1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1653 { 1654 return true; 1655 } 1656 1657 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1658 { 1659 /* 1660 * When running in MTTCG we don't generate jumps to the yield and 1661 * WFE helpers as it won't affect the scheduling of other vCPUs. 1662 * If we wanted to more completely model WFE/SEV so we don't busy 1663 * spin unnecessarily we would need to do something more involved. 1664 */ 1665 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1666 s->base.is_jmp = DISAS_YIELD; 1667 } 1668 return true; 1669 } 1670 1671 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1672 { 1673 s->base.is_jmp = DISAS_WFI; 1674 return true; 1675 } 1676 1677 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1678 { 1679 /* 1680 * When running in MTTCG we don't generate jumps to the yield and 1681 * WFE helpers as it won't affect the scheduling of other vCPUs. 1682 * If we wanted to more completely model WFE/SEV so we don't busy 1683 * spin unnecessarily we would need to do something more involved. 1684 */ 1685 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1686 s->base.is_jmp = DISAS_WFE; 1687 } 1688 return true; 1689 } 1690 1691 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1692 { 1693 if (s->pauth_active) { 1694 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1695 } 1696 return true; 1697 } 1698 1699 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1700 { 1701 if (s->pauth_active) { 1702 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1703 } 1704 return true; 1705 } 1706 1707 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1708 { 1709 if (s->pauth_active) { 1710 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1711 } 1712 return true; 1713 } 1714 1715 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1716 { 1717 if (s->pauth_active) { 1718 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1719 } 1720 return true; 1721 } 1722 1723 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1724 { 1725 if (s->pauth_active) { 1726 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1727 } 1728 return true; 1729 } 1730 1731 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1732 { 1733 /* Without RAS, we must implement this as NOP. */ 1734 if (dc_isar_feature(aa64_ras, s)) { 1735 /* 1736 * QEMU does not have a source of physical SErrors, 1737 * so we are only concerned with virtual SErrors. 1738 * The pseudocode in the ARM for this case is 1739 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1740 * AArch64.vESBOperation(); 1741 * Most of the condition can be evaluated at translation time. 1742 * Test for EL2 present, and defer test for SEL2 to runtime. 1743 */ 1744 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1745 gen_helper_vesb(cpu_env); 1746 } 1747 } 1748 return true; 1749 } 1750 1751 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1752 { 1753 if (s->pauth_active) { 1754 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1755 } 1756 return true; 1757 } 1758 1759 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1760 { 1761 if (s->pauth_active) { 1762 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1763 } 1764 return true; 1765 } 1766 1767 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1768 { 1769 if (s->pauth_active) { 1770 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1771 } 1772 return true; 1773 } 1774 1775 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1776 { 1777 if (s->pauth_active) { 1778 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1779 } 1780 return true; 1781 } 1782 1783 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1784 { 1785 if (s->pauth_active) { 1786 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1787 } 1788 return true; 1789 } 1790 1791 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1792 { 1793 if (s->pauth_active) { 1794 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1795 } 1796 return true; 1797 } 1798 1799 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1800 { 1801 if (s->pauth_active) { 1802 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1803 } 1804 return true; 1805 } 1806 1807 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1808 { 1809 if (s->pauth_active) { 1810 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1811 } 1812 return true; 1813 } 1814 1815 static void gen_clrex(DisasContext *s, uint32_t insn) 1816 { 1817 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1818 } 1819 1820 /* CLREX, DSB, DMB, ISB */ 1821 static void handle_sync(DisasContext *s, uint32_t insn, 1822 unsigned int op1, unsigned int op2, unsigned int crm) 1823 { 1824 TCGBar bar; 1825 1826 if (op1 != 3) { 1827 unallocated_encoding(s); 1828 return; 1829 } 1830 1831 switch (op2) { 1832 case 2: /* CLREX */ 1833 gen_clrex(s, insn); 1834 return; 1835 case 4: /* DSB */ 1836 case 5: /* DMB */ 1837 switch (crm & 3) { 1838 case 1: /* MBReqTypes_Reads */ 1839 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1840 break; 1841 case 2: /* MBReqTypes_Writes */ 1842 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1843 break; 1844 default: /* MBReqTypes_All */ 1845 bar = TCG_BAR_SC | TCG_MO_ALL; 1846 break; 1847 } 1848 tcg_gen_mb(bar); 1849 return; 1850 case 6: /* ISB */ 1851 /* We need to break the TB after this insn to execute 1852 * a self-modified code correctly and also to take 1853 * any pending interrupts immediately. 1854 */ 1855 reset_btype(s); 1856 gen_goto_tb(s, 0, 4); 1857 return; 1858 1859 case 7: /* SB */ 1860 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1861 goto do_unallocated; 1862 } 1863 /* 1864 * TODO: There is no speculation barrier opcode for TCG; 1865 * MB and end the TB instead. 1866 */ 1867 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1868 gen_goto_tb(s, 0, 4); 1869 return; 1870 1871 default: 1872 do_unallocated: 1873 unallocated_encoding(s); 1874 return; 1875 } 1876 } 1877 1878 static void gen_xaflag(void) 1879 { 1880 TCGv_i32 z = tcg_temp_new_i32(); 1881 1882 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1883 1884 /* 1885 * (!C & !Z) << 31 1886 * (!(C | Z)) << 31 1887 * ~((C | Z) << 31) 1888 * ~-(C | Z) 1889 * (C | Z) - 1 1890 */ 1891 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1892 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1893 1894 /* !(Z & C) */ 1895 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1896 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1897 1898 /* (!C & Z) << 31 -> -(Z & ~C) */ 1899 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1900 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1901 1902 /* C | Z */ 1903 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1904 } 1905 1906 static void gen_axflag(void) 1907 { 1908 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1909 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1910 1911 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1912 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1913 1914 tcg_gen_movi_i32(cpu_NF, 0); 1915 tcg_gen_movi_i32(cpu_VF, 0); 1916 } 1917 1918 /* MSR (immediate) - move immediate to processor state field */ 1919 static void handle_msr_i(DisasContext *s, uint32_t insn, 1920 unsigned int op1, unsigned int op2, unsigned int crm) 1921 { 1922 int op = op1 << 3 | op2; 1923 1924 /* End the TB by default, chaining is ok. */ 1925 s->base.is_jmp = DISAS_TOO_MANY; 1926 1927 switch (op) { 1928 case 0x00: /* CFINV */ 1929 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1930 goto do_unallocated; 1931 } 1932 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1933 s->base.is_jmp = DISAS_NEXT; 1934 break; 1935 1936 case 0x01: /* XAFlag */ 1937 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1938 goto do_unallocated; 1939 } 1940 gen_xaflag(); 1941 s->base.is_jmp = DISAS_NEXT; 1942 break; 1943 1944 case 0x02: /* AXFlag */ 1945 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1946 goto do_unallocated; 1947 } 1948 gen_axflag(); 1949 s->base.is_jmp = DISAS_NEXT; 1950 break; 1951 1952 case 0x03: /* UAO */ 1953 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1954 goto do_unallocated; 1955 } 1956 if (crm & 1) { 1957 set_pstate_bits(PSTATE_UAO); 1958 } else { 1959 clear_pstate_bits(PSTATE_UAO); 1960 } 1961 gen_rebuild_hflags(s); 1962 break; 1963 1964 case 0x04: /* PAN */ 1965 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1966 goto do_unallocated; 1967 } 1968 if (crm & 1) { 1969 set_pstate_bits(PSTATE_PAN); 1970 } else { 1971 clear_pstate_bits(PSTATE_PAN); 1972 } 1973 gen_rebuild_hflags(s); 1974 break; 1975 1976 case 0x05: /* SPSel */ 1977 if (s->current_el == 0) { 1978 goto do_unallocated; 1979 } 1980 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1981 break; 1982 1983 case 0x19: /* SSBS */ 1984 if (!dc_isar_feature(aa64_ssbs, s)) { 1985 goto do_unallocated; 1986 } 1987 if (crm & 1) { 1988 set_pstate_bits(PSTATE_SSBS); 1989 } else { 1990 clear_pstate_bits(PSTATE_SSBS); 1991 } 1992 /* Don't need to rebuild hflags since SSBS is a nop */ 1993 break; 1994 1995 case 0x1a: /* DIT */ 1996 if (!dc_isar_feature(aa64_dit, s)) { 1997 goto do_unallocated; 1998 } 1999 if (crm & 1) { 2000 set_pstate_bits(PSTATE_DIT); 2001 } else { 2002 clear_pstate_bits(PSTATE_DIT); 2003 } 2004 /* There's no need to rebuild hflags because DIT is a nop */ 2005 break; 2006 2007 case 0x1e: /* DAIFSet */ 2008 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 2009 break; 2010 2011 case 0x1f: /* DAIFClear */ 2012 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 2013 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 2014 s->base.is_jmp = DISAS_UPDATE_EXIT; 2015 break; 2016 2017 case 0x1c: /* TCO */ 2018 if (dc_isar_feature(aa64_mte, s)) { 2019 /* Full MTE is enabled -- set the TCO bit as directed. */ 2020 if (crm & 1) { 2021 set_pstate_bits(PSTATE_TCO); 2022 } else { 2023 clear_pstate_bits(PSTATE_TCO); 2024 } 2025 gen_rebuild_hflags(s); 2026 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2027 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2028 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2029 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2030 s->base.is_jmp = DISAS_NEXT; 2031 } else { 2032 goto do_unallocated; 2033 } 2034 break; 2035 2036 case 0x1b: /* SVCR* */ 2037 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 2038 goto do_unallocated; 2039 } 2040 if (sme_access_check(s)) { 2041 int old = s->pstate_sm | (s->pstate_za << 1); 2042 int new = (crm & 1) * 3; 2043 int msk = (crm >> 1) & 3; 2044 2045 if ((old ^ new) & msk) { 2046 /* At least one bit changes. */ 2047 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2048 tcg_constant_i32(msk)); 2049 } else { 2050 s->base.is_jmp = DISAS_NEXT; 2051 } 2052 } 2053 break; 2054 2055 default: 2056 do_unallocated: 2057 unallocated_encoding(s); 2058 return; 2059 } 2060 } 2061 2062 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2063 { 2064 TCGv_i32 tmp = tcg_temp_new_i32(); 2065 TCGv_i32 nzcv = tcg_temp_new_i32(); 2066 2067 /* build bit 31, N */ 2068 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2069 /* build bit 30, Z */ 2070 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2071 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2072 /* build bit 29, C */ 2073 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2074 /* build bit 28, V */ 2075 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2076 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2077 /* generate result */ 2078 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2079 } 2080 2081 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2082 { 2083 TCGv_i32 nzcv = tcg_temp_new_i32(); 2084 2085 /* take NZCV from R[t] */ 2086 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2087 2088 /* bit 31, N */ 2089 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2090 /* bit 30, Z */ 2091 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2092 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2093 /* bit 29, C */ 2094 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2095 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2096 /* bit 28, V */ 2097 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2098 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2099 } 2100 2101 static void gen_sysreg_undef(DisasContext *s, bool isread, 2102 uint8_t op0, uint8_t op1, uint8_t op2, 2103 uint8_t crn, uint8_t crm, uint8_t rt) 2104 { 2105 /* 2106 * Generate code to emit an UNDEF with correct syndrome 2107 * information for a failed system register access. 2108 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2109 * but if FEAT_IDST is implemented then read accesses to registers 2110 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2111 * syndrome. 2112 */ 2113 uint32_t syndrome; 2114 2115 if (isread && dc_isar_feature(aa64_ids, s) && 2116 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2117 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2118 } else { 2119 syndrome = syn_uncategorized(); 2120 } 2121 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2122 } 2123 2124 /* MRS - move from system register 2125 * MSR (register) - move to system register 2126 * SYS 2127 * SYSL 2128 * These are all essentially the same insn in 'read' and 'write' 2129 * versions, with varying op0 fields. 2130 */ 2131 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2132 unsigned int op0, unsigned int op1, unsigned int op2, 2133 unsigned int crn, unsigned int crm, unsigned int rt) 2134 { 2135 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2136 crn, crm, op0, op1, op2); 2137 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2138 bool need_exit_tb = false; 2139 TCGv_ptr tcg_ri = NULL; 2140 TCGv_i64 tcg_rt; 2141 2142 if (!ri) { 2143 /* Unknown register; this might be a guest error or a QEMU 2144 * unimplemented feature. 2145 */ 2146 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2147 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2148 isread ? "read" : "write", op0, op1, crn, crm, op2); 2149 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2150 return; 2151 } 2152 2153 /* Check access permissions */ 2154 if (!cp_access_ok(s->current_el, ri, isread)) { 2155 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2156 return; 2157 } 2158 2159 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2160 /* Emit code to perform further access permissions checks at 2161 * runtime; this may result in an exception. 2162 */ 2163 uint32_t syndrome; 2164 2165 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2166 gen_a64_update_pc(s, 0); 2167 tcg_ri = tcg_temp_new_ptr(); 2168 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2169 tcg_constant_i32(key), 2170 tcg_constant_i32(syndrome), 2171 tcg_constant_i32(isread)); 2172 } else if (ri->type & ARM_CP_RAISES_EXC) { 2173 /* 2174 * The readfn or writefn might raise an exception; 2175 * synchronize the CPU state in case it does. 2176 */ 2177 gen_a64_update_pc(s, 0); 2178 } 2179 2180 /* Handle special cases first */ 2181 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2182 case 0: 2183 break; 2184 case ARM_CP_NOP: 2185 return; 2186 case ARM_CP_NZCV: 2187 tcg_rt = cpu_reg(s, rt); 2188 if (isread) { 2189 gen_get_nzcv(tcg_rt); 2190 } else { 2191 gen_set_nzcv(tcg_rt); 2192 } 2193 return; 2194 case ARM_CP_CURRENTEL: 2195 /* Reads as current EL value from pstate, which is 2196 * guaranteed to be constant by the tb flags. 2197 */ 2198 tcg_rt = cpu_reg(s, rt); 2199 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2200 return; 2201 case ARM_CP_DC_ZVA: 2202 /* Writes clear the aligned block of memory which rt points into. */ 2203 if (s->mte_active[0]) { 2204 int desc = 0; 2205 2206 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2207 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2208 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2209 2210 tcg_rt = tcg_temp_new_i64(); 2211 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2212 tcg_constant_i32(desc), cpu_reg(s, rt)); 2213 } else { 2214 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2215 } 2216 gen_helper_dc_zva(cpu_env, tcg_rt); 2217 return; 2218 case ARM_CP_DC_GVA: 2219 { 2220 TCGv_i64 clean_addr, tag; 2221 2222 /* 2223 * DC_GVA, like DC_ZVA, requires that we supply the original 2224 * pointer for an invalid page. Probe that address first. 2225 */ 2226 tcg_rt = cpu_reg(s, rt); 2227 clean_addr = clean_data_tbi(s, tcg_rt); 2228 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2229 2230 if (s->ata) { 2231 /* Extract the tag from the register to match STZGM. */ 2232 tag = tcg_temp_new_i64(); 2233 tcg_gen_shri_i64(tag, tcg_rt, 56); 2234 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2235 } 2236 } 2237 return; 2238 case ARM_CP_DC_GZVA: 2239 { 2240 TCGv_i64 clean_addr, tag; 2241 2242 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2243 tcg_rt = cpu_reg(s, rt); 2244 clean_addr = clean_data_tbi(s, tcg_rt); 2245 gen_helper_dc_zva(cpu_env, clean_addr); 2246 2247 if (s->ata) { 2248 /* Extract the tag from the register to match STZGM. */ 2249 tag = tcg_temp_new_i64(); 2250 tcg_gen_shri_i64(tag, tcg_rt, 56); 2251 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2252 } 2253 } 2254 return; 2255 default: 2256 g_assert_not_reached(); 2257 } 2258 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2259 return; 2260 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2261 return; 2262 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2263 return; 2264 } 2265 2266 if (ri->type & ARM_CP_IO) { 2267 /* I/O operations must end the TB here (whether read or write) */ 2268 need_exit_tb = translator_io_start(&s->base); 2269 } 2270 2271 tcg_rt = cpu_reg(s, rt); 2272 2273 if (isread) { 2274 if (ri->type & ARM_CP_CONST) { 2275 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2276 } else if (ri->readfn) { 2277 if (!tcg_ri) { 2278 tcg_ri = gen_lookup_cp_reg(key); 2279 } 2280 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2281 } else { 2282 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2283 } 2284 } else { 2285 if (ri->type & ARM_CP_CONST) { 2286 /* If not forbidden by access permissions, treat as WI */ 2287 return; 2288 } else if (ri->writefn) { 2289 if (!tcg_ri) { 2290 tcg_ri = gen_lookup_cp_reg(key); 2291 } 2292 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2293 } else { 2294 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2295 } 2296 } 2297 2298 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2299 /* 2300 * A write to any coprocessor regiser that ends a TB 2301 * must rebuild the hflags for the next TB. 2302 */ 2303 gen_rebuild_hflags(s); 2304 /* 2305 * We default to ending the TB on a coprocessor register write, 2306 * but allow this to be suppressed by the register definition 2307 * (usually only necessary to work around guest bugs). 2308 */ 2309 need_exit_tb = true; 2310 } 2311 if (need_exit_tb) { 2312 s->base.is_jmp = DISAS_UPDATE_EXIT; 2313 } 2314 } 2315 2316 /* System 2317 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2318 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2319 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2320 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2321 */ 2322 static void disas_system(DisasContext *s, uint32_t insn) 2323 { 2324 unsigned int l, op0, op1, crn, crm, op2, rt; 2325 l = extract32(insn, 21, 1); 2326 op0 = extract32(insn, 19, 2); 2327 op1 = extract32(insn, 16, 3); 2328 crn = extract32(insn, 12, 4); 2329 crm = extract32(insn, 8, 4); 2330 op2 = extract32(insn, 5, 3); 2331 rt = extract32(insn, 0, 5); 2332 2333 if (op0 == 0) { 2334 if (l || rt != 31) { 2335 unallocated_encoding(s); 2336 return; 2337 } 2338 switch (crn) { 2339 case 3: /* CLREX, DSB, DMB, ISB */ 2340 handle_sync(s, insn, op1, op2, crm); 2341 break; 2342 case 4: /* MSR (immediate) */ 2343 handle_msr_i(s, insn, op1, op2, crm); 2344 break; 2345 default: 2346 unallocated_encoding(s); 2347 break; 2348 } 2349 return; 2350 } 2351 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2352 } 2353 2354 /* Exception generation 2355 * 2356 * 31 24 23 21 20 5 4 2 1 0 2357 * +-----------------+-----+------------------------+-----+----+ 2358 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2359 * +-----------------------+------------------------+----------+ 2360 */ 2361 static void disas_exc(DisasContext *s, uint32_t insn) 2362 { 2363 int opc = extract32(insn, 21, 3); 2364 int op2_ll = extract32(insn, 0, 5); 2365 int imm16 = extract32(insn, 5, 16); 2366 uint32_t syndrome; 2367 2368 switch (opc) { 2369 case 0: 2370 /* For SVC, HVC and SMC we advance the single-step state 2371 * machine before taking the exception. This is architecturally 2372 * mandated, to ensure that single-stepping a system call 2373 * instruction works properly. 2374 */ 2375 switch (op2_ll) { 2376 case 1: /* SVC */ 2377 syndrome = syn_aa64_svc(imm16); 2378 if (s->fgt_svc) { 2379 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2380 break; 2381 } 2382 gen_ss_advance(s); 2383 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2384 break; 2385 case 2: /* HVC */ 2386 if (s->current_el == 0) { 2387 unallocated_encoding(s); 2388 break; 2389 } 2390 /* The pre HVC helper handles cases when HVC gets trapped 2391 * as an undefined insn by runtime configuration. 2392 */ 2393 gen_a64_update_pc(s, 0); 2394 gen_helper_pre_hvc(cpu_env); 2395 gen_ss_advance(s); 2396 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2397 break; 2398 case 3: /* SMC */ 2399 if (s->current_el == 0) { 2400 unallocated_encoding(s); 2401 break; 2402 } 2403 gen_a64_update_pc(s, 0); 2404 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2405 gen_ss_advance(s); 2406 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2407 break; 2408 default: 2409 unallocated_encoding(s); 2410 break; 2411 } 2412 break; 2413 case 1: 2414 if (op2_ll != 0) { 2415 unallocated_encoding(s); 2416 break; 2417 } 2418 /* BRK */ 2419 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2420 break; 2421 case 2: 2422 if (op2_ll != 0) { 2423 unallocated_encoding(s); 2424 break; 2425 } 2426 /* HLT. This has two purposes. 2427 * Architecturally, it is an external halting debug instruction. 2428 * Since QEMU doesn't implement external debug, we treat this as 2429 * it is required for halting debug disabled: it will UNDEF. 2430 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2431 */ 2432 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2433 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2434 } else { 2435 unallocated_encoding(s); 2436 } 2437 break; 2438 case 5: 2439 if (op2_ll < 1 || op2_ll > 3) { 2440 unallocated_encoding(s); 2441 break; 2442 } 2443 /* DCPS1, DCPS2, DCPS3 */ 2444 unallocated_encoding(s); 2445 break; 2446 default: 2447 unallocated_encoding(s); 2448 break; 2449 } 2450 } 2451 2452 /* Branches, exception generating and system instructions */ 2453 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2454 { 2455 switch (extract32(insn, 25, 7)) { 2456 case 0x6a: /* Exception generation / System */ 2457 if (insn & (1 << 24)) { 2458 if (extract32(insn, 22, 2) == 0) { 2459 disas_system(s, insn); 2460 } else { 2461 unallocated_encoding(s); 2462 } 2463 } else { 2464 disas_exc(s, insn); 2465 } 2466 break; 2467 default: 2468 unallocated_encoding(s); 2469 break; 2470 } 2471 } 2472 2473 /* 2474 * Load/Store exclusive instructions are implemented by remembering 2475 * the value/address loaded, and seeing if these are the same 2476 * when the store is performed. This is not actually the architecturally 2477 * mandated semantics, but it works for typical guest code sequences 2478 * and avoids having to monitor regular stores. 2479 * 2480 * The store exclusive uses the atomic cmpxchg primitives to avoid 2481 * races in multi-threaded linux-user and when MTTCG softmmu is 2482 * enabled. 2483 */ 2484 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2485 int size, bool is_pair) 2486 { 2487 int idx = get_mem_index(s); 2488 TCGv_i64 dirty_addr, clean_addr; 2489 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2490 2491 s->is_ldex = true; 2492 dirty_addr = cpu_reg_sp(s, rn); 2493 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2494 2495 g_assert(size <= 3); 2496 if (is_pair) { 2497 g_assert(size >= 2); 2498 if (size == 2) { 2499 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2500 if (s->be_data == MO_LE) { 2501 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2502 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2503 } else { 2504 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2505 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2506 } 2507 } else { 2508 TCGv_i128 t16 = tcg_temp_new_i128(); 2509 2510 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2511 2512 if (s->be_data == MO_LE) { 2513 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2514 cpu_exclusive_high, t16); 2515 } else { 2516 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2517 cpu_exclusive_val, t16); 2518 } 2519 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2520 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2521 } 2522 } else { 2523 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2524 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2525 } 2526 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2527 } 2528 2529 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2530 int rn, int size, int is_pair) 2531 { 2532 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2533 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2534 * [addr] = {Rt}; 2535 * if (is_pair) { 2536 * [addr + datasize] = {Rt2}; 2537 * } 2538 * {Rd} = 0; 2539 * } else { 2540 * {Rd} = 1; 2541 * } 2542 * env->exclusive_addr = -1; 2543 */ 2544 TCGLabel *fail_label = gen_new_label(); 2545 TCGLabel *done_label = gen_new_label(); 2546 TCGv_i64 tmp, clean_addr; 2547 MemOp memop; 2548 2549 /* 2550 * FIXME: We are out of spec here. We have recorded only the address 2551 * from load_exclusive, not the entire range, and we assume that the 2552 * size of the access on both sides match. The architecture allows the 2553 * store to be smaller than the load, so long as the stored bytes are 2554 * within the range recorded by the load. 2555 */ 2556 2557 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2558 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2559 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2560 2561 /* 2562 * The write, and any associated faults, only happen if the virtual 2563 * and physical addresses pass the exclusive monitor check. These 2564 * faults are exceedingly unlikely, because normally the guest uses 2565 * the exact same address register for the load_exclusive, and we 2566 * would have recognized these faults there. 2567 * 2568 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2569 * unaligned 4-byte write within the range of an aligned 8-byte load. 2570 * With LSE2, the store would need to cross a 16-byte boundary when the 2571 * load did not, which would mean the store is outside the range 2572 * recorded for the monitor, which would have failed a corrected monitor 2573 * check above. For now, we assume no size change and retain the 2574 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2575 * 2576 * It is possible to trigger an MTE fault, by performing the load with 2577 * a virtual address with a valid tag and performing the store with the 2578 * same virtual address and a different invalid tag. 2579 */ 2580 memop = size + is_pair; 2581 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2582 memop |= MO_ALIGN; 2583 } 2584 memop = finalize_memop(s, memop); 2585 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2586 2587 tmp = tcg_temp_new_i64(); 2588 if (is_pair) { 2589 if (size == 2) { 2590 if (s->be_data == MO_LE) { 2591 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2592 } else { 2593 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2594 } 2595 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2596 cpu_exclusive_val, tmp, 2597 get_mem_index(s), memop); 2598 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2599 } else { 2600 TCGv_i128 t16 = tcg_temp_new_i128(); 2601 TCGv_i128 c16 = tcg_temp_new_i128(); 2602 TCGv_i64 a, b; 2603 2604 if (s->be_data == MO_LE) { 2605 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2606 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2607 cpu_exclusive_high); 2608 } else { 2609 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2610 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2611 cpu_exclusive_val); 2612 } 2613 2614 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2615 get_mem_index(s), memop); 2616 2617 a = tcg_temp_new_i64(); 2618 b = tcg_temp_new_i64(); 2619 if (s->be_data == MO_LE) { 2620 tcg_gen_extr_i128_i64(a, b, t16); 2621 } else { 2622 tcg_gen_extr_i128_i64(b, a, t16); 2623 } 2624 2625 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2626 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2627 tcg_gen_or_i64(tmp, a, b); 2628 2629 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2630 } 2631 } else { 2632 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2633 cpu_reg(s, rt), get_mem_index(s), memop); 2634 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2635 } 2636 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2637 tcg_gen_br(done_label); 2638 2639 gen_set_label(fail_label); 2640 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2641 gen_set_label(done_label); 2642 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2643 } 2644 2645 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2646 int rn, int size) 2647 { 2648 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2649 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2650 int memidx = get_mem_index(s); 2651 TCGv_i64 clean_addr; 2652 MemOp memop; 2653 2654 if (rn == 31) { 2655 gen_check_sp_alignment(s); 2656 } 2657 memop = check_atomic_align(s, rn, size); 2658 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2659 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2660 memidx, memop); 2661 } 2662 2663 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2664 int rn, int size) 2665 { 2666 TCGv_i64 s1 = cpu_reg(s, rs); 2667 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2668 TCGv_i64 t1 = cpu_reg(s, rt); 2669 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2670 TCGv_i64 clean_addr; 2671 int memidx = get_mem_index(s); 2672 MemOp memop; 2673 2674 if (rn == 31) { 2675 gen_check_sp_alignment(s); 2676 } 2677 2678 /* This is a single atomic access, despite the "pair". */ 2679 memop = check_atomic_align(s, rn, size + 1); 2680 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2681 2682 if (size == 2) { 2683 TCGv_i64 cmp = tcg_temp_new_i64(); 2684 TCGv_i64 val = tcg_temp_new_i64(); 2685 2686 if (s->be_data == MO_LE) { 2687 tcg_gen_concat32_i64(val, t1, t2); 2688 tcg_gen_concat32_i64(cmp, s1, s2); 2689 } else { 2690 tcg_gen_concat32_i64(val, t2, t1); 2691 tcg_gen_concat32_i64(cmp, s2, s1); 2692 } 2693 2694 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2695 2696 if (s->be_data == MO_LE) { 2697 tcg_gen_extr32_i64(s1, s2, cmp); 2698 } else { 2699 tcg_gen_extr32_i64(s2, s1, cmp); 2700 } 2701 } else { 2702 TCGv_i128 cmp = tcg_temp_new_i128(); 2703 TCGv_i128 val = tcg_temp_new_i128(); 2704 2705 if (s->be_data == MO_LE) { 2706 tcg_gen_concat_i64_i128(val, t1, t2); 2707 tcg_gen_concat_i64_i128(cmp, s1, s2); 2708 } else { 2709 tcg_gen_concat_i64_i128(val, t2, t1); 2710 tcg_gen_concat_i64_i128(cmp, s2, s1); 2711 } 2712 2713 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2714 2715 if (s->be_data == MO_LE) { 2716 tcg_gen_extr_i128_i64(s1, s2, cmp); 2717 } else { 2718 tcg_gen_extr_i128_i64(s2, s1, cmp); 2719 } 2720 } 2721 } 2722 2723 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2724 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2725 */ 2726 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2727 { 2728 int opc0 = extract32(opc, 0, 1); 2729 int regsize; 2730 2731 if (is_signed) { 2732 regsize = opc0 ? 32 : 64; 2733 } else { 2734 regsize = size == 3 ? 64 : 32; 2735 } 2736 return regsize == 64; 2737 } 2738 2739 /* Load/store exclusive 2740 * 2741 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2742 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2743 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2744 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2745 * 2746 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2747 * L: 0 -> store, 1 -> load 2748 * o2: 0 -> exclusive, 1 -> not 2749 * o1: 0 -> single register, 1 -> register pair 2750 * o0: 1 -> load-acquire/store-release, 0 -> not 2751 */ 2752 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2753 { 2754 int rt = extract32(insn, 0, 5); 2755 int rn = extract32(insn, 5, 5); 2756 int rt2 = extract32(insn, 10, 5); 2757 int rs = extract32(insn, 16, 5); 2758 int is_lasr = extract32(insn, 15, 1); 2759 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2760 int size = extract32(insn, 30, 2); 2761 TCGv_i64 clean_addr; 2762 MemOp memop; 2763 2764 switch (o2_L_o1_o0) { 2765 case 0x0: /* STXR */ 2766 case 0x1: /* STLXR */ 2767 if (rn == 31) { 2768 gen_check_sp_alignment(s); 2769 } 2770 if (is_lasr) { 2771 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2772 } 2773 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2774 return; 2775 2776 case 0x4: /* LDXR */ 2777 case 0x5: /* LDAXR */ 2778 if (rn == 31) { 2779 gen_check_sp_alignment(s); 2780 } 2781 gen_load_exclusive(s, rt, rt2, rn, size, false); 2782 if (is_lasr) { 2783 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2784 } 2785 return; 2786 2787 case 0x8: /* STLLR */ 2788 if (!dc_isar_feature(aa64_lor, s)) { 2789 break; 2790 } 2791 /* StoreLORelease is the same as Store-Release for QEMU. */ 2792 /* fall through */ 2793 case 0x9: /* STLR */ 2794 /* Generate ISS for non-exclusive accesses including LASR. */ 2795 if (rn == 31) { 2796 gen_check_sp_alignment(s); 2797 } 2798 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2799 memop = check_ordered_align(s, rn, 0, true, size); 2800 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2801 true, rn != 31, memop); 2802 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2803 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2804 return; 2805 2806 case 0xc: /* LDLAR */ 2807 if (!dc_isar_feature(aa64_lor, s)) { 2808 break; 2809 } 2810 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2811 /* fall through */ 2812 case 0xd: /* LDAR */ 2813 /* Generate ISS for non-exclusive accesses including LASR. */ 2814 if (rn == 31) { 2815 gen_check_sp_alignment(s); 2816 } 2817 memop = check_ordered_align(s, rn, 0, false, size); 2818 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2819 false, rn != 31, memop); 2820 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2821 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2822 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2823 return; 2824 2825 case 0x2: case 0x3: /* CASP / STXP */ 2826 if (size & 2) { /* STXP / STLXP */ 2827 if (rn == 31) { 2828 gen_check_sp_alignment(s); 2829 } 2830 if (is_lasr) { 2831 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2832 } 2833 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2834 return; 2835 } 2836 if (rt2 == 31 2837 && ((rt | rs) & 1) == 0 2838 && dc_isar_feature(aa64_atomics, s)) { 2839 /* CASP / CASPL */ 2840 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2841 return; 2842 } 2843 break; 2844 2845 case 0x6: case 0x7: /* CASPA / LDXP */ 2846 if (size & 2) { /* LDXP / LDAXP */ 2847 if (rn == 31) { 2848 gen_check_sp_alignment(s); 2849 } 2850 gen_load_exclusive(s, rt, rt2, rn, size, true); 2851 if (is_lasr) { 2852 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2853 } 2854 return; 2855 } 2856 if (rt2 == 31 2857 && ((rt | rs) & 1) == 0 2858 && dc_isar_feature(aa64_atomics, s)) { 2859 /* CASPA / CASPAL */ 2860 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2861 return; 2862 } 2863 break; 2864 2865 case 0xa: /* CAS */ 2866 case 0xb: /* CASL */ 2867 case 0xe: /* CASA */ 2868 case 0xf: /* CASAL */ 2869 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2870 gen_compare_and_swap(s, rs, rt, rn, size); 2871 return; 2872 } 2873 break; 2874 } 2875 unallocated_encoding(s); 2876 } 2877 2878 /* 2879 * Load register (literal) 2880 * 2881 * 31 30 29 27 26 25 24 23 5 4 0 2882 * +-----+-------+---+-----+-------------------+-------+ 2883 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2884 * +-----+-------+---+-----+-------------------+-------+ 2885 * 2886 * V: 1 -> vector (simd/fp) 2887 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2888 * 10-> 32 bit signed, 11 -> prefetch 2889 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2890 */ 2891 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2892 { 2893 int rt = extract32(insn, 0, 5); 2894 int64_t imm = sextract32(insn, 5, 19) << 2; 2895 bool is_vector = extract32(insn, 26, 1); 2896 int opc = extract32(insn, 30, 2); 2897 bool is_signed = false; 2898 int size = 2; 2899 TCGv_i64 tcg_rt, clean_addr; 2900 MemOp memop; 2901 2902 if (is_vector) { 2903 if (opc == 3) { 2904 unallocated_encoding(s); 2905 return; 2906 } 2907 size = 2 + opc; 2908 if (!fp_access_check(s)) { 2909 return; 2910 } 2911 memop = finalize_memop_asimd(s, size); 2912 } else { 2913 if (opc == 3) { 2914 /* PRFM (literal) : prefetch */ 2915 return; 2916 } 2917 size = 2 + extract32(opc, 0, 1); 2918 is_signed = extract32(opc, 1, 1); 2919 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2920 } 2921 2922 tcg_rt = cpu_reg(s, rt); 2923 2924 clean_addr = tcg_temp_new_i64(); 2925 gen_pc_plus_diff(s, clean_addr, imm); 2926 2927 if (is_vector) { 2928 do_fp_ld(s, rt, clean_addr, memop); 2929 } else { 2930 /* Only unsigned 32bit loads target 32bit registers. */ 2931 bool iss_sf = opc != 0; 2932 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2933 } 2934 } 2935 2936 /* 2937 * LDNP (Load Pair - non-temporal hint) 2938 * LDP (Load Pair - non vector) 2939 * LDPSW (Load Pair Signed Word - non vector) 2940 * STNP (Store Pair - non-temporal hint) 2941 * STP (Store Pair - non vector) 2942 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2943 * LDP (Load Pair of SIMD&FP) 2944 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2945 * STP (Store Pair of SIMD&FP) 2946 * 2947 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2948 * +-----+-------+---+---+-------+---+-----------------------------+ 2949 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2950 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2951 * 2952 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2953 * LDPSW/STGP 01 2954 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2955 * V: 0 -> GPR, 1 -> Vector 2956 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2957 * 10 -> signed offset, 11 -> pre-index 2958 * L: 0 -> Store 1 -> Load 2959 * 2960 * Rt, Rt2 = GPR or SIMD registers to be stored 2961 * Rn = general purpose register containing address 2962 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2963 */ 2964 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2965 { 2966 int rt = extract32(insn, 0, 5); 2967 int rn = extract32(insn, 5, 5); 2968 int rt2 = extract32(insn, 10, 5); 2969 uint64_t offset = sextract64(insn, 15, 7); 2970 int index = extract32(insn, 23, 2); 2971 bool is_vector = extract32(insn, 26, 1); 2972 bool is_load = extract32(insn, 22, 1); 2973 int opc = extract32(insn, 30, 2); 2974 bool is_signed = false; 2975 bool postindex = false; 2976 bool wback = false; 2977 bool set_tag = false; 2978 TCGv_i64 clean_addr, dirty_addr; 2979 MemOp mop; 2980 int size; 2981 2982 if (opc == 3) { 2983 unallocated_encoding(s); 2984 return; 2985 } 2986 2987 if (is_vector) { 2988 size = 2 + opc; 2989 } else if (opc == 1 && !is_load) { 2990 /* STGP */ 2991 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2992 unallocated_encoding(s); 2993 return; 2994 } 2995 size = 3; 2996 set_tag = true; 2997 } else { 2998 size = 2 + extract32(opc, 1, 1); 2999 is_signed = extract32(opc, 0, 1); 3000 if (!is_load && is_signed) { 3001 unallocated_encoding(s); 3002 return; 3003 } 3004 } 3005 3006 switch (index) { 3007 case 1: /* post-index */ 3008 postindex = true; 3009 wback = true; 3010 break; 3011 case 0: 3012 /* signed offset with "non-temporal" hint. Since we don't emulate 3013 * caches we don't care about hints to the cache system about 3014 * data access patterns, and handle this identically to plain 3015 * signed offset. 3016 */ 3017 if (is_signed) { 3018 /* There is no non-temporal-hint version of LDPSW */ 3019 unallocated_encoding(s); 3020 return; 3021 } 3022 postindex = false; 3023 break; 3024 case 2: /* signed offset, rn not updated */ 3025 postindex = false; 3026 break; 3027 case 3: /* pre-index */ 3028 postindex = false; 3029 wback = true; 3030 break; 3031 } 3032 3033 if (is_vector && !fp_access_check(s)) { 3034 return; 3035 } 3036 3037 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 3038 3039 if (rn == 31) { 3040 gen_check_sp_alignment(s); 3041 } 3042 3043 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3044 if (!postindex) { 3045 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3046 } 3047 3048 if (set_tag) { 3049 if (!s->ata) { 3050 /* 3051 * TODO: We could rely on the stores below, at least for 3052 * system mode, if we arrange to add MO_ALIGN_16. 3053 */ 3054 gen_helper_stg_stub(cpu_env, dirty_addr); 3055 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3056 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3057 } else { 3058 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3059 } 3060 } 3061 3062 if (is_vector) { 3063 mop = finalize_memop_asimd(s, size); 3064 } else { 3065 mop = finalize_memop(s, size); 3066 } 3067 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3068 (wback || rn != 31) && !set_tag, 3069 2 << size, mop); 3070 3071 if (is_vector) { 3072 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3073 if (is_load) { 3074 do_fp_ld(s, rt, clean_addr, mop); 3075 } else { 3076 do_fp_st(s, rt, clean_addr, mop); 3077 } 3078 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3079 if (is_load) { 3080 do_fp_ld(s, rt2, clean_addr, mop); 3081 } else { 3082 do_fp_st(s, rt2, clean_addr, mop); 3083 } 3084 } else { 3085 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3086 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3087 3088 /* 3089 * We built mop above for the single logical access -- rebuild it 3090 * now for the paired operation. 3091 * 3092 * With LSE2, non-sign-extending pairs are treated atomically if 3093 * aligned, and if unaligned one of the pair will be completely 3094 * within a 16-byte block and that element will be atomic. 3095 * Otherwise each element is separately atomic. 3096 * In all cases, issue one operation with the correct atomicity. 3097 * 3098 * This treats sign-extending loads like zero-extending loads, 3099 * since that reuses the most code below. 3100 */ 3101 mop = size + 1; 3102 if (s->align_mem) { 3103 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3104 } 3105 mop = finalize_memop_pair(s, mop); 3106 3107 if (is_load) { 3108 if (size == 2) { 3109 int o2 = s->be_data == MO_LE ? 