpstatus); 8142 } else { 8143 gen_helper_vfp_touqs(tcg_int, tcg_single, 8144 tcg_shift, tcg_fpstatus); 8145 } 8146 } else { 8147 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 8148 if (is_signed) { 8149 gen_helper_vfp_tosls(tcg_dest, tcg_single, 8150 tcg_shift, tcg_fpstatus); 8151 } else { 8152 gen_helper_vfp_touls(tcg_dest, tcg_single, 8153 tcg_shift, tcg_fpstatus); 8154 } 8155 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 8156 } 8157 break; 8158 8159 case 3: /* float16 */ 8160 tcg_single = read_fp_sreg(s, rn); 8161 if (sf) { 8162 if (is_signed) { 8163 gen_helper_vfp_tosqh(tcg_int, tcg_single, 8164 tcg_shift, tcg_fpstatus); 8165 } else { 8166 gen_helper_vfp_touqh(tcg_int, tcg_single, 8167 tcg_shift, tcg_fpstatus); 8168 } 8169 } else { 8170 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 8171 if (is_signed) { 8172 gen_helper_vfp_toslh(tcg_dest, tcg_single, 8173 tcg_shift, tcg_fpstatus); 8174 } else { 8175 gen_helper_vfp_toulh(tcg_dest, tcg_single, 8176 tcg_shift, tcg_fpstatus); 8177 } 8178 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 8179 } 8180 break; 8181 8182 default: 8183 g_assert_not_reached(); 8184 } 8185 8186 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8187 } 8188 } 8189 8190 /* Floating point <-> fixed point conversions 8191 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 8192 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 8193 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 8194 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 8195 */ 8196 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 8197 { 8198 int rd = extract32(insn, 0, 5); 8199 int rn = extract32(insn, 5, 5); 8200 int scale = extract32(insn, 10, 6); 8201 int opcode = extract32(insn, 16, 3); 8202 int rmode = extract32(insn, 19, 2); 8203 int type = extract32(insn, 22, 2); 8204 bool sbit = extract32(insn, 29, 1); 8205 bool sf = extract32(insn, 31, 1); 8206 bool itof; 8207 8208 if (sbit || (!sf && scale < 32)) { 8209 unallocated_encoding(s); 8210 return; 8211 } 8212 8213 switch (type) { 8214 case 0: /* float32 */ 8215 case 1: /* float64 */ 8216 break; 8217 case 3: /* float16 */ 8218 if (dc_isar_feature(aa64_fp16, s)) { 8219 break; 8220 } 8221 /* fallthru */ 8222 default: 8223 unallocated_encoding(s); 8224 return; 8225 } 8226 8227 switch ((rmode << 3) | opcode) { 8228 case 0x2: /* SCVTF */ 8229 case 0x3: /* UCVTF */ 8230 itof = true; 8231 break; 8232 case 0x18: /* FCVTZS */ 8233 case 0x19: /* FCVTZU */ 8234 itof = false; 8235 break; 8236 default: 8237 unallocated_encoding(s); 8238 return; 8239 } 8240 8241 if (!fp_access_check(s)) { 8242 return; 8243 } 8244 8245 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 8246 } 8247 8248 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 8249 { 8250 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 8251 * without conversion. 8252 */ 8253 8254 if (itof) { 8255 TCGv_i64 tcg_rn = cpu_reg(s, rn); 8256 TCGv_i64 tmp; 8257 8258 switch (type) { 8259 case 0: 8260 /* 32 bit */ 8261 tmp = tcg_temp_new_i64(); 8262 tcg_gen_ext32u_i64(tmp, tcg_rn); 8263 write_fp_dreg(s, rd, tmp); 8264 break; 8265 case 1: 8266 /* 64 bit */ 8267 write_fp_dreg(s, rd, tcg_rn); 8268 break; 8269 case 2: 8270 /* 64 bit to top half. */ 8271 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 8272 clear_vec_high(s, true, rd); 8273 break; 8274 case 3: 8275 /* 16 bit */ 8276 tmp = tcg_temp_new_i64(); 8277 tcg_gen_ext16u_i64(tmp, tcg_rn); 8278 write_fp_dreg(s, rd, tmp); 8279 break; 8280 default: 8281 g_assert_not_reached(); 8282 } 8283 } else { 8284 TCGv_i64 tcg_rd = cpu_reg(s, rd); 8285 8286 switch (type) { 8287 case 0: 8288 /* 32 bit */ 8289 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 8290 break; 8291 case 1: 8292 /* 64 bit */ 8293 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 8294 break; 8295 case 2: 8296 /* 64 bits from top half */ 8297 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 8298 break; 8299 case 3: 8300 /* 16 bit */ 8301 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 8302 break; 8303 default: 8304 g_assert_not_reached(); 8305 } 8306 } 8307 } 8308 8309 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 8310 { 8311 TCGv_i64 t = read_fp_dreg(s, rn); 8312 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 8313 8314 gen_helper_fjcvtzs(t, t, fpstatus); 8315 8316 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 8317 tcg_gen_extrh_i64_i32(cpu_ZF, t); 8318 tcg_gen_movi_i32(cpu_CF, 0); 8319 tcg_gen_movi_i32(cpu_NF, 0); 8320 tcg_gen_movi_i32(cpu_VF, 0); 8321 } 8322 8323 /* Floating point <-> integer conversions 8324 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 8325 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8326 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 8327 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8328 */ 8329 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 8330 { 8331 int rd = extract32(insn, 0, 5); 8332 int rn = extract32(insn, 5, 5); 8333 int opcode = extract32(insn, 16, 3); 8334 int rmode = extract32(insn, 19, 2); 8335 int type = extract32(insn, 22, 2); 8336 bool sbit = extract32(insn, 29, 1); 8337 bool sf = extract32(insn, 31, 1); 8338 bool itof = false; 8339 8340 if (sbit) { 8341 goto do_unallocated; 8342 } 8343 8344 switch (opcode) { 8345 case 2: /* SCVTF */ 8346 case 3: /* UCVTF */ 8347 itof = true; 8348 /* fallthru */ 8349 case 4: /* FCVTAS */ 8350 case 5: /* FCVTAU */ 8351 if (rmode != 0) { 8352 goto do_unallocated; 8353 } 8354 /* fallthru */ 8355 case 0: /* FCVT[NPMZ]S */ 8356 case 1: /* FCVT[NPMZ]U */ 8357 switch (type) { 8358 case 0: /* float32 */ 8359 case 1: /* float64 */ 8360 break; 8361 case 3: /* float16 */ 8362 if (!dc_isar_feature(aa64_fp16, s)) { 8363 goto do_unallocated; 8364 } 8365 break; 8366 default: 8367 goto do_unallocated; 8368 } 8369 if (!fp_access_check(s)) { 8370 return; 8371 } 8372 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 8373 break; 8374 8375 default: 8376 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 8377 case 0b01100110: /* FMOV half <-> 32-bit int */ 8378 case 0b01100111: 8379 case 0b11100110: /* FMOV half <-> 64-bit int */ 8380 case 0b11100111: 8381 if (!dc_isar_feature(aa64_fp16, s)) { 8382 goto do_unallocated; 8383 } 8384 /* fallthru */ 8385 case 0b00000110: /* FMOV 32-bit */ 8386 case 0b00000111: 8387 case 0b10100110: /* FMOV 64-bit */ 8388 case 0b10100111: 8389 case 0b11001110: /* FMOV top half of 128-bit */ 8390 case 0b11001111: 8391 if (!fp_access_check(s)) { 8392 return; 8393 } 8394 itof = opcode & 1; 8395 handle_fmov(s, rd, rn, type, itof); 8396 break; 8397 8398 case 0b00111110: /* FJCVTZS */ 8399 if (!dc_isar_feature(aa64_jscvt, s)) { 8400 goto do_unallocated; 8401 } else if (fp_access_check(s)) { 8402 handle_fjcvtzs(s, rd, rn); 8403 } 8404 break; 8405 8406 default: 8407 do_unallocated: 8408 unallocated_encoding(s); 8409 return; 8410 } 8411 break; 8412 } 8413 } 8414 8415 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 8416 * 31 30 29 28 25 24 0 8417 * +---+---+---+---------+-----------------------------+ 8418 * | | 0 | | 1 1 1 1 | | 8419 * +---+---+---+---------+-----------------------------+ 8420 */ 8421 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 8422 { 8423 if (extract32(insn, 24, 1)) { 8424 unallocated_encoding(s); /* in decodetree */ 8425 } else if (extract32(insn, 21, 1) == 0) { 8426 /* Floating point to fixed point conversions */ 8427 disas_fp_fixed_conv(s, insn); 8428 } else { 8429 switch (extract32(insn, 10, 2)) { 8430 case 1: 8431 /* Floating point conditional compare */ 8432 disas_fp_ccomp(s, insn); 8433 break; 8434 case 2: 8435 /* Floating point data-processing (2 source) */ 8436 unallocated_encoding(s); /* in decodetree */ 8437 break; 8438 case 3: 8439 /* Floating point conditional select */ 8440 unallocated_encoding(s); /* in decodetree */ 8441 break; 8442 case 0: 8443 switch (ctz32(extract32(insn, 12, 4))) { 8444 case 0: /* [15:12] == xxx1 */ 8445 /* Floating point immediate */ 8446 disas_fp_imm(s, insn); 8447 break; 8448 case 1: /* [15:12] == xx10 */ 8449 /* Floating point compare */ 8450 disas_fp_compare(s, insn); 8451 break; 8452 case 2: /* [15:12] == x100 */ 8453 /* Floating point data-processing (1 source) */ 8454 disas_fp_1src(s, insn); 8455 break; 8456 case 3: /* [15:12] == 1000 */ 8457 unallocated_encoding(s); 8458 break; 8459 default: /* [15:12] == 0000 */ 8460 /* Floating point <-> integer conversions */ 8461 disas_fp_int_conv(s, insn); 8462 break; 8463 } 8464 break; 8465 } 8466 } 8467 } 8468 8469 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 8470 int pos) 8471 { 8472 /* Extract 64 bits from the middle of two concatenated 64 bit 8473 * vector register slices left:right. The extracted bits start 8474 * at 'pos' bits into the right (least significant) side. 8475 * We return the result in tcg_right, and guarantee not to 8476 * trash tcg_left. 8477 */ 8478 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8479 assert(pos > 0 && pos < 64); 8480 8481 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 8482 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 8483 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 8484 } 8485 8486 /* EXT 8487 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 8488 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8489 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 8490 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8491 */ 8492 static void disas_simd_ext(DisasContext *s, uint32_t insn) 8493 { 8494 int is_q = extract32(insn, 30, 1); 8495 int op2 = extract32(insn, 22, 2); 8496 int imm4 = extract32(insn, 11, 4); 8497 int rm = extract32(insn, 16, 5); 8498 int rn = extract32(insn, 5, 5); 8499 int rd = extract32(insn, 0, 5); 8500 int pos = imm4 << 3; 8501 TCGv_i64 tcg_resl, tcg_resh; 8502 8503 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 8504 unallocated_encoding(s); 8505 return; 8506 } 8507 8508 if (!fp_access_check(s)) { 8509 return; 8510 } 8511 8512 tcg_resh = tcg_temp_new_i64(); 8513 tcg_resl = tcg_temp_new_i64(); 8514 8515 /* Vd gets bits starting at pos bits into Vm:Vn. This is 8516 * either extracting 128 bits from a 128:128 concatenation, or 8517 * extracting 64 bits from a 64:64 concatenation. 8518 */ 8519 if (!is_q) { 8520 read_vec_element(s, tcg_resl, rn, 0, MO_64); 8521 if (pos != 0) { 8522 read_vec_element(s, tcg_resh, rm, 0, MO_64); 8523 do_ext64(s, tcg_resh, tcg_resl, pos); 8524 } 8525 } else { 8526 TCGv_i64 tcg_hh; 8527 typedef struct { 8528 int reg; 8529 int elt; 8530 } EltPosns; 8531 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 8532 EltPosns *elt = eltposns; 8533 8534 if (pos >= 64) { 8535 elt++; 8536 pos -= 64; 8537 } 8538 8539 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 8540 elt++; 8541 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 8542 elt++; 8543 if (pos != 0) { 8544 do_ext64(s, tcg_resh, tcg_resl, pos); 8545 tcg_hh = tcg_temp_new_i64(); 8546 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8547 do_ext64(s, tcg_hh, tcg_resh, pos); 8548 } 8549 } 8550 8551 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8552 if (is_q) { 8553 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8554 } 8555 clear_vec_high(s, is_q, rd); 8556 } 8557 8558 /* TBL/TBX 8559 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8560 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8561 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8562 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8563 */ 8564 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8565 { 8566 int op2 = extract32(insn, 22, 2); 8567 int is_q = extract32(insn, 30, 1); 8568 int rm = extract32(insn, 16, 5); 8569 int rn = extract32(insn, 5, 5); 8570 int rd = extract32(insn, 0, 5); 8571 int is_tbx = extract32(insn, 12, 1); 8572 int len = (extract32(insn, 13, 2) + 1) * 16; 8573 8574 if (op2 != 0) { 8575 unallocated_encoding(s); 8576 return; 8577 } 8578 8579 if (!fp_access_check(s)) { 8580 return; 8581 } 8582 8583 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8584 vec_full_reg_offset(s, rm), tcg_env, 8585 is_q ? 16 : 8, vec_full_reg_size(s), 8586 (len << 6) | (is_tbx << 5) | rn, 8587 gen_helper_simd_tblx); 8588 } 8589 8590 /* ZIP/UZP/TRN 8591 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8592 * +---+---+-------------+------+---+------+---+------------------+------+ 8593 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8594 * +---+---+-------------+------+---+------+---+------------------+------+ 8595 */ 8596 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8597 { 8598 int rd = extract32(insn, 0, 5); 8599 int rn = extract32(insn, 5, 5); 8600 int rm = extract32(insn, 16, 5); 8601 int size = extract32(insn, 22, 2); 8602 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8603 * bit 2 indicates 1 vs 2 variant of the insn. 8604 */ 8605 int opcode = extract32(insn, 12, 2); 8606 bool part = extract32(insn, 14, 1); 8607 bool is_q = extract32(insn, 30, 1); 8608 int esize = 8 << size; 8609 int i; 8610 int datasize = is_q ? 128 : 64; 8611 int elements = datasize / esize; 8612 TCGv_i64 tcg_res[2], tcg_ele; 8613 8614 if (opcode == 0 || (size == 3 && !is_q)) { 8615 unallocated_encoding(s); 8616 return; 8617 } 8618 8619 if (!fp_access_check(s)) { 8620 return; 8621 } 8622 8623 tcg_res[0] = tcg_temp_new_i64(); 8624 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 8625 tcg_ele = tcg_temp_new_i64(); 8626 8627 for (i = 0; i < elements; i++) { 8628 int o, w; 8629 8630 switch (opcode) { 8631 case 1: /* UZP1/2 */ 8632 { 8633 int midpoint = elements / 2; 8634 if (i < midpoint) { 8635 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8636 } else { 8637 read_vec_element(s, tcg_ele, rm, 8638 2 * (i - midpoint) + part, size); 8639 } 8640 break; 8641 } 8642 case 2: /* TRN1/2 */ 8643 if (i & 1) { 8644 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8645 } else { 8646 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8647 } 8648 break; 8649 case 3: /* ZIP1/2 */ 8650 { 8651 int base = part * elements / 2; 8652 if (i & 1) { 8653 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8654 } else { 8655 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8656 } 8657 break; 8658 } 8659 default: 8660 g_assert_not_reached(); 8661 } 8662 8663 w = (i * esize) / 64; 8664 o = (i * esize) % 64; 8665 if (o == 0) { 8666 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8667 } else { 8668 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8669 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8670 } 8671 } 8672 8673 for (i = 0; i <= is_q; ++i) { 8674 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8675 } 8676 clear_vec_high(s, is_q, rd); 8677 } 8678 8679 /* 8680 * do_reduction_op helper 8681 * 8682 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8683 * important for correct NaN propagation that we do these 8684 * operations in exactly the order specified by the pseudocode. 8685 * 8686 * This is a recursive function, TCG temps should be freed by the 8687 * calling function once it is done with the values. 8688 */ 8689 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8690 int esize, int size, int vmap, TCGv_ptr fpst) 8691 { 8692 if (esize == size) { 8693 int element; 8694 MemOp msize = esize == 16 ? MO_16 : MO_32; 8695 TCGv_i32 tcg_elem; 8696 8697 /* We should have one register left here */ 8698 assert(ctpop8(vmap) == 1); 8699 element = ctz32(vmap); 8700 assert(element < 8); 8701 8702 tcg_elem = tcg_temp_new_i32(); 8703 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8704 return tcg_elem; 8705 } else { 8706 int bits = size / 2; 8707 int shift = ctpop8(vmap) / 2; 8708 int vmap_lo = (vmap >> shift) & vmap; 8709 int vmap_hi = (vmap & ~vmap_lo); 8710 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8711 8712 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8713 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8714 tcg_res = tcg_temp_new_i32(); 8715 8716 switch (fpopcode) { 8717 case 0x0c: /* fmaxnmv half-precision */ 8718 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8719 break; 8720 case 0x0f: /* fmaxv half-precision */ 8721 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8722 break; 8723 case 0x1c: /* fminnmv half-precision */ 8724 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8725 break; 8726 case 0x1f: /* fminv half-precision */ 8727 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8728 break; 8729 case 0x2c: /* fmaxnmv */ 8730 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8731 break; 8732 case 0x2f: /* fmaxv */ 8733 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8734 break; 8735 case 0x3c: /* fminnmv */ 8736 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8737 break; 8738 case 0x3f: /* fminv */ 8739 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8740 break; 8741 default: 8742 g_assert_not_reached(); 8743 } 8744 return tcg_res; 8745 } 8746 } 8747 8748 /* AdvSIMD across lanes 8749 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8750 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8751 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8752 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8753 */ 8754 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8755 { 8756 int rd = extract32(insn, 0, 5); 8757 int rn = extract32(insn, 5, 5); 8758 int size = extract32(insn, 22, 2); 8759 int opcode = extract32(insn, 12, 5); 8760 bool is_q = extract32(insn, 30, 1); 8761 bool is_u = extract32(insn, 29, 1); 8762 bool is_fp = false; 8763 bool is_min = false; 8764 int esize; 8765 int elements; 8766 int i; 8767 TCGv_i64 tcg_res, tcg_elt; 8768 8769 switch (opcode) { 8770 case 0x1b: /* ADDV */ 8771 if (is_u) { 8772 unallocated_encoding(s); 8773 return; 8774 } 8775 /* fall through */ 8776 case 0x3: /* SADDLV, UADDLV */ 8777 case 0xa: /* SMAXV, UMAXV */ 8778 case 0x1a: /* SMINV, UMINV */ 8779 if (size == 3 || (size == 2 && !is_q)) { 8780 unallocated_encoding(s); 8781 return; 8782 } 8783 break; 8784 case 0xc: /* FMAXNMV, FMINNMV */ 8785 case 0xf: /* FMAXV, FMINV */ 8786 /* Bit 1 of size field encodes min vs max and the actual size 8787 * depends on the encoding of the U bit. If not set (and FP16 8788 * enabled) then we do half-precision float instead of single 8789 * precision. 