32 : 0; 3110 int o1 = o2 ^ 32; 3111 3112 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3113 if (is_signed) { 3114 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3115 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3116 } else { 3117 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3118 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3119 } 3120 } else { 3121 TCGv_i128 tmp = tcg_temp_new_i128(); 3122 3123 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3124 if (s->be_data == MO_LE) { 3125 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3126 } else { 3127 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3128 } 3129 } 3130 } else { 3131 if (size == 2) { 3132 TCGv_i64 tmp = tcg_temp_new_i64(); 3133 3134 if (s->be_data == MO_LE) { 3135 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3136 } else { 3137 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3138 } 3139 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3140 } else { 3141 TCGv_i128 tmp = tcg_temp_new_i128(); 3142 3143 if (s->be_data == MO_LE) { 3144 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3145 } else { 3146 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3147 } 3148 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3149 } 3150 } 3151 } 3152 3153 if (wback) { 3154 if (postindex) { 3155 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3156 } 3157 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3158 } 3159 } 3160 3161 /* 3162 * Load/store (immediate post-indexed) 3163 * Load/store (immediate pre-indexed) 3164 * Load/store (unscaled immediate) 3165 * 3166 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3167 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3168 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3169 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3170 * 3171 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3172 10 -> unprivileged 3173 * V = 0 -> non-vector 3174 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3175 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3176 */ 3177 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3178 int opc, 3179 int size, 3180 int rt, 3181 bool is_vector) 3182 { 3183 int rn = extract32(insn, 5, 5); 3184 int imm9 = sextract32(insn, 12, 9); 3185 int idx = extract32(insn, 10, 2); 3186 bool is_signed = false; 3187 bool is_store = false; 3188 bool is_extended = false; 3189 bool is_unpriv = (idx == 2); 3190 bool iss_valid; 3191 bool post_index; 3192 bool writeback; 3193 int memidx; 3194 MemOp memop; 3195 TCGv_i64 clean_addr, dirty_addr; 3196 3197 if (is_vector) { 3198 size |= (opc & 2) << 1; 3199 if (size > 4 || is_unpriv) { 3200 unallocated_encoding(s); 3201 return; 3202 } 3203 is_store = ((opc & 1) == 0); 3204 if (!fp_access_check(s)) { 3205 return; 3206 } 3207 memop = finalize_memop_asimd(s, size); 3208 } else { 3209 if (size == 3 && opc == 2) { 3210 /* PRFM - prefetch */ 3211 if (idx != 0) { 3212 unallocated_encoding(s); 3213 return; 3214 } 3215 return; 3216 } 3217 if (opc == 3 && size > 1) { 3218 unallocated_encoding(s); 3219 return; 3220 } 3221 is_store = (opc == 0); 3222 is_signed = !is_store && extract32(opc, 1, 1); 3223 is_extended = (size < 3) && extract32(opc, 0, 1); 3224 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3225 } 3226 3227 switch (idx) { 3228 case 0: 3229 case 2: 3230 post_index = false; 3231 writeback = false; 3232 break; 3233 case 1: 3234 post_index = true; 3235 writeback = true; 3236 break; 3237 case 3: 3238 post_index = false; 3239 writeback = true; 3240 break; 3241 default: 3242 g_assert_not_reached(); 3243 } 3244 3245 iss_valid = !is_vector && !writeback; 3246 3247 if (rn == 31) { 3248 gen_check_sp_alignment(s); 3249 } 3250 3251 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3252 if (!post_index) { 3253 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3254 } 3255 3256 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3257 3258 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3259 writeback || rn != 31, 3260 memop, is_unpriv, memidx); 3261 3262 if (is_vector) { 3263 if (is_store) { 3264 do_fp_st(s, rt, clean_addr, memop); 3265 } else { 3266 do_fp_ld(s, rt, clean_addr, memop); 3267 } 3268 } else { 3269 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3270 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3271 3272 if (is_store) { 3273 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3274 iss_valid, rt, iss_sf, false); 3275 } else { 3276 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3277 is_extended, memidx, 3278 iss_valid, rt, iss_sf, false); 3279 } 3280 } 3281 3282 if (writeback) { 3283 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3284 if (post_index) { 3285 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3286 } 3287 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3288 } 3289 } 3290 3291 /* 3292 * Load/store (register offset) 3293 * 3294 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3295 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3296 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3297 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3298 * 3299 * For non-vector: 3300 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3301 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3302 * For vector: 3303 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3304 * opc<0>: 0 -> store, 1 -> load 3305 * V: 1 -> vector/simd 3306 * opt: extend encoding (see DecodeRegExtend) 3307 * S: if S=1 then scale (essentially index by sizeof(size)) 3308 * Rt: register to transfer into/out of 3309 * Rn: address register or SP for base 3310 * Rm: offset register or ZR for offset 3311 */ 3312 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3313 int opc, 3314 int size, 3315 int rt, 3316 bool is_vector) 3317 { 3318 int rn = extract32(insn, 5, 5); 3319 int shift = extract32(insn, 12, 1); 3320 int rm = extract32(insn, 16, 5); 3321 int opt = extract32(insn, 13, 3); 3322 bool is_signed = false; 3323 bool is_store = false; 3324 bool is_extended = false; 3325 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3326 MemOp memop; 3327 3328 if (extract32(opt, 1, 1) == 0) { 3329 unallocated_encoding(s); 3330 return; 3331 } 3332 3333 if (is_vector) { 3334 size |= (opc & 2) << 1; 3335 if (size > 4) { 3336 unallocated_encoding(s); 3337 return; 3338 } 3339 is_store = !extract32(opc, 0, 1); 3340 if (!fp_access_check(s)) { 3341 return; 3342 } 3343 memop = finalize_memop_asimd(s, size); 3344 } else { 3345 if (size == 3 && opc == 2) { 3346 /* PRFM - prefetch */ 3347 return; 3348 } 3349 if (opc == 3 && size > 1) { 3350 unallocated_encoding(s); 3351 return; 3352 } 3353 is_store = (opc == 0); 3354 is_signed = !is_store && extract32(opc, 1, 1); 3355 is_extended = (size < 3) && extract32(opc, 0, 1); 3356 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3357 } 3358 3359 if (rn == 31) { 3360 gen_check_sp_alignment(s); 3361 } 3362 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3363 3364 tcg_rm = read_cpu_reg(s, rm, 1); 3365 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3366 3367 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3368 3369 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3370 3371 if (is_vector) { 3372 if (is_store) { 3373 do_fp_st(s, rt, clean_addr, memop); 3374 } else { 3375 do_fp_ld(s, rt, clean_addr, memop); 3376 } 3377 } else { 3378 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3379 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3380 3381 if (is_store) { 3382 do_gpr_st(s, tcg_rt, clean_addr, memop, 3383 true, rt, iss_sf, false); 3384 } else { 3385 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3386 is_extended, true, rt, iss_sf, false); 3387 } 3388 } 3389 } 3390 3391 /* 3392 * Load/store (unsigned immediate) 3393 * 3394 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3395 * +----+-------+---+-----+-----+------------+-------+------+ 3396 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3397 * +----+-------+---+-----+-----+------------+-------+------+ 3398 * 3399 * For non-vector: 3400 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3401 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3402 * For vector: 3403 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3404 * opc<0>: 0 -> store, 1 -> load 3405 * Rn: base address register (inc SP) 3406 * Rt: target register 3407 */ 3408 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3409 int opc, 3410 int size, 3411 int rt, 3412 bool is_vector) 3413 { 3414 int rn = extract32(insn, 5, 5); 3415 unsigned int imm12 = extract32(insn, 10, 12); 3416 unsigned int offset; 3417 TCGv_i64 clean_addr, dirty_addr; 3418 bool is_store; 3419 bool is_signed = false; 3420 bool is_extended = false; 3421 MemOp memop; 3422 3423 if (is_vector) { 3424 size |= (opc & 2) << 1; 3425 if (size > 4) { 3426 unallocated_encoding(s); 3427 return; 3428 } 3429 is_store = !extract32(opc, 0, 1); 3430 if (!fp_access_check(s)) { 3431 return; 3432 } 3433 memop = finalize_memop_asimd(s, size); 3434 } else { 3435 if (size == 3 && opc == 2) { 3436 /* PRFM - prefetch */ 3437 return; 3438 } 3439 if (opc == 3 && size > 1) { 3440 unallocated_encoding(s); 3441 return; 3442 } 3443 is_store = (opc == 0); 3444 is_signed = !is_store && extract32(opc, 1, 1); 3445 is_extended = (size < 3) && extract32(opc, 0, 1); 3446 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3447 } 3448 3449 if (rn == 31) { 3450 gen_check_sp_alignment(s); 3451 } 3452 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3453 offset = imm12 << size; 3454 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3455 3456 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3457 3458 if (is_vector) { 3459 if (is_store) { 3460 do_fp_st(s, rt, clean_addr, memop); 3461 } else { 3462 do_fp_ld(s, rt, clean_addr, memop); 3463 } 3464 } else { 3465 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3466 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3467 if (is_store) { 3468 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3469 } else { 3470 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3471 is_extended, true, rt, iss_sf, false); 3472 } 3473 } 3474 } 3475 3476 /* Atomic memory operations 3477 * 3478 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3479 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3480 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3481 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3482 * 3483 * Rt: the result register 3484 * Rn: base address or SP 3485 * Rs: the source register for the operation 3486 * V: vector flag (always 0 as of v8.3) 3487 * A: acquire flag 3488 * R: release flag 3489 */ 3490 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3491 int size, int rt, bool is_vector) 3492 { 3493 int rs = extract32(insn, 16, 5); 3494 int rn = extract32(insn, 5, 5); 3495 int o3_opc = extract32(insn, 12, 4); 3496 bool r = extract32(insn, 22, 1); 3497 bool a = extract32(insn, 23, 1); 3498 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3499 AtomicThreeOpFn *fn = NULL; 3500 MemOp mop = size; 3501 3502 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3503 unallocated_encoding(s); 3504 return; 3505 } 3506 switch (o3_opc) { 3507 case 000: /* LDADD */ 3508 fn = tcg_gen_atomic_fetch_add_i64; 3509 break; 3510 case 001: /* LDCLR */ 3511 fn = tcg_gen_atomic_fetch_and_i64; 3512 break; 3513 case 002: /* LDEOR */ 3514 fn = tcg_gen_atomic_fetch_xor_i64; 3515 break; 3516 case 003: /* LDSET */ 3517 fn = tcg_gen_atomic_fetch_or_i64; 3518 break; 3519 case 004: /* LDSMAX */ 3520 fn = tcg_gen_atomic_fetch_smax_i64; 3521 mop |= MO_SIGN; 3522 break; 3523 case 005: /* LDSMIN */ 3524 fn = tcg_gen_atomic_fetch_smin_i64; 3525 mop |= MO_SIGN; 3526 break; 3527 case 006: /* LDUMAX */ 3528 fn = tcg_gen_atomic_fetch_umax_i64; 3529 break; 3530 case 007: /* LDUMIN */ 3531 fn = tcg_gen_atomic_fetch_umin_i64; 3532 break; 3533 case 010: /* SWP */ 3534 fn = tcg_gen_atomic_xchg_i64; 3535 break; 3536 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3537 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3538 rs != 31 || a != 1 || r != 0) { 3539 unallocated_encoding(s); 3540 return; 3541 } 3542 break; 3543 default: 3544 unallocated_encoding(s); 3545 return; 3546 } 3547 3548 if (rn == 31) { 3549 gen_check_sp_alignment(s); 3550 } 3551 3552 mop = check_atomic_align(s, rn, mop); 3553 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3554 3555 if (o3_opc == 014) { 3556 /* 3557 * LDAPR* are a special case because they are a simple load, not a 3558 * fetch-and-do-something op. 3559 * The architectural consistency requirements here are weaker than 3560 * full load-acquire (we only need "load-acquire processor consistent"), 3561 * but we choose to implement them as full LDAQ. 3562 */ 3563 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3564 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3565 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3566 return; 3567 } 3568 3569 tcg_rs = read_cpu_reg(s, rs, true); 3570 tcg_rt = cpu_reg(s, rt); 3571 3572 if (o3_opc == 1) { /* LDCLR */ 3573 tcg_gen_not_i64(tcg_rs, tcg_rs); 3574 } 3575 3576 /* The tcg atomic primitives are all full barriers. Therefore we 3577 * can ignore the Acquire and Release bits of this instruction. 3578 */ 3579 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3580 3581 if (mop & MO_SIGN) { 3582 switch (size) { 3583 case MO_8: 3584 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3585 break; 3586 case MO_16: 3587 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3588 break; 3589 case MO_32: 3590 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3591 break; 3592 case MO_64: 3593 break; 3594 default: 3595 g_assert_not_reached(); 3596 } 3597 } 3598 } 3599 3600 /* 3601 * PAC memory operations 3602 * 3603 * 31 30 27 26 24 22 21 12 11 10 5 0 3604 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3605 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3606 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3607 * 3608 * Rt: the result register 3609 * Rn: base address or SP 3610 * V: vector flag (always 0 as of v8.3) 3611 * M: clear for key DA, set for key DB 3612 * W: pre-indexing flag 3613 * S: sign for imm9. 3614 */ 3615 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3616 int size, int rt, bool is_vector) 3617 { 3618 int rn = extract32(insn, 5, 5); 3619 bool is_wback = extract32(insn, 11, 1); 3620 bool use_key_a = !extract32(insn, 23, 1); 3621 int offset; 3622 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3623 MemOp memop; 3624 3625 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3626 unallocated_encoding(s); 3627 return; 3628 } 3629 3630 if (rn == 31) { 3631 gen_check_sp_alignment(s); 3632 } 3633 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3634 3635 if (s->pauth_active) { 3636 if (use_key_a) { 3637 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3638 tcg_constant_i64(0)); 3639 } else { 3640 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3641 tcg_constant_i64(0)); 3642 } 3643 } 3644 3645 /* Form the 10-bit signed, scaled offset. */ 3646 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3647 offset = sextract32(offset << size, 0, 10 + size); 3648 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3649 3650 memop = finalize_memop(s, size); 3651 3652 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3653 clean_addr = gen_mte_check1(s, dirty_addr, false, 3654 is_wback || rn != 31, memop); 3655 3656 tcg_rt = cpu_reg(s, rt); 3657 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3658 /* extend */ false, /* iss_valid */ !is_wback, 3659 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3660 3661 if (is_wback) { 3662 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3663 } 3664 } 3665 3666 /* 3667 * LDAPR/STLR (unscaled immediate) 3668 * 3669 * 31 30 24 22 21 12 10 5 0 3670 * +------+-------------+-----+---+--------+-----+----+-----+ 3671 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3672 * +------+-------------+-----+---+--------+-----+----+-----+ 3673 * 3674 * Rt: source or destination register 3675 * Rn: base register 3676 * imm9: unscaled immediate offset 3677 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3678 * size: size of load/store 3679 */ 3680 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3681 { 3682 int rt = extract32(insn, 0, 5); 3683 int rn = extract32(insn, 5, 5); 3684 int offset = sextract32(insn, 12, 9); 3685 int opc = extract32(insn, 22, 2); 3686 int size = extract32(insn, 30, 2); 3687 TCGv_i64 clean_addr, dirty_addr; 3688 bool is_store = false; 3689 bool extend = false; 3690 bool iss_sf; 3691 MemOp mop = size; 3692 3693 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3694 unallocated_encoding(s); 3695 return; 3696 } 3697 3698 switch (opc) { 3699 case 0: /* STLURB */ 3700 is_store = true; 3701 break; 3702 case 1: /* LDAPUR* */ 3703 break; 3704 case 2: /* LDAPURS* 64-bit variant */ 3705 if (size == 3) { 3706 unallocated_encoding(s); 3707 return; 3708 } 3709 mop |= MO_SIGN; 3710 break; 3711 case 3: /* LDAPURS* 32-bit variant */ 3712 if (size > 1) { 3713 unallocated_encoding(s); 3714 return; 3715 } 3716 mop |= MO_SIGN; 3717 extend = true; /* zero-extend 32->64 after signed load */ 3718 break; 3719 default: 3720 g_assert_not_reached(); 3721 } 3722 3723 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3724 3725 if (rn == 31) { 3726 gen_check_sp_alignment(s); 3727 } 3728 3729 mop = check_ordered_align(s, rn, offset, is_store, mop); 3730 3731 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3732 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3733 clean_addr = clean_data_tbi(s, dirty_addr); 3734 3735 if (is_store) { 3736 /* Store-Release semantics */ 3737 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3738 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3739 } else { 3740 /* 3741 * Load-AcquirePC semantics; we implement as the slightly more 3742 * restrictive Load-Acquire. 3743 */ 3744 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3745 extend, true, rt, iss_sf, true); 3746 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3747 } 3748 } 3749 3750 /* Load/store register (all forms) */ 3751 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3752 { 3753 int rt = extract32(insn, 0, 5); 3754 int opc = extract32(insn, 22, 2); 3755 bool is_vector = extract32(insn, 26, 1); 3756 int size = extract32(insn, 30, 2); 3757 3758 switch (extract32(insn, 24, 2)) { 3759 case 0: 3760 if (extract32(insn, 21, 1) == 0) { 3761 /* Load/store register (unscaled immediate) 3762 * Load/store immediate pre/post-indexed 3763 * Load/store register unprivileged 3764 */ 3765 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3766 return; 3767 } 3768 switch (extract32(insn, 10, 2)) { 3769 case 0: 3770 disas_ldst_atomic(s, insn, size, rt, is_vector); 3771 return; 3772 case 2: 3773 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3774 return; 3775 default: 3776 disas_ldst_pac(s, insn, size, rt, is_vector); 3777 return; 3778 } 3779 break; 3780 case 1: 3781 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3782 return; 3783 } 3784 unallocated_encoding(s); 3785 } 3786 3787 /* AdvSIMD load/store multiple structures 3788 * 3789 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3790 * +---+---+---------------+---+-------------+--------+------+------+------+ 3791 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3792 * +---+---+---------------+---+-------------+--------+------+------+------+ 3793 * 3794 * AdvSIMD load/store multiple structures (post-indexed) 3795 * 3796 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3797 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3798 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3799 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3800 * 3801 * Rt: first (or only) SIMD&FP register to be transferred 3802 * Rn: base address or SP 3803 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3804 */ 3805 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3806 { 3807 int rt = extract32(insn, 0, 5); 3808 int rn = extract32(insn, 5, 5); 3809 int rm = extract32(insn, 16, 5); 3810 int size = extract32(insn, 10, 2); 3811 int opcode = extract32(insn, 12, 4); 3812 bool is_store = !extract32(insn, 22, 1); 3813 bool is_postidx = extract32(insn, 23, 1); 3814 bool is_q = extract32(insn, 30, 1); 3815 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3816 MemOp endian, align, mop; 3817 3818 int total; /* total bytes */ 3819 int elements; /* elements per vector */ 3820 int rpt; /* num iterations */ 3821 int selem; /* structure elements */ 3822 int r; 3823 3824 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3825 unallocated_encoding(s); 3826 return; 3827 } 3828 3829 if (!is_postidx && rm != 0) { 3830 unallocated_encoding(s); 3831 return; 3832 } 3833 3834 /* From the shared decode logic */ 3835 switch (opcode) { 3836 case 0x0: 3837 rpt = 1; 3838 selem = 4; 3839 break; 3840 case 0x2: 3841 rpt = 4; 3842 selem = 1; 3843 break; 3844 case 0x4: 3845 rpt = 1; 3846 selem = 3; 3847 break; 3848 case 0x6: 3849 rpt = 3; 3850 selem = 1; 3851 break; 3852 case 0x7: 3853 rpt = 1; 3854 selem = 1; 3855 break; 3856 case 0x8: 3857 rpt = 1; 3858 selem = 2; 3859 break; 3860 case 0xa: 3861 rpt = 2; 3862 selem = 1; 3863 break; 3864 default: 3865 unallocated_encoding(s); 3866 return; 3867 } 3868 3869 if (size == 3 && !is_q && selem != 1) { 3870 /* reserved */ 3871 unallocated_encoding(s); 3872 return; 3873 } 3874 3875 if (!fp_access_check(s)) { 3876 return; 3877 } 3878 3879 if (rn == 31) { 3880 gen_check_sp_alignment(s); 3881 } 3882 3883 /* For our purposes, bytes are always little-endian. */ 3884 endian = s->be_data; 3885 if (size == 0) { 3886 endian = MO_LE; 3887 } 3888 3889 total = rpt * selem * (is_q ? 16 : 8); 3890 tcg_rn = cpu_reg_sp(s, rn); 3891 3892 /* 3893 * Issue the MTE check vs the logical repeat count, before we 3894 * promote consecutive little-endian elements below. 3895 */ 3896 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3897 total, finalize_memop_asimd(s, size)); 3898 3899 /* 3900 * Consecutive little-endian elements from a single register 3901 * can be promoted to a larger little-endian operation. 3902 */ 3903 align = MO_ALIGN; 3904 if (selem == 1 && endian == MO_LE) { 3905 align = pow2_align(size); 3906 size = 3; 3907 } 3908 if (!s->align_mem) { 3909 align = 0; 3910 } 3911 mop = endian | size | align; 3912 3913 elements = (is_q ? 16 : 8) >> size; 3914 tcg_ebytes = tcg_constant_i64(1 << size); 3915 for (r = 0; r < rpt; r++) { 3916 int e; 3917 for (e = 0; e < elements; e++) { 3918 int xs; 3919 for (xs = 0; xs < selem; xs++) { 3920 int tt = (rt + r + xs) % 32; 3921 if (is_store) { 3922 do_vec_st(s, tt, e, clean_addr, mop); 3923 } else { 3924 do_vec_ld(s, tt, e, clean_addr, mop); 3925 } 3926 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3927 } 3928 } 3929 } 3930 3931 if (!is_store) { 3932 /* For non-quad operations, setting a slice of the low 3933 * 64 bits of the register clears the high 64 bits (in 3934 * the ARM ARM pseudocode this is implicit in the fact 3935 * that 'rval' is a 64 bit wide variable). 3936 * For quad operations, we might still need to zero the 3937 * high bits of SVE. 3938 */ 3939 for (r = 0; r < rpt * selem; r++) { 3940 int tt = (rt + r) % 32; 3941 clear_vec_high(s, is_q, tt); 3942 } 3943 } 3944 3945 if (is_postidx) { 3946 if (rm == 31) { 3947 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3948 } else { 3949 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3950 } 3951 } 3952 } 3953 3954 /* AdvSIMD load/store single structure 3955 * 3956 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3957 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3958 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3959 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3960 * 3961 * AdvSIMD load/store single structure (post-indexed) 3962 * 3963 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3964 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3965 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3966 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3967 * 3968 * Rt: first (or only) SIMD&FP register to be transferred 3969 * Rn: base address or SP 3970 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3971 * index = encoded in Q:S:size dependent on size 3972 * 3973 * lane_size = encoded in R, opc 3974 * transfer width = encoded in opc, S, size 3975 */ 3976 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3977 { 3978 int rt = extract32(insn, 0, 5); 3979 int rn = extract32(insn, 5, 5); 3980 int rm = extract32(insn, 16, 5); 3981 int size = extract32(insn, 10, 2); 3982 int S = extract32(insn, 12, 1); 3983 int opc = extract32(insn, 13, 3); 3984 int R = extract32(insn, 21, 1); 3985 int is_load = extract32(insn, 22, 1); 3986 int is_postidx = extract32(insn, 23, 1); 3987 int is_q = extract32(insn, 30, 1); 3988 3989 int scale = extract32(opc, 1, 2); 3990 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3991 bool replicate = false; 3992 int index = is_q << 3 | S << 2 | size; 3993 int xs, total; 3994 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3995 MemOp mop; 3996 3997 if (extract32(insn, 31, 1)) { 3998 unallocated_encoding(s); 3999 return; 4000 } 4001 if (!is_postidx && rm != 0) { 4002 unallocated_encoding(s); 4003 return; 4004 } 4005 4006 switch (scale) { 4007 case 3: 4008 if (!is_load || S) { 4009 unallocated_encoding(s); 4010 return; 4011 } 4012 scale = size; 4013 replicate = true; 4014 break; 4015 case 0: 4016 break; 4017 case 1: 4018 if (extract32(size, 0, 1)) { 4019 unallocated_encoding(s); 4020 return; 4021 } 4022 index >>= 1; 4023 break; 4024 case 2: 4025 if (extract32(size, 1, 1)) { 4026 unallocated_encoding(s); 4027 return; 4028 } 4029 if (!extract32(size, 0, 1)) { 4030 index >>= 2; 4031 } else { 4032 if (S) { 4033 unallocated_encoding(s); 4034 return; 4035 } 4036 index >>= 3; 4037 scale = 3; 4038 } 4039 break; 4040 default: 4041 g_assert_not_reached(); 4042 } 4043 4044 if (!fp_access_check(s)) { 4045 return; 4046 } 4047 4048 if (rn == 31) { 4049 gen_check_sp_alignment(s); 4050 } 4051 4052 total = selem << scale; 4053 tcg_rn = cpu_reg_sp(s, rn); 4054 4055 mop = finalize_memop_asimd(s, scale); 4056 4057 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 4058 total, mop); 4059 4060 tcg_ebytes = tcg_constant_i64(1 << scale); 4061 for (xs = 0; xs < selem; xs++) { 4062 if (replicate) { 4063 /* Load and replicate to all elements */ 4064 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4065 4066 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4067 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4068 (is_q + 1) * 8, vec_full_reg_size(s), 4069 tcg_tmp); 4070 } else { 4071 /* Load/store one element per register */ 4072 if (is_load) { 4073 do_vec_ld(s, rt, index, clean_addr, mop); 4074 } else { 4075 do_vec_st(s, rt, index, clean_addr, mop); 4076 } 4077 } 4078 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4079 rt = (rt + 1) % 32; 4080 } 4081 4082 if (is_postidx) { 4083 if (rm == 31) { 4084 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4085 } else { 4086 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4087 } 4088 } 4089 } 4090 4091 /* 4092 * Load/Store memory tags 4093 * 4094 * 31 30 29 24 22 21 12 10 5 0 4095 * +-----+-------------+-----+---+------+-----+------+------+ 4096 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4097 * +-----+-------------+-----+---+------+-----+------+------+ 4098 */ 4099 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4100 { 4101 int rt = extract32(insn, 0, 5); 4102 int rn = extract32(insn, 5, 5); 4103 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4104 int op2 = extract32(insn, 10, 2); 4105 int op1 = extract32(insn, 22, 2); 4106 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4107 int index = 0; 4108 TCGv_i64 addr, clean_addr, tcg_rt; 4109 4110 /* We checked insn bits [29:24,21] in the caller. */ 4111 if (extract32(insn, 30, 2) != 3) { 4112 goto do_unallocated; 4113 } 4114 4115 /* 4116 * @index is a tri-state variable which has 3 states: 4117 * < 0 : post-index, writeback 4118 * = 0 : signed offset 4119 * > 0 : pre-index, writeback 4120 */ 4121 switch (op1) { 4122 case 0: 4123 if (op2 != 0) { 4124 /* STG */ 4125 index = op2 - 2; 4126 } else { 4127 /* STZGM */ 4128 if (s->current_el == 0 || offset != 0) { 4129 goto do_unallocated; 4130 } 4131 is_mult = is_zero = true; 4132 } 4133 break; 4134 case 1: 4135 if (op2 != 0) { 4136 /* STZG */ 4137 is_zero = true; 4138 index = op2 - 2; 4139 } else { 4140 /* LDG */ 4141 is_load = true; 4142 } 4143 break; 4144 case 2: 4145 if (op2 != 0) { 4146 /* ST2G */ 4147 is_pair = true; 4148 index = op2 - 2; 4149 } else { 4150 /* STGM */ 4151 if (s->current_el == 0 || offset != 0) { 4152 goto do_unallocated; 4153 } 4154 is_mult = true; 4155 } 4156 break; 4157 case 3: 4158 if (op2 != 0) { 4159 /* STZ2G */ 4160 is_pair = is_zero = true; 4161 index = op2 - 2; 4162 } else { 4163 /* LDGM */ 4164 if (s->current_el == 0 || offset != 0) { 4165 goto do_unallocated; 4166 } 4167 is_mult = is_load = true; 4168 } 4169 break; 4170 4171 default: 4172 do_unallocated: 4173 unallocated_encoding(s); 4174 return; 4175 } 4176 4177 if (is_mult 4178 ? !dc_isar_feature(aa64_mte, s) 4179 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4180 goto do_unallocated; 4181 } 4182 4183 if (rn == 31) { 4184 gen_check_sp_alignment(s); 4185 } 4186 4187 addr = read_cpu_reg_sp(s, rn, true); 4188 if (index >= 0) { 4189 /* pre-index or signed offset */ 4190 tcg_gen_addi_i64(addr, addr, offset); 4191 } 4192 4193 if (is_mult) { 4194 tcg_rt = cpu_reg(s, rt); 4195 4196 if (is_zero) { 4197 int size = 4 << s->dcz_blocksize; 4198 4199 if (s->ata) { 4200 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4201 } 4202 /* 4203 * The non-tags portion of STZGM is mostly like DC_ZVA, 4204 * except the alignment happens before the access. 4205 */ 4206 clean_addr = clean_data_tbi(s, addr); 4207 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4208 gen_helper_dc_zva(cpu_env, clean_addr); 4209 } else if (s->ata) { 4210 if (is_load) { 4211 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4212 } else { 4213 gen_helper_stgm(cpu_env, addr, tcg_rt); 4214 } 4215 } else { 4216 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4217 int size = 4 << GMID_EL1_BS; 4218 4219 clean_addr = clean_data_tbi(s, addr); 4220 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4221 gen_probe_access(s, clean_addr, acc, size); 4222 4223 if (is_load) { 4224 /* The result tags are zeros. */ 4225 tcg_gen_movi_i64(tcg_rt, 0); 4226 } 4227 } 4228 return; 4229 } 4230 4231 if (is_load) { 4232 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4233 tcg_rt = cpu_reg(s, rt); 4234 if (s->ata) { 4235 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4236 } else { 4237 /* 4238 * Tag access disabled: we must check for aborts on the load 4239 * load from [rn+offset], and then insert a 0 tag into rt. 4240 */ 4241 clean_addr = clean_data_tbi(s, addr); 4242 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4243 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4244 } 4245 } else { 4246 tcg_rt = cpu_reg_sp(s, rt); 4247 if (!s->ata) { 4248 /* 4249 * For STG and ST2G, we need to check alignment and probe memory. 4250 * TODO: For STZG and STZ2G, we could rely on the stores below, 4251 * at least for system mode; user-only won't enforce alignment. 4252 */ 4253 if (is_pair) { 4254 gen_helper_st2g_stub(cpu_env, addr); 4255 } else { 4256 gen_helper_stg_stub(cpu_env, addr); 4257 } 4258 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4259 if (is_pair) { 4260 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4261 } else { 4262 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4263 } 4264 } else { 4265 if (is_pair) { 4266 gen_helper_st2g(cpu_env, addr, tcg_rt); 4267 } else { 4268 gen_helper_stg(cpu_env, addr, tcg_rt); 4269 } 4270 } 4271 } 4272 4273 if (is_zero) { 4274 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4275 TCGv_i64 zero64 = tcg_constant_i64(0); 4276 TCGv_i128 zero128 = tcg_temp_new_i128(); 4277 int mem_index = get_mem_index(s); 4278 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4279 4280 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4281 4282 /* This is 1 or 2 atomic 16-byte operations. */ 4283 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4284 if (is_pair) { 4285 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4286 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4287 } 4288 } 4289 4290 if (index != 0) { 4291 /* pre-index or post-index */ 4292 if (index < 0) { 4293 /* post-index */ 4294 tcg_gen_addi_i64(addr, addr, offset); 4295 } 4296 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4297 } 4298 } 4299 4300 /* Loads and stores */ 4301 static void disas_ldst(DisasContext *s, uint32_t insn) 4302 { 4303 switch (extract32(insn, 24, 6)) { 4304 case 0x08: /* Load/store exclusive */ 4305 disas_ldst_excl(s, insn); 4306 break; 4307 case 0x18: case 0x1c: /* Load register (literal) */ 4308 disas_ld_lit(s, insn); 4309 break; 4310 case 0x28: case 0x29: 4311 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4312 disas_ldst_pair(s, insn); 4313 break; 4314 case 0x38: case 0x39: 4315 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4316 disas_ldst_reg(s, insn); 4317 break; 4318 case 0x0c: /* AdvSIMD load/store multiple structures */ 4319 disas_ldst_multiple_struct(s, insn); 4320 break; 4321 case 0x0d: /* AdvSIMD load/store single structure */ 4322 disas_ldst_single_struct(s, insn); 4323 break; 4324 case 0x19: 4325 if (extract32(insn, 21, 1) != 0) { 4326 disas_ldst_tag(s, insn); 4327 } else if (extract32(insn, 10, 2) == 0) { 4328 disas_ldst_ldapr_stlr(s, insn); 4329 } else { 4330 unallocated_encoding(s); 4331 } 4332 break; 4333 default: 4334 unallocated_encoding(s); 4335 break; 4336 } 4337 } 4338 4339 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4340 4341 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4342 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4343 { 4344 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4345 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4346 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4347 4348 fn(tcg_rd, tcg_rn, tcg_imm); 4349 if (!a->sf) { 4350 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4351 } 4352 return true; 4353 } 4354 4355 /* 4356 * PC-rel. addressing 4357 */ 4358 4359 static bool trans_ADR(DisasContext *s, arg_ri *a) 4360 { 4361 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4362 return true; 4363 } 4364 4365 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4366 { 4367 int64_t offset = (int64_t)a->imm << 12; 4368 4369 /* The page offset is ok for CF_PCREL. */ 4370 offset -= s->pc_curr & 0xfff; 4371 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4372 return true; 4373 } 4374 4375 /* 4376 * Add/subtract (immediate) 4377 */ 4378 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4379 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4380 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4381 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4382 4383 /* 4384 * Add/subtract (immediate, with tags) 4385 */ 4386 4387 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4388 bool sub_op) 4389 { 4390 TCGv_i64 tcg_rn, tcg_rd; 4391 int imm; 4392 4393 imm = a->uimm6 << LOG2_TAG_GRANULE; 4394 if (sub_op) { 4395 imm = -imm; 4396 } 4397 4398 tcg_rn = cpu_reg_sp(s, a->rn); 4399 tcg_rd = cpu_reg_sp(s, a->rd); 4400 4401 if (s->ata) { 4402 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4403 tcg_constant_i32(imm), 4404 tcg_constant_i32(a->uimm4)); 4405 } else { 4406 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4407 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4408 } 4409 return true; 4410 } 4411 4412 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4413 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4414 4415 /* The input should be a value in the bottom e bits (with higher 4416 * bits zero); returns that value replicated into every element 4417 * of size e in a 64 bit integer. 4418 */ 4419 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4420 { 4421 assert(e != 0); 4422 while (e < 64) { 4423 mask |= mask << e; 4424 e *= 2; 4425 } 4426 return mask; 4427 } 4428 4429 /* 4430 * Logical (immediate) 4431 */ 4432 4433 /* 4434 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4435 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4436 * value (ie should cause a guest UNDEF exception), and true if they are 4437 * valid, in which case the decoded bit pattern is written to result. 4438 */ 4439 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4440 unsigned int imms, unsigned int immr) 4441 { 4442 uint64_t mask; 4443 unsigned e, levels, s, r; 4444 int len; 4445 4446 assert(immn < 2 && imms < 64 && immr < 64); 4447 4448 /* The bit patterns we create here are 64 bit patterns which 4449 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4450 * 64 bits each. Each element contains the same value: a run 4451 * of between 1 and e-1 non-zero bits, rotated within the 4452 * element by between 0 and e-1 bits. 4453 * 4454 * The element size and run length are encoded into immn (1 bit) 4455 * and imms (6 bits) as follows: 4456 * 64 bit elements: immn = 1, imms = <length of run - 1> 4457 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4458 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4459 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4460 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4461 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4462 * Notice that immn = 0, imms = 11111x is the only combination 4463 * not covered by one of the above options; this is reserved. 4464 * Further, <length of run - 1> all-ones is a reserved pattern. 4465 * 4466 * In all cases the rotation is by immr % e (and immr is 6 bits). 4467 */ 4468 4469 /* First determine the element size */ 4470 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4471 if (len < 1) { 4472 /* This is the immn == 0, imms == 0x11111x case */ 4473 return false; 4474 } 4475 e = 1 << len; 4476 4477 levels = e - 1; 4478 s = imms & levels; 4479 r = immr & levels; 4480 4481 if (s == levels) { 4482 /* <length of run - 1> mustn't be all-ones. */ 4483 return false; 4484 } 4485 4486 /* Create the value of one element: s+1 set bits rotated 4487 * by r within the element (which is e bits wide)... 4488 */ 4489 mask = MAKE_64BIT_MASK(0, s + 1); 4490 if (r) { 4491 mask = (mask >> r) | (mask << (e - r)); 4492 mask &= MAKE_64BIT_MASK(0, e); 4493 } 4494 /* ...then replicate the element over the whole 64 bit value */ 4495 mask = bitfield_replicate(mask, e); 4496 *result = mask; 4497 return true; 4498 } 4499 4500 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4501 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4502 { 4503 TCGv_i64 tcg_rd, tcg_rn; 4504 uint64_t imm; 4505 4506 /* Some immediate field values are reserved. */ 4507 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4508 extract32(a->dbm, 0, 6), 4509 extract32(a->dbm, 6, 6))) { 4510 return false; 4511 } 4512 if (!a->sf) { 4513 imm &= 0xffffffffull; 4514 } 4515 4516 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4517 tcg_rn = cpu_reg(s, a->rn); 4518 4519 fn(tcg_rd, tcg_rn, imm); 4520 if (set_cc) { 4521 gen_logic_CC(a->sf, tcg_rd); 4522 } 4523 if (!a->sf) { 4524 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4525 } 4526 return true; 4527 } 4528 4529 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4530 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4531 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4532 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4533 4534 /* 4535 * Move wide (immediate) 4536 */ 4537 4538 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4539 { 4540 int pos = a->hw << 4; 4541 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4542 return true; 4543 } 4544 4545 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4546 { 4547 int pos = a->hw << 4; 4548 uint64_t imm = a->imm; 4549 4550 imm = ~(imm << pos); 4551 if (!a->sf) { 4552 imm = (uint32_t)imm; 4553 } 4554 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4555 return true; 4556 } 4557 4558 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4559 { 4560 int pos = a->hw << 4; 4561 TCGv_i64 tcg_rd, tcg_im; 4562 4563 tcg_rd = cpu_reg(s, a->rd); 4564 tcg_im = tcg_constant_i64(a->imm); 4565 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4566 if (!a->sf) { 4567 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4568 } 4569 return true; 4570 } 4571 4572 /* 4573 * Bitfield 4574 */ 4575 4576 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4577 { 4578 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4579 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4580 unsigned int bitsize = a->sf ? 64 : 32; 4581 unsigned int ri = a->immr; 4582 unsigned int si = a->imms; 4583 unsigned int pos, len; 4584 4585 if (si >= ri) { 4586 /* Wd<s-r:0> = Wn<s:r> */ 4587 len = (si - ri) + 1; 4588 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4589 if (!a->sf) { 4590 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4591 } 4592 } else { 4593 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4594 len = si + 1; 4595 pos = (bitsize - ri) & (bitsize - 1); 4596 4597 if (len < ri) { 4598 /* 4599 * Sign extend the destination field from len to fill the 4600 * balance of the word. Let the deposit below insert all 4601 * of those sign bits. 4602 */ 4603 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4604 len = ri; 4605 } 4606 4607 /* 4608 * We start with zero, and we haven't modified any bits outside 4609 * bitsize, therefore no final zero-extension is unneeded for !sf. 4610 */ 4611 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4612 } 4613 return true; 4614 } 4615 4616 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4617 { 4618 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4619 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4620 unsigned int bitsize = a->sf ? 64 : 32; 4621 unsigned int ri = a->immr; 4622 unsigned int si = a->imms; 4623 unsigned int pos, len; 4624 4625 tcg_rd = cpu_reg(s, a->rd); 4626 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4627 4628 if (si >= ri) { 4629 /* Wd<s-r:0> = Wn<s:r> */ 4630 len = (si - ri) + 1; 4631 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4632 } else { 4633 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4634 len = si + 1; 4635 pos = (bitsize - ri) & (bitsize - 1); 4636 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4637 } 4638 return true; 4639 } 4640 4641 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4642 { 4643 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4644 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4645 unsigned int bitsize = a->sf ? 64 : 32; 4646 unsigned int ri = a->immr; 4647 unsigned int si = a->imms; 4648 unsigned int pos, len; 4649 4650 tcg_rd = cpu_reg(s, a->rd); 4651 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4652 4653 if (si >= ri) { 4654 /* Wd<s-r:0> = Wn<s:r> */ 4655 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4656 len = (si - ri) + 1; 4657 pos = 0; 4658 } else { 4659 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4660 len = si + 1; 4661 pos = (bitsize - ri) & (bitsize - 1); 4662 } 4663 4664 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4665 if (!a->sf) { 4666 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4667 } 4668 return true; 4669 } 4670 4671 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4672 { 4673 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4674 4675 tcg_rd = cpu_reg(s, a->rd); 4676 4677 if (unlikely(a->imm == 0)) { 4678 /* 4679 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4680 * so an extract from bit 0 is a special case. 4681 */ 4682 if (a->sf) { 4683 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4684 } else { 4685 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4686 } 4687 } else { 4688 tcg_rm = cpu_reg(s, a->rm); 4689 tcg_rn = cpu_reg(s, a->rn); 4690 4691 if (a->sf) { 4692 /* Specialization to ROR happens in EXTRACT2. */ 4693 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4694 } else { 4695 TCGv_i32 t0 = tcg_temp_new_i32(); 4696 4697 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4698 if (a->rm == a->rn) { 4699 tcg_gen_rotri_i32(t0, t0, a->imm); 4700 } else { 4701 TCGv_i32 t1 = tcg_temp_new_i32(); 4702 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4703 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4704 } 4705 tcg_gen_extu_i32_i64(tcg_rd, t0); 4706 } 4707 } 4708 return true; 4709 } 4710 4711 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4712 * Note that it is the caller's responsibility to ensure that the 4713 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4714 * mandated semantics for out of range shifts. 4715 */ 4716 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4717 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4718 { 4719 switch (shift_type) { 4720 case A64_SHIFT_TYPE_LSL: 4721 tcg_gen_shl_i64(dst, src, shift_amount); 4722 break; 4723 case A64_SHIFT_TYPE_LSR: 4724 tcg_gen_shr_i64(dst, src, shift_amount); 4725 break; 4726 case A64_SHIFT_TYPE_ASR: 4727 if (!sf) { 4728 tcg_gen_ext32s_i64(dst, src); 4729 } 4730 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4731 break; 4732 case A64_SHIFT_TYPE_ROR: 4733 if (sf) { 4734 tcg_gen_rotr_i64(dst, src, shift_amount); 4735 } else { 4736 TCGv_i32 t0, t1; 4737 t0 = tcg_temp_new_i32(); 4738 t1 = tcg_temp_new_i32(); 4739 tcg_gen_extrl_i64_i32(t0, src); 4740 tcg_gen_extrl_i64_i32(t1, shift_amount); 4741 tcg_gen_rotr_i32(t0, t0, t1); 4742 tcg_gen_extu_i32_i64(dst, t0); 4743 } 4744 break; 4745 default: 4746 assert(FALSE); /* all shift types should be handled */ 4747 break; 4748 } 4749 4750 if (!sf) { /* zero extend final result */ 4751 tcg_gen_ext32u_i64(dst, dst); 4752 } 4753 } 4754 4755 /* Shift a TCGv src by immediate, put result in dst. 4756 * The shift amount must be in range (this should always be true as the 4757 * relevant instructions will UNDEF on bad shift immediates). 4758 */ 4759 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4760 enum a64_shift_type shift_type, unsigned int shift_i) 4761 { 4762 assert(shift_i < (sf ? 64 : 32)); 4763 4764 if (shift_i == 0) { 4765 tcg_gen_mov_i64(dst, src); 4766 } else { 4767 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4768 } 4769 } 4770 4771 /* Logical (shifted register) 4772 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4773 * +----+-----+-----------+-------+---+------+--------+------+------+ 4774 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4775 * +----+-----+-----------+-------+---+------+--------+------+------+ 4776 */ 4777 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4778 { 4779 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4780 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4781 4782 sf = extract32(insn, 31, 1); 4783 opc = extract32(insn, 29, 2); 4784 shift_type = extract32(insn, 22, 2); 4785 invert = extract32(insn, 21, 1); 4786 rm = extract32(insn, 16, 5); 4787 shift_amount = extract32(insn, 10, 6); 4788 rn = extract32(insn, 5, 5); 4789 rd = extract32(insn, 0, 5); 4790 4791 if (!sf && (shift_amount & (1 << 5))) { 4792 unallocated_encoding(s); 4793 return; 4794 } 4795 4796 tcg_rd = cpu_reg(s, rd); 4797 4798 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4799 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4800 * register-register MOV and MVN, so it is worth special casing. 