8790 */ 8791 is_min = extract32(size, 1, 1); 8792 is_fp = true; 8793 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8794 size = 1; 8795 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8796 unallocated_encoding(s); 8797 return; 8798 } else { 8799 size = 2; 8800 } 8801 break; 8802 default: 8803 unallocated_encoding(s); 8804 return; 8805 } 8806 8807 if (!fp_access_check(s)) { 8808 return; 8809 } 8810 8811 esize = 8 << size; 8812 elements = (is_q ? 128 : 64) / esize; 8813 8814 tcg_res = tcg_temp_new_i64(); 8815 tcg_elt = tcg_temp_new_i64(); 8816 8817 /* These instructions operate across all lanes of a vector 8818 * to produce a single result. We can guarantee that a 64 8819 * bit intermediate is sufficient: 8820 * + for [US]ADDLV the maximum element size is 32 bits, and 8821 * the result type is 64 bits 8822 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8823 * same as the element size, which is 32 bits at most 8824 * For the integer operations we can choose to work at 64 8825 * or 32 bits and truncate at the end; for simplicity 8826 * we use 64 bits always. The floating point 8827 * ops do require 32 bit intermediates, though. 8828 */ 8829 if (!is_fp) { 8830 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8831 8832 for (i = 1; i < elements; i++) { 8833 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8834 8835 switch (opcode) { 8836 case 0x03: /* SADDLV / UADDLV */ 8837 case 0x1b: /* ADDV */ 8838 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8839 break; 8840 case 0x0a: /* SMAXV / UMAXV */ 8841 if (is_u) { 8842 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8843 } else { 8844 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8845 } 8846 break; 8847 case 0x1a: /* SMINV / UMINV */ 8848 if (is_u) { 8849 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8850 } else { 8851 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8852 } 8853 break; 8854 default: 8855 g_assert_not_reached(); 8856 } 8857 8858 } 8859 } else { 8860 /* Floating point vector reduction ops which work across 32 8861 * bit (single) or 16 bit (half-precision) intermediates. 8862 * Note that correct NaN propagation requires that we do these 8863 * operations in exactly the order specified by the pseudocode. 8864 */ 8865 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8866 int fpopcode = opcode | is_min << 4 | is_u << 5; 8867 int vmap = (1 << elements) - 1; 8868 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8869 (is_q ? 128 : 64), vmap, fpst); 8870 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8871 } 8872 8873 /* Now truncate the result to the width required for the final output */ 8874 if (opcode == 0x03) { 8875 /* SADDLV, UADDLV: result is 2*esize */ 8876 size++; 8877 } 8878 8879 switch (size) { 8880 case 0: 8881 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8882 break; 8883 case 1: 8884 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8885 break; 8886 case 2: 8887 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8888 break; 8889 case 3: 8890 break; 8891 default: 8892 g_assert_not_reached(); 8893 } 8894 8895 write_fp_dreg(s, rd, tcg_res); 8896 } 8897 8898 /* AdvSIMD modified immediate 8899 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8900 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8901 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8902 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8903 * 8904 * There are a number of operations that can be carried out here: 8905 * MOVI - move (shifted) imm into register 8906 * MVNI - move inverted (shifted) imm into register 8907 * ORR - bitwise OR of (shifted) imm with register 8908 * BIC - bitwise clear of (shifted) imm with register 8909 * With ARMv8.2 we also have: 8910 * FMOV half-precision 8911 */ 8912 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8913 { 8914 int rd = extract32(insn, 0, 5); 8915 int cmode = extract32(insn, 12, 4); 8916 int o2 = extract32(insn, 11, 1); 8917 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8918 bool is_neg = extract32(insn, 29, 1); 8919 bool is_q = extract32(insn, 30, 1); 8920 uint64_t imm = 0; 8921 8922 if (o2) { 8923 if (cmode != 0xf || is_neg) { 8924 unallocated_encoding(s); 8925 return; 8926 } 8927 /* FMOV (vector, immediate) - half-precision */ 8928 if (!dc_isar_feature(aa64_fp16, s)) { 8929 unallocated_encoding(s); 8930 return; 8931 } 8932 imm = vfp_expand_imm(MO_16, abcdefgh); 8933 /* now duplicate across the lanes */ 8934 imm = dup_const(MO_16, imm); 8935 } else { 8936 if (cmode == 0xf && is_neg && !is_q) { 8937 unallocated_encoding(s); 8938 return; 8939 } 8940 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8941 } 8942 8943 if (!fp_access_check(s)) { 8944 return; 8945 } 8946 8947 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8948 /* MOVI or MVNI, with MVNI negation handled above. */ 8949 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8950 vec_full_reg_size(s), imm); 8951 } else { 8952 /* ORR or BIC, with BIC negation to AND handled above. */ 8953 if (is_neg) { 8954 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8955 } else { 8956 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8957 } 8958 } 8959 } 8960 8961 /* 8962 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8963 * 8964 * This code is handles the common shifting code and is used by both 8965 * the vector and scalar code. 8966 */ 8967 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8968 TCGv_i64 tcg_rnd, bool accumulate, 8969 bool is_u, int size, int shift) 8970 { 8971 bool extended_result = false; 8972 bool round = tcg_rnd != NULL; 8973 int ext_lshift = 0; 8974 TCGv_i64 tcg_src_hi; 8975 8976 if (round && size == 3) { 8977 extended_result = true; 8978 ext_lshift = 64 - shift; 8979 tcg_src_hi = tcg_temp_new_i64(); 8980 } else if (shift == 64) { 8981 if (!accumulate && is_u) { 8982 /* result is zero */ 8983 tcg_gen_movi_i64(tcg_res, 0); 8984 return; 8985 } 8986 } 8987 8988 /* Deal with the rounding step */ 8989 if (round) { 8990 if (extended_result) { 8991 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8992 if (!is_u) { 8993 /* take care of sign extending tcg_res */ 8994 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8995 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8996 tcg_src, tcg_src_hi, 8997 tcg_rnd, tcg_zero); 8998 } else { 8999 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 9000 tcg_src, tcg_zero, 9001 tcg_rnd, tcg_zero); 9002 } 9003 } else { 9004 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 9005 } 9006 } 9007 9008 /* Now do the shift right */ 9009 if (round && extended_result) { 9010 /* extended case, >64 bit precision required */ 9011 if (ext_lshift == 0) { 9012 /* special case, only high bits matter */ 9013 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 9014 } else { 9015 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 9016 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 9017 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 9018 } 9019 } else { 9020 if (is_u) { 9021 if (shift == 64) { 9022 /* essentially shifting in 64 zeros */ 9023 tcg_gen_movi_i64(tcg_src, 0); 9024 } else { 9025 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 9026 } 9027 } else { 9028 if (shift == 64) { 9029 /* effectively extending the sign-bit */ 9030 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 9031 } else { 9032 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 9033 } 9034 } 9035 } 9036 9037 if (accumulate) { 9038 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 9039 } else { 9040 tcg_gen_mov_i64(tcg_res, tcg_src); 9041 } 9042 } 9043 9044 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 9045 static void handle_scalar_simd_shri(DisasContext *s, 9046 bool is_u, int immh, int immb, 9047 int opcode, int rn, int rd) 9048 { 9049 const int size = 3; 9050 int immhb = immh << 3 | immb; 9051 int shift = 2 * (8 << size) - immhb; 9052 bool accumulate = false; 9053 bool round = false; 9054 bool insert = false; 9055 TCGv_i64 tcg_rn; 9056 TCGv_i64 tcg_rd; 9057 TCGv_i64 tcg_round; 9058 9059 if (!extract32(immh, 3, 1)) { 9060 unallocated_encoding(s); 9061 return; 9062 } 9063 9064 if (!fp_access_check(s)) { 9065 return; 9066 } 9067 9068 switch (opcode) { 9069 case 0x02: /* SSRA / USRA (accumulate) */ 9070 accumulate = true; 9071 break; 9072 case 0x04: /* SRSHR / URSHR (rounding) */ 9073 round = true; 9074 break; 9075 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 9076 accumulate = round = true; 9077 break; 9078 case 0x08: /* SRI */ 9079 insert = true; 9080 break; 9081 } 9082 9083 if (round) { 9084 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 9085 } else { 9086 tcg_round = NULL; 9087 } 9088 9089 tcg_rn = read_fp_dreg(s, rn); 9090 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 9091 9092 if (insert) { 9093 /* shift count same as element size is valid but does nothing; 9094 * special case to avoid potential shift by 64. 9095 */ 9096 int esize = 8 << size; 9097 if (shift != esize) { 9098 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 9099 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 9100 } 9101 } else { 9102 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 9103 accumulate, is_u, size, shift); 9104 } 9105 9106 write_fp_dreg(s, rd, tcg_rd); 9107 } 9108 9109 /* SHL/SLI - Scalar shift left */ 9110 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 9111 int immh, int immb, int opcode, 9112 int rn, int rd) 9113 { 9114 int size = 32 - clz32(immh) - 1; 9115 int immhb = immh << 3 | immb; 9116 int shift = immhb - (8 << size); 9117 TCGv_i64 tcg_rn; 9118 TCGv_i64 tcg_rd; 9119 9120 if (!extract32(immh, 3, 1)) { 9121 unallocated_encoding(s); 9122 return; 9123 } 9124 9125 if (!fp_access_check(s)) { 9126 return; 9127 } 9128 9129 tcg_rn = read_fp_dreg(s, rn); 9130 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 9131 9132 if (insert) { 9133 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 9134 } else { 9135 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 9136 } 9137 9138 write_fp_dreg(s, rd, tcg_rd); 9139 } 9140 9141 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 9142 * (signed/unsigned) narrowing */ 9143 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 9144 bool is_u_shift, bool is_u_narrow, 9145 int immh, int immb, int opcode, 9146 int rn, int rd) 9147 { 9148 int immhb = immh << 3 | immb; 9149 int size = 32 - clz32(immh) - 1; 9150 int esize = 8 << size; 9151 int shift = (2 * esize) - immhb; 9152 int elements = is_scalar ? 1 : (64 / esize); 9153 bool round = extract32(opcode, 0, 1); 9154 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 9155 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 9156 TCGv_i32 tcg_rd_narrowed; 9157 TCGv_i64 tcg_final; 9158 9159 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 9160 { gen_helper_neon_narrow_sat_s8, 9161 gen_helper_neon_unarrow_sat8 }, 9162 { gen_helper_neon_narrow_sat_s16, 9163 gen_helper_neon_unarrow_sat16 }, 9164 { gen_helper_neon_narrow_sat_s32, 9165 gen_helper_neon_unarrow_sat32 }, 9166 { NULL, NULL }, 9167 }; 9168 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 9169 gen_helper_neon_narrow_sat_u8, 9170 gen_helper_neon_narrow_sat_u16, 9171 gen_helper_neon_narrow_sat_u32, 9172 NULL 9173 }; 9174 NeonGenNarrowEnvFn *narrowfn; 9175 9176 int i; 9177 9178 assert(size < 4); 9179 9180 if (extract32(immh, 3, 1)) { 9181 unallocated_encoding(s); 9182 return; 9183 } 9184 9185 if (!fp_access_check(s)) { 9186 return; 9187 } 9188 9189 if (is_u_shift) { 9190 narrowfn = unsigned_narrow_fns[size]; 9191 } else { 9192 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 9193 } 9194 9195 tcg_rn = tcg_temp_new_i64(); 9196 tcg_rd = tcg_temp_new_i64(); 9197 tcg_rd_narrowed = tcg_temp_new_i32(); 9198 tcg_final = tcg_temp_new_i64(); 9199 9200 if (round) { 9201 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 9202 } else { 9203 tcg_round = NULL; 9204 } 9205 9206 for (i = 0; i < elements; i++) { 9207 read_vec_element(s, tcg_rn, rn, i, ldop); 9208 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 9209 false, is_u_shift, size+1, shift); 9210 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 9211 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 9212 if (i == 0) { 9213 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 9214 } else { 9215 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 9216 } 9217 } 9218 9219 if (!is_q) { 9220 write_vec_element(s, tcg_final, rd, 0, MO_64); 9221 } else { 9222 write_vec_element(s, tcg_final, rd, 1, MO_64); 9223 } 9224 clear_vec_high(s, is_q, rd); 9225 } 9226 9227 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 9228 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 9229 bool src_unsigned, bool dst_unsigned, 9230 int immh, int immb, int rn, int rd) 9231 { 9232 int immhb = immh << 3 | immb; 9233 int size = 32 - clz32(immh) - 1; 9234 int shift = immhb - (8 << size); 9235 int pass; 9236 9237 assert(immh != 0); 9238 assert(!(scalar && is_q)); 9239 9240 if (!scalar) { 9241 if (!is_q && extract32(immh, 3, 1)) { 9242 unallocated_encoding(s); 9243 return; 9244 } 9245 9246 /* Since we use the variable-shift helpers we must 9247 * replicate the shift count into each element of 9248 * the tcg_shift value. 9249 */ 9250 switch (size) { 9251 case 0: 9252 shift |= shift << 8; 9253 /* fall through */ 9254 case 1: 9255 shift |= shift << 16; 9256 break; 9257 case 2: 9258 case 3: 9259 break; 9260 default: 9261 g_assert_not_reached(); 9262 } 9263 } 9264 9265 if (!fp_access_check(s)) { 9266 return; 9267 } 9268 9269 if (size == 3) { 9270 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 9271 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 9272 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 9273 { NULL, gen_helper_neon_qshl_u64 }, 9274 }; 9275 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 9276 int maxpass = is_q ? 2 : 1; 9277 9278 for (pass = 0; pass < maxpass; pass++) { 9279 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9280 9281 read_vec_element(s, tcg_op, rn, pass, MO_64); 9282 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9283 write_vec_element(s, tcg_op, rd, pass, MO_64); 9284 } 9285 clear_vec_high(s, is_q, rd); 9286 } else { 9287 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 9288 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 9289 { 9290 { gen_helper_neon_qshl_s8, 9291 gen_helper_neon_qshl_s16, 9292 gen_helper_neon_qshl_s32 }, 9293 { gen_helper_neon_qshlu_s8, 9294 gen_helper_neon_qshlu_s16, 9295 gen_helper_neon_qshlu_s32 } 9296 }, { 9297 { NULL, NULL, NULL }, 9298 { gen_helper_neon_qshl_u8, 9299 gen_helper_neon_qshl_u16, 9300 gen_helper_neon_qshl_u32 } 9301 } 9302 }; 9303 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 9304 MemOp memop = scalar ? size : MO_32; 9305 int maxpass = scalar ? 1 : is_q ? 4 : 2; 9306 9307 for (pass = 0; pass < maxpass; pass++) { 9308 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9309 9310 read_vec_element_i32(s, tcg_op, rn, pass, memop); 9311 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9312 if (scalar) { 9313 switch (size) { 9314 case 0: 9315 tcg_gen_ext8u_i32(tcg_op, tcg_op); 9316 break; 9317 case 1: 9318 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9319 break; 9320 case 2: 9321 break; 9322 default: 9323 g_assert_not_reached(); 9324 } 9325 write_fp_sreg(s, rd, tcg_op); 9326 } else { 9327 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 9328 } 9329 } 9330 9331 if (!scalar) { 9332 clear_vec_high(s, is_q, rd); 9333 } 9334 } 9335 } 9336 9337 /* Common vector code for handling integer to FP conversion */ 9338 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 9339 int elements, int is_signed, 9340 int fracbits, int size) 9341 { 9342 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9343 TCGv_i32 tcg_shift = NULL; 9344 9345 MemOp mop = size | (is_signed ? MO_SIGN : 0); 9346 int pass; 9347 9348 if (fracbits || size == MO_64) { 9349 tcg_shift = tcg_constant_i32(fracbits); 9350 } 9351 9352 if (size == MO_64) { 9353 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 9354 TCGv_i64 tcg_double = tcg_temp_new_i64(); 9355 9356 for (pass = 0; pass < elements; pass++) { 9357 read_vec_element(s, tcg_int64, rn, pass, mop); 9358 9359 if (is_signed) { 9360 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 9361 tcg_shift, tcg_fpst); 9362 } else { 9363 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 9364 tcg_shift, tcg_fpst); 9365 } 9366 if (elements == 1) { 9367 write_fp_dreg(s, rd, tcg_double); 9368 } else { 9369 write_vec_element(s, tcg_double, rd, pass, MO_64); 9370 } 9371 } 9372 } else { 9373 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 9374 TCGv_i32 tcg_float = tcg_temp_new_i32(); 9375 9376 for (pass = 0; pass < elements; pass++) { 9377 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 9378 9379 switch (size) { 9380 case MO_32: 9381 if (fracbits) { 9382 if (is_signed) { 9383 gen_helper_vfp_sltos(tcg_float, tcg_int32, 9384 tcg_shift, tcg_fpst); 9385 } else { 9386 gen_helper_vfp_ultos(tcg_float, tcg_int32, 9387 tcg_shift, tcg_fpst); 9388 } 9389 } else { 9390 if (is_signed) { 9391 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 9392 } else { 9393 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 9394 } 9395 } 9396 break; 9397 case MO_16: 9398 if (fracbits) { 9399 if (is_signed) { 9400 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 9401 tcg_shift, tcg_fpst); 9402 } else { 9403 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 9404 tcg_shift, tcg_fpst); 9405 } 9406 } else { 9407 if (is_signed) { 9408 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 9409 } else { 9410 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 9411 } 9412 } 9413 break; 9414 default: 9415 g_assert_not_reached(); 9416 } 9417 9418 if (elements == 1) { 9419 write_fp_sreg(s, rd, tcg_float); 9420 } else { 9421 write_vec_element_i32(s, tcg_float, rd, pass, size); 9422 } 9423 } 9424 } 9425 9426 clear_vec_high(s, elements << size == 16, rd); 9427 } 9428 9429 /* UCVTF/SCVTF - Integer to FP conversion */ 9430 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 9431 bool is_q, bool is_u, 9432 int immh, int immb, int opcode, 9433 int rn, int rd) 9434 { 9435 int size, elements, fracbits; 9436 int immhb = immh << 3 | immb; 9437 9438 if (immh & 8) { 9439 size = MO_64; 9440 if (!is_scalar && !is_q) { 9441 unallocated_encoding(s); 9442 return; 9443 } 9444 } else if (immh & 4) { 9445 size = MO_32; 9446 } else if (immh & 2) { 9447 size = MO_16; 9448 if (!dc_isar_feature(aa64_fp16, s)) { 9449 unallocated_encoding(s); 9450 return; 9451 } 9452 } else { 9453 /* immh == 0 would be a failure of the decode logic */ 9454 g_assert(immh == 1); 9455 unallocated_encoding(s); 9456 return; 9457 } 9458 9459 if (is_scalar) { 9460 elements = 1; 9461 } else { 9462 elements = (8 << is_q) >> size; 9463 } 9464 fracbits = (16 << size) - immhb; 9465 9466 if (!fp_access_check(s)) { 9467 return; 9468 } 9469 9470 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 9471 } 9472 9473 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 9474 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 9475 bool is_q, bool is_u, 9476 int immh, int immb, int rn, int rd) 9477 { 9478 int immhb = immh << 3 | immb; 9479 int pass, size, fracbits; 9480 TCGv_ptr tcg_fpstatus; 9481 TCGv_i32 tcg_rmode, tcg_shift; 9482 9483 if (immh & 0x8) { 9484 size = MO_64; 9485 if (!is_scalar && !is_q) { 9486 unallocated_encoding(s); 9487 return; 9488 } 9489 } else if (immh & 0x4) { 9490 size = MO_32; 9491 } else if (immh & 0x2) { 9492 size = MO_16; 9493 if (!dc_isar_feature(aa64_fp16, s)) { 9494 unallocated_encoding(s); 9495 return; 9496 } 9497 } else { 9498 /* Should have split out AdvSIMD modified immediate earlier. */ 9499 assert(immh == 1); 9500 unallocated_encoding(s); 9501 return; 9502 } 9503 9504 if (!fp_access_check(s)) { 9505 return; 9506 } 9507 9508 assert(!(is_scalar && is_q)); 9509 9510 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9511 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9512 fracbits = (16 << size) - immhb; 9513 tcg_shift = tcg_constant_i32(fracbits); 9514 9515 if (size == MO_64) { 9516 int maxpass = is_scalar ? 1 : 2; 9517 9518 for (pass = 0; pass < maxpass; pass++) { 9519 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9520 9521 read_vec_element(s, tcg_op, rn, pass, MO_64); 9522 if (is_u) { 9523 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9524 } else { 9525 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9526 } 9527 write_vec_element(s, tcg_op, rd, pass, MO_64); 9528 } 9529 clear_vec_high(s, is_q, rd); 9530 } else { 9531 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9532 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9533 9534 switch (size) { 9535 case MO_16: 9536 if (is_u) { 9537 fn = gen_helper_vfp_touhh; 9538 } else { 9539 fn = gen_helper_vfp_toshh; 9540 } 9541 break; 9542 case MO_32: 9543 if (is_u) { 9544 fn = gen_helper_vfp_touls; 9545 } else { 9546 fn = gen_helper_vfp_tosls; 9547 } 9548 break; 9549 default: 9550 g_assert_not_reached(); 9551 } 9552 9553 for (pass = 0; pass < maxpass; pass++) { 9554 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9555 9556 read_vec_element_i32(s, tcg_op, rn, pass, size); 9557 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9558 if (is_scalar) { 9559 if (size == MO_16 && !is_u) { 9560 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9561 } 9562 write_fp_sreg(s, rd, tcg_op); 9563 } else { 9564 write_vec_element_i32(s, tcg_op, rd, pass, size); 9565 } 9566 } 9567 if (!is_scalar) { 9568 clear_vec_high(s, is_q, rd); 9569 } 9570 } 9571 9572 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9573 } 9574 9575 /* AdvSIMD scalar shift by immediate 9576 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9577 * +-----+---+-------------+------+------+--------+---+------+------+ 9578 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9579 * +-----+---+-------------+------+------+--------+---+------+------+ 9580 * 9581 * This is the scalar version so it works on a fixed sized registers 9582 */ 9583 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9584 { 9585 int rd = extract32(insn, 0, 5); 9586 int rn = extract32(insn, 5, 5); 9587 int opcode = extract32(insn, 11, 5); 9588 int immb = extract32(insn, 16, 3); 9589 int immh = extract32(insn, 19, 4); 9590 bool is_u = extract32(insn, 29, 1); 9591 9592 if (immh == 0) { 9593 unallocated_encoding(s); 9594 return; 9595 } 9596 9597 switch (opcode) { 9598 case 0x08: /* SRI */ 9599 if (!is_u) { 9600 unallocated_encoding(s); 9601 return; 9602 } 9603 /* fall through */ 9604 case 0x00: /* SSHR / USHR */ 9605 case 0x02: /* SSRA / USRA */ 9606 case 0x04: /* SRSHR / URSHR */ 9607 case 0x06: /* SRSRA / URSRA */ 9608 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9609 break; 9610 case 0x0a: /* SHL / SLI */ 9611 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9612 break; 9613 case 0x1c: /* SCVTF, UCVTF */ 9614 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9615 opcode, rn, rd); 9616 break; 9617 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9618 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9619 if (!is_u) { 9620 unallocated_encoding(s); 9621 return; 9622 } 9623 handle_vec_simd_sqshrn(s, true, false, false, true, 9624 immh, immb, opcode, rn, rd); 9625 break; 9626 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9627 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9628 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9629 immh, immb, opcode, rn, rd); 9630 break; 9631 case 0xc: /* SQSHLU */ 9632 if (!is_u) { 9633 unallocated_encoding(s); 9634 return; 9635 } 9636 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9637 break; 9638 case 0xe: /* SQSHL, UQSHL */ 9639 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9640 break; 9641 case 0x1f: /* FCVTZS, FCVTZU */ 9642 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9643 break; 9644 default: 9645 unallocated_encoding(s); 9646 break; 9647 } 9648 } 9649 9650 /* AdvSIMD scalar three different 9651 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9652 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9653 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9654 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9655 */ 9656 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9657 { 9658 bool is_u = extract32(insn, 29, 1); 9659 int size = extract32(insn, 22, 2); 9660 int opcode = extract32(insn, 12, 4); 9661 int rm = extract32(insn, 16, 5); 9662 int rn = extract32(insn, 5, 5); 9663 int rd = extract32(insn, 0, 5); 9664 9665 if (is_u) { 9666 unallocated_encoding(s); 9667 return; 9668 } 9669 9670 switch (opcode) { 9671 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9672 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9673 case 0xd: /* SQDMULL, SQDMULL2 */ 9674 if (size == 0 || size == 3) { 9675 unallocated_encoding(s); 9676 return; 9677 } 9678 break; 9679 default: 9680 unallocated_encoding(s); 9681 return; 9682 } 9683 9684 if (!fp_access_check(s)) { 9685 return; 9686 } 9687 9688 if (size == 2) { 9689 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9690 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9691 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9692 9693 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9694 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9695 9696 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9697 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9698 9699 switch (opcode) { 9700 case 0xd: /* SQDMULL, SQDMULL2 */ 9701 break; 9702 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9703 tcg_gen_neg_i64(tcg_res, tcg_res); 9704 /* fall through */ 9705 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9706 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9707 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9708 tcg_res, tcg_op1); 9709 break; 9710 default: 9711 g_assert_not_reached(); 9712 } 9713 9714 write_fp_dreg(s, rd, tcg_res); 9715 } else { 9716 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9717 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9718 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9719 9720 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9721 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9722 9723 switch (opcode) { 9724 case 0xd: /* SQDMULL, SQDMULL2 */ 9725 break; 9726 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9727 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9728 /* fall through */ 9729 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9730 { 9731 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9732 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9733 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9734 tcg_res, tcg_op3); 9735 break; 9736 } 9737 default: 9738 g_assert_not_reached(); 9739 } 9740 9741 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9742 write_fp_dreg(s, rd, tcg_res); 9743 } 9744 } 9745 9746 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9747 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9748 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9749 { 9750 /* Handle 64->64 opcodes which are shared between the scalar and 9751 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9752 * is valid in either group and also the double-precision fp ops. 9753 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9754 * requires them. 9755 */ 9756 TCGCond cond; 9757 9758 switch (opcode) { 9759 case 0x4: /* CLS, CLZ */ 9760 if (u) { 9761 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9762 } else { 9763 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9764 } 9765 break; 9766 case 0x5: /* NOT */ 9767 /* This opcode is shared with CNT and RBIT but we have earlier 9768 * enforced that size == 3 if and only if this is the NOT insn. 9769 */ 9770 tcg_gen_not_i64(tcg_rd, tcg_rn); 9771 break; 9772 case 0x7: /* SQABS, SQNEG */ 9773 if (u) { 9774 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9775 } else { 9776 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9777 } 9778 break; 9779 case 0xa: /* CMLT */ 9780 cond = TCG_COND_LT; 9781 do_cmop: 9782 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9783 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9784 break; 9785 case 0x8: /* CMGT, CMGE */ 9786 cond = u ? TCG_COND_GE : TCG_COND_GT; 9787 goto do_cmop; 9788 case 0x9: /* CMEQ, CMLE */ 9789 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9790 goto do_cmop; 9791 case 0xb: /* ABS, NEG */ 9792 if (u) { 9793 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9794 } else { 9795 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9796 } 9797 break; 9798 case 0x2f: /* FABS */ 9799 gen_vfp_absd(tcg_rd, tcg_rn); 9800 break; 9801 case 0x6f: /* FNEG */ 9802 gen_vfp_negd(tcg_rd, tcg_rn); 9803 break; 9804 case 0x7f: /* FSQRT */ 9805 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9806 break; 9807 case 0x1a: /* FCVTNS */ 9808 case 0x1b: /* FCVTMS */ 9809 case 0x1c: /* FCVTAS */ 9810 case 0x3a: /* FCVTPS */ 9811 case 0x3b: /* FCVTZS */ 9812 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9813 break; 9814 case 0x5a: /* FCVTNU */ 9815 case 0x5b: /* FCVTMU */ 9816 case 0x5c: /* FCVTAU */ 9817 case 0x7a: /* FCVTPU */ 9818 case 0x7b: /* FCVTZU */ 9819 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9820 break; 9821 case 0x18: /* FRINTN */ 9822 case 0x19: /* FRINTM */ 9823 case 0x38: /* FRINTP */ 9824 case 0x39: /* FRINTZ */ 9825 case 0x58: /* FRINTA */ 9826 case 0x79: /* FRINTI */ 9827 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9828 break; 9829 case 0x59: /* FRINTX */ 9830 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9831 break; 9832 case 0x1e: /* FRINT32Z */ 9833 case 0x5e: /* FRINT32X */ 9834 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9835 break; 9836 case 0x1f: /* FRINT64Z */ 9837 case 0x5f: /* FRINT64X */ 9838 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9839 break; 9840 default: 9841 g_assert_not_reached(); 9842 } 9843 } 9844 9845 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9846 bool is_scalar, bool is_u, bool is_q, 9847 int size, int rn, int rd) 9848 { 9849 bool is_double = (size == MO_64); 9850 TCGv_ptr fpst; 9851 9852 if (!fp_access_check(s)) { 9853 return; 9854 } 9855 9856 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9857 9858 if (is_double) { 9859 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9860 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9861 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9862 NeonGenTwoDoubleOpFn *genfn; 9863 bool swap = false; 9864 int pass; 9865 9866 switch (opcode) { 9867 case 0x2e: /* FCMLT (zero) */ 9868 swap = true; 9869 /* fallthrough */ 9870 case 0x2c: /* FCMGT (zero) */ 9871 genfn = gen_helper_neon_cgt_f64; 9872 break; 9873 case 0x2d: /* FCMEQ (zero) */ 9874 genfn = gen_helper_neon_ceq_f64; 9875 break; 9876 case 0x6d: /* FCMLE (zero) */ 9877 swap = true; 9878 /* fall through */ 9879 case 0x6c: /* FCMGE (zero) */ 9880 genfn = gen_helper_neon_cge_f64; 9881 break; 9882 default: 9883 g_assert_not_reached(); 9884 } 9885 9886 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9887 read_vec_element(s, tcg_op, rn, pass, MO_64); 9888 if (swap) { 9889 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9890 } else { 9891 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9892 } 9893 write_vec_element(s, tcg_res, rd, pass, MO_64); 9894 } 9895 9896 clear_vec_high(s, !is_scalar, rd); 9897 } else { 9898 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9899 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9900 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9901 NeonGenTwoSingleOpFn *genfn; 9902 bool swap = false; 9903 int pass, maxpasses; 9904 9905 if (size == MO_16) { 9906 switch (opcode) { 9907 case 0x2e: /* FCMLT (zero) */ 9908 swap = true; 9909 /* fall through */ 9910 case 0x2c: /* FCMGT (zero) */ 9911 genfn = gen_helper_advsimd_cgt_f16; 9912 break; 9913 case 0x2d: /* FCMEQ (zero) */ 9914 genfn = gen_helper_advsimd_ceq_f16; 9915 break; 9916 case 0x6d: /* FCMLE (zero) */ 9917 swap = true; 9918 /* fall through */ 9919 case 0x6c: /* FCMGE (zero) */ 9920 genfn = gen_helper_advsimd_cge_f16; 9921 break; 9922 default: 9923 g_assert_not_reached(); 9924 } 9925 } else { 9926 switch (opcode) { 9927 case 0x2e: /* FCMLT (zero) */ 9928 swap = true; 9929 /* fall through */ 9930 case 0x2c: /* FCMGT (zero) */ 9931 genfn = gen_helper_neon_cgt_f32; 9932 break; 9933 case 0x2d: /* FCMEQ (zero) */ 9934 genfn = gen_helper_neon_ceq_f32; 9935 break; 9936 case 0x6d: /* FCMLE (zero) */ 9937 swap = true; 9938 /* fall through */ 9939 case 0x6c: /* FCMGE (zero) */ 9940 genfn = gen_helper_neon_cge_f32; 9941 break; 9942 default: 9943 g_assert_not_reached(); 9944 } 9945 } 9946 9947 if (is_scalar) { 9948 maxpasses = 1; 9949 } else { 9950 int vector_size = 8 << is_q; 9951 maxpasses = vector_size >> size; 9952 } 9953 9954 for (pass = 0; pass < maxpasses; pass++) { 9955 read_vec_element_i32(s, tcg_op, rn, pass, size); 9956 if (swap) { 9957 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9958 } else { 9959 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9960 } 9961 if (is_scalar) { 9962 write_fp_sreg(s, rd, tcg_res); 9963 } else { 9964 write_vec_element_i32(s, tcg_res, rd, pass, size); 9965 } 9966 } 9967 9968 if (!is_scalar) { 9969 clear_vec_high(s, is_q, rd); 9970 } 9971 } 9972 } 9973 9974 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9975 bool is_scalar, bool is_u, bool is_q, 9976 int size, int rn, int rd) 9977 { 9978 bool is_double = (size == 3); 9979 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9980 9981 if (is_double) { 9982 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9983 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9984 int pass; 9985 9986 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9987 read_vec_element(s, tcg_op, rn, pass, MO_64); 9988 switch (opcode) { 9989 case 0x3d: /* FRECPE */ 9990 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9991 break; 9992 case 0x3f: /* FRECPX */ 9993 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9994 break; 9995 case 0x7d: /* FRSQRTE */ 9996 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9997 break; 9998 default: 9999 g_assert_not_reached(); 10000 } 10001 write_vec_element(s, tcg_res, rd, pass, MO_64); 10002 } 10003 clear_vec_high(s, !is_scalar, rd); 10004 } else { 10005 TCGv_i32 tcg_op = tcg_temp_new_i32(); 10006 TCGv_i32 tcg_res = tcg_temp_new_i32(); 10007 int pass, maxpasses; 10008 10009 if (is_scalar) { 10010 maxpasses = 1; 10011 } else { 10012 maxpasses = is_q ? 