4801 */ 4802 tcg_rm = cpu_reg(s, rm); 4803 if (invert) { 4804 tcg_gen_not_i64(tcg_rd, tcg_rm); 4805 if (!sf) { 4806 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4807 } 4808 } else { 4809 if (sf) { 4810 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4811 } else { 4812 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4813 } 4814 } 4815 return; 4816 } 4817 4818 tcg_rm = read_cpu_reg(s, rm, sf); 4819 4820 if (shift_amount) { 4821 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4822 } 4823 4824 tcg_rn = cpu_reg(s, rn); 4825 4826 switch (opc | (invert << 2)) { 4827 case 0: /* AND */ 4828 case 3: /* ANDS */ 4829 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4830 break; 4831 case 1: /* ORR */ 4832 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4833 break; 4834 case 2: /* EOR */ 4835 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4836 break; 4837 case 4: /* BIC */ 4838 case 7: /* BICS */ 4839 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4840 break; 4841 case 5: /* ORN */ 4842 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4843 break; 4844 case 6: /* EON */ 4845 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4846 break; 4847 default: 4848 assert(FALSE); 4849 break; 4850 } 4851 4852 if (!sf) { 4853 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4854 } 4855 4856 if (opc == 3) { 4857 gen_logic_CC(sf, tcg_rd); 4858 } 4859 } 4860 4861 /* 4862 * Add/subtract (extended register) 4863 * 4864 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4865 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4866 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4867 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4868 * 4869 * sf: 0 -> 32bit, 1 -> 64bit 4870 * op: 0 -> add , 1 -> sub 4871 * S: 1 -> set flags 4872 * opt: 00 4873 * option: extension type (see DecodeRegExtend) 4874 * imm3: optional shift to Rm 4875 * 4876 * Rd = Rn + LSL(extend(Rm), amount) 4877 */ 4878 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4879 { 4880 int rd = extract32(insn, 0, 5); 4881 int rn = extract32(insn, 5, 5); 4882 int imm3 = extract32(insn, 10, 3); 4883 int option = extract32(insn, 13, 3); 4884 int rm = extract32(insn, 16, 5); 4885 int opt = extract32(insn, 22, 2); 4886 bool setflags = extract32(insn, 29, 1); 4887 bool sub_op = extract32(insn, 30, 1); 4888 bool sf = extract32(insn, 31, 1); 4889 4890 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4891 TCGv_i64 tcg_rd; 4892 TCGv_i64 tcg_result; 4893 4894 if (imm3 > 4 || opt != 0) { 4895 unallocated_encoding(s); 4896 return; 4897 } 4898 4899 /* non-flag setting ops may use SP */ 4900 if (!setflags) { 4901 tcg_rd = cpu_reg_sp(s, rd); 4902 } else { 4903 tcg_rd = cpu_reg(s, rd); 4904 } 4905 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4906 4907 tcg_rm = read_cpu_reg(s, rm, sf); 4908 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4909 4910 tcg_result = tcg_temp_new_i64(); 4911 4912 if (!setflags) { 4913 if (sub_op) { 4914 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4915 } else { 4916 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4917 } 4918 } else { 4919 if (sub_op) { 4920 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4921 } else { 4922 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4923 } 4924 } 4925 4926 if (sf) { 4927 tcg_gen_mov_i64(tcg_rd, tcg_result); 4928 } else { 4929 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4930 } 4931 } 4932 4933 /* 4934 * Add/subtract (shifted register) 4935 * 4936 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4937 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4938 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4939 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4940 * 4941 * sf: 0 -> 32bit, 1 -> 64bit 4942 * op: 0 -> add , 1 -> sub 4943 * S: 1 -> set flags 4944 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4945 * imm6: Shift amount to apply to Rm before the add/sub 4946 */ 4947 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4948 { 4949 int rd = extract32(insn, 0, 5); 4950 int rn = extract32(insn, 5, 5); 4951 int imm6 = extract32(insn, 10, 6); 4952 int rm = extract32(insn, 16, 5); 4953 int shift_type = extract32(insn, 22, 2); 4954 bool setflags = extract32(insn, 29, 1); 4955 bool sub_op = extract32(insn, 30, 1); 4956 bool sf = extract32(insn, 31, 1); 4957 4958 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4959 TCGv_i64 tcg_rn, tcg_rm; 4960 TCGv_i64 tcg_result; 4961 4962 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4963 unallocated_encoding(s); 4964 return; 4965 } 4966 4967 tcg_rn = read_cpu_reg(s, rn, sf); 4968 tcg_rm = read_cpu_reg(s, rm, sf); 4969 4970 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4971 4972 tcg_result = tcg_temp_new_i64(); 4973 4974 if (!setflags) { 4975 if (sub_op) { 4976 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4977 } else { 4978 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4979 } 4980 } else { 4981 if (sub_op) { 4982 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4983 } else { 4984 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4985 } 4986 } 4987 4988 if (sf) { 4989 tcg_gen_mov_i64(tcg_rd, tcg_result); 4990 } else { 4991 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4992 } 4993 } 4994 4995 /* Data-processing (3 source) 4996 * 4997 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4998 * +--+------+-----------+------+------+----+------+------+------+ 4999 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5000 * +--+------+-----------+------+------+----+------+------+------+ 5001 */ 5002 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5003 { 5004 int rd = extract32(insn, 0, 5); 5005 int rn = extract32(insn, 5, 5); 5006 int ra = extract32(insn, 10, 5); 5007 int rm = extract32(insn, 16, 5); 5008 int op_id = (extract32(insn, 29, 3) << 4) | 5009 (extract32(insn, 21, 3) << 1) | 5010 extract32(insn, 15, 1); 5011 bool sf = extract32(insn, 31, 1); 5012 bool is_sub = extract32(op_id, 0, 1); 5013 bool is_high = extract32(op_id, 2, 1); 5014 bool is_signed = false; 5015 TCGv_i64 tcg_op1; 5016 TCGv_i64 tcg_op2; 5017 TCGv_i64 tcg_tmp; 5018 5019 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5020 switch (op_id) { 5021 case 0x42: /* SMADDL */ 5022 case 0x43: /* SMSUBL */ 5023 case 0x44: /* SMULH */ 5024 is_signed = true; 5025 break; 5026 case 0x0: /* MADD (32bit) */ 5027 case 0x1: /* MSUB (32bit) */ 5028 case 0x40: /* MADD (64bit) */ 5029 case 0x41: /* MSUB (64bit) */ 5030 case 0x4a: /* UMADDL */ 5031 case 0x4b: /* UMSUBL */ 5032 case 0x4c: /* UMULH */ 5033 break; 5034 default: 5035 unallocated_encoding(s); 5036 return; 5037 } 5038 5039 if (is_high) { 5040 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5041 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5042 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5043 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5044 5045 if (is_signed) { 5046 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5047 } else { 5048 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5049 } 5050 return; 5051 } 5052 5053 tcg_op1 = tcg_temp_new_i64(); 5054 tcg_op2 = tcg_temp_new_i64(); 5055 tcg_tmp = tcg_temp_new_i64(); 5056 5057 if (op_id < 0x42) { 5058 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5059 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5060 } else { 5061 if (is_signed) { 5062 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5063 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5064 } else { 5065 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5066 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5067 } 5068 } 5069 5070 if (ra == 31 && !is_sub) { 5071 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5072 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5073 } else { 5074 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5075 if (is_sub) { 5076 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5077 } else { 5078 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5079 } 5080 } 5081 5082 if (!sf) { 5083 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5084 } 5085 } 5086 5087 /* Add/subtract (with carry) 5088 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5089 * +--+--+--+------------------------+------+-------------+------+-----+ 5090 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5091 * +--+--+--+------------------------+------+-------------+------+-----+ 5092 */ 5093 5094 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5095 { 5096 unsigned int sf, op, setflags, rm, rn, rd; 5097 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5098 5099 sf = extract32(insn, 31, 1); 5100 op = extract32(insn, 30, 1); 5101 setflags = extract32(insn, 29, 1); 5102 rm = extract32(insn, 16, 5); 5103 rn = extract32(insn, 5, 5); 5104 rd = extract32(insn, 0, 5); 5105 5106 tcg_rd = cpu_reg(s, rd); 5107 tcg_rn = cpu_reg(s, rn); 5108 5109 if (op) { 5110 tcg_y = tcg_temp_new_i64(); 5111 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5112 } else { 5113 tcg_y = cpu_reg(s, rm); 5114 } 5115 5116 if (setflags) { 5117 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5118 } else { 5119 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5120 } 5121 } 5122 5123 /* 5124 * Rotate right into flags 5125 * 31 30 29 21 15 10 5 4 0 5126 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5127 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5128 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5129 */ 5130 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5131 { 5132 int mask = extract32(insn, 0, 4); 5133 int o2 = extract32(insn, 4, 1); 5134 int rn = extract32(insn, 5, 5); 5135 int imm6 = extract32(insn, 15, 6); 5136 int sf_op_s = extract32(insn, 29, 3); 5137 TCGv_i64 tcg_rn; 5138 TCGv_i32 nzcv; 5139 5140 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5141 unallocated_encoding(s); 5142 return; 5143 } 5144 5145 tcg_rn = read_cpu_reg(s, rn, 1); 5146 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5147 5148 nzcv = tcg_temp_new_i32(); 5149 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5150 5151 if (mask & 8) { /* N */ 5152 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5153 } 5154 if (mask & 4) { /* Z */ 5155 tcg_gen_not_i32(cpu_ZF, nzcv); 5156 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5157 } 5158 if (mask & 2) { /* C */ 5159 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5160 } 5161 if (mask & 1) { /* V */ 5162 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5163 } 5164 } 5165 5166 /* 5167 * Evaluate into flags 5168 * 31 30 29 21 15 14 10 5 4 0 5169 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5170 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5171 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5172 */ 5173 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5174 { 5175 int o3_mask = extract32(insn, 0, 5); 5176 int rn = extract32(insn, 5, 5); 5177 int o2 = extract32(insn, 15, 6); 5178 int sz = extract32(insn, 14, 1); 5179 int sf_op_s = extract32(insn, 29, 3); 5180 TCGv_i32 tmp; 5181 int shift; 5182 5183 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5184 !dc_isar_feature(aa64_condm_4, s)) { 5185 unallocated_encoding(s); 5186 return; 5187 } 5188 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5189 5190 tmp = tcg_temp_new_i32(); 5191 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5192 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5193 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5194 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5195 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5196 } 5197 5198 /* Conditional compare (immediate / register) 5199 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5200 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5201 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5202 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5203 * [1] y [0] [0] 5204 */ 5205 static void disas_cc(DisasContext *s, uint32_t insn) 5206 { 5207 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5208 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5209 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5210 DisasCompare c; 5211 5212 if (!extract32(insn, 29, 1)) { 5213 unallocated_encoding(s); 5214 return; 5215 } 5216 if (insn & (1 << 10 | 1 << 4)) { 5217 unallocated_encoding(s); 5218 return; 5219 } 5220 sf = extract32(insn, 31, 1); 5221 op = extract32(insn, 30, 1); 5222 is_imm = extract32(insn, 11, 1); 5223 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5224 cond = extract32(insn, 12, 4); 5225 rn = extract32(insn, 5, 5); 5226 nzcv = extract32(insn, 0, 4); 5227 5228 /* Set T0 = !COND. */ 5229 tcg_t0 = tcg_temp_new_i32(); 5230 arm_test_cc(&c, cond); 5231 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5232 5233 /* Load the arguments for the new comparison. */ 5234 if (is_imm) { 5235 tcg_y = tcg_temp_new_i64(); 5236 tcg_gen_movi_i64(tcg_y, y); 5237 } else { 5238 tcg_y = cpu_reg(s, y); 5239 } 5240 tcg_rn = cpu_reg(s, rn); 5241 5242 /* Set the flags for the new comparison. */ 5243 tcg_tmp = tcg_temp_new_i64(); 5244 if (op) { 5245 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5246 } else { 5247 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5248 } 5249 5250 /* If COND was false, force the flags to #nzcv. Compute two masks 5251 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5252 * For tcg hosts that support ANDC, we can make do with just T1. 5253 * In either case, allow the tcg optimizer to delete any unused mask. 5254 */ 5255 tcg_t1 = tcg_temp_new_i32(); 5256 tcg_t2 = tcg_temp_new_i32(); 5257 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5258 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5259 5260 if (nzcv & 8) { /* N */ 5261 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5262 } else { 5263 if (TCG_TARGET_HAS_andc_i32) { 5264 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5265 } else { 5266 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5267 } 5268 } 5269 if (nzcv & 4) { /* Z */ 5270 if (TCG_TARGET_HAS_andc_i32) { 5271 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5272 } else { 5273 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5274 } 5275 } else { 5276 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5277 } 5278 if (nzcv & 2) { /* C */ 5279 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5280 } else { 5281 if (TCG_TARGET_HAS_andc_i32) { 5282 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5283 } else { 5284 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5285 } 5286 } 5287 if (nzcv & 1) { /* V */ 5288 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5289 } else { 5290 if (TCG_TARGET_HAS_andc_i32) { 5291 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5292 } else { 5293 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5294 } 5295 } 5296 } 5297 5298 /* Conditional select 5299 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5300 * +----+----+---+-----------------+------+------+-----+------+------+ 5301 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5302 * +----+----+---+-----------------+------+------+-----+------+------+ 5303 */ 5304 static void disas_cond_select(DisasContext *s, uint32_t insn) 5305 { 5306 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5307 TCGv_i64 tcg_rd, zero; 5308 DisasCompare64 c; 5309 5310 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5311 /* S == 1 or op2<1> == 1 */ 5312 unallocated_encoding(s); 5313 return; 5314 } 5315 sf = extract32(insn, 31, 1); 5316 else_inv = extract32(insn, 30, 1); 5317 rm = extract32(insn, 16, 5); 5318 cond = extract32(insn, 12, 4); 5319 else_inc = extract32(insn, 10, 1); 5320 rn = extract32(insn, 5, 5); 5321 rd = extract32(insn, 0, 5); 5322 5323 tcg_rd = cpu_reg(s, rd); 5324 5325 a64_test_cc(&c, cond); 5326 zero = tcg_constant_i64(0); 5327 5328 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5329 /* CSET & CSETM. */ 5330 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5331 if (else_inv) { 5332 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5333 } 5334 } else { 5335 TCGv_i64 t_true = cpu_reg(s, rn); 5336 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5337 if (else_inv && else_inc) { 5338 tcg_gen_neg_i64(t_false, t_false); 5339 } else if (else_inv) { 5340 tcg_gen_not_i64(t_false, t_false); 5341 } else if (else_inc) { 5342 tcg_gen_addi_i64(t_false, t_false, 1); 5343 } 5344 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5345 } 5346 5347 if (!sf) { 5348 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5349 } 5350 } 5351 5352 static void handle_clz(DisasContext *s, unsigned int sf, 5353 unsigned int rn, unsigned int rd) 5354 { 5355 TCGv_i64 tcg_rd, tcg_rn; 5356 tcg_rd = cpu_reg(s, rd); 5357 tcg_rn = cpu_reg(s, rn); 5358 5359 if (sf) { 5360 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5361 } else { 5362 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5363 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5364 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5365 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5366 } 5367 } 5368 5369 static void handle_cls(DisasContext *s, unsigned int sf, 5370 unsigned int rn, unsigned int rd) 5371 { 5372 TCGv_i64 tcg_rd, tcg_rn; 5373 tcg_rd = cpu_reg(s, rd); 5374 tcg_rn = cpu_reg(s, rn); 5375 5376 if (sf) { 5377 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5378 } else { 5379 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5380 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5381 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5382 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5383 } 5384 } 5385 5386 static void handle_rbit(DisasContext *s, unsigned int sf, 5387 unsigned int rn, unsigned int rd) 5388 { 5389 TCGv_i64 tcg_rd, tcg_rn; 5390 tcg_rd = cpu_reg(s, rd); 5391 tcg_rn = cpu_reg(s, rn); 5392 5393 if (sf) { 5394 gen_helper_rbit64(tcg_rd, tcg_rn); 5395 } else { 5396 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5397 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5398 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5399 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5400 } 5401 } 5402 5403 /* REV with sf==1, opcode==3 ("REV64") */ 5404 static void handle_rev64(DisasContext *s, unsigned int sf, 5405 unsigned int rn, unsigned int rd) 5406 { 5407 if (!sf) { 5408 unallocated_encoding(s); 5409 return; 5410 } 5411 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5412 } 5413 5414 /* REV with sf==0, opcode==2 5415 * REV32 (sf==1, opcode==2) 5416 */ 5417 static void handle_rev32(DisasContext *s, unsigned int sf, 5418 unsigned int rn, unsigned int rd) 5419 { 5420 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5421 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5422 5423 if (sf) { 5424 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5425 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5426 } else { 5427 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5428 } 5429 } 5430 5431 /* REV16 (opcode==1) */ 5432 static void handle_rev16(DisasContext *s, unsigned int sf, 5433 unsigned int rn, unsigned int rd) 5434 { 5435 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5436 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5437 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5438 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5439 5440 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5441 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5442 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5443 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5444 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5445 } 5446 5447 /* Data-processing (1 source) 5448 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5449 * +----+---+---+-----------------+---------+--------+------+------+ 5450 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5451 * +----+---+---+-----------------+---------+--------+------+------+ 5452 */ 5453 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5454 { 5455 unsigned int sf, opcode, opcode2, rn, rd; 5456 TCGv_i64 tcg_rd; 5457 5458 if (extract32(insn, 29, 1)) { 5459 unallocated_encoding(s); 5460 return; 5461 } 5462 5463 sf = extract32(insn, 31, 1); 5464 opcode = extract32(insn, 10, 6); 5465 opcode2 = extract32(insn, 16, 5); 5466 rn = extract32(insn, 5, 5); 5467 rd = extract32(insn, 0, 5); 5468 5469 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5470 5471 switch (MAP(sf, opcode2, opcode)) { 5472 case MAP(0, 0x00, 0x00): /* RBIT */ 5473 case MAP(1, 0x00, 0x00): 5474 handle_rbit(s, sf, rn, rd); 5475 break; 5476 case MAP(0, 0x00, 0x01): /* REV16 */ 5477 case MAP(1, 0x00, 0x01): 5478 handle_rev16(s, sf, rn, rd); 5479 break; 5480 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5481 case MAP(1, 0x00, 0x02): 5482 handle_rev32(s, sf, rn, rd); 5483 break; 5484 case MAP(1, 0x00, 0x03): /* REV64 */ 5485 handle_rev64(s, sf, rn, rd); 5486 break; 5487 case MAP(0, 0x00, 0x04): /* CLZ */ 5488 case MAP(1, 0x00, 0x04): 5489 handle_clz(s, sf, rn, rd); 5490 break; 5491 case MAP(0, 0x00, 0x05): /* CLS */ 5492 case MAP(1, 0x00, 0x05): 5493 handle_cls(s, sf, rn, rd); 5494 break; 5495 case MAP(1, 0x01, 0x00): /* PACIA */ 5496 if (s->pauth_active) { 5497 tcg_rd = cpu_reg(s, rd); 5498 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5499 } else if (!dc_isar_feature(aa64_pauth, s)) { 5500 goto do_unallocated; 5501 } 5502 break; 5503 case MAP(1, 0x01, 0x01): /* PACIB */ 5504 if (s->pauth_active) { 5505 tcg_rd = cpu_reg(s, rd); 5506 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5507 } else if (!dc_isar_feature(aa64_pauth, s)) { 5508 goto do_unallocated; 5509 } 5510 break; 5511 case MAP(1, 0x01, 0x02): /* PACDA */ 5512 if (s->pauth_active) { 5513 tcg_rd = cpu_reg(s, rd); 5514 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5515 } else if (!dc_isar_feature(aa64_pauth, s)) { 5516 goto do_unallocated; 5517 } 5518 break; 5519 case MAP(1, 0x01, 0x03): /* PACDB */ 5520 if (s->pauth_active) { 5521 tcg_rd = cpu_reg(s, rd); 5522 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5523 } else if (!dc_isar_feature(aa64_pauth, s)) { 5524 goto do_unallocated; 5525 } 5526 break; 5527 case MAP(1, 0x01, 0x04): /* AUTIA */ 5528 if (s->pauth_active) { 5529 tcg_rd = cpu_reg(s, rd); 5530 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5531 } else if (!dc_isar_feature(aa64_pauth, s)) { 5532 goto do_unallocated; 5533 } 5534 break; 5535 case MAP(1, 0x01, 0x05): /* AUTIB */ 5536 if (s->pauth_active) { 5537 tcg_rd = cpu_reg(s, rd); 5538 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5539 } else if (!dc_isar_feature(aa64_pauth, s)) { 5540 goto do_unallocated; 5541 } 5542 break; 5543 case MAP(1, 0x01, 0x06): /* AUTDA */ 5544 if (s->pauth_active) { 5545 tcg_rd = cpu_reg(s, rd); 5546 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5547 } else if (!dc_isar_feature(aa64_pauth, s)) { 5548 goto do_unallocated; 5549 } 5550 break; 5551 case MAP(1, 0x01, 0x07): /* AUTDB */ 5552 if (s->pauth_active) { 5553 tcg_rd = cpu_reg(s, rd); 5554 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5555 } else if (!dc_isar_feature(aa64_pauth, s)) { 5556 goto do_unallocated; 5557 } 5558 break; 5559 case MAP(1, 0x01, 0x08): /* PACIZA */ 5560 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5561 goto do_unallocated; 5562 } else if (s->pauth_active) { 5563 tcg_rd = cpu_reg(s, rd); 5564 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5565 } 5566 break; 5567 case MAP(1, 0x01, 0x09): /* PACIZB */ 5568 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5569 goto do_unallocated; 5570 } else if (s->pauth_active) { 5571 tcg_rd = cpu_reg(s, rd); 5572 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5573 } 5574 break; 5575 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5576 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5577 goto do_unallocated; 5578 } else if (s->pauth_active) { 5579 tcg_rd = cpu_reg(s, rd); 5580 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5581 } 5582 break; 5583 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5584 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5585 goto do_unallocated; 5586 } else if (s->pauth_active) { 5587 tcg_rd = cpu_reg(s, rd); 5588 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5589 } 5590 break; 5591 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5592 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5593 goto do_unallocated; 5594 } else if (s->pauth_active) { 5595 tcg_rd = cpu_reg(s, rd); 5596 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5597 } 5598 break; 5599 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5600 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5601 goto do_unallocated; 5602 } else if (s->pauth_active) { 5603 tcg_rd = cpu_reg(s, rd); 5604 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5605 } 5606 break; 5607 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5608 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5609 goto do_unallocated; 5610 } else if (s->pauth_active) { 5611 tcg_rd = cpu_reg(s, rd); 5612 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5613 } 5614 break; 5615 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5616 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5617 goto do_unallocated; 5618 } else if (s->pauth_active) { 5619 tcg_rd = cpu_reg(s, rd); 5620 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5621 } 5622 break; 5623 case MAP(1, 0x01, 0x10): /* XPACI */ 5624 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5625 goto do_unallocated; 5626 } else if (s->pauth_active) { 5627 tcg_rd = cpu_reg(s, rd); 5628 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5629 } 5630 break; 5631 case MAP(1, 0x01, 0x11): /* XPACD */ 5632 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5633 goto do_unallocated; 5634 } else if (s->pauth_active) { 5635 tcg_rd = cpu_reg(s, rd); 5636 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5637 } 5638 break; 5639 default: 5640 do_unallocated: 5641 unallocated_encoding(s); 5642 break; 5643 } 5644 5645 #undef MAP 5646 } 5647 5648 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5649 unsigned int rm, unsigned int rn, unsigned int rd) 5650 { 5651 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5652 tcg_rd = cpu_reg(s, rd); 5653 5654 if (!sf && is_signed) { 5655 tcg_n = tcg_temp_new_i64(); 5656 tcg_m = tcg_temp_new_i64(); 5657 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5658 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5659 } else { 5660 tcg_n = read_cpu_reg(s, rn, sf); 5661 tcg_m = read_cpu_reg(s, rm, sf); 5662 } 5663 5664 if (is_signed) { 5665 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5666 } else { 5667 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5668 } 5669 5670 if (!sf) { /* zero extend final result */ 5671 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5672 } 5673 } 5674 5675 /* LSLV, LSRV, ASRV, RORV */ 5676 static void handle_shift_reg(DisasContext *s, 5677 enum a64_shift_type shift_type, unsigned int sf, 5678 unsigned int rm, unsigned int rn, unsigned int rd) 5679 { 5680 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5681 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5682 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5683 5684 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5685 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5686 } 5687 5688 /* CRC32[BHWX], CRC32C[BHWX] */ 5689 static void handle_crc32(DisasContext *s, 5690 unsigned int sf, unsigned int sz, bool crc32c, 5691 unsigned int rm, unsigned int rn, unsigned int rd) 5692 { 5693 TCGv_i64 tcg_acc, tcg_val; 5694 TCGv_i32 tcg_bytes; 5695 5696 if (!dc_isar_feature(aa64_crc32, s) 5697 || (sf == 1 && sz != 3) 5698 || (sf == 0 && sz == 3)) { 5699 unallocated_encoding(s); 5700 return; 5701 } 5702 5703 if (sz == 3) { 5704 tcg_val = cpu_reg(s, rm); 5705 } else { 5706 uint64_t mask; 5707 switch (sz) { 5708 case 0: 5709 mask = 0xFF; 5710 break; 5711 case 1: 5712 mask = 0xFFFF; 5713 break; 5714 case 2: 5715 mask = 0xFFFFFFFF; 5716 break; 5717 default: 5718 g_assert_not_reached(); 5719 } 5720 tcg_val = tcg_temp_new_i64(); 5721 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5722 } 5723 5724 tcg_acc = cpu_reg(s, rn); 5725 tcg_bytes = tcg_constant_i32(1 << sz); 5726 5727 if (crc32c) { 5728 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5729 } else { 5730 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5731 } 5732 } 5733 5734 /* Data-processing (2 source) 5735 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5736 * +----+---+---+-----------------+------+--------+------+------+ 5737 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5738 * +----+---+---+-----------------+------+--------+------+------+ 5739 */ 5740 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5741 { 5742 unsigned int sf, rm, opcode, rn, rd, setflag; 5743 sf = extract32(insn, 31, 1); 5744 setflag = extract32(insn, 29, 1); 5745 rm = extract32(insn, 16, 5); 5746 opcode = extract32(insn, 10, 6); 5747 rn = extract32(insn, 5, 5); 5748 rd = extract32(insn, 0, 5); 5749 5750 if (setflag && opcode != 0) { 5751 unallocated_encoding(s); 5752 return; 5753 } 5754 5755 switch (opcode) { 5756 case 0: /* SUBP(S) */ 5757 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5758 goto do_unallocated; 5759 } else { 5760 TCGv_i64 tcg_n, tcg_m, tcg_d; 5761 5762 tcg_n = read_cpu_reg_sp(s, rn, true); 5763 tcg_m = read_cpu_reg_sp(s, rm, true); 5764 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5765 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5766 tcg_d = cpu_reg(s, rd); 5767 5768 if (setflag) { 5769 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5770 } else { 5771 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5772 } 5773 } 5774 break; 5775 case 2: /* UDIV */ 5776 handle_div(s, false, sf, rm, rn, rd); 5777 break; 5778 case 3: /* SDIV */ 5779 handle_div(s, true, sf, rm, rn, rd); 5780 break; 5781 case 4: /* IRG */ 5782 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5783 goto do_unallocated; 5784 } 5785 if (s->ata) { 5786 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5787 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5788 } else { 5789 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5790 cpu_reg_sp(s, rn)); 5791 } 5792 break; 5793 case 5: /* GMI */ 5794 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5795 goto do_unallocated; 5796 } else { 5797 TCGv_i64 t = tcg_temp_new_i64(); 5798 5799 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5800 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5801 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5802 } 5803 break; 5804 case 8: /* LSLV */ 5805 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5806 break; 5807 case 9: /* LSRV */ 5808 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5809 break; 5810 case 10: /* ASRV */ 5811 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5812 break; 5813 case 11: /* RORV */ 5814 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5815 break; 5816 case 12: /* PACGA */ 5817 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5818 goto do_unallocated; 5819 } 5820 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5821 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5822 break; 5823 case 16: 5824 case 17: 5825 case 18: 5826 case 19: 5827 case 20: 5828 case 21: 5829 case 22: 5830 case 23: /* CRC32 */ 5831 { 5832 int sz = extract32(opcode, 0, 2); 5833 bool crc32c = extract32(opcode, 2, 1); 5834 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5835 break; 5836 } 5837 default: 5838 do_unallocated: 5839 unallocated_encoding(s); 5840 break; 5841 } 5842 } 5843 5844 /* 5845 * Data processing - register 5846 * 31 30 29 28 25 21 20 16 10 0 5847 * +--+---+--+---+-------+-----+-------+-------+---------+ 5848 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5849 * +--+---+--+---+-------+-----+-------+-------+---------+ 5850 */ 5851 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5852 { 5853 int op0 = extract32(insn, 30, 1); 5854 int op1 = extract32(insn, 28, 1); 5855 int op2 = extract32(insn, 21, 4); 5856 int op3 = extract32(insn, 10, 6); 5857 5858 if (!op1) { 5859 if (op2 & 8) { 5860 if (op2 & 1) { 5861 /* Add/sub (extended register) */ 5862 disas_add_sub_ext_reg(s, insn); 5863 } else { 5864 /* Add/sub (shifted register) */ 5865 disas_add_sub_reg(s, insn); 5866 } 5867 } else { 5868 /* Logical (shifted register) */ 5869 disas_logic_reg(s, insn); 5870 } 5871 return; 5872 } 5873 5874 switch (op2) { 5875 case 0x0: 5876 switch (op3) { 5877 case 0x00: /* Add/subtract (with carry) */ 5878 disas_adc_sbc(s, insn); 5879 break; 5880 5881 case 0x01: /* Rotate right into flags */ 5882 case 0x21: 5883 disas_rotate_right_into_flags(s, insn); 5884 break; 5885 5886 case 0x02: /* Evaluate into flags */ 5887 case 0x12: 5888 case 0x22: 5889 case 0x32: 5890 disas_evaluate_into_flags(s, insn); 5891 break; 5892 5893 default: 5894 goto do_unallocated; 5895 } 5896 break; 5897 5898 case 0x2: /* Conditional compare */ 5899 disas_cc(s, insn); /* both imm and reg forms */ 5900 break; 5901 5902 case 0x4: /* Conditional select */ 5903 disas_cond_select(s, insn); 5904 break; 5905 5906 case 0x6: /* Data-processing */ 5907 if (op0) { /* (1 source) */ 5908 disas_data_proc_1src(s, insn); 5909 } else { /* (2 source) */ 5910 disas_data_proc_2src(s, insn); 5911 } 5912 break; 5913 case 0x8 ... 0xf: /* (3 source) */ 5914 disas_data_proc_3src(s, insn); 5915 break; 5916 5917 default: 5918 do_unallocated: 5919 unallocated_encoding(s); 5920 break; 5921 } 5922 } 5923 5924 static void handle_fp_compare(DisasContext *s, int size, 5925 unsigned int rn, unsigned int rm, 5926 bool cmp_with_zero, bool signal_all_nans) 5927 { 5928 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5929 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5930 5931 if (size == MO_64) { 5932 TCGv_i64 tcg_vn, tcg_vm; 5933 5934 tcg_vn = read_fp_dreg(s, rn); 5935 if (cmp_with_zero) { 5936 tcg_vm = tcg_constant_i64(0); 5937 } else { 5938 tcg_vm = read_fp_dreg(s, rm); 5939 } 5940 if (signal_all_nans) { 5941 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5942 } else { 5943 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5944 } 5945 } else { 5946 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5947 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5948 5949 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5950 if (cmp_with_zero) { 5951 tcg_gen_movi_i32(tcg_vm, 0); 5952 } else { 5953 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5954 } 5955 5956 switch (size) { 5957 case MO_32: 5958 if (signal_all_nans) { 5959 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5960 } else { 5961 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5962 } 5963 break; 5964 case MO_16: 5965 if (signal_all_nans) { 5966 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5967 } else { 5968 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5969 } 5970 break; 5971 default: 5972 g_assert_not_reached(); 5973 } 5974 } 5975 5976 gen_set_nzcv(tcg_flags); 5977 } 5978 5979 /* Floating point compare 5980 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5981 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5982 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5983 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5984 */ 5985 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5986 { 5987 unsigned int mos, type, rm, op, rn, opc, op2r; 5988 int size; 5989 5990 mos = extract32(insn, 29, 3); 5991 type = extract32(insn, 22, 2); 5992 rm = extract32(insn, 16, 5); 5993 op = extract32(insn, 14, 2); 5994 rn = extract32(insn, 5, 5); 5995 opc = extract32(insn, 3, 2); 5996 op2r = extract32(insn, 0, 3); 5997 5998 if (mos || op || op2r) { 5999 unallocated_encoding(s); 6000 return; 6001 } 6002 6003 switch (type) { 6004 case 0: 6005 size = MO_32; 6006 break; 6007 case 1: 6008 size = MO_64; 6009 break; 6010 case 3: 6011 size = MO_16; 6012 if (dc_isar_feature(aa64_fp16, s)) { 6013 break; 6014 } 6015 /* fallthru */ 6016 default: 6017 unallocated_encoding(s); 6018 return; 6019 } 6020 6021 if (!fp_access_check(s)) { 6022 return; 6023 } 6024 6025 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6026 } 6027 6028 /* Floating point conditional compare 6029 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6030 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6031 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6032 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6033 */ 6034 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6035 { 6036 unsigned int mos, type, rm, cond, rn, op, nzcv; 6037 TCGLabel *label_continue = NULL; 6038 int size; 6039 6040 mos = extract32(insn, 29, 3); 6041 type = extract32(insn, 22, 2); 6042 rm = extract32(insn, 16, 5); 6043 cond = extract32(insn, 12, 4); 6044 rn = extract32(insn, 5, 5); 6045 op = extract32(insn, 4, 1); 6046 nzcv = extract32(insn, 0, 4); 6047 6048 if (mos) { 6049 unallocated_encoding(s); 6050 return; 6051 } 6052 6053 switch (type) { 6054 case 0: 6055 size = MO_32; 6056 break; 6057 case 1: 6058 size = MO_64; 6059 break; 6060 case 3: 6061 size = MO_16; 6062 if (dc_isar_feature(aa64_fp16, s)) { 6063 break; 6064 } 6065 /* fallthru */ 6066 default: 6067 unallocated_encoding(s); 6068 return; 6069 } 6070 6071 if (!fp_access_check(s)) { 6072 return; 6073 } 6074 6075 if (cond < 0x0e) { /* not always */ 6076 TCGLabel *label_match = gen_new_label(); 6077 label_continue = gen_new_label(); 6078 arm_gen_test_cc(cond, label_match); 6079 /* nomatch: */ 6080 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6081 tcg_gen_br(label_continue); 6082 gen_set_label(label_match); 6083 } 6084 6085 handle_fp_compare(s, size, rn, rm, false, op); 6086 6087 if (cond < 0x0e) { 6088 gen_set_label(label_continue); 6089 } 6090 } 6091 6092 /* Floating point conditional select 6093 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6094 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6095 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6096 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6097 */ 6098 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6099 { 6100 unsigned int mos, type, rm, cond, rn, rd; 6101 TCGv_i64 t_true, t_false; 6102 DisasCompare64 c; 6103 MemOp sz; 6104 6105 mos = extract32(insn, 29, 3); 6106 type = extract32(insn, 22, 2); 6107 rm = extract32(insn, 16, 5); 6108 cond = extract32(insn, 12, 4); 6109 rn = extract32(insn, 5, 5); 6110 rd = extract32(insn, 0, 5); 6111 6112 if (mos) { 6113 unallocated_encoding(s); 6114 return; 6115 } 6116 6117 switch (type) { 6118 case 0: 6119 sz = MO_32; 6120 break; 6121 case 1: 6122 sz = MO_64; 6123 break; 6124 case 3: 6125 sz = MO_16; 6126 if (dc_isar_feature(aa64_fp16, s)) { 6127 break; 6128 } 6129 /* fallthru */ 6130 default: 6131 unallocated_encoding(s); 6132 return; 6133 } 6134 6135 if (!fp_access_check(s)) { 6136 return; 6137 } 6138 6139 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6140 t_true = tcg_temp_new_i64(); 6141 t_false = tcg_temp_new_i64(); 6142 read_vec_element(s, t_true, rn, 0, sz); 6143 read_vec_element(s, t_false, rm, 0, sz); 6144 6145 a64_test_cc(&c, cond); 6146 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6147 t_true, t_false); 6148 6149 /* Note that sregs & hregs write back zeros to the high bits, 6150 and we've already done the zero-extension. */ 6151 write_fp_dreg(s, rd, t_true); 6152 } 6153 6154 /* Floating-point data-processing (1 source) - half precision */ 6155 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6156 { 6157 TCGv_ptr fpst = NULL; 6158 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6159 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6160 6161 switch (opcode) { 6162 case 0x0: /* FMOV */ 6163 tcg_gen_mov_i32(tcg_res, tcg_op); 6164 break; 6165 case 0x1: /* FABS */ 6166 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6167 break; 6168 case 0x2: /* FNEG */ 6169 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6170 break; 6171 case 0x3: /* FSQRT */ 6172 fpst = fpstatus_ptr(FPST_FPCR_F16); 6173 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6174 break; 6175 case 0x8: /* FRINTN */ 6176 case 0x9: /* FRINTP */ 6177 case 0xa: /* FRINTM */ 6178 case 0xb: /* FRINTZ */ 6179 case 0xc: /* FRINTA */ 6180 { 6181 TCGv_i32 tcg_rmode; 6182 6183 fpst = fpstatus_ptr(FPST_FPCR_F16); 6184 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6185 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6186 gen_restore_rmode(tcg_rmode, fpst); 6187 break; 6188 } 6189 case 0xe: /* FRINTX */ 6190 fpst = fpstatus_ptr(FPST_FPCR_F16); 6191 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6192 break; 6193 case 0xf: /* FRINTI */ 6194 fpst = fpstatus_ptr(FPST_FPCR_F16); 6195 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6196 break; 6197 default: 6198 g_assert_not_reached(); 6199 } 6200 6201 write_fp_sreg(s, rd, tcg_res); 6202 } 6203 6204 /* Floating-point data-processing (1 source) - single precision */ 6205 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6206 { 6207 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6208 TCGv_i32 tcg_op, tcg_res; 6209 TCGv_ptr fpst; 6210 int rmode = -1; 6211 6212 tcg_op = read_fp_sreg(s, rn); 6213 tcg_res = tcg_temp_new_i32(); 6214 6215 switch (opcode) { 6216 case 0x0: /* FMOV */ 6217 tcg_gen_mov_i32(tcg_res, tcg_op); 6218 goto done; 6219 case 0x1: /* FABS */ 6220 gen_helper_vfp_abss(tcg_res, tcg_op); 6221 goto done; 6222 case 0x2: /* FNEG */ 6223 gen_helper_vfp_negs(tcg_res, tcg_op); 6224 goto done; 6225 case 0x3: /* FSQRT */ 6226 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6227 goto done; 6228 case 0x6: /* BFCVT */ 6229 gen_fpst = gen_helper_bfcvt; 6230 break; 6231 case 0x8: /* FRINTN */ 6232 case 0x9: /* FRINTP */ 6233 case 0xa: /* FRINTM */ 6234 case 0xb: /* FRINTZ */ 6235 case 0xc: /* FRINTA */ 6236 rmode = opcode & 7; 6237 gen_fpst = gen_helper_rints; 6238 break; 6239 case 0xe: /* FRINTX */ 6240 gen_fpst = gen_helper_rints_exact; 6241 break; 6242 case 0xf: /* FRINTI */ 6243 gen_fpst = gen_helper_rints; 6244 break; 6245 case 0x10: /* FRINT32Z */ 6246 rmode = FPROUNDING_ZERO; 6247 gen_fpst = gen_helper_frint32_s; 6248 break; 6249 case 0x11: /* FRINT32X */ 6250 gen_fpst = gen_helper_frint32_s; 6251 break; 6252 case 0x12: /* FRINT64Z */ 6253 rmode = FPROUNDING_ZERO; 6254 gen_fpst = gen_helper_frint64_s; 6255 break; 6256 case 0x13: /* FRINT64X */ 6257 gen_fpst = gen_helper_frint64_s; 6258 break; 6259 default: 6260 g_assert_not_reached(); 6261 } 6262 6263 fpst = fpstatus_ptr(FPST_FPCR); 6264 if (rmode >= 0) { 6265 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6266 gen_fpst(tcg_res, tcg_op, fpst); 6267 gen_restore_rmode(tcg_rmode, fpst); 6268 } else { 6269 gen_fpst(tcg_res, tcg_op, fpst); 6270 } 6271 6272 done: 6273 write_fp_sreg(s, rd, tcg_res); 6274 } 6275 6276 /* Floating-point data-processing (1 source) - double precision */ 6277 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6278 { 6279 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6280 TCGv_i64 tcg_op, tcg_res; 6281 TCGv_ptr fpst; 6282 int rmode = -1; 6283 6284 switch (opcode) { 6285 case 0x0: /* FMOV */ 6286 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6287 return; 6288 } 6289 6290 tcg_op = read_fp_dreg(s, rn); 6291 tcg_res = tcg_temp_new_i64(); 6292 6293 switch (opcode) { 6294 case 0x1: /* FABS */ 6295 gen_helper_vfp_absd(tcg_res, tcg_op); 6296 goto done; 6297 case 0x2: /* FNEG */ 6298 gen_helper_vfp_negd(tcg_res, tcg_op); 6299 goto done; 6300 case 0x3: /* FSQRT */ 6301 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6302 goto done; 6303 case 0x8: /* FRINTN */ 6304 case 0x9: /* FRINTP */ 6305 case 0xa: /* FRINTM */ 6306 case 0xb: /* FRINTZ */ 6307 case 0xc: /* FRINTA */ 6308 rmode = opcode & 7; 6309 gen_fpst = gen_helper_rintd; 6310 break; 6311 case 0xe: /* FRINTX */ 6312 gen_fpst = gen_helper_rintd_exact; 6313 break; 6314 case 0xf: /* FRINTI */ 6315 gen_fpst = gen_helper_rintd; 6316 break; 6317 case 0x10: /* FRINT32Z */ 6318 rmode = FPROUNDING_ZERO; 6319 gen_fpst = gen_helper_frint32_d; 6320 break; 6321 case 0x11: /* FRINT32X */ 6322 gen_fpst = gen_helper_frint32_d; 6323 break; 6324 case 0x12: /* FRINT64Z */ 6325 rmode = FPROUNDING_ZERO; 6326 gen_fpst = gen_helper_frint64_d; 6327 break; 6328 case 0x13: /* FRINT64X */ 6329 gen_fpst = gen_helper_frint64_d; 6330 break; 6331 default: 6332 g_assert_not_reached(); 6333 } 6334 6335 fpst = fpstatus_ptr(FPST_FPCR); 6336 if (rmode >= 0) { 6337 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6338 gen_fpst(tcg_res, tcg_op, fpst); 6339 gen_restore_rmode(tcg_rmode, fpst); 6340 } else { 6341 gen_fpst(tcg_res, tcg_op, fpst); 6342 } 6343 6344 done: 6345 write_fp_dreg(s, rd, tcg_res); 6346 } 6347 6348 static void handle_fp_fcvt(DisasContext *s, int opcode, 6349 int rd, int rn, int dtype, int ntype) 6350 { 6351 switch (ntype) { 6352 case 0x0: 6353 { 6354 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6355 if (dtype == 1) { 6356 /* Single to double */ 6357 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6358 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6359 write_fp_dreg(s, rd, tcg_rd); 6360 } else { 6361 /* Single to half */ 6362 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6363 TCGv_i32 ahp = get_ahp_flag(); 6364 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6365 6366 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6367 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6368 write_fp_sreg(s, rd, tcg_rd); 6369 } 6370 break; 6371 } 6372 case 0x1: 6373 { 6374 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6375 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6376 if (dtype == 0) { 6377 /* Double to single */ 6378 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6379 } else { 6380 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6381 TCGv_i32 ahp = get_ahp_flag(); 6382 /* Double to half */ 6383 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6384 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6385 } 6386 write_fp_sreg(s, rd, tcg_rd); 6387 break; 6388 } 6389 case 0x3: 6390 { 6391 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6392 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6393 TCGv_i32 tcg_ahp = get_ahp_flag(); 6394 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6395 if (dtype == 0) { 6396 /* Half to single */ 6397 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6398 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6399 write_fp_sreg(s, rd, tcg_rd); 6400 } else { 6401 /* Half to double */ 6402 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6403 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6404 write_fp_dreg(s, rd, tcg_rd); 6405 } 6406 break; 6407 } 6408 default: 6409 g_assert_not_reached(); 6410 } 6411 } 6412 6413 /* Floating point data-processing (1 source) 6414 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6415 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6416 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6417 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6418 */ 6419 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6420 { 6421 int mos = extract32(insn, 29, 3); 6422 int type = extract32(insn, 22, 2); 6423 int opcode = extract32(insn, 15, 6); 6424 int rn = extract32(insn, 5, 5); 6425 int rd = extract32(insn, 0, 5); 6426 6427 if (mos) { 6428 goto do_unallocated; 6429 } 6430 6431 switch (opcode) { 6432 case 0x4: case 0x5: case 0x7: 6433 { 6434 /* FCVT between half, single and double precision */ 6435 int dtype = extract32(opcode, 0, 2); 6436 if (type == 2 || dtype == type) { 6437 goto do_unallocated; 6438 } 6439 if (!fp_access_check(s)) { 6440 return; 6441 } 6442 6443 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6444 break; 6445 } 6446 6447 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6448 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6449 goto do_unallocated; 6450 } 6451 /* fall through */ 6452 case 0x0 ... 0x3: 6453 case 0x8 ... 0xc: 6454 case 0xe ... 