4 : 2; 10013 } 10014 10015 for (pass = 0; pass < maxpasses; pass++) { 10016 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 10017 10018 switch (opcode) { 10019 case 0x3c: /* URECPE */ 10020 gen_helper_recpe_u32(tcg_res, tcg_op); 10021 break; 10022 case 0x3d: /* FRECPE */ 10023 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 10024 break; 10025 case 0x3f: /* FRECPX */ 10026 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 10027 break; 10028 case 0x7d: /* FRSQRTE */ 10029 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 10030 break; 10031 default: 10032 g_assert_not_reached(); 10033 } 10034 10035 if (is_scalar) { 10036 write_fp_sreg(s, rd, tcg_res); 10037 } else { 10038 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 10039 } 10040 } 10041 if (!is_scalar) { 10042 clear_vec_high(s, is_q, rd); 10043 } 10044 } 10045 } 10046 10047 static void handle_2misc_narrow(DisasContext *s, bool scalar, 10048 int opcode, bool u, bool is_q, 10049 int size, int rn, int rd) 10050 { 10051 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 10052 * in the source becomes a size element in the destination). 10053 */ 10054 int pass; 10055 TCGv_i32 tcg_res[2]; 10056 int destelt = is_q ? 2 : 0; 10057 int passes = scalar ? 1 : 2; 10058 10059 if (scalar) { 10060 tcg_res[1] = tcg_constant_i32(0); 10061 } 10062 10063 for (pass = 0; pass < passes; pass++) { 10064 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10065 NeonGenNarrowFn *genfn = NULL; 10066 NeonGenNarrowEnvFn *genenvfn = NULL; 10067 10068 if (scalar) { 10069 read_vec_element(s, tcg_op, rn, pass, size + 1); 10070 } else { 10071 read_vec_element(s, tcg_op, rn, pass, MO_64); 10072 } 10073 tcg_res[pass] = tcg_temp_new_i32(); 10074 10075 switch (opcode) { 10076 case 0x12: /* XTN, SQXTUN */ 10077 { 10078 static NeonGenNarrowFn * const xtnfns[3] = { 10079 gen_helper_neon_narrow_u8, 10080 gen_helper_neon_narrow_u16, 10081 tcg_gen_extrl_i64_i32, 10082 }; 10083 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 10084 gen_helper_neon_unarrow_sat8, 10085 gen_helper_neon_unarrow_sat16, 10086 gen_helper_neon_unarrow_sat32, 10087 }; 10088 if (u) { 10089 genenvfn = sqxtunfns[size]; 10090 } else { 10091 genfn = xtnfns[size]; 10092 } 10093 break; 10094 } 10095 case 0x14: /* SQXTN, UQXTN */ 10096 { 10097 static NeonGenNarrowEnvFn * const fns[3][2] = { 10098 { gen_helper_neon_narrow_sat_s8, 10099 gen_helper_neon_narrow_sat_u8 }, 10100 { gen_helper_neon_narrow_sat_s16, 10101 gen_helper_neon_narrow_sat_u16 }, 10102 { gen_helper_neon_narrow_sat_s32, 10103 gen_helper_neon_narrow_sat_u32 }, 10104 }; 10105 genenvfn = fns[size][u]; 10106 break; 10107 } 10108 case 0x16: /* FCVTN, FCVTN2 */ 10109 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10110 if (size == 2) { 10111 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 10112 } else { 10113 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10114 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10115 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10116 TCGv_i32 ahp = get_ahp_flag(); 10117 10118 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10119 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10120 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10121 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10122 } 10123 break; 10124 case 0x36: /* BFCVTN, BFCVTN2 */ 10125 { 10126 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10127 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10128 } 10129 break; 10130 case 0x56: /* FCVTXN, FCVTXN2 */ 10131 /* 64 bit to 32 bit float conversion 10132 * with von Neumann rounding (round to odd) 10133 */ 10134 assert(size == 2); 10135 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10136 break; 10137 default: 10138 g_assert_not_reached(); 10139 } 10140 10141 if (genfn) { 10142 genfn(tcg_res[pass], tcg_op); 10143 } else if (genenvfn) { 10144 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10145 } 10146 } 10147 10148 for (pass = 0; pass < 2; pass++) { 10149 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10150 } 10151 clear_vec_high(s, is_q, rd); 10152 } 10153 10154 /* AdvSIMD scalar two reg misc 10155 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10156 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10157 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10158 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10159 */ 10160 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10161 { 10162 int rd = extract32(insn, 0, 5); 10163 int rn = extract32(insn, 5, 5); 10164 int opcode = extract32(insn, 12, 5); 10165 int size = extract32(insn, 22, 2); 10166 bool u = extract32(insn, 29, 1); 10167 bool is_fcvt = false; 10168 int rmode; 10169 TCGv_i32 tcg_rmode; 10170 TCGv_ptr tcg_fpstatus; 10171 10172 switch (opcode) { 10173 case 0x7: /* SQABS / SQNEG */ 10174 break; 10175 case 0xa: /* CMLT */ 10176 if (u) { 10177 unallocated_encoding(s); 10178 return; 10179 } 10180 /* fall through */ 10181 case 0x8: /* CMGT, CMGE */ 10182 case 0x9: /* CMEQ, CMLE */ 10183 case 0xb: /* ABS, NEG */ 10184 if (size != 3) { 10185 unallocated_encoding(s); 10186 return; 10187 } 10188 break; 10189 case 0x12: /* SQXTUN */ 10190 if (!u) { 10191 unallocated_encoding(s); 10192 return; 10193 } 10194 /* fall through */ 10195 case 0x14: /* SQXTN, UQXTN */ 10196 if (size == 3) { 10197 unallocated_encoding(s); 10198 return; 10199 } 10200 if (!fp_access_check(s)) { 10201 return; 10202 } 10203 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10204 return; 10205 case 0xc ... 0xf: 10206 case 0x16 ... 0x1d: 10207 case 0x1f: 10208 /* Floating point: U, size[1] and opcode indicate operation; 10209 * size[0] indicates single or double precision. 10210 */ 10211 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10212 size = extract32(size, 0, 1) ? 3 : 2; 10213 switch (opcode) { 10214 case 0x2c: /* FCMGT (zero) */ 10215 case 0x2d: /* FCMEQ (zero) */ 10216 case 0x2e: /* FCMLT (zero) */ 10217 case 0x6c: /* FCMGE (zero) */ 10218 case 0x6d: /* FCMLE (zero) */ 10219 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10220 return; 10221 case 0x1d: /* SCVTF */ 10222 case 0x5d: /* UCVTF */ 10223 { 10224 bool is_signed = (opcode == 0x1d); 10225 if (!fp_access_check(s)) { 10226 return; 10227 } 10228 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10229 return; 10230 } 10231 case 0x3d: /* FRECPE */ 10232 case 0x3f: /* FRECPX */ 10233 case 0x7d: /* FRSQRTE */ 10234 if (!fp_access_check(s)) { 10235 return; 10236 } 10237 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10238 return; 10239 case 0x1a: /* FCVTNS */ 10240 case 0x1b: /* FCVTMS */ 10241 case 0x3a: /* FCVTPS */ 10242 case 0x3b: /* FCVTZS */ 10243 case 0x5a: /* FCVTNU */ 10244 case 0x5b: /* FCVTMU */ 10245 case 0x7a: /* FCVTPU */ 10246 case 0x7b: /* FCVTZU */ 10247 is_fcvt = true; 10248 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10249 break; 10250 case 0x1c: /* FCVTAS */ 10251 case 0x5c: /* FCVTAU */ 10252 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10253 is_fcvt = true; 10254 rmode = FPROUNDING_TIEAWAY; 10255 break; 10256 case 0x56: /* FCVTXN, FCVTXN2 */ 10257 if (size == 2) { 10258 unallocated_encoding(s); 10259 return; 10260 } 10261 if (!fp_access_check(s)) { 10262 return; 10263 } 10264 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10265 return; 10266 default: 10267 unallocated_encoding(s); 10268 return; 10269 } 10270 break; 10271 default: 10272 case 0x3: /* USQADD / SUQADD */ 10273 unallocated_encoding(s); 10274 return; 10275 } 10276 10277 if (!fp_access_check(s)) { 10278 return; 10279 } 10280 10281 if (is_fcvt) { 10282 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10283 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10284 } else { 10285 tcg_fpstatus = NULL; 10286 tcg_rmode = NULL; 10287 } 10288 10289 if (size == 3) { 10290 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10291 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10292 10293 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10294 write_fp_dreg(s, rd, tcg_rd); 10295 } else { 10296 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10297 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10298 10299 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10300 10301 switch (opcode) { 10302 case 0x7: /* SQABS, SQNEG */ 10303 { 10304 NeonGenOneOpEnvFn *genfn; 10305 static NeonGenOneOpEnvFn * const fns[3][2] = { 10306 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10307 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10308 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10309 }; 10310 genfn = fns[size][u]; 10311 genfn(tcg_rd, tcg_env, tcg_rn); 10312 break; 10313 } 10314 case 0x1a: /* FCVTNS */ 10315 case 0x1b: /* FCVTMS */ 10316 case 0x1c: /* FCVTAS */ 10317 case 0x3a: /* FCVTPS */ 10318 case 0x3b: /* FCVTZS */ 10319 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10320 tcg_fpstatus); 10321 break; 10322 case 0x5a: /* FCVTNU */ 10323 case 0x5b: /* FCVTMU */ 10324 case 0x5c: /* FCVTAU */ 10325 case 0x7a: /* FCVTPU */ 10326 case 0x7b: /* FCVTZU */ 10327 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10328 tcg_fpstatus); 10329 break; 10330 default: 10331 g_assert_not_reached(); 10332 } 10333 10334 write_fp_sreg(s, rd, tcg_rd); 10335 } 10336 10337 if (is_fcvt) { 10338 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10339 } 10340 } 10341 10342 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10343 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10344 int immh, int immb, int opcode, int rn, int rd) 10345 { 10346 int size = 32 - clz32(immh) - 1; 10347 int immhb = immh << 3 | immb; 10348 int shift = 2 * (8 << size) - immhb; 10349 GVecGen2iFn *gvec_fn; 10350 10351 if (extract32(immh, 3, 1) && !is_q) { 10352 unallocated_encoding(s); 10353 return; 10354 } 10355 tcg_debug_assert(size <= 3); 10356 10357 if (!fp_access_check(s)) { 10358 return; 10359 } 10360 10361 switch (opcode) { 10362 case 0x02: /* SSRA / USRA (accumulate) */ 10363 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10364 break; 10365 10366 case 0x08: /* SRI */ 10367 gvec_fn = gen_gvec_sri; 10368 break; 10369 10370 case 0x00: /* SSHR / USHR */ 10371 if (is_u) { 10372 if (shift == 8 << size) { 10373 /* Shift count the same size as element size produces zero. */ 10374 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10375 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10376 return; 10377 } 10378 gvec_fn = tcg_gen_gvec_shri; 10379 } else { 10380 /* Shift count the same size as element size produces all sign. */ 10381 if (shift == 8 << size) { 10382 shift -= 1; 10383 } 10384 gvec_fn = tcg_gen_gvec_sari; 10385 } 10386 break; 10387 10388 case 0x04: /* SRSHR / URSHR (rounding) */ 10389 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10390 break; 10391 10392 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10393 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10394 break; 10395 10396 default: 10397 g_assert_not_reached(); 10398 } 10399 10400 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10401 } 10402 10403 /* SHL/SLI - Vector shift left */ 10404 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10405 int immh, int immb, int opcode, int rn, int rd) 10406 { 10407 int size = 32 - clz32(immh) - 1; 10408 int immhb = immh << 3 | immb; 10409 int shift = immhb - (8 << size); 10410 10411 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10412 assert(size >= 0 && size <= 3); 10413 10414 if (extract32(immh, 3, 1) && !is_q) { 10415 unallocated_encoding(s); 10416 return; 10417 } 10418 10419 if (!fp_access_check(s)) { 10420 return; 10421 } 10422 10423 if (insert) { 10424 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10425 } else { 10426 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10427 } 10428 } 10429 10430 /* USHLL/SHLL - Vector shift left with widening */ 10431 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10432 int immh, int immb, int opcode, int rn, int rd) 10433 { 10434 int size = 32 - clz32(immh) - 1; 10435 int immhb = immh << 3 | immb; 10436 int shift = immhb - (8 << size); 10437 int dsize = 64; 10438 int esize = 8 << size; 10439 int elements = dsize/esize; 10440 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10441 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10442 int i; 10443 10444 if (size >= 3) { 10445 unallocated_encoding(s); 10446 return; 10447 } 10448 10449 if (!fp_access_check(s)) { 10450 return; 10451 } 10452 10453 /* For the LL variants the store is larger than the load, 10454 * so if rd == rn we would overwrite parts of our input. 10455 * So load everything right now and use shifts in the main loop. 10456 */ 10457 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10458 10459 for (i = 0; i < elements; i++) { 10460 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10461 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10462 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10463 write_vec_element(s, tcg_rd, rd, i, size + 1); 10464 } 10465 } 10466 10467 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10468 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10469 int immh, int immb, int opcode, int rn, int rd) 10470 { 10471 int immhb = immh << 3 | immb; 10472 int size = 32 - clz32(immh) - 1; 10473 int dsize = 64; 10474 int esize = 8 << size; 10475 int elements = dsize/esize; 10476 int shift = (2 * esize) - immhb; 10477 bool round = extract32(opcode, 0, 1); 10478 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10479 TCGv_i64 tcg_round; 10480 int i; 10481 10482 if (extract32(immh, 3, 1)) { 10483 unallocated_encoding(s); 10484 return; 10485 } 10486 10487 if (!fp_access_check(s)) { 10488 return; 10489 } 10490 10491 tcg_rn = tcg_temp_new_i64(); 10492 tcg_rd = tcg_temp_new_i64(); 10493 tcg_final = tcg_temp_new_i64(); 10494 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10495 10496 if (round) { 10497 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10498 } else { 10499 tcg_round = NULL; 10500 } 10501 10502 for (i = 0; i < elements; i++) { 10503 read_vec_element(s, tcg_rn, rn, i, size+1); 10504 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10505 false, true, size+1, shift); 10506 10507 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10508 } 10509 10510 if (!is_q) { 10511 write_vec_element(s, tcg_final, rd, 0, MO_64); 10512 } else { 10513 write_vec_element(s, tcg_final, rd, 1, MO_64); 10514 } 10515 10516 clear_vec_high(s, is_q, rd); 10517 } 10518 10519 10520 /* AdvSIMD shift by immediate 10521 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10522 * +---+---+---+-------------+------+------+--------+---+------+------+ 10523 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10524 * +---+---+---+-------------+------+------+--------+---+------+------+ 10525 */ 10526 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10527 { 10528 int rd = extract32(insn, 0, 5); 10529 int rn = extract32(insn, 5, 5); 10530 int opcode = extract32(insn, 11, 5); 10531 int immb = extract32(insn, 16, 3); 10532 int immh = extract32(insn, 19, 4); 10533 bool is_u = extract32(insn, 29, 1); 10534 bool is_q = extract32(insn, 30, 1); 10535 10536 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10537 assert(immh != 0); 10538 10539 switch (opcode) { 10540 case 0x08: /* SRI */ 