0xf: 6455 /* 32-to-32 and 64-to-64 ops */ 6456 switch (type) { 6457 case 0: 6458 if (!fp_access_check(s)) { 6459 return; 6460 } 6461 handle_fp_1src_single(s, opcode, rd, rn); 6462 break; 6463 case 1: 6464 if (!fp_access_check(s)) { 6465 return; 6466 } 6467 handle_fp_1src_double(s, opcode, rd, rn); 6468 break; 6469 case 3: 6470 if (!dc_isar_feature(aa64_fp16, s)) { 6471 goto do_unallocated; 6472 } 6473 6474 if (!fp_access_check(s)) { 6475 return; 6476 } 6477 handle_fp_1src_half(s, opcode, rd, rn); 6478 break; 6479 default: 6480 goto do_unallocated; 6481 } 6482 break; 6483 6484 case 0x6: 6485 switch (type) { 6486 case 1: /* BFCVT */ 6487 if (!dc_isar_feature(aa64_bf16, s)) { 6488 goto do_unallocated; 6489 } 6490 if (!fp_access_check(s)) { 6491 return; 6492 } 6493 handle_fp_1src_single(s, opcode, rd, rn); 6494 break; 6495 default: 6496 goto do_unallocated; 6497 } 6498 break; 6499 6500 default: 6501 do_unallocated: 6502 unallocated_encoding(s); 6503 break; 6504 } 6505 } 6506 6507 /* Floating-point data-processing (2 source) - single precision */ 6508 static void handle_fp_2src_single(DisasContext *s, int opcode, 6509 int rd, int rn, int rm) 6510 { 6511 TCGv_i32 tcg_op1; 6512 TCGv_i32 tcg_op2; 6513 TCGv_i32 tcg_res; 6514 TCGv_ptr fpst; 6515 6516 tcg_res = tcg_temp_new_i32(); 6517 fpst = fpstatus_ptr(FPST_FPCR); 6518 tcg_op1 = read_fp_sreg(s, rn); 6519 tcg_op2 = read_fp_sreg(s, rm); 6520 6521 switch (opcode) { 6522 case 0x0: /* FMUL */ 6523 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6524 break; 6525 case 0x1: /* FDIV */ 6526 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6527 break; 6528 case 0x2: /* FADD */ 6529 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6530 break; 6531 case 0x3: /* FSUB */ 6532 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6533 break; 6534 case 0x4: /* FMAX */ 6535 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6536 break; 6537 case 0x5: /* FMIN */ 6538 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6539 break; 6540 case 0x6: /* FMAXNM */ 6541 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6542 break; 6543 case 0x7: /* FMINNM */ 6544 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6545 break; 6546 case 0x8: /* FNMUL */ 6547 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6548 gen_helper_vfp_negs(tcg_res, tcg_res); 6549 break; 6550 } 6551 6552 write_fp_sreg(s, rd, tcg_res); 6553 } 6554 6555 /* Floating-point data-processing (2 source) - double precision */ 6556 static void handle_fp_2src_double(DisasContext *s, int opcode, 6557 int rd, int rn, int rm) 6558 { 6559 TCGv_i64 tcg_op1; 6560 TCGv_i64 tcg_op2; 6561 TCGv_i64 tcg_res; 6562 TCGv_ptr fpst; 6563 6564 tcg_res = tcg_temp_new_i64(); 6565 fpst = fpstatus_ptr(FPST_FPCR); 6566 tcg_op1 = read_fp_dreg(s, rn); 6567 tcg_op2 = read_fp_dreg(s, rm); 6568 6569 switch (opcode) { 6570 case 0x0: /* FMUL */ 6571 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6572 break; 6573 case 0x1: /* FDIV */ 6574 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6575 break; 6576 case 0x2: /* FADD */ 6577 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6578 break; 6579 case 0x3: /* FSUB */ 6580 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6581 break; 6582 case 0x4: /* FMAX */ 6583 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6584 break; 6585 case 0x5: /* FMIN */ 6586 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6587 break; 6588 case 0x6: /* FMAXNM */ 6589 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6590 break; 6591 case 0x7: /* FMINNM */ 6592 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6593 break; 6594 case 0x8: /* FNMUL */ 6595 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6596 gen_helper_vfp_negd(tcg_res, tcg_res); 6597 break; 6598 } 6599 6600 write_fp_dreg(s, rd, tcg_res); 6601 } 6602 6603 /* Floating-point data-processing (2 source) - half precision */ 6604 static void handle_fp_2src_half(DisasContext *s, int opcode, 6605 int rd, int rn, int rm) 6606 { 6607 TCGv_i32 tcg_op1; 6608 TCGv_i32 tcg_op2; 6609 TCGv_i32 tcg_res; 6610 TCGv_ptr fpst; 6611 6612 tcg_res = tcg_temp_new_i32(); 6613 fpst = fpstatus_ptr(FPST_FPCR_F16); 6614 tcg_op1 = read_fp_hreg(s, rn); 6615 tcg_op2 = read_fp_hreg(s, rm); 6616 6617 switch (opcode) { 6618 case 0x0: /* FMUL */ 6619 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6620 break; 6621 case 0x1: /* FDIV */ 6622 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6623 break; 6624 case 0x2: /* FADD */ 6625 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6626 break; 6627 case 0x3: /* FSUB */ 6628 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6629 break; 6630 case 0x4: /* FMAX */ 6631 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6632 break; 6633 case 0x5: /* FMIN */ 6634 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6635 break; 6636 case 0x6: /* FMAXNM */ 6637 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6638 break; 6639 case 0x7: /* FMINNM */ 6640 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6641 break; 6642 case 0x8: /* FNMUL */ 6643 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6644 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6645 break; 6646 default: 6647 g_assert_not_reached(); 6648 } 6649 6650 write_fp_sreg(s, rd, tcg_res); 6651 } 6652 6653 /* Floating point data-processing (2 source) 6654 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6655 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6656 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6657 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6658 */ 6659 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6660 { 6661 int mos = extract32(insn, 29, 3); 6662 int type = extract32(insn, 22, 2); 6663 int rd = extract32(insn, 0, 5); 6664 int rn = extract32(insn, 5, 5); 6665 int rm = extract32(insn, 16, 5); 6666 int opcode = extract32(insn, 12, 4); 6667 6668 if (opcode > 8 || mos) { 6669 unallocated_encoding(s); 6670 return; 6671 } 6672 6673 switch (type) { 6674 case 0: 6675 if (!fp_access_check(s)) { 6676 return; 6677 } 6678 handle_fp_2src_single(s, opcode, rd, rn, rm); 6679 break; 6680 case 1: 6681 if (!fp_access_check(s)) { 6682 return; 6683 } 6684 handle_fp_2src_double(s, opcode, rd, rn, rm); 6685 break; 6686 case 3: 6687 if (!dc_isar_feature(aa64_fp16, s)) { 6688 unallocated_encoding(s); 6689 return; 6690 } 6691 if (!fp_access_check(s)) { 6692 return; 6693 } 6694 handle_fp_2src_half(s, opcode, rd, rn, rm); 6695 break; 6696 default: 6697 unallocated_encoding(s); 6698 } 6699 } 6700 6701 /* Floating-point data-processing (3 source) - single precision */ 6702 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6703 int rd, int rn, int rm, int ra) 6704 { 6705 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6706 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6707 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6708 6709 tcg_op1 = read_fp_sreg(s, rn); 6710 tcg_op2 = read_fp_sreg(s, rm); 6711 tcg_op3 = read_fp_sreg(s, ra); 6712 6713 /* These are fused multiply-add, and must be done as one 6714 * floating point operation with no rounding between the 6715 * multiplication and addition steps. 6716 * NB that doing the negations here as separate steps is 6717 * correct : an input NaN should come out with its sign bit 6718 * flipped if it is a negated-input. 6719 */ 6720 if (o1 == true) { 6721 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6722 } 6723 6724 if (o0 != o1) { 6725 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6726 } 6727 6728 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6729 6730 write_fp_sreg(s, rd, tcg_res); 6731 } 6732 6733 /* Floating-point data-processing (3 source) - double precision */ 6734 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6735 int rd, int rn, int rm, int ra) 6736 { 6737 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6738 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6739 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6740 6741 tcg_op1 = read_fp_dreg(s, rn); 6742 tcg_op2 = read_fp_dreg(s, rm); 6743 tcg_op3 = read_fp_dreg(s, ra); 6744 6745 /* These are fused multiply-add, and must be done as one 6746 * floating point operation with no rounding between the 6747 * multiplication and addition steps. 6748 * NB that doing the negations here as separate steps is 6749 * correct : an input NaN should come out with its sign bit 6750 * flipped if it is a negated-input. 6751 */ 6752 if (o1 == true) { 6753 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6754 } 6755 6756 if (o0 != o1) { 6757 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6758 } 6759 6760 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6761 6762 write_fp_dreg(s, rd, tcg_res); 6763 } 6764 6765 /* Floating-point data-processing (3 source) - half precision */ 6766 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6767 int rd, int rn, int rm, int ra) 6768 { 6769 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6770 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6771 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6772 6773 tcg_op1 = read_fp_hreg(s, rn); 6774 tcg_op2 = read_fp_hreg(s, rm); 6775 tcg_op3 = read_fp_hreg(s, ra); 6776 6777 /* These are fused multiply-add, and must be done as one 6778 * floating point operation with no rounding between the 6779 * multiplication and addition steps. 6780 * NB that doing the negations here as separate steps is 6781 * correct : an input NaN should come out with its sign bit 6782 * flipped if it is a negated-input. 6783 */ 6784 if (o1 == true) { 6785 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6786 } 6787 6788 if (o0 != o1) { 6789 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6790 } 6791 6792 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6793 6794 write_fp_sreg(s, rd, tcg_res); 6795 } 6796 6797 /* Floating point data-processing (3 source) 6798 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6799 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6800 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6801 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6802 */ 6803 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6804 { 6805 int mos = extract32(insn, 29, 3); 6806 int type = extract32(insn, 22, 2); 6807 int rd = extract32(insn, 0, 5); 6808 int rn = extract32(insn, 5, 5); 6809 int ra = extract32(insn, 10, 5); 6810 int rm = extract32(insn, 16, 5); 6811 bool o0 = extract32(insn, 15, 1); 6812 bool o1 = extract32(insn, 21, 1); 6813 6814 if (mos) { 6815 unallocated_encoding(s); 6816 return; 6817 } 6818 6819 switch (type) { 6820 case 0: 6821 if (!fp_access_check(s)) { 6822 return; 6823 } 6824 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6825 break; 6826 case 1: 6827 if (!fp_access_check(s)) { 6828 return; 6829 } 6830 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6831 break; 6832 case 3: 6833 if (!dc_isar_feature(aa64_fp16, s)) { 6834 unallocated_encoding(s); 6835 return; 6836 } 6837 if (!fp_access_check(s)) { 6838 return; 6839 } 6840 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6841 break; 6842 default: 6843 unallocated_encoding(s); 6844 } 6845 } 6846 6847 /* Floating point immediate 6848 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6849 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6850 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6851 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6852 */ 6853 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6854 { 6855 int rd = extract32(insn, 0, 5); 6856 int imm5 = extract32(insn, 5, 5); 6857 int imm8 = extract32(insn, 13, 8); 6858 int type = extract32(insn, 22, 2); 6859 int mos = extract32(insn, 29, 3); 6860 uint64_t imm; 6861 MemOp sz; 6862 6863 if (mos || imm5) { 6864 unallocated_encoding(s); 6865 return; 6866 } 6867 6868 switch (type) { 6869 case 0: 6870 sz = MO_32; 6871 break; 6872 case 1: 6873 sz = MO_64; 6874 break; 6875 case 3: 6876 sz = MO_16; 6877 if (dc_isar_feature(aa64_fp16, s)) { 6878 break; 6879 } 6880 /* fallthru */ 6881 default: 6882 unallocated_encoding(s); 6883 return; 6884 } 6885 6886 if (!fp_access_check(s)) { 6887 return; 6888 } 6889 6890 imm = vfp_expand_imm(sz, imm8); 6891 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6892 } 6893 6894 /* Handle floating point <=> fixed point conversions. Note that we can 6895 * also deal with fp <=> integer conversions as a special case (scale == 64) 6896 * OPTME: consider handling that special case specially or at least skipping 6897 * the call to scalbn in the helpers for zero shifts. 6898 */ 6899 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6900 bool itof, int rmode, int scale, int sf, int type) 6901 { 6902 bool is_signed = !(opcode & 1); 6903 TCGv_ptr tcg_fpstatus; 6904 TCGv_i32 tcg_shift, tcg_single; 6905 TCGv_i64 tcg_double; 6906 6907 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6908 6909 tcg_shift = tcg_constant_i32(64 - scale); 6910 6911 if (itof) { 6912 TCGv_i64 tcg_int = cpu_reg(s, rn); 6913 if (!sf) { 6914 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6915 6916 if (is_signed) { 6917 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6918 } else { 6919 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6920 } 6921 6922 tcg_int = tcg_extend; 6923 } 6924 6925 switch (type) { 6926 case 1: /* float64 */ 6927 tcg_double = tcg_temp_new_i64(); 6928 if (is_signed) { 6929 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6930 tcg_shift, tcg_fpstatus); 6931 } else { 6932 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6933 tcg_shift, tcg_fpstatus); 6934 } 6935 write_fp_dreg(s, rd, tcg_double); 6936 break; 6937 6938 case 0: /* float32 */ 6939 tcg_single = tcg_temp_new_i32(); 6940 if (is_signed) { 6941 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6942 tcg_shift, tcg_fpstatus); 6943 } else { 6944 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6945 tcg_shift, tcg_fpstatus); 6946 } 6947 write_fp_sreg(s, rd, tcg_single); 6948 break; 6949 6950 case 3: /* float16 */ 6951 tcg_single = tcg_temp_new_i32(); 6952 if (is_signed) { 6953 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6954 tcg_shift, tcg_fpstatus); 6955 } else { 6956 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6957 tcg_shift, tcg_fpstatus); 6958 } 6959 write_fp_sreg(s, rd, tcg_single); 6960 break; 6961 6962 default: 6963 g_assert_not_reached(); 6964 } 6965 } else { 6966 TCGv_i64 tcg_int = cpu_reg(s, rd); 6967 TCGv_i32 tcg_rmode; 6968 6969 if (extract32(opcode, 2, 1)) { 6970 /* There are too many rounding modes to all fit into rmode, 6971 * so FCVTA[US] is a special case. 6972 */ 6973 rmode = FPROUNDING_TIEAWAY; 6974 } 6975 6976 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6977 6978 switch (type) { 6979 case 1: /* float64 */ 6980 tcg_double = read_fp_dreg(s, rn); 6981 if (is_signed) { 6982 if (!sf) { 6983 gen_helper_vfp_tosld(tcg_int, tcg_double, 6984 tcg_shift, tcg_fpstatus); 6985 } else { 6986 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6987 tcg_shift, tcg_fpstatus); 6988 } 6989 } else { 6990 if (!sf) { 6991 gen_helper_vfp_tould(tcg_int, tcg_double, 6992 tcg_shift, tcg_fpstatus); 6993 } else { 6994 gen_helper_vfp_touqd(tcg_int, tcg_double, 6995 tcg_shift, tcg_fpstatus); 6996 } 6997 } 6998 if (!sf) { 6999 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7000 } 7001 break; 7002 7003 case 0: /* float32 */ 7004 tcg_single = read_fp_sreg(s, rn); 7005 if (sf) { 7006 if (is_signed) { 7007 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7008 tcg_shift, tcg_fpstatus); 7009 } else { 7010 gen_helper_vfp_touqs(tcg_int, tcg_single, 7011 tcg_shift, tcg_fpstatus); 7012 } 7013 } else { 7014 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7015 if (is_signed) { 7016 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7017 tcg_shift, tcg_fpstatus); 7018 } else { 7019 gen_helper_vfp_touls(tcg_dest, tcg_single, 7020 tcg_shift, tcg_fpstatus); 7021 } 7022 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7023 } 7024 break; 7025 7026 case 3: /* float16 */ 7027 tcg_single = read_fp_sreg(s, rn); 7028 if (sf) { 7029 if (is_signed) { 7030 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7031 tcg_shift, tcg_fpstatus); 7032 } else { 7033 gen_helper_vfp_touqh(tcg_int, tcg_single, 7034 tcg_shift, tcg_fpstatus); 7035 } 7036 } else { 7037 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7038 if (is_signed) { 7039 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7040 tcg_shift, tcg_fpstatus); 7041 } else { 7042 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7043 tcg_shift, tcg_fpstatus); 7044 } 7045 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7046 } 7047 break; 7048 7049 default: 7050 g_assert_not_reached(); 7051 } 7052 7053 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7054 } 7055 } 7056 7057 /* Floating point <-> fixed point conversions 7058 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7059 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7060 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7061 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7062 */ 7063 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7064 { 7065 int rd = extract32(insn, 0, 5); 7066 int rn = extract32(insn, 5, 5); 7067 int scale = extract32(insn, 10, 6); 7068 int opcode = extract32(insn, 16, 3); 7069 int rmode = extract32(insn, 19, 2); 7070 int type = extract32(insn, 22, 2); 7071 bool sbit = extract32(insn, 29, 1); 7072 bool sf = extract32(insn, 31, 1); 7073 bool itof; 7074 7075 if (sbit || (!sf && scale < 32)) { 7076 unallocated_encoding(s); 7077 return; 7078 } 7079 7080 switch (type) { 7081 case 0: /* float32 */ 7082 case 1: /* float64 */ 7083 break; 7084 case 3: /* float16 */ 7085 if (dc_isar_feature(aa64_fp16, s)) { 7086 break; 7087 } 7088 /* fallthru */ 7089 default: 7090 unallocated_encoding(s); 7091 return; 7092 } 7093 7094 switch ((rmode << 3) | opcode) { 7095 case 0x2: /* SCVTF */ 7096 case 0x3: /* UCVTF */ 7097 itof = true; 7098 break; 7099 case 0x18: /* FCVTZS */ 7100 case 0x19: /* FCVTZU */ 7101 itof = false; 7102 break; 7103 default: 7104 unallocated_encoding(s); 7105 return; 7106 } 7107 7108 if (!fp_access_check(s)) { 7109 return; 7110 } 7111 7112 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7113 } 7114 7115 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7116 { 7117 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7118 * without conversion. 7119 */ 7120 7121 if (itof) { 7122 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7123 TCGv_i64 tmp; 7124 7125 switch (type) { 7126 case 0: 7127 /* 32 bit */ 7128 tmp = tcg_temp_new_i64(); 7129 tcg_gen_ext32u_i64(tmp, tcg_rn); 7130 write_fp_dreg(s, rd, tmp); 7131 break; 7132 case 1: 7133 /* 64 bit */ 7134 write_fp_dreg(s, rd, tcg_rn); 7135 break; 7136 case 2: 7137 /* 64 bit to top half. */ 7138 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7139 clear_vec_high(s, true, rd); 7140 break; 7141 case 3: 7142 /* 16 bit */ 7143 tmp = tcg_temp_new_i64(); 7144 tcg_gen_ext16u_i64(tmp, tcg_rn); 7145 write_fp_dreg(s, rd, tmp); 7146 break; 7147 default: 7148 g_assert_not_reached(); 7149 } 7150 } else { 7151 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7152 7153 switch (type) { 7154 case 0: 7155 /* 32 bit */ 7156 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7157 break; 7158 case 1: 7159 /* 64 bit */ 7160 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7161 break; 7162 case 2: 7163 /* 64 bits from top half */ 7164 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7165 break; 7166 case 3: 7167 /* 16 bit */ 7168 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7169 break; 7170 default: 7171 g_assert_not_reached(); 7172 } 7173 } 7174 } 7175 7176 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7177 { 7178 TCGv_i64 t = read_fp_dreg(s, rn); 7179 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7180 7181 gen_helper_fjcvtzs(t, t, fpstatus); 7182 7183 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7184 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7185 tcg_gen_movi_i32(cpu_CF, 0); 7186 tcg_gen_movi_i32(cpu_NF, 0); 7187 tcg_gen_movi_i32(cpu_VF, 0); 7188 } 7189 7190 /* Floating point <-> integer conversions 7191 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7192 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7193 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7194 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7195 */ 7196 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7197 { 7198 int rd = extract32(insn, 0, 5); 7199 int rn = extract32(insn, 5, 5); 7200 int opcode = extract32(insn, 16, 3); 7201 int rmode = extract32(insn, 19, 2); 7202 int type = extract32(insn, 22, 2); 7203 bool sbit = extract32(insn, 29, 1); 7204 bool sf = extract32(insn, 31, 1); 7205 bool itof = false; 7206 7207 if (sbit) { 7208 goto do_unallocated; 7209 } 7210 7211 switch (opcode) { 7212 case 2: /* SCVTF */ 7213 case 3: /* UCVTF */ 7214 itof = true; 7215 /* fallthru */ 7216 case 4: /* FCVTAS */ 7217 case 5: /* FCVTAU */ 7218 if (rmode != 0) { 7219 goto do_unallocated; 7220 } 7221 /* fallthru */ 7222 case 0: /* FCVT[NPMZ]S */ 7223 case 1: /* FCVT[NPMZ]U */ 7224 switch (type) { 7225 case 0: /* float32 */ 7226 case 1: /* float64 */ 7227 break; 7228 case 3: /* float16 */ 7229 if (!dc_isar_feature(aa64_fp16, s)) { 7230 goto do_unallocated; 7231 } 7232 break; 7233 default: 7234 goto do_unallocated; 7235 } 7236 if (!fp_access_check(s)) { 7237 return; 7238 } 7239 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7240 break; 7241 7242 default: 7243 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7244 case 0b01100110: /* FMOV half <-> 32-bit int */ 7245 case 0b01100111: 7246 case 0b11100110: /* FMOV half <-> 64-bit int */ 7247 case 0b11100111: 7248 if (!dc_isar_feature(aa64_fp16, s)) { 7249 goto do_unallocated; 7250 } 7251 /* fallthru */ 7252 case 0b00000110: /* FMOV 32-bit */ 7253 case 0b00000111: 7254 case 0b10100110: /* FMOV 64-bit */ 7255 case 0b10100111: 7256 case 0b11001110: /* FMOV top half of 128-bit */ 7257 case 0b11001111: 7258 if (!fp_access_check(s)) { 7259 return; 7260 } 7261 itof = opcode & 1; 7262 handle_fmov(s, rd, rn, type, itof); 7263 break; 7264 7265 case 0b00111110: /* FJCVTZS */ 7266 if (!dc_isar_feature(aa64_jscvt, s)) { 7267 goto do_unallocated; 7268 } else if (fp_access_check(s)) { 7269 handle_fjcvtzs(s, rd, rn); 7270 } 7271 break; 7272 7273 default: 7274 do_unallocated: 7275 unallocated_encoding(s); 7276 return; 7277 } 7278 break; 7279 } 7280 } 7281 7282 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7283 * 31 30 29 28 25 24 0 7284 * +---+---+---+---------+-----------------------------+ 7285 * | | 0 | | 1 1 1 1 | | 7286 * +---+---+---+---------+-----------------------------+ 7287 */ 7288 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7289 { 7290 if (extract32(insn, 24, 1)) { 7291 /* Floating point data-processing (3 source) */ 7292 disas_fp_3src(s, insn); 7293 } else if (extract32(insn, 21, 1) == 0) { 7294 /* Floating point to fixed point conversions */ 7295 disas_fp_fixed_conv(s, insn); 7296 } else { 7297 switch (extract32(insn, 10, 2)) { 7298 case 1: 7299 /* Floating point conditional compare */ 7300 disas_fp_ccomp(s, insn); 7301 break; 7302 case 2: 7303 /* Floating point data-processing (2 source) */ 7304 disas_fp_2src(s, insn); 7305 break; 7306 case 3: 7307 /* Floating point conditional select */ 7308 disas_fp_csel(s, insn); 7309 break; 7310 case 0: 7311 switch (ctz32(extract32(insn, 12, 4))) { 7312 case 0: /* [15:12] == xxx1 */ 7313 /* Floating point immediate */ 7314 disas_fp_imm(s, insn); 7315 break; 7316 case 1: /* [15:12] == xx10 */ 7317 /* Floating point compare */ 7318 disas_fp_compare(s, insn); 7319 break; 7320 case 2: /* [15:12] == x100 */ 7321 /* Floating point data-processing (1 source) */ 7322 disas_fp_1src(s, insn); 7323 break; 7324 case 3: /* [15:12] == 1000 */ 7325 unallocated_encoding(s); 7326 break; 7327 default: /* [15:12] == 0000 */ 7328 /* Floating point <-> integer conversions */ 7329 disas_fp_int_conv(s, insn); 7330 break; 7331 } 7332 break; 7333 } 7334 } 7335 } 7336 7337 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7338 int pos) 7339 { 7340 /* Extract 64 bits from the middle of two concatenated 64 bit 7341 * vector register slices left:right. The extracted bits start 7342 * at 'pos' bits into the right (least significant) side. 7343 * We return the result in tcg_right, and guarantee not to 7344 * trash tcg_left. 7345 */ 7346 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7347 assert(pos > 0 && pos < 64); 7348 7349 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7350 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7351 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7352 } 7353 7354 /* EXT 7355 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7356 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7357 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7358 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7359 */ 7360 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7361 { 7362 int is_q = extract32(insn, 30, 1); 7363 int op2 = extract32(insn, 22, 2); 7364 int imm4 = extract32(insn, 11, 4); 7365 int rm = extract32(insn, 16, 5); 7366 int rn = extract32(insn, 5, 5); 7367 int rd = extract32(insn, 0, 5); 7368 int pos = imm4 << 3; 7369 TCGv_i64 tcg_resl, tcg_resh; 7370 7371 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7372 unallocated_encoding(s); 7373 return; 7374 } 7375 7376 if (!fp_access_check(s)) { 7377 return; 7378 } 7379 7380 tcg_resh = tcg_temp_new_i64(); 7381 tcg_resl = tcg_temp_new_i64(); 7382 7383 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7384 * either extracting 128 bits from a 128:128 concatenation, or 7385 * extracting 64 bits from a 64:64 concatenation. 7386 */ 7387 if (!is_q) { 7388 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7389 if (pos != 0) { 7390 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7391 do_ext64(s, tcg_resh, tcg_resl, pos); 7392 } 7393 } else { 7394 TCGv_i64 tcg_hh; 7395 typedef struct { 7396 int reg; 7397 int elt; 7398 } EltPosns; 7399 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7400 EltPosns *elt = eltposns; 7401 7402 if (pos >= 64) { 7403 elt++; 7404 pos -= 64; 7405 } 7406 7407 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7408 elt++; 7409 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7410 elt++; 7411 if (pos != 0) { 7412 do_ext64(s, tcg_resh, tcg_resl, pos); 7413 tcg_hh = tcg_temp_new_i64(); 7414 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7415 do_ext64(s, tcg_hh, tcg_resh, pos); 7416 } 7417 } 7418 7419 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7420 if (is_q) { 7421 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7422 } 7423 clear_vec_high(s, is_q, rd); 7424 } 7425 7426 /* TBL/TBX 7427 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7428 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7429 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7430 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7431 */ 7432 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7433 { 7434 int op2 = extract32(insn, 22, 2); 7435 int is_q = extract32(insn, 30, 1); 7436 int rm = extract32(insn, 16, 5); 7437 int rn = extract32(insn, 5, 5); 7438 int rd = extract32(insn, 0, 5); 7439 int is_tbx = extract32(insn, 12, 1); 7440 int len = (extract32(insn, 13, 2) + 1) * 16; 7441 7442 if (op2 != 0) { 7443 unallocated_encoding(s); 7444 return; 7445 } 7446 7447 if (!fp_access_check(s)) { 7448 return; 7449 } 7450 7451 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7452 vec_full_reg_offset(s, rm), cpu_env, 7453 is_q ? 16 : 8, vec_full_reg_size(s), 7454 (len << 6) | (is_tbx << 5) | rn, 7455 gen_helper_simd_tblx); 7456 } 7457 7458 /* ZIP/UZP/TRN 7459 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7460 * +---+---+-------------+------+---+------+---+------------------+------+ 7461 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7462 * +---+---+-------------+------+---+------+---+------------------+------+ 7463 */ 7464 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7465 { 7466 int rd = extract32(insn, 0, 5); 7467 int rn = extract32(insn, 5, 5); 7468 int rm = extract32(insn, 16, 5); 7469 int size = extract32(insn, 22, 2); 7470 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7471 * bit 2 indicates 1 vs 2 variant of the insn. 7472 */ 7473 int opcode = extract32(insn, 12, 2); 7474 bool part = extract32(insn, 14, 1); 7475 bool is_q = extract32(insn, 30, 1); 7476 int esize = 8 << size; 7477 int i; 7478 int datasize = is_q ? 128 : 64; 7479 int elements = datasize / esize; 7480 TCGv_i64 tcg_res[2], tcg_ele; 7481 7482 if (opcode == 0 || (size == 3 && !is_q)) { 7483 unallocated_encoding(s); 7484 return; 7485 } 7486 7487 if (!fp_access_check(s)) { 7488 return; 7489 } 7490 7491 tcg_res[0] = tcg_temp_new_i64(); 7492 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7493 tcg_ele = tcg_temp_new_i64(); 7494 7495 for (i = 0; i < elements; i++) { 7496 int o, w; 7497 7498 switch (opcode) { 7499 case 1: /* UZP1/2 */ 7500 { 7501 int midpoint = elements / 2; 7502 if (i < midpoint) { 7503 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7504 } else { 7505 read_vec_element(s, tcg_ele, rm, 7506 2 * (i - midpoint) + part, size); 7507 } 7508 break; 7509 } 7510 case 2: /* TRN1/2 */ 7511 if (i & 1) { 7512 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7513 } else { 7514 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7515 } 7516 break; 7517 case 3: /* ZIP1/2 */ 7518 { 7519 int base = part * elements / 2; 7520 if (i & 1) { 7521 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7522 } else { 7523 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7524 } 7525 break; 7526 } 7527 default: 7528 g_assert_not_reached(); 7529 } 7530 7531 w = (i * esize) / 64; 7532 o = (i * esize) % 64; 7533 if (o == 0) { 7534 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7535 } else { 7536 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7537 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7538 } 7539 } 7540 7541 for (i = 0; i <= is_q; ++i) { 7542 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7543 } 7544 clear_vec_high(s, is_q, rd); 7545 } 7546 7547 /* 7548 * do_reduction_op helper 7549 * 7550 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7551 * important for correct NaN propagation that we do these 7552 * operations in exactly the order specified by the pseudocode. 7553 * 7554 * This is a recursive function, TCG temps should be freed by the 7555 * calling function once it is done with the values. 7556 */ 7557 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7558 int esize, int size, int vmap, TCGv_ptr fpst) 7559 { 7560 if (esize == size) { 7561 int element; 7562 MemOp msize = esize == 16 ? MO_16 : MO_32; 7563 TCGv_i32 tcg_elem; 7564 7565 /* We should have one register left here */ 7566 assert(ctpop8(vmap) == 1); 7567 element = ctz32(vmap); 7568 assert(element < 8); 7569 7570 tcg_elem = tcg_temp_new_i32(); 7571 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7572 return tcg_elem; 7573 } else { 7574 int bits = size / 2; 7575 int shift = ctpop8(vmap) / 2; 7576 int vmap_lo = (vmap >> shift) & vmap; 7577 int vmap_hi = (vmap & ~vmap_lo); 7578 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7579 7580 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7581 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7582 tcg_res = tcg_temp_new_i32(); 7583 7584 switch (fpopcode) { 7585 case 0x0c: /* fmaxnmv half-precision */ 7586 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7587 break; 7588 case 0x0f: /* fmaxv half-precision */ 7589 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7590 break; 7591 case 0x1c: /* fminnmv half-precision */ 7592 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7593 break; 7594 case 0x1f: /* fminv half-precision */ 7595 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7596 break; 7597 case 0x2c: /* fmaxnmv */ 7598 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7599 break; 7600 case 0x2f: /* fmaxv */ 7601 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7602 break; 7603 case 0x3c: /* fminnmv */ 7604 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7605 break; 7606 case 0x3f: /* fminv */ 7607 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7608 break; 7609 default: 7610 g_assert_not_reached(); 7611 } 7612 return tcg_res; 7613 } 7614 } 7615 7616 /* AdvSIMD across lanes 7617 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7618 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7619 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7620 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7621 */ 7622 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7623 { 7624 int rd = extract32(insn, 0, 5); 7625 int rn = extract32(insn, 5, 5); 7626 int size = extract32(insn, 22, 2); 7627 int opcode = extract32(insn, 12, 5); 7628 bool is_q = extract32(insn, 30, 1); 7629 bool is_u = extract32(insn, 29, 1); 7630 bool is_fp = false; 7631 bool is_min = false; 7632 int esize; 7633 int elements; 7634 int i; 7635 TCGv_i64 tcg_res, tcg_elt; 7636 7637 switch (opcode) { 7638 case 0x1b: /* ADDV */ 7639 if (is_u) { 7640 unallocated_encoding(s); 7641 return; 7642 } 7643 /* fall through */ 7644 case 0x3: /* SADDLV, UADDLV */ 7645 case 0xa: /* SMAXV, UMAXV */ 7646 case 0x1a: /* SMINV, UMINV */ 7647 if (size == 3 || (size == 2 && !is_q)) { 7648 unallocated_encoding(s); 7649 return; 7650 } 7651 break; 7652 case 0xc: /* FMAXNMV, FMINNMV */ 7653 case 0xf: /* FMAXV, FMINV */ 7654 /* Bit 1 of size field encodes min vs max and the actual size 7655 * depends on the encoding of the U bit. If not set (and FP16 7656 * enabled) then we do half-precision float instead of single 7657 * precision. 7658 */ 7659 is_min = extract32(size, 1, 1); 7660 is_fp = true; 7661 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7662 size = 1; 7663 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7664 unallocated_encoding(s); 7665 return; 7666 } else { 7667 size = 2; 7668 } 7669 break; 7670 default: 7671 unallocated_encoding(s); 7672 return; 7673 } 7674 7675 if (!fp_access_check(s)) { 7676 return; 7677 } 7678 7679 esize = 8 << size; 7680 elements = (is_q ? 128 : 64) / esize; 7681 7682 tcg_res = tcg_temp_new_i64(); 7683 tcg_elt = tcg_temp_new_i64(); 7684 7685 /* These instructions operate across all lanes of a vector 7686 * to produce a single result. We can guarantee that a 64 7687 * bit intermediate is sufficient: 7688 * + for [US]ADDLV the maximum element size is 32 bits, and 7689 * the result type is 64 bits 7690 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7691 * same as the element size, which is 32 bits at most 7692 * For the integer operations we can choose to work at 64 7693 * or 32 bits and truncate at the end; for simplicity 7694 * we use 64 bits always. The floating point 7695 * ops do require 32 bit intermediates, though. 7696 */ 7697 if (!is_fp) { 7698 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7699 7700 for (i = 1; i < elements; i++) { 7701 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7702 7703 switch (opcode) { 7704 case 0x03: /* SADDLV / UADDLV */ 7705 case 0x1b: /* ADDV */ 7706 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7707 break; 7708 case 0x0a: /* SMAXV / UMAXV */ 7709 if (is_u) { 7710 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7711 } else { 7712 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7713 } 7714 break; 7715 case 0x1a: /* SMINV / UMINV */ 7716 if (is_u) { 7717 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7718 } else { 7719 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7720 } 7721 break; 7722 default: 7723 g_assert_not_reached(); 7724 } 7725 7726 } 7727 } else { 7728 /* Floating point vector reduction ops which work across 32 7729 * bit (single) or 16 bit (half-precision) intermediates. 7730 * Note that correct NaN propagation requires that we do these 7731 * operations in exactly the order specified by the pseudocode. 7732 */ 7733 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7734 int fpopcode = opcode | is_min << 4 | is_u << 5; 7735 int vmap = (1 << elements) - 1; 7736 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7737 (is_q ? 128 : 64), vmap, fpst); 7738 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7739 } 7740 7741 /* Now truncate the result to the width required for the final output */ 7742 if (opcode == 0x03) { 7743 /* SADDLV, UADDLV: result is 2*esize */ 7744 size++; 7745 } 7746 7747 switch (size) { 7748 case 0: 7749 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7750 break; 7751 case 1: 7752 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7753 break; 7754 case 2: 7755 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7756 break; 7757 case 3: 7758 break; 7759 default: 7760 g_assert_not_reached(); 7761 } 7762 7763 write_fp_dreg(s, rd, tcg_res); 7764 } 7765 7766 /* DUP (Element, Vector) 7767 * 7768 * 31 30 29 21 20 16 15 10 9 5 4 0 7769 * +---+---+-------------------+--------+-------------+------+------+ 7770 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7771 * +---+---+-------------------+--------+-------------+------+------+ 7772 * 7773 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7774 */ 7775 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7776 int imm5) 7777 { 7778 int size = ctz32(imm5); 7779 int index; 7780 7781 if (size > 3 || (size == 3 && !is_q)) { 7782 unallocated_encoding(s); 7783 return; 7784 } 7785 7786 if (!fp_access_check(s)) { 7787 return; 7788 } 7789 7790 index = imm5 >> (size + 1); 7791 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7792 vec_reg_offset(s, rn, index, size), 7793 is_q ? 16 : 8, vec_full_reg_size(s)); 7794 } 7795 7796 /* DUP (element, scalar) 7797 * 31 21 20 16 15 10 9 5 4 0 7798 * +-----------------------+--------+-------------+------+------+ 7799 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7800 * +-----------------------+--------+-------------+------+------+ 7801 */ 7802 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7803 int imm5) 7804 { 7805 int size = ctz32(imm5); 7806 int index; 7807 TCGv_i64 tmp; 7808 7809 if (size > 3) { 7810 unallocated_encoding(s); 7811 return; 7812 } 7813 7814 if (!fp_access_check(s)) { 7815 return; 7816 } 7817 7818 index = imm5 >> (size + 1); 7819 7820 /* This instruction just extracts the specified element and 7821 * zero-extends it into the bottom of the destination register. 7822 */ 7823 tmp = tcg_temp_new_i64(); 7824 read_vec_element(s, tmp, rn, index, size); 7825 write_fp_dreg(s, rd, tmp); 7826 } 7827 7828 /* DUP (General) 7829 * 7830 * 31 30 29 21 20 16 15 10 9 5 4 0 7831 * +---+---+-------------------+--------+-------------+------+------+ 7832 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7833 * +---+---+-------------------+--------+-------------+------+------+ 7834 * 7835 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7836 */ 7837 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7838 int imm5) 7839 { 7840 int size = ctz32(imm5); 7841 uint32_t dofs, oprsz, maxsz; 7842 7843 if (size > 3 || ((size == 3) && !is_q)) { 7844 unallocated_encoding(s); 7845 return; 7846 } 7847 7848 if (!fp_access_check(s)) { 7849 return; 7850 } 7851 7852 dofs = vec_full_reg_offset(s, rd); 7853 oprsz = is_q ? 16 : 8; 7854 maxsz = vec_full_reg_size(s); 7855 7856 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7857 } 7858 7859 /* INS (Element) 7860 * 7861 * 31 21 20 16 15 14 11 10 9 5 4 0 7862 * +-----------------------+--------+------------+---+------+------+ 7863 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7864 * +-----------------------+--------+------------+---+------+------+ 7865 * 7866 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7867 * index: encoded in imm5<4:size+1> 7868 */ 7869 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7870 int imm4, int imm5) 7871 { 7872 int size = ctz32(imm5); 7873 int src_index, dst_index; 7874 TCGv_i64 tmp; 7875 7876 if (size > 3) { 7877 unallocated_encoding(s); 7878 return; 7879 } 7880 7881 if (!fp_access_check(s)) { 7882 return; 7883 } 7884 7885 dst_index = extract32(imm5, 1+size, 5); 7886 src_index = extract32(imm4, size, 4); 7887 7888 tmp = tcg_temp_new_i64(); 7889 7890 read_vec_element(s, tmp, rn, src_index, size); 7891 write_vec_element(s, tmp, rd, dst_index, size); 7892 7893 /* INS is considered a 128-bit write for SVE. */ 7894 clear_vec_high(s, true, rd); 7895 } 7896 7897 7898 /* INS (General) 7899 * 7900 * 31 21 20 16 15 10 9 5 4 0 7901 * +-----------------------+--------+-------------+------+------+ 7902 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7903 * +-----------------------+--------+-------------+------+------+ 7904 * 7905 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7906 * index: encoded in imm5<4:size+1> 7907 */ 7908 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7909 { 7910 int size = ctz32(imm5); 7911 int idx; 7912 7913 if (size > 3) { 7914 unallocated_encoding(s); 7915 return; 7916 } 7917 7918 if (!fp_access_check(s)) { 7919 return; 7920 } 7921 7922 idx = extract32(imm5, 1 + size, 4 - size); 7923 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7924 7925 /* INS is considered a 128-bit write for SVE. */ 7926 clear_vec_high(s, true, rd); 7927 } 7928 7929 /* 7930 * UMOV (General) 7931 * SMOV (General) 7932 * 7933 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7934 * +---+---+-------------------+--------+-------------+------+------+ 7935 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7936 * +---+---+-------------------+--------+-------------+------+------+ 7937 * 7938 * U: unsigned when set 7939 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7940 */ 7941 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7942 int rn, int rd, int imm5) 7943 { 7944 int size = ctz32(imm5); 7945 int element; 7946 TCGv_i64 tcg_rd; 7947 7948 /* Check for UnallocatedEncodings */ 7949 if (is_signed) { 7950 if (size > 2 || (size == 2 && !is_q)) { 7951 unallocated_encoding(s); 7952 return; 7953 } 7954 } else { 7955 if (size > 3 7956 || (size < 3 && is_q) 7957 || (size == 3 && !is_q)) { 7958 unallocated_encoding(s); 7959 return; 7960 } 7961 } 7962 7963 if (!fp_access_check(s)) { 7964 return; 7965 } 7966 7967 element = extract32(imm5, 1+size, 4); 7968 7969 tcg_rd = cpu_reg(s, rd); 7970 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7971 if (is_signed && !is_q) { 7972 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7973 } 7974 } 7975 7976 /* AdvSIMD copy 7977 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7978 * +---+---+----+-----------------+------+---+------+---+------+------+ 7979 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7980 * +---+---+----+-----------------+------+---+------+---+------+------+ 7981 */ 7982 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7983 { 7984 int rd = extract32(insn, 0, 5); 7985 int rn = extract32(insn, 5, 5); 7986 int imm4 = extract32(insn, 11, 4); 7987 int op = extract32(insn, 29, 1); 7988 int is_q = extract32(insn, 30, 1); 7989 int imm5 = extract32(insn, 16, 5); 7990 7991 if (op) { 7992 if (is_q) { 7993 /* INS (element) */ 7994 handle_simd_inse(s, rd, rn, imm4, imm5); 7995 } else { 7996 unallocated_encoding(s); 7997 } 7998 } else { 7999 switch (imm4) { 8000 case 0: 8001 /* DUP (element - vector) */ 8002 handle_simd_dupe(s, is_q, rd, rn, imm5); 8003 break; 8004 case 1: 8005 /* DUP (general) */ 8006 handle_simd_dupg(s, is_q, rd, rn, imm5); 8007 break; 8008 case 3: 8009 if (is_q) { 8010 /* INS (general) */ 8011 handle_simd_insg(s, rd, rn, imm5); 8012 } else { 8013 unallocated_encoding(s); 8014 } 8015 break; 8016 case 5: 8017 case 7: 8018 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 8019 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 8020 break; 8021 default: 8022 unallocated_encoding(s); 8023 break; 8024 } 8025 } 8026 } 8027 8028 /* AdvSIMD modified immediate 8029 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8030 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8031 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8032 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8033 * 8034 * There are a number of operations that can be carried out here: 8035 * MOVI - move (shifted) imm into register 8036 * MVNI - move inverted (shifted) imm into register 8037 * ORR - bitwise OR of (shifted) imm with register 8038 * BIC - bitwise clear of (shifted) imm with register 8039 * With ARMv8.2 we also have: 8040 * FMOV half-precision 8041 */ 8042 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8043 { 8044 int rd = extract32(insn, 0, 5); 8045 int cmode = extract32(insn, 12, 4); 8046 int o2 = extract32(insn, 11, 1); 8047 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8048 bool is_neg = extract32(insn, 29, 1); 8049 bool is_q = extract32(insn, 30, 1); 8050 uint64_t imm = 0; 8051 8052 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8053 /* Check for FMOV (vector, immediate) - half-precision */ 8054 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8055 unallocated_encoding(s); 8056 return; 8057 } 8058 } 8059 8060 if (!fp_access_check(s)) { 8061 return; 8062 } 8063 8064 if (cmode == 15 && o2 && !is_neg) { 8065 /* FMOV (vector, immediate) - half-precision */ 8066 imm = vfp_expand_imm(MO_16, abcdefgh); 8067 /* now duplicate across the lanes */ 8068 imm = dup_const(MO_16, imm); 8069 } else { 8070 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8071 } 8072 8073 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8074 /* MOVI or MVNI, with MVNI negation handled above. */ 8075 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8076 vec_full_reg_size(s), imm); 8077 } else { 8078 /* ORR or BIC, with BIC negation to AND handled above. */ 8079 if (is_neg) { 8080 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8081 } else { 8082 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8083 } 8084 } 8085 } 8086 8087 /* AdvSIMD scalar copy 8088 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8089 * +-----+----+-----------------+------+---+------+---+------+------+ 8090 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8091 * +-----+----+-----------------+------+---+------+---+------+------+ 8092 */ 8093 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8094 { 8095 int rd = extract32(insn, 0, 5); 8096 int rn = extract32(insn, 5, 5); 8097 int imm4 = extract32(insn, 11, 4); 8098 int imm5 = extract32(insn, 16, 5); 8099 int op = extract32(insn, 29, 1); 8100 8101 if (op != 0 || imm4 != 0) { 8102 unallocated_encoding(s); 8103 return; 8104 } 8105 8106 /* DUP (element, scalar) */ 8107 handle_simd_dupes(s, rd, rn, imm5); 8108 } 8109 8110 /* AdvSIMD scalar pairwise 8111 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8112 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8113 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8114 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8115 */ 8116 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8117 { 8118 int u = extract32(insn, 29, 1); 8119 int size = extract32(insn, 22, 2); 8120 int opcode = extract32(insn, 12, 5); 8121 int rn = extract32(insn, 5, 5); 8122 int rd = extract32(insn, 0, 5); 8123 TCGv_ptr fpst; 8124 8125 /* For some ops (the FP ones), size[1] is part of the encoding. 8126 * For ADDP strictly it is not but size[1] is always 1 for valid 8127 * encodings. 8128 */ 8129 opcode |= (extract32(size, 1, 1) << 5); 8130 8131 switch (opcode) { 8132 case 0x3b: /* ADDP */ 8133 if (u || size != 3) { 8134 unallocated_encoding(s); 8135 return; 8136 } 8137 if (!fp_access_check(s)) { 8138 return; 8139 } 8140 8141 fpst = NULL; 8142 break; 8143 case 0xc: /* FMAXNMP */ 8144 case 0xd: /* FADDP */ 8145 case 0xf: /* FMAXP */ 8146 case 0x2c: /* FMINNMP */ 8147 case 0x2f: /* FMINP */ 8148 /* FP op, size[0] is 32 or 64 bit*/ 8149 if (!u) { 8150 if (!dc_isar_feature(aa64_fp16, s)) { 8151 unallocated_encoding(s); 8152 return; 8153 } else { 8154 size = MO_16; 8155 } 8156 } else { 8157 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8158 } 8159 8160 if (!fp_access_check(s)) { 8161 return; 8162 } 8163 8164 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8165 break; 8166 default: 8167 unallocated_encoding(s); 8168 return; 8169 } 8170 8171 if (size == MO_64) { 8172 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8173 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8174 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8175 8176 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8177 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8178 8179 switch (opcode) { 8180 case 0x3b: /* ADDP */ 8181 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8182 break; 8183 case 0xc: /* FMAXNMP */ 8184 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8185 break; 8186 case 0xd: /* FADDP */ 8187 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8188 break; 8189 case 0xf: /* FMAXP */ 8190 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8191 break; 8192 case 0x2c: /* FMINNMP */ 8193 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8194 break; 8195 case 0x2f: /* FMINP */ 8196 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8197 break; 8198 default: 8199 g_assert_not_reached(); 8200 } 8201 8202 write_fp_dreg(s, rd, tcg_res); 8203 } else { 8204 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8205 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8206 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8207 8208 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8209 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8210 8211 if (size == MO_16) { 8212 switch (opcode) { 8213 case 0xc: /* FMAXNMP */ 8214 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8215 break; 8216 case 0xd: /* FADDP */ 8217 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8218 break; 8219 case 0xf: /* FMAXP */ 8220 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8221 break; 8222 case 0x2c: /* FMINNMP */ 8223 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8224 break; 8225 case 0x2f: /* FMINP */ 8226 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8227 break; 8228 default: 8229 g_assert_not_reached(); 8230 } 8231 } else { 8232 switch (opcode) { 8233 case 0xc: /* FMAXNMP */ 8234 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8235 break; 8236 case 0xd: /* FADDP */ 8237 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8238 break; 8239 case 0xf: /* FMAXP */ 8240 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8241 break; 8242 case 0x2c: /* FMINNMP */ 8243 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8244 break; 8245 case 0x2f: /* FMINP */ 8246 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8247 break; 8248 default: 8249 g_assert_not_reached(); 8250 } 8251 } 8252 8253 write_fp_sreg(s, rd, tcg_res); 8254 } 8255 } 8256 8257 /* 8258 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8259 * 8260 * This code is handles the common shifting code and is used by both 8261 * the vector and scalar code. 8262 */ 8263 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8264 TCGv_i64 tcg_rnd, bool accumulate, 8265 bool is_u, int size, int shift) 8266 { 8267 bool extended_result = false; 8268 bool round = tcg_rnd != NULL; 8269 int ext_lshift = 0; 8270 TCGv_i64 tcg_src_hi; 8271 8272 if (round && size == 3) { 8273 extended_result = true; 8274 ext_lshift = 64 - shift; 8275 tcg_src_hi = tcg_temp_new_i64(); 8276 } else if (shift == 64) { 8277 if (!accumulate && is_u) { 8278 /* result is zero */ 8279 tcg_gen_movi_i64(tcg_res, 0); 8280 return; 8281 } 8282 } 8283 8284 /* Deal with the rounding step */ 8285 if (round) { 8286 if (extended_result) { 8287 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8288 if (!is_u) { 8289 /* take care of sign extending tcg_res */ 8290 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8291 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8292 tcg_src, tcg_src_hi, 8293 tcg_rnd, tcg_zero); 8294 } else { 8295 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8296 tcg_src, tcg_zero, 8297 tcg_rnd, tcg_zero); 8298 } 8299 } else { 8300 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8301 } 8302 } 8303 8304 /* Now do the shift right */ 8305 if (round && extended_result) { 8306 /* extended case, >64 bit precision required */ 8307 if (ext_lshift == 0) { 8308 /* special case, only high bits matter */ 8309 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8310 } else { 8311 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8312 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8313 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8314 } 8315 } else { 8316 if (is_u) { 8317 if (shift == 64) { 8318 /* essentially shifting in 64 zeros */ 8319 tcg_gen_movi_i64(tcg_src, 0); 8320 } else { 8321 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8322 } 8323 } else { 8324 if (shift == 64) { 8325 /* effectively extending the sign-bit */ 8326 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8327 } else { 8328 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8329 } 8330 } 8331 } 8332 8333 if (accumulate) { 8334 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8335 } else { 8336 tcg_gen_mov_i64(tcg_res, tcg_src); 8337 } 8338 } 8339 8340 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8341 static void handle_scalar_simd_shri(DisasContext *s, 8342 bool is_u, int immh, int immb, 8343 int opcode, int rn, int rd) 8344 { 8345 const int size = 3; 8346 int immhb = immh << 3 | immb; 8347 int shift = 2 * (8 << size) - immhb; 8348 bool accumulate = false; 8349 bool round = false; 8350 bool insert = false; 8351 TCGv_i64 tcg_rn; 8352 TCGv_i64 tcg_rd; 8353 TCGv_i64 tcg_round; 8354 8355 if (!extract32(immh, 3, 1)) { 8356 unallocated_encoding(s); 8357 return; 8358 } 8359 8360 if (!fp_access_check(s)) { 8361 return; 8362 } 8363 8364 switch (opcode) { 8365 case 0x02: /* SSRA / USRA (accumulate) */ 8366 accumulate = true; 8367 break; 8368 case 0x04: /* SRSHR / URSHR (rounding) */ 8369 round = true; 8370 break; 8371 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8372 accumulate = round = true; 8373 break; 8374 case 0x08: /* SRI */ 8375 insert = true; 8376 break; 8377 } 8378 8379 if (round) { 8380 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8381 } else { 8382 tcg_round = NULL; 8383 } 8384 8385 tcg_rn = read_fp_dreg(s, rn); 8386 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8387 8388 if (insert) { 8389 /* shift count same as element size is valid but does nothing; 8390 * special case to avoid potential shift by 64. 8391 */ 8392 int esize = 8 << size; 8393 if (shift != esize) { 8394 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8395 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8396 } 8397 } else { 8398 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8399 accumulate, is_u, size, shift); 8400 } 8401 8402 write_fp_dreg(s, rd, tcg_rd); 8403 } 8404 8405 /* SHL/SLI - Scalar shift left */ 8406 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8407 int immh, int immb, int opcode, 8408 int rn, int rd) 8409 { 8410 int size = 32 - clz32(immh) - 1; 8411 int immhb = immh << 3 | immb; 8412 int shift = immhb - (8 << size); 8413 TCGv_i64 tcg_rn; 8414 TCGv_i64 tcg_rd; 8415 8416 if (!extract32(immh, 3, 1)) { 8417 unallocated_encoding(s); 8418 return; 8419 } 8420 8421 if (!fp_access_check(s)) { 8422 return; 8423 } 8424 8425 tcg_rn = read_fp_dreg(s, rn); 8426 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8427 8428 if (insert) { 8429 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8430 } else { 8431 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8432 } 8433 8434 write_fp_dreg(s, rd, tcg_rd); 8435 } 8436 8437 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8438 * (signed/unsigned) narrowing */ 8439 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8440 bool is_u_shift, bool is_u_narrow, 8441 int immh, int immb, int opcode, 8442 int rn, int rd) 8443 { 8444 int immhb = immh << 3 | immb; 8445 int size = 32 - clz32(immh) - 1; 8446 int esize = 8 << size; 8447 int shift = (2 * esize) - immhb; 8448 int elements = is_scalar ? 1 : (64 / esize); 8449 bool round = extract32(opcode, 0, 1); 8450 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8451 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8452 TCGv_i32 tcg_rd_narrowed; 8453 TCGv_i64 tcg_final; 8454 8455 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8456 { gen_helper_neon_narrow_sat_s8, 8457 gen_helper_neon_unarrow_sat8 }, 8458 { gen_helper_neon_narrow_sat_s16, 8459 gen_helper_neon_unarrow_sat16 }, 8460 { gen_helper_neon_narrow_sat_s32, 8461 gen_helper_neon_unarrow_sat32 }, 8462 { NULL, NULL }, 8463 }; 8464 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8465 gen_helper_neon_narrow_sat_u8, 8466 gen_helper_neon_narrow_sat_u16, 8467 gen_helper_neon_narrow_sat_u32, 8468 NULL 8469 }; 8470 NeonGenNarrowEnvFn *narrowfn; 8471 8472 int i; 8473 8474 assert(size < 4); 8475 8476 if (extract32(immh, 3, 1)) { 8477 unallocated_encoding(s); 8478 return; 8479 } 8480 8481 if (!fp_access_check(s)) { 8482 return; 8483 } 8484 8485 if (is_u_shift) { 8486 narrowfn = unsigned_narrow_fns[size]; 8487 } else { 8488 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8489 } 8490 8491 tcg_rn = tcg_temp_new_i64(); 8492 tcg_rd = tcg_temp_new_i64(); 8493 tcg_rd_narrowed = tcg_temp_new_i32(); 8494 tcg_final = tcg_temp_new_i64(); 8495 8496 if (round) { 8497 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8498 } else { 8499 tcg_round = NULL; 8500 } 8501 8502 for (i = 0; i < elements; i++) { 8503 read_vec_element(s, tcg_rn, rn, i, ldop); 8504 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8505 false, is_u_shift, size+1, shift); 8506 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8507 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8508 if (i == 0) { 8509 tcg_gen_mov_i64(tcg_final, tcg_rd); 8510 } else { 8511 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8512 } 8513 } 8514 8515 if (!is_q) { 8516 write_vec_element(s, tcg_final, rd, 0, MO_64); 8517 } else { 8518 write_vec_element(s, tcg_final, rd, 1, MO_64); 8519 } 8520 clear_vec_high(s, is_q, rd); 8521 } 8522 8523 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8524 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8525 bool src_unsigned, bool dst_unsigned, 8526 int immh, int immb, int rn, int rd) 8527 { 8528 int immhb = immh << 3 | immb; 8529 int size = 32 - clz32(immh) - 1; 8530 int shift = immhb - (8 << size); 8531 int pass; 8532 8533 assert(immh != 0); 8534 assert(!(scalar && is_q)); 8535 8536 if (!scalar) { 8537 if (!is_q && extract32(immh, 3, 1)) { 8538 unallocated_encoding(s); 8539 return; 8540 } 8541 8542 /* Since we use the variable-shift helpers we must 8543 * replicate the shift count into each element of 8544 * the tcg_shift value. 8545 */ 8546 switch (size) { 8547 case 0: 8548 shift |= shift << 8; 8549 /* fall through */ 8550 case 1: 8551 shift |= shift << 16; 8552 break; 8553 case 2: 8554 case 3: 8555 break; 8556 default: 8557 g_assert_not_reached(); 8558 } 8559 } 8560 8561 if (!fp_access_check(s)) { 8562 return; 8563 } 8564 8565 if (size == 3) { 8566 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8567 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8568 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8569 { NULL, gen_helper_neon_qshl_u64 }, 8570 }; 8571 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8572 int maxpass = is_q ? 2 : 1; 8573 8574 for (pass = 0; pass < maxpass; pass++) { 8575 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8576 8577 read_vec_element(s, tcg_op, rn, pass, MO_64); 8578 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8579 write_vec_element(s, tcg_op, rd, pass, MO_64); 8580 } 8581 clear_vec_high(s, is_q, rd); 8582 } else { 8583 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8584 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8585 { 8586 { gen_helper_neon_qshl_s8, 8587 gen_helper_neon_qshl_s16, 8588 gen_helper_neon_qshl_s32 }, 8589 { gen_helper_neon_qshlu_s8, 8590 gen_helper_neon_qshlu_s16, 8591 gen_helper_neon_qshlu_s32 } 8592 }, { 8593 { NULL, NULL, NULL }, 8594 { gen_helper_neon_qshl_u8, 8595 gen_helper_neon_qshl_u16, 8596 gen_helper_neon_qshl_u32 } 8597 } 8598 }; 8599 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8600 MemOp memop = scalar ? size : MO_32; 8601 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8602 8603 for (pass = 0; pass < maxpass; pass++) { 8604 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8605 8606 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8607 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8608 if (scalar) { 8609 switch (size) { 8610 case 0: 8611 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8612 break; 8613 case 1: 8614 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8615 break; 8616 case 2: 8617 break; 8618 default: 8619 g_assert_not_reached(); 8620 } 8621 write_fp_sreg(s, rd, tcg_op); 8622 } else { 8623 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8624 } 8625 } 8626 8627 if (!scalar) { 8628 clear_vec_high(s, is_q, rd); 8629 } 8630 } 8631 } 8632 8633 /* Common vector code for handling integer to FP conversion */ 8634 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8635 int elements, int is_signed, 8636 int fracbits, int size) 8637 { 8638 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8639 TCGv_i32 tcg_shift = NULL; 8640 8641 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8642 int pass; 8643 8644 if (fracbits || size == MO_64) { 8645 tcg_shift = tcg_constant_i32(fracbits); 8646 } 8647 8648 if (size == MO_64) { 8649 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8650 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8651 8652 for (pass = 0; pass < elements; pass++) { 8653 read_vec_element(s, tcg_int64, rn, pass, mop); 8654 8655 if (is_signed) { 8656 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8657 tcg_shift, tcg_fpst); 8658 } else { 8659 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8660 tcg_shift, tcg_fpst); 8661 } 8662 if (elements == 1) { 8663 write_fp_dreg(s, rd, tcg_double); 8664 } else { 8665 write_vec_element(s, tcg_double, rd, pass, MO_64); 8666 } 8667 } 8668 } else { 8669 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8670 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8671 8672 for (pass = 0; pass < elements; pass++) { 8673 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8674 8675 switch (size) { 8676 case MO_32: 8677 if (fracbits) { 8678 if (is_signed) { 8679 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8680 tcg_shift, tcg_fpst); 8681 } else { 8682 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8683 tcg_shift, tcg_fpst); 8684 } 8685 } else { 8686 if (is_signed) { 8687 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8688 } else { 8689 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8690 } 8691 } 8692 break; 8693 case MO_16: 8694 if (fracbits) { 8695 if (is_signed) { 8696 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8697 tcg_shift, tcg_fpst); 8698 } else { 8699 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8700 tcg_shift, tcg_fpst); 8701 } 8702 } else { 8703 if (is_signed) { 8704 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8705 } else { 8706 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8707 } 8708 } 8709 break; 8710 default: 8711 g_assert_not_reached(); 8712 } 8713 8714 if (elements == 1) { 8715 write_fp_sreg(s, rd, tcg_float); 8716 } else { 8717 write_vec_element_i32(s, tcg_float, rd, pass, size); 8718 } 8719 } 8720 } 8721 8722 clear_vec_high(s, elements << size == 16, rd); 8723 } 8724 8725 /* UCVTF/SCVTF - Integer to FP conversion */ 8726 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8727 bool is_q, bool is_u, 8728 int immh, int immb, int opcode, 8729 int rn, int rd) 8730 { 8731 int size, elements, fracbits; 8732 int immhb = immh << 3 | immb; 8733 8734 if (immh & 8) { 8735 size = MO_64; 8736 if (!is_scalar && !is_q) { 8737 unallocated_encoding(s); 8738 return; 8739 } 8740 } else if (immh & 4) { 8741 size = MO_32; 8742 } else if (immh & 2) { 8743 size = MO_16; 8744 if (!dc_isar_feature(aa64_fp16, s)) { 8745 unallocated_encoding(s); 8746 return; 8747 } 8748 } else { 8749 /* immh == 0 would be a failure of the decode logic */ 8750 g_assert(immh == 1); 8751 unallocated_encoding(s); 8752 return; 8753 } 8754 8755 if (is_scalar) { 8756 elements = 1; 8757 } else { 8758 elements = (8 << is_q) >> size; 8759 } 8760 fracbits = (16 << size) - immhb; 8761 8762 if (!fp_access_check(s)) { 8763 return; 8764 } 8765 8766 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8767 } 8768 8769 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8770 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8771 bool is_q, bool is_u, 8772 int immh, int immb, int rn, int rd) 8773 { 8774 int immhb = immh << 3 | immb; 8775 int pass, size, fracbits; 8776 TCGv_ptr tcg_fpstatus; 8777 TCGv_i32 tcg_rmode, tcg_shift; 8778 8779 if (immh & 0x8) { 8780 size = MO_64; 8781 if (!is_scalar && !is_q) { 8782 unallocated_encoding(s); 8783 return; 8784 } 8785 } else if (immh & 0x4) { 8786 size = MO_32; 8787 } else if (immh & 0x2) { 8788 size = MO_16; 8789 if (!dc_isar_feature(aa64_fp16, s)) { 8790 unallocated_encoding(s); 8791 return; 8792 } 8793 } else { 8794 /* Should have split out AdvSIMD modified immediate earlier. */ 8795 assert(immh == 1); 8796 unallocated_encoding(s); 8797 return; 8798 } 8799 8800 if (!fp_access_check(s)) { 8801 return; 8802 } 8803 8804 assert(!(is_scalar && is_q)); 8805 8806 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8807 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8808 fracbits = (16 << size) - immhb; 8809 tcg_shift = tcg_constant_i32(fracbits); 8810 8811 if (size == MO_64) { 8812 int maxpass = is_scalar ? 1 : 2; 8813 8814 for (pass = 0; pass < maxpass; pass++) { 8815 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8816 8817 read_vec_element(s, tcg_op, rn, pass, MO_64); 8818 if (is_u) { 8819 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8820 } else { 8821 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8822 } 8823 write_vec_element(s, tcg_op, rd, pass, MO_64); 8824 } 8825 clear_vec_high(s, is_q, rd); 8826 } else { 8827 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8828 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8829 8830 switch (size) { 8831 case MO_16: 8832 if (is_u) { 8833 fn = gen_helper_vfp_touhh; 8834 } else { 8835 fn = gen_helper_vfp_toshh; 8836 } 8837 break; 8838 case MO_32: 8839 if (is_u) { 8840 fn = gen_helper_vfp_touls; 8841 } else { 8842 fn = gen_helper_vfp_tosls; 8843 } 8844 break; 8845 default: 8846 g_assert_not_reached(); 8847 } 8848 8849 for (pass = 0; pass < maxpass; pass++) { 8850 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8851 8852 read_vec_element_i32(s, tcg_op, rn, pass, size); 8853 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8854 if (is_scalar) { 8855 write_fp_sreg(s, rd, tcg_op); 8856 } else { 8857 write_vec_element_i32(s, tcg_op, rd, pass, size); 8858 } 8859 } 8860 if (!is_scalar) { 8861 clear_vec_high(s, is_q, rd); 8862 } 8863 } 8864 8865 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8866 } 8867 8868 /* AdvSIMD scalar shift by immediate 8869 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8870 * +-----+---+-------------+------+------+--------+---+------+------+ 8871 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8872 * +-----+---+-------------+------+------+--------+---+------+------+ 8873 * 8874 * This is the scalar version so it works on a fixed sized registers 8875 */ 8876 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8877 { 8878 int rd = extract32(insn, 0, 5); 8879 int rn = extract32(insn, 5, 5); 8880 int opcode = extract32(insn, 11, 5); 8881 int immb = extract32(insn, 16, 3); 8882 int immh = extract32(insn, 19, 4); 8883 bool is_u = extract32(insn, 29, 1); 8884 8885 if (immh == 0) { 8886 unallocated_encoding(s); 8887 return; 8888 } 8889 8890 switch (opcode) { 8891 case 0x08: /* SRI */ 8892 if (!is_u) { 8893 unallocated_encoding(s); 8894 return; 8895 } 8896 /* fall through */ 8897 case 0x00: /* SSHR / USHR */ 8898 case 0x02: /* SSRA / USRA */ 8899 case 0x04: /* SRSHR / URSHR */ 8900 case 0x06: /* SRSRA / URSRA */ 8901 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8902 break; 8903 case 0x0a: /* SHL / SLI */ 8904 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8905 break; 8906 case 0x1c: /* SCVTF, UCVTF */ 8907 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8908 opcode, rn, rd); 8909 break; 8910 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8911 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8912 if (!is_u) { 8913 unallocated_encoding(s); 8914 return; 8915 } 8916 handle_vec_simd_sqshrn(s, true, false, false, true, 8917 immh, immb, opcode, rn, rd); 8918 break; 8919 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8920 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8921 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8922 immh, immb, opcode, rn, rd); 8923 break; 8924 case 0xc: /* SQSHLU */ 8925 if (!is_u) { 8926 unallocated_encoding(s); 8927 return; 8928 } 8929 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8930 break; 8931 case 0xe: /* SQSHL, UQSHL */ 8932 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8933 break; 8934 case 0x1f: /* FCVTZS, FCVTZU */ 8935 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8936 break; 8937 default: 8938 unallocated_encoding(s); 8939 break; 8940 } 8941 } 8942 8943 /* AdvSIMD scalar three different 8944 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8945 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8946 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8947 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8948 */ 8949 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8950 { 8951 bool is_u = extract32(insn, 29, 1); 8952 int size = extract32(insn, 22, 2); 8953 int opcode = extract32(insn, 12, 4); 8954 int rm = extract32(insn, 16, 5); 8955 int rn = extract32(insn, 5, 5); 8956 int rd = extract32(insn, 0, 5); 8957 8958 if (is_u) { 8959 unallocated_encoding(s); 8960 return; 8961 } 8962 8963 switch (opcode) { 8964 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8965 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8966 case 0xd: /* SQDMULL, SQDMULL2 */ 8967 if (size == 0 || size == 3) { 8968 unallocated_encoding(s); 8969 return; 8970 } 8971 break; 8972 default: 8973 unallocated_encoding(s); 8974 return; 8975 } 8976 8977 if (!fp_access_check(s)) { 8978 return; 8979 } 8980 8981 if (size == 2) { 8982 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8983 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8984 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8985 8986 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8987 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8988 8989 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8990 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8991 8992 switch (opcode) { 8993 case 0xd: /* SQDMULL, SQDMULL2 */ 8994 break; 8995 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8996 tcg_gen_neg_i64(tcg_res, tcg_res); 8997 /* fall through */ 8998 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8999 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9000 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 9001 tcg_res, tcg_op1); 9002 break; 9003 default: 9004 g_assert_not_reached(); 9005 } 9006 9007 write_fp_dreg(s, rd, tcg_res); 9008 } else { 9009 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9010 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9011 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9012 9013 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9014 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 9015 9016 switch (opcode) { 9017 case 0xd: /* SQDMULL, SQDMULL2 */ 9018 break; 9019 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9020 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9021 /* fall through */ 9022 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9023 { 9024 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9025 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9026 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 9027 tcg_res, tcg_op3); 9028 break; 9029 } 9030 default: 9031 g_assert_not_reached(); 9032 } 9033 9034 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9035 write_fp_dreg(s, rd, tcg_res); 9036 } 9037 } 9038 9039 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9040 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9041 { 9042 /* Handle 64x64->64 opcodes which are shared between the scalar 9043 * and vector 3-same groups. We cover every opcode where size == 3 9044 * is valid in either the three-reg-same (integer, not pairwise) 9045 * or scalar-three-reg-same groups. 9046 */ 9047 TCGCond cond; 9048 9049 switch (opcode) { 9050 case 0x1: /* SQADD */ 9051 if (u) { 9052 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9053 } else { 9054 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9055 } 9056 break; 9057 case 0x5: /* SQSUB */ 9058 if (u) { 9059 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9060 } else { 9061 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9062 } 9063 break; 9064 case 0x6: /* CMGT, CMHI */ 9065 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9066 * We implement this using setcond (test) and then negating. 9067 */ 9068 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9069 do_cmop: 9070 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9071 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9072 break; 9073 case 0x7: /* CMGE, CMHS */ 9074 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9075 goto do_cmop; 9076 case 0x11: /* CMTST, CMEQ */ 9077 if (u) { 9078 cond = TCG_COND_EQ; 9079 goto do_cmop; 9080 } 9081 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9082 break; 9083 case 0x8: /* SSHL, USHL */ 9084 if (u) { 9085 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9086 } else { 9087 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9088 } 9089 break; 9090 case 0x9: /* SQSHL, UQSHL */ 9091 if (u) { 9092 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9093 } else { 9094 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9095 } 9096 break; 9097 case 0xa: /* SRSHL, URSHL */ 9098 if (u) { 9099 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9100 } else { 9101 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9102 } 9103 break; 9104 case 0xb: /* SQRSHL, UQRSHL */ 9105 if (u) { 9106 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9107 } else { 9108 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9109 } 9110 break; 9111 case 0x10: /* ADD, SUB */ 9112 if (u) { 9113 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9114 } else { 9115 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9116 } 9117 break; 9118 default: 9119 g_assert_not_reached(); 9120 } 9121 } 9122 9123 /* Handle the 3-same-operands float operations; shared by the scalar 9124 * and vector encodings. The caller must filter out any encodings 9125 * not allocated for the encoding it is dealing with. 9126 */ 9127 static void handle_3same_float(DisasContext *s, int size, int elements, 9128 int fpopcode, int rd, int rn, int rm) 9129 { 9130 int pass; 9131 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9132 9133 for (pass = 0; pass < elements; pass++) { 9134 if (size) { 9135 /* Double */ 9136 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9137 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9138 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9139 9140 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9141 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9142 9143 switch (fpopcode) { 9144 case 0x39: /* FMLS */ 9145 /* As usual for ARM, separate negation for fused multiply-add */ 9146 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9147 /* fall through */ 9148 case 0x19: /* FMLA */ 9149 read_vec_element(s, tcg_res, rd, pass, MO_64); 9150 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9151 tcg_res, fpst); 9152 break; 9153 case 0x18: /* FMAXNM */ 9154 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9155 break; 9156 case 0x1a: /* FADD */ 9157 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9158 break; 9159 case 0x1b: /* FMULX */ 9160 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9161 break; 9162 case 0x1c: /* FCMEQ */ 9163 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9164 break; 9165 case 0x1e: /* FMAX */ 9166 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9167 break; 9168 case 0x1f: /* FRECPS */ 9169 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9170 break; 9171 case 0x38: /* FMINNM */ 9172 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9173 break; 9174 case 0x3a: /* FSUB */ 9175 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9176 break; 9177 case 0x3e: /* FMIN */ 9178 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9179 break; 9180 case 0x3f: /* FRSQRTS */ 9181 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9182 break; 9183 case 0x5b: /* FMUL */ 9184 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9185 break; 9186 case 0x5c: /* FCMGE */ 9187 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9188 break; 9189 case 0x5d: /* FACGE */ 9190 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9191 break; 9192 case 0x5f: /* FDIV */ 9193 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9194 break; 9195 case 0x7a: /* FABD */ 9196 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9197 gen_helper_vfp_absd(tcg_res, tcg_res); 9198 break; 9199 case 0x7c: /* FCMGT */ 9200 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9201 break; 9202 case 0x7d: /* FACGT */ 9203 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9204 break; 9205 default: 9206 g_assert_not_reached(); 9207 } 9208 9209 write_vec_element(s, tcg_res, rd, pass, MO_64); 9210 } else { 9211 /* Single */ 9212 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9213 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9214 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9215 9216 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9217 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9218 9219 switch (fpopcode) { 9220 case 0x39: /* FMLS */ 9221 /* As usual for ARM, separate negation for fused multiply-add */ 9222 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9223 /* fall through */ 9224 case 0x19: /* FMLA */ 9225 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9226 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9227 tcg_res, fpst); 9228 break; 9229 case 0x1a: /* FADD */ 9230 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9231 break; 9232 case 0x1b: /* FMULX */ 9233 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9234 break; 9235 case 0x1c: /* FCMEQ */ 9236 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9237 break; 9238 case 0x1e: /* FMAX */ 9239 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9240 break; 9241 case 0x1f: /* FRECPS */ 9242 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9243 break; 9244 case 0x18: /* FMAXNM */ 9245 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9246 break; 9247 case 0x38: /* FMINNM */ 9248 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9249 break; 9250 case 0x3a: /* FSUB */ 9251 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9252 break; 9253 case 0x3e: /* FMIN */ 9254 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9255 break; 9256 case 0x3f: /* FRSQRTS */ 9257 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9258 break; 9259 case 0x5b: /* FMUL */ 9260 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9261 break; 9262 case 0x5c: /* FCMGE */ 9263 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9264 break; 9265 case 0x5d: /* FACGE */ 9266 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9267 break; 9268 case 0x5f: /* FDIV */ 9269 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9270 break; 9271 case 0x7a: /* FABD */ 9272 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9273 gen_helper_vfp_abss(tcg_res, tcg_res); 9274 break; 9275 case 0x7c: /* FCMGT */ 9276 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9277 break; 9278 case 0x7d: /* FACGT */ 9279 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9280 break; 9281 default: 9282 g_assert_not_reached(); 9283 } 9284 9285 if (elements == 1) { 9286 /* scalar single so clear high part */ 9287 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9288 9289 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9290 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9291 } else { 9292 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9293 } 9294 } 9295 } 9296 9297 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9298 } 9299 9300 /* AdvSIMD scalar three same 9301 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9302 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9303 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9304 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9305 */ 9306 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9307 { 9308 int rd = extract32(insn, 0, 5); 9309 int rn = extract32(insn, 5, 5); 9310 int opcode = extract32(insn, 11, 5); 9311 int rm = extract32(insn, 16, 5); 9312 int size = extract32(insn, 22, 2); 9313 bool u = extract32(insn, 29, 1); 9314 TCGv_i64 tcg_rd; 9315 9316 if (opcode >= 0x18) { 9317 /* Floating point: U, size[1] and opcode indicate operation */ 9318 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9319 switch (fpopcode) { 9320 case 0x1b: /* FMULX */ 9321 case 0x1f: /* FRECPS */ 9322 case 0x3f: /* FRSQRTS */ 9323 case 0x5d: /* FACGE */ 9324 case 0x7d: /* FACGT */ 9325 case 0x1c: /* FCMEQ */ 9326 case 0x5c: /* FCMGE */ 9327 case 0x7c: /* FCMGT */ 9328 case 0x7a: /* FABD */ 9329 break; 9330 default: 9331 unallocated_encoding(s); 9332 return; 9333 } 9334 9335 if (!fp_access_check(s)) { 9336 return; 9337 } 9338 9339 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9340 return; 9341 } 9342 9343 switch (opcode) { 9344 case 0x1: /* SQADD, UQADD */ 9345 case 0x5: /* SQSUB, UQSUB */ 9346 case 0x9: /* SQSHL, UQSHL */ 9347 case 0xb: /* SQRSHL, UQRSHL */ 9348 break; 9349 case 0x8: /* SSHL, USHL */ 9350 case 0xa: /* SRSHL, URSHL */ 9351 case 0x6: /* CMGT, CMHI */ 9352 case 0x7: /* CMGE, CMHS */ 9353 case 0x11: /* CMTST, CMEQ */ 9354 case 0x10: /* ADD, SUB (vector) */ 9355 if (size != 3) { 9356 unallocated_encoding(s); 9357 return; 9358 } 9359 break; 9360 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9361 if (size != 1 && size != 2) { 9362 unallocated_encoding(s); 9363 return; 9364 } 9365 break; 9366 default: 9367 unallocated_encoding(s); 9368 return; 9369 } 9370 9371 if (!fp_access_check(s)) { 9372 return; 9373 } 9374 9375 tcg_rd = tcg_temp_new_i64(); 9376 9377 if (size == 3) { 9378 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9379 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9380 9381 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9382 } else { 9383 /* Do a single operation on the lowest element in the vector. 9384 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9385 * no side effects for all these operations. 9386 * OPTME: special-purpose helpers would avoid doing some 9387 * unnecessary work in the helper for the 8 and 16 bit cases. 9388 */ 9389 NeonGenTwoOpEnvFn *genenvfn; 9390 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9391 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9392 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9393 9394 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9395 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9396 9397 switch (opcode) { 9398 case 0x1: /* SQADD, UQADD */ 9399 { 9400 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9401 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9402 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9403 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9404 }; 9405 genenvfn = fns[size][u]; 9406 break; 9407 } 9408 case 0x5: /* SQSUB, UQSUB */ 9409 { 9410 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9411 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9412 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9413 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9414 }; 9415 genenvfn = fns[size][u]; 9416 break; 9417 } 9418 case 0x9: /* SQSHL, UQSHL */ 9419 { 9420 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9421 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9422 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9423 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9424 }; 9425 genenvfn = fns[size][u]; 9426 break; 9427 } 9428 case 0xb: /* SQRSHL, UQRSHL */ 9429 { 9430 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9431 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9432 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9433 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9434 }; 9435 genenvfn = fns[size][u]; 9436 break; 9437 } 9438 case 0x16: /* SQDMULH, SQRDMULH */ 9439 { 9440 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9441 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9442 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9443 }; 9444 assert(size == 1 || size == 2); 9445 genenvfn = fns[size - 1][u]; 9446 break; 9447 } 9448 default: 9449 g_assert_not_reached(); 9450 } 9451 9452 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9453 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9454 } 9455 9456 write_fp_dreg(s, rd, tcg_rd); 9457 } 9458 9459 /* AdvSIMD scalar three same FP16 9460 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9461 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9462 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9463 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9464 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9465 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9466 */ 9467 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9468 uint32_t insn) 9469 { 9470 int rd = extract32(insn, 0, 5); 9471 int rn = extract32(insn, 5, 5); 9472 int opcode = extract32(insn, 11, 3); 9473 int rm = extract32(insn, 16, 5); 9474 bool u = extract32(insn, 29, 1); 9475 bool a = extract32(insn, 23, 1); 9476 int fpopcode = opcode | (a << 3) | (u << 4); 9477 TCGv_ptr fpst; 9478 TCGv_i32 tcg_op1; 9479 TCGv_i32 tcg_op2; 9480 TCGv_i32 tcg_res; 9481 9482 switch (fpopcode) { 9483 case 0x03: /* FMULX */ 9484 case 0x04: /* FCMEQ (reg) */ 9485 case 0x07: /* FRECPS */ 9486 case 0x0f: /* FRSQRTS */ 9487 case 0x14: /* FCMGE (reg) */ 9488 case 0x15: /* FACGE */ 9489 case 0x1a: /* FABD */ 9490 case 0x1c: /* FCMGT (reg) */ 9491 case 0x1d: /* FACGT */ 9492 break; 9493 default: 9494 unallocated_encoding(s); 9495 return; 9496 } 9497 9498 if (!dc_isar_feature(aa64_fp16, s)) { 9499 unallocated_encoding(s); 9500 } 9501 9502 if (!fp_access_check(s)) { 9503 return; 9504 } 9505 9506 fpst = fpstatus_ptr(FPST_FPCR_F16); 9507 9508 tcg_op1 = read_fp_hreg(s, rn); 9509 tcg_op2 = read_fp_hreg(s, rm); 9510 tcg_res = tcg_temp_new_i32(); 9511 9512 switch (fpopcode) { 9513 case 0x03: /* FMULX */ 9514 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9515 break; 9516 case 0x04: /* FCMEQ (reg) */ 9517 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9518 break; 9519 case 0x07: /* FRECPS */ 9520 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9521 break; 9522 case 0x0f: /* FRSQRTS */ 9523 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9524 break; 9525 case 0x14: /* FCMGE (reg) */ 9526 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9527 break; 9528 case 0x15: /* FACGE */ 9529 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9530 break; 9531 case 0x1a: /* FABD */ 9532 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9533 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9534 break; 9535 case 0x1c: /* FCMGT (reg) */ 9536 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9537 break; 9538 case 0x1d: /* FACGT */ 9539 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9540 break; 9541 default: 9542 g_assert_not_reached(); 9543 } 9544 9545 write_fp_sreg(s, rd, tcg_res); 9546 } 9547 9548 /* AdvSIMD scalar three same extra 9549 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9550 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9551 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9552 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9553 */ 9554 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9555 uint32_t insn) 9556 { 9557 int rd = extract32(insn, 0, 5); 9558 int rn = extract32(insn, 5, 5); 9559 int opcode = extract32(insn, 11, 4); 9560 int rm = extract32(insn, 16, 5); 9561 int size = extract32(insn, 22, 2); 9562 bool u = extract32(insn, 29, 1); 9563 TCGv_i32 ele1, ele2, ele3; 9564 TCGv_i64 res; 9565 bool feature; 9566 9567 switch (u * 16 + opcode) { 9568 case 0x10: /* SQRDMLAH (vector) */ 9569 case 0x11: /* SQRDMLSH (vector) */ 9570 if (size != 1 && size != 2) { 9571 unallocated_encoding(s); 9572 return; 9573 } 9574 feature = dc_isar_feature(aa64_rdm, s); 9575 break; 9576 default: 9577 unallocated_encoding(s); 9578 return; 9579 } 9580 if (!feature) { 9581 unallocated_encoding(s); 9582 return; 9583 } 9584 if (!fp_access_check(s)) { 9585 return; 9586 } 9587 9588 /* Do a single operation on the lowest element in the vector. 9589 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9590 * with no side effects for all these operations. 9591 * OPTME: special-purpose helpers would avoid doing some 9592 * unnecessary work in the helper for the 16 bit cases. 9593 */ 9594 ele1 = tcg_temp_new_i32(); 9595 ele2 = tcg_temp_new_i32(); 9596 ele3 = tcg_temp_new_i32(); 9597 9598 read_vec_element_i32(s, ele1, rn, 0, size); 9599 read_vec_element_i32(s, ele2, rm, 0, size); 9600 read_vec_element_i32(s, ele3, rd, 0, size); 9601 9602 switch (opcode) { 9603 case 0x0: /* SQRDMLAH */ 9604 if (size == 1) { 9605 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9606 } else { 9607 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9608 } 9609 break; 9610 case 0x1: /* SQRDMLSH */ 9611 if (size == 1) { 9612 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9613 } else { 9614 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9615 } 9616 break; 9617 default: 9618 g_assert_not_reached(); 9619 } 9620 9621 res = tcg_temp_new_i64(); 9622 tcg_gen_extu_i32_i64(res, ele3); 9623 write_fp_dreg(s, rd, res); 9624 } 9625 9626 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9627 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9628 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9629 { 9630 /* Handle 64->64 opcodes which are shared between the scalar and 9631 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9632 * is valid in either group and also the double-precision fp ops. 9633 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9634 * requires them. 9635 */ 9636 TCGCond cond; 9637 9638 switch (opcode) { 9639 case 0x4: /* CLS, CLZ */ 9640 if (u) { 9641 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9642 } else { 9643 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9644 } 9645 break; 9646 case 0x5: /* NOT */ 9647 /* This opcode is shared with CNT and RBIT but we have earlier 9648 * enforced that size == 3 if and only if this is the NOT insn. 9649 */ 9650 tcg_gen_not_i64(tcg_rd, tcg_rn); 9651 break; 9652 case 0x7: /* SQABS, SQNEG */ 9653 if (u) { 9654 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9655 } else { 9656 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9657 } 9658 break; 9659 case 0xa: /* CMLT */ 9660 /* 64 bit integer comparison against zero, result is 9661 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9662 * subtracting 1. 9663 */ 9664 cond = TCG_COND_LT; 9665 do_cmop: 9666 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9667 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9668 break; 9669 case 0x8: /* CMGT, CMGE */ 9670 cond = u ? TCG_COND_GE : TCG_COND_GT; 9671 goto do_cmop; 9672 case 0x9: /* CMEQ, CMLE */ 9673 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9674 goto do_cmop; 9675 case 0xb: /* ABS, NEG */ 9676 if (u) { 9677 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9678 } else { 9679 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9680 } 9681 break; 9682 case 0x2f: /* FABS */ 9683 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9684 break; 9685 case 0x6f: /* FNEG */ 9686 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9687 break; 9688 case 0x7f: /* FSQRT */ 9689 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9690 break; 9691 case 0x1a: /* FCVTNS */ 9692 case 0x1b: /* FCVTMS */ 9693 case 0x1c: /* FCVTAS */ 9694 case 0x3a: /* FCVTPS */ 9695 case 0x3b: /* FCVTZS */ 9696 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9697 break; 9698 case 0x5a: /* FCVTNU */ 9699 case 0x5b: /* FCVTMU */ 9700 case 0x5c: /* FCVTAU */ 9701 case 0x7a: /* FCVTPU */ 9702 case 0x7b: /* FCVTZU */ 9703 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9704 break; 9705 case 0x18: /* FRINTN */ 9706 case 0x19: /* FRINTM */ 9707 case 0x38: /* FRINTP */ 9708 case 0x39: /* FRINTZ */ 9709 case 0x58: /* FRINTA */ 9710 case 0x79: /* FRINTI */ 9711 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9712 break; 9713 case 0x59: /* FRINTX */ 9714 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9715 break; 9716 case 0x1e: /* FRINT32Z */ 9717 case 0x5e: /* FRINT32X */ 9718 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9719 break; 9720 case 0x1f: /* FRINT64Z */ 9721 case 0x5f: /* FRINT64X */ 9722 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9723 break; 9724 default: 9725 g_assert_not_reached(); 9726 } 9727 } 9728 9729 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9730 bool is_scalar, bool is_u, bool is_q, 9731 int size, int rn, int rd) 9732 { 9733 bool is_double = (size == MO_64); 9734 TCGv_ptr fpst; 9735 9736 if (!fp_access_check(s)) { 9737 return; 9738 } 9739 9740 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9741 9742 if (is_double) { 9743 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9744 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9745 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9746 NeonGenTwoDoubleOpFn *genfn; 9747 bool swap = false; 9748 int pass; 9749 9750 switch (opcode) { 9751 case 0x2e: /* FCMLT (zero) */ 9752 swap = true; 9753 /* fallthrough */ 9754 case 0x2c: /* FCMGT (zero) */ 9755 genfn = gen_helper_neon_cgt_f64; 9756 break; 9757 case 0x2d: /* FCMEQ (zero) */ 9758 genfn = gen_helper_neon_ceq_f64; 9759 break; 9760 case 0x6d: /* FCMLE (zero) */ 9761 swap = true; 9762 /* fall through */ 9763 case 0x6c: /* FCMGE (zero) */ 9764 genfn = gen_helper_neon_cge_f64; 9765 break; 9766 default: 9767 g_assert_not_reached(); 9768 } 9769 9770 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9771 read_vec_element(s, tcg_op, rn, pass, MO_64); 9772 if (swap) { 9773 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9774 } else { 9775 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9776 } 9777 write_vec_element(s, tcg_res, rd, pass, MO_64); 9778 } 9779 9780 clear_vec_high(s, !is_scalar, rd); 9781 } else { 9782 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9783 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9784 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9785 NeonGenTwoSingleOpFn *genfn; 9786 bool swap = false; 9787 int pass, maxpasses; 9788 9789 if (size == MO_16) { 9790 switch (opcode) { 9791 case 0x2e: /* FCMLT (zero) */ 9792 swap = true; 9793 /* fall through */ 9794 case 0x2c: /* FCMGT (zero) */ 9795 genfn = gen_helper_advsimd_cgt_f16; 9796 break; 9797 case 0x2d: /* FCMEQ (zero) */ 9798 genfn = gen_helper_advsimd_ceq_f16; 9799 break; 9800 case 0x6d: /* FCMLE (zero) */ 9801 swap = true; 9802 /* fall through */ 9803 case 0x6c: /* FCMGE (zero) */ 9804 genfn = gen_helper_advsimd_cge_f16; 9805 break; 9806 default: 9807 g_assert_not_reached(); 9808 } 9809 } else { 9810 switch (opcode) { 9811 case 0x2e: /* FCMLT (zero) */ 9812 swap = true; 9813 /* fall through */ 9814 case 0x2c: /* FCMGT (zero) */ 9815 genfn = gen_helper_neon_cgt_f32; 9816 break; 9817 case 0x2d: /* FCMEQ (zero) */ 9818 genfn = gen_helper_neon_ceq_f32; 9819 break; 9820 case 0x6d: /* FCMLE (zero) */ 9821 swap = true; 9822 /* fall through */ 9823 case 0x6c: /* FCMGE (zero) */ 9824 genfn = gen_helper_neon_cge_f32; 9825 break; 9826 default: 9827 g_assert_not_reached(); 9828 } 9829 } 9830 9831 if (is_scalar) { 9832 maxpasses = 1; 9833 } else { 9834 int vector_size = 8 << is_q; 9835 maxpasses = vector_size >> size; 9836 } 9837 9838 for (pass = 0; pass < maxpasses; pass++) { 9839 read_vec_element_i32(s, tcg_op, rn, pass, size); 9840 if (swap) { 9841 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9842 } else { 9843 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9844 } 9845 if (is_scalar) { 9846 write_fp_sreg(s, rd, tcg_res); 9847 } else { 9848 write_vec_element_i32(s, tcg_res, rd, pass, size); 9849 } 9850 } 9851 9852 if (!is_scalar) { 9853 clear_vec_high(s, is_q, rd); 9854 } 9855 } 9856 } 9857 9858 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9859 bool is_scalar, bool is_u, bool is_q, 9860 int size, int rn, int rd) 9861 { 9862 bool is_double = (size == 3); 9863 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9864 9865 if (is_double) { 9866 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9867 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9868 int pass; 9869 9870 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9871 read_vec_element(s, tcg_op, rn, pass, MO_64); 9872 switch (opcode) { 9873 case 0x3d: /* FRECPE */ 9874 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9875 break; 9876 case 0x3f: /* FRECPX */ 9877 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9878 break; 9879 case 0x7d: /* FRSQRTE */ 9880 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9881 break; 9882 default: 9883 g_assert_not_reached(); 9884 } 9885 write_vec_element(s, tcg_res, rd, pass, MO_64); 9886 } 9887 clear_vec_high(s, !is_scalar, rd); 9888 } else { 9889 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9890 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9891 int pass, maxpasses; 9892 9893 if (is_scalar) { 9894 maxpasses = 1; 9895 } else { 9896 maxpasses = is_q ? 