10541 if (!is_u) { 10542 unallocated_encoding(s); 10543 return; 10544 } 10545 /* fall through */ 10546 case 0x00: /* SSHR / USHR */ 10547 case 0x02: /* SSRA / USRA (accumulate) */ 10548 case 0x04: /* SRSHR / URSHR (rounding) */ 10549 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10550 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10551 break; 10552 case 0x0a: /* SHL / SLI */ 10553 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10554 break; 10555 case 0x10: /* SHRN */ 10556 case 0x11: /* RSHRN / SQRSHRUN */ 10557 if (is_u) { 10558 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10559 opcode, rn, rd); 10560 } else { 10561 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10562 } 10563 break; 10564 case 0x12: /* SQSHRN / UQSHRN */ 10565 case 0x13: /* SQRSHRN / UQRSHRN */ 10566 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10567 opcode, rn, rd); 10568 break; 10569 case 0x14: /* SSHLL / USHLL */ 10570 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10571 break; 10572 case 0x1c: /* SCVTF / UCVTF */ 10573 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10574 opcode, rn, rd); 10575 break; 10576 case 0xc: /* SQSHLU */ 10577 if (!is_u) { 10578 unallocated_encoding(s); 10579 return; 10580 } 10581 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10582 break; 10583 case 0xe: /* SQSHL, UQSHL */ 10584 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10585 break; 10586 case 0x1f: /* FCVTZS/ FCVTZU */ 10587 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10588 return; 10589 default: 10590 unallocated_encoding(s); 10591 return; 10592 } 10593 } 10594 10595 /* Generate code to do a "long" addition or subtraction, ie one done in 10596 * TCGv_i64 on vector lanes twice the width specified by size. 10597 */ 10598 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10599 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10600 { 10601 static NeonGenTwo64OpFn * const fns[3][2] = { 10602 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10603 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10604 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10605 }; 10606 NeonGenTwo64OpFn *genfn; 10607 assert(size < 3); 10608 10609 genfn = fns[size][is_sub]; 10610 genfn(tcg_res, tcg_op1, tcg_op2); 10611 } 10612 10613 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10614 int opcode, int rd, int rn, int rm) 10615 { 10616 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10617 TCGv_i64 tcg_res[2]; 10618 int pass, accop; 10619 10620 tcg_res[0] = tcg_temp_new_i64(); 10621 tcg_res[1] = tcg_temp_new_i64(); 10622 10623 /* Does this op do an adding accumulate, a subtracting accumulate, 10624 * or no accumulate at all? 10625 */ 10626 switch (opcode) { 10627 case 5: 10628 case 8: 10629 case 9: 10630 accop = 1; 10631 break; 10632 case 10: 10633 case 11: 10634 accop = -1; 10635 break; 10636 default: 10637 accop = 0; 10638 break; 10639 } 10640 10641 if (accop != 0) { 10642 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10643 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10644 } 10645 10646 /* size == 2 means two 32x32->64 operations; this is worth special 10647 * casing because we can generally handle it inline. 10648 */ 10649 if (size == 2) { 10650 for (pass = 0; pass < 2; pass++) { 10651 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10652 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10653 TCGv_i64 tcg_passres; 10654 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10655 10656 int elt = pass + is_q * 2; 10657 10658 read_vec_element(s, tcg_op1, rn, elt, memop); 10659 read_vec_element(s, tcg_op2, rm, elt, memop); 10660 10661 if (accop == 0) { 10662 tcg_passres = tcg_res[pass]; 10663 } else { 10664 tcg_passres = tcg_temp_new_i64(); 10665 } 10666 10667 switch (opcode) { 10668 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10669 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10670 break; 10671 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10672 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10673 break; 10674 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10675 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10676 { 10677 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10678 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10679 10680 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10681 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10682 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10683 tcg_passres, 10684 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10685 break; 10686 } 10687 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10688 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10689 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10690 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10691 break; 10692 case 9: /* SQDMLAL, SQDMLAL2 */ 10693 case 11: /* SQDMLSL, SQDMLSL2 */ 10694 case 13: /* SQDMULL, SQDMULL2 */ 10695 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10696 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10697 tcg_passres, tcg_passres); 10698 break; 10699 default: 10700 g_assert_not_reached(); 10701 } 10702 10703 if (opcode == 9 || opcode == 11) { 10704 /* saturating accumulate ops */ 10705 if (accop < 0) { 10706 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10707 } 10708 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10709 tcg_res[pass], tcg_passres); 10710 } else if (accop > 0) { 10711 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10712 } else if (accop < 0) { 10713 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10714 } 10715 } 10716 } else { 10717 /* size 0 or 1, generally helper functions */ 10718 for (pass = 0; pass < 2; pass++) { 10719 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10720 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10721 TCGv_i64 tcg_passres; 10722 int elt = pass + is_q * 2; 10723 10724 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10725 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10726 10727 if (accop == 0) { 10728 tcg_passres = tcg_res[pass]; 10729 } else { 10730 tcg_passres = tcg_temp_new_i64(); 10731 } 10732 10733 switch (opcode) { 10734 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10735 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10736 { 10737 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10738 static NeonGenWidenFn * const widenfns[2][2] = { 10739 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10740 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10741 }; 10742 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10743 10744 widenfn(tcg_op2_64, tcg_op2); 10745 widenfn(tcg_passres, tcg_op1); 10746 gen_neon_addl(size, (opcode == 2), tcg_passres, 10747 tcg_passres, tcg_op2_64); 10748 break; 10749 } 10750 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10751 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10752 if (size == 0) { 10753 if (is_u) { 10754 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10755 } else { 10756 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10757 } 10758 } else { 10759 if (is_u) { 10760 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10761 } else { 10762 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10763 } 10764 } 10765 break; 10766 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10767 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10768 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10769 if (size == 0) { 10770 if (is_u) { 10771 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10772 } else { 10773 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10774 } 10775 } else { 10776 if (is_u) { 10777 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10778 } else { 10779 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10780 } 10781 } 10782 break; 10783 case 9: /* SQDMLAL, SQDMLAL2 */ 10784 case 11: /* SQDMLSL, SQDMLSL2 */ 10785 case 13: /* SQDMULL, SQDMULL2 */ 10786 assert(size == 1); 10787 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10788 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10789 tcg_passres, tcg_passres); 10790 break; 10791 default: 10792 g_assert_not_reached(); 10793 } 10794 10795 if (accop != 0) { 10796 if (opcode == 9 || opcode == 11) { 10797 /* saturating accumulate ops */ 10798 if (accop < 0) { 10799 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10800 } 10801 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10802 tcg_res[pass], 10803 tcg_passres); 10804 } else { 10805 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10806 tcg_res[pass], tcg_passres); 10807 } 10808 } 10809 } 10810 } 10811 10812 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10813 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10814 } 10815 10816 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10817 int opcode, int rd, int rn, int rm) 10818 { 10819 TCGv_i64 tcg_res[2]; 10820 int part = is_q ? 2 : 0; 10821 int pass; 10822 10823 for (pass = 0; pass < 2; pass++) { 10824 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10825 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10826 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10827 static NeonGenWidenFn * const widenfns[3][2] = { 10828 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10829 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10830 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10831 }; 10832 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10833 10834 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10835 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10836 widenfn(tcg_op2_wide, tcg_op2); 10837 tcg_res[pass] = tcg_temp_new_i64(); 10838 gen_neon_addl(size, (opcode == 3), 10839 tcg_res[pass], tcg_op1, tcg_op2_wide); 10840 } 10841 10842 for (pass = 0; pass < 2; pass++) { 10843 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10844 } 10845 } 10846 10847 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10848 { 10849 tcg_gen_addi_i64(in, in, 1U << 31); 10850 tcg_gen_extrh_i64_i32(res, in); 10851 } 10852 10853 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10854 int opcode, int rd, int rn, int rm) 10855 { 10856 TCGv_i32 tcg_res[2]; 10857 int part = is_q ? 2 : 0; 10858 int pass; 10859 10860 for (pass = 0; pass < 2; pass++) { 10861 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10862 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10863 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10864 static NeonGenNarrowFn * const narrowfns[3][2] = { 10865 { gen_helper_neon_narrow_high_u8, 10866 gen_helper_neon_narrow_round_high_u8 }, 10867 { gen_helper_neon_narrow_high_u16, 10868 gen_helper_neon_narrow_round_high_u16 }, 10869 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10870 }; 10871 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10872 10873 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10874 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10875 10876 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10877 10878 tcg_res[pass] = tcg_temp_new_i32(); 10879 gennarrow(tcg_res[pass], tcg_wideres); 10880 } 10881 10882 for (pass = 0; pass < 2; pass++) { 10883 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10884 } 10885 clear_vec_high(s, is_q, rd); 10886 } 10887 10888 /* AdvSIMD three different 10889 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10890 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10891 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10892 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10893 */ 10894 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10895 { 10896 /* Instructions in this group fall into three basic classes 10897 * (in each case with the operation working on each element in 10898 * the input vectors): 10899 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10900 * 128 bit input) 10901 * (2) wide 64 x 128 -> 128 10902 * (3) narrowing 128 x 128 -> 64 10903 * Here we do initial decode, catch unallocated cases and 10904 * dispatch to separate functions for each class. 10905 */ 10906 int is_q = extract32(insn, 30, 1); 10907 int is_u = extract32(insn, 29, 1); 10908 int size = extract32(insn, 22, 2); 10909 int opcode = extract32(insn, 12, 4); 10910 int rm = extract32(insn, 16, 5); 10911 int rn = extract32(insn, 5, 5); 10912 int rd = extract32(insn, 0, 5); 10913 10914 switch (opcode) { 10915 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10916 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10917 /* 64 x 128 -> 128 */ 10918 if (size == 3) { 10919 unallocated_encoding(s); 10920 return; 10921 } 10922 if (!fp_access_check(s)) { 10923 return; 10924 } 10925 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10926 break; 10927 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10928 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10929 /* 128 x 128 -> 64 */ 10930 if (size == 3) { 10931 unallocated_encoding(s); 10932 return; 10933 } 10934 if (!fp_access_check(s)) { 10935 return; 10936 } 10937 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10938 break; 10939 case 14: /* PMULL, PMULL2 */ 10940 if (is_u) { 10941 unallocated_encoding(s); 10942 return; 10943 } 10944 switch (size) { 10945 case 0: /* PMULL.P8 */ 10946 if (!fp_access_check(s)) { 10947 return; 10948 } 10949 /* The Q field specifies lo/hi half input for this insn. */ 10950 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10951 gen_helper_neon_pmull_h); 10952 break; 10953 10954 case 3: /* PMULL.P64 */ 10955 if (!dc_isar_feature(aa64_pmull, s)) { 10956 unallocated_encoding(s); 10957 return; 10958 } 10959 if (!fp_access_check(s)) { 10960 return; 10961 } 10962 /* The Q field specifies lo/hi half input for this insn. */ 10963 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10964 gen_helper_gvec_pmull_q); 10965 break; 10966 10967 default: 10968 unallocated_encoding(s); 10969 break; 10970 } 10971 return; 10972 case 9: /* SQDMLAL, SQDMLAL2 */ 10973 case 11: /* SQDMLSL, SQDMLSL2 */ 10974 case 13: /* SQDMULL, SQDMULL2 */ 10975 if (is_u || size == 0) { 10976 unallocated_encoding(s); 10977 return; 10978 } 10979 /* fall through */ 10980 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10981 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10982 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10983 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10984 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10985 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10986 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10987 /* 64 x 64 -> 128 */ 10988 if (size == 3) { 10989 unallocated_encoding(s); 10990 return; 10991 } 10992 if (!fp_access_check(s)) { 10993 return; 10994 } 10995 10996 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10997 break; 10998 default: 10999 /* opcode 15 not allocated */ 11000 unallocated_encoding(s); 11001 break; 11002 } 11003 } 11004 11005 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11006 int size, int rn, int rd) 11007 { 11008 /* Handle 2-reg-misc ops which are widening (so each size element 11009 * in the source becomes a 2*size element in the destination. 11010 * The only instruction like this is FCVTL. 11011 */ 11012 int pass; 11013 11014 if (size == 3) { 11015 /* 32 -> 64 bit fp conversion */ 11016 TCGv_i64 tcg_res[2]; 11017 int srcelt = is_q ? 2 : 0; 11018 11019 for (pass = 0; pass < 2; pass++) { 11020 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11021 tcg_res[pass] = tcg_temp_new_i64(); 11022 11023 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11024 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11025 } 11026 for (pass = 0; pass < 2; pass++) { 11027 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11028 } 11029 } else { 11030 /* 16 -> 32 bit fp conversion */ 11031 int srcelt = is_q ? 4 : 0; 11032 TCGv_i32 tcg_res[4]; 11033 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11034 TCGv_i32 ahp = get_ahp_flag(); 11035 11036 for (pass = 0; pass < 4; pass++) { 11037 tcg_res[pass] = tcg_temp_new_i32(); 11038 11039 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11040 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11041 fpst, ahp); 11042 } 11043 for (pass = 0; pass < 4; pass++) { 11044 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11045 } 11046 } 11047 } 11048 11049 static void handle_rev(DisasContext *s, int opcode, bool u, 11050 bool is_q, int size, int rn, int rd) 11051 { 11052 int op = (opcode << 1) | u; 11053 int opsz = op + size; 11054 int grp_size = 3 - opsz; 11055 int dsize = is_q ? 