4 : 2; 9897 } 9898 9899 for (pass = 0; pass < maxpasses; pass++) { 9900 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9901 9902 switch (opcode) { 9903 case 0x3c: /* URECPE */ 9904 gen_helper_recpe_u32(tcg_res, tcg_op); 9905 break; 9906 case 0x3d: /* FRECPE */ 9907 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9908 break; 9909 case 0x3f: /* FRECPX */ 9910 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9911 break; 9912 case 0x7d: /* FRSQRTE */ 9913 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9914 break; 9915 default: 9916 g_assert_not_reached(); 9917 } 9918 9919 if (is_scalar) { 9920 write_fp_sreg(s, rd, tcg_res); 9921 } else { 9922 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9923 } 9924 } 9925 if (!is_scalar) { 9926 clear_vec_high(s, is_q, rd); 9927 } 9928 } 9929 } 9930 9931 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9932 int opcode, bool u, bool is_q, 9933 int size, int rn, int rd) 9934 { 9935 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9936 * in the source becomes a size element in the destination). 9937 */ 9938 int pass; 9939 TCGv_i32 tcg_res[2]; 9940 int destelt = is_q ? 2 : 0; 9941 int passes = scalar ? 1 : 2; 9942 9943 if (scalar) { 9944 tcg_res[1] = tcg_constant_i32(0); 9945 } 9946 9947 for (pass = 0; pass < passes; pass++) { 9948 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9949 NeonGenNarrowFn *genfn = NULL; 9950 NeonGenNarrowEnvFn *genenvfn = NULL; 9951 9952 if (scalar) { 9953 read_vec_element(s, tcg_op, rn, pass, size + 1); 9954 } else { 9955 read_vec_element(s, tcg_op, rn, pass, MO_64); 9956 } 9957 tcg_res[pass] = tcg_temp_new_i32(); 9958 9959 switch (opcode) { 9960 case 0x12: /* XTN, SQXTUN */ 9961 { 9962 static NeonGenNarrowFn * const xtnfns[3] = { 9963 gen_helper_neon_narrow_u8, 9964 gen_helper_neon_narrow_u16, 9965 tcg_gen_extrl_i64_i32, 9966 }; 9967 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9968 gen_helper_neon_unarrow_sat8, 9969 gen_helper_neon_unarrow_sat16, 9970 gen_helper_neon_unarrow_sat32, 9971 }; 9972 if (u) { 9973 genenvfn = sqxtunfns[size]; 9974 } else { 9975 genfn = xtnfns[size]; 9976 } 9977 break; 9978 } 9979 case 0x14: /* SQXTN, UQXTN */ 9980 { 9981 static NeonGenNarrowEnvFn * const fns[3][2] = { 9982 { gen_helper_neon_narrow_sat_s8, 9983 gen_helper_neon_narrow_sat_u8 }, 9984 { gen_helper_neon_narrow_sat_s16, 9985 gen_helper_neon_narrow_sat_u16 }, 9986 { gen_helper_neon_narrow_sat_s32, 9987 gen_helper_neon_narrow_sat_u32 }, 9988 }; 9989 genenvfn = fns[size][u]; 9990 break; 9991 } 9992 case 0x16: /* FCVTN, FCVTN2 */ 9993 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9994 if (size == 2) { 9995 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9996 } else { 9997 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9998 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9999 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10000 TCGv_i32 ahp = get_ahp_flag(); 10001 10002 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10003 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10004 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10005 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10006 } 10007 break; 10008 case 0x36: /* BFCVTN, BFCVTN2 */ 10009 { 10010 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10011 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10012 } 10013 break; 10014 case 0x56: /* FCVTXN, FCVTXN2 */ 10015 /* 64 bit to 32 bit float conversion 10016 * with von Neumann rounding (round to odd) 10017 */ 10018 assert(size == 2); 10019 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 10020 break; 10021 default: 10022 g_assert_not_reached(); 10023 } 10024 10025 if (genfn) { 10026 genfn(tcg_res[pass], tcg_op); 10027 } else if (genenvfn) { 10028 genenvfn(tcg_res[pass], cpu_env, tcg_op); 10029 } 10030 } 10031 10032 for (pass = 0; pass < 2; pass++) { 10033 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10034 } 10035 clear_vec_high(s, is_q, rd); 10036 } 10037 10038 /* Remaining saturating accumulating ops */ 10039 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10040 bool is_q, int size, int rn, int rd) 10041 { 10042 bool is_double = (size == 3); 10043 10044 if (is_double) { 10045 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10046 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10047 int pass; 10048 10049 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10050 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10051 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10052 10053 if (is_u) { /* USQADD */ 10054 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10055 } else { /* SUQADD */ 10056 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10057 } 10058 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10059 } 10060 clear_vec_high(s, !is_scalar, rd); 10061 } else { 10062 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10063 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10064 int pass, maxpasses; 10065 10066 if (is_scalar) { 10067 maxpasses = 1; 10068 } else { 10069 maxpasses = is_q ? 4 : 2; 10070 } 10071 10072 for (pass = 0; pass < maxpasses; pass++) { 10073 if (is_scalar) { 10074 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10075 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10076 } else { 10077 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10078 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10079 } 10080 10081 if (is_u) { /* USQADD */ 10082 switch (size) { 10083 case 0: 10084 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10085 break; 10086 case 1: 10087 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10088 break; 10089 case 2: 10090 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10091 break; 10092 default: 10093 g_assert_not_reached(); 10094 } 10095 } else { /* SUQADD */ 10096 switch (size) { 10097 case 0: 10098 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10099 break; 10100 case 1: 10101 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10102 break; 10103 case 2: 10104 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10105 break; 10106 default: 10107 g_assert_not_reached(); 10108 } 10109 } 10110 10111 if (is_scalar) { 10112 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10113 } 10114 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10115 } 10116 clear_vec_high(s, is_q, rd); 10117 } 10118 } 10119 10120 /* AdvSIMD scalar two reg misc 10121 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10122 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10123 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10124 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10125 */ 10126 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10127 { 10128 int rd = extract32(insn, 0, 5); 10129 int rn = extract32(insn, 5, 5); 10130 int opcode = extract32(insn, 12, 5); 10131 int size = extract32(insn, 22, 2); 10132 bool u = extract32(insn, 29, 1); 10133 bool is_fcvt = false; 10134 int rmode; 10135 TCGv_i32 tcg_rmode; 10136 TCGv_ptr tcg_fpstatus; 10137 10138 switch (opcode) { 10139 case 0x3: /* USQADD / SUQADD*/ 10140 if (!fp_access_check(s)) { 10141 return; 10142 } 10143 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10144 return; 10145 case 0x7: /* SQABS / SQNEG */ 10146 break; 10147 case 0xa: /* CMLT */ 10148 if (u) { 10149 unallocated_encoding(s); 10150 return; 10151 } 10152 /* fall through */ 10153 case 0x8: /* CMGT, CMGE */ 10154 case 0x9: /* CMEQ, CMLE */ 10155 case 0xb: /* ABS, NEG */ 10156 if (size != 3) { 10157 unallocated_encoding(s); 10158 return; 10159 } 10160 break; 10161 case 0x12: /* SQXTUN */ 10162 if (!u) { 10163 unallocated_encoding(s); 10164 return; 10165 } 10166 /* fall through */ 10167 case 0x14: /* SQXTN, UQXTN */ 10168 if (size == 3) { 10169 unallocated_encoding(s); 10170 return; 10171 } 10172 if (!fp_access_check(s)) { 10173 return; 10174 } 10175 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10176 return; 10177 case 0xc ... 0xf: 10178 case 0x16 ... 0x1d: 10179 case 0x1f: 10180 /* Floating point: U, size[1] and opcode indicate operation; 10181 * size[0] indicates single or double precision. 10182 */ 10183 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10184 size = extract32(size, 0, 1) ? 3 : 2; 10185 switch (opcode) { 10186 case 0x2c: /* FCMGT (zero) */ 10187 case 0x2d: /* FCMEQ (zero) */ 10188 case 0x2e: /* FCMLT (zero) */ 10189 case 0x6c: /* FCMGE (zero) */ 10190 case 0x6d: /* FCMLE (zero) */ 10191 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10192 return; 10193 case 0x1d: /* SCVTF */ 10194 case 0x5d: /* UCVTF */ 10195 { 10196 bool is_signed = (opcode == 0x1d); 10197 if (!fp_access_check(s)) { 10198 return; 10199 } 10200 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10201 return; 10202 } 10203 case 0x3d: /* FRECPE */ 10204 case 0x3f: /* FRECPX */ 10205 case 0x7d: /* FRSQRTE */ 10206 if (!fp_access_check(s)) { 10207 return; 10208 } 10209 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10210 return; 10211 case 0x1a: /* FCVTNS */ 10212 case 0x1b: /* FCVTMS */ 10213 case 0x3a: /* FCVTPS */ 10214 case 0x3b: /* FCVTZS */ 10215 case 0x5a: /* FCVTNU */ 10216 case 0x5b: /* FCVTMU */ 10217 case 0x7a: /* FCVTPU */ 10218 case 0x7b: /* FCVTZU */ 10219 is_fcvt = true; 10220 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10221 break; 10222 case 0x1c: /* FCVTAS */ 10223 case 0x5c: /* FCVTAU */ 10224 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10225 is_fcvt = true; 10226 rmode = FPROUNDING_TIEAWAY; 10227 break; 10228 case 0x56: /* FCVTXN, FCVTXN2 */ 10229 if (size == 2) { 10230 unallocated_encoding(s); 10231 return; 10232 } 10233 if (!fp_access_check(s)) { 10234 return; 10235 } 10236 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10237 return; 10238 default: 10239 unallocated_encoding(s); 10240 return; 10241 } 10242 break; 10243 default: 10244 unallocated_encoding(s); 10245 return; 10246 } 10247 10248 if (!fp_access_check(s)) { 10249 return; 10250 } 10251 10252 if (is_fcvt) { 10253 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10254 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10255 } else { 10256 tcg_fpstatus = NULL; 10257 tcg_rmode = NULL; 10258 } 10259 10260 if (size == 3) { 10261 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10262 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10263 10264 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10265 write_fp_dreg(s, rd, tcg_rd); 10266 } else { 10267 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10268 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10269 10270 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10271 10272 switch (opcode) { 10273 case 0x7: /* SQABS, SQNEG */ 10274 { 10275 NeonGenOneOpEnvFn *genfn; 10276 static NeonGenOneOpEnvFn * const fns[3][2] = { 10277 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10278 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10279 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10280 }; 10281 genfn = fns[size][u]; 10282 genfn(tcg_rd, cpu_env, tcg_rn); 10283 break; 10284 } 10285 case 0x1a: /* FCVTNS */ 10286 case 0x1b: /* FCVTMS */ 10287 case 0x1c: /* FCVTAS */ 10288 case 0x3a: /* FCVTPS */ 10289 case 0x3b: /* FCVTZS */ 10290 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10291 tcg_fpstatus); 10292 break; 10293 case 0x5a: /* FCVTNU */ 10294 case 0x5b: /* FCVTMU */ 10295 case 0x5c: /* FCVTAU */ 10296 case 0x7a: /* FCVTPU */ 10297 case 0x7b: /* FCVTZU */ 10298 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10299 tcg_fpstatus); 10300 break; 10301 default: 10302 g_assert_not_reached(); 10303 } 10304 10305 write_fp_sreg(s, rd, tcg_rd); 10306 } 10307 10308 if (is_fcvt) { 10309 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10310 } 10311 } 10312 10313 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10314 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10315 int immh, int immb, int opcode, int rn, int rd) 10316 { 10317 int size = 32 - clz32(immh) - 1; 10318 int immhb = immh << 3 | immb; 10319 int shift = 2 * (8 << size) - immhb; 10320 GVecGen2iFn *gvec_fn; 10321 10322 if (extract32(immh, 3, 1) && !is_q) { 10323 unallocated_encoding(s); 10324 return; 10325 } 10326 tcg_debug_assert(size <= 3); 10327 10328 if (!fp_access_check(s)) { 10329 return; 10330 } 10331 10332 switch (opcode) { 10333 case 0x02: /* SSRA / USRA (accumulate) */ 10334 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10335 break; 10336 10337 case 0x08: /* SRI */ 10338 gvec_fn = gen_gvec_sri; 10339 break; 10340 10341 case 0x00: /* SSHR / USHR */ 10342 if (is_u) { 10343 if (shift == 8 << size) { 10344 /* Shift count the same size as element size produces zero. */ 10345 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10346 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10347 return; 10348 } 10349 gvec_fn = tcg_gen_gvec_shri; 10350 } else { 10351 /* Shift count the same size as element size produces all sign. */ 10352 if (shift == 8 << size) { 10353 shift -= 1; 10354 } 10355 gvec_fn = tcg_gen_gvec_sari; 10356 } 10357 break; 10358 10359 case 0x04: /* SRSHR / URSHR (rounding) */ 10360 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10361 break; 10362 10363 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10364 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10365 break; 10366 10367 default: 10368 g_assert_not_reached(); 10369 } 10370 10371 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10372 } 10373 10374 /* SHL/SLI - Vector shift left */ 10375 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10376 int immh, int immb, int opcode, int rn, int rd) 10377 { 10378 int size = 32 - clz32(immh) - 1; 10379 int immhb = immh << 3 | immb; 10380 int shift = immhb - (8 << size); 10381 10382 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10383 assert(size >= 0 && size <= 3); 10384 10385 if (extract32(immh, 3, 1) && !is_q) { 10386 unallocated_encoding(s); 10387 return; 10388 } 10389 10390 if (!fp_access_check(s)) { 10391 return; 10392 } 10393 10394 if (insert) { 10395 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10396 } else { 10397 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10398 } 10399 } 10400 10401 /* USHLL/SHLL - Vector shift left with widening */ 10402 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10403 int immh, int immb, int opcode, int rn, int rd) 10404 { 10405 int size = 32 - clz32(immh) - 1; 10406 int immhb = immh << 3 | immb; 10407 int shift = immhb - (8 << size); 10408 int dsize = 64; 10409 int esize = 8 << size; 10410 int elements = dsize/esize; 10411 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10412 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10413 int i; 10414 10415 if (size >= 3) { 10416 unallocated_encoding(s); 10417 return; 10418 } 10419 10420 if (!fp_access_check(s)) { 10421 return; 10422 } 10423 10424 /* For the LL variants the store is larger than the load, 10425 * so if rd == rn we would overwrite parts of our input. 10426 * So load everything right now and use shifts in the main loop. 10427 */ 10428 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10429 10430 for (i = 0; i < elements; i++) { 10431 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10432 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10433 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10434 write_vec_element(s, tcg_rd, rd, i, size + 1); 10435 } 10436 } 10437 10438 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10439 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10440 int immh, int immb, int opcode, int rn, int rd) 10441 { 10442 int immhb = immh << 3 | immb; 10443 int size = 32 - clz32(immh) - 1; 10444 int dsize = 64; 10445 int esize = 8 << size; 10446 int elements = dsize/esize; 10447 int shift = (2 * esize) - immhb; 10448 bool round = extract32(opcode, 0, 1); 10449 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10450 TCGv_i64 tcg_round; 10451 int i; 10452 10453 if (extract32(immh, 3, 1)) { 10454 unallocated_encoding(s); 10455 return; 10456 } 10457 10458 if (!fp_access_check(s)) { 10459 return; 10460 } 10461 10462 tcg_rn = tcg_temp_new_i64(); 10463 tcg_rd = tcg_temp_new_i64(); 10464 tcg_final = tcg_temp_new_i64(); 10465 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10466 10467 if (round) { 10468 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10469 } else { 10470 tcg_round = NULL; 10471 } 10472 10473 for (i = 0; i < elements; i++) { 10474 read_vec_element(s, tcg_rn, rn, i, size+1); 10475 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10476 false, true, size+1, shift); 10477 10478 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10479 } 10480 10481 if (!is_q) { 10482 write_vec_element(s, tcg_final, rd, 0, MO_64); 10483 } else { 10484 write_vec_element(s, tcg_final, rd, 1, MO_64); 10485 } 10486 10487 clear_vec_high(s, is_q, rd); 10488 } 10489 10490 10491 /* AdvSIMD shift by immediate 10492 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10493 * +---+---+---+-------------+------+------+--------+---+------+------+ 10494 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10495 * +---+---+---+-------------+------+------+--------+---+------+------+ 10496 */ 10497 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10498 { 10499 int rd = extract32(insn, 0, 5); 10500 int rn = extract32(insn, 5, 5); 10501 int opcode = extract32(insn, 11, 5); 10502 int immb = extract32(insn, 16, 3); 10503 int immh = extract32(insn, 19, 4); 10504 bool is_u = extract32(insn, 29, 1); 10505 bool is_q = extract32(insn, 30, 1); 10506 10507 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10508 assert(immh != 0); 10509 10510 switch (opcode) { 10511 case 0x08: /* SRI */ 10512 if (!is_u) { 10513 unallocated_encoding(s); 10514 return; 10515 } 10516 /* fall through */ 10517 case 0x00: /* SSHR / USHR */ 10518 case 0x02: /* SSRA / USRA (accumulate) */ 10519 case 0x04: /* SRSHR / URSHR (rounding) */ 10520 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10521 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10522 break; 10523 case 0x0a: /* SHL / SLI */ 10524 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10525 break; 10526 case 0x10: /* SHRN */ 10527 case 0x11: /* RSHRN / SQRSHRUN */ 10528 if (is_u) { 10529 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10530 opcode, rn, rd); 10531 } else { 10532 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10533 } 10534 break; 10535 case 0x12: /* SQSHRN / UQSHRN */ 10536 case 0x13: /* SQRSHRN / UQRSHRN */ 10537 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10538 opcode, rn, rd); 10539 break; 10540 case 0x14: /* SSHLL / USHLL */ 10541 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10542 break; 10543 case 0x1c: /* SCVTF / UCVTF */ 10544 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10545 opcode, rn, rd); 10546 break; 10547 case 0xc: /* SQSHLU */ 10548 if (!is_u) { 10549 unallocated_encoding(s); 10550 return; 10551 } 10552 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10553 break; 10554 case 0xe: /* SQSHL, UQSHL */ 10555 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10556 break; 10557 case 0x1f: /* FCVTZS/ FCVTZU */ 10558 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10559 return; 10560 default: 10561 unallocated_encoding(s); 10562 return; 10563 } 10564 } 10565 10566 /* Generate code to do a "long" addition or subtraction, ie one done in 10567 * TCGv_i64 on vector lanes twice the width specified by size. 10568 */ 10569 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10570 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10571 { 10572 static NeonGenTwo64OpFn * const fns[3][2] = { 10573 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10574 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10575 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10576 }; 10577 NeonGenTwo64OpFn *genfn; 10578 assert(size < 3); 10579 10580 genfn = fns[size][is_sub]; 10581 genfn(tcg_res, tcg_op1, tcg_op2); 10582 } 10583 10584 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10585 int opcode, int rd, int rn, int rm) 10586 { 10587 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10588 TCGv_i64 tcg_res[2]; 10589 int pass, accop; 10590 10591 tcg_res[0] = tcg_temp_new_i64(); 10592 tcg_res[1] = tcg_temp_new_i64(); 10593 10594 /* Does this op do an adding accumulate, a subtracting accumulate, 10595 * or no accumulate at all? 10596 */ 10597 switch (opcode) { 10598 case 5: 10599 case 8: 10600 case 9: 10601 accop = 1; 10602 break; 10603 case 10: 10604 case 11: 10605 accop = -1; 10606 break; 10607 default: 10608 accop = 0; 10609 break; 10610 } 10611 10612 if (accop != 0) { 10613 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10614 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10615 } 10616 10617 /* size == 2 means two 32x32->64 operations; this is worth special 10618 * casing because we can generally handle it inline. 10619 */ 10620 if (size == 2) { 10621 for (pass = 0; pass < 2; pass++) { 10622 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10623 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10624 TCGv_i64 tcg_passres; 10625 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10626 10627 int elt = pass + is_q * 2; 10628 10629 read_vec_element(s, tcg_op1, rn, elt, memop); 10630 read_vec_element(s, tcg_op2, rm, elt, memop); 10631 10632 if (accop == 0) { 10633 tcg_passres = tcg_res[pass]; 10634 } else { 10635 tcg_passres = tcg_temp_new_i64(); 10636 } 10637 10638 switch (opcode) { 10639 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10640 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10641 break; 10642 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10643 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10644 break; 10645 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10646 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10647 { 10648 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10649 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10650 10651 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10652 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10653 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10654 tcg_passres, 10655 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10656 break; 10657 } 10658 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10659 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10660 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10661 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10662 break; 10663 case 9: /* SQDMLAL, SQDMLAL2 */ 10664 case 11: /* SQDMLSL, SQDMLSL2 */ 10665 case 13: /* SQDMULL, SQDMULL2 */ 10666 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10667 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10668 tcg_passres, tcg_passres); 10669 break; 10670 default: 10671 g_assert_not_reached(); 10672 } 10673 10674 if (opcode == 9 || opcode == 11) { 10675 /* saturating accumulate ops */ 10676 if (accop < 0) { 10677 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10678 } 10679 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10680 tcg_res[pass], tcg_passres); 10681 } else if (accop > 0) { 10682 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10683 } else if (accop < 0) { 10684 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10685 } 10686 } 10687 } else { 10688 /* size 0 or 1, generally helper functions */ 10689 for (pass = 0; pass < 2; pass++) { 10690 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10691 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10692 TCGv_i64 tcg_passres; 10693 int elt = pass + is_q * 2; 10694 10695 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10696 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10697 10698 if (accop == 0) { 10699 tcg_passres = tcg_res[pass]; 10700 } else { 10701 tcg_passres = tcg_temp_new_i64(); 10702 } 10703 10704 switch (opcode) { 10705 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10706 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10707 { 10708 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10709 static NeonGenWidenFn * const widenfns[2][2] = { 10710 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10711 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10712 }; 10713 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10714 10715 widenfn(tcg_op2_64, tcg_op2); 10716 widenfn(tcg_passres, tcg_op1); 10717 gen_neon_addl(size, (opcode == 2), tcg_passres, 10718 tcg_passres, tcg_op2_64); 10719 break; 10720 } 10721 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10722 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10723 if (size == 0) { 10724 if (is_u) { 10725 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10726 } else { 10727 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10728 } 10729 } else { 10730 if (is_u) { 10731 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10732 } else { 10733 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10734 } 10735 } 10736 break; 10737 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10738 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10739 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10740 if (size == 0) { 10741 if (is_u) { 10742 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10743 } else { 10744 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10745 } 10746 } else { 10747 if (is_u) { 10748 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10749 } else { 10750 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10751 } 10752 } 10753 break; 10754 case 9: /* SQDMLAL, SQDMLAL2 */ 10755 case 11: /* SQDMLSL, SQDMLSL2 */ 10756 case 13: /* SQDMULL, SQDMULL2 */ 10757 assert(size == 1); 10758 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10759 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10760 tcg_passres, tcg_passres); 10761 break; 10762 default: 10763 g_assert_not_reached(); 10764 } 10765 10766 if (accop != 0) { 10767 if (opcode == 9 || opcode == 11) { 10768 /* saturating accumulate ops */ 10769 if (accop < 0) { 10770 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10771 } 10772 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10773 tcg_res[pass], 10774 tcg_passres); 10775 } else { 10776 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10777 tcg_res[pass], tcg_passres); 10778 } 10779 } 10780 } 10781 } 10782 10783 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10784 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10785 } 10786 10787 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10788 int opcode, int rd, int rn, int rm) 10789 { 10790 TCGv_i64 tcg_res[2]; 10791 int part = is_q ? 2 : 0; 10792 int pass; 10793 10794 for (pass = 0; pass < 2; pass++) { 10795 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10796 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10797 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10798 static NeonGenWidenFn * const widenfns[3][2] = { 10799 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10800 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10801 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10802 }; 10803 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10804 10805 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10806 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10807 widenfn(tcg_op2_wide, tcg_op2); 10808 tcg_res[pass] = tcg_temp_new_i64(); 10809 gen_neon_addl(size, (opcode == 3), 10810 tcg_res[pass], tcg_op1, tcg_op2_wide); 10811 } 10812 10813 for (pass = 0; pass < 2; pass++) { 10814 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10815 } 10816 } 10817 10818 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10819 { 10820 tcg_gen_addi_i64(in, in, 1U << 31); 10821 tcg_gen_extrh_i64_i32(res, in); 10822 } 10823 10824 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10825 int opcode, int rd, int rn, int rm) 10826 { 10827 TCGv_i32 tcg_res[2]; 10828 int part = is_q ? 2 : 0; 10829 int pass; 10830 10831 for (pass = 0; pass < 2; pass++) { 10832 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10833 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10834 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10835 static NeonGenNarrowFn * const narrowfns[3][2] = { 10836 { gen_helper_neon_narrow_high_u8, 10837 gen_helper_neon_narrow_round_high_u8 }, 10838 { gen_helper_neon_narrow_high_u16, 10839 gen_helper_neon_narrow_round_high_u16 }, 10840 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10841 }; 10842 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10843 10844 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10845 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10846 10847 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10848 10849 tcg_res[pass] = tcg_temp_new_i32(); 10850 gennarrow(tcg_res[pass], tcg_wideres); 10851 } 10852 10853 for (pass = 0; pass < 2; pass++) { 10854 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10855 } 10856 clear_vec_high(s, is_q, rd); 10857 } 10858 10859 /* AdvSIMD three different 10860 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10861 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10862 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10863 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10864 */ 10865 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10866 { 10867 /* Instructions in this group fall into three basic classes 10868 * (in each case with the operation working on each element in 10869 * the input vectors): 10870 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10871 * 128 bit input) 10872 * (2) wide 64 x 128 -> 128 10873 * (3) narrowing 128 x 128 -> 64 10874 * Here we do initial decode, catch unallocated cases and 10875 * dispatch to separate functions for each class. 10876 */ 10877 int is_q = extract32(insn, 30, 1); 10878 int is_u = extract32(insn, 29, 1); 10879 int size = extract32(insn, 22, 2); 10880 int opcode = extract32(insn, 12, 4); 10881 int rm = extract32(insn, 16, 5); 10882 int rn = extract32(insn, 5, 5); 10883 int rd = extract32(insn, 0, 5); 10884 10885 switch (opcode) { 10886 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10887 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10888 /* 64 x 128 -> 128 */ 10889 if (size == 3) { 10890 unallocated_encoding(s); 10891 return; 10892 } 10893 if (!fp_access_check(s)) { 10894 return; 10895 } 10896 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10897 break; 10898 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10899 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10900 /* 128 x 128 -> 64 */ 10901 if (size == 3) { 10902 unallocated_encoding(s); 10903 return; 10904 } 10905 if (!fp_access_check(s)) { 10906 return; 10907 } 10908 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10909 break; 10910 case 14: /* PMULL, PMULL2 */ 10911 if (is_u) { 10912 unallocated_encoding(s); 10913 return; 10914 } 10915 switch (size) { 10916 case 0: /* PMULL.P8 */ 10917 if (!fp_access_check(s)) { 10918 return; 10919 } 10920 /* The Q field specifies lo/hi half input for this insn. */ 10921 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10922 gen_helper_neon_pmull_h); 10923 break; 10924 10925 case 3: /* PMULL.P64 */ 10926 if (!dc_isar_feature(aa64_pmull, s)) { 10927 unallocated_encoding(s); 10928 return; 10929 } 10930 if (!fp_access_check(s)) { 10931 return; 10932 } 10933 /* The Q field specifies lo/hi half input for this insn. */ 10934 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10935 gen_helper_gvec_pmull_q); 10936 break; 10937 10938 default: 10939 unallocated_encoding(s); 10940 break; 10941 } 10942 return; 10943 case 9: /* SQDMLAL, SQDMLAL2 */ 10944 case 11: /* SQDMLSL, SQDMLSL2 */ 10945 case 13: /* SQDMULL, SQDMULL2 */ 10946 if (is_u || size == 0) { 10947 unallocated_encoding(s); 10948 return; 10949 } 10950 /* fall through */ 10951 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10952 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10953 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10954 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10955 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10956 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10957 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10958 /* 64 x 64 -> 128 */ 10959 if (size == 3) { 10960 unallocated_encoding(s); 10961 return; 10962 } 10963 if (!fp_access_check(s)) { 10964 return; 10965 } 10966 10967 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10968 break; 10969 default: 10970 /* opcode 15 not allocated */ 10971 unallocated_encoding(s); 10972 break; 10973 } 10974 } 10975 10976 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10977 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10978 { 10979 int rd = extract32(insn, 0, 5); 10980 int rn = extract32(insn, 5, 5); 10981 int rm = extract32(insn, 16, 5); 10982 int size = extract32(insn, 22, 2); 10983 bool is_u = extract32(insn, 29, 1); 10984 bool is_q = extract32(insn, 30, 1); 10985 10986 if (!fp_access_check(s)) { 10987 return; 10988 } 10989 10990 switch (size + 4 * is_u) { 10991 case 0: /* AND */ 10992 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10993 return; 10994 case 1: /* BIC */ 10995 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10996 return; 10997 case 2: /* ORR */ 10998 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10999 return; 11000 case 3: /* ORN */ 11001 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 11002 return; 11003 case 4: /* EOR */ 11004 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 11005 return; 11006 11007 case 5: /* BSL bitwise select */ 11008 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 11009 return; 11010 case 6: /* BIT, bitwise insert if true */ 11011 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 11012 return; 11013 case 7: /* BIF, bitwise insert if false */ 11014 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11015 return; 11016 11017 default: 11018 g_assert_not_reached(); 11019 } 11020 } 11021 11022 /* Pairwise op subgroup of C3.6.16. 11023 * 11024 * This is called directly or via the handle_3same_float for float pairwise 11025 * operations where the opcode and size are calculated differently. 11026 */ 11027 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11028 int size, int rn, int rm, int rd) 11029 { 11030 TCGv_ptr fpst; 11031 int pass; 11032 11033 /* Floating point operations need fpst */ 11034 if (opcode >= 0x58) { 11035 fpst = fpstatus_ptr(FPST_FPCR); 11036 } else { 11037 fpst = NULL; 11038 } 11039 11040 if (!fp_access_check(s)) { 11041 return; 11042 } 11043 11044 /* These operations work on the concatenated rm:rn, with each pair of 11045 * adjacent elements being operated on to produce an element in the result. 11046 */ 11047 if (size == 3) { 11048 TCGv_i64 tcg_res[2]; 11049 11050 for (pass = 0; pass < 2; pass++) { 11051 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11052 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11053 int passreg = (pass == 0) ? rn : rm; 11054 11055 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11056 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11057 tcg_res[pass] = tcg_temp_new_i64(); 11058 11059 switch (opcode) { 11060 case 0x17: /* ADDP */ 11061 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11062 break; 11063 case 0x58: /* FMAXNMP */ 11064 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11065 break; 11066 case 0x5a: /* FADDP */ 11067 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11068 break; 11069 case 0x5e: /* FMAXP */ 11070 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11071 break; 11072 case 0x78: /* FMINNMP */ 11073 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11074 break; 11075 case 0x7e: /* FMINP */ 11076 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11077 break; 11078 default: 11079 g_assert_not_reached(); 11080 } 11081 } 11082 11083 for (pass = 0; pass < 2; pass++) { 11084 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11085 } 11086 } else { 11087 int maxpass = is_q ? 4 : 2; 11088 TCGv_i32 tcg_res[4]; 11089 11090 for (pass = 0; pass < maxpass; pass++) { 11091 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11092 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11093 NeonGenTwoOpFn *genfn = NULL; 11094 int passreg = pass < (maxpass / 2) ? rn : rm; 11095 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11096 11097 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11098 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11099 tcg_res[pass] = tcg_temp_new_i32(); 11100 11101 switch (opcode) { 11102 case 0x17: /* ADDP */ 11103 { 11104 static NeonGenTwoOpFn * const fns[3] = { 11105 gen_helper_neon_padd_u8, 11106 gen_helper_neon_padd_u16, 11107 tcg_gen_add_i32, 11108 }; 11109 genfn = fns[size]; 11110 break; 11111 } 11112 case 0x14: /* SMAXP, UMAXP */ 11113 { 11114 static NeonGenTwoOpFn * const fns[3][2] = { 11115 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11116 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11117 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11118 }; 11119 genfn = fns[size][u]; 11120 break; 11121 } 11122 case 0x15: /* SMINP, UMINP */ 11123 { 11124 static NeonGenTwoOpFn * const fns[3][2] = { 11125 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11126 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11127 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11128 }; 11129 genfn = fns[size][u]; 11130 break; 11131 } 11132 /* The FP operations are all on single floats (32 bit) */ 11133 case 0x58: /* FMAXNMP */ 11134 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11135 break; 11136 case 0x5a: /* FADDP */ 11137 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11138 break; 11139 case 0x5e: /* FMAXP */ 11140 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11141 break; 11142 case 0x78: /* FMINNMP */ 11143 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11144 break; 11145 case 0x7e: /* FMINP */ 11146 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11147 break; 11148 default: 11149 g_assert_not_reached(); 11150 } 11151 11152 /* FP ops called directly, otherwise call now */ 11153 if (genfn) { 11154 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11155 } 11156 } 11157 11158 for (pass = 0; pass < maxpass; pass++) { 11159 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11160 } 11161 clear_vec_high(s, is_q, rd); 11162 } 11163 } 11164 11165 /* Floating point op subgroup of C3.6.16. */ 11166 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11167 { 11168 /* For floating point ops, the U, size[1] and opcode bits 11169 * together indicate the operation. size[0] indicates single 11170 * or double. 11171 */ 11172 int fpopcode = extract32(insn, 11, 5) 11173 | (extract32(insn, 23, 1) << 5) 11174 | (extract32(insn, 29, 1) << 6); 11175 int is_q = extract32(insn, 30, 1); 11176 int size = extract32(insn, 22, 1); 11177 int rm = extract32(insn, 16, 5); 11178 int rn = extract32(insn, 5, 5); 11179 int rd = extract32(insn, 0, 5); 11180 11181 int datasize = is_q ? 128 : 64; 11182 int esize = 32 << size; 11183 int elements = datasize / esize; 11184 11185 if (size == 1 && !is_q) { 11186 unallocated_encoding(s); 11187 return; 11188 } 11189 11190 switch (fpopcode) { 11191 case 0x58: /* FMAXNMP */ 11192 case 0x5a: /* FADDP */ 11193 case 0x5e: /* FMAXP */ 11194 case 0x78: /* FMINNMP */ 11195 case 0x7e: /* FMINP */ 11196 if (size && !is_q) { 11197 unallocated_encoding(s); 11198 return; 11199 } 11200 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11201 rn, rm, rd); 11202 return; 11203 case 0x1b: /* FMULX */ 11204 case 0x1f: /* FRECPS */ 11205 case 0x3f: /* FRSQRTS */ 11206 case 0x5d: /* FACGE */ 11207 case 0x7d: /* FACGT */ 11208 case 0x19: /* FMLA */ 11209 case 0x39: /* FMLS */ 11210 case 0x18: /* FMAXNM */ 11211 case 0x1a: /* FADD */ 11212 case 0x1c: /* FCMEQ */ 11213 case 0x1e: /* FMAX */ 11214 case 0x38: /* FMINNM */ 11215 case 0x3a: /* FSUB */ 11216 case 0x3e: /* FMIN */ 11217 case 0x5b: /* FMUL */ 11218 case 0x5c: /* FCMGE */ 11219 case 0x5f: /* FDIV */ 11220 case 0x7a: /* FABD */ 11221 case 0x7c: /* FCMGT */ 11222 if (!fp_access_check(s)) { 11223 return; 11224 } 11225 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11226 return; 11227 11228 case 0x1d: /* FMLAL */ 11229 case 0x3d: /* FMLSL */ 11230 case 0x59: /* FMLAL2 */ 11231 case 0x79: /* FMLSL2 */ 11232 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11233 unallocated_encoding(s); 11234 return; 11235 } 11236 if (fp_access_check(s)) { 11237 int is_s = extract32(insn, 23, 1); 11238 int is_2 = extract32(insn, 29, 1); 11239 int data = (is_2 << 1) | is_s; 11240 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11241 vec_full_reg_offset(s, rn), 11242 vec_full_reg_offset(s, rm), cpu_env, 11243 is_q ? 16 : 8, vec_full_reg_size(s), 11244 data, gen_helper_gvec_fmlal_a64); 11245 } 11246 return; 11247 11248 default: 11249 unallocated_encoding(s); 11250 return; 11251 } 11252 } 11253 11254 /* Integer op subgroup of C3.6.16. */ 11255 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11256 { 11257 int is_q = extract32(insn, 30, 1); 11258 int u = extract32(insn, 29, 1); 11259 int size = extract32(insn, 22, 2); 11260 int opcode = extract32(insn, 11, 5); 11261 int rm = extract32(insn, 16, 5); 11262 int rn = extract32(insn, 5, 5); 11263 int rd = extract32(insn, 0, 5); 11264 int pass; 11265 TCGCond cond; 11266 11267 switch (opcode) { 11268 case 0x13: /* MUL, PMUL */ 11269 if (u && size != 0) { 11270 unallocated_encoding(s); 11271 return; 11272 } 11273 /* fall through */ 11274 case 0x0: /* SHADD, UHADD */ 11275 case 0x2: /* SRHADD, URHADD */ 11276 case 0x4: /* SHSUB, UHSUB */ 11277 case 0xc: /* SMAX, UMAX */ 11278 case 0xd: /* SMIN, UMIN */ 11279 case 0xe: /* SABD, UABD */ 11280 case 0xf: /* SABA, UABA */ 11281 case 0x12: /* MLA, MLS */ 11282 if (size == 3) { 11283 unallocated_encoding(s); 11284 return; 11285 } 11286 break; 11287 case 0x16: /* SQDMULH, SQRDMULH */ 11288 if (size == 0 || size == 3) { 11289 unallocated_encoding(s); 11290 return; 11291 } 11292 break; 11293 default: 11294 if (size == 3 && !is_q) { 11295 unallocated_encoding(s); 11296 return; 11297 } 11298 break; 11299 } 11300 11301 if (!fp_access_check(s)) { 11302 return; 11303 } 11304 11305 switch (opcode) { 11306 case 0x01: /* SQADD, UQADD */ 11307 if (u) { 11308 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11309 } else { 11310 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11311 } 11312 return; 11313 case 0x05: /* SQSUB, UQSUB */ 11314 if (u) { 11315 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11316 } else { 11317 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11318 } 11319 return; 11320 case 0x08: /* SSHL, USHL */ 11321 if (u) { 11322 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11323 } else { 11324 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11325 } 11326 return; 11327 case 0x0c: /* SMAX, UMAX */ 11328 if (u) { 11329 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11330 } else { 11331 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11332 } 11333 return; 11334 case 0x0d: /* SMIN, UMIN */ 11335 if (u) { 11336 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11337 } else { 11338 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11339 } 11340 return; 11341 case 0xe: /* SABD, UABD */ 11342 if (u) { 11343 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11344 } else { 11345 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11346 } 11347 return; 11348 case 0xf: /* SABA, UABA */ 11349 if (u) { 11350 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11351 } else { 11352 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11353 } 11354 return; 11355 case 0x10: /* ADD, SUB */ 11356 if (u) { 11357 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11358 } else { 11359 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11360 } 11361 return; 11362 case 0x13: /* MUL, PMUL */ 11363 if (!u) { /* MUL */ 11364 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11365 } else { /* PMUL */ 11366 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11367 } 11368 return; 11369 case 0x12: /* MLA, MLS */ 11370 if (u) { 11371 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11372 } else { 11373 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11374 } 11375 return; 11376 case 0x16: /* SQDMULH, SQRDMULH */ 11377 { 11378 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11379 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11380 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11381 }; 11382 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11383 } 11384 return; 11385 case 0x11: 11386 if (!u) { /* CMTST */ 11387 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11388 return; 11389 } 11390 /* else CMEQ */ 11391 cond = TCG_COND_EQ; 11392 goto do_gvec_cmp; 11393 case 0x06: /* CMGT, CMHI */ 11394 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11395 goto do_gvec_cmp; 11396 case 0x07: /* CMGE, CMHS */ 11397 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11398 do_gvec_cmp: 11399 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11400 vec_full_reg_offset(s, rn), 11401 vec_full_reg_offset(s, rm), 11402 is_q ? 16 : 8, vec_full_reg_size(s)); 11403 return; 11404 } 11405 11406 if (size == 3) { 11407 assert(is_q); 11408 for (pass = 0; pass < 2; pass++) { 11409 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11410 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11411 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11412 11413 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11414 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11415 11416 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11417 11418 write_vec_element(s, tcg_res, rd, pass, MO_64); 11419 } 11420 } else { 11421 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11422 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11423 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11424 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11425 NeonGenTwoOpFn *genfn = NULL; 11426 NeonGenTwoOpEnvFn *genenvfn = NULL; 11427 11428 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11429 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11430 11431 switch (opcode) { 11432 case 0x0: /* SHADD, UHADD */ 11433 { 11434 static NeonGenTwoOpFn * const fns[3][2] = { 11435 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11436 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11437 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11438 }; 11439 genfn = fns[size][u]; 11440 break; 11441 } 11442 case 0x2: /* SRHADD, URHADD */ 11443 { 11444 static NeonGenTwoOpFn * const fns[3][2] = { 11445 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11446 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11447 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11448 }; 11449 genfn = fns[size][u]; 11450 break; 11451 } 11452 case 0x4: /* SHSUB, UHSUB */ 11453 { 11454 static NeonGenTwoOpFn * const fns[3][2] = { 11455 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11456 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11457 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11458 }; 11459 genfn = fns[size][u]; 11460 break; 11461 } 11462 case 0x9: /* SQSHL, UQSHL */ 11463 { 11464 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11465 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11466 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11467 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11468 }; 11469 genenvfn = fns[size][u]; 11470 break; 11471 } 11472 case 0xa: /* SRSHL, URSHL */ 11473 { 11474 static NeonGenTwoOpFn * const fns[3][2] = { 11475 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11476 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11477 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11478 }; 11479 genfn = fns[size][u]; 11480 break; 11481 } 11482 case 0xb: /* SQRSHL, UQRSHL */ 11483 { 11484 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11485 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11486 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11487 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11488 }; 11489 genenvfn = fns[size][u]; 11490 break; 11491 } 11492 default: 11493 g_assert_not_reached(); 11494 } 11495 11496 if (genenvfn) { 11497 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11498 } else { 11499 genfn(tcg_res, tcg_op1, tcg_op2); 11500 } 11501 11502 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11503 } 11504 } 11505 clear_vec_high(s, is_q, rd); 11506 } 11507 11508 /* AdvSIMD three same 11509 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11510 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11511 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11512 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11513 */ 11514 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11515 { 11516 int opcode = extract32(insn, 11, 5); 11517 11518 switch (opcode) { 11519 case 0x3: /* logic ops */ 11520 disas_simd_3same_logic(s, insn); 11521 break; 11522 case 0x17: /* ADDP */ 11523 case 0x14: /* SMAXP, UMAXP */ 11524 case 0x15: /* SMINP, UMINP */ 11525 { 11526 /* Pairwise operations */ 11527 int is_q = extract32(insn, 30, 1); 11528 int u = extract32(insn, 29, 1); 11529 int size = extract32(insn, 22, 2); 11530 int rm = extract32(insn, 16, 5); 11531 int rn = extract32(insn, 5, 5); 11532 int rd = extract32(insn, 0, 5); 11533 if (opcode == 0x17) { 11534 if (u || (size == 3 && !is_q)) { 11535 unallocated_encoding(s); 11536 return; 11537 } 11538 } else { 11539 if (size == 3) { 11540 unallocated_encoding(s); 11541 return; 11542 } 11543 } 11544 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11545 break; 11546 } 11547 case 0x18 ... 0x31: 11548 /* floating point ops, sz[1] and U are part of opcode */ 11549 disas_simd_3same_float(s, insn); 11550 break; 11551 default: 11552 disas_simd_3same_int(s, insn); 11553 break; 11554 } 11555 } 11556 11557 /* 11558 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11559 * 11560 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11561 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11562 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11563 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11564 * 11565 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11566 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11567 * 11568 */ 11569 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11570 { 11571 int opcode = extract32(insn, 11, 3); 11572 int u = extract32(insn, 29, 1); 11573 int a = extract32(insn, 23, 1); 11574 int is_q = extract32(insn, 30, 1); 11575 int rm = extract32(insn, 16, 5); 11576 int rn = extract32(insn, 5, 5); 11577 int rd = extract32(insn, 0, 5); 11578 /* 11579 * For these floating point ops, the U, a and opcode bits 11580 * together indicate the operation. 11581 */ 11582 int fpopcode = opcode | (a << 3) | (u << 4); 11583 int datasize = is_q ? 128 : 64; 11584 int elements = datasize / 16; 11585 bool pairwise; 11586 TCGv_ptr fpst; 11587 int pass; 11588 11589 switch (fpopcode) { 11590 case 0x0: /* FMAXNM */ 11591 case 0x1: /* FMLA */ 11592 case 0x2: /* FADD */ 11593 case 0x3: /* FMULX */ 11594 case 0x4: /* FCMEQ */ 11595 case 0x6: /* FMAX */ 11596 case 0x7: /* FRECPS */ 11597 case 0x8: /* FMINNM */ 11598 case 0x9: /* FMLS */ 11599 case 0xa: /* FSUB */ 11600 case 0xe: /* FMIN */ 11601 case 0xf: /* FRSQRTS */ 11602 case 0x13: /* FMUL */ 11603 case 0x14: /* FCMGE */ 11604 case 0x15: /* FACGE */ 11605 case 0x17: /* FDIV */ 11606 case 0x1a: /* FABD */ 11607 case 0x1c: /* FCMGT */ 11608 case 0x1d: /* FACGT */ 11609 pairwise = false; 11610 break; 11611 case 0x10: /* FMAXNMP */ 11612 case 0x12: /* FADDP */ 11613 case 0x16: /* FMAXP */ 11614 case 0x18: /* FMINNMP */ 11615 case 0x1e: /* FMINP */ 11616 pairwise = true; 11617 break; 11618 default: 11619 unallocated_encoding(s); 11620 return; 11621 } 11622 11623 if (!dc_isar_feature(aa64_fp16, s)) { 11624 unallocated_encoding(s); 11625 return; 11626 } 11627 11628 if (!fp_access_check(s)) { 11629 return; 11630 } 11631 11632 fpst = fpstatus_ptr(FPST_FPCR_F16); 11633 11634 if (pairwise) { 11635 int maxpass = is_q ? 8 : 4; 11636 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11637 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11638 TCGv_i32 tcg_res[8]; 11639 11640 for (pass = 0; pass < maxpass; pass++) { 11641 int passreg = pass < (maxpass / 2) ? rn : rm; 11642 int passelt = (pass << 1) & (maxpass - 1); 11643 11644 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11645 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11646 tcg_res[pass] = tcg_temp_new_i32(); 11647 11648 switch (fpopcode) { 11649 case 0x10: /* FMAXNMP */ 11650 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11651 fpst); 11652 break; 11653 case 0x12: /* FADDP */ 11654 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11655 break; 11656 case 0x16: /* FMAXP */ 11657 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11658 break; 11659 case 0x18: /* FMINNMP */ 11660 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11661 fpst); 11662 break; 11663 case 0x1e: /* FMINP */ 11664 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11665 break; 11666 default: 11667 g_assert_not_reached(); 11668 } 11669 } 11670 11671 for (pass = 0; pass < maxpass; pass++) { 11672 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11673 } 11674 } else { 11675 for (pass = 0; pass < elements; pass++) { 11676 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11677 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11678 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11679 11680 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11681 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11682 11683 switch (fpopcode) { 11684 case 0x0: /* FMAXNM */ 11685 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11686 break; 11687 case 0x1: /* FMLA */ 11688 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11689 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11690 fpst); 11691 break; 11692 case 0x2: /* FADD */ 11693 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11694 break; 11695 case 0x3: /* FMULX */ 11696 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11697 break; 11698 case 0x4: /* FCMEQ */ 11699 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11700 break; 11701 case 0x6: /* FMAX */ 11702 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11703 break; 11704 case 0x7: /* FRECPS */ 11705 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11706 break; 11707 case 0x8: /* FMINNM */ 11708 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11709 break; 11710 case 0x9: /* FMLS */ 11711 /* As usual for ARM, separate negation for fused multiply-add */ 11712 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11713 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11714 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11715 fpst); 11716 break; 11717 case 0xa: /* FSUB */ 11718 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11719 break; 11720 case 0xe: /* FMIN */ 11721 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11722 break; 11723 case 0xf: /* FRSQRTS */ 11724 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11725 break; 11726 case 0x13: /* FMUL */ 11727 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11728 break; 11729 case 0x14: /* FCMGE */ 11730 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11731 break; 11732 case 0x15: /* FACGE */ 11733 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11734 break; 11735 case 0x17: /* FDIV */ 11736 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11737 break; 11738 case 0x1a: /* FABD */ 11739 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11740 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11741 break; 11742 case 0x1c: /* FCMGT */ 11743 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11744 break; 11745 case 0x1d: /* FACGT */ 11746 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11747 break; 11748 default: 11749 g_assert_not_reached(); 11750 } 11751 11752 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11753 } 11754 } 11755 11756 clear_vec_high(s, is_q, rd); 11757 } 11758 11759 /* AdvSIMD three same extra 11760 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11761 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11762 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11763 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11764 */ 11765 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11766 { 11767 int rd = extract32(insn, 0, 5); 11768 int rn = extract32(insn, 5, 5); 11769 int opcode = extract32(insn, 11, 4); 11770 int rm = extract32(insn, 16, 5); 11771 int size = extract32(insn, 22, 2); 11772 bool u = extract32(insn, 29, 1); 11773 bool is_q = extract32(insn, 30, 1); 11774 bool feature; 11775 int rot; 11776 11777 switch (u * 16 + opcode) { 11778 case 0x10: /* SQRDMLAH (vector) */ 11779 case 0x11: /* SQRDMLSH (vector) */ 11780 if (size != 1 && size != 2) { 11781 unallocated_encoding(s); 11782 return; 11783 } 11784 feature = dc_isar_feature(aa64_rdm, s); 11785 break; 11786 case 0x02: /* SDOT (vector) */ 11787 case 0x12: /* UDOT (vector) */ 11788 if (size != MO_32) { 11789 unallocated_encoding(s); 11790 return; 11791 } 11792 feature = dc_isar_feature(aa64_dp, s); 11793 break; 11794 case 0x03: /* USDOT */ 11795 if (size != MO_32) { 11796 unallocated_encoding(s); 11797 return; 11798 } 11799 feature = dc_isar_feature(aa64_i8mm, s); 11800 break; 11801 case 0x04: /* SMMLA */ 11802 case 0x14: /* UMMLA */ 11803 case 0x05: /* USMMLA */ 11804 if (!is_q || size != MO_32) { 11805 unallocated_encoding(s); 11806 return; 11807 } 11808 feature = dc_isar_feature(aa64_i8mm, s); 11809 break; 11810 case 0x18: /* FCMLA, #0 */ 11811 case 0x19: /* FCMLA, #90 */ 11812 case 0x1a: /* FCMLA, #180 */ 11813 case 0x1b: /* FCMLA, #270 */ 11814 case 0x1c: /* FCADD, #90 */ 11815 case 0x1e: /* FCADD, #270 */ 11816 if (size == 0 11817 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11818 || (size == 3 && !is_q)) { 11819 unallocated_encoding(s); 11820 return; 11821 } 11822 feature = dc_isar_feature(aa64_fcma, s); 11823 break; 11824 case 0x1d: /* BFMMLA */ 11825 if (size != MO_16 || !is_q) { 11826 unallocated_encoding(s); 11827 return; 11828 } 11829 feature = dc_isar_feature(aa64_bf16, s); 11830 break; 11831 case 0x1f: 11832 switch (size) { 11833 case 1: /* BFDOT */ 11834 case 3: /* BFMLAL{B,T} */ 11835 feature = dc_isar_feature(aa64_bf16, s); 11836 break; 11837 default: 11838 unallocated_encoding(s); 11839 return; 11840 } 11841 break; 11842 default: 11843 unallocated_encoding(s); 11844 return; 11845 } 11846 if (!feature) { 11847 unallocated_encoding(s); 11848 return; 11849 } 11850 if (!fp_access_check(s)) { 11851 return; 11852 } 11853 11854 switch (opcode) { 11855 case 0x0: /* SQRDMLAH (vector) */ 11856 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11857 return; 11858 11859 case 0x1: /* SQRDMLSH (vector) */ 11860 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11861 return; 11862 11863 case 0x2: /* SDOT / UDOT */ 11864 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11865 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11866 return; 11867 11868 case 0x3: /* USDOT */ 11869 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11870 return; 11871 11872 case 0x04: /* SMMLA, UMMLA */ 11873 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11874 u ? gen_helper_gvec_ummla_b 11875 : gen_helper_gvec_smmla_b); 11876 return; 11877 case 0x05: /* USMMLA */ 11878 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11879 return; 11880 11881 case 0x8: /* FCMLA, #0 */ 11882 case 0x9: /* FCMLA, #90 */ 11883 case 0xa: /* FCMLA, #180 */ 11884 case 0xb: /* FCMLA, #270 */ 11885 rot = extract32(opcode, 0, 2); 11886 switch (size) { 11887 case 1: 11888 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11889 gen_helper_gvec_fcmlah); 11890 break; 11891 case 2: 11892 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11893 gen_helper_gvec_fcmlas); 11894 break; 11895 case 3: 11896 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11897 gen_helper_gvec_fcmlad); 11898 break; 11899 default: 11900 g_assert_not_reached(); 11901 } 11902 return; 11903 11904 case 0xc: /* FCADD, #90 */ 11905 case 0xe: /* FCADD, #270 */ 11906 rot = extract32(opcode, 1, 1); 11907 switch (size) { 11908 case 1: 11909 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11910 gen_helper_gvec_fcaddh); 11911 break; 11912 case 2: 11913 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11914 gen_helper_gvec_fcadds); 11915 break; 11916 case 3: 11917 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11918 gen_helper_gvec_fcaddd); 11919 break; 11920 default: 11921 g_assert_not_reached(); 11922 } 11923 return; 11924 11925 case 0xd: /* BFMMLA */ 11926 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11927 return; 11928 case 0xf: 11929 switch (size) { 11930 case 1: /* BFDOT */ 11931 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11932 break; 11933 case 3: /* BFMLAL{B,T} */ 11934 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11935 gen_helper_gvec_bfmlal); 11936 break; 11937 default: 11938 g_assert_not_reached(); 11939 } 11940 return; 11941 11942 default: 11943 g_assert_not_reached(); 11944 } 11945 } 11946 11947 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11948 int size, int rn, int rd) 11949 { 11950 /* Handle 2-reg-misc ops which are widening (so each size element 11951 * in the source becomes a 2*size element in the destination. 11952 * The only instruction like this is FCVTL. 11953 */ 11954 int pass; 11955 11956 if (size == 3) { 11957 /* 32 -> 64 bit fp conversion */ 11958 TCGv_i64 tcg_res[2]; 11959 int srcelt = is_q ? 2 : 0; 11960 11961 for (pass = 0; pass < 2; pass++) { 11962 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11963 tcg_res[pass] = tcg_temp_new_i64(); 11964 11965 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11966 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11967 } 11968 for (pass = 0; pass < 2; pass++) { 11969 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11970 } 11971 } else { 11972 /* 16 -> 32 bit fp conversion */ 11973 int srcelt = is_q ? 4 : 0; 11974 TCGv_i32 tcg_res[4]; 11975 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11976 TCGv_i32 ahp = get_ahp_flag(); 11977 11978 for (pass = 0; pass < 4; pass++) { 11979 tcg_res[pass] = tcg_temp_new_i32(); 11980 11981 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11982 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11983 fpst, ahp); 11984 } 11985 for (pass = 0; pass < 4; pass++) { 11986 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11987 } 11988 } 11989 } 11990 11991 static void handle_rev(DisasContext *s, int opcode, bool u, 11992 bool is_q, int size, int rn, int rd) 11993 { 11994 int op = (opcode << 1) | u; 11995 int opsz = op + size; 11996 int grp_size = 3 - opsz; 11997 int dsize = is_q ? 128 : 64; 11998 int i; 11999 12000 if (opsz >= 3) { 12001 unallocated_encoding(s); 12002 return; 12003 } 12004 12005 if (!fp_access_check(s)) { 12006 return; 12007 } 12008 12009 if (size == 0) { 12010 /* Special case bytes, use bswap op on each group of elements */ 12011 int groups = dsize / (8 << grp_size); 12012 12013 for (i = 0; i < groups; i++) { 12014 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12015 12016 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12017 switch (grp_size) { 12018 case MO_16: 12019 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12020 break; 12021 case MO_32: 12022 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12023 break; 12024 case MO_64: 12025 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12026 break; 12027 default: 12028 g_assert_not_reached(); 12029 } 12030 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12031 } 12032 clear_vec_high(s, is_q, rd); 12033 } else { 12034 int revmask = (1 << grp_size) - 1; 12035 int esize = 8 << size; 12036 int elements = dsize / esize; 12037 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12038 TCGv_i64 tcg_rd[2]; 12039 12040 for (i = 0; i < 2; i++) { 12041 tcg_rd[i] = tcg_temp_new_i64(); 12042 tcg_gen_movi_i64(tcg_rd[i], 0); 12043 } 12044 12045 for (i = 0; i < elements; i++) { 12046 int e_rev = (i & 0xf) ^ revmask; 12047 int w = (e_rev * esize) / 64; 12048 int o = (e_rev * esize) % 64; 12049 12050 read_vec_element(s, tcg_rn, rn, i, size); 12051 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12052 } 12053 12054 for (i = 0; i < 2; i++) { 12055 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12056 } 12057 clear_vec_high(s, true, rd); 12058 } 12059 } 12060 12061 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12062 bool is_q, int size, int rn, int rd) 12063 { 12064 /* Implement the pairwise operations from 2-misc: 12065 * SADDLP, UADDLP, SADALP, UADALP. 12066 * These all add pairs of elements in the input to produce a 12067 * double-width result element in the output (possibly accumulating). 12068 */ 12069 bool accum = (opcode == 0x6); 12070 int maxpass = is_q ? 2 : 1; 12071 int pass; 12072 TCGv_i64 tcg_res[2]; 12073 12074 if (size == 2) { 12075 /* 32 + 32 -> 64 op */ 12076 MemOp memop = size + (u ? 0 : MO_SIGN); 12077 12078 for (pass = 0; pass < maxpass; pass++) { 12079 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12080 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12081 12082 tcg_res[pass] = tcg_temp_new_i64(); 12083 12084 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12085 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12086 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12087 if (accum) { 12088 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12089 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12090 } 12091 } 12092 } else { 12093 for (pass = 0; pass < maxpass; pass++) { 12094 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12095 NeonGenOne64OpFn *genfn; 12096 static NeonGenOne64OpFn * const fns[2][2] = { 12097 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12098 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12099 }; 12100 12101 genfn = fns[size][u]; 12102 12103 tcg_res[pass] = tcg_temp_new_i64(); 12104 12105 read_vec_element(s, tcg_op, rn, pass, MO_64); 12106 genfn(tcg_res[pass], tcg_op); 12107 12108 if (accum) { 12109 read_vec_element(s, tcg_op, rd, pass, MO_64); 12110 if (size == 0) { 12111 gen_helper_neon_addl_u16(tcg_res[pass], 12112 tcg_res[pass], tcg_op); 12113 } else { 12114 gen_helper_neon_addl_u32(tcg_res[pass], 12115 tcg_res[pass], tcg_op); 12116 } 12117 } 12118 } 12119 } 12120 if (!is_q) { 12121 tcg_res[1] = tcg_constant_i64(0); 12122 } 12123 for (pass = 0; pass < 2; pass++) { 12124 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12125 } 12126 } 12127 12128 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12129 { 12130 /* Implement SHLL and SHLL2 */ 12131 int pass; 12132 int part = is_q ? 2 : 0; 12133 TCGv_i64 tcg_res[2]; 12134 12135 for (pass = 0; pass < 2; pass++) { 12136 static NeonGenWidenFn * const widenfns[3] = { 12137 gen_helper_neon_widen_u8, 12138 gen_helper_neon_widen_u16, 12139 tcg_gen_extu_i32_i64, 12140 }; 12141 NeonGenWidenFn *widenfn = widenfns[size]; 12142 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12143 12144 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12145 tcg_res[pass] = tcg_temp_new_i64(); 12146 widenfn(tcg_res[pass], tcg_op); 12147 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12148 } 12149 12150 for (pass = 0; pass < 2; pass++) { 12151 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12152 } 12153 } 12154 12155 /* AdvSIMD two reg misc 12156 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12157 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12158 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12159 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12160 */ 12161 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12162 { 12163 int size = extract32(insn, 22, 2); 12164 int opcode = extract32(insn, 12, 5); 12165 bool u = extract32(insn, 29, 1); 12166 bool is_q = extract32(insn, 30, 1); 12167 int rn = extract32(insn, 5, 5); 12168 int rd = extract32(insn, 0, 5); 12169 bool need_fpstatus = false; 12170 int rmode = -1; 12171 TCGv_i32 tcg_rmode; 12172 TCGv_ptr tcg_fpstatus; 12173 12174 switch (opcode) { 12175 case 0x0: /* REV64, REV32 */ 12176 case 0x1: /* REV16 */ 12177 handle_rev(s, opcode, u, is_q, size, rn, rd); 12178 return; 12179 case 0x5: /* CNT, NOT, RBIT */ 12180 if (u && size == 0) { 12181 /* NOT */ 12182 break; 12183 } else if (u && size == 1) { 12184 /* RBIT */ 12185 break; 12186 } else if (!u && size == 0) { 12187 /* CNT */ 12188 break; 12189 } 12190 unallocated_encoding(s); 12191 return; 12192 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12193 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12194 if (size == 3) { 12195 unallocated_encoding(s); 12196 return; 12197 } 12198 if (!fp_access_check(s)) { 12199 return; 12200 } 12201 12202 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12203 return; 12204 case 0x4: /* CLS, CLZ */ 12205 if (size == 3) { 12206 unallocated_encoding(s); 12207 return; 12208 } 12209 break; 12210 case 0x2: /* SADDLP, UADDLP */ 12211 case 0x6: /* SADALP, UADALP */ 12212 if (size == 3) { 12213 unallocated_encoding(s); 12214 return; 12215 } 12216 if (!fp_access_check(s)) { 12217 return; 12218 } 12219 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12220 return; 12221 case 0x13: /* SHLL, SHLL2 */ 12222 if (u == 0 || size == 3) { 12223 unallocated_encoding(s); 12224 return; 12225 } 12226 if (!fp_access_check(s)) { 12227 return; 12228 } 12229 handle_shll(s, is_q, size, rn, rd); 12230 return; 12231 case 0xa: /* CMLT */ 12232 if (u == 1) { 12233 unallocated_encoding(s); 12234 return; 12235 } 12236 /* fall through */ 12237 case 0x8: /* CMGT, CMGE */ 12238 case 0x9: /* CMEQ, CMLE */ 12239 case 0xb: /* ABS, NEG */ 12240 if (size == 3 && !is_q) { 12241 unallocated_encoding(s); 12242 return; 12243 } 12244 break; 12245 case 0x3: /* SUQADD, USQADD */ 12246 if (size == 3 && !is_q) { 12247 unallocated_encoding(s); 12248 return; 12249 } 12250 if (!fp_access_check(s)) { 12251 return; 12252 } 12253 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12254 return; 12255 case 0x7: /* SQABS, SQNEG */ 12256 if (size == 3 && !is_q) { 12257 unallocated_encoding(s); 12258 return; 12259 } 12260 break; 12261 case 0xc ... 0xf: 12262 case 0x16 ... 0x1f: 12263 { 12264 /* Floating point: U, size[1] and opcode indicate operation; 12265 * size[0] indicates single or double precision. 12266 */ 12267 int is_double = extract32(size, 0, 1); 12268 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12269 size = is_double ? 3 : 2; 12270 switch (opcode) { 12271 case 0x2f: /* FABS */ 12272 case 0x6f: /* FNEG */ 12273 if (size == 3 && !is_q) { 12274 unallocated_encoding(s); 12275 return; 12276 } 12277 break; 12278 case 0x1d: /* SCVTF */ 12279 case 0x5d: /* UCVTF */ 12280 { 12281 bool is_signed = (opcode == 0x1d) ? true : false; 12282 int elements = is_double ? 2 : is_q ? 4 : 2; 12283 if (is_double && !is_q) { 12284 unallocated_encoding(s); 12285 return; 12286 } 12287 if (!fp_access_check(s)) { 12288 return; 12289 } 12290 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12291 return; 12292 } 12293 case 0x2c: /* FCMGT (zero) */ 12294 case 0x2d: /* FCMEQ (zero) */ 12295 case 0x2e: /* FCMLT (zero) */ 12296 case 0x6c: /* FCMGE (zero) */ 12297 case 0x6d: /* FCMLE (zero) */ 12298 if (size == 3 && !is_q) { 12299 unallocated_encoding(s); 12300 return; 12301 } 12302 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12303 return; 12304 case 0x7f: /* FSQRT */ 12305 if (size == 3 && !is_q) { 12306 unallocated_encoding(s); 12307 return; 12308 } 12309 break; 12310 case 0x1a: /* FCVTNS */ 12311 case 0x1b: /* FCVTMS */ 12312 case 0x3a: /* FCVTPS */ 12313 case 0x3b: /* FCVTZS */ 12314 case 0x5a: /* FCVTNU */ 12315 case 0x5b: /* FCVTMU */ 12316 case 0x7a: /* FCVTPU */ 12317 case 0x7b: /* FCVTZU */ 12318 need_fpstatus = true; 12319 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12320 if (size == 3 && !is_q) { 12321 unallocated_encoding(s); 12322 return; 12323 } 12324 break; 12325 case 0x5c: /* FCVTAU */ 12326 case 0x1c: /* FCVTAS */ 12327 need_fpstatus = true; 12328 rmode = FPROUNDING_TIEAWAY; 12329 if (size == 3 && !is_q) { 12330 unallocated_encoding(s); 12331 return; 12332 } 12333 break; 12334 case 0x3c: /* URECPE */ 12335 if (size == 3) { 12336 unallocated_encoding(s); 12337 return; 12338 } 12339 /* fall through */ 12340 case 0x3d: /* FRECPE */ 12341 case 0x7d: /* FRSQRTE */ 12342 if (size == 3 && !is_q) { 12343 unallocated_encoding(s); 12344 return; 12345 } 12346 if (!fp_access_check(s)) { 12347 return; 12348 } 12349 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12350 return; 12351 case 0x56: /* FCVTXN, FCVTXN2 */ 12352 if (size == 2) { 12353 unallocated_encoding(s); 12354 return; 12355 } 12356 /* fall through */ 12357 case 0x16: /* FCVTN, FCVTN2 */ 12358 /* handle_2misc_narrow does a 2*size -> size operation, but these 12359 * instructions encode the source size rather than dest size. 12360 */ 12361 if (!fp_access_check(s)) { 12362 return; 12363 } 12364 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12365 return; 12366 case 0x36: /* BFCVTN, BFCVTN2 */ 12367 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12368 unallocated_encoding(s); 12369 return; 12370 } 12371 if (!fp_access_check(s)) { 12372 return; 12373 } 12374 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12375 return; 12376 case 0x17: /* FCVTL, FCVTL2 */ 12377 if (!fp_access_check(s)) { 12378 return; 12379 } 12380 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12381 return; 12382 case 0x18: /* FRINTN */ 12383 case 0x19: /* FRINTM */ 12384 case 0x38: /* FRINTP */ 12385 case 0x39: /* FRINTZ */ 12386 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12387 /* fall through */ 12388 case 0x59: /* FRINTX */ 12389 case 0x79: /* FRINTI */ 12390 need_fpstatus = true; 12391 if (size == 3 && !is_q) { 12392 unallocated_encoding(s); 12393 return; 12394 } 12395 break; 12396 case 0x58: /* FRINTA */ 12397 rmode = FPROUNDING_TIEAWAY; 12398 need_fpstatus = true; 12399 if (size == 3 && !is_q) { 12400 unallocated_encoding(s); 12401 return; 12402 } 12403 break; 12404 case 0x7c: /* URSQRTE */ 12405 if (size == 3) { 12406 unallocated_encoding(s); 12407 return; 12408 } 12409 break; 12410 case 0x1e: /* FRINT32Z */ 12411 case 0x1f: /* FRINT64Z */ 12412 rmode = FPROUNDING_ZERO; 12413 /* fall through */ 12414 case 0x5e: /* FRINT32X */ 12415 case 0x5f: /* FRINT64X */ 12416 need_fpstatus = true; 12417 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12418 unallocated_encoding(s); 12419 return; 12420 } 12421 break; 12422 default: 12423 unallocated_encoding(s); 12424 return; 12425 } 12426 break; 12427 } 12428 default: 12429 unallocated_encoding(s); 12430 return; 12431 } 12432 12433 if (!fp_access_check(s)) { 12434 return; 12435 } 12436 12437 if (need_fpstatus || rmode >= 0) { 12438 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12439 } else { 12440 tcg_fpstatus = NULL; 12441 } 12442 if (rmode >= 0) { 12443 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12444 } else { 12445 tcg_rmode = NULL; 12446 } 12447 12448 switch (opcode) { 12449 case 0x5: 12450 if (u && size == 0) { /* NOT */ 12451 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12452 return; 12453 } 12454 break; 12455 case 0x8: /* CMGT, CMGE */ 12456 if (u) { 12457 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12458 } else { 12459 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12460 } 12461 return; 12462 case 0x9: /* CMEQ, CMLE */ 12463 if (u) { 12464 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12465 } else { 12466 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12467 } 12468 return; 12469 case 0xa: /* CMLT */ 12470 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12471 return; 12472 case 0xb: 12473 if (u) { /* ABS, NEG */ 12474 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12475 } else { 12476 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12477 } 12478 return; 12479 } 12480 12481 if (size == 3) { 12482 /* All 64-bit element operations can be shared with scalar 2misc */ 12483 int pass; 12484 12485 /* Coverity claims (size == 3 && !is_q) has been eliminated 12486 * from all paths leading to here. 12487 */ 12488 tcg_debug_assert(is_q); 12489 for (pass = 0; pass < 2; pass++) { 12490 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12491 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12492 12493 read_vec_element(s, tcg_op, rn, pass, MO_64); 12494 12495 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12496 tcg_rmode, tcg_fpstatus); 12497 12498 write_vec_element(s, tcg_res, rd, pass, MO_64); 12499 } 12500 } else { 12501 int pass; 12502 12503 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12504 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12505 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12506 12507 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12508 12509 if (size == 2) { 12510 /* Special cases for 32 bit elements */ 12511 switch (opcode) { 12512 case 0x4: /* CLS */ 12513 if (u) { 12514 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12515 } else { 12516 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12517 } 12518 break; 12519 case 0x7: /* SQABS, SQNEG */ 12520 if (u) { 12521 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12522 } else { 12523 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12524 } 12525 break; 12526 case 0x2f: /* FABS */ 12527 gen_helper_vfp_abss(tcg_res, tcg_op); 12528 break; 12529 case 0x6f: /* FNEG */ 12530 gen_helper_vfp_negs(tcg_res, tcg_op); 12531 break; 12532 case 0x7f: /* FSQRT */ 12533 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12534 break; 12535 case 0x1a: /* FCVTNS */ 12536 case 0x1b: /* FCVTMS */ 12537 case 0x1c: /* FCVTAS */ 12538 case 0x3a: /* FCVTPS */ 12539 case 0x3b: /* FCVTZS */ 12540 gen_helper_vfp_tosls(tcg_res, tcg_op, 12541 tcg_constant_i32(0), tcg_fpstatus); 12542 break; 12543 case 0x5a: /* FCVTNU */ 12544 case 0x5b: /* FCVTMU */ 12545 case 0x5c: /* FCVTAU */ 12546 case 0x7a: /* FCVTPU */ 12547 case 0x7b: /* FCVTZU */ 12548 gen_helper_vfp_touls(tcg_res, tcg_op, 12549 tcg_constant_i32(0), tcg_fpstatus); 12550 break; 12551 case 0x18: /* FRINTN */ 12552 case 0x19: /* FRINTM */ 12553 case 0x38: /* FRINTP */ 12554 case 0x39: /* FRINTZ */ 12555 case 0x58: /* FRINTA */ 12556 case 0x79: /* FRINTI */ 12557 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12558 break; 12559 case 0x59: /* FRINTX */ 12560 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12561 break; 12562 case 0x7c: /* URSQRTE */ 12563 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12564 break; 12565 case 0x1e: /* FRINT32Z */ 12566 case 0x5e: /* FRINT32X */ 12567 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12568 break; 12569 case 0x1f: /* FRINT64Z */ 12570 case 0x5f: /* FRINT64X */ 12571 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12572 break; 12573 default: 12574 g_assert_not_reached(); 12575 } 12576 } else { 12577 /* Use helpers for 8 and 16 bit elements */ 12578 switch (opcode) { 12579 case 0x5: /* CNT, RBIT */ 12580 /* For these two insns size is part of the opcode specifier 12581 * (handled earlier); they always operate on byte elements. 12582 */ 12583 if (u) { 12584 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12585 } else { 12586 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12587 } 12588 break; 12589 case 0x7: /* SQABS, SQNEG */ 12590 { 12591 NeonGenOneOpEnvFn *genfn; 12592 static NeonGenOneOpEnvFn * const fns[2][2] = { 12593 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12594 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12595 }; 12596 genfn = fns[size][u]; 12597 genfn(tcg_res, cpu_env, tcg_op); 12598 break; 12599 } 12600 case 0x4: /* CLS, CLZ */ 12601 if (u) { 12602 if (size == 0) { 12603 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12604 } else { 12605 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12606 } 12607 } else { 12608 if (size == 0) { 12609 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12610 } else { 12611 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12612 } 12613 } 12614 break; 12615 default: 12616 g_assert_not_reached(); 12617 } 12618 } 12619 12620 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12621 } 12622 } 12623 clear_vec_high(s, is_q, rd); 12624 12625 if (tcg_rmode) { 12626 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12627 } 12628 } 12629 12630 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12631 * 12632 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12633 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12634 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12635 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12636 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12637 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12638 * 12639 * This actually covers two groups where scalar access is governed by 12640 * bit 28. A bunch of the instructions (float to integral) only exist 12641 * in the vector form and are un-allocated for the scalar decode. Also 12642 * in the scalar decode Q is always 1. 12643 */ 12644 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12645 { 12646 int fpop, opcode, a, u; 12647 int rn, rd; 12648 bool is_q; 12649 bool is_scalar; 12650 bool only_in_vector = false; 12651 12652 int pass; 12653 TCGv_i32 tcg_rmode = NULL; 12654 TCGv_ptr tcg_fpstatus = NULL; 12655 bool need_fpst = true; 12656 int rmode = -1; 12657 12658 if (!dc_isar_feature(aa64_fp16, s)) { 12659 unallocated_encoding(s); 12660 return; 12661 } 12662 12663 rd = extract32(insn, 0, 5); 12664 rn = extract32(insn, 5, 5); 12665 12666 a = extract32(insn, 23, 1); 12667 u = extract32(insn, 29, 1); 12668 is_scalar = extract32(insn, 28, 1); 12669 is_q = extract32(insn, 30, 1); 12670 12671 opcode = extract32(insn, 12, 5); 12672 fpop = deposit32(opcode, 5, 1, a); 12673 fpop = deposit32(fpop, 6, 1, u); 12674 12675 switch (fpop) { 12676 case 0x1d: /* SCVTF */ 12677 case 0x5d: /* UCVTF */ 12678 { 12679 int elements; 12680 12681 if (is_scalar) { 12682 elements = 1; 12683 } else { 12684 elements = (is_q ? 8 : 4); 12685 } 12686 12687 if (!fp_access_check(s)) { 12688 return; 12689 } 12690 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12691 return; 12692 } 12693 break; 12694 case 0x2c: /* FCMGT (zero) */ 12695 case 0x2d: /* FCMEQ (zero) */ 12696 case 0x2e: /* FCMLT (zero) */ 12697 case 0x6c: /* FCMGE (zero) */ 12698 case 0x6d: /* FCMLE (zero) */ 12699 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12700 return; 12701 case 0x3d: /* FRECPE */ 12702 case 0x3f: /* FRECPX */ 12703 break; 12704 case 0x18: /* FRINTN */ 12705 only_in_vector = true; 12706 rmode = FPROUNDING_TIEEVEN; 12707 break; 12708 case 0x19: /* FRINTM */ 12709 only_in_vector = true; 12710 rmode = FPROUNDING_NEGINF; 12711 break; 12712 case 0x38: /* FRINTP */ 12713 only_in_vector = true; 12714 rmode = FPROUNDING_POSINF; 12715 break; 12716 case 0x39: /* FRINTZ */ 12717 only_in_vector = true; 12718 rmode = FPROUNDING_ZERO; 12719 break; 12720 case 0x58: /* FRINTA */ 12721 only_in_vector = true; 12722 rmode = FPROUNDING_TIEAWAY; 12723 break; 12724 case 0x59: /* FRINTX */ 12725 case 0x79: /* FRINTI */ 12726 only_in_vector = true; 12727 /* current rounding mode */ 12728 break; 12729 case 0x1a: /* FCVTNS */ 12730 rmode = FPROUNDING_TIEEVEN; 12731 break; 12732 case 0x1b: /* FCVTMS */ 12733 rmode = FPROUNDING_NEGINF; 12734 break; 12735 case 0x1c: /* FCVTAS */ 12736 rmode = FPROUNDING_TIEAWAY; 12737 break; 12738 case 0x3a: /* FCVTPS */ 12739 rmode = FPROUNDING_POSINF; 12740 break; 12741 case 0x3b: /* FCVTZS */ 12742 rmode = FPROUNDING_ZERO; 12743 break; 12744 case 0x5a: /* FCVTNU */ 12745 rmode = FPROUNDING_TIEEVEN; 12746 break; 12747 case 0x5b: /* FCVTMU */ 12748 rmode = FPROUNDING_NEGINF; 12749 break; 12750 case 0x5c: /* FCVTAU */ 12751 rmode = FPROUNDING_TIEAWAY; 12752 break; 12753 case 0x7a: /* FCVTPU */ 12754 rmode = FPROUNDING_POSINF; 12755 break; 12756 case 0x7b: /* FCVTZU */ 12757 rmode = FPROUNDING_ZERO; 12758 break; 12759 case 0x2f: /* FABS */ 12760 case 0x6f: /* FNEG */ 12761 need_fpst = false; 12762 break; 12763 case 0x7d: /* FRSQRTE */ 12764 case 0x7f: /* FSQRT (vector) */ 12765 break; 12766 default: 12767 unallocated_encoding(s); 12768 return; 12769 } 12770 12771 12772 /* Check additional constraints for the scalar encoding */ 12773 if (is_scalar) { 12774 if (!is_q) { 12775 unallocated_encoding(s); 12776 return; 12777 } 12778 /* FRINTxx is only in the vector form */ 12779 if (only_in_vector) { 12780 unallocated_encoding(s); 12781 return; 12782 } 12783 } 12784 12785 if (!fp_access_check(s)) { 12786 return; 12787 } 12788 12789 if (rmode >= 0 || need_fpst) { 12790 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12791 } 12792 12793 if (rmode >= 0) { 12794 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12795 } 12796 12797 if (is_scalar) { 12798 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12799 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12800 12801 switch (fpop) { 12802 case 0x1a: /* FCVTNS */ 12803 case 0x1b: /* FCVTMS */ 12804 case 0x1c: /* FCVTAS */ 12805 case 0x3a: /* FCVTPS */ 12806 case 0x3b: /* FCVTZS */ 12807 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12808 break; 12809 case 0x3d: /* FRECPE */ 12810 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12811 break; 12812 case 0x3f: /* FRECPX */ 12813 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12814 break; 12815 case 0x5a: /* FCVTNU */ 12816 case 0x5b: /* FCVTMU */ 12817 case 0x5c: /* FCVTAU */ 12818 case 0x7a: /* FCVTPU */ 12819 case 0x7b: /* FCVTZU */ 12820 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12821 break; 12822 case 0x6f: /* FNEG */ 12823 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12824 break; 12825 case 0x7d: /* FRSQRTE */ 12826 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12827 break; 12828 default: 12829 g_assert_not_reached(); 12830 } 12831 12832 /* limit any sign extension going on */ 12833 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12834 write_fp_sreg(s, rd, tcg_res); 12835 } else { 12836 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12837 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12838 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12839 12840 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12841 12842 switch (fpop) { 12843 case 0x1a: /* FCVTNS */ 12844 case 0x1b: /* FCVTMS */ 12845 case 0x1c: /* FCVTAS */ 12846 case 0x3a: /* FCVTPS */ 12847 case 0x3b: /* FCVTZS */ 12848 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12849 break; 12850 case 0x3d: /* FRECPE */ 12851 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12852 break; 12853 case 0x5a: /* FCVTNU */ 12854 case 0x5b: /* FCVTMU */ 12855 case 0x5c: /* FCVTAU */ 12856 case 0x7a: /* FCVTPU */ 12857 case 0x7b: /* FCVTZU */ 12858 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12859 break; 12860 case 0x18: /* FRINTN */ 12861 case 0x19: /* FRINTM */ 12862 case 0x38: /* FRINTP */ 12863 case 0x39: /* FRINTZ */ 12864 case 0x58: /* FRINTA */ 12865 case 0x79: /* FRINTI */ 12866 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12867 break; 12868 case 0x59: /* FRINTX */ 12869 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12870 break; 12871 case 0x2f: /* FABS */ 12872 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12873 break; 12874 case 0x6f: /* FNEG */ 12875 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12876 break; 12877 case 0x7d: /* FRSQRTE */ 12878 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12879 break; 12880 case 0x7f: /* FSQRT */ 12881 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12882 break; 12883 default: 12884 g_assert_not_reached(); 12885 } 12886 12887 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12888 } 12889 12890 clear_vec_high(s, is_q, rd); 12891 } 12892 12893 if (tcg_rmode) { 12894 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12895 } 12896 } 12897 12898 /* AdvSIMD scalar x indexed element 12899 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12900 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12901 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12902 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12903 * AdvSIMD vector x indexed element 12904 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12905 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12906 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12907 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12908 */ 12909 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12910 { 12911 /* This encoding has two kinds of instruction: 12912 * normal, where we perform elt x idxelt => elt for each 12913 * element in the vector 12914 * long, where we perform elt x idxelt and generate a result of 12915 * double the width of the input element 12916 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12917 */ 12918 bool is_scalar = extract32(insn, 28, 1); 12919 bool is_q = extract32(insn, 30, 1); 12920 bool u = extract32(insn, 29, 1); 12921 int size = extract32(insn, 22, 2); 12922 int l = extract32(insn, 21, 1); 12923 int m = extract32(insn, 20, 1); 12924 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12925 int rm = extract32(insn, 16, 4); 12926 int opcode = extract32(insn, 12, 4); 12927 int h = extract32(insn, 11, 1); 12928 int rn = extract32(insn, 5, 5); 12929 int rd = extract32(insn, 0, 5); 12930 bool is_long = false; 12931 int is_fp = 0; 12932 bool is_fp16 = false; 12933 int index; 12934 TCGv_ptr fpst; 12935 12936 switch (16 * u + opcode) { 12937 case 0x08: /* MUL */ 12938 case 0x10: /* MLA */ 12939 case 0x14: /* MLS */ 12940 if (is_scalar) { 12941 unallocated_encoding(s); 12942 return; 12943 } 12944 break; 12945 case 0x02: /* SMLAL, SMLAL2 */ 12946 case 0x12: /* UMLAL, UMLAL2 */ 12947 case 0x06: /* SMLSL, SMLSL2 */ 12948 case 0x16: /* UMLSL, UMLSL2 */ 12949 case 0x0a: /* SMULL, SMULL2 */ 12950 case 0x1a: /* UMULL, UMULL2 */ 12951 if (is_scalar) { 12952 unallocated_encoding(s); 12953 return; 12954 } 12955 is_long = true; 12956 break; 12957 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12958 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12959 case 0x0b: /* SQDMULL, SQDMULL2 */ 12960 is_long = true; 12961 break; 12962 case 0x0c: /* SQDMULH */ 12963 case 0x0d: /* SQRDMULH */ 12964 break; 12965 case 0x01: /* FMLA */ 12966 case 0x05: /* FMLS */ 12967 case 0x09: /* FMUL */ 12968 case 0x19: /* FMULX */ 12969 is_fp = 1; 12970 break; 12971 case 0x1d: /* SQRDMLAH */ 12972 case 0x1f: /* SQRDMLSH */ 12973 if (!dc_isar_feature(aa64_rdm, s)) { 12974 unallocated_encoding(s); 12975 return; 12976 } 12977 break; 12978 case 0x0e: /* SDOT */ 12979 case 0x1e: /* UDOT */ 12980 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12981 unallocated_encoding(s); 12982 return; 12983 } 12984 break; 12985 case 0x0f: 12986 switch (size) { 12987 case 0: /* SUDOT */ 12988 case 2: /* USDOT */ 12989 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12990 unallocated_encoding(s); 12991 return; 12992 } 12993 size = MO_32; 12994 break; 12995 case 1: /* BFDOT */ 12996 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12997 unallocated_encoding(s); 12998 return; 12999 } 13000 size = MO_32; 13001 break; 13002 case 3: /* BFMLAL{B,T} */ 13003 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13004 unallocated_encoding(s); 13005 return; 13006 } 13007 /* can't set is_fp without other incorrect size checks */ 13008 size = MO_16; 13009 break; 13010 default: 13011 unallocated_encoding(s); 13012 return; 13013 } 13014 break; 13015 case 0x11: /* FCMLA #0 */ 13016 case 0x13: /* FCMLA #90 */ 13017 case 0x15: /* FCMLA #180 */ 13018 case 0x17: /* FCMLA #270 */ 13019 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13020 unallocated_encoding(s); 13021 return; 13022 } 13023 is_fp = 2; 13024 break; 13025 case 0x00: /* FMLAL */ 13026 case 0x04: /* FMLSL */ 13027 case 0x18: /* FMLAL2 */ 13028 case 0x1c: /* FMLSL2 */ 13029 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13030 unallocated_encoding(s); 13031 return; 13032 } 13033 size = MO_16; 13034 /* is_fp, but we pass cpu_env not fp_status. */ 13035 break; 13036 default: 13037 unallocated_encoding(s); 13038 return; 13039 } 13040 13041 switch (is_fp) { 13042 case 1: /* normal fp */ 13043 /* convert insn encoded size to MemOp size */ 13044 switch (size) { 13045 case 0: /* half-precision */ 13046 size = MO_16; 13047 is_fp16 = true; 13048 break; 13049 case MO_32: /* single precision */ 13050 case MO_64: /* double precision */ 13051 break; 13052 default: 13053 unallocated_encoding(s); 13054 return; 13055 } 13056 break; 13057 13058 case 2: /* complex fp */ 13059 /* Each indexable element is a complex pair. */ 13060 size += 1; 13061 switch (size) { 13062 case MO_32: 13063 if (h && !is_q) { 13064 unallocated_encoding(s); 13065 return; 13066 } 13067 is_fp16 = true; 13068 break; 13069 case MO_64: 13070 break; 13071 default: 13072 unallocated_encoding(s); 13073 return; 13074 } 13075 break; 13076 13077 default: /* integer */ 13078 switch (size) { 13079 case MO_8: 13080 case MO_64: 13081 unallocated_encoding(s); 13082 return; 13083 } 13084 break; 13085 } 13086 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13087 unallocated_encoding(s); 13088 return; 13089 } 13090 13091 /* Given MemOp size, adjust register and indexing. */ 13092 switch (size) { 13093 case MO_16: 13094 index = h << 2 | l << 1 | m; 13095 break; 13096 case MO_32: 13097 index = h << 1 | l; 13098 rm |= m << 4; 13099 break; 13100 case MO_64: 13101 if (l || !is_q) { 13102 unallocated_encoding(s); 13103 return; 13104 } 13105 index = h; 13106 rm |= m << 4; 13107 break; 13108 default: 13109 g_assert_not_reached(); 13110 } 13111 13112 if (!fp_access_check(s)) { 13113 return; 13114 } 13115 13116 if (is_fp) { 13117 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13118 } else { 13119 fpst = NULL; 13120 } 13121 13122 switch (16 * u + opcode) { 13123 case 0x0e: /* SDOT */ 13124 case 0x1e: /* UDOT */ 13125 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13126 u ? gen_helper_gvec_udot_idx_b 13127 : gen_helper_gvec_sdot_idx_b); 13128 return; 13129 case 0x0f: 13130 switch (extract32(insn, 22, 2)) { 13131 case 0: /* SUDOT */ 13132 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13133 gen_helper_gvec_sudot_idx_b); 13134 return; 13135 case 1: /* BFDOT */ 13136 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13137 gen_helper_gvec_bfdot_idx); 13138 return; 13139 case 2: /* USDOT */ 13140 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13141 gen_helper_gvec_usdot_idx_b); 13142 return; 13143 case 3: /* BFMLAL{B,T} */ 13144 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13145 gen_helper_gvec_bfmlal_idx); 13146 return; 13147 } 13148 g_assert_not_reached(); 13149 case 0x11: /* FCMLA #0 */ 13150 case 0x13: /* FCMLA #90 */ 13151 case 0x15: /* FCMLA #180 */ 13152 case 0x17: /* FCMLA #270 */ 13153 { 13154 int rot = extract32(insn, 13, 2); 13155 int data = (index << 2) | rot; 13156 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13157 vec_full_reg_offset(s, rn), 13158 vec_full_reg_offset(s, rm), 13159 vec_full_reg_offset(s, rd), fpst, 13160 is_q ? 