128 : 64; 11056 int i; 11057 11058 if (opsz >= 3) { 11059 unallocated_encoding(s); 11060 return; 11061 } 11062 11063 if (!fp_access_check(s)) { 11064 return; 11065 } 11066 11067 if (size == 0) { 11068 /* Special case bytes, use bswap op on each group of elements */ 11069 int groups = dsize / (8 << grp_size); 11070 11071 for (i = 0; i < groups; i++) { 11072 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11073 11074 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11075 switch (grp_size) { 11076 case MO_16: 11077 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11078 break; 11079 case MO_32: 11080 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11081 break; 11082 case MO_64: 11083 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11084 break; 11085 default: 11086 g_assert_not_reached(); 11087 } 11088 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11089 } 11090 clear_vec_high(s, is_q, rd); 11091 } else { 11092 int revmask = (1 << grp_size) - 1; 11093 int esize = 8 << size; 11094 int elements = dsize / esize; 11095 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11096 TCGv_i64 tcg_rd[2]; 11097 11098 for (i = 0; i < 2; i++) { 11099 tcg_rd[i] = tcg_temp_new_i64(); 11100 tcg_gen_movi_i64(tcg_rd[i], 0); 11101 } 11102 11103 for (i = 0; i < elements; i++) { 11104 int e_rev = (i & 0xf) ^ revmask; 11105 int w = (e_rev * esize) / 64; 11106 int o = (e_rev * esize) % 64; 11107 11108 read_vec_element(s, tcg_rn, rn, i, size); 11109 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11110 } 11111 11112 for (i = 0; i < 2; i++) { 11113 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11114 } 11115 clear_vec_high(s, true, rd); 11116 } 11117 } 11118 11119 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11120 bool is_q, int size, int rn, int rd) 11121 { 11122 /* Implement the pairwise operations from 2-misc: 11123 * SADDLP, UADDLP, SADALP, UADALP. 11124 * These all add pairs of elements in the input to produce a 11125 * double-width result element in the output (possibly accumulating). 11126 */ 11127 bool accum = (opcode == 0x6); 11128 int maxpass = is_q ? 2 : 1; 11129 int pass; 11130 TCGv_i64 tcg_res[2]; 11131 11132 if (size == 2) { 11133 /* 32 + 32 -> 64 op */ 11134 MemOp memop = size + (u ? 0 : MO_SIGN); 11135 11136 for (pass = 0; pass < maxpass; pass++) { 11137 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11138 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11139 11140 tcg_res[pass] = tcg_temp_new_i64(); 11141 11142 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11143 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11144 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11145 if (accum) { 11146 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11147 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11148 } 11149 } 11150 } else { 11151 for (pass = 0; pass < maxpass; pass++) { 11152 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11153 NeonGenOne64OpFn *genfn; 11154 static NeonGenOne64OpFn * const fns[2][2] = { 11155 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11156 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11157 }; 11158 11159 genfn = fns[size][u]; 11160 11161 tcg_res[pass] = tcg_temp_new_i64(); 11162 11163 read_vec_element(s, tcg_op, rn, pass, MO_64); 11164 genfn(tcg_res[pass], tcg_op); 11165 11166 if (accum) { 11167 read_vec_element(s, tcg_op, rd, pass, MO_64); 11168 if (size == 0) { 11169 gen_helper_neon_addl_u16(tcg_res[pass], 11170 tcg_res[pass], tcg_op); 11171 } else { 11172 gen_helper_neon_addl_u32(tcg_res[pass], 11173 tcg_res[pass], tcg_op); 11174 } 11175 } 11176 } 11177 } 11178 if (!is_q) { 11179 tcg_res[1] = tcg_constant_i64(0); 11180 } 11181 for (pass = 0; pass < 2; pass++) { 11182 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11183 } 11184 } 11185 11186 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11187 { 11188 /* Implement SHLL and SHLL2 */ 11189 int pass; 11190 int part = is_q ? 2 : 0; 11191 TCGv_i64 tcg_res[2]; 11192 11193 for (pass = 0; pass < 2; pass++) { 11194 static NeonGenWidenFn * const widenfns[3] = { 11195 gen_helper_neon_widen_u8, 11196 gen_helper_neon_widen_u16, 11197 tcg_gen_extu_i32_i64, 11198 }; 11199 NeonGenWidenFn *widenfn = widenfns[size]; 11200 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11201 11202 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11203 tcg_res[pass] = tcg_temp_new_i64(); 11204 widenfn(tcg_res[pass], tcg_op); 11205 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11206 } 11207 11208 for (pass = 0; pass < 2; pass++) { 11209 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11210 } 11211 } 11212 11213 /* AdvSIMD two reg misc 11214 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11215 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11216 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11217 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11218 */ 11219 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11220 { 11221 int size = extract32(insn, 22, 2); 11222 int opcode = extract32(insn, 12, 5); 11223 bool u = extract32(insn, 29, 1); 11224 bool is_q = extract32(insn, 30, 1); 11225 int rn = extract32(insn, 5, 5); 11226 int rd = extract32(insn, 0, 5); 11227 bool need_fpstatus = false; 11228 int rmode = -1; 11229 TCGv_i32 tcg_rmode; 11230 TCGv_ptr tcg_fpstatus; 11231 11232 switch (opcode) { 11233 case 0x0: /* REV64, REV32 */ 11234 case 0x1: /* REV16 */ 11235 handle_rev(s, opcode, u, is_q, size, rn, rd); 11236 return; 11237 case 0x5: /* CNT, NOT, RBIT */ 11238 if (u && size == 0) { 11239 /* NOT */ 11240 break; 11241 } else if (u && size == 1) { 11242 /* RBIT */ 11243 break; 11244 } else if (!u && size == 0) { 11245 /* CNT */ 11246 break; 11247 } 11248 unallocated_encoding(s); 11249 return; 11250 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11251 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11252 if (size == 3) { 11253 unallocated_encoding(s); 11254 return; 11255 } 11256 if (!fp_access_check(s)) { 11257 return; 11258 } 11259 11260 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11261 return; 11262 case 0x4: /* CLS, CLZ */ 11263 if (size == 3) { 11264 unallocated_encoding(s); 11265 return; 11266 } 11267 break; 11268 case 0x2: /* SADDLP, UADDLP */ 11269 case 0x6: /* SADALP, UADALP */ 11270 if (size == 3) { 11271 unallocated_encoding(s); 11272 return; 11273 } 11274 if (!fp_access_check(s)) { 11275 return; 11276 } 11277 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11278 return; 11279 case 0x13: /* SHLL, SHLL2 */ 11280 if (u == 0 || size == 3) { 11281 unallocated_encoding(s); 11282 return; 11283 } 11284 if (!fp_access_check(s)) { 11285 return; 11286 } 11287 handle_shll(s, is_q, size, rn, rd); 11288 return; 11289 case 0xa: /* CMLT */ 11290 if (u == 1) { 11291 unallocated_encoding(s); 11292 return; 11293 } 11294 /* fall through */ 11295 case 0x8: /* CMGT, CMGE */ 11296 case 0x9: /* CMEQ, CMLE */ 11297 case 0xb: /* ABS, NEG */ 11298 if (size == 3 && !is_q) { 11299 unallocated_encoding(s); 11300 return; 11301 } 11302 break; 11303 case 0x7: /* SQABS, SQNEG */ 11304 if (size == 3 && !is_q) { 11305 unallocated_encoding(s); 11306 return; 11307 } 11308 break; 11309 case 0xc ... 0xf: 11310 case 0x16 ... 0x1f: 11311 { 11312 /* Floating point: U, size[1] and opcode indicate operation; 11313 * size[0] indicates single or double precision. 11314 */ 11315 int is_double = extract32(size, 0, 1); 11316 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11317 size = is_double ? 3 : 2; 11318 switch (opcode) { 11319 case 0x2f: /* FABS */ 11320 case 0x6f: /* FNEG */ 11321 if (size == 3 && !is_q) { 11322 unallocated_encoding(s); 11323 return; 11324 } 11325 break; 11326 case 0x1d: /* SCVTF */ 11327 case 0x5d: /* UCVTF */ 11328 { 11329 bool is_signed = (opcode == 0x1d) ? true : false; 11330 int elements = is_double ? 2 : is_q ? 4 : 2; 11331 if (is_double && !is_q) { 11332 unallocated_encoding(s); 11333 return; 11334 } 11335 if (!fp_access_check(s)) { 11336 return; 11337 } 11338 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11339 return; 11340 } 11341 case 0x2c: /* FCMGT (zero) */ 11342 case 0x2d: /* FCMEQ (zero) */ 11343 case 0x2e: /* FCMLT (zero) */ 11344 case 0x6c: /* FCMGE (zero) */ 11345 case 0x6d: /* FCMLE (zero) */ 11346 if (size == 3 && !is_q) { 11347 unallocated_encoding(s); 11348 return; 11349 } 11350 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11351 return; 11352 case 0x7f: /* FSQRT */ 11353 if (size == 3 && !is_q) { 11354 unallocated_encoding(s); 11355 return; 11356 } 11357 break; 11358 case 0x1a: /* FCVTNS */ 11359 case 0x1b: /* FCVTMS */ 11360 case 0x3a: /* FCVTPS */ 11361 case 0x3b: /* FCVTZS */ 11362 case 0x5a: /* FCVTNU */ 11363 case 0x5b: /* FCVTMU */ 11364 case 0x7a: /* FCVTPU */ 11365 case 0x7b: /* FCVTZU */ 11366 need_fpstatus = true; 11367 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11368 if (size == 3 && !is_q) { 11369 unallocated_encoding(s); 11370 return; 11371 } 11372 break; 11373 case 0x5c: /* FCVTAU */ 11374 case 0x1c: /* FCVTAS */ 11375 need_fpstatus = true; 11376 rmode = FPROUNDING_TIEAWAY; 11377 if (size == 3 && !is_q) { 11378 unallocated_encoding(s); 11379 return; 11380 } 11381 break; 11382 case 0x3c: /* URECPE */ 11383 if (size == 3) { 11384 unallocated_encoding(s); 11385 return; 11386 } 11387 /* fall through */ 11388 case 0x3d: /* FRECPE */ 11389 case 0x7d: /* FRSQRTE */ 11390 if (size == 3 && !is_q) { 11391 unallocated_encoding(s); 11392 return; 11393 } 11394 if (!fp_access_check(s)) { 11395 return; 11396 } 11397 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11398 return; 11399 case 0x56: /* FCVTXN, FCVTXN2 */ 11400 if (size == 2) { 11401 unallocated_encoding(s); 11402 return; 11403 } 11404 /* fall through */ 11405 case 0x16: /* FCVTN, FCVTN2 */ 11406 /* handle_2misc_narrow does a 2*size -> size operation, but these 11407 * instructions encode the source size rather than dest size. 11408 */ 11409 if (!fp_access_check(s)) { 11410 return; 11411 } 11412 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11413 return; 11414 case 0x36: /* BFCVTN, BFCVTN2 */ 11415 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11416 unallocated_encoding(s); 11417 return; 11418 } 11419 if (!fp_access_check(s)) { 11420 return; 11421 } 11422 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11423 return; 11424 case 0x17: /* FCVTL, FCVTL2 */ 11425 if (!fp_access_check(s)) { 11426 return; 11427 } 11428 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11429 return; 11430 case 0x18: /* FRINTN */ 11431 case 0x19: /* FRINTM */ 11432 case 0x38: /* FRINTP */ 11433 case 0x39: /* FRINTZ */ 11434 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11435 /* fall through */ 11436 case 0x59: /* FRINTX */ 11437 case 0x79: /* FRINTI */ 11438 need_fpstatus = true; 11439 if (size == 3 && !is_q) { 11440 unallocated_encoding(s); 11441 return; 11442 } 11443 break; 11444 case 0x58: /* FRINTA */ 11445 rmode = FPROUNDING_TIEAWAY; 11446 need_fpstatus = true; 11447 if (size == 3 && !is_q) { 11448 unallocated_encoding(s); 11449 return; 11450 } 11451 break; 11452 case 0x7c: /* URSQRTE */ 11453 if (size == 3) { 11454 unallocated_encoding(s); 11455 return; 11456 } 11457 break; 11458 case 0x1e: /* FRINT32Z */ 11459 case 0x1f: /* FRINT64Z */ 11460 rmode = FPROUNDING_ZERO; 11461 /* fall through */ 11462 case 0x5e: /* FRINT32X */ 11463 case 0x5f: /* FRINT64X */ 11464 need_fpstatus = true; 11465 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 11466 unallocated_encoding(s); 11467 return; 11468 } 11469 break; 11470 default: 11471 unallocated_encoding(s); 11472 return; 11473 } 11474 break; 11475 } 11476 default: 11477 case 0x3: /* SUQADD, USQADD */ 11478 unallocated_encoding(s); 11479 return; 11480 } 11481 11482 if (!fp_access_check(s)) { 11483 return; 11484 } 11485 11486 if (need_fpstatus || rmode >= 0) { 11487 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 11488 } else { 11489 tcg_fpstatus = NULL; 11490 } 11491 if (rmode >= 0) { 11492 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11493 } else { 11494 tcg_rmode = NULL; 11495 } 11496 11497 switch (opcode) { 11498 case 0x5: 11499 if (u && size == 0) { /* NOT */ 11500 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 11501 return; 11502 } 11503 break; 11504 case 0x8: /* CMGT, CMGE */ 11505 if (u) { 11506 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 11507 } else { 11508 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 11509 } 11510 return; 11511 case 0x9: /* CMEQ, CMLE */ 11512 if (u) { 11513 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 11514 } else { 11515 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 11516 } 11517 return; 11518 case 0xa: /* CMLT */ 11519 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 11520 return; 11521 case 0xb: 11522 if (u) { /* ABS, NEG */ 11523 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 11524 } else { 11525 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 11526 } 11527 return; 11528 } 11529 11530 if (size == 3) { 11531 /* All 64-bit element operations can be shared with scalar 2misc */ 11532 int pass; 11533 11534 /* Coverity claims (size == 3 && !is_q) has been eliminated 11535 * from all paths leading to here. 11536 */ 11537 tcg_debug_assert(is_q); 11538 for (pass = 0; pass < 2; pass++) { 11539 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11540 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11541 11542 read_vec_element(s, tcg_op, rn, pass, MO_64); 11543 11544 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 11545 tcg_rmode, tcg_fpstatus); 11546 11547 write_vec_element(s, tcg_res, rd, pass, MO_64); 11548 } 11549 } else { 11550 int pass; 11551 11552 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11553 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11554 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11555 11556 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 11557 11558 if (size == 2) { 11559 /* Special cases for 32 bit elements */ 11560 switch (opcode) { 11561 case 0x4: /* CLS */ 11562 if (u) { 11563 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 11564 } else { 11565 tcg_gen_clrsb_i32(tcg_res, tcg_op); 11566 } 11567 break; 11568 case 0x7: /* SQABS, SQNEG */ 11569 if (u) { 11570 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 11571 } else { 11572 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 11573 } 11574 break; 11575 case 0x2f: /* FABS */ 11576 gen_vfp_abss(tcg_res, tcg_op); 11577 break; 11578 case 0x6f: /* FNEG */ 11579 gen_vfp_negs(tcg_res, tcg_op); 11580 break; 11581 case 0x7f: /* FSQRT */ 11582 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 11583 break; 11584 case 0x1a: /* FCVTNS */ 11585 case 0x1b: /* FCVTMS */ 11586 case 0x1c: /* FCVTAS */ 11587 case 0x3a: /* FCVTPS */ 11588 case 0x3b: /* FCVTZS */ 11589 gen_helper_vfp_tosls(tcg_res, tcg_op, 11590 tcg_constant_i32(0), tcg_fpstatus); 11591 break; 11592 case 0x5a: /* FCVTNU */ 11593 case 0x5b: /* FCVTMU */ 11594 case 0x5c: /* FCVTAU */ 11595 case 0x7a: /* FCVTPU */ 11596 case 0x7b: /* FCVTZU */ 11597 gen_helper_vfp_touls(tcg_res, tcg_op, 11598 tcg_constant_i32(0), tcg_fpstatus); 11599 break; 11600 case 0x18: /* FRINTN */ 11601 case 0x19: /* FRINTM */ 11602 case 0x38: /* FRINTP */ 11603 case 0x39: /* FRINTZ */ 11604 case 0x58: /* FRINTA */ 11605 case 0x79: /* FRINTI */ 11606 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 11607 break; 11608 case 0x59: /* FRINTX */ 11609 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 11610 break; 11611 case 0x7c: /* URSQRTE */ 11612 gen_helper_rsqrte_u32(tcg_res, tcg_op); 11613 break; 11614 case 0x1e: /* FRINT32Z */ 11615 case 0x5e: /* FRINT32X */ 11616 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 11617 break; 11618 case 0x1f: /* FRINT64Z */ 11619 case 0x5f: /* FRINT64X */ 11620 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 11621 break; 11622 default: 11623 g_assert_not_reached(); 11624 } 11625 } else { 11626 /* Use helpers for 8 and 16 bit elements */ 11627 switch (opcode) { 11628 case 0x5: /* CNT, RBIT */ 11629 /* For these two insns size is part of the opcode specifier 11630 * (handled earlier); they always operate on byte elements. 11631 */ 11632 if (u) { 11633 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 11634 } else { 11635 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 11636 } 11637 break; 11638 case 0x7: /* SQABS, SQNEG */ 11639 { 11640 NeonGenOneOpEnvFn *genfn; 11641 static NeonGenOneOpEnvFn * const fns[2][2] = { 11642 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 11643 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 11644 }; 11645 genfn = fns[size][u]; 11646 genfn(tcg_res, tcg_env, tcg_op); 11647 break; 11648 } 11649 case 0x4: /* CLS, CLZ */ 11650 if (u) { 11651 if (size == 0) { 11652 gen_helper_neon_clz_u8(tcg_res, tcg_op); 11653 } else { 11654 gen_helper_neon_clz_u16(tcg_res, tcg_op); 11655 } 11656 } else { 11657 if (size == 0) { 11658 gen_helper_neon_cls_s8(tcg_res, tcg_op); 11659 } else { 11660 gen_helper_neon_cls_s16(tcg_res, tcg_op); 11661 } 11662 } 11663 break; 11664 default: 11665 g_assert_not_reached(); 11666 } 11667 } 11668 11669 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11670 } 11671 } 11672 clear_vec_high(s, is_q, rd); 11673 11674 if (tcg_rmode) { 11675 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 11676 } 11677 } 11678 11679 /* AdvSIMD [scalar] two register miscellaneous (FP16) 11680 * 11681 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 11682 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11683 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 11684 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11685 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 11686 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 11687 * 11688 * This actually covers two groups where scalar access is governed by 11689 * bit 28. A bunch of the instructions (float to integral) only exist 11690 * in the vector form and are un-allocated for the scalar decode. Also 11691 * in the scalar decode Q is always 1. 