16 : 8, vec_full_reg_size(s), data, 13161 size == MO_64 13162 ? gen_helper_gvec_fcmlas_idx 13163 : gen_helper_gvec_fcmlah_idx); 13164 } 13165 return; 13166 13167 case 0x00: /* FMLAL */ 13168 case 0x04: /* FMLSL */ 13169 case 0x18: /* FMLAL2 */ 13170 case 0x1c: /* FMLSL2 */ 13171 { 13172 int is_s = extract32(opcode, 2, 1); 13173 int is_2 = u; 13174 int data = (index << 2) | (is_2 << 1) | is_s; 13175 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13176 vec_full_reg_offset(s, rn), 13177 vec_full_reg_offset(s, rm), cpu_env, 13178 is_q ? 16 : 8, vec_full_reg_size(s), 13179 data, gen_helper_gvec_fmlal_idx_a64); 13180 } 13181 return; 13182 13183 case 0x08: /* MUL */ 13184 if (!is_long && !is_scalar) { 13185 static gen_helper_gvec_3 * const fns[3] = { 13186 gen_helper_gvec_mul_idx_h, 13187 gen_helper_gvec_mul_idx_s, 13188 gen_helper_gvec_mul_idx_d, 13189 }; 13190 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13191 vec_full_reg_offset(s, rn), 13192 vec_full_reg_offset(s, rm), 13193 is_q ? 16 : 8, vec_full_reg_size(s), 13194 index, fns[size - 1]); 13195 return; 13196 } 13197 break; 13198 13199 case 0x10: /* MLA */ 13200 if (!is_long && !is_scalar) { 13201 static gen_helper_gvec_4 * const fns[3] = { 13202 gen_helper_gvec_mla_idx_h, 13203 gen_helper_gvec_mla_idx_s, 13204 gen_helper_gvec_mla_idx_d, 13205 }; 13206 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13207 vec_full_reg_offset(s, rn), 13208 vec_full_reg_offset(s, rm), 13209 vec_full_reg_offset(s, rd), 13210 is_q ? 16 : 8, vec_full_reg_size(s), 13211 index, fns[size - 1]); 13212 return; 13213 } 13214 break; 13215 13216 case 0x14: /* MLS */ 13217 if (!is_long && !is_scalar) { 13218 static gen_helper_gvec_4 * const fns[3] = { 13219 gen_helper_gvec_mls_idx_h, 13220 gen_helper_gvec_mls_idx_s, 13221 gen_helper_gvec_mls_idx_d, 13222 }; 13223 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13224 vec_full_reg_offset(s, rn), 13225 vec_full_reg_offset(s, rm), 13226 vec_full_reg_offset(s, rd), 13227 is_q ? 16 : 8, vec_full_reg_size(s), 13228 index, fns[size - 1]); 13229 return; 13230 } 13231 break; 13232 } 13233 13234 if (size == 3) { 13235 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13236 int pass; 13237 13238 assert(is_fp && is_q && !is_long); 13239 13240 read_vec_element(s, tcg_idx, rm, index, MO_64); 13241 13242 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13243 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13244 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13245 13246 read_vec_element(s, tcg_op, rn, pass, MO_64); 13247 13248 switch (16 * u + opcode) { 13249 case 0x05: /* FMLS */ 13250 /* As usual for ARM, separate negation for fused multiply-add */ 13251 gen_helper_vfp_negd(tcg_op, tcg_op); 13252 /* fall through */ 13253 case 0x01: /* FMLA */ 13254 read_vec_element(s, tcg_res, rd, pass, MO_64); 13255 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13256 break; 13257 case 0x09: /* FMUL */ 13258 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13259 break; 13260 case 0x19: /* FMULX */ 13261 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13262 break; 13263 default: 13264 g_assert_not_reached(); 13265 } 13266 13267 write_vec_element(s, tcg_res, rd, pass, MO_64); 13268 } 13269 13270 clear_vec_high(s, !is_scalar, rd); 13271 } else if (!is_long) { 13272 /* 32 bit floating point, or 16 or 32 bit integer. 13273 * For the 16 bit scalar case we use the usual Neon helpers and 13274 * rely on the fact that 0 op 0 == 0 with no side effects. 13275 */ 13276 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13277 int pass, maxpasses; 13278 13279 if (is_scalar) { 13280 maxpasses = 1; 13281 } else { 13282 maxpasses = is_q ? 4 : 2; 13283 } 13284 13285 read_vec_element_i32(s, tcg_idx, rm, index, size); 13286 13287 if (size == 1 && !is_scalar) { 13288 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13289 * the index into both halves of the 32 bit tcg_idx and then use 13290 * the usual Neon helpers. 13291 */ 13292 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13293 } 13294 13295 for (pass = 0; pass < maxpasses; pass++) { 13296 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13297 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13298 13299 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13300 13301 switch (16 * u + opcode) { 13302 case 0x08: /* MUL */ 13303 case 0x10: /* MLA */ 13304 case 0x14: /* MLS */ 13305 { 13306 static NeonGenTwoOpFn * const fns[2][2] = { 13307 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13308 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13309 }; 13310 NeonGenTwoOpFn *genfn; 13311 bool is_sub = opcode == 0x4; 13312 13313 if (size == 1) { 13314 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13315 } else { 13316 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13317 } 13318 if (opcode == 0x8) { 13319 break; 13320 } 13321 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13322 genfn = fns[size - 1][is_sub]; 13323 genfn(tcg_res, tcg_op, tcg_res); 13324 break; 13325 } 13326 case 0x05: /* FMLS */ 13327 case 0x01: /* FMLA */ 13328 read_vec_element_i32(s, tcg_res, rd, pass, 13329 is_scalar ? size : MO_32); 13330 switch (size) { 13331 case 1: 13332 if (opcode == 0x5) { 13333 /* As usual for ARM, separate negation for fused 13334 * multiply-add */ 13335 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13336 } 13337 if (is_scalar) { 13338 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13339 tcg_res, fpst); 13340 } else { 13341 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13342 tcg_res, fpst); 13343 } 13344 break; 13345 case 2: 13346 if (opcode == 0x5) { 13347 /* As usual for ARM, separate negation for 13348 * fused multiply-add */ 13349 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13350 } 13351 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13352 tcg_res, fpst); 13353 break; 13354 default: 13355 g_assert_not_reached(); 13356 } 13357 break; 13358 case 0x09: /* FMUL */ 13359 switch (size) { 13360 case 1: 13361 if (is_scalar) { 13362 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13363 tcg_idx, fpst); 13364 } else { 13365 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13366 tcg_idx, fpst); 13367 } 13368 break; 13369 case 2: 13370 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13371 break; 13372 default: 13373 g_assert_not_reached(); 13374 } 13375 break; 13376 case 0x19: /* FMULX */ 13377 switch (size) { 13378 case 1: 13379 if (is_scalar) { 13380 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13381 tcg_idx, fpst); 13382 } else { 13383 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13384 tcg_idx, fpst); 13385 } 13386 break; 13387 case 2: 13388 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13389 break; 13390 default: 13391 g_assert_not_reached(); 13392 } 13393 break; 13394 case 0x0c: /* SQDMULH */ 13395 if (size == 1) { 13396 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13397 tcg_op, tcg_idx); 13398 } else { 13399 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13400 tcg_op, tcg_idx); 13401 } 13402 break; 13403 case 0x0d: /* SQRDMULH */ 13404 if (size == 1) { 13405 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13406 tcg_op, tcg_idx); 13407 } else { 13408 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13409 tcg_op, tcg_idx); 13410 } 13411 break; 13412 case 0x1d: /* SQRDMLAH */ 13413 read_vec_element_i32(s, tcg_res, rd, pass, 13414 is_scalar ? size : MO_32); 13415 if (size == 1) { 13416 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13417 tcg_op, tcg_idx, tcg_res); 13418 } else { 13419 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13420 tcg_op, tcg_idx, tcg_res); 13421 } 13422 break; 13423 case 0x1f: /* SQRDMLSH */ 13424 read_vec_element_i32(s, tcg_res, rd, pass, 13425 is_scalar ? size : MO_32); 13426 if (size == 1) { 13427 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13428 tcg_op, tcg_idx, tcg_res); 13429 } else { 13430 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13431 tcg_op, tcg_idx, tcg_res); 13432 } 13433 break; 13434 default: 13435 g_assert_not_reached(); 13436 } 13437 13438 if (is_scalar) { 13439 write_fp_sreg(s, rd, tcg_res); 13440 } else { 13441 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13442 } 13443 } 13444 13445 clear_vec_high(s, is_q, rd); 13446 } else { 13447 /* long ops: 16x16->32 or 32x32->64 */ 13448 TCGv_i64 tcg_res[2]; 13449 int pass; 13450 bool satop = extract32(opcode, 0, 1); 13451 MemOp memop = MO_32; 13452 13453 if (satop || !u) { 13454 memop |= MO_SIGN; 13455 } 13456 13457 if (size == 2) { 13458 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13459 13460 read_vec_element(s, tcg_idx, rm, index, memop); 13461 13462 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13463 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13464 TCGv_i64 tcg_passres; 13465 int passelt; 13466 13467 if (is_scalar) { 13468 passelt = 0; 13469 } else { 13470 passelt = pass + (is_q * 2); 13471 } 13472 13473 read_vec_element(s, tcg_op, rn, passelt, memop); 13474 13475 tcg_res[pass] = tcg_temp_new_i64(); 13476 13477 if (opcode == 0xa || opcode == 0xb) { 13478 /* Non-accumulating ops */ 13479 tcg_passres = tcg_res[pass]; 13480 } else { 13481 tcg_passres = tcg_temp_new_i64(); 13482 } 13483 13484 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13485 13486 if (satop) { 13487 /* saturating, doubling */ 13488 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13489 tcg_passres, tcg_passres); 13490 } 13491 13492 if (opcode == 0xa || opcode == 0xb) { 13493 continue; 13494 } 13495 13496 /* Accumulating op: handle accumulate step */ 13497 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13498 13499 switch (opcode) { 13500 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13501 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13502 break; 13503 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13504 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13505 break; 13506 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13507 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13508 /* fall through */ 13509 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13510 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13511 tcg_res[pass], 13512 tcg_passres); 13513 break; 13514 default: 13515 g_assert_not_reached(); 13516 } 13517 } 13518 13519 clear_vec_high(s, !is_scalar, rd); 13520 } else { 13521 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13522 13523 assert(size == 1); 13524 read_vec_element_i32(s, tcg_idx, rm, index, size); 13525 13526 if (!is_scalar) { 13527 /* The simplest way to handle the 16x16 indexed ops is to 13528 * duplicate the index into both halves of the 32 bit tcg_idx 13529 * and then use the usual Neon helpers. 13530 */ 13531 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13532 } 13533 13534 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13535 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13536 TCGv_i64 tcg_passres; 13537 13538 if (is_scalar) { 13539 read_vec_element_i32(s, tcg_op, rn, pass, size); 13540 } else { 13541 read_vec_element_i32(s, tcg_op, rn, 13542 pass + (is_q * 2), MO_32); 13543 } 13544 13545 tcg_res[pass] = tcg_temp_new_i64(); 13546 13547 if (opcode == 0xa || opcode == 0xb) { 13548 /* Non-accumulating ops */ 13549 tcg_passres = tcg_res[pass]; 13550 } else { 13551 tcg_passres = tcg_temp_new_i64(); 13552 } 13553 13554 if (memop & MO_SIGN) { 13555 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13556 } else { 13557 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13558 } 13559 if (satop) { 13560 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13561 tcg_passres, tcg_passres); 13562 } 13563 13564 if (opcode == 0xa || opcode == 0xb) { 13565 continue; 13566 } 13567 13568 /* Accumulating op: handle accumulate step */ 13569 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13570 13571 switch (opcode) { 13572 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13573 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13574 tcg_passres); 13575 break; 13576 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13577 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13578 tcg_passres); 13579 break; 13580 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13581 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13582 /* fall through */ 13583 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13584 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13585 tcg_res[pass], 13586 tcg_passres); 13587 break; 13588 default: 13589 g_assert_not_reached(); 13590 } 13591 } 13592 13593 if (is_scalar) { 13594 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13595 } 13596 } 13597 13598 if (is_scalar) { 13599 tcg_res[1] = tcg_constant_i64(0); 13600 } 13601 13602 for (pass = 0; pass < 2; pass++) { 13603 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13604 } 13605 } 13606 } 13607 13608 /* Crypto AES 13609 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13610 * +-----------------+------+-----------+--------+-----+------+------+ 13611 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13612 * +-----------------+------+-----------+--------+-----+------+------+ 13613 */ 13614 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13615 { 13616 int size = extract32(insn, 22, 2); 13617 int opcode = extract32(insn, 12, 5); 13618 int rn = extract32(insn, 5, 5); 13619 int rd = extract32(insn, 0, 5); 13620 int decrypt; 13621 gen_helper_gvec_2 *genfn2 = NULL; 13622 gen_helper_gvec_3 *genfn3 = NULL; 13623 13624 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13625 unallocated_encoding(s); 13626 return; 13627 } 13628 13629 switch (opcode) { 13630 case 0x4: /* AESE */ 13631 decrypt = 0; 13632 genfn3 = gen_helper_crypto_aese; 13633 break; 13634 case 0x6: /* AESMC */ 13635 decrypt = 0; 13636 genfn2 = gen_helper_crypto_aesmc; 13637 break; 13638 case 0x5: /* AESD */ 13639 decrypt = 1; 13640 genfn3 = gen_helper_crypto_aese; 13641 break; 13642 case 0x7: /* AESIMC */ 13643 decrypt = 1; 13644 genfn2 = gen_helper_crypto_aesmc; 13645 break; 13646 default: 13647 unallocated_encoding(s); 13648 return; 13649 } 13650 13651 if (!fp_access_check(s)) { 13652 return; 13653 } 13654 if (genfn2) { 13655 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13656 } else { 13657 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13658 } 13659 } 13660 13661 /* Crypto three-reg SHA 13662 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13663 * +-----------------+------+---+------+---+--------+-----+------+------+ 13664 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13665 * +-----------------+------+---+------+---+--------+-----+------+------+ 13666 */ 13667 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13668 { 13669 int size = extract32(insn, 22, 2); 13670 int opcode = extract32(insn, 12, 3); 13671 int rm = extract32(insn, 16, 5); 13672 int rn = extract32(insn, 5, 5); 13673 int rd = extract32(insn, 0, 5); 13674 gen_helper_gvec_3 *genfn; 13675 bool feature; 13676 13677 if (size != 0) { 13678 unallocated_encoding(s); 13679 return; 13680 } 13681 13682 switch (opcode) { 13683 case 0: /* SHA1C */ 13684 genfn = gen_helper_crypto_sha1c; 13685 feature = dc_isar_feature(aa64_sha1, s); 13686 break; 13687 case 1: /* SHA1P */ 13688 genfn = gen_helper_crypto_sha1p; 13689 feature = dc_isar_feature(aa64_sha1, s); 13690 break; 13691 case 2: /* SHA1M */ 13692 genfn = gen_helper_crypto_sha1m; 13693 feature = dc_isar_feature(aa64_sha1, s); 13694 break; 13695 case 3: /* SHA1SU0 */ 13696 genfn = gen_helper_crypto_sha1su0; 13697 feature = dc_isar_feature(aa64_sha1, s); 13698 break; 13699 case 4: /* SHA256H */ 13700 genfn = gen_helper_crypto_sha256h; 13701 feature = dc_isar_feature(aa64_sha256, s); 13702 break; 13703 case 5: /* SHA256H2 */ 13704 genfn = gen_helper_crypto_sha256h2; 13705 feature = dc_isar_feature(aa64_sha256, s); 13706 break; 13707 case 6: /* SHA256SU1 */ 13708 genfn = gen_helper_crypto_sha256su1; 13709 feature = dc_isar_feature(aa64_sha256, s); 13710 break; 13711 default: 13712 unallocated_encoding(s); 13713 return; 13714 } 13715 13716 if (!feature) { 13717 unallocated_encoding(s); 13718 return; 13719 } 13720 13721 if (!fp_access_check(s)) { 13722 return; 13723 } 13724 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13725 } 13726 13727 /* Crypto two-reg SHA 13728 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13729 * +-----------------+------+-----------+--------+-----+------+------+ 13730 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13731 * +-----------------+------+-----------+--------+-----+------+------+ 13732 */ 13733 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13734 { 13735 int size = extract32(insn, 22, 2); 13736 int opcode = extract32(insn, 12, 5); 13737 int rn = extract32(insn, 5, 5); 13738 int rd = extract32(insn, 0, 5); 13739 gen_helper_gvec_2 *genfn; 13740 bool feature; 13741 13742 if (size != 0) { 13743 unallocated_encoding(s); 13744 return; 13745 } 13746 13747 switch (opcode) { 13748 case 0: /* SHA1H */ 13749 feature = dc_isar_feature(aa64_sha1, s); 13750 genfn = gen_helper_crypto_sha1h; 13751 break; 13752 case 1: /* SHA1SU1 */ 13753 feature = dc_isar_feature(aa64_sha1, s); 13754 genfn = gen_helper_crypto_sha1su1; 13755 break; 13756 case 2: /* SHA256SU0 */ 13757 feature = dc_isar_feature(aa64_sha256, s); 13758 genfn = gen_helper_crypto_sha256su0; 13759 break; 13760 default: 13761 unallocated_encoding(s); 13762 return; 13763 } 13764 13765 if (!feature) { 13766 unallocated_encoding(s); 13767 return; 13768 } 13769 13770 if (!fp_access_check(s)) { 13771 return; 13772 } 13773 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13774 } 13775 13776 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13777 { 13778 tcg_gen_rotli_i64(d, m, 1); 13779 tcg_gen_xor_i64(d, d, n); 13780 } 13781 13782 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13783 { 13784 tcg_gen_rotli_vec(vece, d, m, 1); 13785 tcg_gen_xor_vec(vece, d, d, n); 13786 } 13787 13788 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13789 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13790 { 13791 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13792 static const GVecGen3 op = { 13793 .fni8 = gen_rax1_i64, 13794 .fniv = gen_rax1_vec, 13795 .opt_opc = vecop_list, 13796 .fno = gen_helper_crypto_rax1, 13797 .vece = MO_64, 13798 }; 13799 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13800 } 13801 13802 /* Crypto three-reg SHA512 13803 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13804 * +-----------------------+------+---+---+-----+--------+------+------+ 13805 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13806 * +-----------------------+------+---+---+-----+--------+------+------+ 13807 */ 13808 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13809 { 13810 int opcode = extract32(insn, 10, 2); 13811 int o = extract32(insn, 14, 1); 13812 int rm = extract32(insn, 16, 5); 13813 int rn = extract32(insn, 5, 5); 13814 int rd = extract32(insn, 0, 5); 13815 bool feature; 13816 gen_helper_gvec_3 *oolfn = NULL; 13817 GVecGen3Fn *gvecfn = NULL; 13818 13819 if (o == 0) { 13820 switch (opcode) { 13821 case 0: /* SHA512H */ 13822 feature = dc_isar_feature(aa64_sha512, s); 13823 oolfn = gen_helper_crypto_sha512h; 13824 break; 13825 case 1: /* SHA512H2 */ 13826 feature = dc_isar_feature(aa64_sha512, s); 13827 oolfn = gen_helper_crypto_sha512h2; 13828 break; 13829 case 2: /* SHA512SU1 */ 13830 feature = dc_isar_feature(aa64_sha512, s); 13831 oolfn = gen_helper_crypto_sha512su1; 13832 break; 13833 case 3: /* RAX1 */ 13834 feature = dc_isar_feature(aa64_sha3, s); 13835 gvecfn = gen_gvec_rax1; 13836 break; 13837 default: 13838 g_assert_not_reached(); 13839 } 13840 } else { 13841 switch (opcode) { 13842 case 0: /* SM3PARTW1 */ 13843 feature = dc_isar_feature(aa64_sm3, s); 13844 oolfn = gen_helper_crypto_sm3partw1; 13845 break; 13846 case 1: /* SM3PARTW2 */ 13847 feature = dc_isar_feature(aa64_sm3, s); 13848 oolfn = gen_helper_crypto_sm3partw2; 13849 break; 13850 case 2: /* SM4EKEY */ 13851 feature = dc_isar_feature(aa64_sm4, s); 13852 oolfn = gen_helper_crypto_sm4ekey; 13853 break; 13854 default: 13855 unallocated_encoding(s); 13856 return; 13857 } 13858 } 13859 13860 if (!feature) { 13861 unallocated_encoding(s); 13862 return; 13863 } 13864 13865 if (!fp_access_check(s)) { 13866 return; 13867 } 13868 13869 if (oolfn) { 13870 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13871 } else { 13872 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13873 } 13874 } 13875 13876 /* Crypto two-reg SHA512 13877 * 31 12 11 10 9 5 4 0 13878 * +-----------------------------------------+--------+------+------+ 13879 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13880 * +-----------------------------------------+--------+------+------+ 13881 */ 13882 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13883 { 13884 int opcode = extract32(insn, 10, 2); 13885 int rn = extract32(insn, 5, 5); 13886 int rd = extract32(insn, 0, 5); 13887 bool feature; 13888 13889 switch (opcode) { 13890 case 0: /* SHA512SU0 */ 13891 feature = dc_isar_feature(aa64_sha512, s); 13892 break; 13893 case 1: /* SM4E */ 13894 feature = dc_isar_feature(aa64_sm4, s); 13895 break; 13896 default: 13897 unallocated_encoding(s); 13898 return; 13899 } 13900 13901 if (!feature) { 13902 unallocated_encoding(s); 13903 return; 13904 } 13905 13906 if (!fp_access_check(s)) { 13907 return; 13908 } 13909 13910 switch (opcode) { 13911 case 0: /* SHA512SU0 */ 13912 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13913 break; 13914 case 1: /* SM4E */ 13915 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13916 break; 13917 default: 13918 g_assert_not_reached(); 13919 } 13920 } 13921 13922 /* Crypto four-register 13923 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13924 * +-------------------+-----+------+---+------+------+------+ 13925 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13926 * +-------------------+-----+------+---+------+------+------+ 13927 */ 13928 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13929 { 13930 int op0 = extract32(insn, 21, 2); 13931 int rm = extract32(insn, 16, 5); 13932 int ra = extract32(insn, 10, 5); 13933 int rn = extract32(insn, 5, 5); 13934 int rd = extract32(insn, 0, 5); 13935 bool feature; 13936 13937 switch (op0) { 13938 case 0: /* EOR3 */ 13939 case 1: /* BCAX */ 13940 feature = dc_isar_feature(aa64_sha3, s); 13941 break; 13942 case 2: /* SM3SS1 */ 13943 feature = dc_isar_feature(aa64_sm3, s); 13944 break; 13945 default: 13946 unallocated_encoding(s); 13947 return; 13948 } 13949 13950 if (!feature) { 13951 unallocated_encoding(s); 13952 return; 13953 } 13954 13955 if (!fp_access_check(s)) { 13956 return; 13957 } 13958 13959 if (op0 < 2) { 13960 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13961 int pass; 13962 13963 tcg_op1 = tcg_temp_new_i64(); 13964 tcg_op2 = tcg_temp_new_i64(); 13965 tcg_op3 = tcg_temp_new_i64(); 13966 tcg_res[0] = tcg_temp_new_i64(); 13967 tcg_res[1] = tcg_temp_new_i64(); 13968 13969 for (pass = 0; pass < 2; pass++) { 13970 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13971 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13972 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13973 13974 if (op0 == 0) { 13975 /* EOR3 */ 13976 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13977 } else { 13978 /* BCAX */ 13979 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13980 } 13981 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13982 } 13983 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13984 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13985 } else { 13986 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13987 13988 tcg_op1 = tcg_temp_new_i32(); 13989 tcg_op2 = tcg_temp_new_i32(); 13990 tcg_op3 = tcg_temp_new_i32(); 13991 tcg_res = tcg_temp_new_i32(); 13992 tcg_zero = tcg_constant_i32(0); 13993 13994 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13995 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13996 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13997 13998 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13999 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 14000 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 14001 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 14002 14003 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 14004 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 14005 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 14006 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 14007 } 14008 } 14009 14010 /* Crypto XAR 14011 * 31 21 20 16 15 10 9 5 4 0 14012 * +-----------------------+------+--------+------+------+ 14013 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 14014 * +-----------------------+------+--------+------+------+ 14015 */ 14016 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 14017 { 14018 int rm = extract32(insn, 16, 5); 14019 int imm6 = extract32(insn, 10, 6); 14020 int rn = extract32(insn, 5, 5); 14021 int rd = extract32(insn, 0, 5); 14022 14023 if (!dc_isar_feature(aa64_sha3, s)) { 14024 unallocated_encoding(s); 14025 return; 14026 } 14027 14028 if (!fp_access_check(s)) { 14029 return; 14030 } 14031 14032 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 14033 vec_full_reg_offset(s, rn), 14034 vec_full_reg_offset(s, rm), imm6, 16, 14035 vec_full_reg_size(s)); 14036 } 14037 14038 /* Crypto three-reg imm2 14039 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14040 * +-----------------------+------+-----+------+--------+------+------+ 14041 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14042 * +-----------------------+------+-----+------+--------+------+------+ 14043 */ 14044 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14045 { 14046 static gen_helper_gvec_3 * const fns[4] = { 14047 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14048 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14049 }; 14050 int opcode = extract32(insn, 10, 2); 14051 int imm2 = extract32(insn, 12, 2); 14052 int rm = extract32(insn, 16, 5); 14053 int rn = extract32(insn, 5, 5); 14054 int rd = extract32(insn, 0, 5); 14055 14056 if (!dc_isar_feature(aa64_sm3, s)) { 14057 unallocated_encoding(s); 14058 return; 14059 } 14060 14061 if (!fp_access_check(s)) { 14062 return; 14063 } 14064 14065 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14066 } 14067 14068 /* C3.6 Data processing - SIMD, inc Crypto 14069 * 14070 * As the decode gets a little complex we are using a table based 14071 * approach for this part of the decode. 14072 */ 14073 static const AArch64DecodeTable data_proc_simd[] = { 14074 /* pattern , mask , fn */ 14075 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14076 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14077 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14078 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14079 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14080 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14081 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14082 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14083 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14084 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14085 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14086 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14087 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14088 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14089 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14090 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14091 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14092 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14093 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14094 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14095 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14096 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14097 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14098 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14099 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14100 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14101 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14102 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14103 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14104 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14105 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14106 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14107 { 0x00000000, 0x00000000, NULL } 14108 }; 14109 14110 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14111 { 14112 /* Note that this is called with all non-FP cases from 14113 * table C3-6 so it must UNDEF for entries not specifically 14114 * allocated to instructions in that table. 14115 */ 14116 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14117 if (fn) { 14118 fn(s, insn); 14119 } else { 14120 unallocated_encoding(s); 14121 } 14122 } 14123 14124 /* C3.6 Data processing - SIMD and floating point */ 14125 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14126 { 14127 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14128 disas_data_proc_fp(s, insn); 14129 } else { 14130 /* SIMD, including crypto */ 14131 disas_data_proc_simd(s, insn); 14132 } 14133 } 14134 14135 static bool trans_OK(DisasContext *s, arg_OK *a) 14136 { 14137 return true; 14138 } 14139 14140 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14141 { 14142 s->is_nonstreaming = true; 14143 return true; 14144 } 14145 14146 /** 14147 * is_guarded_page: 14148 * @env: The cpu environment 14149 * @s: The DisasContext 14150 * 14151 * Return true if the page is guarded. 14152 */ 14153 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14154 { 14155 uint64_t addr = s->base.pc_first; 14156 #ifdef CONFIG_USER_ONLY 14157 return page_get_flags(addr) & PAGE_BTI; 14158 #else 14159 CPUTLBEntryFull *full; 14160 void *host; 14161 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14162 int flags; 14163 14164 /* 14165 * We test this immediately after reading an insn, which means 14166 * that the TLB entry must be present and valid, and thus this 14167 * access will never raise an exception. 14168 */ 14169 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14170 false, &host, &full, 0); 14171 assert(!(flags & TLB_INVALID_MASK)); 14172 14173 return full->guarded; 14174 #endif 14175 } 14176 14177 /** 14178 * btype_destination_ok: 14179 * @insn: The instruction at the branch destination 14180 * @bt: SCTLR_ELx.BT 14181 * @btype: PSTATE.BTYPE, and is non-zero 14182 * 14183 * On a guarded page, there are a limited number of insns 14184 * that may be present at the branch target: 14185 * - branch target identifiers, 14186 * - paciasp, pacibsp, 14187 * - BRK insn 14188 * - HLT insn 14189 * Anything else causes a Branch Target Exception. 14190 * 14191 * Return true if the branch is compatible, false to raise BTITRAP. 14192 */ 14193 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14194 { 14195 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14196 /* HINT space */ 14197 switch (extract32(insn, 5, 7)) { 14198 case 0b011001: /* PACIASP */ 14199 case 0b011011: /* PACIBSP */ 14200 /* 14201 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14202 * with btype == 3. Otherwise all btype are ok. 14203 */ 14204 return !bt || btype != 3; 14205 case 0b100000: /* BTI */ 14206 /* Not compatible with any btype. */ 14207 return false; 14208 case 0b100010: /* BTI c */ 14209 /* Not compatible with btype == 3 */ 14210 return btype != 3; 14211 case 0b100100: /* BTI j */ 14212 /* Not compatible with btype == 2 */ 14213 return btype != 2; 14214 case 0b100110: /* BTI jc */ 14215 /* Compatible with any btype. */ 14216 return true; 14217 } 14218 } else { 14219 switch (insn & 0xffe0001fu) { 14220 case 0xd4200000u: /* BRK */ 14221 case 0xd4400000u: /* HLT */ 14222 /* Give priority to the breakpoint exception. */ 14223 return true; 14224 } 14225 } 14226 return false; 14227 } 14228 14229 /* C3.1 A64 instruction index by encoding */ 14230 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14231 { 14232 switch (extract32(insn, 25, 4)) { 14233 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14234 disas_b_exc_sys(s, insn); 14235 break; 14236 case 0x4: 14237 case 0x6: 14238 case 0xc: 14239 case 0xe: /* Loads and stores */ 14240 disas_ldst(s, insn); 14241 break; 14242 case 0x5: 14243 case 0xd: /* Data processing - register */ 14244 disas_data_proc_reg(s, insn); 14245 break; 14246 case 0x7: 14247 case 0xf: /* Data processing - SIMD and floating point */ 14248 disas_data_proc_simd_fp(s, insn); 14249 break; 14250 default: 14251 unallocated_encoding(s); 14252 break; 14253 } 14254 } 14255 14256 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14257 CPUState *cpu) 14258 { 14259 DisasContext *dc = container_of(dcbase, DisasContext, base); 14260 CPUARMState *env = cpu->env_ptr; 14261 ARMCPU *arm_cpu = env_archcpu(env); 14262 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14263 int bound, core_mmu_idx; 14264 14265 dc->isar = &arm_cpu->isar; 14266 dc->condjmp = 0; 14267 dc->pc_save = dc->base.pc_first; 14268 dc->aarch64 = true; 14269 dc->thumb = false; 14270 dc->sctlr_b = 0; 14271 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14272 dc->condexec_mask = 0; 14273 dc->condexec_cond = 0; 14274 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14275 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14276 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14277 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14278 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14279 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14280 #if !defined(CONFIG_USER_ONLY) 14281 dc->user = (dc->current_el == 0); 14282 #endif 14283 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14284 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14285 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14286 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14287 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14288 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14289 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14290 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14291 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14292 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14293 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14294 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14295 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14296 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14297 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14298 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14299 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14300 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14301 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14302 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14303 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14304 dc->vec_len = 0; 14305 dc->vec_stride = 0; 14306 dc->cp_regs = arm_cpu->cp_regs; 14307 dc->features = env->features; 14308 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14309 14310 #ifdef CONFIG_USER_ONLY 14311 /* In sve_probe_page, we assume TBI is enabled. */ 14312 tcg_debug_assert(dc->tbid & 1); 14313 #endif 14314 14315 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14316 14317 /* Single step state. The code-generation logic here is: 14318 * SS_ACTIVE == 0: 14319 * generate code with no special handling for single-stepping (except 14320 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14321 * this happens anyway because those changes are all system register or 14322 * PSTATE writes). 14323 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14324 * emit code for one insn 14325 * emit code to clear PSTATE.SS 14326 * emit code to generate software step exception for completed step 14327 * end TB (as usual for having generated an exception) 14328 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14329 * emit code to generate a software step exception 14330 * end the TB 14331 */ 14332 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14333 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14334 dc->is_ldex = false; 14335 14336 /* Bound the number of insns to execute to those left on the page. */ 14337 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14338 14339 /* If architectural single step active, limit to 1. */ 14340 if (dc->ss_active) { 14341 bound = 1; 14342 } 14343 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14344 } 14345 14346 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14347 { 14348 } 14349 14350 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14351 { 14352 DisasContext *dc = container_of(dcbase, DisasContext, base); 14353 target_ulong pc_arg = dc->base.pc_next; 14354 14355 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14356 pc_arg &= ~TARGET_PAGE_MASK; 14357 } 14358 tcg_gen_insn_start(pc_arg, 0, 0); 14359 dc->insn_start = tcg_last_op(); 14360 } 14361 14362 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14363 { 14364 DisasContext *s = container_of(dcbase, DisasContext, base); 14365 CPUARMState *env = cpu->env_ptr; 14366 uint64_t pc = s->base.pc_next; 14367 uint32_t insn; 14368 14369 /* Singlestep exceptions have the highest priority. */ 14370 if (s->ss_active && !s->pstate_ss) { 14371 /* Singlestep state is Active-pending. 14372 * If we're in this state at the start of a TB then either 14373 * a) we just took an exception to an EL which is being debugged 14374 * and this is the first insn in the exception handler 14375 * b) debug exceptions were masked and we just unmasked them 14376 * without changing EL (eg by clearing PSTATE.D) 14377 * In either case we're going to take a swstep exception in the 14378 * "did not step an insn" case, and so the syndrome ISV and EX 14379 * bits should be zero. 14380 */ 14381 assert(s->base.num_insns == 1); 14382 gen_swstep_exception(s, 0, 0); 14383 s->base.is_jmp = DISAS_NORETURN; 14384 s->base.pc_next = pc + 4; 14385 return; 14386 } 14387 14388 if (pc & 3) { 14389 /* 14390 * PC alignment fault. This has priority over the instruction abort 14391 * that we would receive from a translation fault via arm_ldl_code. 14392 * This should only be possible after an indirect branch, at the 14393 * start of the TB. 14394 */ 14395 assert(s->base.num_insns == 1); 14396 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14397 s->base.is_jmp = DISAS_NORETURN; 14398 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14399 return; 14400 } 14401 14402 s->pc_curr = pc; 14403 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14404 s->insn = insn; 14405 s->base.pc_next = pc + 4; 14406 14407 s->fp_access_checked = false; 14408 s->sve_access_checked = false; 14409 14410 if (s->pstate_il) { 14411 /* 14412 * Illegal execution state. This has priority over BTI 14413 * exceptions, but comes after instruction abort exceptions. 14414 */ 14415 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14416 return; 14417 } 14418 14419 if (dc_isar_feature(aa64_bti, s)) { 14420 if (s->base.num_insns == 1) { 14421 /* 14422 * At the first insn of the TB, compute s->guarded_page. 14423 * We delayed computing this until successfully reading 14424 * the first insn of the TB, above. This (mostly) ensures 14425 * that the softmmu tlb entry has been populated, and the 14426 * page table GP bit is available. 14427 * 14428 * Note that we need to compute this even if btype == 0, 14429 * because this value is used for BR instructions later 14430 * where ENV is not available. 14431 */ 14432 s->guarded_page = is_guarded_page(env, s); 14433 14434 /* First insn can have btype set to non-zero. */ 14435 tcg_debug_assert(s->btype >= 0); 14436 14437 /* 14438 * Note that the Branch Target Exception has fairly high 14439 * priority -- below debugging exceptions but above most 14440 * everything else. This allows us to handle this now 14441 * instead of waiting until the insn is otherwise decoded. 14442 */ 14443 if (s->btype != 0 14444 && s->guarded_page 14445 && !btype_destination_ok(insn, s->bt, s->btype)) { 14446 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14447 return; 14448 } 14449 } else { 14450 /* Not the first insn: btype must be 0. */ 14451 tcg_debug_assert(s->btype == 0); 14452 } 14453 } 14454 14455 s->is_nonstreaming = false; 14456 if (s->sme_trap_nonstreaming) { 14457 disas_sme_fa64(s, insn); 14458 } 14459 14460 if (!disas_a64(s, insn) && 14461 !disas_sme(s, insn) && 14462 !disas_sve(s, insn)) { 14463 disas_a64_legacy(s, insn); 14464 } 14465 14466 /* 14467 * After execution of most insns, btype is reset to 0. 14468 * Note that we set btype == -1 when the insn sets btype. 14469 */ 14470 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14471 reset_btype(s); 14472 } 14473 } 14474 14475 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14476 { 14477 DisasContext *dc = container_of(dcbase, DisasContext, base); 14478 14479 if (unlikely(dc->ss_active)) { 14480 /* Note that this means single stepping WFI doesn't halt the CPU. 14481 * For conditional branch insns this is harmless unreachable code as 14482 * gen_goto_tb() has already handled emitting the debug exception 14483 * (and thus a tb-jump is not possible when singlestepping). 14484 */ 14485 switch (dc->base.is_jmp) { 14486 default: 14487 gen_a64_update_pc(dc, 4); 14488 /* fall through */ 14489 case DISAS_EXIT: 14490 case DISAS_JUMP: 14491 gen_step_complete_exception(dc); 14492 break; 14493 case DISAS_NORETURN: 14494 break; 14495 } 14496 } else { 14497 switch (dc->base.is_jmp) { 14498 case DISAS_NEXT: 14499 case DISAS_TOO_MANY: 14500 gen_goto_tb(dc, 1, 4); 14501 break; 14502 default: 14503 case DISAS_UPDATE_EXIT: 14504 gen_a64_update_pc(dc, 4); 14505 /* fall through */ 14506 case DISAS_EXIT: 14507 tcg_gen_exit_tb(NULL, 0); 14508 break; 14509 case DISAS_UPDATE_NOCHAIN: 14510 gen_a64_update_pc(dc, 4); 14511 /* fall through */ 14512 case DISAS_JUMP: 14513 tcg_gen_lookup_and_goto_ptr(); 14514 break; 14515 case DISAS_NORETURN: 14516 case DISAS_SWI: 14517 break; 14518 case DISAS_WFE: 14519 gen_a64_update_pc(dc, 4); 14520 gen_helper_wfe(cpu_env); 14521 break; 14522 case DISAS_YIELD: 14523 gen_a64_update_pc(dc, 4); 14524 gen_helper_yield(cpu_env); 14525 break; 14526 case DISAS_WFI: 14527 /* 14528 * This is a special case because we don't want to just halt 14529 * the CPU if trying to debug across a WFI. 14530 */ 14531 gen_a64_update_pc(dc, 4); 14532 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14533 /* 14534 * The helper doesn't necessarily throw an exception, but we 14535 * must go back to the main loop to check for interrupts anyway. 14536 */ 14537 tcg_gen_exit_tb(NULL, 0); 14538 break; 14539 } 14540 } 14541 } 14542 14543 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14544 CPUState *cpu, FILE *logfile) 14545 { 14546 DisasContext *dc = container_of(dcbase, DisasContext, base); 14547 14548 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14549 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14550 } 14551 14552 const TranslatorOps aarch64_translator_ops = { 14553 .init_disas_context = aarch64_tr_init_disas_context, 14554 .tb_start = aarch64_tr_tb_start, 14555 .insn_start = aarch64_tr_insn_start, 14556 .translate_insn = aarch64_tr_translate_insn, 14557 .tb_stop = aarch64_tr_tb_stop, 14558 .disas_log = aarch64_tr_disas_log, 14559 }; 14560