11692 */ 11693 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 11694 { 11695 int fpop, opcode, a, u; 11696 int rn, rd; 11697 bool is_q; 11698 bool is_scalar; 11699 bool only_in_vector = false; 11700 11701 int pass; 11702 TCGv_i32 tcg_rmode = NULL; 11703 TCGv_ptr tcg_fpstatus = NULL; 11704 bool need_fpst = true; 11705 int rmode = -1; 11706 11707 if (!dc_isar_feature(aa64_fp16, s)) { 11708 unallocated_encoding(s); 11709 return; 11710 } 11711 11712 rd = extract32(insn, 0, 5); 11713 rn = extract32(insn, 5, 5); 11714 11715 a = extract32(insn, 23, 1); 11716 u = extract32(insn, 29, 1); 11717 is_scalar = extract32(insn, 28, 1); 11718 is_q = extract32(insn, 30, 1); 11719 11720 opcode = extract32(insn, 12, 5); 11721 fpop = deposit32(opcode, 5, 1, a); 11722 fpop = deposit32(fpop, 6, 1, u); 11723 11724 switch (fpop) { 11725 case 0x1d: /* SCVTF */ 11726 case 0x5d: /* UCVTF */ 11727 { 11728 int elements; 11729 11730 if (is_scalar) { 11731 elements = 1; 11732 } else { 11733 elements = (is_q ? 8 : 4); 11734 } 11735 11736 if (!fp_access_check(s)) { 11737 return; 11738 } 11739 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 11740 return; 11741 } 11742 break; 11743 case 0x2c: /* FCMGT (zero) */ 11744 case 0x2d: /* FCMEQ (zero) */ 11745 case 0x2e: /* FCMLT (zero) */ 11746 case 0x6c: /* FCMGE (zero) */ 11747 case 0x6d: /* FCMLE (zero) */ 11748 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 11749 return; 11750 case 0x3d: /* FRECPE */ 11751 case 0x3f: /* FRECPX */ 11752 break; 11753 case 0x18: /* FRINTN */ 11754 only_in_vector = true; 11755 rmode = FPROUNDING_TIEEVEN; 11756 break; 11757 case 0x19: /* FRINTM */ 11758 only_in_vector = true; 11759 rmode = FPROUNDING_NEGINF; 11760 break; 11761 case 0x38: /* FRINTP */ 11762 only_in_vector = true; 11763 rmode = FPROUNDING_POSINF; 11764 break; 11765 case 0x39: /* FRINTZ */ 11766 only_in_vector = true; 11767 rmode = FPROUNDING_ZERO; 11768 break; 11769 case 0x58: /* FRINTA */ 11770 only_in_vector = true; 11771 rmode = FPROUNDING_TIEAWAY; 11772 break; 11773 case 0x59: /* FRINTX */ 11774 case 0x79: /* FRINTI */ 11775 only_in_vector = true; 11776 /* current rounding mode */ 11777 break; 11778 case 0x1a: /* FCVTNS */ 11779 rmode = FPROUNDING_TIEEVEN; 11780 break; 11781 case 0x1b: /* FCVTMS */ 11782 rmode = FPROUNDING_NEGINF; 11783 break; 11784 case 0x1c: /* FCVTAS */ 11785 rmode = FPROUNDING_TIEAWAY; 11786 break; 11787 case 0x3a: /* FCVTPS */ 11788 rmode = FPROUNDING_POSINF; 11789 break; 11790 case 0x3b: /* FCVTZS */ 11791 rmode = FPROUNDING_ZERO; 11792 break; 11793 case 0x5a: /* FCVTNU */ 11794 rmode = FPROUNDING_TIEEVEN; 11795 break; 11796 case 0x5b: /* FCVTMU */ 11797 rmode = FPROUNDING_NEGINF; 11798 break; 11799 case 0x5c: /* FCVTAU */ 11800 rmode = FPROUNDING_TIEAWAY; 11801 break; 11802 case 0x7a: /* FCVTPU */ 11803 rmode = FPROUNDING_POSINF; 11804 break; 11805 case 0x7b: /* FCVTZU */ 11806 rmode = FPROUNDING_ZERO; 11807 break; 11808 case 0x2f: /* FABS */ 11809 case 0x6f: /* FNEG */ 11810 need_fpst = false; 11811 break; 11812 case 0x7d: /* FRSQRTE */ 11813 case 0x7f: /* FSQRT (vector) */ 11814 break; 11815 default: 11816 unallocated_encoding(s); 11817 return; 11818 } 11819 11820 11821 /* Check additional constraints for the scalar encoding */ 11822 if (is_scalar) { 11823 if (!is_q) { 11824 unallocated_encoding(s); 11825 return; 11826 } 11827 /* FRINTxx is only in the vector form */ 11828 if (only_in_vector) { 11829 unallocated_encoding(s); 11830 return; 11831 } 11832 } 11833 11834 if (!fp_access_check(s)) { 11835 return; 11836 } 11837 11838 if (rmode >= 0 || need_fpst) { 11839 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 11840 } 11841 11842 if (rmode >= 0) { 11843 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11844 } 11845 11846 if (is_scalar) { 11847 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 11848 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11849 11850 switch (fpop) { 11851 case 0x1a: /* FCVTNS */ 11852 case 0x1b: /* FCVTMS */ 11853 case 0x1c: /* FCVTAS */ 11854 case 0x3a: /* FCVTPS */ 11855 case 0x3b: /* FCVTZS */ 11856 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11857 break; 11858 case 0x3d: /* FRECPE */ 11859 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 11860 break; 11861 case 0x3f: /* FRECPX */ 11862 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 11863 break; 11864 case 0x5a: /* FCVTNU */ 11865 case 0x5b: /* FCVTMU */ 11866 case 0x5c: /* FCVTAU */ 11867 case 0x7a: /* FCVTPU */ 11868 case 0x7b: /* FCVTZU */ 11869 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 11870 break; 11871 case 0x6f: /* FNEG */ 11872 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 11873 break; 11874 case 0x7d: /* FRSQRTE */ 11875 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 11876 break; 11877 default: 11878 g_assert_not_reached(); 11879 } 11880 11881 /* limit any sign extension going on */ 11882 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 11883 write_fp_sreg(s, rd, tcg_res); 11884 } else { 11885 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 11886 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11887 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11888 11889 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 11890 11891 switch (fpop) { 11892 case 0x1a: /* FCVTNS */ 11893 case 0x1b: /* FCVTMS */ 11894 case 0x1c: /* FCVTAS */ 11895 case 0x3a: /* FCVTPS */ 11896 case 0x3b: /* FCVTZS */ 11897 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11898 break; 11899 case 0x3d: /* FRECPE */ 11900 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 11901 break; 11902 case 0x5a: /* FCVTNU */ 11903 case 0x5b: /* FCVTMU */ 11904 case 0x5c: /* FCVTAU */ 11905 case 0x7a: /* FCVTPU */ 11906 case 0x7b: /* FCVTZU */ 11907 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 11908 break; 11909 case 0x18: /* FRINTN */ 11910 case 0x19: /* FRINTM */ 11911 case 0x38: /* FRINTP */ 11912 case 0x39: /* FRINTZ */ 11913 case 0x58: /* FRINTA */ 11914 case 0x79: /* FRINTI */ 11915 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 11916 break; 11917 case 0x59: /* FRINTX */ 11918 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 11919 break; 11920 case 0x2f: /* FABS */ 11921 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 11922 break; 11923 case 0x6f: /* FNEG */ 11924 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 11925 break; 11926 case 0x7d: /* FRSQRTE */ 11927 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 11928 break; 11929 case 0x7f: /* FSQRT */ 11930 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 11931 break; 11932 default: 11933 g_assert_not_reached(); 11934 } 11935 11936 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11937 } 11938 11939 clear_vec_high(s, is_q, rd); 11940 } 11941 11942 if (tcg_rmode) { 11943 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 11944 } 11945 } 11946 11947 /* AdvSIMD scalar x indexed element 11948 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 11949 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 11950 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 11951 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 11952 * AdvSIMD vector x indexed element 11953 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 11954 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 11955 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 11956 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 11957 */ 11958 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 11959 { 11960 /* This encoding has two kinds of instruction: 11961 * normal, where we perform elt x idxelt => elt for each 11962 * element in the vector 11963 * long, where we perform elt x idxelt and generate a result of 11964 * double the width of the input element 11965 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 11966 */ 11967 bool is_scalar = extract32(insn, 28, 1); 11968 bool is_q = extract32(insn, 30, 1); 11969 bool u = extract32(insn, 29, 1); 11970 int size = extract32(insn, 22, 2); 11971 int l = extract32(insn, 21, 1); 11972 int m = extract32(insn, 20, 1); 11973 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 11974 int rm = extract32(insn, 16, 4); 11975 int opcode = extract32(insn, 12, 4); 11976 int h = extract32(insn, 11, 1); 11977 int rn = extract32(insn, 5, 5); 11978 int rd = extract32(insn, 0, 5); 11979 bool is_long = false; 11980 int index; 11981 11982 switch (16 * u + opcode) { 11983 case 0x02: /* SMLAL, SMLAL2 */ 11984 case 0x12: /* UMLAL, UMLAL2 */ 11985 case 0x06: /* SMLSL, SMLSL2 */ 11986 case 0x16: /* UMLSL, UMLSL2 */ 11987 case 0x0a: /* SMULL, SMULL2 */ 11988 case 0x1a: /* UMULL, UMULL2 */ 11989 if (is_scalar) { 11990 unallocated_encoding(s); 11991 return; 11992 } 11993 is_long = true; 11994 break; 11995 case 0x03: /* SQDMLAL, SQDMLAL2 */ 11996 case 0x07: /* SQDMLSL, SQDMLSL2 */ 11997 case 0x0b: /* SQDMULL, SQDMULL2 */ 11998 is_long = true; 11999 break; 12000 default: 12001 case 0x00: /* FMLAL */ 12002 case 0x01: /* FMLA */ 12003 case 0x04: /* FMLSL */ 12004 case 0x05: /* FMLS */ 12005 case 0x08: /* MUL */ 12006 case 0x09: /* FMUL */ 12007 case 0x0c: /* SQDMULH */ 12008 case 0x0d: /* SQRDMULH */ 12009 case 0x0e: /* SDOT */ 12010 case 0x0f: /* SUDOT / BFDOT / USDOT / BFMLAL */ 12011 case 0x10: /* MLA */ 12012 case 0x11: /* FCMLA #0 */ 12013 case 0x13: /* FCMLA #90 */ 12014 case 0x14: /* MLS */ 12015 case 0x15: /* FCMLA #180 */ 12016 case 0x17: /* FCMLA #270 */ 12017 case 0x18: /* FMLAL2 */ 12018 case 0x19: /* FMULX */ 12019 case 0x1c: /* FMLSL2 */ 12020 case 0x1d: /* SQRDMLAH */ 12021 case 0x1e: /* UDOT */ 12022 case 0x1f: /* SQRDMLSH */ 12023 unallocated_encoding(s); 12024 return; 12025 } 12026 12027 /* Given MemOp size, adjust register and indexing. */ 12028 switch (size) { 12029 case MO_8: 12030 case MO_64: 12031 unallocated_encoding(s); 12032 return; 12033 case MO_16: 12034 index = h << 2 | l << 1 | m; 12035 break; 12036 case MO_32: 12037 index = h << 1 | l; 12038 rm |= m << 4; 12039 break; 12040 default: 12041 g_assert_not_reached(); 12042 } 12043 12044 if (!fp_access_check(s)) { 12045 return; 12046 } 12047 12048 if (size == 3) { 12049 g_assert_not_reached(); 12050 } else if (!is_long) { 12051 /* 32 bit floating point, or 16 or 32 bit integer. 12052 * For the 16 bit scalar case we use the usual Neon helpers and 12053 * rely on the fact that 0 op 0 == 0 with no side effects. 12054 */ 12055 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12056 int pass, maxpasses; 12057 12058 if (is_scalar) { 12059 maxpasses = 1; 12060 } else { 12061 maxpasses = is_q ? 4 : 2; 12062 } 12063 12064 read_vec_element_i32(s, tcg_idx, rm, index, size); 12065 12066 if (size == 1 && !is_scalar) { 12067 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12068 * the index into both halves of the 32 bit tcg_idx and then use 12069 * the usual Neon helpers. 12070 */ 12071 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12072 } 12073 12074 for (pass = 0; pass < maxpasses; pass++) { 12075 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12076 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12077 12078 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12079 12080 switch (16 * u + opcode) { 12081 case 0x10: /* MLA */ 12082 case 0x14: /* MLS */ 12083 { 12084 static NeonGenTwoOpFn * const fns[2][2] = { 12085 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12086 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12087 }; 12088 NeonGenTwoOpFn *genfn; 12089 bool is_sub = opcode == 0x4; 12090 12091 if (size == 1) { 12092 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12093 } else { 12094 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12095 } 12096 if (opcode == 0x8) { 12097 break; 12098 } 12099 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12100 genfn = fns[size - 1][is_sub]; 12101 genfn(tcg_res, tcg_op, tcg_res); 12102 break; 12103 } 12104 case 0x0c: /* SQDMULH */ 12105 if (size == 1) { 12106 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 12107 tcg_op, tcg_idx); 12108 } else { 12109 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 12110 tcg_op, tcg_idx); 12111 } 12112 break; 12113 case 0x0d: /* SQRDMULH */ 12114 if (size == 1) { 12115 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 12116 tcg_op, tcg_idx); 12117 } else { 12118 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 12119 tcg_op, tcg_idx); 12120 } 12121 break; 12122 default: 12123 case 0x01: /* FMLA */ 12124 case 0x05: /* FMLS */ 12125 case 0x09: /* FMUL */ 12126 case 0x19: /* FMULX */ 12127 case 0x1d: /* SQRDMLAH */ 12128 case 0x1f: /* SQRDMLSH */ 12129 g_assert_not_reached(); 12130 } 12131 12132 if (is_scalar) { 12133 write_fp_sreg(s, rd, tcg_res); 12134 } else { 12135 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12136 } 12137 } 12138 12139 clear_vec_high(s, is_q, rd); 12140 } else { 12141 /* long ops: 16x16->32 or 32x32->64 */ 12142 TCGv_i64 tcg_res[2]; 12143 int pass; 12144 bool satop = extract32(opcode, 0, 1); 12145 MemOp memop = MO_32; 12146 12147 if (satop || !u) { 12148 memop |= MO_SIGN; 12149 } 12150 12151 if (size == 2) { 12152 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12153 12154 read_vec_element(s, tcg_idx, rm, index, memop); 12155 12156 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12157 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12158 TCGv_i64 tcg_passres; 12159 int passelt; 12160 12161 if (is_scalar) { 12162 passelt = 0; 12163 } else { 12164 passelt = pass + (is_q * 2); 12165 } 12166 12167 read_vec_element(s, tcg_op, rn, passelt, memop); 12168 12169 tcg_res[pass] = tcg_temp_new_i64(); 12170 12171 if (opcode == 0xa || opcode == 0xb) { 12172 /* Non-accumulating ops */ 12173 tcg_passres = tcg_res[pass]; 12174 } else { 12175 tcg_passres = tcg_temp_new_i64(); 12176 } 12177 12178 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 12179 12180 if (satop) { 12181 /* saturating, doubling */ 12182 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 12183 tcg_passres, tcg_passres); 12184 } 12185 12186 if (opcode == 0xa || opcode == 0xb) { 12187 continue; 12188 } 12189 12190 /* Accumulating op: handle accumulate step */ 12191 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12192 12193 switch (opcode) { 12194 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12195 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12196 break; 12197 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12198 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12199 break; 12200 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12201 tcg_gen_neg_i64(tcg_passres, tcg_passres); 12202 /* fall through */ 12203 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12204 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 12205 tcg_res[pass], 12206 tcg_passres); 12207 break; 12208 default: 12209 g_assert_not_reached(); 12210 } 12211 } 12212 12213 clear_vec_high(s, !is_scalar, rd); 12214 } else { 12215 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12216 12217 assert(size == 1); 12218 read_vec_element_i32(s, tcg_idx, rm, index, size); 12219 12220 if (!is_scalar) { 12221 /* The simplest way to handle the 16x16 indexed ops is to 12222 * duplicate the index into both halves of the 32 bit tcg_idx 12223 * and then use the usual Neon helpers. 12224 */ 12225 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12226 } 12227 12228 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12229 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12230 TCGv_i64 tcg_passres; 12231 12232 if (is_scalar) { 12233 read_vec_element_i32(s, tcg_op, rn, pass, size); 12234 } else { 12235 read_vec_element_i32(s, tcg_op, rn, 12236 pass + (is_q * 2), MO_32); 12237 } 12238 12239 tcg_res[pass] = tcg_temp_new_i64(); 12240 12241 if (opcode == 0xa || opcode == 0xb) { 12242 /* Non-accumulating ops */ 12243 tcg_passres = tcg_res[pass]; 12244 } else { 12245 tcg_passres = tcg_temp_new_i64(); 12246 } 12247 12248 if (memop & MO_SIGN) { 12249 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 12250 } else { 12251 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 12252 } 12253 if (satop) { 12254 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 12255 tcg_passres, tcg_passres); 12256 } 12257 12258 if (opcode == 0xa || opcode == 0xb) { 12259 continue; 12260 } 12261 12262 /* Accumulating op: handle accumulate step */ 12263 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12264 12265 switch (opcode) { 12266 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12267 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 12268 tcg_passres); 12269 break; 12270 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12271 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 12272 tcg_passres); 12273 break; 12274 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12275 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 12276 /* fall through */ 12277 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12278 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 12279 tcg_res[pass], 12280 tcg_passres); 12281 break; 12282 default: 12283 g_assert_not_reached(); 12284 } 12285 } 12286 12287 if (is_scalar) { 12288 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 12289 } 12290 } 12291 12292 if (is_scalar) { 12293 tcg_res[1] = tcg_constant_i64(0); 12294 } 12295 12296 for (pass = 0; pass < 2; pass++) { 12297 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12298 } 12299 } 12300 } 12301 12302 /* C3.6 Data processing - SIMD, inc Crypto 12303 * 12304 * As the decode gets a little complex we are using a table based 12305 * approach for this part of the decode. 12306 */ 12307 static const AArch64DecodeTable data_proc_simd[] = { 12308 /* pattern , mask , fn */ 12309 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 12310 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 12311 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 12312 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 12313 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 12314 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 12315 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 12316 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 12317 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 12318 { 0x2e000000, 0xbf208400, disas_simd_ext }, 12319 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 12320 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 12321 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 12322 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 12323 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 12324 { 0x00000000, 0x00000000, NULL } 12325 }; 12326 12327 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 12328 { 12329 /* Note that this is called with all non-FP cases from 12330 * table C3-6 so it must UNDEF for entries not specifically 12331 * allocated to instructions in that table. 12332 */ 12333 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 12334 if (fn) { 12335 fn(s, insn); 12336 } else { 12337 unallocated_encoding(s); 12338 } 12339 } 12340 12341 /* C3.6 Data processing - SIMD and floating point */ 12342 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 12343 { 12344 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 12345 disas_data_proc_fp(s, insn); 12346 } else { 12347 /* SIMD, including crypto */ 12348 disas_data_proc_simd(s, insn); 12349 } 12350 } 12351 12352 static bool trans_OK(DisasContext *s, arg_OK *a) 12353 { 12354 return true; 12355 } 12356 12357 static bool trans_FAIL(DisasContext *s, arg_OK *a) 12358 { 12359 s->is_nonstreaming = true; 12360 return true; 12361 } 12362 12363 /** 12364 * is_guarded_page: 12365 * @env: The cpu environment 12366 * @s: The DisasContext 12367 * 12368 * Return true if the page is guarded. 12369 */ 12370 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 12371 { 12372 uint64_t addr = s->base.pc_first; 12373 #ifdef CONFIG_USER_ONLY 12374 return page_get_flags(addr) & PAGE_BTI; 12375 #else 12376 CPUTLBEntryFull *full; 12377 void *host; 12378 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 12379 int flags; 12380 12381 /* 12382 * We test this immediately after reading an insn, which means 12383 * that the TLB entry must be present and valid, and thus this 12384 * access will never raise an exception. 12385 */ 12386 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 12387 false, &host, &full, 0); 12388 assert(!(flags & TLB_INVALID_MASK)); 12389 12390 return full->extra.arm.guarded; 12391 #endif 12392 } 12393 12394 /** 12395 * btype_destination_ok: 12396 * @insn: The instruction at the branch destination 12397 * @bt: SCTLR_ELx.BT 12398 * @btype: PSTATE.BTYPE, and is non-zero 12399 * 12400 * On a guarded page, there are a limited number of insns 12401 * that may be present at the branch target: 12402 * - branch target identifiers, 12403 * - paciasp, pacibsp, 12404 * - BRK insn 12405 * - HLT insn 12406 * Anything else causes a Branch Target Exception. 12407 * 12408 * Return true if the branch is compatible, false to raise BTITRAP. 12409 */ 12410 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 12411 { 12412 if ((insn & 0xfffff01fu) == 0xd503201fu) { 12413 /* HINT space */ 12414 switch (extract32(insn, 5, 7)) { 12415 case 0b011001: /* PACIASP */ 12416 case 0b011011: /* PACIBSP */ 12417 /* 12418 * If SCTLR_ELx.BT, then PACI*SP are not compatible 12419 * with btype == 3. Otherwise all btype are ok. 12420 */ 12421 return !bt || btype != 3; 12422 case 0b100000: /* BTI */ 12423 /* Not compatible with any btype. */ 12424 return false; 12425 case 0b100010: /* BTI c */ 12426 /* Not compatible with btype == 3 */ 12427 return btype != 3; 12428 case 0b100100: /* BTI j */ 12429 /* Not compatible with btype == 2 */ 12430 return btype != 2; 12431 case 0b100110: /* BTI jc */ 12432 /* Compatible with any btype. */ 12433 return true; 12434 } 12435 } else { 12436 switch (insn & 0xffe0001fu) { 12437 case 0xd4200000u: /* BRK */ 12438 case 0xd4400000u: /* HLT */ 12439 /* Give priority to the breakpoint exception. */ 12440 return true; 12441 } 12442 } 12443 return false; 12444 } 12445 12446 /* C3.1 A64 instruction index by encoding */ 12447 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 12448 { 12449 switch (extract32(insn, 25, 4)) { 12450 case 0x5: 12451 case 0xd: /* Data processing - register */ 12452 disas_data_proc_reg(s, insn); 12453 break; 12454 case 0x7: 12455 case 0xf: /* Data processing - SIMD and floating point */ 12456 disas_data_proc_simd_fp(s, insn); 12457 break; 12458 default: 12459 unallocated_encoding(s); 12460 break; 12461 } 12462 } 12463 12464 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 12465 CPUState *cpu) 12466 { 12467 DisasContext *dc = container_of(dcbase, DisasContext, base); 12468 CPUARMState *env = cpu_env(cpu); 12469 ARMCPU *arm_cpu = env_archcpu(env); 12470 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 12471 int bound, core_mmu_idx; 12472 12473 dc->isar = &arm_cpu->isar; 12474 dc->condjmp = 0; 12475 dc->pc_save = dc->base.pc_first; 12476 dc->aarch64 = true; 12477 dc->thumb = false; 12478 dc->sctlr_b = 0; 12479 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 12480 dc->condexec_mask = 0; 12481 dc->condexec_cond = 0; 12482 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 12483 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 12484 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 12485 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 12486 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 12487 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 12488 #if !defined(CONFIG_USER_ONLY) 12489 dc->user = (dc->current_el == 0); 12490 #endif 12491 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 12492 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 12493 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 12494 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 12495 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 12496 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 12497 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 12498 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 12499 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 12500 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 12501 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 12502 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 12503 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 12504 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 12505 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 12506 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 12507 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 12508 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 12509 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 12510 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 12511 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 12512 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 12513 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 12514 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 12515 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 12516 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 12517 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 12518 dc->vec_len = 0; 12519 dc->vec_stride = 0; 12520 dc->cp_regs = arm_cpu->cp_regs; 12521 dc->features = env->features; 12522 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 12523 dc->gm_blocksize = arm_cpu->gm_blocksize; 12524 12525 #ifdef CONFIG_USER_ONLY 12526 /* In sve_probe_page, we assume TBI is enabled. */ 12527 tcg_debug_assert(dc->tbid & 1); 12528 #endif 12529 12530 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 12531 12532 /* Single step state. The code-generation logic here is: 12533 * SS_ACTIVE == 0: 12534 * generate code with no special handling for single-stepping (except 12535 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 12536 * this happens anyway because those changes are all system register or 12537 * PSTATE writes). 12538 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 12539 * emit code for one insn 12540 * emit code to clear PSTATE.SS 12541 * emit code to generate software step exception for completed step 12542 * end TB (as usual for having generated an exception) 12543 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 12544 * emit code to generate a software step exception 12545 * end the TB 12546 */ 12547 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 12548 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 12549 dc->is_ldex = false; 12550 12551 /* Bound the number of insns to execute to those left on the page. */ 12552 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 12553 12554 /* If architectural single step active, limit to 1. */ 12555 if (dc->ss_active) { 12556 bound = 1; 12557 } 12558 dc->base.max_insns = MIN(dc->base.max_insns, bound); 12559 } 12560 12561 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 12562 { 12563 } 12564 12565 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 12566 { 12567 DisasContext *dc = container_of(dcbase, DisasContext, base); 12568 target_ulong pc_arg = dc->base.pc_next; 12569 12570 if (tb_cflags(dcbase->tb) & CF_PCREL) { 12571 pc_arg &= ~TARGET_PAGE_MASK; 12572 } 12573 tcg_gen_insn_start(pc_arg, 0, 0); 12574 dc->insn_start_updated = false; 12575 } 12576 12577 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 12578 { 12579 DisasContext *s = container_of(dcbase, DisasContext, base); 12580 CPUARMState *env = cpu_env(cpu); 12581 uint64_t pc = s->base.pc_next; 12582 uint32_t insn; 12583 12584 /* Singlestep exceptions have the highest priority. */ 12585 if (s->ss_active && !s->pstate_ss) { 12586 /* Singlestep state is Active-pending. 12587 * If we're in this state at the start of a TB then either 12588 * a) we just took an exception to an EL which is being debugged 12589 * and this is the first insn in the exception handler 12590 * b) debug exceptions were masked and we just unmasked them 12591 * without changing EL (eg by clearing PSTATE.D) 12592 * In either case we're going to take a swstep exception in the 12593 * "did not step an insn" case, and so the syndrome ISV and EX 12594 * bits should be zero. 12595 */ 12596 assert(s->base.num_insns == 1); 12597 gen_swstep_exception(s, 0, 0); 12598 s->base.is_jmp = DISAS_NORETURN; 12599 s->base.pc_next = pc + 4; 12600 return; 12601 } 12602 12603 if (pc & 3) { 12604 /* 12605 * PC alignment fault. This has priority over the instruction abort 12606 * that we would receive from a translation fault via arm_ldl_code. 12607 * This should only be possible after an indirect branch, at the 12608 * start of the TB. 12609 */ 12610 assert(s->base.num_insns == 1); 12611 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 12612 s->base.is_jmp = DISAS_NORETURN; 12613 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 12614 return; 12615 } 12616 12617 s->pc_curr = pc; 12618 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 12619 s->insn = insn; 12620 s->base.pc_next = pc + 4; 12621 12622 s->fp_access_checked = false; 12623 s->sve_access_checked = false; 12624 12625 if (s->pstate_il) { 12626 /* 12627 * Illegal execution state. This has priority over BTI 12628 * exceptions, but comes after instruction abort exceptions. 12629 */ 12630 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 12631 return; 12632 } 12633 12634 if (dc_isar_feature(aa64_bti, s)) { 12635 if (s->base.num_insns == 1) { 12636 /* 12637 * At the first insn of the TB, compute s->guarded_page. 12638 * We delayed computing this until successfully reading 12639 * the first insn of the TB, above. This (mostly) ensures 12640 * that the softmmu tlb entry has been populated, and the 12641 * page table GP bit is available. 12642 * 12643 * Note that we need to compute this even if btype == 0, 12644 * because this value is used for BR instructions later 12645 * where ENV is not available. 12646 */ 12647 s->guarded_page = is_guarded_page(env, s); 12648 12649 /* First insn can have btype set to non-zero. */ 12650 tcg_debug_assert(s->btype >= 0); 12651 12652 /* 12653 * Note that the Branch Target Exception has fairly high 12654 * priority -- below debugging exceptions but above most 12655 * everything else. This allows us to handle this now 12656 * instead of waiting until the insn is otherwise decoded. 12657 */ 12658 if (s->btype != 0 12659 && s->guarded_page 12660 && !btype_destination_ok(insn, s->bt, s->btype)) { 12661 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 12662 return; 12663 } 12664 } else { 12665 /* Not the first insn: btype must be 0. */ 12666 tcg_debug_assert(s->btype == 0); 12667 } 12668 } 12669 12670 s->is_nonstreaming = false; 12671 if (s->sme_trap_nonstreaming) { 12672 disas_sme_fa64(s, insn); 12673 } 12674 12675 if (!disas_a64(s, insn) && 12676 !disas_sme(s, insn) && 12677 !disas_sve(s, insn)) { 12678 disas_a64_legacy(s, insn); 12679 } 12680 12681 /* 12682 * After execution of most insns, btype is reset to 0. 12683 * Note that we set btype == -1 when the insn sets btype. 12684 */ 12685 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 12686 reset_btype(s); 12687 } 12688 } 12689 12690 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 12691 { 12692 DisasContext *dc = container_of(dcbase, DisasContext, base); 12693 12694 if (unlikely(dc->ss_active)) { 12695 /* Note that this means single stepping WFI doesn't halt the CPU. 12696 * For conditional branch insns this is harmless unreachable code as 12697 * gen_goto_tb() has already handled emitting the debug exception 12698 * (and thus a tb-jump is not possible when singlestepping). 12699 */ 12700 switch (dc->base.is_jmp) { 12701 default: 12702 gen_a64_update_pc(dc, 4); 12703 /* fall through */ 12704 case DISAS_EXIT: 12705 case DISAS_JUMP: 12706 gen_step_complete_exception(dc); 12707 break; 12708 case DISAS_NORETURN: 12709 break; 12710 } 12711 } else { 12712 switch (dc->base.is_jmp) { 12713 case DISAS_NEXT: 12714 case DISAS_TOO_MANY: 12715 gen_goto_tb(dc, 1, 4); 12716 break; 12717 default: 12718 case DISAS_UPDATE_EXIT: 12719 gen_a64_update_pc(dc, 4); 12720 /* fall through */ 12721 case DISAS_EXIT: 12722 tcg_gen_exit_tb(NULL, 0); 12723 break; 12724 case DISAS_UPDATE_NOCHAIN: 12725 gen_a64_update_pc(dc, 4); 12726 /* fall through */ 12727 case DISAS_JUMP: 12728 tcg_gen_lookup_and_goto_ptr(); 12729 break; 12730 case DISAS_NORETURN: 12731 case DISAS_SWI: 12732 break; 12733 case DISAS_WFE: 12734 gen_a64_update_pc(dc, 4); 12735 gen_helper_wfe(tcg_env); 12736 break; 12737 case DISAS_YIELD: 12738 gen_a64_update_pc(dc, 4); 12739 gen_helper_yield(tcg_env); 12740 break; 12741 case DISAS_WFI: 12742 /* 12743 * This is a special case because we don't want to just halt 12744 * the CPU if trying to debug across a WFI. 12745 */ 12746 gen_a64_update_pc(dc, 4); 12747 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 12748 /* 12749 * The helper doesn't necessarily throw an exception, but we 12750 * must go back to the main loop to check for interrupts anyway. 12751 */ 12752 tcg_gen_exit_tb(NULL, 0); 12753 break; 12754 } 12755 } 12756 } 12757 12758 const TranslatorOps aarch64_translator_ops = { 12759 .init_disas_context = aarch64_tr_init_disas_context, 12760 .tb_start = aarch64_tr_tb_start, 12761 .insn_start = aarch64_tr_insn_start, 12762 .translate_insn = aarch64_tr_translate_insn, 12763 .tb_stop = aarch64_tr_tb_stop, 12764 }; 12765